1
|
Nsairat H, Alshaer W, Lafi Z, Ahmad S, Al-Sanabrah A, El-Tanani M. Development and validation of reversed-phase-HPLC method for simultaneous quantification of fulvestrant and disulfiram in liposomes. Bioanalysis 2023; 15:1393-1405. [PMID: 37847056 DOI: 10.4155/bio-2023-0137] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023] Open
Abstract
This study aims to develop and validate an HPLC technique for the determination of fulvestrant and disulfiram in liposomes. Encapsulation of both drugs into liposomes may improve their anticancer potential. Validation was performed following the International Conference on Harmonization guidelines for specificity, linearity, limit of detection, limit of quantification, precision, accuracy and robustness. Method specificity displayed no interference and linearity over 25-200 and 12.5-100 μg/ml for fulvestrant and disulfiram, respectively. Precision and accuracy exhibited a low relative standard deviation (<1.70%) and appropriate recovery. The validated method could be designated as a proper method for the simultaneous determination of fulvestrant and disulfiram in liposomes. The liposomes displayed 148.5 ± 5.1 nm size. The encapsulation efficiencies were 73.52 and 50.50% for fulvestrant and disulfiram, respectively.
Collapse
Affiliation(s)
- Hamdi Nsairat
- Pharmacological & Diagnostic Research Center, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Walhan Alshaer
- Cell Therapy Center, the University of Jordan, Amman, 11942, Jordan
| | - Zainab Lafi
- Pharmacological & Diagnostic Research Center, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Somaya Ahmad
- Pharmacological & Diagnostic Research Center, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Alaa Al-Sanabrah
- Pharmacological & Diagnostic Research Center, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Mohamed El-Tanani
- Pharmacological & Diagnostic Research Center, Al-Ahliyya Amman University, Amman, 19328, Jordan
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| |
Collapse
|
2
|
Zhang J, Zhou K, Cheng R, Yang M, Shen X, Luo X, Xu L. Maternal Perinatal Exposure to Dibutyl Phthalate Promotes Ovarian Dysfunction in Adult Female Offspring via Downregulation of TGF-β2 and TGF-β3. Reprod Sci 2022; 29:2401-2413. [PMID: 35028925 DOI: 10.1007/s43032-021-00785-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/24/2021] [Indexed: 11/30/2022]
Abstract
Maternal exposure to dibutyl phthalate (DBP) may result in ovarian dysfunction in female offspring. However, the underlying mechanisms remain elusive. Pregnant Sprague-Dawley rats were intraperitoneally injected with different doses of DBP, estradiol, and corn oil from gestational day 7 until the end of lactation. The reproductive characteristics, mRNA, and protein expression of ovaries for the adult female offspring were compared. KGN cells were cultured in vitro with DBP, estrogen receptor antagonist, or ALK-5 inhibitor. Genes, proteins, estradiol, and progesterone expressed by KGN, cell proliferation, and apoptosis were measured respectively. Maternal perinatal exposure to DBP induced prolonged estrous period, increased secondary follicles, significant decreased mRNA, and protein levels of TGF-β2, TGF-β3, and TGF-βRII in ovaries of the adult female offspring, but none difference for serum levels of sex hormones, ovarian TGF-β1, and estrogen receptor. The mRNA levels of LHR, FSHR, and CYP19a in ovaries were also decreased. DBP might decrease the mRNA of TGF-β2, TGF-β3, and TGF-βR II of KGN. DBP can inhibit the mRNA of CYP19 at 24 h, which might be blocked by the estrogen receptor antagonist, whose effects were attenuated at 48 h. DBP combined with FSH might time-dependently regulate the gene expression of TGF-βR II, inhibitory at 24 h, but stimulative at 48 h, which could be blocked by the ALK5 inhibitor. However, the protein expressed by KGN was not influenced by DBP. DBP stimulated the proliferation of KGN at 24 h, which could be blocked by estrogen receptor antagonist, but attenuated at 48 h. The progesterone in culture medium secreted by KGN was decreased by DBP at 24 h. Maternal perinatal exposure to DBP induced decreased gene expression of TGF-β signaling and functional proteins in ovaries of the adult female offspring. Molecular cross-talk between estrogen receptor and TGF-β signaling pathway may play role in the mechanism of granulosa dysfunction induced by DBP.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,Reproductive Endocrinology and Regulation Laboratory, West China Second University Hospital, Chengdu, Sichuan, People's Republic of China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Kunyan Zhou
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,Reproductive Endocrinology and Regulation Laboratory, West China Second University Hospital, Chengdu, Sichuan, People's Republic of China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Ran Cheng
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,Reproductive Endocrinology and Regulation Laboratory, West China Second University Hospital, Chengdu, Sichuan, People's Republic of China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Meina Yang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xiaoyang Shen
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xiaoyan Luo
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,Reproductive Endocrinology and Regulation Laboratory, West China Second University Hospital, Chengdu, Sichuan, People's Republic of China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Liangzhi Xu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China. .,Reproductive Endocrinology and Regulation Laboratory, West China Second University Hospital, Chengdu, Sichuan, People's Republic of China. .,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.
| |
Collapse
|
3
|
Patel JM, Jeselsohn RM. Estrogen Receptor Alpha and ESR1 Mutations in Breast Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1390:171-194. [DOI: 10.1007/978-3-031-11836-4_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Rusidzé M, Adlanmérini M, Chantalat E, Raymond-Letron I, Cayre S, Arnal JF, Deugnier MA, Lenfant F. Estrogen receptor-α signaling in post-natal mammary development and breast cancers. Cell Mol Life Sci 2021; 78:5681-5705. [PMID: 34156490 PMCID: PMC8316234 DOI: 10.1007/s00018-021-03860-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/12/2021] [Accepted: 05/19/2021] [Indexed: 12/16/2022]
Abstract
17β-estradiol controls post-natal mammary gland development and exerts its effects through Estrogen Receptor ERα, a member of the nuclear receptor family. ERα is also critical for breast cancer progression and remains a central therapeutic target for hormone-dependent breast cancers. In this review, we summarize the current understanding of the complex ERα signaling pathways that involve either classical nuclear “genomic” or membrane “non-genomic” actions and regulate in concert with other hormones the different stages of mammary development. We describe the cellular and molecular features of the luminal cell lineage expressing ERα and provide an overview of the transgenic mouse models impacting ERα signaling, highlighting the pivotal role of ERα in mammary gland morphogenesis and function and its implication in the tumorigenic processes. Finally, we describe the main features of the ERα-positive luminal breast cancers and their modeling in mice.
Collapse
Affiliation(s)
- Mariam Rusidzé
- INSERM U1297, Institut Des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, CHU, Toulouse, France
| | - Marine Adlanmérini
- INSERM U1297, Institut Des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, CHU, Toulouse, France
| | - Elodie Chantalat
- INSERM U1297, Institut Des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, CHU, Toulouse, France
| | - I Raymond-Letron
- LabHPEC et Institut RESTORE, Université de Toulouse, CNRS U-5070, EFS, ENVT, Inserm U1301, Toulouse, France
| | - Surya Cayre
- Department of Cell Biology and Cancer, Institut Curie, PSL Research University, Sorbonne University, CNRS UMR144, Paris, France
| | - Jean-François Arnal
- INSERM U1297, Institut Des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, CHU, Toulouse, France
| | - Marie-Ange Deugnier
- Department of Cell Biology and Cancer, Institut Curie, PSL Research University, Sorbonne University, CNRS UMR144, Paris, France
| | - Françoise Lenfant
- INSERM U1297, Institut Des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, CHU, Toulouse, France.
| |
Collapse
|
5
|
Sahab-Negah S, Hajali V, Moradi HR, Gorji A. The Impact of Estradiol on Neurogenesis and Cognitive Functions in Alzheimer's Disease. Cell Mol Neurobiol 2020; 40:283-299. [PMID: 31502112 DOI: 10.1007/s10571-019-00733-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/31/2019] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) is described as cognitive and memory impairments with a sex-related epidemiological profile, affecting two times more women than men. There is emerging evidence that alternations in the hippocampal neurogenesis occur at the early stage of AD. Therapies that may effectively slow, stop, or regenerate the dying neurons in AD are being extensively investigated in the last few decades, but none has yet been found to be effective. The regulation of endogenous neurogenesis is one of the main therapeutic targets for AD. Mounting evidence indicates that the neurosteroid estradiol (17β-estradiol) plays a supporting role in neurogenesis, neuronal activity, and synaptic plasticity of AD. This effect may provide preventive and/or therapeutic approaches for AD. In this article, we discuss the molecular mechanism of potential estradiol modulatory action on endogenous neurogenesis, synaptic plasticity, and cognitive function in AD.
Collapse
Affiliation(s)
- Sajad Sahab-Negah
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Vahid Hajali
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Moradi
- Histology and Embryology Group, Basic Science Department, Faculty of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Ali Gorji
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.
- Department of Neurosurgery and Department of Neurology, Westfälische Wilhelms-Universität Münster, Münster, Germany.
- Epilepsy Research Center, Westfälische Wilhelms-Universität Münster, Domagkstr. 11, Münster, Germany.
| |
Collapse
|
6
|
Bolouki A, Zal F, Alaee S. Ameliorative effects of quercetin on the preimplantation embryos development in diabetic pregnant mice. J Obstet Gynaecol Res 2020; 46:736-744. [PMID: 32088935 DOI: 10.1111/jog.14219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/27/2020] [Accepted: 02/08/2020] [Indexed: 02/02/2023]
Abstract
AIM Maternal diabetes adversely retards the development of preimplantation embryos. Quercetin is a flavonoid belonging to phytoestrogens family and may be useful in treatment of reproductive disorders. The aim of this study was investigation of the ameliorative effects of quercetin administration on preimplantation embryo development in diabetic pregnancy. METHODS Diabetic and healthy female mice were treated with 30 mg/kg/day quercetin 4 weeks before conception. Blastocysts were recovered at the 4th day of pregnancy for protein and mRNA expression changes. Plasma sex-steroid levels were also analyzed. RESULTS Quercetin significantly decreased blood glucose levels in diabetic mice. Embryos retrieved from diabetic mice exhibited a considerable delay in morphological development. In diabetic mice with quercetin treatment, morphological distribution was shifted considerably to the well-developed stages. Serum estradiol level reduced in diabetic mice but, treatment with quercetin significantly increased serum estradiol level. While IGF1R, integrin αvβ3, and Cox2 mRNA expression in the blastocyst of diabetic mice decreased significantly, quercetin treatment caused increasing expression levels of these genes. Expression of the Caspase3 gene increased dramatically in the collected blastocysts from diabetic mice and reduced following quercetin treatment. Besides, the inactive β-catenin protein level in the blastocysts of diabetic mice was higher than that in normal mice, while treatment with quercetin decreased the level of inactive β-catenin protein in the blastocyst of diabetic mice. CONCLUSION Quercetin protects preimplantation embryos from destructive effects of diabetes. The amelioration of sex hormones disturbance in early pregnancy may help to treat reproductive disorders in diabetic women. Quercetin can be considered as a novel solution to the improvement of reproductive disorders in the diabetic females.
Collapse
Affiliation(s)
- Ayeh Bolouki
- Biochemistry Department, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Zal
- Biochemistry Department, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran.,Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sanaz Alaee
- Reproductive Biology Department, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
7
|
Bennesch MA, Picard D. Minireview: Tipping the balance: ligand-independent activation of steroid receptors. Mol Endocrinol 2015; 29:349-63. [PMID: 25625619 DOI: 10.1210/me.2014-1315] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Steroid receptors are prototypical ligand-dependent transcription factors and a textbook example for allosteric regulation. According to this canonical model, binding of cognate steroid is an absolute requirement for transcriptional activation. Remarkably, the simple one ligand-one receptor model could not be farther from the truth. Steroid receptors, notably the sex steroid receptors, can receive multiple inputs. Activation of steroid receptors by other signals, working through their own signaling pathways, in the absence of the cognate steroids, represents the most extreme form of signaling cross talk. Compared with cognate steroids, ligand-independent activation pathways produce similar but not identical outputs. Here we review the phenomena and discuss what is known about the underlying molecular mechanisms and the biological significance. We hypothesize that steroid receptors may have evolved to be trigger happy. In addition to their cognate steroids, many posttranslational modifications and interactors, modulated by other signals, may be able to tip the balance.
