1
|
Normann SS, Andersen HR, Lund LC, Beck IH, Nielsen F, Bilenberg N, Nielsen C, Halldórsson ÞI, Jensen TK. Association between exposure to pyrethroids and chlorpyrifos at age 5 years and IQ at age 7 years among children from the Odense Child Cohort, a prospective birth cohort study. ENVIRONMENTAL RESEARCH 2025; 268:120853. [PMID: 39818350 DOI: 10.1016/j.envres.2025.120853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/18/2025]
Abstract
BACKGROUND Over the past decade, the use of organophosphate insecticides including chlorpyrifos has faced increasing restrictions due to health concerns, leading to a rise in use of pyrethroids. Concerns about neurodevelopmental insults following pyrethroids exposure exist, but few studies have examined the long-term effects of childhood exposure to chlorpyrifos and pyrethroids on IQ. OBJECTIVE To investigate the prospective associations between pyrethroids and chlorpyrifos exposure at age 5 years and IQ scores assessed at age 7. MATERIALS AND METHODS A total of 1083 children from the Odense Child Cohort (OCC), born between 2010 and 2012, were included. Chlorpyrifos metabolite chlorpyrifos-methyl, 3,5,6-trichloro-2-pyridinol (TCPy) and pyrethroid metabolite 3-phenoxy-benzoic acid (3-PBA) were measured in urine at age 5. An abbreviated version of the Danish Wechsler Intelligence Scale for Children fifth edition (WISC-V) was administered at age 7 years. RESULTS Median urine concentrations of 3-PBA and TCPy at age 5 were 0.18 μg/L and 1.15 μg/L, respectively. Higher childhood urine TCPy concentration was associated with a reduction in IQ at 7 years (-0.80 (95%CI: -1.29, -0.31)) for each doubling of TCPy. The association was more pronounced in girls (-1.09 (95%CI: -1.80, -0.38)) than in boys (-0.54 (95%CI: -1.21, -0.14)). No association was observed for 3-PBA. CONCLUSIONS Even in this low exposed cohort, early childhood exposure to chlorpyrifos was associated with lower IQ at age 7. Our results align with previous reports in both animals and humans suggesting that chlorpyrifos exposure may adversely affect neurodevelopment. No association between pyrethroid exposure (3-PBA) and IQ scores was found. The lack of association for 3-PBA is likely due to the low and uniform exposure levels among the participants. To establish a definitive exposure-response relationship, studies or combined datasets with greater variability in exposure levels are required. Continued monitoring and regulation of insecticide use are recommended to protect the health of children.
Collapse
Affiliation(s)
- Stine Søgaard Normann
- Department of Clinical Pharmacology, Pharmacy and Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark.
| | - Helle Raun Andersen
- Department of Clinical Pharmacology, Pharmacy and Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | - Lars Christian Lund
- Department of Clinical Pharmacology, Pharmacy and Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | - Iben Have Beck
- Department of Clinical Pharmacology, Pharmacy and Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | - Flemming Nielsen
- Department of Clinical Pharmacology, Pharmacy and Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | - Niels Bilenberg
- Research Unit of Child and Adolescent Psychiatry, Mental Health Services in the Region of Southern Denmark, University of Southern Denmark, Odense, Denmark
| | - Christel Nielsen
- Department of Clinical Pharmacology, Pharmacy and Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark; Department of Laboratory Medicine, Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Þórhallur Ingi Halldórsson
- Faculty of Food Science and Nutrition, School of Health Sciences, University of Iceland, 101, Reykjavik, Iceland; Centre for Fetal Programming, Department of Epidemiology Research, Statens Serum Institut, 2100, Copenhagen, Denmark; Molecular Diagnostics and Clinical Research Unit at the Institute of Regional Health Research at University of Southern Denmark, Esbjerg, Denmark
| | - Tina Kold Jensen
- Department of Clinical Pharmacology, Pharmacy and Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark; Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark; OPEN Patient Data Explorative Network, Odense, Denmark
| |
Collapse
|
2
|
Kuodza GE, Kawai R, LaSalle JM. Intercontinental insights into autism spectrum disorder: a synthesis of environmental influences and DNA methylation. ENVIRONMENTAL EPIGENETICS 2024; 10:dvae023. [PMID: 39703685 PMCID: PMC11658417 DOI: 10.1093/eep/dvae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/14/2024] [Accepted: 11/04/2024] [Indexed: 12/21/2024]
Abstract
Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disorder characterized by a broad range of symptoms. The etiology of ASD is thought to involve complex gene-environment interactions, which are crucial to understanding its various causes and symptoms. DNA methylation is an epigenetic mechanism that potentially links genetic predispositions to environmental factors in the development of ASD. This review provides a global perspective on ASD, focusing on how DNA methylation studies may reveal gene-environment interactions characteristic of specific geographical regions. It delves into the role of DNA methylation in influencing the causes and prevalence of ASD in regions where environmental influences vary significantly. We also address potential explanations for the high ASD prevalence in North America, considering lifestyle factors, environmental toxins, and diagnostic considerations. Asian and European studies offer insights into endocrine-disrupting compounds, persistent organic pollutants, maternal smoking, and their associations with DNA methylation alterations in ASD. In areas with limited data on DNA methylation and ASD, such as Africa, Oceania, and South America, we discuss prevalent environmental factors based on epidemiological studies. Additionally, the review integrates global and country-specific prevalence data from various studies, providing a comprehensive picture of the variables influencing ASD diagnoses over region and year of assessment. This prevalence data, coupled with regional environmental variables and DNA methylation studies, provides a perspective on the complexities of ASD research. Integrating global prevalence data, we underscore the need for a comprehensive global understanding of ASD's complex etiology. Expanded research into epigenetic mechanisms of ASD is needed, particularly in underrepresented populations and locations, to enhance biomarker development for diagnosis and intervention strategies for ASD that reflect the varied environmental and genetic landscapes worldwide.
Collapse
Affiliation(s)
- George E Kuodza
- Department of Medical Microbiology and Immunology, Perinatal Origins of Disparities Center, MIND Institute, Genome Center, Environmental Health Sciences Center, University of California Davis, Davis, CA 95616, United States
| | - Ray Kawai
- Department of Medical Microbiology and Immunology, Perinatal Origins of Disparities Center, MIND Institute, Genome Center, Environmental Health Sciences Center, University of California Davis, Davis, CA 95616, United States
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology, Perinatal Origins of Disparities Center, MIND Institute, Genome Center, Environmental Health Sciences Center, University of California Davis, Davis, CA 95616, United States
| |
Collapse
|
3
|
Jankowska A, Ścieszko M, Polańska A, Jerzyńska A, Dominowska J, Brzozowska A. The association between prenatal pyrethroids exposure and children's health - current research. Int J Occup Med Environ Health 2024; 37:381-402. [PMID: 39254260 PMCID: PMC11627255 DOI: 10.13075/ijomeh.1896.02445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/05/2024] [Indexed: 09/11/2024] Open
Abstract
Exposure to pyrethroids, a widely used agricultural, forestry, and household insecticide, is a major public health concern due to its potential health effects on children. The aim of this review was to summarize the current knowledge of the effects of prenatal exposure to pyrethroids on the course and outcome of pregnancy, health status, and neurobehavioural development of children. A systematic and comprehensive search of the PubMed, Web of Science, and Scopus databases was conducted during January-February 2024. The review included original articles published in peerreviewed English-language journals since 2015. Based on keywords, 198 studies were identified and screened for eligibility. Ultimately, the review analyzed 25 articles including 16 that assessed the effects of prenatal exposure to pyrethroids on children's neurobehavioural development, 3 studies that assessed the effects on the course and outcome of pregnancy, and further 3 focused on respiratory disease. In addition, 1 study analyzed the development of obesity and 2 studies examined the effects on children's growth, weight and body composition in early childhood. In conclusion, there is considerable uncertainty about the adverse effects of prenatal exposure to pyrethroids on children's health. The strongest evidence has been reported for neurobehavioural development although results are also inconsistent. Further research is needed to understand the mechanisms of action and health effects of pyrethroids in susceptible populations. Int J Occup Med Environ Health. 2024;37(4):381-402.
Collapse
Affiliation(s)
- Agnieszka Jankowska
- Nofer Institute of Occupational Medicine, Department of Environmental and Occupational Health Hazards, Łódź, Poland
| | - Maja Ścieszko
- Nofer Institute of Occupational Medicine, Department of Environmental and Occupational Health Hazards, Łódź, Poland
- Medical University of Lodz, Faculty of Public Health, Łódź, Poland
| | - Alicja Polańska
- Medical University of Lodz, Faculty of Dietetics, Łódź, Poland
| | | | - Jolanta Dominowska
- Medical University of Lodz, II Department of Gynecology and Obstetrics, Łódź, Poland
| | - Agnieszka Brzozowska
- Medical University of Lodz, Department of Pediatrics and Allergy, Copernicus Memorial Hospital, Łódź, Poland
| |
Collapse
|
4
|
Yen J, Yang K, Tu XM, Kayser G, Skomal A, Gahagan S, Suarez-Torres J, Hong S, Moore RC, Suarez-Lopez JR. Associations between Neonicotinoid, Pyrethroid, and Organophosphate Insecticide Metabolites and Neurobehavioral Performance in Ecuadorian Adolescents. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.10.24315201. [PMID: 39417138 PMCID: PMC11483003 DOI: 10.1101/2024.10.10.24315201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Background Organophosphate and pyrethroid insecticides can affect children's neurodevelopment and increase inflammation. Limited evidence exists among adolescents and on whether inflammation may mediate pesticide-neurobehavior associations. We examined the associations between insecticide metabolite concentrations and neurobehavior among adolescents in Ecuadorian agricultural communities. Methods We included 520 participants aged 11-17 years. We measured urinary insecticide metabolites (mass spectrometry) and neurobehavior (NEPSY-II). Associations were adjusted for socio-demographic and anthropometric characteristics. The associations of insecticide mixtures with neurobehavior were evaluated using PLS regression, and mediation by inflammatory biomarkers (TNF-α, IL-6, CRP, SAA, sICAM-1, sVCAM-1 and sCD-14) was conducted. Results Among organophosphates, para-nitrophenol (PNP) and 3,5,6-Trichloro-2-pyridinol (TCPy) were inversely associated with Social Perception (score difference per 50% increase [β 50% ] = -0.26 [95%CI: - 1.07, -0.20] and -0.10 [-0.22, 0.01], respectively). PNP and TCPy also had significant inverse associations with Attention/Inhibitory Control at concentrations >60 th percentile (β 50% = -0.26 [95%CI: -0.51, -0.01] and β 50% = -0.22 [95%CI: -0.43, -0.00], respectively). The pyrethroid, 3-phenoxybenzoic acid (3-PBA), was inversely associated with Language (β 50% = -0.13 [95%CI: -0.19, -0.01]) and had a negative quadratic association with Attention/Inhibitory Control. The neonicotinoid 5-Hydroxy imidacloprid (OHIM) was positively associated with Memory/Learning (β 50% = 0.20 [95%CI: 0.04, 0.37]). Mixtures of all insecticides were significantly negatively related to all domains, except for Memory/Learning, which was positively associated. No mediation by inflammatory markers on these associations was observed. Conclusions Concurrent organophosphate, pyrethroid, and the mixtures of all metabolites were associated with lower performance in all domains except for Memory/Learning. Neonicotinoids were positively associated with Memory/Learning and Social Perception scores.
Collapse
|
5
|
Barrea C, Dufour P, Catherine P, Charlier C, Brevers F, Rousselle L, Parent AS. Impact of antenatal exposure to a mixture of persistent organic pollutants on intellectual development. Int J Hyg Environ Health 2024; 261:114422. [PMID: 38981323 DOI: 10.1016/j.ijheh.2024.114422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/07/2024] [Accepted: 07/05/2024] [Indexed: 07/11/2024]
Abstract
OBJECTIVE Strong experimental evidence exists that several endocrine disrupting chemicals (EDCs) have neurobehavioral toxicity. However, evidence of associations between prenatal exposure and child's cognitive development is inconsistent. Moreover, toxicants are generally analyzed one by one without considering aggregate effects. We examined here the impact of a prenatal exposure to a mixture of persistent organic pollutants (POPs) on intellectual abilities in preschool children, and compared their effects to those described in the literature. METHODS Sixty-two children were included in a longitudinal cohort. Four organochlorine pesticides, four polychlorinated biphenyls (PCBs) and seven perfluorinated compounds (PFCs) were measured in cord blood. Intellectual abilities were assessed at 6 years of age using the Wechsler Preschool and Primary Scale of Intelligence 4th ed. (WPPSI-IV). We examined the associations between a mixture of POPs and cognitive performances using principal components approach (PCA) and weighted quantile sum (WQS) regression taking sex difference into account. RESULTS No negative correlation was found when analyses were performed on boys and girls together. In sex-stratified analyses, lower scores in full scale intelligence quotient (FSIQ) and fluid reasoning index (FRI) were observed in boys most exposed to a mixture of POPs. Increase of the WQS index was also associated with lower verbal comprehension index (VCI) scores in girls only. No other negative correlation was found using both WQS and PCA models. CONCLUSION Our study suggests deleterious associations between antenatal exposure to a mixture of POPs and sex-specific cognitive level, clarifying some trends described in the literature.
Collapse
Affiliation(s)
- Christophe Barrea
- Department of Paediatrics, University of Liege (ULg), CHU, 4000, Liege, Belgium; GIGA Neurosciences, Neuroendocrinology Unit, University of Liege (ULg), CHU, 4000, Liege, Belgium.
| | - Patrice Dufour
- Laboratory of Clinical, Forensic and Environmental Toxicology, University of Liege (ULg), CHU, 4000, Liege, Belgium
| | - Pirard Catherine
- Laboratory of Clinical, Forensic and Environmental Toxicology, University of Liege (ULg), CHU, 4000, Liege, Belgium
| | - Corinne Charlier
- Laboratory of Clinical, Forensic and Environmental Toxicology, University of Liege (ULg), CHU, 4000, Liege, Belgium
| | - Fanny Brevers
- Research Unit for a life-Course perspective on Health and Education, University of Liege (ULg), CHU, 4000, Liege, Belgium
| | - Laurence Rousselle
- Research Unit for a life-Course perspective on Health and Education, University of Liege (ULg), CHU, 4000, Liege, Belgium
| | - Anne-Simone Parent
- Department of Paediatrics, University of Liege (ULg), CHU, 4000, Liege, Belgium; GIGA Neurosciences, Neuroendocrinology Unit, University of Liege (ULg), CHU, 4000, Liege, Belgium
| |
Collapse
|
6
|
Wu D, Zhang K, Guan K, Khan FA, Pandupuspitasari NS, Negara W, Sun F, Huang C. Future in the past: paternal reprogramming of offspring phenotype and the epigenetic mechanisms. Arch Toxicol 2024; 98:1685-1703. [PMID: 38460001 DOI: 10.1007/s00204-024-03713-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/20/2024] [Indexed: 03/11/2024]
Abstract
That certain preconceptual paternal exposures reprogram the developmental phenotypic plasticity in future generation(s) has conceptualized the "paternal programming of offspring health" hypothesis. This transgenerational effect is transmitted primarily through sperm epigenetic mechanisms-DNA methylation, non-coding RNAs (ncRNAs) and associated RNA modifications, and histone modifications-and potentially through non-sperm-specific mechanisms-seminal plasma and circulating factors-that create 'imprinted' memory of ancestral information. The epigenetic landscape in sperm is highly responsive to environmental cues, due to, in part, the soma-to-germline communication mediated by epididymosomes. While human epidemiological studies and experimental animal studies have provided solid evidences in support of transgenerational epigenetic inheritance, how ancestral information is memorized as epigenetic codes for germline transmission is poorly understood. Particular elusive is what the downstream effector pathways that decode those epigenetic codes into persistent phenotypes. In this review, we discuss the paternal reprogramming of offspring phenotype and the possible underlying epigenetic mechanisms. Cracking these epigenetic mechanisms will lead to a better appreciation of "Paternal Origins of Health and Disease" and guide innovation of intervention algorithms to achieve 'healthier' outcomes in future generations. All this will revolutionize our understanding of human disease etiology.
