1
|
Craig E, Lin Y, Ge Y, Wang X, Murphy SK, Harrington DK, Miller RK, Thurston SW, Hopke PK, Barrett ES, O’Connor TG, Rich DQ, Zhang J. Associations of Gestational Exposure to Air Pollution and Polycyclic Aromatic Hydrocarbons with Placental Inflammation. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2024; 2:672-680. [PMID: 39323894 PMCID: PMC11420950 DOI: 10.1021/envhealth.4c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 09/27/2024]
Abstract
Restricted fetal growth (RFG) is a leading contributor to perinatal mortality and has been associated with gestational exposure to air pollution, such as fine particulate matter (PM2.5), nitrogen dioxide (NO2), and polycyclic aromatic hydrocarbons (PAHs). This study examines the association between trimester-specific and weekly means of air pollution throughout gestation and placental inflammatory markers at delivery. In a prospective cohort study of 263 pregnant women in Rochester, NY, we measured interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) in placental tissue and estimated gestational exposure to PM2.5 and NO2 using a high-resolution spatial-temporal model. Exposure to PAHs was estimated using urinary 1-hydroxypyrene (1-OHP) concentrations collected once per trimester. Using distributed lag models with a penalized spline function, each interquartile range (2.6 μg/m3) increase in PM2.5 concentration during gestational weeks 6-11 was associated with decreased placental IL-6 levels (-22.2%, 95% CI: -39.0%, -0.64%). Using multiple linear regression models, each interquartile range increase of 1-OHP was associated with an increase in TNF-α in the first trimester (58.5%, 95% CI: 20.7%, 74.2%), third trimester (22.9%, 95% CI: 0.04%, 49.5%), and entire pregnancy (29.6%, 95%CI: 3.9%,60.6%). Our results suggest gestational exposure to air pollution may alter the inflammatory environment of the placenta at delivery.
Collapse
Affiliation(s)
- Emily
A. Craig
- Nicholas
School of the Environment & Duke Global Health Institute, Duke University, Durham, North Carolina 27708, United States
| | - Yan Lin
- Nicholas
School of the Environment & Duke Global Health Institute, Duke University, Durham, North Carolina 27708, United States
| | - Yihui Ge
- Nicholas
School of the Environment & Duke Global Health Institute, Duke University, Durham, North Carolina 27708, United States
| | - Xiangtian Wang
- Nicholas
School of the Environment & Duke Global Health Institute, Duke University, Durham, North Carolina 27708, United States
| | - Susan K. Murphy
- Nicholas
School of the Environment & Duke Global Health Institute, Duke University, Durham, North Carolina 27708, United States
| | - Donald K. Harrington
- Department
of Psychiatry, University of Rochester School
of Medicine and Dentistry, Rochester, New York 14642, United States
| | - Richard K. Miller
- Department
of Obstetrics and Gynecology, University
of Rochester School of Medicine and Dentistry, Rochester, New York 14642, United States
- Department
of Environmental Medicine, University of
Rochester School of Medicine and Dentistry, Rochester, New York 14642, United States
- Department
of Psychology, University of Rochester, Rochester, New York 14642, United States
- Department
of Pediatrics, University of Rochester School
of Medicine and Dentistry, Rochester, New York 14642, United States
| | - Sally W. Thurston
- Department
of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, United States
- Department
of Environmental Medicine, University of
Rochester School of Medicine and Dentistry, Rochester, New York 14642, United States
| | - Philip K. Hopke
- Department
of Public Health Sciences, University of
Rochester School of Medicine and Dentistry, Rochester, New York 14642, United States
| | - Emily S. Barrett
- Department
of Obstetrics and Gynecology, University
of Rochester School of Medicine and Dentistry, Rochester, New York 14642, United States
- Department
of Public Health Sciences, University of
Rochester School of Medicine and Dentistry, Rochester, New York 14642, United States
- Department of Biostatistics
and Epidemiology, Rutgers School of Public
Health, Piscataway, New Jersey 08854, United States
| | - Thomas G. O’Connor
- Department
of Obstetrics and Gynecology, University
of Rochester School of Medicine and Dentistry, Rochester, New York 14642, United States
- Department
of Psychiatry, University of Rochester School
of Medicine and Dentistry, Rochester, New York 14642, United States
- Department
of Neuroscience, University of Rochester
School of Medicine and Dentistry, Rochester, New York 14642, United States
- Department
of Psychology, University of Rochester, Rochester, New York 14642, United States
| | - David Q. Rich
- Department
of Public Health Sciences, University of
Rochester School of Medicine and Dentistry, Rochester, New York 14642, United States
- Department
of Medicine, University of Rochester School
of Medicine and Dentistry, Rochester, New York 14642, United States
- Department
of Environmental Medicine, University of
Rochester School of Medicine and Dentistry, Rochester, New York 14642, United States
| | - Junfeng Zhang
- Nicholas
School of the Environment & Duke Global Health Institute, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
2
|
Gebremedhin AT, Nyadanu SD, Hanigan IC, Pereira G. Maternal exposure to bioclimatic stress and hypertensive disorders of pregnancy in Western Australia: identifying potential critical windows of susceptibility. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:52279-52292. [PMID: 39145911 PMCID: PMC11374825 DOI: 10.1007/s11356-024-34689-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/07/2024] [Indexed: 08/16/2024]
Abstract
The anthropogenic climate change may impact pregnancy outcomes. Rather than ambient temperature, we aimed to use a composite bioclimatic metric (Universal Thermal Climate Index, UTCI) to identify critical susceptible windows for the associations between bioclimatic exposure and hypertensive disorders of pregnancy (HDPs) risk. Daily UTCI exposure from 12 weeks of preconception through pregnancy was linked to 415,091 singleton pregnancies between 1st January 2000 and 31st December 2015 in Western Australia. Adjusted weekly-specific and cumulative odds ratios (ORs) and 95% confidence intervals (CIs) of gestational hypertension and preeclampsia were estimated with distributed lag non-linear and standard non-linear logistic regressions. Exposures from early pregnancy to week 30 were associated with greater odds of HDPs with critical susceptible windows, particularly elevated at the 1st (10.2 °C) and 99th (26.0 °C) exposure centiles as compared to the median (14.2 °C). The most elevated ORs were 1.07 (95% CI 1.06, 1.08) in weeks 8-18 for gestational hypertension and 1.10 (95% CI 1.08, 1.11) in weeks 11-16 for preeclampsia for the 99th exposure centile. Cumulative exposures associated with HDPs with relatively higher but less precise ORs. The effects of high exposure to HDPs indicated sociodemographic inequalities. The identified critical periods and subpopulations could benefit from climate-related interventions.
Collapse
Affiliation(s)
- Amanuel T Gebremedhin
- Curtin School of Population Health, Curtin University, Kent Street, PerthBentley, WA, 6102, Australia
| | - Sylvester Dodzi Nyadanu
- Curtin School of Population Health, Curtin University, Kent Street, PerthBentley, WA, 6102, Australia.
- Education, Culture, and Health Opportunities (ECHO) Ghana, ECHO Research Group International, Aflao, Ghana.
| | - Ivan C Hanigan
- Curtin School of Population Health, Curtin University, Kent Street, PerthBentley, WA, 6102, Australia
- WHO Collaborating Centre for Climate Change and Health Impact Assessment, Faculty of Health Science, Curtin University, Bentley, WA, Australia
| | - Gavin Pereira
- Curtin School of Population Health, Curtin University, Kent Street, PerthBentley, WA, 6102, Australia
- WHO Collaborating Centre for Climate Change and Health Impact Assessment, Faculty of Health Science, Curtin University, Bentley, WA, Australia
- enAble Institute, Curtin University, Perth, Kent Street, Bentley, WA, 6102, Australia
| |
Collapse
|
3
|
Tan Y, Zhang D, Xiao P, Chen X, Zhang Y, Peng C, Peng A. Prenatal exposure to PM 2.5 and childhood body mass index growth trajectories from birth to 6 years old. Sci Rep 2024; 14:16936. [PMID: 39043939 PMCID: PMC11266715 DOI: 10.1038/s41598-024-68096-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/19/2024] [Indexed: 07/25/2024] Open
Abstract
This study aimed to determine the relationships between prenatal PM2.5 exposure and childhood growth trajectories during the first 6 years of life. A total of 47,625 pairs of mothers and children were recruited from a prospective birth cohort conducted between 2011 and 2013 in Wuhan, China, and followed for 6 years. We used the group-based trajectory models to classify the population into three trajectory groups: slow growth (n = 13,671, 28.7%), normal growth (n = 29,736, 62.4%), and rapid growth (n = 4218, 8.9%). Multinomial logistic regression models were used to determine the associations of prenatal PM2.5 exposure and childhood growth trajectories. Compared to normal growth trajectory, increased PM2.5 exposure in trimester 1, trimester 2 and the entire pregnancy showed significant associations with an increased risk of the slow growth trajectory but reduced the risk for the rapid growth trajectory, significant association of prenatal PM2.5 exposure with rapid growth trajectory was only observed in the trimester 3. Stratified analyses displayed relatively stronger associations among those mothers with maternal age over 35 years, pre-pregnancy BMI ≥ 25 kg/m2, and previous delivery experience. Prenatal exposure to PM2.5, particularly during the midpoint period of pregnancy, was more likely to have a slow growth trajectory and a lower risk of rapid growth trajectory. Maternal age, pre-pregnancy BMI, and previous delivery experience might modify these associations.