Collapse
Affiliation(s)
- Marcela A Bennesch
- Département de Biologie Cellulaire, Université de Genève, Sciences III, CH-1211 Genève 4, Switzerland
| | | |
Collapse
|
8
|
Karam M, Bièche I, Legay C, Vacher S, Auclair C, Ricort JM. Protein kinase D1 regulates ERα-positive breast cancer cell growth response to 17β-estradiol and contributes to poor prognosis in patients. J Cell Mol Med 2014; 18:2536-52. [PMID: 25287328 PMCID: PMC4302658 DOI: 10.1111/jcmm.12322] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 04/07/2014] [Indexed: 12/21/2022] Open
Abstract
About 70% of human breast cancers express and are dependent for growth on estrogen receptor α (ERα), and therefore are sensitive to antiestrogen therapies. However, progression to an advanced, more aggressive phenotype is associated with acquisition of resistance to antiestrogens and/or invasive potential. In this study, we highlight the role of the serine/threonine-protein kinase D1 (PKD1) in ERα-positive breast cancers. Growth of ERα-positive MCF-7 and MDA-MB-415 human breast cancer cells was assayed in adherent or anchorage-independent conditions in cells overexpressing or depleted for PKD1. PKD1 induces cell growth through both an ERα-dependent manner, by increasing ERα expression and cell sensitivity to 17β-estradiol, and an ERα-independent manner, by reducing cell dependence to estrogens and conferring partial resistance to antiestrogen ICI 182,780. PKD1 knockdown in MDA-MB-415 cells strongly reduced estrogen-dependent and independent invasion. Quantification of PKD1 mRNA levels in 38 cancerous and non-cancerous breast cell lines and in 152 ERα-positive breast tumours from patients treated with adjuvant tamoxifen showed an association between PKD1 and ERα expression in 76.3% (29/38) of the breast cell lines tested and a strong correlation between PKD1 expression and invasiveness (P < 0.0001). In tamoxifen-treated patients, tumours with high PKD1 mRNA levels (n = 77, 50.66%) were significantly associated with less metastasis-free survival than tumours with low PKD1 mRNA expression (n = 75, 49.34%; P = 0.031). Moreover, PKD1 mRNA levels are strongly positively associated with EGFR and vimentin levels (P < 0.0000001). Thus, our study defines PKD1 as a novel attractive prognostic factor and a potential therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Manale Karam
- Laboratoire de Biologie et de Pharmacologie Appliquée, UMR 8113 CNRS, Ecole Normale Supérieure de Cachan, Cachan, France
| | | | | | | | | | | |
Collapse
|
9
|
Khanal T, Kim HG, Do MT, Choi JH, Won SS, Kang W, Chung YC, Jeong TC, Jeong HG. Leptin induces CYP1B1 expression in MCF-7 cells through ligand-independent activation of the ERα pathway. Toxicol Appl Pharmacol 2014; 277:39-48. [PMID: 24631339 DOI: 10.1016/j.taap.2014.03.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 02/10/2014] [Accepted: 03/03/2014] [Indexed: 11/27/2022]
Abstract
Leptin, a hormone with multiple biological actions, is produced predominantly by adipose tissue. Among its functions, leptin can stimulate tumour cell growth. Oestrogen receptor α (ERα), which plays an essential role in breast cancer development, can be transcriptionally activated in a ligand-independent manner. In this study, we investigated the effect of leptin on CYP1B1 expression and its mechanism in breast cancer cells. Leptin induced CYP1B1 protein, messenger RNA expression and promoter activity in ERα-positive MCF-7 cells but not in ERα-negative MDA-MB-231 cells. Additionally, leptin increased 4-hydroxyoestradiol in MCF-7 cells. Also, ERα knockdown by siRNA significantly blocked the induction of CYP1B1 expression by leptin, indicating that leptin induced CYP1B1 expression via an ERα-dependent mechanism. Transient transfection with CYP1B1 deletion promoter constructs revealed that the oestrogen response element (ERE) plays important role in the up-regulation of CYP1B1 by leptin. Furthermore, leptin stimulated phosphorylation of ERα at serine residues 118 and 167 and increased ERE-luciferase activity, indicating that leptin induced CYP1B1 expression by ERα activation. Finally, we found that leptin activated ERK and Akt signalling pathways, which are upstream kinases related to ERα phosphorylation induced by leptin. Taken together, our results indicate that leptin-induced CYP1B1 expression is mediated by ligand-independent activation of the ERα pathway as a result of the activation of ERK and Akt in MCF-7 cells.
Collapse
Affiliation(s)
- Tilak Khanal
- Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Hyung Gyun Kim
- Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Minh Truong Do
- Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Jae Ho Choi
- Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Seong Su Won
- Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Wonku Kang
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
| | - Young Chul Chung
- Department of Food Science and Culinary, International University of Korea, Jinju, Republic of Korea
| | - Tae Cheon Jeong
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea.
| | - Hye Gwang Jeong
- Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|
10
|
Collins-Burow BM, Antoon JW, Frigo DE, Elliott S, Weldon CB, Boue SM, Beckman BS, Curiel TJ, Alam J, McLachlan JA, Burow ME. Antiestrogenic activity of flavonoid phytochemicals mediated via the c-Jun N-terminal protein kinase pathway. Cell-type specific regulation of estrogen receptor alpha. J Steroid Biochem Mol Biol 2012; 132:186-93. [PMID: 22634477 PMCID: PMC4083692 DOI: 10.1016/j.jsbmb.2012.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 05/12/2012] [Accepted: 05/14/2012] [Indexed: 12/14/2022]
Abstract
Flavonoid phytochemicals act as both agonists and antagonists of the human estrogen receptors (ERs). While a number of these compounds act by directly binding to the ER, certain phytochemicals, such as the flavonoid compounds chalcone and flavone, elicit antagonistic effects on estrogen signaling independent of direct receptor binding. Here we demonstrate both chalcone and flavone function as cell type-specific selective ER modulators. In MCF-7 breast carcinoma cells chalcone and flavone suppress ERα activity through stimulation of the stress-activated members of the mitogen-activated protein kinase (MAPK) family: c-Jun N-terminal kinase (JNK)1 and JNK2. The use of dominant-negative mutants of JNK1 or JNK2 in stable transfected cells established that the antiestrogenic effects of chalcone and flavone required intact JNK signaling. We further show that constitutive activation of the JNK pathway partially suppresses estrogen (E2)-mediated gene expression in breast, but not endometrial carcinoma cells. Our results demonstrate a role for stress-activated MAPKs in the cell type-specific regulation of ERα function.
Collapse
Affiliation(s)
- Bridgette M. Collins-Burow
- Tulane University Medical Center, New Orleans, Louisiana 70112
- Center for Bioenvironmental Research at Tulane and Xavier Universities, New Orleans, Louisiana 70112
- Department of Medicine, Section of Hematology & Medical Oncology, New Orleans, Louisiana 70112
| | - James W. Antoon
- Tulane University Medical Center, New Orleans, Louisiana 70112
- Department of Medicine, Section of Hematology & Medical Oncology, New Orleans, Louisiana 70112
- Department of Pharmacology, New Orleans, Louisiana 70112
| | - Daniel E. Frigo
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX
| | - Steven Elliott
- Tulane University Medical Center, New Orleans, Louisiana 70112
- Department of Medicine, Section of Hematology & Medical Oncology, New Orleans, Louisiana 70112
| | - Christopher B. Weldon
- Tulane University Medical Center, New Orleans, Louisiana 70112
- Department of Medicine, Section of Hematology & Medical Oncology, New Orleans, Louisiana 70112
| | - Stephen M. Boue
- U. S. Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, LA 70179
| | - Barbara S. Beckman
- Center for Bioenvironmental Research at Tulane and Xavier Universities, New Orleans, Louisiana 70112
- Department of Medicine, Section of Hematology & Medical Oncology, New Orleans, Louisiana 70112
| | - Tyler J. Curiel
- Cancer Therapy & Research Center, University of Texas Health Science Center, San Antonio
| | - Jawed Alam
- Alton Ochsner Medical Foundation, Department of Molecular Genetics, New Orleans, Louisiana 70121
| | - John A. McLachlan
- Tulane University Medical Center, New Orleans, Louisiana 70112
- Center for Bioenvironmental Research at Tulane and Xavier Universities, New Orleans, Louisiana 70112
| | - Matthew E. Burow
- Tulane University Medical Center, New Orleans, Louisiana 70112
- Center for Bioenvironmental Research at Tulane and Xavier Universities, New Orleans, Louisiana 70112
- Department of Medicine, Section of Hematology & Medical Oncology, New Orleans, Louisiana 70112
- To whom correspondence and requests for reprints should be addressed: Matthew E. Burow, Tulane University Health Sciences Center, Department of Medicine, Section of Hematology & Medical Oncology, 1430 Tulane Ave. SL-78, New Orleans, LA 70112, Phone: 504-988-6688, Fax: 504-988-5483,
| |
Collapse
|
11
|
Spencer TE, Dunlap KA, Filant J. Comparative developmental biology of the uterus: insights into mechanisms and developmental disruption. Mol Cell Endocrinol 2012; 354:34-53. [PMID: 22008458 DOI: 10.1016/j.mce.2011.09.035] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 09/19/2011] [Accepted: 09/22/2011] [Indexed: 01/30/2023]
Abstract
The uterus is an essential organ for reproduction in mammals that derives from the Müllerian duct. Despite the importance of the uterus for the fertility and health of women and their offspring, relatively little is known about the hormonal, cellular and molecular mechanisms that regulate development of the Müllerian duct and uterus. This review aims to summarize the hormonal, cellular and molecular mechanisms and pathways governing development of the Müllerian duct and uterus as well as highlight developmental programming effects of endocrine disruptor compounds. Organogenesis, morphogenesis, and functional differentiation of the uterus are complex, multifactorial processes. Disruption of uterine development in the fetus and neonate by genetic defects and exposure to endocrine disruptor compounds can cause infertility and cancer in the adult and their offspring via developmental programming. Clear conservation of some factors and pathways are observed between species; therefore, comparative biology is useful to identify candidate genes and pathways underlying congenital abnormalities in humans.
Collapse
Affiliation(s)
- Thomas E Spencer
- Center for Reproductive Biology, Department of Animal Sciences, Washington State University, Pullman, WA 99164-6310, USA.
| | | | | |
Collapse
|
12
|
McLachlan JA, Tilghman SL, Burow ME, Bratton MR. Environmental signaling and reproduction: a comparative biological and chemical perspective. Mol Cell Endocrinol 2012; 354:60-2. [PMID: 22178089 PMCID: PMC3641892 DOI: 10.1016/j.mce.2011.11.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 11/28/2011] [Indexed: 01/31/2023]
Abstract
Reproduction is a critical element of life. Self-propagation in all living organisms ranging from bacteria to humans involves numerous common strategies. Underlying all reproductive strategies is the essential need for signaling molecules to initiate and maintain the process. In this paper we use comparative biological and chemical approaches to explore the origins and distribution of estrogen signaling as a pathway common to many life forms. In the process we illuminate the mechanisms whereby environmental agents alter reproduction and development. These mechanisms involve altered signaling pathways within cells and shifts in the targets of the signaling pathways to include regulators of gene transcription normally associated with other pathways. We also stress the role of signal cross talk in mediating hormone action.