Collapse
Affiliation(s)
- Di Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Kejia Zhang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Kaifeng Guan
- School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China
| | - Faheem Ahmed Khan
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta Pusat, 10340, Indonesia
| | | | - Windu Negara
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta Pusat, 10340, Indonesia
| | - Fei Sun
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China.
| | - Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China.
| |
Collapse
|
7
|
Ntantu Nkinsa P, Fisher M, Muckle G, Guay M, Arbuckle TE, Fraser WD, Boylan K, Booij L, Walker M, Bouchard MF. Childhood exposure to pyrethroids and neurodevelopment in Canadian preschoolers. Neurotoxicology 2023; 99:120-128. [PMID: 37802189 DOI: 10.1016/j.neuro.2023.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 10/03/2023] [Accepted: 10/03/2023] [Indexed: 10/08/2023]
Abstract
BACKGROUND Pyrethroid insecticides are used both residentially and agriculturally and their toxicity targets the nervous system of insects. They might also interfere with development and function of the human brain. A few epidemiological studies suggest that exposure to pyrethroids may be associated with neurobehavioral problems in children but there is little data on potential associations with cognitive outcomes. Furthermore, many studies showed that the neurotoxic effects of several pesticides are modified by sex, hence, considerations of potential sex-differences are important to investigate. OBJECTIVE To study the cross-sectional association between urinary levels of pyrethroid metabolites and neurodevelopment, including neurobehavioral and cognitive outcomes, in preschool-age children, and to examine whether sex might modify these associations. METHODS We used data from a follow-up examination of the Maternal-Infant Research on Environmental Chemicals (MIREC), the MIREC Child Development study (MIREC-CD Plus) on children at age 3-4 years living in 6 Canadian cities. For each participant, we collected a urine sample for measurements of pyrethroids metabolites (cis-DBCA, cis-DCCA, trans-DCCA, 3-PBA, 4-F-3-PBA). We assessed neurodevelopment with the Wechsler Primary and Preschool Scale of Intelligence-III (WPPSI-III) and two scales of the Behavior Rating Inventory of Executive Function-Preschool (BRIEF-P). Parents reported children's behavior using the Behavior Assessment System for Children-2 (BASC-2) and the Social Responsiveness Scale-2 (SRS-2). We examined associations between children's urinary pyrethroid metabolite concentrations and neurodevelopmental scores with multiple linear regression models, adjusting for confounders, in boys and girls separately. RESULTS The study included 179 children (mean age: 3.2 y, range 2.8-4.0). The detection frequencies were high for most pyrethroid metabolites (83-100%), but lower for 4-F-3-PBA (36%). Higher concentrations of cis-DBCA were significantly associated with lower verbal, performance and full-scale IQ scores in boys (e.g., for a 2-fold increase in cis-DBCA, β = -2.0; 95% CI: -3.4, -0.6 for full-scale IQ). In girls, the only metabolite associated with cognitive scores was 3-PBA, which was associated with lower verbal IQ scores (β = -1.3, 95% CI: -2.6, -0.1). For neurobehavioral outcomes in boys, there were associations between poorer BASC-2 Adaptive Skills scores with higher concentrations of cis-DCCA (β = -1.6, 95% CI: -2.3, -0.9), trans-DCCA (β = -1.5, 95% CI: -2.2, -0.8), 3-PBA (β = -1.7, 95% CI: -2.5, -0.9), and sum of pyrethroid metabolites (β = -1.8, 95% CI: -2.6, -0.9). In girls, we observed a significant association between higher concentration of cis-DCCA and better BASC-2 Adaptive Skills score (β = 1.0; 95% CI, 0.2, 1.8), but not with other urinary pyrethroids metabolites. Scores on the SRS-2 and BRIEF-P were not associated with pyrethroid metabolites. CONCLUSION There were associations between some pyrethroid pesticide metabolites and indicators of neurodevelopmental disorder, especially among boys. These associations are in agreement with previous studies and could suggest that exposure to pyrethroid pesticides represents a risk of potential toxicity for the cognitive development of children, and a risk for behavioral development. However, the cross-sectional nature of this study limits causal inferences.
Collapse
Affiliation(s)
- Patrick Ntantu Nkinsa
- Department of Environmental and Occupational Health, School of Public Health, Université de Montréal; CHU Sainte-Justine Research Centre Montréal, Quebec, Canada.
| | - Mandy Fisher
- Population Studies Division, Health Canada, Ottawa, Ontario, Canada.
| | - Gina Muckle
- Centre de recherche du Centre Hospitalier Universitaire de Québec; École de psychologie, Université Laval, Québec, Canada.
| | - Mireille Guay
- Population Studies Division, Health Canada, Ottawa, Ontario, Canada.
| | - Tye E Arbuckle
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada.
| | - William D Fraser
- Department of Obstetrics and Gynecology, Université de Sherbrooke, Centre Hospitalier Universitaire de Sherbrooke, Québec, Canada.
| | - Khrista Boylan
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada.
| | - Linda Booij
- Department of Psychiatry, McGill University & Douglas Mental Health University Institute; CHU Sainte-Justine Research Centre, Montreal, Quebec, Canada.
| | - Mark Walker
- Department of Obstetrics, Gynecology & Newborn Care, Div Maternal-Fetal Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| | - Maryse F Bouchard
- Institut national de la recherche scientifique (INRS) - Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada; CHU Sainte-Justine Research Centre Montréal, Quebec, Canada.
| |
Collapse
|
8
|
Wang A, Wan Y, Mahai G, Qian X, Li Y, Xu S, Xia W. Association of Prenatal Exposure to Organophosphate, Pyrethroid, and Neonicotinoid Insecticides with Child Neurodevelopment at 2 Years of Age: A Prospective Cohort Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:107011. [PMID: 37856202 PMCID: PMC10586492 DOI: 10.1289/ehp12097] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND Widespread insecticide exposure might be a risk factor for neurodevelopment of our children, but few studies examined the mixture effect of maternal coexposure to organophosphate insecticides (OPPs), pyrethroids (PYRs), and neonicotinoid insecticides (NNIs) during pregnancy on child neurodevelopment, and critical windows of exposure are unknown. OBJECTIVES We aimed to evaluate the association of prenatal exposure to multiple insecticides with children's neurodevelopment and to identify critical windows of the exposure. METHODS Pregnant women were recruited into a prospective birth cohort study in Wuhan, China, from 2014-2017. Eight metabolites of OPPs (mOPPs), three metabolites of PYRs (mPYRs), and nine metabolites of NNIs (mNNIs) were measured in 3,123 urine samples collected at their first, second, and third trimesters. Children's neurodevelopment [mental development index (MDI) and psychomotor development index (PDI)] was assessed using the Bayley Scales of Infant Development at 2 years of age (N = 1,041 ). Multivariate linear regression models, generalized estimating equation models, and weighted quantile sum (WQS) regression were used to estimate the association between the insecticide metabolites and Bayley scores. Potential sex-specific associations were also examined. RESULTS Single chemical analysis suggested higher urinary concentrations of some insecticide metabolites at the first trimester were significantly associated with lower MDI and PDI scores, and the associations were more prominent among boys. Each 1-unit increase in ln-transformed urinary concentrations of two mOPPs, 3,5,6-trichloro-2-pyridinol and 4-nitrophenol, was associated with a decrease of 3.16 points [95% confidence interval (CI): - 5.59 , - 0.74 ] and 3.06 points (95% CI: - 5.45 , - 0.68 ) respectively in boys' MDI scores. Each 1-unit increase in that of trans-3-(2,2-dichloroethenyl)-2,2-dimethylcyclopropanecarboxylic acid (trans-DCCA; an mPYR) was significantly associated with a decrease of 2.24 points (95% CI: - 3.89 , - 0.58 ) in boys' MDI scores and 1.90 points (95% CI: - 3.16 , - 0.64 ) in boys' PDI scores, respectively. Significantly positive associations of maternal urinary biomarker concentrations [e.g., dimethyl phosphate (a nonspecific mOPP) and desmethyl-clothianidin (a relatively specific mNNI)] with child neurodevelopment were also observed. Using repeated holdout validation, a 1-quartile increase in the WQS index of the insecticide mixture (in the negative direction) at the first trimester was significantly associated with a decrease of 3.02 points (95% CI: - 5.47 , - 0.57 ) in MDI scores among the boys, and trans-DCCA contributed the most to the association (18%). CONCLUSIONS Prenatal exposure to higher levels of certain insecticides and their mixture were associated with lower Bayley scores in children, particularly in boys. Early pregnancy may be a sensitive window for such an effect. Future studies are needed to confirm our findings. https://doi.org/10.1289/EHP12097.
Collapse
Affiliation(s)
- Aizhen Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yanjian Wan
- Center for Public Health Laboratory Service, Institute of Environmental Health, Wuhan Centers for Disease Prevention & Control, Wuhan, Hubei, PR China
| | - Gaga Mahai
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Xi Qian
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| |
Collapse
|
9
|
Grossklaus R, Liesenkötter KP, Doubek K, Völzke H, Gaertner R. Iodine Deficiency, Maternal Hypothyroxinemia and Endocrine Disrupters Affecting Fetal Brain Development: A Scoping Review. Nutrients 2023; 15:2249. [PMID: 37242131 PMCID: PMC10223865 DOI: 10.3390/nu15102249] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
This scoping review critically discusses the publications of the last 30 years on the impact of mild to moderate iodine deficiency and the additional impact of endocrine disrupters during pregnancy on embryonal/fetal brain development. An asymptomatic mild to moderate iodine deficiency and/or isolated maternal hypothyroxinemia might affect the development of the embryonal/fetal brain. There is sufficient evidence underlining the importance of an adequate iodine supply for all women of childbearing age in order to prevent negative mental and social consequences for their children. An additional threat to the thyroid hormone system is the ubiquitous exposure to endocrine disrupters, which might exacerbate the effects of iodine deficiency in pregnant women on the neurocognitive development of their offspring. Ensuring adequate iodine intake is therefore essential not only for healthy fetal and neonatal development in general, but it might also extenuate the effects of endocrine disruptors. Individual iodine supplementation of women of childbearing age living in areas with mild to moderate iodine deficiency is mandatory as long as worldwide universal salt iodization does not guarantee an adequate iodine supply. There is an urgent need for detailed strategies to identify and reduce exposure to endocrine disrupters according to the "precautional principle".
Collapse
Affiliation(s)
- Rolf Grossklaus
- Department of Food Safety, Federal Institute for Risk Assessment, D-10589 Berlin, Germany;
| | | | - Klaus Doubek
- Professional Association of Gynecologists, D-80337 Munich, Germany
| | - Henry Völzke
- Study of Health in Pomerania/Clinical-Epidemiological Research, Institute for Community Medicine, University Medicine Greifswald, D-17475 Greifswald, Germany;
| | - Roland Gaertner
- Medical Clinic IV, University of Munich, D-80336 Munich, Germany
| |
Collapse
|
10
|
Lismer A, Kimmins S. Emerging evidence that the mammalian sperm epigenome serves as a template for embryo development. Nat Commun 2023; 14:2142. [PMID: 37059740 PMCID: PMC10104880 DOI: 10.1038/s41467-023-37820-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 03/31/2023] [Indexed: 04/16/2023] Open
Abstract
Although more studies are demonstrating that a father's environment can influence child health and disease, the molecular mechanisms underlying non-genetic inheritance remain unclear. It was previously thought that sperm exclusively contributed its genome to the egg. More recently, association studies have shown that various environmental exposures including poor diet, toxicants, and stress, perturbed epigenetic marks in sperm at important reproductive and developmental loci that were associated with offspring phenotypes. The molecular and cellular routes that underlie how epigenetic marks are transmitted at fertilization, to resist epigenetic reprogramming in the embryo, and drive phenotypic changes are only now beginning to be unraveled. Here, we provide an overview of the state of the field of intergenerational paternal epigenetic inheritance in mammals and present new insights into the relationship between embryo development and the three pillars of epigenetic inheritance: chromatin, DNA methylation, and non-coding RNAs. We evaluate compelling evidence of sperm-mediated transmission and retention of paternal epigenetic marks in the embryo. Using landmark examples, we discuss how sperm-inherited regions may escape reprogramming to impact development via mechanisms that implicate transcription factors, chromatin organization, and transposable elements. Finally, we link paternally transmitted epigenetic marks to functional changes in the pre- and post-implantation embryo. Understanding how sperm-inherited epigenetic factors influence embryo development will permit a greater understanding related to the developmental origins of health and disease.
Collapse
Affiliation(s)
- Ariane Lismer
- Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Sarah Kimmins
- Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montreal, QC, H3G 1Y6, Canada.
- Department of Pathology and Cell Biology, Faculty of Medicine, University of Montreal Hospital Research Centre, Montreal, QC, H2X 0A9, Canada.
| |
Collapse
|
11
|
Zhao H, Federigi I, Verani M, Carducci A. Organic Pollutants Associated with Plastic Debris in Marine Environment: A Systematic Review of Analytical Methods, Occurrence, and Characteristics. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4892. [PMID: 36981806 PMCID: PMC10048819 DOI: 10.3390/ijerph20064892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Plastic pollution has become one of the most serious environmental problems, and microplastics (MPs, particles < 5 mm size) may behave as a vehicle of organic pollutants, causing detrimental effects to the environment. Studies on MP-sorbed organic pollutants lack methodological standardization, resulting in a low comparability and replicability. In this work, we reviewed 40 field studies of MP-sorbed organic contaminants using PRISMA guidelines for acquiring information on sampling and analytical protocols. The papers were also scored for their reliability on the basis of 7 criteria, from 0 (minimum) to 21 (maximum). Our results showed a great heterogeneity of the methods used for the sample collection, MPs extraction, and instruments for chemicals' identification. Measures for cross-contamination control during MPs analysis were strictly applied only in 13% of the studies, indicating a need for quality control in MPs-related research. The most frequently detected MP-sorbed chemicals were polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), and organochlorine pesticides (OCPs). Most of the studies showed a good reliability (>75% of the total score), with 32 papers scoring 16 or higher. On the basis of the collected information, a standardizable protocol for the detection of MPs and MP-sorbed chemicals has been suggested for improving the reliability of MPs monitoring studies.
Collapse
|
12
|
Motohira K, Yohannes YB, Ikenaka Y, Eguchi A, Nakayama SM, Wepener V, Smit NJ, VAN Vuren JH, Ishizuka M. Investigation of dichlorodiphenyltrichloroethane (DDT) on xenobiotic enzyme disruption and metabolomic bile acid biosynthesis in DDT-sprayed areas using wild rats. J Vet Med Sci 2023; 85:236-243. [PMID: 36596564 PMCID: PMC10017292 DOI: 10.1292/jvms.22-0490] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Dichlorodiphenyltrichloroethane (DDT) is an organochlorine insecticide used worldwide. Several studies have reported the toxic effects of DDT and its metabolites on steroid hormone biosynthesis; however, its environmental effects are not well understood. This study examined wild rats collected in DDT-sprayed areas of South Africa and quantified plasma metabolites using liquid chromatography quadrupole time-of-flight mass spectrometry (LC-Q-TOF-MS). Fold change analysis of the metabolome revealed the effect of DDT on bile acid biosynthesis. Gene expression of the related enzyme in rat liver samples was also quantified. Significant association was found between DDT and gene expression levels related to constitutive androstane receptor mediated enzymes, such as Cyp2b1 in rat livers. However, our results could not fully demonstrate that enzymes related to bile acid biosynthesis were strongly affected by DDT. The correlation between DDT concentration and gene expression involved in steroid hormone synthesis in testis was also evaluated; however, no significant correlation was found. The disturbance of metabolic enzymes occurred in rat liver in the target area. Our results suggest that DDT exposure affects gene expression in wild rats living in DDT-sprayed areas. Therefore, there is a need for DDT toxicity evaluation in mammals living in DDT-sprayed areas. We could not find an effective biomarker that could reflect the mechanism of DDT exposure; however, this approach can provide new insights for future research to evaluate DDT effects in sprayed areas.