Collapse
Affiliation(s)
- Yafei Tan
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, No. 100 Xianggang Road, Jiangan District, Wuhan, 430016, Hubei, China
| | - Dan Zhang
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, No. 100 Xianggang Road, Jiangan District, Wuhan, 430016, Hubei, China
| | - Pei Xiao
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, No. 100 Xianggang Road, Jiangan District, Wuhan, 430016, Hubei, China
| | - Xiaohui Chen
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, No. 100 Xianggang Road, Jiangan District, Wuhan, 430016, Hubei, China
| | - Yan Zhang
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, No. 100 Xianggang Road, Jiangan District, Wuhan, 430016, Hubei, China
| | - Chang Peng
- School of Public Health, Chongqing Medical University, Yuzhong District, No. 1 Yixueyuan Road, Chongqing, 400016, China
| | - Anna Peng
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, No. 100 Xianggang Road, Jiangan District, Wuhan, 430016, Hubei, China.
| |
Collapse
|
4
|
Chen Y, Kuang T, Zhang T, Cai S, Colombo J, Harper A, Han TL, Xia Y, Gulliver J, Hansell A, Zhang H, Baker P. Associations of air pollution exposures in preconception and pregnancy with birth outcomes and infant neurocognitive development: analysis of the Complex Lipids in Mothers and Babies (CLIMB) prospective cohort in Chongqing, China. BMJ Open 2024; 14:e082475. [PMID: 38960456 PMCID: PMC11227797 DOI: 10.1136/bmjopen-2023-082475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/06/2024] [Indexed: 07/05/2024] Open
Abstract
OBJECTIVES To investigate the associations of traffic-related air pollution exposures in early pregnancy with birth outcomes and infant neurocognitive development. DESIGN Cohort study. SETTING Eligible women attended six visits in the maternity clinics of two centres, the First Affiliated Hospital of Chongqing Medical University and Chongqing Health Centre for Women and Children. PARTICIPANTS Women who were between 20 and 40 years of age and were at 11-14 weeks gestation with a singleton pregnancy were eligible for participation. Women were excluded if they had a history of premature delivery before 32 weeks of gestation, maternal milk allergy or aversion or severe lactose intolerance. 1273 pregnant women enrolled in 2015-2016 and 1174 live births were included in this analysis. EXPOSURES Air pollution concentrations at their home addresses, including particulate matter with diameter ≤2.5 µm (PM2.5) and nitrogen dioxide (NO2), during pre-conception and each trimester period were estimated using land-use regression models. OUTCOME MEASURES Birth outcomes (ie, birth weight, birth length, preterm birth, low birth weight, large for gestational age and small for gestational age (SGA) status) and neurodevelopment outcomes measured by the Chinese version of Bayley Scales of Infant Development. RESULTS An association between SGA and per-IQR increases in NO2 was found in the first trimester (OR: 1.57, 95% CI: 1.06 to 2.32) and during the whole pregnancy (OR: 1.33, 99% CI: 1.01 to 1.75). Both PM2.5 and NO2 exposure in the 90 days prior to conception were associated with lower Psychomotor Development Index scores (β: -6.15, 95% CI: -8.84 to -3.46; β: -2.83, 95% CI: -4.27 to -1.39, respectively). Increased NO2 exposure was associated with an increased risk of psychomotor development delay during different trimesters of pregnancy. CONCLUSIONS Increased exposures to NO2 during pregnancy were associated with increased risks of SGA and psychomotor development delay, while increased exposures to both PM2.5 and NO2 pre-conception were associated with adverse psychomotor development outcomes at 12 months of age. TRIAL REGISTRATION NUMBER ChiCTR-IOR-16007700.
Collapse
Affiliation(s)
- Yingxin Chen
- Centre for Environmental Health and Sustainability, University of Leicester, Leicester, UK
| | - Tao Kuang
- Department of Public Health and Management, Zunyi Medical and Pharmaceutical College, Zunyi, China
| | - Ting Zhang
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Samuel Cai
- Department of Health Sciences, University of Leicester, Leicester, Leicestershire, UK
| | | | | | - Ting-Li Han
- University of Auckland Liggins Institute, Auckland, New Zealand
- Canada - China -New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing, China
| | - Yinyin Xia
- School of Public Health, Chongqing Medical University, Chongqing, China
| | | | - Anna Hansell
- Centre for Environmental Health and Sustainability, University of Leicester, Leicester, UK
| | - Hua Zhang
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Philip Baker
- College of Medicine, University of Leicester, Leicester, UK
| |
Collapse
|
5
|
Leung M, Weisskopf MG, Modest AM, Hacker MR, Iyer HS, Hart JE, Wei Y, Schwartz J, Coull BA, Laden F, Papatheodorou S. Using Parametric g-Computation for Time-to-Event Data and Distributed Lag Models to Identify Critical Exposure Windows for Preterm Birth: An Illustrative Example Using PM2.5 in a Retrospective Birth Cohort Based in Eastern Massachusetts (2011-2016). ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:77002. [PMID: 38995210 PMCID: PMC11243950 DOI: 10.1289/ehp13891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 04/18/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024]
Abstract
BACKGROUND Parametric g-computation is an attractive analytic framework to study the health effects of air pollution. Yet, the ability to explore biologically relevant exposure windows within this framework is underdeveloped. OBJECTIVES We outline a novel framework for how to incorporate complex lag-responses using distributed lag models (DLMs) into parametric g-computation analyses for survival data. We call this approach "g-survival-DLM" and illustrate its use examining the association between PM 2.5 during pregnancy and the risk of preterm birth (PTB). METHODS We applied the g-survival-DLM approach to estimate the hypothetical static intervention of reducing average PM 2.5 in each gestational week by 20% on the risk of PTB among 9,403 deliveries from Beth Israel Deaconess Medical Center, Boston, Massachusetts, 2011-2016. Daily PM 2.5 was taken from a 1 -km grid model and assigned to address at birth. Models were adjusted for sociodemographics, time trends, nitrogen dioxide, and temperature. To facilitate implementation, we provide a detailed description of the procedure and accompanying R syntax. RESULTS There were 762 (8.1%) PTBs in this cohort. The gestational week-specific median PM 2.5 concentration was relatively stable across pregnancy at ∼ 7 μ g / m 3 . We found that our hypothetical intervention strategy changed the cumulative risk of PTB at week 36 (i.e., the end of the preterm period) by - 0.009 (95% confidence interval: - 0.034 , 0.007) in comparison with the scenario had we not intervened, which translates to about 86 fewer PTBs in this cohort. We also observed that the critical exposure window appeared to be weeks 5-20. DISCUSSION We demonstrate that our g-survival-DLM approach produces easier-to-interpret, policy-relevant estimates (due to the g-computation); prevents immortal time bias (due to treating PTB as a time-to-event outcome); and allows for the exploration of critical exposure windows (due to the DLMs). In our illustrative example, we found that reducing fine particulate matter [particulate matter (PM) with aerodynamic diameter ≤ 2.5 μ m (PM 2.5 )] during gestational weeks 5-20 could potentially lower the risk of PTB. https://doi.org/10.1289/EHP13891.
Collapse
Affiliation(s)
- Michael Leung
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Marc G Weisskopf
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Anna M Modest
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Michele R Hacker
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Hari S Iyer
- Section of Cancer Epidemiology and Health Outcomes, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Jaime E Hart
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Yaguang Wei
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Brent A Coull
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Francine Laden
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Stefania Papatheodorou
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, New Brunswick, New Jersey, USA
| |
Collapse
|
6
|
Ahn TG, Kim YJ, Lee G, You YA, Kim SM, Chae R, Hur YM, Park MH, Bae JG, Lee SJ, Kim YH, Na S. Association Between Individual Air Pollution (PM 10, PM 2.5) Exposure and Adverse Pregnancy Outcomes in Korea: A Multicenter Prospective Cohort, Air Pollution on Pregnancy Outcome (APPO) Study. J Korean Med Sci 2024; 39:e131. [PMID: 38599601 PMCID: PMC11004777 DOI: 10.3346/jkms.2024.39.e131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 03/05/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Prenatal exposure to ambient air pollution is linked to a higher risk of unfavorable pregnancy outcomes. However, the association between pregnancy complications and exposure to indoor air pollution remains unclear. The Air Pollution on Pregnancy Outcomes research is a hospital-based prospective cohort research created to look into the effects of aerodynamically exposed particulate matter (PM)10 and PM2.5 on pregnancy outcomes. METHODS This prospective multicenter observational cohort study was conducted from January 2021 to June 2023. A total of 662 women with singleton pregnancies enrolled in this study. An AirguardK® air sensor was installed inside the homes of the participants to measure the individual PM10 and PM2.5 levels in the living environment. The time-activity patterns and PM10 and PM2.5, determined as concentrations from the time-weighted average model, were applied to determine the anticipated exposure levels to air pollution of each pregnant woman. The relationship between air pollution exposure and pregnancy outcomes was assessed using logistic and linear regression analyses. RESULTS Exposure to elevated levels of PM10 throughout the first, second, and third trimesters as well as throughout pregnancy was strongly correlated with the risk of pregnancy problems according to multiple logistic regression models adjusted for variables. Except for in the third trimester of pregnancy, women exposed to high levels of PM2.5 had a high risk of pregnancy complications. During the second trimester and entire pregnancy, the risk of preterm birth (PTB) increased by 24% and 27%, respectively, for each 10 μg/m3 increase in PM10. Exposure to high PM10 levels during the second trimester increased the risk of gestational diabetes mellitus (GDM) by 30%. The risk of GDM increased by 15% for each 5 μg/m3 increase in PM2.5 during the second trimester and overall pregnancy, respectively. Exposure to high PM10 and PM2.5 during the first trimester of pregnancy increased the risk of delivering small for gestational age (SGA) infants by 96% and 26%, respectively. CONCLUSION Exposure to high concentrations of PM10 and PM2.5 is strongly correlated with the risk of adverse pregnancy outcomes. Exposure to high levels of PM10 and PM2.5 during the second trimester and entire pregnancy, respectively, significantly increased the risk of PTB and GDM. Exposure to high levels of PM10 and PM2.5 during the first trimester of pregnancy considerably increased the risk of having SGA infants. Our findings highlight the need to measure individual particulate levels during pregnancy and the importance of managing air quality in residential environment.