Collapse
Affiliation(s)
- John A. McLachlan
- Environmental Signaling Laboratory, Tulane University, 1430 Tulane Ave., New Orleans, LA 70122, USA
- Department of Pharmacology, Tulane University School of Medicine, USA
- Department of Ecology and Evolutionary Biology, Tulane University School of Science and Engineering, USA
| | - Syreeta L. Tilghman
- Environmental Signaling Laboratory, Tulane University, 1430 Tulane Ave., New Orleans, LA 70122, USA
- Department of Pharmacology, Tulane University School of Medicine, USA
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA, USA
| | - Matthew E. Burow
- Department of Medicine, Division of Hematology and Oncology, Tulane University School of Medicine, USA
| | - Melyssa R. Bratton
- Environmental Signaling Laboratory, Tulane University, 1430 Tulane Ave., New Orleans, LA 70122, USA
- Department of Pharmacology, Tulane University School of Medicine, USA
- Corresponding author at: Department of Pharmacology, Tulane University,
School of Medicine, USA. Tel.: +1 504 988 6623. (M.R. Bratton)
| |
Collapse
|
13
|
Cheng L, Yang Z, Wang X, Jiao Y, Xie X, Lin J, Zhang H, Han J, Jiang K, Ye Q. Suppression of estrogen receptor transcriptional activity by connective tissue growth factor. PLoS One 2011; 6:e20028. [PMID: 21629692 PMCID: PMC3101213 DOI: 10.1371/journal.pone.0020028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 04/10/2011] [Indexed: 12/31/2022] Open
Abstract
Secreted growth factors have been shown to stimulate the transcriptional activity of estrogen receptors (ER) that are responsible for many biological processes. However, whether these growth factors physically interact with ER remains unclear. Here, we show for the first time that connective tissue growth factor (CTGF) physically and functionally associates with ER. CTGF interacted with ER both in vitro and in vivo. CTGF interacted with ER DNA-binding domain. ER interaction region in CTGF was mapped to the thrombospondin type I repeat, a cell attachment motif. Overexpression of CTGF inhibited ER transcriptional activity as well as the expression of estrogen-responsive genes, including pS2 and cathepsin D. Reduction of endogenous CTGF with CTGF small interfering RNA enhanced ER transcriptional activity. The interaction between CTGF and ER is required for the repression of estrogen-responsive transcription by CTGF. Moreover, CTGF reduced ER protein expression, whereas the CTGF mutant that did not repress ER transcriptional activity also did not alter ER protein levels. The results suggested the transcriptional regulation of estrogen signaling through interaction between CTGF and ER, and thus may provide a novel mechanism by which cross-talk between secreted growth factor and ER signaling pathways occurs.
Collapse
Affiliation(s)
- Long Cheng
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, People's Republic of China
| | - Zhihong Yang
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, People's Republic of China
| | - Xiaohui Wang
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, People's Republic of China
| | - Yuanyuan Jiao
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, People's Republic of China
| | - Xiangyang Xie
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, People's Republic of China
| | - Jing Lin
- Department of Clinical Laboratory, First Affiliated Hospital, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Hao Zhang
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, People's Republic of China
| | - Juqiang Han
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, People's Republic of China
| | - Kai Jiang
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, People's Republic of China
| | - Qinong Ye
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, People's Republic of China
- * E-mail:
| |
Collapse
|
14
|
Crosier AE, Comizzoli P, Baker T, Davidson A, Munson L, Howard J, Marker LL, Wildt DE. Increasing age influences uterine integrity, but not ovarian function or oocyte quality, in the cheetah (Acinonyx jubatus). Biol Reprod 2011; 85:243-53. [PMID: 21565998 DOI: 10.1095/biolreprod.110.089417] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Although the cheetah (Acinonyx jubatus) routinely lives for more than 12 yr in ex situ collections, females older than 8 yr reproduce infrequently. We tested the hypothesis that reproduction is compromised in older female cheetahs due to a combination of disrupted gonadal, oocyte, and uterine function/integrity. Specifically, we assessed 1) ovarian response to gonadotropins; 2) oocyte meiotic, fertilization, and developmental competence; and 3) uterine morphology in three age classes of cheetahs (young, 2-5 yr, n = 17; prime, 6-8 yr, n = 8; older, 9-15 yr, n = 9). Ovarian activity was stimulated with a combination of equine chorionic gonadotropin and human chorionic gonadotropin (hCG), and fecal samples were collected for 45 days before gonadotropin treatment and for 30 days after oocyte recovery by laparoscopy. Twenty-six to thirty hours post-hCG, uterine morphology was examined by ultrasound, ovarian follicular size determined by laparoscopy, and aspirated oocytes assessed for nuclear status or inseminated in vitro. Although no influence of age on fecal hormone concentrations or gross uterine morphology was found (P > 0.05), older females produced fewer (P < 0.05) total antral follicles and oocytes compared to younger counterparts. Regardless of donor age, oocytes had equivalent (P > 0.05) nuclear status and ability to reach metaphase II and fertilize in vitro. A histological assessment of voucher specimens revealed an age-related influence on uterine tissue integrity, with more than 87% and more than 56% of older females experiencing endometrial hyperplasia and severe pathologies, respectively. Our collective findings reveal that lower reproductive success in older cheetahs appears to be minimally influenced by ovarian and gamete aging and subsequent dysfunction. Rather, ovaries from older females are responsive to gonadotropins, produce normative estradiol/progestogen concentrations, and develop follicles containing oocytes with the capacity to mature and be fertilized. A more likely cause of reduced fertility may be the high prevalence of uterine endometrial hyperplasia and related pathologies. The discovery that a significant proportion of oocytes from older females have developmental capacity in vitro suggests that in vitro fertilization and embryo transfer may be useful for "rescuing" the genome of older, nonreproductive cheetahs.
Collapse
Affiliation(s)
- Adrienne E Crosier
- Center for Species Survival, Smithsonian Conservation Biology Institute, Front Royal, VA 22630, USA.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Estrogen/estrogen receptor alpha signaling in mouse posterofrontal cranial suture fusion. PLoS One 2009; 4:e7120. [PMID: 19771170 PMCID: PMC2743190 DOI: 10.1371/journal.pone.0007120] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Accepted: 08/25/2009] [Indexed: 01/22/2023] Open
Abstract
Background While premature suture fusion, or craniosynostosis, is a relatively common condition, the cause is often unknown. Estrogens are associated with growth plate fusion of endochondral bones. In the following study, we explore the previously unknown significance of estrogen/estrogen receptor signaling in cranial suture biology. Methodology/Principal Findings Firstly, estrogen receptor (ER) expression was examined in physiologically fusing (posterofrontal) and patent (sagittal) mouse cranial sutures by quantitative RT-PCR. Next, the cranial suture phenotype of ER alpha and ER beta knockout (αERKO, βERKO) mice was studied. Subsequently, mouse suture-derived mesenchymal cells (SMCs) were isolated; the effects of 17-β estradiol or the estrogen antagonist Fulvestrant on gene expression, osteogenic and chondrogenic differentiation were examined in vitro. Finally, in vivo experiments were performed in which Fulvestrant was administered subcutaneously to the mouse calvaria. Results showed that increased ERα but not ERβ transcript abundance temporally coincided with posterofrontal suture fusion. The αERKO but not βERKO mouse exhibited delayed posterofrontal suture fusion. In vitro, addition of 17-β estradiol enhanced both osteogenic and chondrogenic differentiation in suture-derived mesenchymal cells, effects reversible by Fulvestrant. Finally, in vivo application of Fulvestrant significantly diminished calvarial osteogenesis, inhibiting suture fusion. Conclusions/Significance Estrogen signaling through ERα but not ERβ is associated with and necessary for normal mouse posterofrontal suture fusion. In vitro studies suggest that estrogens may play a role in osteoblast and/or chondrocyte differentiation within the cranial suture complex.
Collapse
|
16
|
Nierth-Simpson EN, Martin MM, Chiang TC, Melnik LI, Rhodes LV, Muir SE, Burow ME, McLachlan JA. Human uterine smooth muscle and leiomyoma cells differ in their rapid 17beta-estradiol signaling: implications for proliferation. Endocrinology 2009; 150:2436-45. [PMID: 19179429 PMCID: PMC2671893 DOI: 10.1210/en.2008-0224] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Uterine leiomyomas, benign uterine smooth muscle tumors that affect 30% of reproductive-aged women, are a significant health concern. The initiation event for these tumors is unclear, but 17beta-estradiol (E2) is an established promoter of leiomyoma growth. E2 not only alters transcription of E2-regulated genes but also can rapidly activate signaling pathways. The aim of our study is to investigate the role of rapid E2-activated cytoplasmic signaling events in the promotion of leiomyomas. Western blot analysis revealed that E2 rapidly increases levels of phosphorylated protein kinase C alpha (PKC alpha) in both immortalized uterine smooth muscle (UtSM) and leiomyoma (UtLM) cell lines, but increases levels of phosphorylated ERK1/2 only in UtLM cells. Our studies demonstrate a paradoxical effect of molecular and pharmacological inhibition of PKC alpha on ERK1/2 activation and cellular proliferation in UtLM and UtSM cells. PKC alpha inhibition decreases levels of phosphorylated ERK1/2 and proliferation in UtLM cells but raises these levels in UtSM cells. cAMP-PKA signaling is rapidly activated only in UtSM cells with E2 and inhibits ERK1/2 activation and proliferation. We therefore propose a model whereby E2's rapid activation of PKC alpha and cAMP-PKA signaling plays a central role in the maintenance of a low proliferative index in normal uterine smooth muscle via its inhibition of the MAPK cascade and these pathways are altered in leiomyomas to promote MAPK activation and proliferation. These studies demonstrate that rapid E2-signaling pathways contribute to the promotion of leiomyomas.
Collapse
|
17
|
Baldwin WS, Roling JA. A concentration addition model for the activation of the constitutive androstane receptor by xenobiotic mixtures. Toxicol Sci 2008; 107:93-105. [PMID: 18832183 DOI: 10.1093/toxsci/kfn206] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The effects of contaminants are typically studied in individual exposures; however, environmental exposures are rarely from a single contaminant. Therefore, the study of chemical mixtures is important in determining the effects of xenobiotics. The constitutive androstane receptor (CAR) responds to endobiotics and xenobiotics, and in turn induces detoxification enzymes involved in their elimination. First, we compared several androgens as inverse agonists, including androgens allegedly used by Bay Area Laboratory Co-operative to enhance athletic performance. CAR inverse agonists ranked in order of potency were dihydroandrosterone (DHA) > tetrahydrogestrinone (THG) > androstanol > norbolethone. Therefore, we used DHA as an inverse agonist during transactivation assays. Next, we examined the effects of several pesticides, plasticizers, steroids, and bile acids on CAR activation. Our data demonstrates that several pesticides and plasticizers, including diethylhexylphthalate, nonylphenol, cypermethrin, and chlorpyrifos activate CAR. Both full and partial CAR activators were discovered, and EC(50) values and Hillslopes were determined for use in the concentration addition models. Concentration addition models with and without restraint values to account for partial activators were developed. Measured results from transactivation assays with a mixture of two to five chemicals indicate that the concentration addition model without restraints correctly predicts activity unless all of the chemicals in the mixture are partial activators, and then restraint values be considered. Overall, our data indicates that it is important to consider that we are exposed to a milieu of chemicals, and the efficacy of each individual chemical is not the sole factor in determining CAR's activity in mixture modeling.