Collapse
Affiliation(s)
- Kodai Motohira
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Laboratory of Toxicology, Hokkaido University, Hokkaido, Japan
| | - Yared Beyene Yohannes
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Laboratory of Toxicology, Hokkaido University, Hokkaido, Japan.,Department of Chemistry, College of Natural and Computational Science, University of Gondar, Gondar, Ethiopia
| | - Yoshinori Ikenaka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Laboratory of Toxicology, Hokkaido University, Hokkaido, Japan.,Water Research Group, Unit for Environmental Sciences and Management, Potchefstroom Campus, North-West University, Potchefstroom, South Africa.,Translational Research Unit, Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan.,One Health Research Center, Hokkaido University, Hokkaido, Japan
| | - Akifumi Eguchi
- Center for Preventive Medical Sciences, Chiba University, Chiba, Japan
| | - Shouta Mm Nakayama
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Laboratory of Toxicology, Hokkaido University, Hokkaido, Japan.,Biomedical Sciences Department, School of Veterinary Medicine, The University of Zambia, Lusaka, Zambia
| | - Victor Wepener
- Water Research Group, Unit for Environmental Sciences and Management, Potchefstroom Campus, North-West University, Potchefstroom, South Africa
| | - Nico J Smit
- Water Research Group, Unit for Environmental Sciences and Management, Potchefstroom Campus, North-West University, Potchefstroom, South Africa
| | - Johan Hj VAN Vuren
- Water Research Group, Unit for Environmental Sciences and Management, Potchefstroom Campus, North-West University, Potchefstroom, South Africa
| | - Mayumi Ishizuka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Laboratory of Toxicology, Hokkaido University, Hokkaido, Japan
| |
Collapse
|
13
|
Antonangeli LM, Kenzhebekova S, Colosio C. Neurobehavioral Effects of Low-Dose Chronic Exposure to Insecticides: A Review. TOXICS 2023; 11:192. [PMID: 36851066 PMCID: PMC9963921 DOI: 10.3390/toxics11020192] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
The modes of action of insecticides frequently involve a neurotoxic effect; therefore, the study of neurotoxic effects caused by long-term and low-dose insecticide exposure is of particular interest. This study looks at whether or not new studies conducted after 2009 and up to 2021 have provided new evidence for a better understanding of the actual neurobehavioral risk associated with long-term insecticide exposure. We selected and reviewed studies carried out on the neurobehavioral effects of neurotoxic insecticides (organophosphates and/or carbamates, pyrethroids, multiple or undefined insecticides, and organochlorines) considering occupational and non-occupational exposures. The articles were also scored and ranked based on seven parameters. Eighty-six studies were chosen for a final review process from among the 950 scientific papers identified. Twenty-six addressed occupational exposure and six environmental exposure. Among the latter group of studies, 17 focused on rural residents, to be assumed exposed because of living in rural areas, and 43 on the general population. Pending doubts have not been resolved in the last ten years due to the presence of contradictory and hardly comparable results and the fact that in most of the studies showing an evident neurobehavioral impairment the frequent presence of a previous episode of poisoning and hospitalization, with severe brain hypoxia, impaired the possibility of confirming the presence of a causal association with insecticide exposure. Interestingly, the most severely exposed groups, such as applicators who did not wear personal protective equipment, performed worse on neurobehavioral tests. As for residential exposure, there is sufficient evidence to suggest that prenatal OP exposure may increase the risk of ADHD in children.
Collapse
Affiliation(s)
| | - Saniya Kenzhebekova
- Department of Health Sciences, University of Milan, International Centre for Rural Health of the Santi Paolo e Carlo ASST of Milan, 20142 Milano, Italy
| | - Claudio Colosio
- Department of Health Sciences, University of Milan, International Centre for Rural Health of the Santi Paolo e Carlo ASST of Milan, 20142 Milano, Italy
| |
Collapse
|
14
|
DeLay K, Lin EZ, Koelmel JP, Bornman R, Obida M, Chevrier J, Godri Pollitt KJ. Personal air pollutant exposure monitoring in South African children in the VHEMBE birth cohort. ENVIRONMENT INTERNATIONAL 2022; 170:107524. [PMID: 36260950 PMCID: PMC9982749 DOI: 10.1016/j.envint.2022.107524] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 09/02/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
The burden of disease associated with environmental exposures disproportionately impacts residents of low- and middle-income countries. Children living in rural regions of these countries may experience higher exposure to insecticides from indoor residual spraying used for malaria control and household air pollution. This study evaluated environmental exposures of children living in a rural region of South Africa. Quantifying exposure levels and identifying characteristics that are associated with exposure in this geographic region has been challenging due to limitations with available monitoring techniques. Wearable passive samplers have recently been shown to be a convenient and reliable tool for assessing personal exposures. In this study, a passive sampler wristband, known as Fresh Air wristband, was worn by 49 children (five-years of age) residing in the Limpopo province of South Africa. The study leveraged ongoing research within the Venda Health Examination of Mothers, Babies, and their Environment (VHEMBE) birth cohort. A wide range of chemicals (35 in total) were detected using the wristbands, including polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides, phthalates, and organophosphate esters (OPEs) flame retardants. Higher concentrations of PAHs were observed among children from households that fell below the food poverty threshold, did not have access to electric cookstoves/burners, or reported longer times of cooking or burning materials during the sampling period. Concentrations of p,p'-DDD and p,p'-DDT were also found to be elevated for children from households falling below the food poverty threshold as well as for children whose households were sprayed for malaria control within the previous 1.5 years. This study demonstrates the feasibility of using passive sampler wristbands as a non-invasive method for personal exposure assessment of children in rural regions of South Africa to complex mixtures environmental contaminants derived from a combination of sources. Future studies are needed to further identify and understand the effects of airborne environmental contaminants on childhood development and strategies to mitigate exposures.
Collapse
Affiliation(s)
- Kayley DeLay
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT 06520, USA; Department of Chemical and Environmental Engineering, Yale School of Engineering and Applied Sciences, New Haven, CT 06520, USA
| | - Elizabeth Z Lin
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT 06520, USA
| | - Jeremy P Koelmel
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT 06520, USA
| | - Riana Bornman
- University of Pretoria Institute for Sustainable Malaria Control and School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | - Muvhulawa Obida
- University of Pretoria Institute for Sustainable Malaria Control and School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | - Jonathan Chevrier
- Department of Epidemiology, Biostatistics and Occupational Health, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC, Canada.
| | - Krystal J Godri Pollitt
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT 06520, USA; Department of Chemical and Environmental Engineering, Yale School of Engineering and Applied Sciences, New Haven, CT 06520, USA.
| |
Collapse
|
15
|
Bornman R, Acerini CL, Chevrier J, Rauch S, Crause M, Obida M, Eskenazi B. Maternal exposure to DDT, DDE, and pyrethroid insecticides for malaria vector control and hypospadias in the VHEMBE birth cohort study, Limpopo, South Africa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157084. [PMID: 35798100 PMCID: PMC10565726 DOI: 10.1016/j.scitotenv.2022.157084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Hypospadias is the ectopic opening of the urethra on the penis or scrotum. Exposure to estrogenic and/or anti-androgenic chemicals in utero may play an etiologic role. DDT and the pyrethroids cypermethrin and deltamethrin, are used to control malaria. DDT is estrogenic and its breakdown product DDE is anti-androgenic; cypermethrin and deltamethrin can also disrupt androgen pathways. We examined the relationship between maternal exposure to these insecticides during pregnancy and hypospadias among boys participating in the Venda Health Examination of Mothers, Babies and their Environment (VHEMBE) in Limpopo Province, South Africa. We measured peripartum levels of p,p'-DDT and p,p'-DDE in maternal serum and urinary pyrethroid metabolites. We conducted urogenital examination on 359 one-year-old boys. A total of 291 (81.0 %) had phimosis, which prevented full urogenital examination, leaving a final sample of 68 boys for determination of the presence of hypospadias. Diagnosis was based on concordance of two independent physicians. We identified hypospadias in 23 of the 68 boys (34 %). Maternal urinary concentrations of cis-DCCA and trans-DCCA metabolites of cypermethrin and other pyrethroids, were associated with an increased risk for hypospadias, but the other metabolite 3-PBA was not (adjusted relative risk per 10-fold increase = 1.58, 95 % CI 1.07-2.34; 1.61, 95 % CI 1.09-2.36; and 1.48, 95 % CI 0.78-2.78, respectively). No associations were found between p,p'-DDT, p,p'-DDE, 3-PBA or cis-DBCA and hypospadias. We observed a high prevalence of hypospadias among boys without phymosis. Boys with higher prenatal exposure to pyrethroid insecticides were at higher risk of hypospadias. Our findings may have global implications given that pyrethroid insecticides are widely used for malaria control, in agriculture and for home use.
Collapse
Affiliation(s)
- Riana Bornman
- School of Health Systems and Public Health and the University of Pretoria Institute for Sustainable Malaria Control (UP ISMC), University of Pretoria, Pretoria, South Africa.
| | - Carlo L Acerini
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Jonathan Chevrier
- Department of Epidemiology, Biostatistics and Occupational Health, Faculty of Medicine, McGill University, Montreal, Canada
| | - Stephen Rauch
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California, Berkeley, USA
| | - Madelein Crause
- School of Health Systems and Public Health and the University of Pretoria Institute for Sustainable Malaria Control (UP ISMC), University of Pretoria, Pretoria, South Africa
| | - Muvhulawa Obida
- School of Health Systems and Public Health and the University of Pretoria Institute for Sustainable Malaria Control (UP ISMC), University of Pretoria, Pretoria, South Africa
| | - Brenda Eskenazi
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California, Berkeley, USA
| |
Collapse
|
16
|
An S, Rauch SA, Maphula A, Obida M, Kogut K, Bornman R, Chevrier J, Eskenazi B. In-utero exposure to DDT and pyrethroids and child behavioral and emotional problems at 2 years of age in the VHEMBE cohort, South Africa. CHEMOSPHERE 2022; 306:135569. [PMID: 35798156 PMCID: PMC9520228 DOI: 10.1016/j.chemosphere.2022.135569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Half the world's population is at risk for malaria. Indoor residual spraying (IRS) with insecticides has been effective in controlling malaria, yet the potential neurotoxicity of these insecticides is of concern, particularly for infants exposed in utero. OBJECTIVES To determine the association of prenatal exposure to DDT/DDE and pyrethroid insecticides and behavioral/emotional problems in two-year-old children. METHODS The Venda Health Examination of Mothers, Babies and their Environment (VHEMBE) birth cohort in South Africa, measured concentrations of p,p'-DDT and p,p'-DDE in maternal serum and pyrethroid metabolites (cis-DBCA, cis-DCCA, trans-DCCA, and 3-PBA) in maternal urine collected during pregnancy. At 2 years, 683 mothers were interviewed about their children's behavior and emotional development, using the Child Behavior Checklist (CBCL). We examined associations between behavioral or emotional problems and biomarkers of prenatal insecticide exposure. RESULTS Maternal serum p,p'-DDT concentrations were associated with heightened withdrawn behavior in 2-year olds, with a 0.24 increase in raw scores (95%CI = 0.00, 0.49) and a 12% increase (95%CI = 1.01, 1.23) in risk of being at or above the borderline-clinical level, per 10-fold increase in concentrations. Ten-fold increases in p,p'-DDT and p,p'-DDE were related to 30% (RR = 1.30; 95%CI = 1.01, 1.67) and 39% (RR = 1.39; 95%CI =1.01, 1.91) higher risks, respectively, for increased oppositional-defiant behavior. p,p'-DDE concentrations were also related to increased risk of ADHD-related problems (RR = 1.30; 95%CI = 0.98, 1.72). Maternal urinary concentrations of cis-DBCA and 3-PBA were associated with increased risk of externalizing behaviors (RR = 1.30; 95%CI = 1.05, 1.62; RR = 1.35, 95%CI = 1.03, 1.78 per 10-fold increase, respectively), with some evidence of an association between cis-DBCA and affective disorders (RR = 1.25; 95%CI = 0.99, 1.56). Some associations with maternal pyrethroid concentrations were stronger in girls than boys. CONCLUSIONS Prenatal exposure to DDT and pyrethroid insecticides may be associated with maternally-reported behavioral problems in two-year-old children. Given their long history and continued use, further investigation is warranted.
Collapse
Affiliation(s)
- Sookee An
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California at Berkeley, Berkeley, CA, USA
| | - Stephen A Rauch
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California at Berkeley, Berkeley, CA, USA
| | - Angelina Maphula
- University of Pretoria Institute for Sustainable Malaria Control and School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa; Department of Psychology, University of Venda, Limpopo, South Africa
| | - Muvhulawa Obida
- University of Pretoria Institute for Sustainable Malaria Control and School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | - Katherine Kogut
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California at Berkeley, Berkeley, CA, USA
| | - Riana Bornman
- University of Pretoria Institute for Sustainable Malaria Control and School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | - Jonathan Chevrier
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, QC, Canada
| | - Brenda Eskenazi
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California at Berkeley, Berkeley, CA, USA.
| |
Collapse
|
17
|
Shrestha S, Parks CG, Umbach DM, Hofmann JN, Beane Freeman LE, Blair A, Sandler DP. Use of permethrin and other pyrethroids and mortality in the Agricultural Health Study. Occup Environ Med 2022; 79:664-672. [PMID: 35688626 PMCID: PMC10368161 DOI: 10.1136/oemed-2021-108156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/26/2022] [Indexed: 11/03/2022]
Abstract
OBJECTIVES Pyrethroid insecticides have been linked with multiple health outcomes. One study reported an association with increased all-cause and cardiovascular mortality. Given the widespread use of pyrethroids, these findings warrant confirmation. We explored associations of permethrin/pyrethroid use with overall and cause-specific mortality among 50 665 licensed pesticide applicators in the Agricultural Health Study. METHODS At enrolment (1993-1997), participants self-reported information on permethrin/pyrethroid use. Information on causes of death came from linkage with death registries through 2016. We used Cox proportional hazards models to estimate HRs and 95% CIs with adjustment for potential confounders. RESULTS Over an average 21 years of follow-up, 19.6% (9,955) of the cohort died. We found no clear evidence that ever-use of permethrin/pyrethroid was associated with elevated overall mortality or with mortality from most causes examined. There was suggestive evidence, based on a small number of deaths among those exposed, for elevated pyrethroid-associated mortality from some neurological, respiratory and genitourinary diseases in the overall sample and from lung cancer among never-smokers. CONCLUSION Although based on mortality, which is also affected by survival, rather than incidence, these findings are biologically plausible, and future investigations in other populations may be warranted.