Collapse
Affiliation(s)
- Tae Gyu Ahn
- Department of Obstetrics and Gynecology, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Young Ju Kim
- Department of Obstetrics and Gynecology, Ewha Womans University Mokdong Hospital, Ewha Medical Research Institute College of Medicine, Seoul, Korea
| | - Gain Lee
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, Korea
| | - Young-Ah You
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Womans University, Seoul, Korea
| | - Soo Min Kim
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, Korea
| | - Rin Chae
- Division of Artificial Intelligence and Software/Artificial Intelligence Convergence, Ewha Womans University, Seoul, Korea
| | - Young Min Hur
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Womans University, Seoul, Korea
| | - Mi Hye Park
- Department of Obstetrics and Gynecology, Ewha Womans University Seoul Hospital, Seoul, Korea
| | - Jin-Gon Bae
- Department of Obstetrics and Gynecology, School of Medicine, Keimyung University, Dongsan Medical Center, Daegu, Korea
| | - Soo-Jeong Lee
- Department of Obstetrics and Gynecology, University of Ulsan College of Medicine, Ulsan University Hospital, Ulsan, Korea
| | - Young-Han Kim
- Department of Obstetrics and Gynecology, Severance Hospital, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Korea.
| | - Sunghun Na
- Department of Obstetrics and Gynecology, Kangwon National University School of Medicine, Chuncheon, Korea.
| |
Collapse
|
7
|
Fussell JC, Jauniaux E, Smith RB, Burton GJ. Ambient air pollution and adverse birth outcomes: A review of underlying mechanisms. BJOG 2024; 131:538-550. [PMID: 38037459 PMCID: PMC7615717 DOI: 10.1111/1471-0528.17727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023]
Abstract
Epidemiological data provide varying degrees of evidence for associations between prenatal exposure to ambient air pollutants and adverse birth outcomes (suboptimal measures of fetal growth, preterm birth and stillbirth). To assess further certainty of effects, this review examines the experimental literature base to identify mechanisms by which air pollution (particulate matter, nitrogen dioxide and ozone) could cause adverse effects on the developing fetus. It likely that this environmental insult impacts multiple biological pathways important for sustaining a healthy pregnancy, depending upon the composition of the pollutant mixture and the exposure window owing to changes in physiologic maturity of the placenta, its circulations and the fetus as pregnancy ensues. The current body of evidence indicates that the placenta is a target tissue, impacted by a variety of critical processes including nitrosative/oxidative stress, inflammation, endocrine disruption, epigenetic changes, as well as vascular dysregulation of the maternal-fetal unit. All of the above can disturb placental function and, as a consequence, could contribute to compromised fetal growth as well increasing the risk of stillbirth. Furthermore, given that there is often an increased inflammatory response associated with preterm labour, inflammation is a plausible mechanism mediating the effects of air pollution on premature delivery. In the light of increased urbanisation and an ever-changing climate, both of which increase ambient air pollution and negatively affect vulnerable populations such as pregnant individuals, it is hoped that the collective evidence may contribute to decisions taken to strengthen air quality policies, reductions in exposure to air pollution and subsequent improvements in the health of those not yet born.
Collapse
Affiliation(s)
- Julia C. Fussell
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
- National Institute for Health and Care Research Health Protection Research Unit in Environmental Exposures and Health, Imperial College London, London, United Kingdom
| | - Eric Jauniaux
- EGA Institute for Women's Health, Faculty of Population Health Sciences, University College London, London, UK
| | - Rachel B. Smith
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
- National Institute for Health and Care Research Health Protection Research Unit in Environmental Exposures and Health, Imperial College London, London, United Kingdom
- Mohn Centre for Children’s Health and Wellbeing, School of Public Health, Imperial College London, London, UK
| | - Graham J. Burton
- Department of Physiology, Development and Neuroscience, University of Cambridge
| |
Collapse
|
8
|
Nyadanu SD, Dunne J, Tessema GA, Mullins B, Kumi-Boateng B, Bell ML, Duko B, Pereira G. Maternal exposure to ambient air temperature and adverse birth outcomes: An umbrella review of systematic reviews and meta-analyses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170236. [PMID: 38272077 DOI: 10.1016/j.scitotenv.2024.170236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/28/2023] [Accepted: 01/15/2024] [Indexed: 01/27/2024]
Abstract
BACKGROUND Multiple systematic reviews on prenatal ambient temperature and adverse birth outcomes exist, but the overall epidemiological evidence and the appropriate metric for thermal stress remain unclear. An umbrella review was performed to summarise and appraise the evidence with recommendations. METHODS Systematic reviews and meta-analyses on the associations between ambient temperature and adverse birth outcomes (preterm birth, stillbirth, birth weight, low birth weight, and small for gestational age) up to December 20, 2023, were synthesised according to a published protocol. Databases PubMed, CINAHL, Scopus, MEDLINE/Ovid, EMBASE/Ovid, Web of Science Core Collection, systematic reviews repositories, electronic grey literature, and references were searched. Risk of bias was assessed using Joanna Briggs Institute's critical appraisal tool. RESULTS Eleven systematic reviews, including two meta-analyses, were included. This comprised 90 distinct observational studies that employed multiple temperature assessment metrics with a very high overlap of primary studies. Primary studies were mostly from the United States while both Africa and South Asia contributed only three studies. A majority (7 out of 11) of the systematic reviews were rated as moderate risk of bias. All systematic reviews indicated that maternal exposures to both extremely high and low temperatures, particularly during late gestation are associated with increased risks of preterm birth, stillbirth, and reduced fetal growth. However, due to great differences in the exposure assessments, high heterogeneity, imprecision, and methodological limitations of the included systematic reviews, the overall epidemiological evidence was classified as probable evidence of causation. No study assessed biothermal metrics for thermal stress. CONCLUSIONS Despite the notable methodological differences, prenatal exposure to extreme ambient temperatures, particularly during late pregnancy, was associated with adverse birth outcomes. Adhering to the appropriate systematic review guidelines for environmental health research, incorporating biothermal metrics into exposure assessment, evidence from broader geodemographic settings, and interventions are recommended in future studies.
Collapse
Affiliation(s)
- Sylvester Dodzi Nyadanu
- Curtin School of Population Health, Curtin University, Perth, Kent Street, Bentley, Western Australia 6102, Australia; Education, Culture, and Health Opportunities (ECHO) Ghana, ECHO Research Group International, P. O. Box 424, Aflao, Ghana.
| | - Jennifer Dunne
- Curtin School of Population Health, Curtin University, Perth, Kent Street, Bentley, Western Australia 6102, Australia
| | - Gizachew A Tessema
- Curtin School of Population Health, Curtin University, Perth, Kent Street, Bentley, Western Australia 6102, Australia; School of Public Health, University of Adelaide, Adelaide, South Australia 5000, Australia
| | - Ben Mullins
- Curtin School of Population Health, Curtin University, Perth, Kent Street, Bentley, Western Australia 6102, Australia
| | - Bernard Kumi-Boateng
- Department of Geomatic Engineering, University of Mines and Technology, P. O. Box 237, Tarkwa, Ghana
| | - Michelle L Bell
- School of the Environment, Yale University, New Haven, CT 06511, USA
| | - Bereket Duko
- Curtin School of Population Health, Curtin University, Perth, Kent Street, Bentley, Western Australia 6102, Australia
| | - Gavin Pereira
- Curtin School of Population Health, Curtin University, Perth, Kent Street, Bentley, Western Australia 6102, Australia; enAble Institute, Curtin University, Perth, Kent Street, Bentley, Western Australia 6102, Australia; WHO Collaborating Centre for Climate Change and Health Impact Assessment, Faculty of Health Science, Curtin University, WA, Australia
| |
Collapse
|
9
|
Saddiki H, Zhang X, Colicino E, Wilson A, Kloog I, Wright RO, Wright RJ, Lesseur C. DNA methylation profiles reveal sex-specific associations between gestational exposure to ambient air pollution and placenta cell-type composition in the PRISM cohort study. Clin Epigenetics 2023; 15:188. [PMID: 38041176 PMCID: PMC10693032 DOI: 10.1186/s13148-023-01601-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/13/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Gestational exposure to ambient air pollution has been associated with adverse health outcomes for mothers and newborns. The placenta is a central regulator of the in utero environment that orchestrates development and postnatal life via fetal programming. Ambient air pollution contaminants can reach the placenta and have been shown to alter bulk placental tissue DNA methylation patterns. Yet the effect of air pollution on placental cell-type composition has not been examined. We aimed to investigate whether the exposure to ambient air pollution during gestation is associated with placental cell types inferred from DNA methylation profiles. METHODS We leveraged data from 226 mother-infant pairs in the Programming of Intergenerational Stress Mechanisms (PRISM) longitudinal cohort in the Northeastern US. Daily concentrations of fine particulate matter (PM2.5) at 1 km spatial resolution were estimated from a spatiotemporal model developed with satellite data and linked to womens' addresses during pregnancy and infants' date of birth. The proportions of six cell types [syncytiotrophoblasts, trophoblasts, stromal, endothelial, Hofbauer and nucleated red blood cells (nRBCs)] were derived from placental tissue 450K DNA methylation array. We applied compositional regression to examine overall changes in placenta cell-type composition related to PM2.5 average by pregnancy trimester. We also investigated the association between PM2.5 and individual cell types using beta regression. All analyses were performed in the overall sample and stratified by infant sex adjusted for covariates. RESULTS In male infants, first trimester (T1) PM2.5 was associated with changes in placental cell composition (p = 0.03), driven by a decrease [per one PM2.5 interquartile range (IQR)] of 0.037 in the syncytiotrophoblasts proportion (95% confidence interval (CI) [- 0.066, - 0.012]), accompanied by an increase in trophoblasts of 0.033 (95% CI: [0.009, 0.064]). In females, second and third trimester PM2.5 were associated with overall changes in placental cell-type composition (T2: p = 0.040; T3: p = 0.049), with a decrease in the nRBC proportion. Individual cell-type analysis with beta regression showed similar results with an additional association found for third trimester PM2.5 and stromal cells in females (decrease of 0.054, p = 0.024). CONCLUSION Gestational exposure to air pollution was associated with placenta cell composition. Further research is needed to corroborate these findings and evaluate their role in PM2.5-related impact in the placenta and consequent fetal programming.
Collapse
Affiliation(s)
- Hachem Saddiki
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1057, New York, NY, 10029, USA
| | - Xueying Zhang
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1057, New York, NY, 10029, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, The Kravis Children's Hospital, New York, NY, USA
- Institute of Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elena Colicino
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1057, New York, NY, 10029, USA
- Institute of Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ander Wilson
- Department of Statistics, Colorado State University, Fort Collins, CO, USA
| | - Itai Kloog
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1057, New York, NY, 10029, USA
- Department of Geography and Environmental Development, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1057, New York, NY, 10029, USA
- Institute of Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rosalind J Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1057, New York, NY, 10029, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, The Kravis Children's Hospital, New York, NY, USA
- Institute of Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Corina Lesseur
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1057, New York, NY, 10029, USA.