Collapse
Affiliation(s)
- William S Baldwin
- Institute of Environmental Toxicology, Clemson University, Pendleton, South Carolina 29670, USA.
| | | |
Collapse
|
18
|
Activation of estrogen receptor-alpha by E2 or EGF induces temporally distinct patterns of large-scale chromatin modification and mRNA transcription. PLoS One 2008; 3:e2286. [PMID: 18509470 PMCID: PMC2386239 DOI: 10.1371/journal.pone.0002286] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2007] [Accepted: 04/14/2008] [Indexed: 12/31/2022] Open
Abstract
Estrogen receptor-alpha (ER) transcription function is regulated in a ligand-dependent (e.g., estradiol, E2) or ligand-independent (e.g., growth factors) manner. Our laboratory seeks to understand these two modes of action. Using a cell line that contains a visible prolactin enhancer/promoter array (PRL-HeLa) regulated by ER, we analyzed ER response to E2 and EGF by quantifying image-based results. Data show differential recruitment of GFP-ER to the array, with the AF1 domain playing a vital role in EGF-mediated responsiveness. Temporal analyses of large-scale chromatin dynamics, and accumulation of array-localized reporter mRNA over 24 hours showed that the EGF response consists of a single pulse of reporter mRNA accumulation concomitant with transient increase in array decondensation. Estradiol induced a novel cyclical pattern of mRNA accumulation with a sustained increase in array decondensation. Collectively, our work shows that there is a stimuli-specific pattern of large-scale chromatin modification and transcript levels by ER.
Collapse
|
19
|
Scharfman HE, MacLusky NJ. Estrogen and brain-derived neurotrophic factor (BDNF) in hippocampus: complexity of steroid hormone-growth factor interactions in the adult CNS. Front Neuroendocrinol 2006; 27:415-35. [PMID: 17055560 PMCID: PMC1778460 DOI: 10.1016/j.yfrne.2006.09.004] [Citation(s) in RCA: 236] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2006] [Revised: 08/12/2006] [Accepted: 09/01/2006] [Indexed: 11/19/2022]
Abstract
In the CNS, there are widespread and diverse interactions between growth factors and estrogen. Here we examine the interactions of estrogen and brain-derived neurotrophic factor (BDNF), two molecules that have historically been studied separately, despite the fact that they seem to share common targets, effects, and mechanisms of action. The demonstration of an estrogen-sensitive response element on the BDNF gene provided an impetus to explore a direct relationship between estrogen and BDNF, and predicted that the effects of estrogen, at least in part, might be due to the induction of BDNF. This hypothesis is discussed with respect to the hippocampus, where substantial evidence has accumulated in favor of it, but alternate hypotheses are also raised. It is suggested that some of the interactions between estrogen and BDNF, as well as the controversies and implications associated with their respective actions, may be best appreciated in light of the ability of BDNF to induce neuropeptide Y (NPY) synthesis in hippocampal neurons. Taken together, this tri-molecular cascade, estrogen-BDNF-NPY, may be important in understanding the hormonal regulation of hippocampal function. It may also be relevant to other regions of the CNS where estrogen is known to exert profound effects, such as amygdala and hypothalamus; and may provide greater insight into neurological disorders and psychiatric illness, including Alzheimer's disease, depression and epilepsy.
Collapse
Affiliation(s)
- Helen E Scharfman
- Center for Neural Recovery and Rehabilitation Research, Helen Hayes Hospital, West Haverstraw, NY 10093-1195, USA.
| | | |
Collapse
|
20
|
Yang P, Roy SK. A novel mechanism of FSH regulation of DNA synthesis in the granulosa cells of hamster preantral follicles: involvement of a protein kinase C-mediated MAP kinase 3/1 self-activation loop. Biol Reprod 2006; 75:149-57. [PMID: 16525034 PMCID: PMC1482802 DOI: 10.1095/biolreprod.105.050153] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The objective was to reveal whether a protein kinase C (PKC [all isozymes])-mediated self-sustaining MAPK3/1 (3/1 extracellular signal regulated kinase 2/1, also known as ERK2/1) activation loop was necessary for FSH- or epidermal growth factor (EGF)-induced DNA synthesis in the granulosa cells of intact preantral follicles. For this purpose, hamster preantral follicles were cultured with FSH or EGF in the presence of selective kinase inhibitors FSH or EGF phosphorylated RAF1, MAP2K1, and MAPK3/1. However, a relatively higher dose of EGF was necessary to sustain the MAPK3/1 activity, which was essential for cyclin-dependent kinase 4 (CDK4) activation and DNA synthesis. In intact preantral follicles, FSH or EGF stimulated DNA synthesis only in the granulosa cells. Sustained activation of MAPK3/1 beyond 3 h was independent of EGFR kinase activity but dependent on PKC activity, which appeared to form a self-sustaining MAPK3/1 activation loop by activating RAF1, MAP2K1, and PLA2G4 (phospholipase A2 [all cytosolic isozymes]). Inhibition of PKC activity as late as 4 h after the administration of FSH or EGF arrested DNA synthesis, which corresponded with attenuated phosphorylation of RAF1 and MAPK3/1, thus suggesting an essential role of PKC in MAPK3/1 activation. Collectively, these data present a novel self-sustaining mechanism comprised of MAPK3/1, PLA2G4, PKC, and RAF1 for CDK4 activation leading to DNA synthesis in granulosa cells. Either FSH or EGF can activate the loop to activate CDK4 and initiate DNA synthesis; however, consistent with our previous findings, FSH effect seems to be mediated by EGF, which initiates the event by stimulating EGFR kinase.
Collapse
Affiliation(s)
- Peixin Yang
- Departments of Obstetrics and Gynecology, and Cellular and Integrative Physiology, University of Nebraska Medical Center, 984515 Nebraska Medical Center, Omaha, NE 68198-4515
| | - Shyamal K. Roy
- Send all correspondence to: Shyamal K. Roy, Ph. D., DRC5013, Departments of OB/GYN and Cellular and Integrative, Physiology, University of Nebraska Medical Center, 984515 Nebraska Medical Center, Omaha, NE 68198-4515, Tel: 402-559-6163, Fax: 402-559-6164, E-mail:
| |
Collapse
|
21
|
Spencer TE, Hayashi K, Hu J, Carpenter KD. Comparative developmental biology of the mammalian uterus. Curr Top Dev Biol 2005; 68:85-122. [PMID: 16124997 DOI: 10.1016/s0070-2153(05)68004-0] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The uterus is an essential organ for reproduction in mammals. Despite the importance of the uterus for the fertility and health of women and their offspring, relatively little is known about the hormonal, cellular, and molecular mechanisms that regulate development of the uterus in either the fetus or neonate. Disruption of uterine development in the fetus and neonate by genetic defects or exposure to endocrine disruptors can program the function of the uterus in the adult and lead to infertility, cancer, and even death. The intent of this chapter is to review the current knowledge of regulatory factors and pathways governing prenatal organogenesis and postnatal morphogenesis of the uterus in mammals, with a particular focus on laboratory and domestic animals. Prenatal organogenesis, postnatal morphogenesis, and adult functional differentiation of the uterus are complex, multifactorial processes. Although conservation of some factors and pathways are observed between species, it is clear that mutation of candidate genes in the mouse does not always recapitulate the same defects observed in the human. Therefore, comparative biology of the mechanisms regulating uterine development in other species may be useful to identify candidate genes and pathways to understand congenital abnormalities in humans. This knowledge is necessary to develop rational therapies to prevent and treat infertility and to enhance fertility in humans and domestic animals.
Collapse
Affiliation(s)
- Thomas E Spencer
- Center for Animal Biotechnology and Genomics, Department of Animal Science, Texas A&M University, College Station, Texas 77843, USA
| | | | | | | |
Collapse
|
22
|
Yang P, Wang J, Shen Y, Roy SK. Developmental expression of estrogen receptor (ER) alpha and ERbeta in the hamster ovary: regulation by follicle-stimulating hormone. Endocrinology 2004; 145:5757-66. [PMID: 15345677 DOI: 10.1210/en.2004-0779] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Perinatal expression of estrogen receptor (ER) protein and mRNA and the influence of FSH on this process were examined by immunofluorescence and RT-PCR using ovaries from fetal (d 13-15 of gestation) and postnatal [postnatal d 1-15 (P1-P15)] hamsters and from 8-d-old hamsters exposed in utero to an anti-FSH serum on d 12 of gestation and saline or equine chorionic gonadotropin (eCG) on P1. A few somatic cells expressing ERalpha immunoreactivity appeared first on d 14 of gestation and increased markedly by P8-P15 in the interstitial cells and granulosa cells of primordial follicles. In contrast, appreciable ERbeta immunoreactivity was localized on d 13 of gestation, and more cells expressed ERbeta immunoreactivity by P1-P8. By P7, ERbeta immunoreactivity was present in cells adjacent to the oocytes, and by P8, ERbeta was preferentially localized in the granulosa cells. Receptor immunoreactivities decreased markedly in P8 ovaries exposed in utero to the FSH antiserum but were reversed with postnatal eCG replacement. Oocytes and somatic cells expressed ERalpha and ERbeta mRNA, and levels of ER mRNA in the ovary increased by P7-P8, corresponding to the appearance of primordial follicles. Thereafter, only ERbeta mRNA levels increased progressively with postnatal ovary development. Similar to ER protein, mRNA levels decreased significantly in FSH antiserum-treated ovaries but were restored by eCG. These results indicate that both ER subtypes are expressed in undifferentiated somatic cells and the oocytes during perinatal ovary development in the hamster; however, ERbeta expression segregates with the differentiation of granulosa cells. Furthermore, ER expression and differentiation of somatic cells to granulosa cells depend on perinatal FSH action.
Collapse
Affiliation(s)
- Peixin Yang
- Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, Nebraska 68198-4515, USA
| | | | | | | |
Collapse
|
23
|
Sisci D, Aquila S, Middea E, Gentile M, Maggiolini M, Mastroianni F, Montanaro D, Andò S. Fibronectin and type IV collagen activate ERα AF-1 by c-Src pathway: effect on breast cancer cell motility. Oncogene 2004; 23:8920-30. [PMID: 15467744 DOI: 10.1038/sj.onc.1208098] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The expression of estrogen receptor alpha (ERalpha) is generally associated with a less invasive and aggressive phenotype in breast carcinoma. In an attempt to understand the role of ERalpha in regulating breast cancer cells invasiveness, we have demonstrated that cell adhesion on fibronectin (Fn) and type IV Collagen (Col) induces ERalpha-mediated transcription and reduces cell migration in MCF-7 and in MDA-MB-231 cell lines expressing ERalpha. Analysis of deleted mutants of ERalpha indicates that the transcriptional activation function (AF)-1 is required for ERalpha-mediated transcription as well as for the inhibition of cell migration induced by cell adhesion on extracellular matrix (ECM) proteins. In addition, the nuclear localization signal region and some serine residues in the AF-1 of the ERalpha are both required for the regulation of cell invasiveness as we have observed in HeLa cells. It is worth noting that c-Src activation is coincident with adhesion of cells to ECM proteins and that the inhibition of c-Src activity by PP2 or the expression of a dominant-negative c-Src abolishes ERalpha-mediated transcription and partially reverts the inhibition of cell invasiveness in ERalpha-positive cancer cells. These findings address the integrated role of ECM proteins and ERalpha in influencing breast cancer cell motility through a mechanism that involves c-Src and seems not to be related to a specific cell type.