Collapse
Affiliation(s)
- Srishti Shrestha
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Christine G Parks
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - David M Umbach
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Jonathan N Hofmann
- Occupational and Environmental Epidemiology Branch, National Cancer Institute, Rockville, Maryland, USA
| | - Laura E Beane Freeman
- Occupational and Environmental Epidemiology Branch, National Cancer Institute, Rockville, Maryland, USA
| | - Aaron Blair
- Formerly of Occupational and Environmental Epidemiology Branch, National Cancer Institute, Rockville, Maryland, USA
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| |
Collapse
|
18
|
Elser BA, Hing B, Stevens HE. A narrative review of converging evidence addressing developmental toxicity of pyrethroid insecticides. Crit Rev Toxicol 2022; 52:371-388. [PMID: 36345971 PMCID: PMC9930199 DOI: 10.1080/10408444.2022.2122769] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/11/2022]
Abstract
Pyrethroid insecticides are broadly used in agriculture and household products throughout the world. Exposure to this class of insecticides is widespread, and while generally believed to be safe for use, there is increasing concern regarding their effects on neurodevelopment. Due to the critical roles that molecular targets of pyrethroids play in the regulation of neurodevelopment, particular focus has been placed on evaluating the effects of in utero and childhood pyrethroid exposure on child cognition and behavior. As such, this narrative review synthesizes an assessment of converging study types; we review reports of neonatal pyrethroid levels together with current epidemiological literature that convergently address the risk for developmental toxicity linked to exposure to pyrethroid insecticides. We first address studies that assess the degree of direct fetal exposure to pyrethroids in utero through measurements in cord blood, meconium, and amniotic fluid. We then focus on the links between prenatal exposure to these insecticides and child neurodevelopment, fetal growth, and other adverse birth outcomes. Furthermore, we assess the effects of postnatal exposure on child neurodevelopment through a review of the data on pediatric exposures and child cognitive and behavioral outcomes. Study quality was evaluated individually, and the weight of evidence was assessed broadly to characterize these effects. Overall, while definitive conclusions cannot be reached from the currently available literature, the available data suggest that the potential links between pyrethroid exposure and child neurodevelopmental effects deserve further investigation.
Collapse
Affiliation(s)
- Benjamin A Elser
- Interdisciplinary Graduate Program in Human Toxicology, Graduate College, The University of Iowa, Iowa City, IA, USA
- Department of Psychiatry, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Benjamin Hing
- Department of Psychiatry, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Hanna E Stevens
- Interdisciplinary Graduate Program in Human Toxicology, Graduate College, The University of Iowa, Iowa City, IA, USA
- Department of Psychiatry, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| |
Collapse
|
19
|
Lee KS, Lim YH, Lee YA, Shin CH, Kim BN, Hong YC, Kim JI. The association of prenatal and childhood pyrethroid pesticide exposure with school-age ADHD traits. ENVIRONMENT INTERNATIONAL 2022; 161:107124. [PMID: 35134717 DOI: 10.1016/j.envint.2022.107124] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Pyrethroid insecticides are commonly used in residential settings, and their use has increased rapidly. Although research has been scarce, they have been reported to be associated with impaired neurodevelopment. Moreover, susceptible exposure windows and the long-term effects of pyrethroids have not been investigated. We examined the association between pyrethroid exposure and attention-deficit/hyperactivity disorder (ADHD) symptoms over time, with exposure windows spanning from the prenatal period to school-age. METHODS Using 524 mother-child pairs, we measured urinary concentrations of 3-phenoxybenzoic acid (3-PBA), a major pyrethroid metabolite, and asked parents to fill-out the ADHD Rating Scale IV (ARS). We used Poisson regression to identify the susceptible periods of pyrethroid exposure, by correlating various 3-PBA exposure windows (prenatal, ages 2, 4, 6 and 8) with ADHD symptoms at ages 6 and 8. RESULTS Doubling of prenatal and age 2 3-PBA concentrations was associated with increased ADHD symptoms at age 6 (2.7% change, 95% confidence interval [CI]: 0.3, 5.2; 5.2% change [95% CI: 0.5, 10.2], respectively). The 3-PBA concentrations at age 4 and age 6 were linked with ADHD symptoms at age 8 (2.7% change [95% CI: 0.3, 5.3]; 3.3% change [95% CI: 0.2, 6.4], respectively). There were no clear sex-specific patterns in association. DISCUSSION Both prenatal and early-childhood exposure to 3-PBA were found to be associated with ADHD symptoms. Exposure during pregnancy, and at ages 2 to 6 were found to be susceptible periods for pyrethroid neurotoxicity at ages 6 and 8.
Collapse
Affiliation(s)
- Kyung-Shin Lee
- Research Institue for Public Health, National Medical Center, Seoul, Republic of Korea.
| | - Youn-Hee Lim
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea; Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark.
| | - Young Ah Lee
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea.
| | - Choong Ho Shin
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea.
| | - Bung-Nyun Kim
- Division of Children and Adolescent Psychiatry, Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea.
| | - Yun-Chul Hong
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea; Environmental Health Center, Seoul National University College of Medicine, Seoul, Korea; Institute of Environmental Medicine, Seoul National University Medical Research Center, Seoul, South Korea.
| | - Johanna Inhyang Kim
- Department of Psychiatry, Hanyang University Medical Center, Seoul, Republic of Korea.
| |
Collapse
|
20
|
Koelmel JP, Lin EZ, DeLay K, Williams AJ, Zhou Y, Bornman R, Obida M, Chevrier J, Godri Pollitt KJ. Assessing the External Exposome Using Wearable Passive Samplers and High-Resolution Mass Spectrometry among South African Children Participating in the VHEMBE Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2191-2203. [PMID: 35089017 DOI: 10.1021/acs.est.1c06481] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Children in low- and middle-income countries are often exposed to higher levels of chemicals and are more vulnerable to the health effects of air pollution. Little is known about the diversity, toxicity, and dynamics of airborne chemical exposures at the molecular level. We developed a workflow employing state-of-the-art wearable passive sampling technology coupled with high-resolution mass spectrometry to comprehensively measure 147 children's personal exposures to airborne chemicals in Limpopo, South Africa, as part of the Venda Health Examination of Mothers, Babies, and Their Environment (VHEMBE). 637 environmental exposures were detected, many of which have never been measured in this population; of these 50 airborne chemical exposures of concern were detected, including pesticides, plasticizers, organophosphates, dyes, combustion products, and perfumes. Biocides detected in wristbands included p,p'-dichlorodiphenyltrichloroethane (p,p'-DDT), p,p'-dichlorodiphenyldichloroethane (p,p'-DDD), p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE), propoxur, piperonyl butoxide, and triclosan. Exposures differed across the assessment period with 27% of detected chemicals observed to be either higher or lower in the wet or dry seasons.
Collapse
Affiliation(s)
- Jeremy P Koelmel
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut 06520, United States
| | - Elizabeth Z Lin
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut 06520, United States
| | - Kayley DeLay
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut 06520, United States
| | - Antony J Williams
- Center for Computational Toxicology and Exposure, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Yakun Zhou
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut 06520, United States
| | - Riana Bornman
- University of Pretoria Institute for Sustainable Malaria Control and School of Health Systems and Public Health, University of Pretoria, Pretoria 0028, South Africa
| | - Muvhulawa Obida
- University of Pretoria Institute for Sustainable Malaria Control and School of Health Systems and Public Health, University of Pretoria, Pretoria 0028, South Africa
| | - Jonathan Chevrier
- Department of Epidemiology, Biostatistics and Occupational Health, Faculty of Medicine, McGill University, Montréal, Québec H3A 1A2, Canada
| | - Krystal J Godri Pollitt
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut 06520, United States
| |
Collapse
|
21
|
Wallenborn JT, Gunier RB, Pappas DJ, Chevrier J, Eskenazi B. Breastmilk, Stool, and Meconium: Bacterial Communities in South Africa. MICROBIAL ECOLOGY 2022; 83:246-251. [PMID: 33885917 PMCID: PMC8531170 DOI: 10.1007/s00248-021-01758-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 04/18/2021] [Indexed: 06/12/2023]
Abstract
Human milk optimizes gut microbial richness and diversity, and is critical for proper immune development. Research has shown differing microbial composition based on geographic location, providing evidence that diverse biospecimen data is needed when studying human bacterial communities. Yet, limited research describes human milk and infant gut microbial communities in Africa. Our study uses breastmilk, stool, and meconium samples from a South African birth cohort to describe the microbial diversity, identify distinct taxonomic units, and determine correlations between bacterial abundance in breastmilk and stool samples. Mother-infant dyads (N = 20) were identified from a longitudinal birth cohort in the Vhembe district of Limpopo Province, South Africa. Breastmilk, meconium, and stool samples were analyzed using 16S ribosomal RNA sequencing of the V4-V5 gene region using the MiSeq platform for identification and relative quantification of bacterial taxa. A non-metric multidimensional scaling using Bray-Curtis distances of sample Z-scores showed that meconium, stool, and breastmilk microbial communities are distinct with varying genus. Breastmilk was mostly comprised of Streptococcus, Staphylococcus, Veillonella, and Corynebacterium. Stool samples showed the highest levels of Bifidobacterium, Faecalibacterium, Bacteroides, and Streptococcus. Alpha diversity measures found that stool samples have the highest Shannon index score compared to breastmilk and meconium. The abundance of Bifidobacterium (r = 0.57), Blautia (r = 0.59), and Haemophilus (r = 0.69) was correlated (p < 0.1) between breastmilk and stool samples. Despite the importance of breastmilk in seeding the infant gut microbiome, we found evidence of distinct bacterial communities between breastmilk and stool samples from South African mother-infant dyads.
Collapse
Affiliation(s)
- Jordyn T Wallenborn
- Maternal and Child Health Program, School of Public Health, University of California Berkeley, 1995 University Ave, Suite 265, Berkeley, CA, 94704, USA.
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, University of Basel, Basel, Switzerland.
| | - Robert B Gunier
- Center for Environmental Research and Children's Health, University of California Berkeley, Berkeley, CA, USA
| | - Derek J Pappas
- California Institute for Quantitative Biosciences, Genomics Sequencing Laboratory, University of California Berkeley, Berkeley, CA, USA
| | - Jonathan Chevrier
- Department of Epidemiology, Biostatistics and Occupational Health, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Brenda Eskenazi
- Center for Environmental Research and Children's Health, University of California Berkeley, Berkeley, CA, USA
| |
Collapse
|
22
|
Zhan F, Wang YC, Liu QM, Guo MJ, Zhu HM, Zhang C, Xu DX, Meng XH. Paternal fenvalerate exposure transgenerationally impairs cognition and hippocampus in female offspring. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 223:112565. [PMID: 34358930 DOI: 10.1016/j.ecoenv.2021.112565] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/08/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
The impairments of maternal fenvalerate exposure have been well documented in previous study, but little was known about the effects of paternal fenvalerate exposure. The current study aimed to assess the effects of paternal fenvalerate exposure on spatial cognition and hippocampus across generations. Adult male mice (F0) were orally administered with fenvalerate (0, 2 or 20 mg/kg) for 5 weeks. F0 males were mated with untreated-females to generate F1 generation. F1 males were mated with F1 control females to generate F2 generation. For F1 and F2 adult offspring, spatial learning and memory were detected by Morris water maze. Results showed that spatial learning and memory were impaired in F1 females but not F1 males derived from F0 males exposed to 20 mg/kg FEN. Furthermore, significant impairment of spatial learning and memory were found in F2 females but not F2 males derived from F0 males exposed to 20 mg/kg FEN. As expected, histopathology showed that neural density in hippocampal CA3 region was reduced in F1 and F2 females but not F1 and F2 males derived from F0 males exposed to 20 mg/kg FEN. Mechanistically, hippocampal thyroid hormone receptor alpha1 (TRα1) was down-regulated in F1 and F2 females derived from F0 males exposed to 20 mg/kg FEN. Correspondingly, hippocampal brain-derived neurotrophic factor, tropomyosin receptor kinase B and p75 neurotrophin receptor, three downstream genes of TR signaling, were down-regulated in F1 and F2 females. Taken together, the present study firstly found that paternal fenvalerate exposure transgenerationally impaired spatial cognition in a gender-dependent manner. Hippocampal TR signaling may, at least partially, contribute to the process of cognitive impairment induced by paternal fenvalerate exposure. Further exploration in the mode of action of fenvalerate is critically important to promote human health and environmental safety.
Collapse
Affiliation(s)
- Feng Zhan
- School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, Anhui, China; NHC Key Laboratory of study on abnormal gametes and reproductive tract, No 81 Meishan Road, Hefei, Anhui, China
| | - Ye-Cheng Wang
- School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, Anhui, China; NHC Key Laboratory of study on abnormal gametes and reproductive tract, No 81 Meishan Road, Hefei, Anhui, China
| | - Quan-Mei Liu
- School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, Anhui, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, China
| | - Meng-Juan Guo
- School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, Anhui, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, China
| | - Hui-Min Zhu
- School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, Anhui, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, China
| | - Chi Zhang
- School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, Anhui, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, China
| | - De-Xiang Xu
- School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, Anhui, China; NHC Key Laboratory of study on abnormal gametes and reproductive tract, No 81 Meishan Road, Hefei, Anhui, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, China.
| | - Xiu-Hong Meng
- School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, Anhui, China; NHC Key Laboratory of study on abnormal gametes and reproductive tract, No 81 Meishan Road, Hefei, Anhui, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, China.
| |
Collapse
|
23
|
Hu J, Yang Y, Lv X, Lao Z, Yu L. Dichlorodiphenyltrichloroethane metabolites inhibit DNMT1 activity which confers methylation-specific modulation of the sex determination pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 279:116828. [PMID: 33765505 DOI: 10.1016/j.envpol.2021.116828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/11/2021] [Accepted: 02/21/2021] [Indexed: 06/12/2023]
Abstract
Dichlorodiphenyltrichloroethane (DDT) poses a significant health risk to humans which is associated with genomic DNA hypomethylation. However, the mechanism and biological consequences remain poorly understood. In vitro assays confirmed that the DDT metabolites 2,2-bis(p-chlorophenyl)-acetic acid (DDA) and 1-chloro-2,2-bis-(p-chlorophenyl)ethylene (DDMU), but not other DDT metabolites, significantly inhibited DNA methyltransferase 1 (DNMT1) activity, leading to genomic hypomethylation in cell culture assays. DNMT1 as a target for DNA hypomethylation induced by DDT metabolites was also confirmed using cell cultures in which DNMT1 was silenced or highly expressed. DDA and DDMU can modify methylation markers in the promoter regions of sexual development-related genes, and change the expression of Sox9 and Oct4 in embryonic stem cells. Molecular docking indicated that DDA and DDMU bound to DNMT1 with high binding affinity. Molecular dynamic simulation revealed that DDA and DDMU acted as allosteric modulators that reshaped the conformation of the catalytic domain of DNMT1. These findings provide a new insight into DDT-induced abnormalities in sexual development and demonstrate that selective binding to DNMT1 by DDA and DDMU can interfere with human DNMT1 activity and regulate the expression of the Sox9 and Oct4 genes.
Collapse
Affiliation(s)
- Junjie Hu
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, Guangdong, PR China
| | - Yan Yang
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Synergy Innovation Institute of GDUT, Shantou, 515041, China
| | - Xiaomei Lv
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, Guangdong, PR China
| | - Zhilang Lao
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, Guangdong, PR China
| | - Lili Yu
- Translational Medicine Collaborative Innovation Center, The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, 1017 Dongmen North Road, Luohu District, Shenzhen, 518020, Guangdong, China.
| |
Collapse
|
24
|
Biosca-Brull J, Pérez-Fernández C, Mora S, Carrillo B, Pinos H, Conejo NM, Collado P, Arias JL, Martín-Sánchez F, Sánchez-Santed F, Colomina MT. Relationship between Autism Spectrum Disorder and Pesticides: A Systematic Review of Human and Preclinical Models. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18105190. [PMID: 34068255 PMCID: PMC8153127 DOI: 10.3390/ijerph18105190] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 05/11/2021] [Indexed: 12/09/2022]
Abstract
Autism spectrum disorder (ASD) is a complex set of neurodevelopmental pathologies characterized by impoverished social and communicative abilities and stereotyped behaviors. Although its genetic basis is unquestionable, the involvement of environmental factors such as exposure to pesticides has also been proposed. Despite the systematic analyses of this relationship in humans, there are no specific reviews including both human and preclinical models. The present systematic review summarizes, analyzes, and discusses recent advances in preclinical and epidemiological studies. We included 45 human and 16 preclinical studies. These studies focused on Organophosphates (OP), Organochlorine (OC), Pyrethroid (PT), Neonicotinoid (NN), Carbamate (CM), and mixed exposures. Preclinical studies, where the OP Chlorpyrifos (CPF) compound is the one most studied, pointed to an association between gestational exposure and increased ASD-like behaviors, although the data are inconclusive with regard to other ages or pesticides. Studies in humans focused on prenatal exposure to OP and OC agents, and report cognitive and behavioral alterations related to ASD symptomatology. The results of both suggest that gestational exposure to certain OP agents could be linked to the clinical signs of ASD. Future experimental studies should focus on extending the analysis of ASD-like behaviors in preclinical models and include exposure patterns similar to those observed in human studies.