- Institute of Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
10
|
Nyadanu SD, Tessema GA, Mullins B, Chai K, Yitshak-Sade M, Pereira G. Critical Windows of Maternal Exposure to Biothermal Stress and Birth Weight for Gestational Age in Western Australia. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:127017. [PMID: 38149876 PMCID: PMC10752220 DOI: 10.1289/ehp12660] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 10/05/2023] [Accepted: 11/29/2023] [Indexed: 12/28/2023]
Abstract
BACKGROUND There is limited and inconsistent evidence on the risk of ambient temperature on small for gestational age (SGA) and there are no known related studies for large for gestational age (LGA). In addition, previous studies used temperature rather than a biothermal metric. OBJECTIVES Our aim was to examine the associations and critical susceptible windows of maternal exposure to a biothermal metric [Universal Thermal Climate Index (UTCI)] and the hazards of SGA and LGA. METHODS We linked 385,337 singleton term births between 1 January 2000 and 31 December 2015 in Western Australia to daily spatiotemporal UTCI. Distributed lag nonlinear models with Cox regression and multiple models were used to investigate maternal exposure to UTCI from 12 weeks preconception to birth and the adjusted hazard ratios (HRs) of SGA and LGA. RESULTS Relative to the median exposure, weekly and monthly specific exposures showed potential critical windows of susceptibility for SGA and LGA at extreme exposures, especially during late gestational periods. Monthly exposure showed strong positive associations from the 6th to the 10th gestational months with the highest hazard of 13% for SGA (HR = 1.13 ; 95% CI: 1.10, 1.14) and 7% for LGA (HR = 1.07 ; 95% CI: 1.03, 1.11) at the 10th month for the 1st UTCI centile. Entire pregnancy exposures showed the strongest hazards of 11% for SGA (HR = 1.11 ; 95% CI: 1.04, 1.18) and 3% for LGA (HR = 1.03 ; 95% CI: 0.95, 1.11) at the 99th UTCI centile. By trimesters, the highest hazards were found during the second and first trimesters for SGA and LGA, respectively, at the 99th UTCI centile. Based on estimated interaction effects, male births, mothers who were non-Caucasian, smokers, ≥ 35 years of age, and rural residents were most vulnerable. CONCLUSIONS Both weekly and monthly specific extreme biothermal stress exposures showed potential critical susceptible windows of SGA and LGA during late gestational periods with disproportionate sociodemographic vulnerabilities. https://doi.org/10.1289/EHP12660.
Collapse
Affiliation(s)
- Sylvester Dodzi Nyadanu
- Curtin School of Population Health, Curtin University, Perth, Bentley, Western Australia, Australia
- Education, Culture, and Health Opportunities (ECHO) Ghana, ECHO Research Group International, Aflao, Ghana
| | - Gizachew A. Tessema
- Curtin School of Population Health, Curtin University, Perth, Bentley, Western Australia, Australia
- School of Public Health, University of Adelaide, Adelaide, South Australia, Australia
- enAble Institute, Curtin University, Perth, Bentley, Western Australia, Australia
| | - Ben Mullins
- Curtin School of Population Health, Curtin University, Perth, Bentley, Western Australia, Australia
| | - Kevin Chai
- Curtin School of Population Health, Curtin University, Perth, Bentley, Western Australia, Australia
| | - Maayan Yitshak-Sade
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Gavin Pereira
- Curtin School of Population Health, Curtin University, Perth, Bentley, Western Australia, Australia
- enAble Institute, Curtin University, Perth, Bentley, Western Australia, Australia
- World Health Organization Collaborating Centre for Environmental Health Impact Assessment, Faculty of Health Science, Curtin University, Bentley, Western Australia, Australia
| |
Collapse
|
11
|
Chang YC, Lin YT, Jung CR, Chen KW, Hwang BF. Maternal exposure to fine particulate matter and congenital heart defects during preconception and pregnancy period: A cohort-based case-control study in the Taiwan maternal and child health database. ENVIRONMENTAL RESEARCH 2023; 231:116154. [PMID: 37187309 DOI: 10.1016/j.envres.2023.116154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/21/2023] [Accepted: 05/13/2023] [Indexed: 05/17/2023]
Abstract
BACKGROUND Few studies have explored the association between maternal exposure to particulate matter with an aerodynamic diameter of ≤2.5 μm (PM2.5) and congenital heart defects occurring before and during pregnancy. We aimed to investigate the association and the critical time windows between the maternal exposure to PM2.5 and congenital heart defects. METHOD We conducted a cohort-based case-control study of 507,960 participants obtained from the Taiwan Maternal and Child Health Database between 2004 and 2015. We applied satellite-based spatiotemporal models with 1-km resolution to calculate the average PM2.5 concentration during preconception and the specific periods of pregnancy. We also performed conditional logistic regression with distributed lag non-linear models (DLNMs) to assess the effects of weekly average PM2.5 on both congenital heart defects and their isolated subtypes, as well as the concentration-response relationships. RESULTS In DLNMs, exposure to PM2.5 (per 10 μg/m3) during weeks 7-12 before conception and weeks 3-9 after conception was associated with congenital heart defects. The strongest association at 12 weeks before conception (odds ratio [OR] = 1.026, 95% confidence intervals [CI]: 1.012-1.040) and 7 weeks after conception (OR = 1.024, 95% CI: 1.012-1.036) for every 10 μg/m3 increase in PM2.5 concentration. In modification analysis, strongest associations were observed for low SES. CONCLUSIONS Our study revealed that exposure to ambient PM2.5 raises the risk of congenital heart defects, particularly among individuals with lower socioeconomic status. Moreover, our findings suggest that preconception exposure to PM2.5 may be a crucial period for the development of congenital heart defects.
Collapse
Affiliation(s)
- Ya-Chu Chang
- Department of Occupational Safety and Health, College of Public Health, China Medical University, Taichung, Taiwan
| | - Yu-Ting Lin
- Big Data Center, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| | - Chau-Ren Jung
- Department of Public Health, College of Public Health, China Medical University, Taichung, Taiwan; Japan Environment and Children's Study Programme Office, Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba, Japan
| | - Ke-Wei Chen
- Division of Cardiovascular Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Bing-Fang Hwang
- Department of Occupational Safety and Health, College of Public Health, China Medical University, Taichung, Taiwan; Department of Occupational Therapy, College of Medical and Health Science, Asia University, Taichung, Taiwan.
| |
Collapse
|
12
|
Liu F, Liu C, Liu Y, Wang J, Wang Y, Yan B. Neurotoxicity of the air-borne particles: From molecular events to human diseases. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131827. [PMID: 37315411 DOI: 10.1016/j.jhazmat.2023.131827] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/26/2023] [Accepted: 06/08/2023] [Indexed: 06/16/2023]
Abstract
Exposure to PM2.5 is associated with an increased incidence of CNS diseases in humans, as confirmed by numerous epidemiological studies. Animal models have demonstrated that PM2.5 exposure can damage brain tissue, neurodevelopmental issues and neurodegenerative diseases. Both animal and human cell models have identified oxidative stress and inflammation as the primary toxic effects of PM2.5 exposure. However, understanding how PM2.5 modulates neurotoxicity has proven challenging due to its complex and variable composition. This review aims to summarize the detrimental effects of inhaled PM2.5 on the CNS and the limited understanding of its underlying mechanism. It also highlights new frontiers in addressing these issues, such as modern laboratory and computational techniques and chemical reductionism tactics. By utilizing these approaches, we aim to fully elucidate the mechanism of PM2.5-induced neurotoxicity, treat associated diseases, and ultimately eliminate pollution.
Collapse
Affiliation(s)
- Fang Liu
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, Jinan, Shandong 250014, China
| | - Chunyan Liu
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, Jinan, Shandong 250014, China
| | - Yin Liu
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Jiahui Wang
- College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yibing Wang
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, Jinan, Shandong 250014, China.
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
13
|
Liu J, Dai Y, Yuan J, Li R, Hu Y, Su Y. Does exposure to air pollution during different time windows affect pregnancy outcomes of in vitro fertilization treatment? A systematic review and meta-analysis. CHEMOSPHERE 2023:139076. [PMID: 37271467 DOI: 10.1016/j.chemosphere.2023.139076] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/21/2023] [Accepted: 05/28/2023] [Indexed: 06/06/2023]
Abstract
Few researches have examined the impact of air pollution exposure during various time windows on clinical outcomes in women receiving in vitro fertilization (IVF) therapy, and the findings of studies have been conflicting. We investigated the effects of six air pollutants exposure during different time windows (period 1, 85 days before egg retrieval to the beginning of gonadotropin; period 2, the beginning of gonadotropin to egg collection; period 3, egg collection to embryo transfer; period 4, embryo transfer to serum hCG measurement; period 5, serum hCG measurement to transvaginal ultrasonography; period 6, 85 days before egg retrieval to hCG measurement; period 7, 85 days before egg retrieval to transvaginal ultrasonography) on clinical outcomes of IVF therapy. A total of seven databases were searched. NO2 (period 6), SO2 (period 2, 3, and 7), CO (period 1, 2 and 7) exposure were linked to lower likelihoods of clinical pregnancy. PM2.5 (period 1), PM10 (period 1), SO2 (period 1, 2, 3, 4, and 6), NO2 (period 1) were linked to lower likelihoods of biochemical pregnancy. PM2.5 (period 1), SO2 (period 2 and 4) and CO (period 2) were linked to reduced probabilities of live birth. Our results implied that period 1 might be the most sensitive exposure window. Air pollution exposure is linked to reduced probabilities of clinical pregnancy, biochemical pregnancy, and live birth. Therefore, preventive measures to limit air pollution exposure should be started at least three months in advance of IVF therapy to improve pregnancy outcomes.
Collapse
Affiliation(s)
- Junjie Liu
- Henan Human Sperm Bank, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Yanpeng Dai
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiayi Yuan
- The Neonatal Screening Center in Henan Province, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Runqing Li
- The Neonatal Screening Center in Henan Province, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yaolong Hu
- Henan Human Sperm Bank, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanhua Su
- Henan Human Sperm Bank, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
14
|
Bongaerts E, Nawrot TS, Wang C, Ameloot M, Bové H, Roeffaers MB, Chavatte-Palmer P, Couturier-Tarrade A, Cassee FR. Placental-fetal distribution of carbon particles in a pregnant rabbit model after repeated exposure to diluted diesel engine exhaust. Part Fibre Toxicol 2023; 20:20. [PMID: 37202804 DOI: 10.1186/s12989-023-00531-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 05/06/2023] [Indexed: 05/20/2023] Open
Abstract
BACKGROUND Airborne pollution particles have been shown to translocate from the mother's lung to the fetal circulation, but their distribution and internal placental-fetal tissue load remain poorly explored. Here, we investigated the placental-fetal load and distribution of diesel engine exhaust particles during gestation under controlled exposure conditions using a pregnant rabbit model. Pregnant dams were exposed by nose-only inhalation to either clean air (controls) or diluted and filtered diesel engine exhaust (1 mg/m3) for 2 h/day, 5 days/week, from gestational day (GD) 3 to GD27. At GD28, placental and fetal tissues (i.e., heart, kidney, liver, lung and gonads) were collected for biometry and to study the presence of carbon particles (CPs) using white light generation by carbonaceous particles under femtosecond pulsed laser illumination. RESULTS CPs were detected in the placenta, fetal heart, kidney, liver, lung and gonads in significantly higher amounts in exposed rabbits compared with controls. Through multiple factor analysis, we were able to discriminate the diesel engine exposed pregnant rabbits from the control group taking all variables related to fetoplacental biometry and CP load into consideration. Our findings did not reveal a sex effect, yet a potential interaction effect might be present between exposure and fetal sex. CONCLUSIONS The results confirmed the translocation of maternally inhaled CPs from diesel engine exhaust to the placenta which could be detected in fetal organs during late-stage pregnancy. The exposed can be clearly discriminated from the control group with respect to fetoplacental biometry and CP load. The differential particle load in the fetal organs may contribute to the effects on fetoplacental biometry and to the malprogramming of the fetal phenotype with long-term effects later in life.