Collapse
Affiliation(s)
- Diego Sisci
- Dipartimento Farmaco-Biologico, Università della Calabria, Arcavacata di Rende, Italy
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Tsuchiya Y, Nakajima M, Kyo S, Kanaya T, Inoue M, Yokoi T. Human CYP1B1 is regulated by estradiol via estrogen receptor. Cancer Res 2004; 64:3119-25. [PMID: 15126349 DOI: 10.1158/0008-5472.can-04-0166] [Citation(s) in RCA: 191] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Human cytochrome P450 (CYP) 1B1 is a key enzyme in the metabolism of 17beta-estradiol (E2). CYP1B1 is mainly expressed in endocrine-regulated tissues, such as mammary, uterus, and ovary. Because many CYP enzymes are likely to be induced by the substrates themselves, we examined whether the human CYP1B1 expression is regulated by E2 in the present study. Real-time reverse transcription-PCR analysis revealed that treatment with 10 nM E2 for 12 h induced CYP1B1 mRNA expression in estrogen receptor (ER)-positive MCF-7 cells. Luciferase reporter assays using MCF-7 cells showed a significant transactivation up to 7-fold by E2 with a reporter plasmid containing a region from -152 to +25 of the human CYP1B1 gene. A computer-assisted homology search indicated a putative estrogen response element (ERE) between -63 and -49 in the CYP1B1 promoter region. Specific binding of ERalpha to the putative ERE was demonstrated by chromatin immunoprecipitation assays and gel shift analyses. With reporter plasmids containing the wild or mutated putative ERE on the CYP1B1 gene and the wild or mutated ERalpha expression vectors, luciferase assays using Ishikawa cells demonstrated that the putative ERE and ERalpha are essential for the transactivation by E2. Because endometrial tissue is highly regulated by estrogens, the expression pattern of CYP1B1 protein in human endometrial specimens was examined by immunohistochemistry. The staining of CYP1B1 was stronger in glandular epithelial cells during a proliferative phase than those during a secretory phase, consistent with the pattern of estrogen secretion. These findings clearly indicated that the human CYP1B1 is regulated by estrogen via ERalpha. Because 4-hydroxylation of estrogen by CYP1B1 leads to decrease of the estrogenic activity but the produced metabolite is toxicologically active, our findings suggest a clinical significance in the estrogen-regulated CYP1B1 expression for the homeostasis of estrogens as well as estrogen-dependent carcinogenesis.
Collapse
Affiliation(s)
- Yuki Tsuchiya
- Division of Drug Metabolism, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Pietras RJ. Interactions between estrogen and growth factor receptors in human breast cancers and the tumor-associated vasculature. Breast J 2003; 9:361-73. [PMID: 12968955 DOI: 10.1046/j.1524-4741.2003.09510.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Estrogens and growth factors stimulate the proliferation of human breast cancer cells by primary binding and activation of specific receptors that regulate downstream signaling events. Receptors for estrogen are phosphoproteins, and the biologic function of these proteins can be modulated by changes in their phosphorylation state. Signal transduction by growth factor receptors, including HER-2/neu and epidermal growth factor (EGF) receptors, can alter the phosphorylation of estrogen receptor (ER) and the biologic activity of ER-dependent signaling networks both in the presence and in the absence of estrogenic ligands. In addition, both estrogen and growth factor signaling pathways regulate the secretion of vascular endothelial growth factors that stimulate tumor-associated angiogenesis. These molecular interactions significantly impact breast cancer cell growth and survival, and integration of selected signal transduction inhibitors with antiestrogen therapies show promise as a new antitumor treatment strategy that will soon be evaluated in the clinic. Sensitive and reliable assays of estrogen, HER-2/neu, and EGF receptors and tumor-associated angiogenesis will be important biologic factors to consider in the choice of optimal antitumor therapies for patients with breast cancer.
Collapse
Affiliation(s)
- Richard J Pietras
- Department of Medicine, Division of Hematology/Oncology, UCLA School of Medicine, and Jonsson Comprehensive Cancer Center, Los Angeles, California 90095-1678, USA.
| |
Collapse
|
26
|
Dalu A, Blaydes BS, Bryant CW, Latendresse JR, Weis CC, Barry Delclos K. Estrogen receptor expression in the prostate of rats treated with dietary genistein. J Chromatogr B Analyt Technol Biomed Life Sci 2002; 777:249-60. [PMID: 12270217 DOI: 10.1016/s1570-0232(02)00346-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Steroid hormones and their receptors play critical roles in the growth, development, and maintenance of the male reproductive tract. Genistein, a naturally occurring isoflavonoid primarily found in soybeans, interacts with estrogen receptors alpha and beta (ER alpha and beta), with preferential affinity for ER beta. This is one mechanism whereby genistein may affect growth and development and potentially alter susceptibility to carcinogenesis. Previous studies have indicated effects of soy and/or genistein in the male rodent reproductive tract under certain exposure conditions. The current study was undertaken to determine if modulation of the expression of ER alpha and ER beta by dietary genistein may contribute to those effects. Rats in a two-generation study were fed 0, 5, 100, or 500 ppm genistein prior to mating and through pregnancy and lactation. At weaning, male pups were selected in each of the F(1) and F(2) generations and half of the pups continued on the same diet as their dams (G/G, continuous exposure) while their litter mates were placed on control chow (G/C, gestational and lactational exposure) until sacrifice on PND 140. Male reproductive organ weights, serum levels of testosterone and dihydrotestosterone (DHT), and ER alpha and ER beta protein levels in the ventral and dorsolateral prostate were the endpoints measured. Prostate sections were also evaluated microscopically. Statistically significant elevations in testosterone and DHT were observed in PND 140 animals from the F(1) generation, but they were not accompanied by organ weight changes. Body weight in the continuously dosed 500 ppm F(1) PND 140 animals was depressed relative to control, but organ weights in animals of either generation showed few treatment-related effects. While estrogen receptor levels were quite variable, levels of ER beta in the dorsolateral prostate were significantly depressed in all dose groups in the G/C exposure and the high dose group of the G/G exposure in F(1) rats, but not in F(2) rats. Given the growing body of knowledge on the significance of ER beta in the prostate, the evidence for apparent down regulation of this receptor by genistein may have implications for reproductive toxicity and carcinogenesis that warrant further investigation.
Collapse
Affiliation(s)
- Abraham Dalu
- Division of Biochemical Toxicology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| | | | | | | | | | | |
Collapse
|
27
|
Affiliation(s)
- Sylvia Curtis Hewitt
- Receptor Biology, LRDT, National Institute of Environmental Health Sciences, NIH, PO Box 12233, Research Triangle Park, NC 27709, USA
| | | |
Collapse
|
28
|
Kurita T, Cooke PS, Cunha GR. Epithelial-stromal tissue interaction in paramesonephric (Müllerian) epithelial differentiation. Dev Biol 2001; 240:194-211. [PMID: 11784056 DOI: 10.1006/dbio.2001.0458] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During organogenesis, the middle to caudal portion of Müllerian epithelium differentiates into uterine and vaginal epithelia in females. Functional differentiation of uterine and vaginal epithelia occurs in adulthood, and is regulated by 17beta-estradiol (E(2)) and progesterone. In this report, the roles of mesenchyme/stroma in differentiation of uterine and vaginal epithelia were studied in tissue recombination experiments. At birth, Müllerian epithelium was negative for uterine and vaginal epithelial markers. Tissue recombinant experiments showed that uterine and vaginal gene expression patterns were induced in neonatal Müllerian epithelium by the respective mesenchymes. Differentiated adult uterine and vaginal epithelia did not change their original gene expression in response to heterotypic mesenchymal induction. In the adult vagina, E(2) induced expression of involucrin, a CCAAT/enhancer-binding protein beta and cytokeratin 1 via estrogen receptor alpha (ERalpha). Tissue recombination experiments with wild-type and ERalpha knockout mice demonstrated that epithelial gene expression is regulated by E(2) via epithelial-stromal tissue interactions. Uterine/vaginal heterotypic tissue recombinations demonstrated that functional differentiation of uterine and vaginal epithelia required organ-specific stromal factors. In contrast, stromal signals regulating epithelial proliferation appeared to be nonspecific in the uterus and vagina.
Collapse
Affiliation(s)
- T Kurita
- Department of Anatomy, University of California, San Francisco, California 94143-0452, USA
| | | | | |
Collapse
|
29
|
Gray CA, Bartol FF, Tarleton BJ, Wiley AA, Johnson GA, Bazer FW, Spencer TE. Developmental biology of uterine glands. Biol Reprod 2001; 65:1311-23. [PMID: 11673245 DOI: 10.1095/biolreprod65.5.1311] [Citation(s) in RCA: 318] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
All mammalian uteri contain endometrial glands that synthesize or transport and secrete substances essential for survival and development of the conceptus (embryo/fetus and associated extraembryonic membranes). In rodents, uterine secretory products of the endometrial glands are unequivocally required for establishment of uterine receptivity and conceptus implantation. Analyses of the ovine uterine gland knockout model support a primary role for endometrial glands and, by default, their secretions in peri-implantation conceptus survival and development. Uterine adenogenesis is the process whereby endometrial glands develop. In humans, this process begins in the fetus, continues postnatally, and is completed during puberty. In contrast, endometrial adenogenesis is primarily a postnatal event in sheep, pigs, and rodents. Typically, endometrial adenogenesis involves differentiation and budding of glandular epithelium from luminal epithelium, followed by invagination and extensive tubular coiling and branching morphogenesis throughout the uterine stroma to the myometrium. This process requires site-specific alterations in cell proliferation and extracellular matrix (ECM) remodeling as well as paracrine cell-cell and cell-ECM interactions that support the actions of specific hormones and growth factors. Studies of uterine development in neonatal ungulates implicate prolactin, estradiol-17 beta, and their receptors in mechanisms regulating endometrial adenogenesis. These same hormones appear to regulate endometrial gland morphogenesis in menstruating primates and humans during reconstruction of the functionalis from the basalis endometrium after menses. In sheep and pigs, extensive endometrial gland hyperplasia and hypertrophy occur during gestation, presumably to provide increasing histotrophic support for conceptus growth and development. In the rabbit, sheep, and pig, a servomechanism is proposed to regulate endometrial gland development and differentiated function during pregnancy that involves sequential actions of ovarian steroid hormones, pregnancy recognition signals, and lactogenic hormones from the pituitary or placenta. That disruption of uterine development during critical organizational periods can alter the functional capacity and embryotrophic potential of the adult uterus reinforces the importance of understanding the developmental biology of uterine glands. Unexplained high rates of peri-implantation embryonic loss in humans and livestock may reflect defects in endometrial gland morphogenesis due to genetic errors, epigenetic influences of endocrine disruptors, and pathological lesions.
Collapse
Affiliation(s)
- C A Gray
- Center for Animal Biotechnology and Genomics, Department of Animal Science, Texas A&M University, College Station, Texas 77843, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Karas RH, van Eickels M, Lydon JP, Roddy S, Kwoun M, Aronovitz M, Baur WE, Conneely O, O’Malley BW, Mendelsohn ME. A complex role for the progesterone receptor in the response to vascular injury. J Clin Invest 2001. [DOI: 10.1172/jci200111374] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
31
|
Karas RH, van Eickels M, Lydon JP, Roddy S, Kwoun M, Aronovitz M, Baur WE, Conneely O, O'Malley BW, Mendelsohn ME. A complex role for the progesterone receptor in the response to vascular injury. J Clin Invest 2001; 108:611-8. [PMID: 11518735 PMCID: PMC209395 DOI: 10.1172/jci11374] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2000] [Accepted: 06/18/2001] [Indexed: 11/17/2022] Open
Abstract
Clinical studies of hormone replacement therapy to prevent cardiovascular diseases have heightened interest in the cardiovascular effects of progestins. However, the role of the progesterone receptor (PR) in vascular biology has not been studied in vivo. We studied ovariectomized female PR knockout (PRKO) mice and their wild-type (WT) littermates using the mouse carotid artery injury model. Placebo-treated PRKO mice showed significantly greater vascular medial hypertrophy and vascular smooth muscle cell (VSMC) proliferation in response to vascular injury than did WT mice. Progesterone had no significant effect in the PRKO mice, but worsened the response to injury in WT mice. VSMCs cultured from PRKO mouse aortae were markedly hyperproliferative, and their growth was not affected by progesterone. In contrast to the in vivo findings, progesterone inhibited proliferation of WT-derived VSMCs. Furthermore, reintroduction of PR into PRKO-derived VSMCs using adenoviral methods restored progesterone-mediated inhibition of proliferation to these cells. This effect was reversed by the PR antagonist, RU 486. Thus, the effects of PR and progesterone differ markedly between cultured VSMCs and intact blood vessels. These data demonstrate a direct role for the PR in regulating the response to vascular injury and VSMC proliferation.