Collapse
Affiliation(s)
- Judit Biosca-Brull
- Department of Psychology, Research Center for Behavior Assessment (CRAMC), Universitat Rovira i Virgili, 43007 Tarragona, Spain;
- Research in Neurobehavior, Health (NEUROLAB), Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Cristian Pérez-Fernández
- Department of Psychology, Health Research Center (CEINSA), Almeria University, 04120 Almeria, Spain; (C.P.-F.); (S.M.)
| | - Santiago Mora
- Department of Psychology, Health Research Center (CEINSA), Almeria University, 04120 Almeria, Spain; (C.P.-F.); (S.M.)
| | - Beatriz Carrillo
- Department of Psychobiology, University Institute of Research-UNED-Institute of Health Carlos III (IMIENS), National Distance Education University (UNED), 28015 Madrid, Spain; (B.C.); (H.P.); (P.C.)
| | - Helena Pinos
- Department of Psychobiology, University Institute of Research-UNED-Institute of Health Carlos III (IMIENS), National Distance Education University (UNED), 28015 Madrid, Spain; (B.C.); (H.P.); (P.C.)
| | - Nelida Maria Conejo
- Laboratory of Neuroscience, Department of Psychology, Instituto de Neurociencias del Principado de Asturias (INEUROPA), University of Oviedo, 33011 Oviedo, Spain; (N.M.C.); (J.L.A.)
| | - Paloma Collado
- Department of Psychobiology, University Institute of Research-UNED-Institute of Health Carlos III (IMIENS), National Distance Education University (UNED), 28015 Madrid, Spain; (B.C.); (H.P.); (P.C.)
| | - Jorge L. Arias
- Laboratory of Neuroscience, Department of Psychology, Instituto de Neurociencias del Principado de Asturias (INEUROPA), University of Oviedo, 33011 Oviedo, Spain; (N.M.C.); (J.L.A.)
| | - Fernando Martín-Sánchez
- National Scholl of Public Health, Institute of Health Carlos III, University Institute of Research-UNED-Institute of Health Carlos III (IMIENS), 28029 Madrid, Spain;
| | - Fernando Sánchez-Santed
- Department of Psychology, Health Research Center (CEINSA), Almeria University, 04120 Almeria, Spain; (C.P.-F.); (S.M.)
- Correspondence: (F.S.-S.); (M.T.C.)
| | - Maria Teresa Colomina
- Department of Psychology, Research Center for Behavior Assessment (CRAMC), Universitat Rovira i Virgili, 43007 Tarragona, Spain;
- Research in Neurobehavior, Health (NEUROLAB), Universitat Rovira i Virgili, 43007 Tarragona, Spain
- Correspondence: (F.S.-S.); (M.T.C.)
| |
Collapse
|
25
|
Jiménez-Skrzypek G, Hernández-Sánchez C, Ortega-Zamora C, González-Sálamo J, González-Curbelo MÁ, Hernández-Borges J. Microplastic-adsorbed organic contaminants: Analytical methods and occurrence. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116186] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Use of Exposomic Methods Incorporating Sensors in Environmental Epidemiology. Curr Environ Health Rep 2021; 8:34-41. [PMID: 33569731 DOI: 10.1007/s40572-021-00306-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2021] [Indexed: 10/22/2022]
Abstract
PURPOSE OF REVIEW The exposome is a recently coined concept that comprises the totality of nongenetic factors that affect human health. It is recognized as a major conceptual advancement in environmental epidemiology, and there is increased demand for technologies that capture the spatial, temporal, and chemical variability of exposures across individuals (i.e., "exposomic sensors"). We review a selection of these tools, highlighting their strengths and limitations with regard to epidemiological research. RECENT FINDINGS Wearable passive samplers are emerging as promising exposomic sensors for individuals. In conjunction with targeted and untargeted assays, these sensors enable the measurement of complex multipollutant mixtures, which can include both known and previously unknown environmental contaminants. Because of their minimally burdensome and noninvasive nature, they are deployable among sensitive populations, such as seniors, pregnant women, and children. The integration of exposomic data captured by these sensors with other omic data (e.g., transcriptomic and metabolomic) presents exciting opportunities for investigating disease risk factors. For example, the linkage of exposomic sensor data with other omic data may indicate perturbation by multipollutant mixtures at multiple physiological levels, which would strengthen evidence of their effects and potentially indicate targets for interventions. However, there remain considerable theoretical and methodological challenges that must be overcome to realize the potential promise of omic integration. Through continued investment and improvement in exposomic sensor technologies, it may be possible to refine their application and reduce their outstanding limitations to advance the fields of exposure science and epidemiology.
Collapse
|
27
|
Frazzoli C. Toxicological Risk Analysis in Data-Poor Countries: A Narrative Approach to Feed an "Awareness Raising-Community Empowerment" Vortex. MEDICINA (KAUNAS, LITHUANIA) 2020; 56:E629. [PMID: 33233639 PMCID: PMC7699798 DOI: 10.3390/medicina56110629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/10/2020] [Accepted: 11/16/2020] [Indexed: 01/06/2023]
Abstract
Background and objectives: With globalization of culture and products, choices and behaviors associated with the unawareness of toxicological risk factors result in human and environmental toxic exposures along with health disparities. Toxic exposures are risk factors for malnutrition and diseases, impairing the chances of being healthy and having a healthy adulthood for current and next generation(s). Increasing research funds, infrastructures, analytical data and risk assessment is a reality well worth attention in sub-Saharan Africa. These countries are still unprotected nowadays and are particularly exposed and data-poor in respect to risk factors (e.g., neurotoxicants, immunotoxicants and endocrine disruptors). This paper presents how-based on scientific literature-low-resource countries may achieve more with less. As one of the world's most important emerging markets, Africa can, and should, assess the benefits and risks of modernity versus tradition and ask for safe and quality products at affordable prices while producing safe and nutritious foods. Materials and Methods: Exempla and experiences of risk analysis based on participant observation in field anthropological research, consumer safaris and reportages in the field of food safety, environmental health and consumer products are discussed in terms of "narrative prevention" and its power to highlight previously unrecognized/overlooked real-life risk scenarios. Knowledge return initiatives are discussed in light of their power to feed awareness raising, informed choice and empowerment of communities. Results: In some cases, data exist but remain too sparse, unknown or underused; in other cases, the information is totally neglected. When there is international scientific evidence, a diagnostic risk assessment is feasible. Despite significant resource constraints, properly science-driven targeted reportages in data-poor countries can bridge the gaps between international scientific knowledge and the implementation of relevant findings in an "awareness-empowerment vortex". When a clear message promoting healthy choices and behaviors is given, African communities are ready to respond. Conclusions: Poor skills are an avoidable consequence of low national income. Narrative prevention does not replace scientific research but stimulates scientific research and toxicological risk analysis during the ongoing risk transition in Africa. While African populations increasingly aspire to improve life expectancy in health, increasing exposure to such new health risk factors in sub-Saharan Africa needs top-down choices for diseases prevention, One Health, as well as public awareness and empowerment towards everyday habits and health protective choices.
Collapse
Affiliation(s)
- Chiara Frazzoli
- Department of Cardiovascular and Endocrine-Metabolic Diseases and Ageing, Istituto Superiore di Sanità, Via Giano della Bella 34, 00162 Rome, Italy
| |
Collapse
|
28
|
Steinholt M, Xu S, Ha SO, Phi DT, Odland ML, Odland JØ. Serum Concentrations of Selected Organochlorines in Pregnant Women and Associations with Pregnancy Outcomes. A Cross-Sectional Study from Two Rural Settings in Cambodia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E7652. [PMID: 33092193 PMCID: PMC7589876 DOI: 10.3390/ijerph17207652] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/16/2020] [Accepted: 10/17/2020] [Indexed: 01/05/2023]
Abstract
We conducted a cross-sectional study among 194 pregnant women from two low-income settings in Cambodia. The inclusion period lasted from October 2015 through December 2017. Maternal serum samples were analyzed for persistent organic pollutants (POPs). The aim was to study potential effects on birth outcomes. We found low levels of polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCP), except for heptachlors, β-hexachlorocyclohexane (HCH), heptachlor epoxide, and p,p'-DDE. There were few differences between the two study locations. However, the women from the poorest areas had significantly higher concentrations of p,p'-DDE (p < 0.001) and hexachlorobenzene (HCB) (p = 0.002). The maternal factors associated with exposure were parity, age, residential area, and educational level. Despite low maternal levels of polychlorinated biphenyls, we found significant negative associations between the PCB congeners 99 (95% CI: -2.51 to -0.07), 138 (95% CI: -1.28 to -0.32), and 153 (95% CI: -1.06 to -0.05) and gestational age. Further, there were significant negative associations between gestational age, birth length, and maternal levels of o,p'-DDE. Moreover, o,p'-DDD had positive associations with birth weight, and both p,p'-DDD and o,p'-DDE were positively associated with the baby's ponderal index. The poorest population had higher exposure and less favorable outcomes.
Collapse
Affiliation(s)
- Margit Steinholt
- Department of Public Health and Nursing, Norwegian University of Science and Technology, 7491 Trondheim, Norway; (S.X.); (J.Ø.O.)
- Helgelandssykehuset, 8801 Sandnessjoen, Norway
| | - Shanshan Xu
- Department of Public Health and Nursing, Norwegian University of Science and Technology, 7491 Trondheim, Norway; (S.X.); (J.Ø.O.)
| | - Sam Ol Ha
- Trauma Care Foundation, Battambang, Cambodia;
| | - Duong Trong Phi
- Department of Environment and School Health, Nha Trang Pasteur Institutte, Nha Trang, Khánh Hòa 650000, Vietnam;
| | - Maria Lisa Odland
- Institute of Applied Health Research, University of Birmingham, Birmingham B152TT, UK;
| | - Jon Øyvind Odland
- Department of Public Health and Nursing, Norwegian University of Science and Technology, 7491 Trondheim, Norway; (S.X.); (J.Ø.O.)
- Department of General Hygiene I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya str., 8-2, 119992 Moscow, Russia
| |
Collapse
|
29
|
French B, Outhwaite LA, Langley-Evans SC, Pitchford NJ. Nutrition, growth, and other factors associated with early cognitive and motor development in Sub-Saharan Africa: a scoping review. J Hum Nutr Diet 2020; 33:644-669. [PMID: 32734599 DOI: 10.1111/jhn.12795] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND Food insecurity, poverty and exposure to infectious disease are well-established drivers of malnutrition in children in Sub-Saharan Africa. Early development of cognitive and motor skills - the foundations for learning - may also be compromised by the same or additional factors that restrict physical growth. However, little is known about factors associated with early child development in this region, which limits the scope to intervene effectively. To address this knowledge gap, we compared studies that have examined factors associated with early cognitive and/or motor development within this population. METHODS Predetermined criteria were used to examine four publication databases (PsycInfo, Embase, Web of Science and Medline) and identify studies considering the determinants of cognitive and motor development in children aged 0-8 years in Sub-Saharan Africa. RESULTS In total, 51 quantitative studies met the inclusion criteria, reporting on 30% of countries across the region. Within these papers, factors associated with early child development were grouped into five themes: Nutrition, Growth and Anthropometry, Maternal Health, Malaria and HIV, and Household. Food security and dietary diversity were associated with positive developmental outcomes, whereas exposure to HIV, malaria, poor maternal mental health, poor sanitation, maternal alcohol abuse and stunting were indicators of poor cognitive and motor development. DISCUSSION In this synthesis of research findings obtained across Sub-Saharan Africa, factors that restrict physical growth are also shown to hinder the development of early cognitive and motor skills, although additional factors also influence early developmental outcomes. The study also reviews the methodological limitations of conducting research using Western methods in sub-Saharan Africa.
Collapse
Affiliation(s)
- B French
- Institute of Mental Health, University of Nottingham, Nottingham, UK
| | - L A Outhwaite
- Centre for Education Policy & Equalising Opportunities, Institute of Education, University College London, London, UK
- School of Psychology, University of Nottingham, Nottingham, UK
| | | | - N J Pitchford
- School of Psychology, University of Nottingham, Nottingham, UK
| |
Collapse
|
30
|
Schantz SL, Eskenazi B, Buckley JP, Braun JM, Sprowles JN, Bennett DH, Cordero J, Frazier JA, Lewis J, Hertz-Picciotto I, Lyall K, Nozadi SS, Sagiv S, Stroustrup A, Volk HE, Watkins DJ. A framework for assessing the impact of chemical exposures on neurodevelopment in ECHO: Opportunities and challenges. ENVIRONMENTAL RESEARCH 2020; 188:109709. [PMID: 32526495 PMCID: PMC7483364 DOI: 10.1016/j.envres.2020.109709] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/22/2020] [Accepted: 05/19/2020] [Indexed: 05/30/2023]
Abstract
The Environmental influences on Child Health Outcomes (ECHO) Program is a research initiative funded by the National Institutes of Health that capitalizes on existing cohort studies to investigate the impact of early life environmental factors on child health and development from infancy through adolescence. In the initial stage of the program, extant data from 70 existing cohort studies are being uploaded to a database that will be publicly available to researchers. This new database will represent an unprecedented opportunity for researchers to combine data across existing cohorts to address associations between prenatal chemical exposures and child neurodevelopment. Data elements collected by ECHO cohorts were determined via a series of surveys administered by the ECHO Data Analysis Center. The most common chemical classes quantified in multiple cohorts include organophosphate pesticides, polychlorinated biphenyls, polybrominated diphenyl ethers, environmental phenols (including bisphenol A), phthalates, and metals. For each of these chemicals, at least four ECHO cohorts also collected behavioral data during infancy/early childhood using the Child Behavior Checklist. For these chemicals and this neurodevelopmental assessment (as an example), existing data from multiple ECHO cohorts could be pooled to address research questions requiring larger sample sizes than previously available. In addition to summarizing the data that will be available, the article also describes some of the challenges inherent in combining existing data across cohorts, as well as the gaps that could be filled by the additional data collection in the ECHO Program going forward.