Collapse
Affiliation(s)
- Eva Bongaerts
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium.
- Department of Public Health and Primary Care, KU Leuven, Kapucijnenvoer 35 blok d-box 7001, Leuven, 3000, Belgium.
| | - Congrong Wang
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Marcel Ameloot
- Biomedical Research Institute, Hasselt University, Agoralaan Building C, Diepenbeek, 3590, Belgium
| | - Hannelore Bové
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Maarten Bj Roeffaers
- Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan, Leuven, 200F-box 2454, 3001, Belgium
| | - Pascale Chavatte-Palmer
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, 78350, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Misons-Alfort, 94700, France
| | - Anne Couturier-Tarrade
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, 78350, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Misons-Alfort, 94700, France
| | - Flemming R Cassee
- National Institute for Public Health and the Environment, RIVM, PObox1, Bilthoven, 3720 BA, the Netherlands
- Institute for Risk Assessment Sciences, Division Toxicology, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
15
|
Bos B, Barratt B, Batalle D, Gale-Grant O, Hughes EJ, Beevers S, Cordero-Grande L, Price AN, Hutter J, Hajnal JV, Kelly FJ, David Edwards A, Counsell SJ. Prenatal exposure to air pollution is associated with structural changes in the neonatal brain. ENVIRONMENT INTERNATIONAL 2023; 174:107921. [PMID: 37058974 PMCID: PMC10410199 DOI: 10.1016/j.envint.2023.107921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/23/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Prenatal exposure to air pollution is associated with adverse neurologic consequences in childhood. However, the relationship between in utero exposure to air pollution and neonatal brain development is unclear. METHODS We modelled maternal exposure to nitrogen dioxide (NO2) and particulate matter (PM2.5 and PM10) at postcode level between date of conception to date of birth and studied the effect of prenatal air pollution exposure on neonatal brain morphology in 469 (207 male) healthy neonates, with gestational age of ≥36 weeks. Infants underwent MR neuroimaging at 3 Tesla at 41.29 (36.71-45.14) weeks post-menstrual age (PMA) as part of the developing human connectome project (dHCP). Single pollutant linear regression and canonical correlation analysis (CCA) were performed to assess the relationship between air pollution and brain morphology, adjusting for confounders and correcting for false discovery rate. RESULTS Higher exposure to PM10 and lower exposure to NO2 was strongly canonically correlated to a larger relative ventricular volume, and moderately associated with larger relative size of the cerebellum. Modest associations were detected with higher exposure to PM10 and lower exposure to NO2 and smaller relative cortical grey matter and amygdala and hippocampus, and larger relaive brainstem and extracerebral CSF volume. No associations were found with white matter or deep grey nuclei volume. CONCLUSIONS Our findings show that prenatal exposure to air pollution is associated with altered brain morphometry in the neonatal period, albeit with opposing results for NO2 and PM10. This finding provides further evidence that reducing levels of maternal exposure to particulate matter during pregnancy should be a public health priority and highlights the importance of understanding the impacts of air pollution on this critical development window.
Collapse
Affiliation(s)
- Brendan Bos
- MRC Centre for Environment and Health, Imperial College London, UK
| | - Ben Barratt
- MRC Centre for Environment and Health, Imperial College London, UK
| | - Dafnis Batalle
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK; Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Oliver Gale-Grant
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK; Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Emer J Hughes
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Sean Beevers
- MRC Centre for Environment and Health, Imperial College London, UK
| | - Lucilio Cordero-Grande
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK; Biomedical Image Technologies, ETSI Telecomunicación, Universidad Politécnica de Madrid and CIBER-BBN, Madrid, Spain
| | - Anthony N Price
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Jana Hutter
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Joseph V Hajnal
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Frank J Kelly
- MRC Centre for Environment and Health, Imperial College London, UK
| | - A David Edwards
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Serena J Counsell
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK.
| |
Collapse
|
16
|
Li C, Xu JJ, Zhou FY, Ge YZ, Qin KZ, Huang HF, Wu YT. Effects of Particulate Matter on the Risk of Gestational Hypertensive Disorders and Their Progression. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4930-4939. [PMID: 36913485 PMCID: PMC10061918 DOI: 10.1021/acs.est.2c06573] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Associations between particulate matter (PM) and gestational hypertensive disorders (GHDs) are well documented, but there is no evidence on the associations between PM and GHD progression, especially among those with assisted reproductive technology (ART) conceptions. To explore the effects of PM on the risk of GHDs and their progression among pregnant women with natural or ART conception, we enrolled 185,140 pregnant women during 2014-2020 in Shanghai and estimated the associations during different periods using multivariate logistic regression. During the 3 months of preconception, 10 μg/m3 increases in PM concentrations were associated with increased risks of gestational hypertension (GH) (PM2.5: aOR = 1.076, 95% CI: 1.034-1.120; PM10: aOR = 1.042, 95% CI: 1.006-1.079) and preeclampsia (PM2.5: aOR = 1.064, 95% CI: 1.008-1.122; PM10: aOR = 1.048, 95% CI: 1.006-1.092 ) among women with natural conception. Furthermore, for women with ART conceptions who suffered current GHD, 10 μg/m3 increases in PM concentrations in the third trimester elevated the risk of progression (PM2.5: aOR = 1.156, 95% CI: 1.022-1.306 ; PM10: aOR = 1.134, 95% CI: 1.013-1.270). In summary, women with natural conception should avoid preconceptional PM exposure to protect themselves from GH and preeclampsia. For women with ART conceptions suffering from GHD, it is necessary to avoid PM exposure in late pregnancy to prevent the disease from progressing.
Collapse
Affiliation(s)
- Cheng Li
- Obstetrics
and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200011, China
| | - Jing-Jing Xu
- Obstetrics
and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200011, China
| | - Fang-Yue Zhou
- International
Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Ying-Zhou Ge
- Obstetrics
and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200011, China
| | - Kai-Zhou Qin
- Obstetrics
and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200011, China
| | - He-Feng Huang
- Obstetrics
and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200011, China
- Research
Units of Embryo Original Diseases, Chinese
Academy of Medical Sciences, Shanghai 200011, China
- International
Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yan-Ting Wu
- Obstetrics
and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200011, China
- Research
Units of Embryo Original Diseases, Chinese
Academy of Medical Sciences, Shanghai 200011, China
| |
Collapse
|
17
|
Ke L, Feng G, Zhang Y, Ma X, Zhao B, Sun Y, Dong Z, Xing J, Wang S, Di Q. Causal effects of prenatal and chronic PM 2.5 exposures on cognitive function. ENVIRONMENTAL RESEARCH 2023; 219:115138. [PMID: 36565844 DOI: 10.1016/j.envres.2022.115138] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/08/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Growing evidence indicated an association between PM2.5 exposure and cognitive function, but the causal effect and the cognitive effect of prenatal PM2.5 exposure remain elusive. We obtained 15,099 subjects from a nationally representative sample of China and measured their cognitive performance. We ascertained subjects' prenatal PM2.5 exposure and chronic PM2.5 exposure of the recent two years. Using this national sample, we found that PM2.5 exposure during the mid- to late-pregnancy was significantly associated with declined cognition and income; chronic PM2.5 exposure was also independently associated with cognition and income measured at adulthood with greater magnitude. Negative effect modification was observed between prenatal and chronic PM2.5 exposure. Instrumental variable approach and difference-in-difference study verified causal effects: every 1 μg/m3 increase in prenatal and chronic PM2.5 exposures were causally associated with -0.22% (-0.38%, -0.06%) and -0.17% (-0.31%, -0.03%) changes in cognitive function, respectively. People with low cognition and low income were more vulnerable to PM2.5 exposure with greater cognitive and income decline. In the future, although China's improved air quality continues to benefit people and reduce cognitive decline induced by chronic PM2.5 exposure, high prenatal PM2.5 exposure will continue to hurt the overall cognition of Chinese population, since in total 360 million people were born during the 2000-2020 polluted era. Prenatal PM2.5-induced cognitive decline would remain largely unchanged before 2050 and gradually reduce after 2065, regardless of environmental policy scenarios. The long-lasting cognitive impact of PM2.5 is worth considering while enacting environmental policies.