Collapse
MESH Headings
- Animals
- Carotid Artery Injuries
- Carotid Artery, Common/pathology
- Cell Division/drug effects
- Cells, Cultured/drug effects
- DNA Replication/drug effects
- Female
- Hormone Antagonists/pharmacology
- Hyperplasia
- Mice
- Mice, Knockout
- Mifepristone/pharmacology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/pathology
- Ovariectomy
- Progesterone/antagonists & inhibitors
- Progesterone/pharmacology
- Receptors, Progesterone/deficiency
- Receptors, Progesterone/drug effects
- Receptors, Progesterone/genetics
- Receptors, Progesterone/physiology
- Recombinant Fusion Proteins/physiology
- Transfection
Collapse
Affiliation(s)
- R H Karas
- Molecular Cardiology Research Institute, New England Medical Center Hospitals Inc., Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Clark DE, Poteet-Smith CE, Smith JA, Lannigan DA. Rsk2 allosterically activates estrogen receptor alpha by docking to the hormone-binding domain. EMBO J 2001; 20:3484-94. [PMID: 11432835 PMCID: PMC125527 DOI: 10.1093/emboj/20.13.3484] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We describe a novel mechanism for transcriptional regulation, in which docking of p90 ribosomal S6 kinase 2 (Rsk2) to the hormone-binding domain (HBD) of estrogen receptor alpha (ERalpha) induces a conformational change that enhances the transcriptional activation function contained in the HBD. A constitutively active mutant of Rsk2 specifically enhances ERalpha-mediated transcription by phosphorylation of Ser167 in ERalpha and by physically associating with residues 326-394 of the ERalpha HBD. The anti-estrogen 4-hydroxytamoxifen blocks Rsk2-mediated activation of ERalpha, by inducing a conformation of ERalpha in which the Rsk2 docking site is masked. Transcriptional activation and docking are specific for ERalpha and do not occur with the related isoform, ERbeta. ERalpha phosphorylation, docking and transcriptional activation are regulated by the Rsk2 N-terminal kinase domain. The allosteric regulation of a target protein, independent of phosphorylation, may be paradigmatic of a general function for protein kinase docking sites.
Collapse
Affiliation(s)
- David E. Clark
- Center for
Cell Signaling and PharmaBiologicals, University of Virginia, Charlottesville, VA 22908-0577, USA Corresponding author e-mail:
| | - Celeste E. Poteet-Smith
- Center for
Cell Signaling and PharmaBiologicals, University of Virginia, Charlottesville, VA 22908-0577, USA Corresponding author e-mail:
| | - Jeffrey A. Smith
- Center for
Cell Signaling and PharmaBiologicals, University of Virginia, Charlottesville, VA 22908-0577, USA Corresponding author e-mail:
| | - Deborah A. Lannigan
- Center for
Cell Signaling and PharmaBiologicals, University of Virginia, Charlottesville, VA 22908-0577, USA Corresponding author e-mail:
| |
Collapse
|
33
|
Lackey BR, Gray SL, Henricks DM. Crosstalk and considerations in endocrine disruptor research. Med Hypotheses 2001; 56:644-7. [PMID: 11399113 DOI: 10.1054/mehy.2000.1249] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The presence of endocrine disrupting chemicals in the environment has prompted action on several fronts to assess the potential health risks of these compounds. To fully understand the mechanisms behind the observed endocrine disruption, crosstalk and other factors should be considered. In this article we will discuss how crosstalk modulates estrogen action in several common assays and how this and other considerations appear to have been overlooked. In addition, a paradigm shift from theoretical linear response pathways to interaction maps should aid in the understanding and analysis of endocrine disruption.
Collapse
Affiliation(s)
- B R Lackey
- Department of Animal and Veterinary Science, Endocrine Physiology Laboratory, Clemson University, Clemson, South Carolina, USA.
| | | | | |
Collapse
|
34
|
Singh AK. Development of QSAR models to predict estrogenic, carcinogenic, and cancer protective effects of phytoestrogens. Cancer Invest 2001; 19:201-16. [PMID: 11296624 DOI: 10.1081/cnv-100000155] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
An integrated QSAR model has been formulated to predict estrogenic, carcinogenic, and cancer protective effects of phytoestrogens (PE). Relative binding of PEs to estrogen receptors ER alpha and ER beta exhibited a parabolic relationship with dipole moment (mu). The high-affinity binding of PEs to ER alpha correlated with Dif0 (0 chi-0 chi v difference index encoding nonsigma electronic charge), while the low-affinity binding of PEs to ER alpha correlated with H bonding (positive coefficient) and % hydrophilic surface (negative coefficient). The high-affinity binding of PEs to ER beta correlated with molecular with (MWd) and Dif0, while the low-affinity binding of PEs to ER beta correlated with H bonding (positive coefficient) and hydrophilic-lipophilic balance (negative coefficient). Thus an increase in electronic or ionic charge, formation of H bonds, or a decrease in hydrophilic property of PEs may increase their binding to ER. The relative transcription activity (RTA) of ER alpha correlated with Dif0-Dif1, while RTA of ER beta correlated with H bonding and polarity. The PE-induced stimulation of DNA synthesis in estrogen-sensitive breast cancer (BC) cells correlated positively with (MD*4 chi v) where MD is molecular depth and 4 chi v is the valence of a 4th order fragment. IC50 for PE-induced inhibition of DNA synthesis in estrogen-sensitive BC cells correlated with (MD*Log P) and Dif3 (3 chi-3 chi v difference index encoding nonsigma electronic charge of fragments consisting of four atoms and three bonds) and Dif3(2). IC50 for PE-induced inhibition of DNA synthesis in estrogen-independent cancer cell lines correlated with (MD*Log P) and 1/water solubility. Thus molecular shape and molecular connectivity of PEs play a key role in modulating estrogen-induced transactivation activity and DNA synthesis in BC cells.
Collapse
Affiliation(s)
- A K Singh
- Department of Veterinary Diagnostic Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, St. Paul, Minnesota, USA
| |
Collapse
|
35
|
Levine JE, Chappell PE, Schneider JS, Sleiter NC, Szabo M. Progesterone receptors as neuroendocrine integrators. Front Neuroendocrinol 2001; 22:69-106. [PMID: 11259133 DOI: 10.1006/frne.2001.0210] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intracellular progesterone receptors (PRs) are ligand-inducible transcription factors that mediate the majority of the effects of progesterone (P) on neuroendocrine functions. During the past decade, evidence has accumulated which suggest that PRs can also be activated independently of P, by signals propagated through membrane-bound receptors to the interior of cells. The activation of PRs by this type of "cross-talk" mechanism has been implicated in the physiological regulation of several important neuroendocrine processes, including estrous behavior and periovulatory hormone secretions. We review evidence that both ligand-dependent and ligand-independent activation of PRs occurs in central neurons and in anterior pituitary cells and that the convergence and summation of these signals at the PR serves to integrate neural and endocrine signals which direct several critically important neuroendocrine processes. An integrative function for PRs is reviewed in several physiological contexts, including the display of lordosis behavior in female rodents, the neurosecretion of gonadotropin-releasing hormone surges, secretion of preovulatory gonadotropin surges, and release of periovulatory follicle stimulating hormone surges. The weight of evidence indicates that cross talk at the intracellular PR is an essential component of the integrative mechanisms that direct each of these neuroendocrine events. The recurrence of PR's integrative actions in several different physiological contexts suggests that other intracellular steroid receptors similarly function as integrators of neural and endocrine signals in other neuroendocrine processes.
Collapse
Affiliation(s)
- J E Levine
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois 60208, USA.
| | | | | | | | | |
Collapse
|
36
|
Cardona-Gómez GP, DonCarlos L, Garcia-Segura LM. Insulin-like growth factor I receptors and estrogen receptors colocalize in female rat brain. Neuroscience 2001; 99:751-60. [PMID: 10974438 DOI: 10.1016/s0306-4522(00)00228-1] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Several findings indicate that there is a close interaction between estrogen and insulin-like growth factor I in different brain regions. In adult brain, both estrogen and insulin-like growth factor I have co-ordinated effects in the regulation of neuroendocrine events, synaptic plasticity and neural response to injury. In this study we have qualitatively assessed whether estrogen receptors and insulin-like growth factor I receptor are colocalized in the same cells in the preoptic area, hypothalamus, hippocampus, cerebral cortex and cerebellum of female rat brain using confocal microscopy. Immunoreactivity for estrogen receptors alpha and beta was colocalized with immunoreactivity for insulin-like growth factor I receptor in many neurons from the preoptic area, hypothalamus, hippocampus and cerebral cortex. Furthermore, estrogen receptor beta and insulin-like growth factor I receptor immunoreactivities were colocalized in the Purkinje cells of the cerebellum. Colocalization of estrogen receptor beta and insulin-like growth factor I receptor was also detected in cells with the morphology of astrocytes in all regions assessed. The co-expression of estrogen receptors and insulin-like growth factor I receptor in the same neurons may allow a cross-coupling of their signaling pathways. Furthermore, the colocalization of immunoreactivity for estrogen receptor beta and insulin-like growth factor I receptor in glial cells suggests that glia may also play a role in the interactions of insulin-like growth factor I and estrogen in the rat brain. In conclusion, the co-expression of estrogen receptors and insulin-like growth factor I receptors in the same neural cells suggests that the co-ordinated actions of estrogen and insulin-like growth factor I in the brain may be integrated at the cellular level.
Collapse
|
37
|
Kizu R, Ishii K, Kobayashi J, Hashimoto T, Koh E, Namiki M, Hayakawa K. Antiandrogenic effect of crude extract of C-heavy oil. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2000. [DOI: 10.1016/s0928-4931(00)00165-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
38
|
Curtis Hewitt S, F Couse J, S Korach K. Estrogen receptor transcription and transactivation: Estrogen receptor knockout mice: what their phenotypes reveal about mechanisms of estrogen action. Breast Cancer Res 2000; 2:345-52. [PMID: 11250727 PMCID: PMC138656 DOI: 10.1186/bcr79] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2000] [Revised: 03/09/2000] [Accepted: 05/26/2000] [Indexed: 11/10/2022] Open
Abstract
Natural, synthetic and environmental estrogens have numerous effects on the development and physiology of mammals. Estrogen is primarily known for its role in the development and functioning of the female reproductive system. However, roles for estrogen in male fertility, bone, the circulatory system and immune system have been established by clinical observations regarding sex differences in pathologies, as well as observations following menopause or castration. The primary mechanism of estrogen action is via binding and modulation of activity of the estrogen receptors (ERs), which are ligand-dependent nuclear transcription factors. ERs are found in highest levels in female tissues critical to reproduction, including the ovaries, uterus, cervix, mammary glands and pituitary gland. Since other affected tissues have extremely low levels of ER, indirect effects of estrogen, for example induction of pituitary hormones that affect the bone, have been proposed. The development of transgenic mouse models that lack either estrogen or ER have proven to be valuable tools in defining the mechanisms by which estrogen exerts its effects in various systems. The aim of this article is to review the mouse models with disrupted estrogen signaling and describe the associated phenotypes.