Collapse
Affiliation(s)
- Susan L Schantz
- Department of Comparative Biosciences, College of Veterinary Medicine, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Brenda Eskenazi
- Center for Environmental Research and Children's Health, School of Public Health, University of California Berkeley, Berkeley, CA, USA.
| | - Jessie P Buckley
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| | - Joseph M Braun
- Department of Epidemiology, Brown University, Providence, RI, USA.
| | - Jenna N Sprowles
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Deborah H Bennett
- Department of Public Health Sciences, University of California, Davis, CA, USA.
| | - Jose Cordero
- Department of Epidemiology and Biostatistics, College of Public Health, University of Georgia, Athens, GA, USA.
| | - Jean A Frazier
- Eunice Kennedy Shriver Center, Division of Child and Adolescent Psychiatry, University of Massachusetts Medical School, Worcester, MA, USA.
| | - Johnnye Lewis
- Community Environmental Health Program and Center for Native Environmental Health Equity Research, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
| | | | - Kristen Lyall
- A.J. Drexel Autism Institute, Drexel University, Philadelphia, PA, USA.
| | - Sara S Nozadi
- Community Environmental Health Program and Center for Native Environmental Health Equity Research, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
| | - Sharon Sagiv
- Center for Environmental Research and Children's Health, School of Public Health, University of California Berkeley, Berkeley, CA, USA.
| | - AnneMarie Stroustrup
- Division of Newborn Medicine, Department of Pediatrics, Department of Environmental Medicine and Public Health, and Department of Obstetrics, Gynecology and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Heather E Volk
- Departments of Mental Health and Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| | - Deborah J Watkins
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA.
| |
Collapse
|
31
|
Guo J, Wu C, Zhang J, Qi X, Lv S, Jiang S, Zhou T, Lu D, Feng C, Chang X, Zhang Y, Cao Y, Wang G, Zhou Z. Prenatal exposure to mixture of heavy metals, pesticides and phenols and IQ in children at 7 years of age: The SMBCS study. ENVIRONMENT INTERNATIONAL 2020; 139:105692. [PMID: 32251899 DOI: 10.1016/j.envint.2020.105692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVE Prenatal exposure to heavy metals, pesticides and phenols has been suggested to interfere with neurodevelopment, but the neurotoxicity of their mixtures is still unclear. We aimed to elucidate the associations of maternal urinary concentrations of selected chemical mixtures with intelligence quotient (IQ) in children. METHODS Maternal urinary concentrations of selected heavy metals, pesticide metabolites, and phenols were quantified in pregnant women who participated in the Sheyang Mini Birth Cohort Study (SMBCS) from June 2009 to January 2010. At age 7 years, child's IQ score was assessed using the Chinese version of Wechsler Intelligence Scale for Children (C-WISC) by trained pediatricians. Generalized linear regression models (GLM), Bayesian kernel machine regression (BKMR) models and elastic net regression (ENR) models were used to assess the associations of urinary concentrations individual chemicals and their mixtures with IQ scores of the 7-year-old children. RESULTS Of 326 mother-child pairs, single-chemical models indicated that prenatal urinary concentrations of lead (Pb) and bisphenol A (BPA) were significantly negatively associated with full intelligence quotient (FIQ) among children aged 7 years [β = -2.31, 95% confidence interval (CI): -4.13, -0.48; p = 0.013, sex interaction p-value = 0.076; β = -1.18, 95% CI: -2.21, -0.15; p = 0.025; sex interaction p-value = 0.296, for Pb and BPA, respectively]. Stratified analysis by sex indicated that the associations were only statistically significant in boys. In multi-chemical BKMR and ENR models, statistically significant inverse association was found between prenatal urinary Pb level and boy's FIQ scores at 7 years. Furthermore, BKMR analysis indicated that the overall mixture was associated with decreases in boy's IQ when all the chemicals' concentrations were at their 75th percentiles or higher, compared to at their 50th percentiles. ENR models revealed that maternal urinary Pb levels were statistically significantly associated with lower FIQ scores (β = -2.20, 95% CI: -4.20, -0.20; p = 0.031). CONCLUSIONS Prenatal exposure to selected chemical mixtures may affect intellectual performance at 7 years of age, particularly in boys. Pb and BPA were suspected as primary chemicals associated with child neurodevelopment.
Collapse
Affiliation(s)
- Jianqiu Guo
- School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education/Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No. 130 Dong'an Road, Shanghai 200032, China
| | - Chunhua Wu
- School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education/Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No. 130 Dong'an Road, Shanghai 200032, China.
| | - Jiming Zhang
- School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education/Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No. 130 Dong'an Road, Shanghai 200032, China
| | - Xiaojuan Qi
- Zhejiang Provincial Center for Disease Control and Prevention, No. 3399 Binsheng Road, Hangzhou 310051, China
| | - Shenliang Lv
- School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education/Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No. 130 Dong'an Road, Shanghai 200032, China
| | - Shuai Jiang
- School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education/Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No. 130 Dong'an Road, Shanghai 200032, China
| | - Tong Zhou
- School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education/Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No. 130 Dong'an Road, Shanghai 200032, China
| | - Dasheng Lu
- Shanghai Municipal Center for Disease Control and Prevention, No. 1380 Zhongshan West Road, Shanghai 200336, China
| | - Chao Feng
- Shanghai Municipal Center for Disease Control and Prevention, No. 1380 Zhongshan West Road, Shanghai 200336, China
| | - Xiuli Chang
- School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education/Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No. 130 Dong'an Road, Shanghai 200032, China
| | - Yubin Zhang
- School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education/Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No. 130 Dong'an Road, Shanghai 200032, China
| | - Yang Cao
- Clinical Epidemiology and Biostatistics, School of Medical Sciences, Örebro University, Örebro 70182, Sweden
| | - Guoquan Wang
- Shanghai Municipal Center for Disease Control and Prevention, No. 1380 Zhongshan West Road, Shanghai 200336, China
| | - Zhijun Zhou
- School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education/Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No. 130 Dong'an Road, Shanghai 200032, China.
| |
Collapse
|
32
|
Deguenon JM, Azondekon R, Agossa FR, Padonou GG, Anagonou R, Ahoga J, N’dombidje B, Akinro B, Stewart DA, Wang B, Gittins D, Tihomirov L, Apperson CS, McCord MG, Akogbeto MC, Roe RM. Imergard TMWP: A Non-Chemical Alternative for an Indoor Residual Spray, Effective against Pyrethroid-Resistant Anopheles gambiae (s.l.) in Africa. INSECTS 2020; 11:E322. [PMID: 32456154 PMCID: PMC7290382 DOI: 10.3390/insects11050322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/29/2020] [Accepted: 05/18/2020] [Indexed: 11/17/2022]
Abstract
Malaria is the deadliest mosquito-borne disease and kills predominantly people in sub-Saharan Africa (SSA). The now widespread mosquito resistance to pyrethroids, with rapidly growing resistance to other insecticide classes recommended by the World Health Organization (WHO), may overturn the successes gained in mosquito control in recent years. It is of utmost importance to search for new, inexpensive, and safe alternatives, with new modes of action, that might improve the efficacy of current insecticides. The efficacy of a novel mechanical insecticidal mineral derived from volcanic rock, ImergardTMWP, was investigated to determine its efficacy as a stand-alone residual wall spray and as a mixture with deltamethrin (K-Othrine® Polyzone) in experimental huts in Cove, Benin. The evaluation was conducted with susceptible (Kisumu) and wild-type Anopheles gambiae (s.l.). Deltamethrin applied alone demonstrated 40-45% mortality (at 72 h post-exposure) during the first four months, which declined to 25% at six months for wild An. gambiae from Cove. ImergardTMWP alone and mixed with deltamethrin, under the same assay conditions, produced 79-82% and 73-81% mortality, respectively, during the same six-month period. ImergardTMWP met the 80% WHO bio-efficacy threshold for residual activity for the first five months with 78% residual activity at six months. ImergardTMWP can be used as a mixture with chemical insecticides or as a stand-alone pesticide for mosquito control in Africa.
Collapse
Affiliation(s)
- Jean M. Deguenon
- Department of Entomology and Plant Pathology, Campus Box 7647, 3230 Ligon Street, North Carolina State University, Raleigh, NC 27695, USA; (J.M.D.); (C.S.A.)
| | - Roseric Azondekon
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou 06BP2604, Benin; (R.A.); (F.R.A.); (G.G.P.); (R.A.); (J.A.); (B.N.); (B.A.); (M.C.A.)
| | - Fiacre R. Agossa
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou 06BP2604, Benin; (R.A.); (F.R.A.); (G.G.P.); (R.A.); (J.A.); (B.N.); (B.A.); (M.C.A.)
| | - Gil G. Padonou
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou 06BP2604, Benin; (R.A.); (F.R.A.); (G.G.P.); (R.A.); (J.A.); (B.N.); (B.A.); (M.C.A.)
| | - Rodrigue Anagonou
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou 06BP2604, Benin; (R.A.); (F.R.A.); (G.G.P.); (R.A.); (J.A.); (B.N.); (B.A.); (M.C.A.)
| | - Juniace Ahoga
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou 06BP2604, Benin; (R.A.); (F.R.A.); (G.G.P.); (R.A.); (J.A.); (B.N.); (B.A.); (M.C.A.)
| | - Boris N’dombidje
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou 06BP2604, Benin; (R.A.); (F.R.A.); (G.G.P.); (R.A.); (J.A.); (B.N.); (B.A.); (M.C.A.)
| | - Bruno Akinro
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou 06BP2604, Benin; (R.A.); (F.R.A.); (G.G.P.); (R.A.); (J.A.); (B.N.); (B.A.); (M.C.A.)
| | - David A. Stewart
- Imerys Filtration Minerals, Inc., Roswell, GA 30076, USA; (D.A.S.); (B.W.); (D.G.); (L.T.)
| | - Bo Wang
- Imerys Filtration Minerals, Inc., Roswell, GA 30076, USA; (D.A.S.); (B.W.); (D.G.); (L.T.)
| | - David Gittins
- Imerys Filtration Minerals, Inc., Roswell, GA 30076, USA; (D.A.S.); (B.W.); (D.G.); (L.T.)
| | - Larissa Tihomirov
- Imerys Filtration Minerals, Inc., Roswell, GA 30076, USA; (D.A.S.); (B.W.); (D.G.); (L.T.)
| | - Charles S. Apperson
- Department of Entomology and Plant Pathology, Campus Box 7647, 3230 Ligon Street, North Carolina State University, Raleigh, NC 27695, USA; (J.M.D.); (C.S.A.)
| | - Marian G. McCord
- College of Natural Resources, Campus Box 8001, 2820 Faucette Drive, North Carolina State University, Raleigh, NC 27695, USA;
| | - Martin C. Akogbeto
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou 06BP2604, Benin; (R.A.); (F.R.A.); (G.G.P.); (R.A.); (J.A.); (B.N.); (B.A.); (M.C.A.)
| | - R. Michael Roe
- Department of Entomology and Plant Pathology, Campus Box 7647, 3230 Ligon Street, North Carolina State University, Raleigh, NC 27695, USA; (J.M.D.); (C.S.A.)
| |
Collapse
|
33
|
Tanner EM, Hallerbäck MU, Wikström S, Lindh C, Kiviranta H, Gennings C, Bornehag CG. Early prenatal exposure to suspected endocrine disruptor mixtures is associated with lower IQ at age seven. ENVIRONMENT INTERNATIONAL 2020; 134:105185. [PMID: 31668669 DOI: 10.1016/j.envint.2019.105185] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 08/16/2019] [Accepted: 09/12/2019] [Indexed: 05/23/2023]
Abstract
BACKGROUND Endocrine disrupting chemicals (EDCs) are xenobiotics with the ability to interfere with hormone action, even at low levels. Prior environmental epidemiology studies link numerous suspected EDCs, including phthalates and bisphenol A (BPA), to adverse neurodevelopmental outcomes. However, results for some chemicals were inconsistent and most assessed one chemical at a time. OBJECTIVES To evaluate the overall impact of prenatal exposure to an EDC mixture on neurodevelopment in school-aged children, and identify chemicals of concern while accounting for co-exposures. METHODS Among 718 mother-child pairs from the Swedish Environmental Longitudinal, Mother and child, Asthma and allergy study (SELMA) study, we used Weighted Quantile Sum (WQS) regression to assess the association between 26 EDCs measured in 1st trimester urine or blood, with Wechsler Intelligence Scale for Children (IV) Intelligence Quotient (IQ) scores at age 7 years. Models were adjusted for child sex, gestational age, mother's education, mother's IQ (RAVEN), weight, and smoking status. To evaluate generalizability, we conducted repeated holdout validation, a machine learning technique. RESULTS Using repeated holdout validation, IQ scores were 1.9-points (CI = -3.6, -0.2) lower among boys for an inter-quartile-range (IQR) change in the WQS index. BPF made the largest contribution to the index with a weight of 14%. Other chemicals of concern and their weights included PBA (9%), TCP (9%), MEP (6%), MBzP (4%), PFOA (6%), PFOS (5%), PFHxS (4%), Triclosan (5%), and BPA (4%). While we did observe an inverse association between EDCs and IQ among all children when training and testing the WQS index estimate on the full dataset, these results were not robust to repeated holdout validation. CONCLUSION Among boys, early prenatal exposure to EDCs was associated with lower intellectual functioning at age 7. We identified bisphenol F as the primary chemical of concern, suggesting that the BPA replacement compound may not be any safer for children. Future studies are needed to confirm the potential neurotoxicity of replacement analogues.
Collapse
Affiliation(s)
- Eva M Tanner
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Sverre Wikström
- Karlstad University, Karlstad, Sweden; School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Christian Lindh
- Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Hannu Kiviranta
- National Institute for Health and Welfare, Helsinki, Finland
| | - Chris Gennings
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Carl-Gustaf Bornehag
- Icahn School of Medicine at Mount Sinai, New York, NY, United States; Karlstad University, Karlstad, Sweden.
| |
Collapse
|
34
|
Lim JT, Tan YQ, Valeri L, Lee J, Geok PP, Chia SE, Ong CN, Seow WJ. Association between serum heavy metals and prostate cancer risk - A multiple metal analysis. ENVIRONMENT INTERNATIONAL 2019; 132:105109. [PMID: 31491608 DOI: 10.1016/j.envint.2019.105109] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/30/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Prostate cancer is one of the most prevalent cancers in men. Exposure to heavy metals and their association with prostate cancer risk has been studied extensively, but combined effects remain largely inconclusive. OBJECTIVES To elucidate the association between serum concentrations of heavy metals and prostate cancer risk. METHODS Inductively coupled plasma mass spectrometry (ICP-MS) was used to determine the concentrations of a panel of 10 heavy metals (Mn, Cu, Zn, As, Se, Sb, Co, Cu, Cd and Pb) in serum samples of 141 cases and 114 controls in the Singapore Prostate Cancer Study. Linear probit regression models were used to estimate risk differences (RDs) and 95% confidence intervals (CIs) for the associations between log-centered serum metal concentrations and prostate cancer risk with adjustment for potential confounders. Bayesian kernel machine regression (BKMR) models were used to account for nonlinear, interactive, and joint metal effects. RESULTS Using probit regression, four heavy metals (As, Zn, Mn, Sb) were significantly and positively associated with prostate cancer risk in the unadjusted models. Using BKMR analysis, both As and Zn had positive risk differences on prostate cancer risk when all other metals were held fixed at the 25th and 50th percentiles (RD, 25th percentile: As: 0.15, Zn: 0.19, RD, 50th percentile: As: 0.45, Zn: 0.37). In addition, the overall mixture risk difference was positive and the 95% credible intervals did not include 0 when all metals in the mixture were jointly above their 55th percentile, as compared to when all metals were below their median values. CONCLUSIONS In summary, we found positive associations between the serum levels of As and Zn and prostate cancer risk on the risk difference scale using BKMR models. The overall mixture effect was also associated with increased prostate cancer risk. Future studies are warranted to validate these findings in prospective studies.