Collapse
Affiliation(s)
- Limei Ke
- School of Medicine, Tsinghua University, Beijing, 100084, China.
| | - Guoqing Feng
- School of Medicine, Tsinghua University, Beijing, 100084, China.
| | - Yao Zhang
- Soochow College, Soochow University, Suzhou, 215006, China; Division of Sports Science & Physical Education, Tsinghua University, Beijing, 100084, China.
| | - Xindong Ma
- Division of Sports Science & Physical Education, Tsinghua University, Beijing, 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China.
| | - Bin Zhao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of environment, Tsinghua University, Beijing, 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing, 100084, China.
| | - Yisheng Sun
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of environment, Tsinghua University, Beijing, 100084, China.
| | - Zhaoxin Dong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of environment, Tsinghua University, Beijing, 100084, China.
| | - Jia Xing
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of environment, Tsinghua University, Beijing, 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing, 100084, China.
| | - Shuxiao Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of environment, Tsinghua University, Beijing, 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing, 100084, China.
| | - Qian Di
- Vanke School of Public Health, Tsinghua University, Beijing, 100084, China; Institute for Healthy China, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
18
|
Yuan X, Liang F, Zhu J, Huang K, Dai L, Li X, Wang Y, Li Q, Lu X, Huang J, Liao L, Liu Y, Gu D, Liu H, Liu F. Maternal Exposure to PM 2.5 and the Risk of Congenital Heart Defects in 1.4 Million Births: A Nationwide Surveillance-Based Study. Circulation 2023; 147:565-574. [PMID: 36780386 PMCID: PMC9988362 DOI: 10.1161/circulationaha.122.061245] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 12/05/2022] [Indexed: 02/15/2023]
Abstract
BACKGROUND Evidence remains limited about the association of maternal exposure to ambient fine particulate matter (airborne particles with an aerodynamic diameter ≤2.5 µm [PM2.5]) with fetal congenital heart defects (CHDs) in highly polluted regions, and few studies have focused on preconception exposure. METHODS Using a nationwide surveillance-based case-control design in China, we examined the association between maternal exposure to PM2.5 during periconception (defined as 3 months before conception until 3 months into pregnancy) and risk of CHD in offspring. The study included 1 434 998 births involving 7335 CHDs from 2014 through 2017 on the basis of the National Population-Based Birth Defects Surveillance System, covering 30 provinces, municipalities, or municipal districts in China. We assigned maternal PM2.5 exposure during the periconception period to each participant using satellite-based PM2.5 concentrations at 1-km spatial resolution. Multilevel logistic regression models were used to calculate the multivariable-adjusted odds ratio and 95% CI for CHDs in offspring associated with maternal PM2.5 exposure, and the exposure-response association was investigated using restricted cubic spline analysis. Subgroup or sensitivity analyses were conducted to identify factors that may modify the association. RESULTS The average maternal exposure to PM2.5 levels across all participants was 56.51 μg/m3 (range, 10.95 to 182.13 μg/m3). For each 10 μg/m³ increase in maternal PM2.5 exposure, the risk of CHDs in offspring was increased by 2% (odds ratio, 1.02 [95% CI, 1.00 to 1.05]), and septal defect was the most influenced subtype (odds ratio, 1.04 [95% CI, 1.01 to 1.08]). The effect of PM2.5 on CHD risk was more pronounced during the preconception period. Mothers <35 years of age, those living in northern China, and those living in low-income areas were more susceptible to PM2.5 exposure than their counterparts (all P<0.05). PM2.5 exposure showed a linear association with total CHDs or specific CHD types. CONCLUSIONS High maternal PM2.5 exposure, especially during the preconception period, increases risk of certain types of CHD in offspring. These findings are useful for CHD prevention and highlight the public health benefits of improving air quality in China and other highly polluted regions.
Collapse
Affiliation(s)
- Xuelian Yuan
- National Office for Maternal and Child Health Surveillance
of China, West China Second University Hospital, Sichuan University, Chengdu,
Sichuan 610041, China
- Key Laboratory of Birth Defects and Related Diseases of
Women and Children, Ministry of Education, Sichuan University, Chengdu, Sichuan
610041, China
| | - Fengchao Liang
- Shenzhen Key Laboratory of Cardiovascular Health and
Precision Medicine, Southern University of Science and Technology, Shenzhen 518055,
China
- School of Public Health and Emergency Management, Southern
University of Science and Technology, Shenzhen 518055, China
| | - Jun Zhu
- National Office for Maternal and Child Health Surveillance
of China, West China Second University Hospital, Sichuan University, Chengdu,
Sichuan 610041, China
- Key Laboratory of Birth Defects and Related Diseases of
Women and Children, Ministry of Education, Sichuan University, Chengdu, Sichuan
610041, China
| | - Keyong Huang
- Department of Epidemiology, Fuwai Hospital, National Center
for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union
Medical College, Beijing 100037, China
- Key Laboratory of Cardiovascular Epidemiology, Chinese
Academy of Medical Sciences, Beijing 100037, China
| | - Li Dai
- National Office for Maternal and Child Health Surveillance
of China, West China Second University Hospital, Sichuan University, Chengdu,
Sichuan 610041, China
- Key Laboratory of Birth Defects and Related Diseases of
Women and Children, Ministry of Education, Sichuan University, Chengdu, Sichuan
610041, China
| | - Xiaohong Li
- National Office for Maternal and Child Health Surveillance
of China, West China Second University Hospital, Sichuan University, Chengdu,
Sichuan 610041, China
- Key Laboratory of Birth Defects and Related Diseases of
Women and Children, Ministry of Education, Sichuan University, Chengdu, Sichuan
610041, China
| | - Yanping Wang
- National Office for Maternal and Child Health Surveillance
of China, West China Second University Hospital, Sichuan University, Chengdu,
Sichuan 610041, China
- Key Laboratory of Birth Defects and Related Diseases of
Women and Children, Ministry of Education, Sichuan University, Chengdu, Sichuan
610041, China
| | - Qi Li
- National Center for Birth Defects Monitoring of China, West
China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041,
China
| | - Xiangfeng Lu
- Department of Epidemiology, Fuwai Hospital, National Center
for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union
Medical College, Beijing 100037, China
- Key Laboratory of Cardiovascular Epidemiology, Chinese
Academy of Medical Sciences, Beijing 100037, China
| | - Jianfeng Huang
- Department of Epidemiology, Fuwai Hospital, National Center
for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union
Medical College, Beijing 100037, China
- Key Laboratory of Cardiovascular Epidemiology, Chinese
Academy of Medical Sciences, Beijing 100037, China
| | - Lihui Liao
- Department of Pediatric Neurology Nursing, West China
Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yang Liu
- Gangarosa Department of Environmental Health, Rollins
School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Dongfeng Gu
- Shenzhen Key Laboratory of Cardiovascular Health and
Precision Medicine, Southern University of Science and Technology, Shenzhen 518055,
China
- School of Public Health and Emergency Management, Southern
University of Science and Technology, Shenzhen 518055, China
- Department of Epidemiology, Fuwai Hospital, National Center
for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union
Medical College, Beijing 100037, China
- Key Laboratory of Cardiovascular Epidemiology, Chinese
Academy of Medical Sciences, Beijing 100037, China
- School of Medicine, Southern University of Science and
Technology, Shenzhen 510085, China
| | - Hanmin Liu
- Key Laboratory of Birth Defects and Related Diseases of
Women and Children, Ministry of Education, Sichuan University, Chengdu, Sichuan
610041, China
- Department of Pediatrics, West China Second University
Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Sichuan Birth Defects Clinical Research Center, West China
Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- National Health Commission Key Laboratory of
Chronobiology, Sichuan University, Chengdu, China
| | - Fangchao Liu
- Department of Epidemiology, Fuwai Hospital, National Center
for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union
Medical College, Beijing 100037, China
- Key Laboratory of Cardiovascular Epidemiology, Chinese
Academy of Medical Sciences, Beijing 100037, China
| |
Collapse
|
19
|
Chen J, Guo L, Liu H, Jin L, Meng W, Fang J, Zhao L, Zeng XW, Yang BY, Wang Q, Guo X, Deng F, Dong GH, Shang X, Wu S. Modification effects of ambient temperature on associations of ambient ozone exposure before and during pregnancy with adverse birth outcomes: A multicity study in China. ENVIRONMENT INTERNATIONAL 2023; 172:107791. [PMID: 36739855 DOI: 10.1016/j.envint.2023.107791] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/12/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Epidemiological studies suggest that both ambient ozone (O3) and temperature were associated with increased risks of adverse birth outcomes. However, very few studies explored their interaction effects, especially for small for gestational age (SGA) and large for gestational age (LGA). OBJECTIVES To estimate the modification effects of ambient temperature on associations of ambient O3 exposure before and during pregnancy with preterm birth (PTB), low birth weight (LBW), SGA and LGA based on multicity birth cohorts. METHODS A total of 56,905 singleton pregnant women from three birth cohorts conducted in Tianjin, Beijing and Maoming, China, were included in the study. Maximum daily 8-h average O3 concentrations of each pregnant woman from the preconception period to delivery for every day were estimated by matching their home addresses with the Tracking Air Pollution in China (TAP) datasets. We first applied the Cox proportional-hazards regression model to evaluate the city-specific effects of O3 exposure before and during pregnancy on adverse birth outcomes at different temperature levels with adjustment for potential confounders, and then a meta-analysis across three birth cohorts was conducted to calculate the pooled associations. RESULTS In pooled analysis, significant modification effects of ambient temperature on associations of ambient O3 with PTB, LBW and LGA were observed (Pinteraction < 0.05). For a 10 μg/m3 increase in ambient O3 exposure at high temperature level (> 75th percentile), the risk of LBW increased by 28 % (HR: 1.28, 95% CI: 1.13-1.46) during the second trimester and the risk of LGA increased by 116% (HR: 2.16, 95%CI: 1.16-4.00) during the entire pregnancy, while the null or weaker association was observed at corresponding low (≤ 25th percentile) and medium (> 25th and ≤ 75th percentile) temperature levels. CONCLUSION This multicity study added new evidence that ambient high temperature may enhance the potential effects of ambient O3 on adverse birth outcomes.
Collapse
Affiliation(s)
- Juan Chen
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China; Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China; Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Liqiong Guo
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China; Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Huimeng Liu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Lei Jin
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Wenying Meng
- Tongzhou Maternal and Child Health Care Hospital, Beijing, China
| | - Junkai Fang
- Tianjin Healthcare Affair Center, Tianjin, China
| | - Lei Zhao
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China; Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Xiao-Wen Zeng
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Bo-Yi Yang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Qi Wang
- Department of Toxicology, School of Public Health, Peking University, Beijing, China
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Xuejun Shang
- Department of Andrology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China.
| | - Shaowei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, China; Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, China.
| |
Collapse
|
20
|
Su YF, Li C, Xu JJ, Zhou FY, Li T, Liu C, Wu YT, Huang HF. Associations between short-term and long-term exposure to particulate matter and preterm birth. CHEMOSPHERE 2023; 313:137431. [PMID: 36455656 DOI: 10.1016/j.chemosphere.2022.137431] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 11/24/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Despite the longstanding evidence on the effect of air pollutants on preterm birth (PTB), few studies have focused on its subtypes, including spontaneous preterm birth (sPTB) and medically indicated preterm birth (miPTB). Most studies evaluated only the short-term or long-term effects of particulate matter (PM) on PTB. Thus, we designed this study, based on a cohort of 179,385 women, to evaluate both short- and long-term effects of PM with diameters ≤2.5 μm and ≤10 μm (PM2.5 and PM10) on PTB, sPTB and miPTB in Shanghai. Generalized additive models (GAMs) were applied to evaluate short-term effects. Lagged effects were identified using different lag structures. Exposure-response correlation curves were plotted using GAMs after adjustment for confounders. ORs and 95% CIs were calculated using logistic regression to estimate the long-term effect after adjustment for confounders. There was 5.67%, 3.70% and 1.98% daily incidence of PTB, sPTB, and miPTB on average. Every 10 μg/m3 increase in PM2.5 and PM10 was positively associated with PTB and sPTB at lag 2 day. The exposure-response curves (lag 2 day) indicated a rapid increase in sPTB for PM2.5 and a linear increase for PM10, in PTB for PM2.5 and PM10 at concentrations over 100 μg/m3. Regarding long-term exposure, positive associations were found between 10 μg/m3 increases in PM2.5 and PM10 in 3rd trimester and greater odds of sPTB (aOR: 1.042, 95% CI: 1.018-1.065, and 1.018, 95% CI:1.002-1.034), and during the 3 months before conception and miPTB (aOR: 1.023, 95% CI: 1.003-1.042, and 1.017, 95% CI: 1.000-1.036). Acute exposure to PM2.5 and PM10 at lag 2 day and chronic exposure in 3rd trimester was significantly associated with sPTB, while miPTB was related to chronic exposure during the 3 months before pregnancy. These findings indicate that susceptibility windows of PM exposure can be influenced by different underlying etiologies of PTB.