Collapse
Affiliation(s)
| | - John F Couse
- National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Kenneth S Korach
- National Institutes of Health, Research Triangle Park, North Carolina, USA
| |
Collapse
|
39
|
Monroe DG, Jin DF, Sanders MM. Estrogen opposes the apoptotic effects of bone morphogenetic protein 7 on tissue remodeling. Mol Cell Biol 2000; 20:4626-34. [PMID: 10848589 PMCID: PMC85866 DOI: 10.1128/mcb.20.13.4626-4634.2000] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interactions between estrogen and growth factor signaling pathways at the level of gene expression play important roles in the function of reproductive tissues. For example, estrogen regulates transforming growth factor beta (TGFbeta) in the uterus during the proliferative phase of the mammalian reproductive cycle. Bone morphogenetic protein 7 (BMP-7), a member of the TGFbeta superfamily, is also involved in the development and function of reproductive tissues. However, relatively few studies have addressed the expression of BMP-7 in reproductive tissues, and the role of BMP-7 remains unclear. As part of an ongoing effort to understand how estrogen represses gene expression and to study its interactions with other signaling pathways, chick BMP-7 (cBMP-7) was cloned. cBMP-7 mRNA levels are repressed threefold within 8 h following estrogen treatment in the chick oviduct, an extremely estrogen-responsive reproductive tissue. This regulation occurs at the transcriptional level. Estrogen has a protective role in many tissues, and withdrawal from estrogen often leads to tissue regression; however, the mechanisms mediating regression of the oviduct remain unknown. Terminal transferase-mediated end-labeling and DNA laddering assays demonstrated that regression of the oviduct during estrogen withdrawal involves apoptosis, which is a novel observation. cBMP-7 mRNA levels during estrogen withdrawal increase concurrently with the apoptotic index of the oviduct. Furthermore, addition of purified BMP-7 induces apoptosis in primary oviduct cells. This report demonstrates that the function of BMP-7 in the oviduct involves the induction of apoptosis and that estrogen plays an important role in opposing this function.
Collapse
Affiliation(s)
- D G Monroe
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
40
|
Diel P, Schulz T, Smolnikar K, Strunck E, Vollmer G, Michna H. Ability of xeno- and phytoestrogens to modulate expression of estrogen-sensitive genes in rat uterus: estrogenicity profiles and uterotropic activity. J Steroid Biochem Mol Biol 2000; 73:1-10. [PMID: 10822019 DOI: 10.1016/s0960-0760(00)00051-0] [Citation(s) in RCA: 169] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The function of the uterus is regulated by female sex steroids and it is, therefore, used as the classical target organ to detect estrogenic action. Uterine response to estrogens involves the activation of a large pattern of estrogen-sensitive genes. This fact offers the opportunity to analyze the estrogenic activity of xeno- and phytoestrogens, and the mechanisms of their molecular action by a correlation of the uterotropic activity and their ability to modulate the expression of estrogen-sensitive genes. We have analyzed the expression of androgen receptor (AR), progesterone receptor (PR), estrogen receptor (ER), clusterin (CLU), complement C3 (C3), and GAPDH mRNA in the rat uterus following oral administration of ethinylestradiol (EE), bisphenol A (BPA), o,p'-DDT (DDT), p-tert-octylphenol (OCT) and daidzein (DAI). A significant stimulation of the uterine wet weight could be observed after administration of all the substances. The activity of all analyzed compounds to stimulate uterine weight was low in comparison to EE. DDT has the highest activity to stimulate uterine weight whereas BPA and DAI turned out to be less potent. The analysis of gene expression revealed a very specific profile of molecular action in response to the different compounds which cannot be detected by judging the uterotropic response alone. A dose dependent analysis revealed that C3 mRNA is already modulated at doses where no uterotropic response was detectable. Although DAI and BPA were very weak stimulators of uterine growth, these substances were able to alter the expression of AR, ER and C3 very strongly. Based on these investigations the analyzed compounds can be subdivided into distinct classes: First, compounds which exhibit a similar gene expression fingerprint as EE (e.g. OCT); second, compounds exhibiting a significant uterotropic activity, but inducing a pattern of gene expression different from EE (e.g. DDT); and third, compounds like BPA and especially DAI which exhibit a very low uterotropic activity, but nevertheless modulate the expression of estrogen-sensitive genes. These findings strongly suggest that the fingerprint of uterine gene expression is a very sensitive tool to investigate estrogenicity of natural and synthetic compounds and offers the possibility to get information in regard to the molecular mechanisms involved in the action of the respective compounds.
Collapse
Affiliation(s)
- P Diel
- Institut für Morphologie und Tumorforschung, Deutsche Sporthochschule Köln, Cologne, Germany.
| | | | | | | | | | | |
Collapse
|
41
|
Wormke M, Castro-Rivera E, Chen I, Safe S. Estrogen and aryl hydrocarbon receptor expression and crosstalk in human Ishikawa endometrial cancer cells. J Steroid Biochem Mol Biol 2000; 72:197-207. [PMID: 10822009 DOI: 10.1016/s0960-0760(00)00030-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ishikawa endometrial cancer cells express the estrogen receptor (ER), and this study investigates aryl hydrocarbon receptor (AhR) expression and inhibitory AhR-ER crosstalk in this cell line. Treatment of Ishikawa cells with the AhR agonist [3H]2,3,7, 8-tetrachlorodibenzo-p-dioxin (TCDD) gave a radiolabeled nuclear complex that sedimented at 6.0 S in sucrose density gradients, and Western blot analysis confirmed that Ishikawa cells expressed human AhR and AhR nuclear translocator (Arnt) proteins. Treatment of Ishikawa cells with 10 nM TCDD induced a 9.7-fold increase in CYP1A1-dependent ethoxyresorufin O-deethylase (EROD) activity and a 10.5-fold increase in chloramphenicol acetyltransferase (CAT) activity in cells transfected with pRNH11c containing an Ah-responsive human CYP1A1 gene promoter insert (-1142 to +2434). Inhibitory AhR-ER crosstalk was investigated in Ishikawa cells using E2-induced cell proliferation and transcriptional activation assays in cells transfected with E2-responsive constructs containing promoter inserts from the progesterone receptor and vitellogenin A2 genes. AhR agonists including TCDD, benzo[a]pyrene (BaP) and 6-methyl-1,3,8-trichlorodibenzofuran, inhibited 32-47% of the E2-induced responses. In contrast, neither estrogen nor progesterone inhibited EROD activity induced by TCDD in Ishikawa cells, whereas inhibitory ER-AhR crosstalk was observed in ECC-1 endometrial cells suggesting that these interactions were cell context-dependent.
Collapse
MESH Headings
- Adenocarcinoma/drug therapy
- Adenocarcinoma/genetics
- Adenocarcinoma/metabolism
- Aryl Hydrocarbon Receptor Nuclear Translocator
- Benzo(a)pyrene/pharmacology
- Benzofurans/pharmacology
- Chloramphenicol O-Acetyltransferase/drug effects
- Chloramphenicol O-Acetyltransferase/genetics
- Chloramphenicol O-Acetyltransferase/metabolism
- Cytochrome P-450 CYP1A1/drug effects
- Cytochrome P-450 CYP1A1/genetics
- Cytochrome P-450 CYP1A1/metabolism
- DNA-Binding Proteins
- Endometrial Neoplasms/drug therapy
- Endometrial Neoplasms/genetics
- Endometrial Neoplasms/metabolism
- Estradiol/pharmacology
- Female
- Humans
- Polychlorinated Dibenzodioxins/pharmacology
- Promoter Regions, Genetic
- Receptors, Aryl Hydrocarbon/agonists
- Receptors, Aryl Hydrocarbon/genetics
- Receptors, Aryl Hydrocarbon/metabolism
- Receptors, Estrogen/drug effects
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Receptors, Progesterone/drug effects
- Receptors, Progesterone/genetics
- Receptors, Progesterone/metabolism
- Transcription Factors/drug effects
- Transcription Factors/metabolism
- Transcription, Genetic
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- M Wormke
- Department of Veterinary Physiology and Pharmacology, Texas A & M University, TX 77843-4466, College Station, USA
| | | | | | | |
Collapse
|
42
|
Ebert AD, Wechselberger C, Martinez-Lacaci I, Bianco C, Weitzel HK, Salomon DS. Expression and function of EGF-related peptides and their receptors in gynecological cancer--from basic science to therapy. J Recept Signal Transduct Res 2000; 20:1-46. [PMID: 10711495 DOI: 10.3109/10799890009150035] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
EGF-related peptides and their receptors play an important, but not fully understood role, both, in epithelial physiology and pathophysiology but also in human tumor carcinogenesis and tumor behavior, respectively. Overexpression of EGF-related growth factors from normal epithelium to carcinomas has been demonstrated for several human tissues such as breast, endometrium, cervix and ovary. Additionally, the differential overexpression of EGFR or erb B-2 in various malignancies has already proven to be efficacious in stratifying patients with respect to a poor prognosis. These data suggest that EGF-related growth factors, erb B receptors or signaling proteins that function either upstream or downstream from these receptors may represent novel targets for selective tumor therapy. In the future, conventional chemotherapy regimes will ultimately be wedded to more biologically-oriented therapies. One important target for these novel therapeutic approaches in solid tumors will be the EGF-related growth factors and their receptors.
Collapse
Affiliation(s)
- A D Ebert
- Laboratory of Tumor Immunology and Biology, National Cancer Institute, National Institutes of Health, Bethesda Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
43
|
Willard ST, Frawley LS. TGF-alpha exerts biphasic effects on estrogen--and phytoestrogen-mediated gene expression in breast cancer cells. Endocrine 1999; 11:69-74. [PMID: 10668644 DOI: 10.1385/endo:11:1:69] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Transforming growth factor-alpha (TGF-alpha) contributes to the progression of mammary carcinogenesis in part through synergistic augmentation of estradiol (E2) action. To investigate this further, we sought to determine (1) whether the duration of TGF-alpha treatment might influence the nature of the TGF-alpha/E2 interaction, and (2) whether TGF-alpha would behave in a similar manner when combined with phytoestrogens. To this end, we transfected T47-D breast cancer cells with an estrogen-responsive reporter and then treated the cells (for 4-48 h) with varying concentrations of TGF-alpha, E2, the antiestrogen 4-hydroxy-tamoxifen (HOT), and/or one of three phytoestrogens. Our findings revealed that TGF-alpha has short-term synergistic and long-term inhibitory effects on E2- and phytoestrogen-regulated gene expression. Furthermore, this secondary inhibition of E2 action by TGF-alpha was similar in magnitude to that imposed by HOT. These findings demonstrate a novel role for TGF-alpha and invite reevaluation of current models regarding TGF-alphas interactions with E2 in breast cancer cells. Our results also raise the possibility that phytoestrogens, which interact with TGF-alpha in a manner conceptually identical to that of E2, may subserve a regulatory function in breast cancer cells.
Collapse
Affiliation(s)
- S T Willard
- Department of Cell Biology and Anatomy, Medical University of South Carolina, Charleston 29425, USA
| | | |
Collapse
|
44
|
Ben-Jonathan N, Cooper RL, Foster P, Hughes CL, Hoyer PB, Klotz D, Kohn M, Lamb DJ, Stancel GM. An approach to the development of quantitative models to assess the effects of exposure to environmentally relevant levels of endocrine disruptors on homeostasis in adults. ENVIRONMENTAL HEALTH PERSPECTIVES 1999; 107 Suppl 4:605-611. [PMID: 10421770 PMCID: PMC1567500 DOI: 10.1289/ehp.99107s4605] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The workshop "Characterizing the Effects of Endocrine Disruptors on Human Health at Environmental Exposure Levels" was held to provide a forum for discussions and recommendations of methods and data needed to improve risk assessments of endocrine disruptors. This article was produced by a working group charged with determining the basic mechanistic information that should be considered when designing models to quantitatively assess potential risks of environmental endocrine disruptors in adults. To reach this goal, we initially identified a set of potential organ system toxicities in males and females on the basis of known and/or suspected effects of endocrine disruptors on estrogen, androgen, and thyroid hormone systems. We used this integrated, systems-level approach because endocrine disruptors have the potential to exert toxicities at many levels and by many molecular mechanisms. Because a detailed analysis of all these untoward effects was beyond the scope of this workshop, we selected the specific end point of testicular function for a more detailed analysis. The goal was to identify the information required to develop a quantitative model(s) of the effects of endocrine disruptors on this system while focusing on spermatogenesis, sperm characteristics, and testicular steroidogenesis as specific markers. Testicular function was selected because it is a prototypical integrated end point that can be affected adversely by individual endocrine disruptors or chemical mixtures acting at one specific site or at multiple sites. Our specific objective was to gather the information needed to develop models in the adult organism containing functional homeostatic mechanisms, and for this reason we did not consider possible developmental toxicities. Homeostatic mechanisms have the potential to ameliorate or lessen the effects of endocrine disruptors, but these pathways are also potential target sites for the actions of these chemicals.