Collapse
Affiliation(s)
- Jue Tao Lim
- Saw Swee Hock School of Public Health, National University of Singapore, National University Health System, Singapore
| | - Yue Qian Tan
- Saw Swee Hock School of Public Health, National University of Singapore, National University Health System, Singapore
| | - Linda Valeri
- Department of Biostatistics, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Jingyi Lee
- NUS Environmental Research Institute, National University of Singapore, Singapore
| | - Per Poh Geok
- NUS Environmental Research Institute, National University of Singapore, Singapore
| | - Sin Eng Chia
- Saw Swee Hock School of Public Health, National University of Singapore, National University Health System, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore
| | - Choon Nam Ong
- Saw Swee Hock School of Public Health, National University of Singapore, National University Health System, Singapore; NUS Environmental Research Institute, National University of Singapore, Singapore
| | - Wei Jie Seow
- Saw Swee Hock School of Public Health, National University of Singapore, National University Health System, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore.
| |
Collapse
|
35
|
Chevrier J, Rauch S, Obida M, Crause M, Bornman R, Eskenazi B. Sex and poverty modify associations between maternal peripartum concentrations of DDT/E and pyrethroid metabolites and thyroid hormone levels in neonates participating in the VHEMBE study, South Africa. ENVIRONMENT INTERNATIONAL 2019; 131:104958. [PMID: 31284115 PMCID: PMC6728182 DOI: 10.1016/j.envint.2019.104958] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 05/05/2023]
Abstract
Indoor Residual Spraying (IRS), the application of insecticides on the inside walls of dwellings, is used by 84 countries for malaria control. Although effective in preventing malaria, this practice results in elevated insecticide exposure to >100 million people, most of whom are Africans. Pyrethroid insecticides and dichlorodiphenyl trichloroethane (DDT) are currently used for IRS. Animal and in vitro studies suggest that pyrethroids and DDT interfere with thyroid hormone homeostasis but human studies are inconsistent and no prior study has investigated this question in a population residing in an area where IRS is conducted. Our objective was thus to evaluate whether prenatal exposure to pyrethroids, DDT or DDT's breakdown product dichlorodiphenyl dichloroethylene (DDE) is associated with altered thyroid hormone levels among neonates from Limpopo, South Africa, where pyrethroids and DDT are used annually to control malaria. We measured serum DDT/E and urinary pyrethroid metabolite concentrations in maternal peripartum samples from 717 women participating in the Venda Health Examination of Mothers, Babies and their Environment (VHEMBE), a birth cohort study conducted in Limpopo's Vhembe district. We measured total thyroxine (T4) and thyroid-stimulating hormone (TSH) in dried blood spots collected via heel stick. We found that all pyrethroid metabolites were positively associated with TSH; trans-DCCA and 3-PBA showed the strongest associations with a 12.3% (95%CI = 3.0, 22.3) and 14.0% (95%CI = 0.5, 30.2) change for each 10-fold increase in biomarker concentration, respectively. These associations were substantially stronger among children from households below the South African food poverty line. DDT and DDE were associated with lower total T4 among boys only (β = -0.27 μg/dL per 10-fold increase; 95%CI = -0.47, -0.04). Results suggest that prenatal exposure to DDT, DDE and pyrethroid insecticides is associated with changes in neonatal thyroid hormones consistent with hypothyroidism/hypothyroxinemia and that sex and poverty modify associations. Further research is needed to confirm these findings and examine whether they have implications for child development.
Collapse
Affiliation(s)
- Jonathan Chevrier
- Department of Epidemiology, Biostatistics and Occupational Health, Faculty of Medicine, McGill University, Montréal, QC, Canada.
| | - Stephen Rauch
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Muvhulawa Obida
- University of Pretoria School of Health Systems and Public Health, and Institute for Sustainable Malaria Control, University of Pretoria, Pretoria, South Africa
| | - Madelein Crause
- University of Pretoria School of Health Systems and Public Health, and Institute for Sustainable Malaria Control, University of Pretoria, Pretoria, South Africa
| | - Riana Bornman
- University of Pretoria School of Health Systems and Public Health, and Institute for Sustainable Malaria Control, University of Pretoria, Pretoria, South Africa
| | - Brenda Eskenazi
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
36
|
Dalsager L, Fage-Larsen B, Bilenberg N, Jensen TK, Nielsen F, Kyhl HB, Grandjean P, Andersen HR. Maternal urinary concentrations of pyrethroid and chlorpyrifos metabolites and attention deficit hyperactivity disorder (ADHD) symptoms in 2-4-year-old children from the Odense Child Cohort. ENVIRONMENTAL RESEARCH 2019; 176:108533. [PMID: 31229776 DOI: 10.1016/j.envres.2019.108533] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 06/07/2019] [Accepted: 06/10/2019] [Indexed: 05/25/2023]
Abstract
BACKGROUND Pyrethroids and chlorpyrifos are widely used insecticides, but the potential impact of prenatal exposure on child neurodevelopment has only been addressed in few longitudinal studies. OBJECTIVES To investigate associations between prenatal exposure to pyrethroids and chlorpyrifos and traits of ADHD in 2-4-year-old children. METHODS Metabolites of chlorpyrifos and pyrethroids were measured in maternal urine collected at gestational week 28 among 1207 women from the Odense Child Cohort. Of these, 948 completed the Child Behavior Check List for ages 1.5-5 years (CBCL: 1½-5). Negative binomial and logistic regression models were used to estimate relative differences in ADHD problem scores (CBCL: 1½-5 subscale) expressed as the ratio of expected scores between exposure groups and the odds (OR) of scoring equal to or above the 90th percentile in relation to maternal urinary metabolite concentrations (continuous ln2-transformed or categorized into tertiles). The analyses were adjusted for maternal education level, parental psychiatric diagnosis, child age and sex. RESULTS The chlorpyrifos metabolite, 3,5,6-trichloro-2-pyridinol (TCPY), the generic pyrethroid metabolite, 3-phenoxybenzoic acid (3-PBA), and the metabolite of trans-isomers of permethrin, cypermethrin, and cyfluthrin, trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane-1-carboxylic acid (trans-DCCA), were detected in 90%, 94%, and 11%, respectively, of the urine samples. Each doubling in maternel 3-PBA concentration was associated with a 3% increase in the ADHD score (Ratio: 1.03 (95% CI: 1.00,1.07)) and a 13% higher odds of having a ADHD score ≥ the 90th percentile (OR: 1.13 (1.04,1.38)). Similar associations were seen for 3-PBA as categorical variable (p-trend=0.052 in negative binimoal regression, p-trend=0.007 in logistic regression). Furthermore, concurrent concentrations of 3-PBA and TCPY above their medians were associated with higher ADHD score (Ratio: 1.20 (1.04, 1.38)) and higher odds of scoring ≥ the 90th percentile (OR: 1.98 (1.26, 3.11)). Maternal trans-DCCA above the detection level increased the odds of ADHD symptoms (OR: 1.76 (1.08, 2.86)). The associations were not modified by sex. CONCLUSIONS Prenatal exposure to pyrethroids was associated with ADHD related traits at 2-4 years of age. Considering the widespread use of pyrethroids these results are of concern.
Collapse
Affiliation(s)
- Louise Dalsager
- Department of Environmental Medicine; Institute of Public Health, University of Southern Denmark, Odense, Denmark.
| | - Bettina Fage-Larsen
- Department of Child and Adolescent Mental Health Odense, Mental Health Services in the Region of Southern Denmark, Odense, Denmark
| | - Niels Bilenberg
- Department of Child and Adolescent Mental Health Odense, Mental Health Services in the Region of Southern Denmark, Odense, Denmark
| | - Tina Kold Jensen
- Department of Environmental Medicine; Institute of Public Health, University of Southern Denmark, Odense, Denmark; Hans Christian Andersen Children's Hospital, Odense University Hospital, Kløvervænget 23 C, 5000, Odense, Denmark
| | - Flemming Nielsen
- Department of Environmental Medicine; Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | - Henriette Boye Kyhl
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Kløvervænget 23 C, 5000, Odense, Denmark
| | - Philippe Grandjean
- Department of Environmental Medicine; Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | - Helle Raun Andersen
- Department of Environmental Medicine; Institute of Public Health, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
37
|
Joubert BR, Berhane K, Chevrier J, Collman G, Eskenazi B, Fobil J, Hoyo C, John CC, Kumie A, Nicol M, Ramsay M, Smith J, Steyn A, Tshala-Katumbay D, McAllister K. Integrating environmental health and genomics research in Africa: challenges and opportunities identified during a Human Heredity and Health in Africa (H3Africa) Consortium workshop. AAS Open Res 2019; 2:159. [PMID: 32382703 PMCID: PMC7194141 DOI: 10.12688/aasopenres.12983.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2019] [Indexed: 12/12/2022] Open
Abstract
Individuals with African ancestry have extensive genomic diversity but have been underrepresented in genomic research. There is also extensive global diversity in the exposome (the totality of human environmental exposures from conception onwards) which should be considered for integrative genomic and environmental health research in Africa. To address current research gaps, we organized a workshop on environmental health research in Africa in conjunction with the H3Africa Consortium and the African Society of Human Genetics meetings in Kigali, Rwanda. The workshop was open to all researchers with an interest in environmental health in Africa and involved presentations from experts within and outside of the Consortium. This workshop highlighted innovative research occurring on the African continent related to environmental health and the interplay between the environment and the human genome. Stories of success, challenges, and collaborative opportunities were discussed through presentations, breakout sessions, poster presentations, and a panel discussion. The workshop informed participants about environmental risk factors that can be incorporated into current or future epidemiology studies and addressed research design considerations, biospecimen collection and storage, biomarkers for measuring chemical exposures, laboratory strategies, and statistical methodologies. Inclusion of environmental exposure measurements with genomic data, including but not limited to H3Africa projects, can offer a strong platform for building gene-environment (G x E) research in Africa. Opportunities to leverage existing resources and add environmental exposure data for ongoing and planned studies were discussed. Future directions include expanding the measurement of both genomic and exposomic risk factors and incorporating sophisticated statistical approaches for analyzing high dimensional G x E data. A better understanding of how environmental and genomic factors interact with nutrition and infection is also needed. Considering that the environment represents many modifiable risk factors, these research findings can inform intervention and prevention efforts towards improving global health.
Collapse
Affiliation(s)
- Bonnie R Joubert
- National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA
| | - Kiros Berhane
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Gwen Collman
- National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA
| | | | | | | | - Chandy C John
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Abera Kumie
- Addis Abada University, Addis Abada, Ethiopia
| | - Mark Nicol
- University of Cape Town, Cape Town, South Africa
| | - Michèle Ramsay
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | - Adrie Steyn
- Africa Health Research Institute, Durban, South Africa
| | | | - Kimberly McAllister
- National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA
| |
Collapse
|
38
|
Motohira K, Ikenaka Y, Yohannes YB, Nakayama SMM, Wepener V, Smit NJ, VAN Vuren JHJ, Sousa AC, Enuneku AA, Ogbomida ET, Ishizuka M. Dichlorodiphenyltrichloroethane (DDT) levels in rat livers collected from a malaria vector control region. J Vet Med Sci 2019; 81:1575-1579. [PMID: 31447459 PMCID: PMC6895617 DOI: 10.1292/jvms.19-0168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dichlorodiphenyltrichloroethane (DDT) is an organochlorine insecticide that has been used for indoor residual spraying for the control of mosquito-borne diseases including malaria. However,
due to its toxicity and environmental persistence, there are concerns about its potential deleterious effects in humans and wildlife. Therefore, the current study aimed to monitor and
estimate the level of DDTs in human communities. The accumulation of DDT and its metabolites was evaluated in house rat (as sentinel) livers collected in an area where DDT was sprayed. DDTs
were measured using a gas chromatography / Electron Capture Detector. The results revealed high concentrations of DDTs in the rat livers and the levels of DDTs were similar to findings
reported from the same area in 2014.
Collapse
Affiliation(s)
- Kodai Motohira
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Laboratory of Toxicology, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Yoshinori Ikenaka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Laboratory of Toxicology, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan.,Water Research Group, Unit for Environmental Sciences and Management, Potchefstroom Campus, North-West University, Private Bag X6001, Potchefstroom, South Africa
| | - Yared Beyene Yohannes
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Laboratory of Toxicology, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Shouta M M Nakayama
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Laboratory of Toxicology, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Victor Wepener
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Laboratory of Toxicology, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan.,Water Research Group, Unit for Environmental Sciences and Management, Potchefstroom Campus, North-West University, Private Bag X6001, Potchefstroom, South Africa
| | - Nico J Smit
- Water Research Group, Unit for Environmental Sciences and Management, Potchefstroom Campus, North-West University, Private Bag X6001, Potchefstroom, South Africa
| | - Johan H J VAN Vuren
- Water Research Group, Unit for Environmental Sciences and Management, Potchefstroom Campus, North-West University, Private Bag X6001, Potchefstroom, South Africa
| | - Ana Catarina Sousa
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Laboratory of Toxicology, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan.,CICECO, Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Alex Ajeh Enuneku
- Department of Environmental Management and Toxicology Faculty of Life Sciences, University of Benin, Benin City, P.O. Box 1154, Nigeria
| | - Emmanuel Temiotan Ogbomida
- Ecotoxicology and Environmental Forensic Unit National Centre for Energy and Environment (Energy Commission of Nigeria), NCEE Administrative Block Complex, University of Benin, Ugbowo Campus, Benin City, Edo State, Nigeria
| | - Mayumi Ishizuka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Laboratory of Toxicology, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| |
Collapse
|
39
|
A community-based education programme to reduce insecticide exposure from indoor residual spraying in Limpopo, South Africa. Malar J 2019; 18:199. [PMID: 31200704 PMCID: PMC6570908 DOI: 10.1186/s12936-019-2828-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 06/04/2019] [Indexed: 01/05/2023] Open
Abstract
Background Indoor residual spraying (IRS), the coating of interior walls of houses with insecticides, is common in malaria-endemic areas. While important in malaria control, IRS potentially exposes residents to harmful insecticides. The World Health Organization recommends steps to minimize exposure; however, no programme has focused on educating populations. Methods A dramatic presentation and song were developed by study personnel and performed by lay performers in order to spread awareness of the importance of IRS and to minimize insecticide exposure. Performances were staged at 16 sprayed villages in the Vhembe District of Limpopo, South Africa, at which 592 attendees completed short questionnaires before and after the performance about behaviors that might limit insecticide exposure. Overall indices of the attendees’ change in knowledge of precautions to take prior to and after spraying to prevent insecticide exposure were analyzed using hierarchical mixed models to assess the effect of the performance on change in participants’ knowledge. Results Approximately half of attendees lived in homes that had been sprayed for malaria and 62% were female. Over 90% thought it better to allow IRS prior to the presentation, but knowledge of proper precautions to prevent exposure was low. The proportion answering correctly about proper distance from home during spraying increased from 49.4% pre-performance to 62.0% post-performance (RR = 1.26, 95% CI = 1.13, 1.41), and the proportion reporting correctly about home re-entry interval after spraying increased from 58.5 to 91.1% (RR = 1.54, 95% CI 1.35, 1.77). Attendees improved in their knowledge about precautions to take prior to and after spraying from mean of 57.9% correct to a mean of 69.7% (β = 12.1%, 95% CI 10.9, 13.4). Specifically, increased knowledge in closing cupboards, removing food and bedding from the home, covering immoveable items with plastic, and leading animals away from the home prior to spraying were observed, as was increased knowledge in sweeping the floors, proper disposal of dead insects, and discarding dirty washrags after spraying. Conclusions A dramatic presentation and song were able to increase the attendees’ knowledge of precautions to take prior to and after spraying in order to limit their insecticide exposure resulting from IRS. This approach to community education is promising and deserves additional study.
Collapse
|
40
|
Guo C, Yang Y, Shi MX, Wang B, Liu JJ, Xu DX, Meng XH. Critical time window of fenvalerate-induced fetal intrauterine growth restriction in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 172:186-193. [PMID: 30708230 DOI: 10.1016/j.ecoenv.2019.01.054] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/08/2019] [Accepted: 01/12/2019] [Indexed: 06/09/2023]
Abstract
Fenvalerate (FEN), a representative type II pyrethroid, is a widely used pyrethroid insecticide and a potential environmental contaminant. Several studies demonstrated that gestational FEN exposure induced intrauterine growth restriction (IUGR). However, the critical time window of FEN-induced fetal IUGR remains obscure. The present study aimed to identify the critical window of FEN-induced fetal IUGR. Pregnant mice were administered corn oil or FEN (20 mg/kg) by gavage daily at the early gestational stage (GD0-GD6), middle gestational stage (GD7-GD12) or late gestational stage (GD13-GD17). The results showed that the rates of fetal IUGR were markedly increased only in the mice exposed to FEN on GD13-GD17 but not in the mice exposed to FEN on GD7-GD12 or GD0-GD6. Further analysis showed that the blood sinusoid area in the placental labyrinth layer was reduced in the mice exposed to FEN on GD13-GD17. In addition, CD34+ microvessel density in the labyrinthine region was decreased in the male and female fetuses whose mothers were exposed to FEN on GD13-GD17. Mechanistic analysis found that the glutathione level was decreased in the FEN-exposed placentas. In contrast, the levels of 3-nitrotyrosine and malondialdehyde, two oxidative stress markers, were increased in FEN-exposed placentas. Heme oxygenase-1, inducible nitric oxide synthase, catalase and peroxiredoxin-3, which are antioxidant enzymes, were upregulated in the FEN-exposed placentas. The present study suggests that the late gestational stage is a critical time window of FEN-induced fetal IUGR. Placental oxidative stress may be, at least partially, involved in the process of FEN-induced placental damage and fetal IUGR.