Collapse
Affiliation(s)
- Yun-Fei Su
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Cheng Li
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.
| | - Jing-Jing Xu
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.
| | - Fang-Yue Zhou
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Tao Li
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Cong Liu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China.
| | - Yan-Ting Wu
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.
| | - He-Feng Huang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China; Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, China.
| |
Collapse
|
21
|
Hung TH, Chen PH, Tung TH, Hsu J, Hsu TY, Wan GH. Risks of preterm birth and low birth weight and maternal exposure to NO 2/PM 2.5 acquired by dichotomous evaluation: a systematic review and meta-analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:9331-9349. [PMID: 36474040 DOI: 10.1007/s11356-022-24520-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
No consistent results from past studies have been found on the relationship between the effects of air pollutant exposure, preterm birth (PTB) and low birth weight (LBW) in fetuses. This study aimed to analyze the impact of high concentrations of air pollutants on the health outcomes of fetuses, especially regarding PTB and LBW. This study used keywords related to air pollutants, pregnancy, and birth outcomes, to search the literature within the databases of the Cochrane Library, PubMed, and Embase, which were published as of July 26, 2022. A total of 24 studies were included in this meta-analysis. This meta-analysis revealed that nitrogen dioxide (NO2) exposure throughout pregnancy was associated with an increased risk of PTB. Maternal exposure to PM2.5 (particulate matter sized less than 2.5 μm) during gestation was associated with the risk of LBW. The findings of this meta-analysis provide an important foundation for evaluating the relationship between exposure of air pollutants and fetal birth outcomes in countries with severe air pollution in the future.
Collapse
Affiliation(s)
- Tai-Ho Hung
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei, Taiwan
- Department of Obstetrics and Gynecology, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Pei-Hung Chen
- Department of Respiratory Therapy, College of Medicine, Chang Gung University, 259, Wen-Hwa 1st Road, Kwei-Shan, Taoyuan, 333, Taiwan
| | - Tao-Hsin Tung
- Evidence-based Medicine Center, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Jie Hsu
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Te-Yao Hsu
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Gwo-Hwa Wan
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei, Taiwan.
- Department of Respiratory Therapy, College of Medicine, Chang Gung University, 259, Wen-Hwa 1st Road, Kwei-Shan, Taoyuan, 333, Taiwan.
- Department of Respiratory Care, Chang Gung University of Science and Technology, Chiayi, Taiwan.
- Center for Environmental Sustainability and Human Health, Ming Chi University of Technology, Taishan, New Taipei, Taiwan.
| |
Collapse
|
22
|
Gong C, Chu M, Yang J, Gong X, Han B, Chen L, Bai Z, Wang J, Zhang Y. Ambient fine particulate matter exposures and human early placental inflammation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120446. [PMID: 36265729 DOI: 10.1016/j.envpol.2022.120446] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
The effect of fine particulate matter (PM2.5) on human early maternal-fetal interface is unknown. We explored the association between maternal exposure to ambient PM2.5 and inflammation in placental villus of 114 women with clinically recognized early pregnancy loss (CREPL) and 114 women with normal early pregnancy (NEP). Temporally-adjusted land use regression models were used to estimate maternal daily PM2.5 exposure during pregnancy. Villus interleukin-1beta (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) were measured using multiplex cytokines detection platform. Single-day lag effect of PM2.5 exposure within ten days before early placental villus collection was estimated using multivariable linear regression model. Distributed lag and net cumulative effects of PM2.5 exposures within ten and 30 days before villus collection, as well as five single weeks during the periovulatory period, were estimated using distributed lag non-linear models. In all 228 subjects, after adjusting for group (CREPL or NEP), temporal confounders, and demographic characteristics, both single-day and distributed lag effects of PM2.5 exposure at lag 8 significantly increased villus IL-6; distributed lag effects of PM2.5 exposure in the first and second weeks before ovulation increased IL-1β, and PM2.5 exposure in the third week after ovulation increased IL-6 and TNF-α. In CREPL, single-day lag effect significantly increased IL-1β (at lag 1), IL-6 (at lag 8), and TNF-α (at lag 5); distributed lag effect increased IL-6 (at lag 4-lag 8) and TNF-α (at lag 4-lag 6); and cumulative effect within ten days before villus collection increased IL-6. There was no statistically significant cumulative effect in NEP. In summary, maternal PM2.5 exposure was associated with placental inflammation in human early pregnancy, particularly with increased villus IL-6 in CREPL. Whether maternal-fetal interface inflammation related to PM2.5 exposure during the periovulatory period or later contributes to CREPL or other adverse pregnancy outcomes requires further study.
Collapse
Affiliation(s)
- Chen Gong
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Mengyu Chu
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Junnan Yang
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xian Gong
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Bin Han
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Li Chen
- School of Geographic and Environmental Sciences, Tianjin Normal University, Tianjin, China
| | - Zhipeng Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China; Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Jianmei Wang
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yujuan Zhang
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China.
| |
Collapse
|
23
|
Chilukuri N, Bustamante-Helfrich B, Ji Y, Wang G, Hong X, Cheng TL, Wang X. Maternal folate status and placental vascular malperfusion: Findings from a high-risk US minority birth cohort. Placenta 2022; 129:87-93. [PMID: 36274480 DOI: 10.1016/j.placenta.2022.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/10/2022] [Accepted: 09/14/2022] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Maternal folate deficiency was associated with preeclampsia (PE) and PE was associated with placental maternal vascular malperfusion (MVM). However, no study has examined the association of maternal folate status with placental MVM. METHODS We examined the association of maternal folate status and placental MVM in the Boston Birth Cohort. Primary exposure variables were maternal self-reported multivitamin supplement (<2, 3-5, >5 times/week) per trimester; and plasma folate levels (nmol/L) after birth. Primary outcome was presence/absence of placental MVM defined by the Amsterdam Placental Workshop Group standard classification. Covariates included demographics, chronic hypertension, clinically diagnosed PE, eclampsia and HELLP syndrome, gestational and pre-gestational diabetes, overweight/obesity, maternal cigarette smoking and alcohol use. Associations between folate and placental MVM were evaluated using multivariate logistic regressions. RESULTS Of 3001 mothers in this study, 18.8% of mothers had PE, 37.5% had MVM. Mothers with the lowest self-reported frequency of folate intake had the highest risk of MVM (OR 1.45, 95% CI 1.03-2.05), after adjusting for the covariates. Consistently, among a subset of 939 mothers with plasma folate levels, folate insufficiency was associated with increased risk of MVM (OR 1.65, 95% CI 1.03-2.63), after adjusting for the covariables. As expected, mothers with low folate and placental MVM had highest rates of PE compared to those of high folate and no MVM (p < 0.001). DISCUSSION In this high-risk birth cohort, low maternal folate status was associated with increased risk of placental MVM. Further investigation should explore the association between folate status, placental findings and the great obstetrical syndrome.
Collapse
Affiliation(s)
- Nymisha Chilukuri
- Department of Pediatrics, Johns Hopkins University School of Medicine, 200 North Wolfe Street, Suite 2088, Baltimore, MD, 21287, United States.
| | - Blandine Bustamante-Helfrich
- University of the Incarnate Word School of Osteopathic Medicine, 7615 Kennedy Hill, San Antonio, TX, 78235, United States.
| | - Yuelong Ji
- Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD, 21205, United States.
| | - Guoying Wang
- Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD, 21205, United States.
| | - Xiumei Hong
- Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD, 21205, United States.
| | - Tina L Cheng
- University of Cincinnati, Cincinnati Children's Research Foundation, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue MLC 3016, Cincinnati, OH, 45229-3026, United States.
| | - Xiaobin Wang
- Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD, 21205, United States.
| |
Collapse
|
24
|
Xu Y, Yi L, Cabison J, Rosales M, O'Sharkey K, Chavez TA, Johnson M, Lurmann F, Pavlovic N, Bastain TM, Breton CV, Wilson JP, Habre R. The impact of GPS-derived activity spaces on personal PM 2.5 exposures in the MADRES cohort. ENVIRONMENTAL RESEARCH 2022; 214:114029. [PMID: 35932832 DOI: 10.1016/j.envres.2022.114029] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/22/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND In-utero exposure to particulate matter with aerodynamic diameter less than 2.5 μm (PM2.5) is associated with low birth weight and health risks later in life. Pregnant women are mobile and locations they spend time in contribute to their personal PM2.5 exposures. Therefore, it is important to understand how mobility and exposures encountered within activity spaces contribute to personal PM2.5 exposures during pregnancy. METHODS We collected 48-h integrated personal PM2.5 samples and continuous geolocation (GPS) data for 213 predominantly Hispanic/Latina pregnant women in their 3rd trimester in Los Angeles, CA. We also collected questionnaires and modeled outdoor air pollution and meteorology in their residential neighborhood. We calculated three GPS-derived activity space measures of exposure to road networks, greenness (NDVI), parks, traffic volume, walkability, and outdoor PM2.5 and temperature. We used bivariate analyses to screen variables (GPS-extracted exposures in activity spaces, individual characteristics, and residential neighborhood exposures) based on their relationship with personal, 48-h integrated PM2.5 concentrations. We then built a generalized linear model to explain the variability in personal PM2.5 exposure and identify key contributing factors. RESULTS Indoor PM2.5 sources, parity, and home ventilation were significantly associated with personal exposure. Activity-space based exposure to roads was associated with significantly higher personal PM2.5 exposure, while greenness was associated with lower personal PM2.5 exposure (β = -3.09 μg/m3 per SD increase in NDVI, p-value = 0.018). The contribution of outdoor PM2.5 to personal exposure was positive but relatively lower (β = 2.05 μg/m3 per SD increase, p-value = 0.016) than exposures in activity spaces and the indoor environment. The final model explained 34% of the variability in personal PM2.5 concentrations. CONCLUSIONS Our findings highlight the importance of activity spaces and the indoor environment on personal PM2.5 exposures of pregnant women living in Los Angeles, CA. This work also showcases the multiple, complex factors that contribute to total personal PM2.5 exposure.