Collapse
Affiliation(s)
- N Ben-Jonathan
- Department of Cell Biology, University of Cincinnati, Cincinnati, Ohio, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Tarleton BJ, Wiley AA, Bartol FF. Endometrial development and adenogenesis in the neonatal pig: effects of estradiol valerate and the antiestrogen ICI 182,780. Biol Reprod 1999; 61:253-63. [PMID: 10377057 DOI: 10.1095/biolreprod61.1.253] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
In the pig, appearance of endometrial glands between birth (postnatal day [PND] 0) and PND 14 involves development of estrogen receptor-alpha-positive (ER+) phenotype by, and increased DNA synthesis in, nascent glandular epithelium (GE). To determine whether ER activation is required for this process, gilts were treated daily with either vehicle, the antiestrogen ICI 182,780 (ICI), estradiol-17beta valerate (EV), or both ICI and EV. Treatments began on PND 0, before onset of adenogenesis, or on PND 7, after onset of gland proliferation. Uteri obtained on PNDs 7 and 14 (study one) or on PND 14 (study two) were weighed; uterine histology was evaluated; DNA synthesis in luminal epithelium and GE was characterized by determining 5-bromo-2'-deoxyuridine (BrdU) labeling index; and patterns of ER mRNA expression were evaluated in situ (study one). Gland genesis was inhibited by ICI, which decreased gland penetration depth by PND 14 in study one, both endometrial thickness and BrdU-labeling index in GE in study two, and increased stromal cell compaction in both studies. Uterotropic effects of EV included increased gland development and epithelial BrdU labeling and decreased stromal compaction. These effects were inhibited by coadministration of ICI. Treatments did not alter ER mRNA expression, which remained limited to stroma and GE. Data indicate that endometrial maturation and adenogenesis in the neonatal pig require expression and activation of a functional ER system.
Collapse
Affiliation(s)
- B J Tarleton
- Department of Animal and Dairy Sciences, Auburn University, Alabama 36849-5415, USA
| | | | | |
Collapse
|
46
|
Slater M, Murphy CR. Premature implantation may be prevented by an inhibitory system regulated by epidermal growth factor. Acta Histochem 1999; 101:121-6. [PMID: 10335356 DOI: 10.1016/s0065-1281(99)80012-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Using immunohistochemical methods at both light and electron microscopical levels, we have studied epidermal growth factor in the uterine epithelium during early pregnancy and up to the time of blastocyst implantation. We report that the distribution of this growth factor changed markedly over the period of study and that it was gradually de-expressed across the entire uterine epithelium as pregnancy advanced towards the time of implantation. At the electron microscopical level, immunogold labelling clearly showed label associated with both lateral and basal plasma membranes very early in pregnancy but not by the time of implantation. We suggest that the de-expression of this molecule may indicate its role in the removal of mechanisms which inhibit uterine receptivity for implantation.
Collapse
Affiliation(s)
- M Slater
- Department of Anatomy and Histology, University of Sydney, NSW, Australia
| | | |
Collapse
|
47
|
Toran-Allerand CD, Singh M, Sétáló G. Novel mechanisms of estrogen action in the brain: new players in an old story. Front Neuroendocrinol 1999; 20:97-121. [PMID: 10328986 DOI: 10.1006/frne.1999.0177] [Citation(s) in RCA: 345] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Estrogen elicits a selective enhancement of the growth and differentiation of axons and dendrites (neurites) in the developing brain. Widespread colocalization of estrogen and neurotrophin receptors (trk) within estrogen and neurotrophin targets, including neurons of the cerebral cortex, sensory ganglia, and PC12 cells, has been shown to result in differential and reciprocal transcriptional regulation of these receptors by their ligands. In addition, estrogen and neurotrophin receptor coexpression leads to convergence or cross-coupling of their signaling pathways, particularly at the level of the mitogen-activated protein (MAP) kinase cascade. 17beta-Estradiol elicits rapid (within 5-15 min) and sustained (at least 2 h) tyrosine phosphorylation and activation of the MAP kinases, extracellular-signal regulated kinase (ERK)1, and ERK2, which is successfully inhibited by the MAP kinase/ERK kinase 1 inhibitor PD98059, but not by the estrogen receptor (ER) antagonist ICI 182,780 and also does not appear to result from estradiol-induced activation of trk. Furthermore, the ability of estradiol to phosphorylate ERK persists even in ER-alpha knockout mice, implicating other estrogen receptors such as ER-beta in these actions of estradiol. The existence of an estrogen receptor-containing, multimeric complex consisting of hsp90, src, and B-Raf also suggests a direct link between the estrogen receptor and the MAP kinase signaling cascade. Collectively, these novel findings, coupled with our growing understanding of additional signaling substrates utilized by estrogen, provide alternative mechanisms for estrogen action in the developing brain which could explain not only some of the very rapid effects of estrogen, but also the ability of estrogen and neurotrophins to regulate the same broad array of cytoskeletal and growth-associated genes involved in neurite growth and differentiation. This review expands the usually restrictive view of estrogen action in the brain beyond the confines of sexual differentiation and reproductive neuroendocrine function. It considers the much broader question of estrogen as a neural growth factor with important influences on the development, survival, plasticity, regeneration, and aging of the mammalian brain and supports the view that the estrogen receptor is not only a ligand-induced transcriptional enhancer but also a mediator of rapid, nongenomic events.
Collapse
Affiliation(s)
- C D Toran-Allerand
- Department of Anatomy and Cell Biology, Center for Neurobiology, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA.
| | | | | |
Collapse
|
48
|
Andò S, Panno ML, Salerno M, Sisci D, Mauro L, Lanzino M, Surmacz E. Role of IRS-1 signaling in insulin-induced modulation of estrogen receptors in breast cancer cells. Biochem Biophys Res Commun 1998; 253:315-9. [PMID: 9878535 DOI: 10.1006/bbrc.1998.9330] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cross-talk between steroid hormones and polypeptide growth factors regulates the growth of hormone-responsive breast cancer cells. For example, in the MCF-7 human breast cancer cell line, insulin up-regulates estrogen receptor (ER) content and binding capacity. Since the insulin receptor (IR) substrate 1 (IRS-1) is one of the core signaling elements transmitting mitogenic and metabolic effects of insulin, we investigated whether IRS-1 is also required for the insulin-induced function of the ER. The effects of insulin on the ER were compared in MCF-7 cells and MCF-7-derived cell lines with decreased levels (by approximately 80%) of IRS-1 due to the expression of IRS-1 antisense RNA. The severe IRS-1 deficiency in MCF-7 cells was associated with (1) reduced mitogenic response to 20 ng/ml insulin and 10% calf serum (CS), but not to 1 nM estradiol (E2); (2) loss of insulin-E2 synergism; (3) up-regulation of ER protein expression and binding capacity; and (4) loss of insulin-induced regulation of ER tyrosine phosphorylation. In conclusion, the data confirm the existence of the IR-ER cross-talk and suggest that IRS-1-dependent signaling may contribute to the negative regulation of the ER expression and function in MCF-7 cells.
Collapse
Affiliation(s)
- S Andò
- Dipartimento di Biologia Cellulare, Universita' degli Studi della Calabria, Cosenza, Italy.
| | | | | | | | | | | | | |
Collapse
|
49
|
Song J, Wan Y, Rolfe BE, Campbell JH, Campbell GR. Effect of estrogen on vascular smooth muscle cells is dependent upon cellular phenotype. Atherosclerosis 1998; 140:97-104. [PMID: 9733220 DOI: 10.1016/s0021-9150(98)00122-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
To investigate the growth-regulating action of estrogen on vascular smooth muscle cells (SMC), effects of beta-17-estradiol (beta-E2) on phenotypic modulation and proliferation of rabbit aortic SMC were observed in vitro. At 10(-8)M, beta-E2 significantly slowed the decrease in volume fraction of myofilaments (Vv myo) of freshly dispersed SMCs in primary culture, indicating an inhibitory effect of beta-E2 on spontaneous phenotypic modulation of SMC from a contractile to a synthetic phenotype. Freshly dispersed SMCs treated with beta-E2 also had a relatively longer quiescent phase than control cells before intense proliferation occurred. This was in contrast to SMCs in passage 2 3 (synthetic state), where beta-E2-treated cells replicated significantly faster than untreated cells. beta-E2 also markedly enhanced the serum-induced DNA synthesis of synthetic SMCs in a concentration-dependent manner within physiological range (10(-10)to 10(-8)M). These findings indicate that the growth-regulating effect of estrogen on vascular SMC is dependent on the cell's phenotypic state. It delays the cell cycle re-entry of the contractile SMCs by retarding their phenotypic modulation: however, once cells have modulated to the synthetic phenotype, it promotes their replication.
Collapse
Affiliation(s)
- J Song
- Centre for Research in Vascular Biology, Department of Anatomical Sciences, University of Queensland, Brisbane, Australia
| | | | | | | | | |
Collapse
|
50
|
Hopert AC, Beyer A, Frank K, Strunck E, Wünsche W, Vollmer G. Characterization of estrogenicity of phytoestrogens in an endometrial-derived experimental model. ENVIRONMENTAL HEALTH PERSPECTIVES 1998; 106:581-586. [PMID: 9721258 PMCID: PMC1533165 DOI: 10.1289/ehp.98106581] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Severe developmental and reproductive disorders in wild animals have been linked to high exposure to persistent environmental chemicals with hormonal activity. These adverse effects of environmental estrogens have raised considerable concern and have received increasing attention. Although numerous chemicals with the capacity to interfere with the estrogen receptor (ER) have been identified, information on their molecular mechanism of action and their relative potency is rather limited. For the endometrium, the lack of information is due to the lack of a suitable experimental model. We investigated the functions of phytoestrogens in an endometrial-derived model, RUCA-I rat endometrial adenocarcinoma cells. The cells were cultured on a reconstituted basement membrane to preserve their functional differentiation and estrogen responsiveness. We assessed the relative binding affinity to the estrogen receptor of the selected phytoestrogens coumestrol, genistein, daidzein, and the putative phytoestrogen mangostin compared to estradiol by a competitive Scatchard analysis. The following affinity ranking was measured: 17beta-estradiol >>> coumestrol > genistein > daidzein >>> mangostin. In addition, we investigated the capacity of these compounds to promote the increased production of complement C3, a well-known estradiol-regulated protein of the rat endometrium. All substances tested increased the production of complement C3, although different concentrations were necessary to achieve equivalent levels of induction compared to estradiol. Mechanistically we were able to demonstrate that the increase of complement C3 production was mediated by primarily increasing its steady-state mRNA level. These findings indicate that RUCA-I cells represent a sensitive model system to elucidate relative potencies and functions of environmental estrogens in an endometrium-derived model.
Collapse
Affiliation(s)
- A C Hopert
- Institut für Molekulare Medizin, Medizinische Universität zu Lübeck, Lübeck, Germany
| | | | | | | | | | | |
Collapse
|