Collapse
Affiliation(s)
- Ce Guo
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, Anhui, China
| | - Yang Yang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, Anhui, China
| | - Meng-Xing Shi
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, Anhui, China
| | - Bo Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, Anhui, China
| | - Ji-Jie Liu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, Anhui, China
| | - De-Xiang Xu
- Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, Anhui, China; Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, Anhui, China.
| | - Xiu-Hong Meng
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, Anhui, China.
| |
Collapse
|
41
|
Rauch S, Bradman A, Coker E, Chevrier J, An S, Bornman R, Eskenazi B. Determinants of Exposure to Pyrethroid Insecticides in the VHEMBE Cohort, South Africa. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:12108-12121. [PMID: 30991471 DOI: 10.1021/acs.est.8b02767] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Exposure to pyrethroid insecticides has been linked to adverse health effects, and can originate from several sources, including indoor residual spraying (IRS) for malaria control, home pest control, food contamination, and occupational exposure. We aimed to explore the determinants of urinary pyrethroid metabolite concentrations in a rural population with high pesticide use. The Venda Health Examination of Mothers, Babies and their Environment (VHEMBE) is a birth cohort of 752 mother-child pairs in Limpopo, South Africa. We measured pyrethroid metabolites in maternal urine and collected information on several factors possibly related to pesticide exposure, including IRS, home pesticide use, and maternal factors (e.g., dietary habits and body composition). We performed statistical analysis using both conventional bivariate regressions and Bayesian variable selection methods. Urinary pyrethroid metabolites are consistently associated with pesticide factors around homes, including pesticide application in yards and food stocks, and IRS in the home during pregnancy, while more distant factors such as village spraying are not. High fat intake is associated with higher metabolite concentrations, and women from homes drawing water from wells or springs had marginally higher levels. Home pesticide use is the most consistent correlate of pyrethroid metabolite concentrations, but IRS, dietary habits, and household water source may also be important exposure determinants.
Collapse
Affiliation(s)
- Stephen Rauch
- Center for Environmental Research and Children's Health (CERCH), School of Public Health , University of California at Berkeley , Berkeley , California 94720 , United States
| | - Asa Bradman
- Center for Environmental Research and Children's Health (CERCH), School of Public Health , University of California at Berkeley , Berkeley , California 94720 , United States
| | - Eric Coker
- Center for Environmental Research and Children's Health (CERCH), School of Public Health , University of California at Berkeley , Berkeley , California 94720 , United States
| | - Jonathan Chevrier
- Department of Epidemiology, Biostatistics and Occupational Health , McGill University , Montréal , Quebec H3A 1A2 , Canada
| | - Sookee An
- Center for Environmental Research and Children's Health (CERCH), School of Public Health , University of California at Berkeley , Berkeley , California 94720 , United States
| | - Riana Bornman
- Department of Urology , University of Pretoria , Pretoria 0028 , South Africa
- University of Pretoria Institute for Sustainable Malaria Control and School of Health Systems and Public Health , University of Pretoria , Pretoria 0028 , South Africa
| | - Brenda Eskenazi
- Center for Environmental Research and Children's Health (CERCH), School of Public Health , University of California at Berkeley , Berkeley , California 94720 , United States
| |
Collapse
|
42
|
Hertz-Picciotto I, Schmidt RJ, Walker CK, Bennett DH, Oliver M, Shedd-Wise KM, LaSalle JM, Giulivi C, Puschner B, Thomas J, Roa DL, Pessah IN, Van de Water J, Tancredi DJ, Ozonoff S. A Prospective Study of Environmental Exposures and Early Biomarkers in Autism Spectrum Disorder: Design, Protocols, and Preliminary Data from the MARBLES Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2018; 126:117004. [PMID: 30465702 PMCID: PMC6371714 DOI: 10.1289/ehp535] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 09/21/2018] [Accepted: 09/22/2018] [Indexed: 05/21/2023]
Abstract
BACKGROUND Until recently, environmental factors in autism spectrum disorder (ASD) were largely ignored. Over the last decade, altered risks from lifestyle, medical, chemical, and other factors have emerged through various study designs: whole population cohorts linked to diagnostic and/or exposure-related databases, large case-control studies, and smaller cohorts of children at elevated risk for ASD. OBJECTIVES This study aimed to introduce the MARBLES (Markers of Autism Risk in Babies-Learning Early Signs) prospective study and its goals, motivate the enhanced-risk cohort design, describe protocols and main exposures of interest, and present initial descriptive results for the study population. METHODS Families having one or more previous child with ASD were contacted before or during a pregnancy, and once the woman became pregnant, were invited to enroll. Data and biological samples were collected throughout pregnancy, at birth, and until the child's third birthday. Neurodevelopment was assessed longitudinally. The study began enrolling in 2006 and is ongoing. RESULTS As of 30 June 2018, 463 pregnant mothers have enrolled. Most mothers ([Formula: see text]) were thirty years of age or over, including 7.9% who are fourty years of age or over. The sample includes 22% Hispanic and another 25% nonHispanic Black, Asian, or multiracial participants; 24% were born outside the United States. Retention is high: 84% of participants whose pregnancies did not end in miscarriage completed the study or are still currently active. Among children evaluated at 36 months of age, 24% met criteria for ASD, and another 25% were assessed as nonASD nontypical development. CONCLUSION Few environmental studies of ASD prospectively obtain early-life exposure measurements. The MARBLES study fills this gap with extensive data and specimen collection beginning in pregnancy and has achieved excellent retention in an ethnically diverse study population. The 24% familial recurrence risk is consistent with recent reported risks observed in large samples of siblings of children diagnosed with ASD. https://doi.org/10.1289/EHP535.
Collapse
Affiliation(s)
- Irva Hertz-Picciotto
- Department of Public Health Sciences, School of Medicine, University of California Davis (UC Davis), Davis, California, USA
- UC Davis MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, UC Davis, Davis, California, USA
| | - Rebecca J Schmidt
- Department of Public Health Sciences, School of Medicine, University of California Davis (UC Davis), Davis, California, USA
- UC Davis MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, UC Davis, Davis, California, USA
| | - Cheryl K Walker
- UC Davis MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, UC Davis, Davis, California, USA
- Department of Obstetrics & Gynecology, School of Medicine, UC Davis, Davis, California, USA
| | - Deborah H Bennett
- Department of Public Health Sciences, School of Medicine, University of California Davis (UC Davis), Davis, California, USA
| | - McKenzie Oliver
- Department of Public Health Sciences, School of Medicine, University of California Davis (UC Davis), Davis, California, USA
- UC Davis MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, UC Davis, Davis, California, USA
| | - Kristine M Shedd-Wise
- Department of Public Health Sciences, School of Medicine, University of California Davis (UC Davis), Davis, California, USA
| | - Janine M LaSalle
- UC Davis MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, UC Davis, Davis, California, USA
- Department of Molecular Biosciences, School of Veterinary Medicine, UC Davis, Davis, California, USA
| | - Cecilia Giulivi
- UC Davis MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, UC Davis, Davis, California, USA
- Department of Medical Microbiology, School of Medicine, UC Davis, Davis, California, USA
| | - Birgit Puschner
- UC Davis MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, UC Davis, Davis, California, USA
- Department of Medical Microbiology, School of Medicine, UC Davis, Davis, California, USA
| | - Jennifer Thomas
- Department of Public Health Sciences, School of Medicine, University of California Davis (UC Davis), Davis, California, USA
- UC Davis MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, UC Davis, Davis, California, USA
| | - Dorcas L Roa
- UC Davis MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, UC Davis, Davis, California, USA
| | - Isaac N Pessah
- UC Davis MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, UC Davis, Davis, California, USA
- Department of Medical Microbiology, School of Medicine, UC Davis, Davis, California, USA
| | - Judy Van de Water
- UC Davis MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, UC Davis, Davis, California, USA
- Department of Rheumatology and Allergy, School of Medicine, UC Davis, Davis, California, USA
| | - Daniel J Tancredi
- Department of Pediatrics, School of Medicine, UC Davis, Davis, California, USA
| | - Sally Ozonoff
- UC Davis MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, UC Davis, Davis, California, USA
- Department of Psychiatry, School of Medicine, UC Davis, Davis, California, USA
| |
Collapse
|
43
|
How early media exposure may affect cognitive function: A review of results from observations in humans and experiments in mice. Proc Natl Acad Sci U S A 2018; 115:9851-9858. [PMID: 30275319 DOI: 10.1073/pnas.1711548115] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is now among the most commonly diagnosed chronic psychological dysfunctions of childhood. By varying estimates, it has increased by 30% in the past 20 years. Environmental factors that might explain this increase have been explored. One such factor may be audiovisual media exposure during early childhood. Observational studies in humans have linked exposure to fast-paced television in the first 3 years of life with subsequent attentional deficits in later childhood. Although longitudinal and well controlled, the observational nature of these studies precludes definitive conclusions regarding a causal relationship. As experimental studies in humans are neither ethical nor practical, mouse models of excessive sensory stimulation (ESS) during childhood, akin to the enrichment studies that have previously shown benefits of stimulation in rodents, have been developed. Experimental studies using this model have corroborated that ESS leads to cognitive and behavioral deficits, some of which may be potentially detrimental. Given the ubiquity of media during childhood, these findings in humansand rodents perhaps have important implications for public health.
Collapse
|
44
|
Verner MA, Chevrier J, Ngueta G, Rauch S, Bornman R, Eskenazi B. Early-life exposure to p,p'-DDT and p,p'-DDE in South African children participating in the VHEMBE study: An assessment using repeated serum measurements and pharmacokinetic modeling. ENVIRONMENT INTERNATIONAL 2018; 119:478-484. [PMID: 30036731 PMCID: PMC6150710 DOI: 10.1016/j.envint.2018.07.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/29/2018] [Accepted: 07/06/2018] [Indexed: 05/12/2023]
Abstract
BACKGROUND The World Health Organization recommends indoor residual spraying (IRS) of insecticides (including dichlorodiphenyltrichloroethane [DDT]) to fight malaria vectors in endemic countries. There is limited information on children's exposure to DDT in sprayed areas, and tools to estimate early-life exposure have not been thoroughly evaluated in this context. OBJECTIVES To document serum p,p'-DDT/E levels in 47 mothers and children participating in the Venda Health Examination of Mothers, Babies and their Environment (VHEMBE), a study conducted in an area where IRS insecticides are used annually, and to evaluate the precision and accuracy of a published pharmacokinetic model for the estimation of children's p,p'-DDT/E levels. METHODS p,p'-DDT/E levels were measured in maternal serum at delivery, and in children's serum at 12 and 24 months of age. A pharmacokinetic model of gestational and lactational exposure was used to estimate children's p,p'-DDT/E levels during pregnancy and the first two years of life, and estimated levels were compared to measured levels. RESULTS The geometric means of children's serum p,p'-DDT/E levels at 12 and 24 months were higher than those of maternal serum levels. Regression models of measured children's p,p'-DDT/E levels vs. levels estimated with the pharmacokinetic model (which only accounted for children's exposure through placental transfer and breastfeeding) had coefficients of determination (R2) ranging from 0.75 to 0.82. Estimated p,p'-DDE levels were not significantly different from measured levels, whereas p,p'-DDT levels were overestimated by 36% at 12 months, and 51% at 24 months. CONCLUSION Results indicate that children living in a sprayed area have serum p,p'-DDT/E levels exceeding their mothers' during the first two years of life. The pharmacokinetic model may be useful to estimate children's levels in the VHEMBE population.
Collapse
Affiliation(s)
- Marc-André Verner
- Université de Montréal Public Health Research Institute (IRSPUM), Montreal, QC, Canada; Department of Occupational and Environmental Health, School of Public Health, Université de Montréal, Montreal, QC, Canada.
| | - Jonathan Chevrier
- Department of Epidemiology, Biostatistics and Occupational Health, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Gérard Ngueta
- Université de Montréal Public Health Research Institute (IRSPUM), Montreal, QC, Canada; Department of Occupational and Environmental Health, School of Public Health, Université de Montréal, Montreal, QC, Canada
| | - Stephen Rauch
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, CA, USA
| | - Riana Bornman
- School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa; University of Pretoria Institute for Sustainable Malaria Control, University of Pretoria, Pretoria, South Africa
| | - Brenda Eskenazi
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, CA, USA
| |
Collapse
|
45
|
Hertz-Picciotto I, Sass JB, Engel S, Bennett DH, Bradman A, Eskenazi B, Lanphear B, Whyatt R. Organophosphate exposures during pregnancy and child neurodevelopment: Recommendations for essential policy reforms. PLoS Med 2018; 15:e1002671. [PMID: 30356230 PMCID: PMC6200179 DOI: 10.1371/journal.pmed.1002671] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In a Policy Forum, Irva Hertz-Picciotto and colleagues review the scientific evidence linking organophosphate pesticides to cognitive, behavioral, and neurological deficits in children and recommend actions to reduce exposures.
Collapse
Affiliation(s)
- Irva Hertz-Picciotto
- Environmental Health Sciences Center and Department of Public Health Sciences, School of Medicine, University of California Davis, Davis, California, United States of America
| | - Jennifer B. Sass
- Natural Resources Defense Council, Washington, DC, United States of America
- George Washington University, Washington, DC, United States of America
| | - Stephanie Engel
- Department of Epidemiology, University of North Carolina Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Deborah H. Bennett
- Environmental Health Sciences Center and Department of Public Health Sciences, School of Medicine, University of California Davis, Davis, California, United States of America
| | - Asa Bradman
- School of Public Health, University of California Berkeley, Berkeley, California, United States of America
| | - Brenda Eskenazi
- School of Public Health, University of California Berkeley, Berkeley, California, United States of America
| | - Bruce Lanphear
- BC Children’s Hospital, Faculty of Health Sciences, Simon Fraser University, Vancouver, British Columbia, Canada
| | - Robin Whyatt
- Mailman School of Public Health and Children’s Center for Environmental Health at Columbia University, New York, New York, United States of America
| |
Collapse
|
46
|
Daily Intake Estimation for Young Children's Ingestion of Residential Dust and Soils Contaminated with Chlorpyrifos and Cypermethrin in Taiwan. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15071327. [PMID: 29941803 PMCID: PMC6069238 DOI: 10.3390/ijerph15071327] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/05/2018] [Accepted: 06/21/2018] [Indexed: 11/16/2022]
Abstract
We estimated the daily intakes of chlorpyrifos and cypermethrin via ingestion of indoor dust and outdoor soils using the Stochastic Human Exposure and Dose Simulation Model on a probabilistic approach for Taiwanese young children. Variables for the estimation, such as concentration, ingestion rate, and body weight, were adopted from previous studies. Monte Carlo simulation was performed with 1,000,000 iterations to simulate a single daily intake, which was shown in terms of percentage of the Acceptable Daily Intake (ADI) of either insecticide. The daily intakes are minimal with a 99% probability, but go up steeply at the 99.9th percentile (13.1% and 20.0% of the ADIs of chlorpyrifos and cypermethrin, respectively). The sensitivity analysis indicates that concentration is the most determinant variable for daily intake estimation, suggesting that high intakes may occur when insecticide concentrations are elevated. Compared to the data of daily intakes via dietary ingestion of vegetables derived from a previous study, the estimated non-dietary intakes are negligible until reaching the highest percentile. Consequently, the non-dietary ingestion exposure to either insecticide is commonly low for young children in Taiwan’s homes, unless high contamination (e.g., indoor insecticide application) occurs in the environment. Care has to be taken to avoid high contamination indoors.
Collapse
|