Collapse
Affiliation(s)
- Yan Xu
- Spatial Sciences Institute, University of Southern California, USA.
| | - Li Yi
- Spatial Sciences Institute, University of Southern California, USA.
| | - Jane Cabison
- Department of Population and Public Health Sciences, University of Southern California, USA.
| | - Marisela Rosales
- Department of Population and Public Health Sciences, University of Southern California, USA.
| | - Karl O'Sharkey
- Department of Population and Public Health Sciences, University of Southern California, USA.
| | - Thomas A Chavez
- Department of Population and Public Health Sciences, University of Southern California, USA.
| | - Mark Johnson
- Department of Population and Public Health Sciences, University of Southern California, USA.
| | | | | | - Theresa M Bastain
- Department of Population and Public Health Sciences, University of Southern California, USA.
| | - Carrie V Breton
- Department of Population and Public Health Sciences, University of Southern California, USA.
| | - John P Wilson
- Spatial Sciences Institute, University of Southern California, USA; Department of Population and Public Health Sciences, University of Southern California, USA; Department of Civil & Environmental Engineering, Computer Science, and Sociology, University of Southern California, USA.
| | - Rima Habre
- Spatial Sciences Institute, University of Southern California, USA; Department of Population and Public Health Sciences, University of Southern California, USA.
| |
Collapse
|
25
|
Genin M, Lecoeuvre A, Cuny D, Subtil D, Chevalier G, Ficheur G, Occelli F, Garabedian C. The association between the incidence of preterm birth and overall air pollution: A nationwide, fine-scale, spatial study in France from 2012 to 2018. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:120013. [PMID: 36007792 DOI: 10.1016/j.envpol.2022.120013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/05/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Michael Genin
- Univ. Lille, CHU Lille, ULR 2694 - METRICS: Évaluation des Technologies de Santé et des Pratiques Médicales, F-59000 Lille, France.
| | - Adrien Lecoeuvre
- Univ. Lille, CHU Lille, ULR 2694 - METRICS: Évaluation des Technologies de Santé et des Pratiques Médicales, F-59000 Lille, France
| | - Damien Cuny
- Univ. Lille, Institut Mines-Télécom, Univ. Artois, Junia, ULR 4515 - LGCgE, Laboratoire de Génie Civil et Géo-Environnement, F-59000 Lille, France
| | - Damien Subtil
- Univ. Lille, CHU Lille, ULR 2694 - METRICS: Évaluation des Technologies de Santé et des Pratiques Médicales, F-59000 Lille, France; CHU Lille, Department of Obstetrics, F-59000, Lille, France
| | - Geoffroy Chevalier
- Univ. Lille, CHU Lille, ULR 2694 - METRICS: Évaluation des Technologies de Santé et des Pratiques Médicales, F-59000 Lille, France; CHU Lille, Department of Obstetrics, F-59000, Lille, France
| | - Grégoire Ficheur
- Univ. Lille, CHU Lille, ULR 2694 - METRICS: Évaluation des Technologies de Santé et des Pratiques Médicales, F-59000 Lille, France
| | - Florent Occelli
- Univ. Lille, Institut Mines-Télécom, Univ. Artois, Junia, ULR 4515 - LGCgE, Laboratoire de Génie Civil et Géo-Environnement, F-59000 Lille, France
| | - Charles Garabedian
- Univ. Lille, CHU Lille, ULR 2694 - METRICS: Évaluation des Technologies de Santé et des Pratiques Médicales, F-59000 Lille, France; CHU Lille, Department of Obstetrics, F-59000, Lille, France
| |
Collapse
|
26
|
Quraishi SM, Hazlehurst MF, Loftus CT, Nguyen RHN, Barrett ES, Kaufman JD, Bush NR, Karr CJ, LeWinn KZ, Sathyanarayana S, Tylavsky FA, Szpiro AA, Enquobahrie DA. Association of prenatal exposure to ambient air pollution with adverse birth outcomes and effect modification by socioeconomic factors. ENVIRONMENTAL RESEARCH 2022; 212:113571. [PMID: 35640705 PMCID: PMC9674115 DOI: 10.1016/j.envres.2022.113571] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 06/02/2023]
Abstract
BACKGROUND Maternal exposure to air pollution has been associated with birth outcomes; however, few studies examined biologically critical exposure windows shorter than trimesters or potential effect modifiers. OBJECTIVES To examine associations of prenatal fine particulate matter (PM2.5), by trimester and in biologically critical windows, with birth outcomes and assess potential effect modifiers. METHODS This study used two pregnancy cohorts (CANDLE and TIDES; N = 2099) in the ECHO PATHWAYS Consortium. PM2.5 was estimated at the maternal residence using a fine-scale spatiotemporal model, averaged over pregnancy, trimesters, and critical windows (0-2 weeks, 10-12 weeks, and last month of pregnancy). Outcomes were preterm birth (PTB, <37 completed weeks of gestation), small-for-gestational-age (SGA), and continuous birthweight. We fit multivariable adjusted linear regression models for birthweight and Poisson regression models (relative risk, RR) for PTB and SGA. Effect modification by socioeconomic factors (maternal education, household income, neighborhood deprivation) and infant sex were examined using interaction terms. RESULTS Overall, 9% of births were PTB, 10.4% were SGA, and mean term birthweight was 3268 g (SD = 558.6). There was no association of PM2.5 concentration with PTB or SGA. Lower birthweight was associated with higher PM2.5 averaged over pregnancy (β -114.2, 95%CI -183.2, -45.3), during second (β -52.9, 95%CI -94.7, -11.2) and third (β -45.5, 95%CI -85.9, -5.0) trimesters, and the month prior to delivery (β -30.5, 95%CI -57.6, -3.3). Associations of PM2.5 with likelihood of SGA and lower birthweight were stronger among male infants (p-interaction ≤0.05) and in those with lower household income (p-interaction = 0.09). CONCLUSIONS Findings from this multi city U.S. birth cohort study support previous reports of inverse associations of birthweight with higher PM2.5 exposure during pregnancy. Findings also suggest possible modification of this association by infant sex and household income.
Collapse
Affiliation(s)
- Sabah M Quraishi
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA.
| | - Marnie F Hazlehurst
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA; Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| | - Christine T Loftus
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Ruby H N Nguyen
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Emily S Barrett
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Environmental and Occupational Health Sciences Institute, Piscataway, NJ, USA
| | - Joel D Kaufman
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA; Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA; Division of General Internal Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| | - Nicole R Bush
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California San Francisco, San Francisco, CA, USA; Department of Pediatrics, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Catherine J Karr
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA; Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA; Department of Pediatrics, School of Medicine, University of Washington, Seattle, WA, USA
| | - Kaja Z LeWinn
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Sheela Sathyanarayana
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA; Department of Pediatrics, School of Medicine, University of Washington, Seattle, WA, USA; Seattle Children's Research Institute, Seattle, WA, USA
| | - Frances A Tylavsky
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Adam A Szpiro
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, USA
| | - Daniel A Enquobahrie
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| |
Collapse
|
27
|
Chen H, Zhang Z, Zhou Y, Liu Y, Lin X, Wei Y, Sun R, Li L, Deng G. Maternal leucocyte trajectory across pregnancy associated with offspring's growth. Pediatr Res 2022; 92:862-870. [PMID: 34750526 DOI: 10.1038/s41390-021-01827-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Leucocytes for individuals during pregnancy may form into different trajectory patterns. Since no studies have been conducted, we aim to examine the associations between leucocyte trajectory across pregnancy and offspring's birth outcomes and growth during the first 2 years. METHODS We conducted a retrospective study enrolled 1070 singleton pregnancies aged 21-46 years old between 2014 and 2018 in Huazhong University of Science and Technology Union Shenzhen Hospital, China. Leucocyte trajectories were modelled using growth mixture modelling and four trajectories were identified: moderate-increasing (n = 41), low-stable (n = 828), high-decreasing (n = 145) and low-increasing (n = 56). RESULTS Relative to the low-stable group, logistic regression analysis after adjusting for covariates indicated that the odds ratios of preterm were 3.06 (95% confidence interval (CI): 1.43-6.23) for moderate-increasing, 0.78 (95% CI: 0.38-1.47) for high-decreasing and 0.68 (95% CI: 0.23-1.61) for the low-increasing group, respectively. By using generalized estimating equation analysis, we observed that infants in the moderate-increasing and low-increasing group had -0.35 and -0.21 (P < 0.01) lower head circumference z-score compared with the low-stable group, respectively. No significant association of leucocyte trajectory with other birth weight measures or anthropometric measure z-scores was found. CONCLUSIONS Changes in leucocytes across pregnancy affected the occurrence of preterm and offspring's head circumference during the first 2 years of life. IMPACT Previous researches on the association of leucocytes with pregnancy outcomes mainly focused on leucocytes in a specific trimester. No studies until now have been conducted to assess the influences of the leucocyte trajectories on the growth and development of infants. Changes in leucocytes across pregnancy affected the occurrence of preterm and offspring's head circumference during the first 2 years of life. Our study will positively contribute to the dialogue regarding the treatment of pregnancies with different levels of inflammation in each trimester to minimize adverse pregnancy outcomes and optimize brain growth.
Collapse
Affiliation(s)
- Hengying Chen
- Injury Prevention Research Center, Shantou University Medical College, Shantou, China
- School of Public Health, Shantou University, Shantou, China
| | - Zheqing Zhang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yingyu Zhou
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yao Liu
- Department of Clinical Nutrition, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Xiaoping Lin
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yuanhuan Wei
- Department of Clinical Nutrition, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Ruifang Sun
- Department of Clinical Nutrition, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Liping Li
- Injury Prevention Research Center, Shantou University Medical College, Shantou, China.
- School of Public Health, Shantou University, Shantou, China.
| | - Guifang Deng
- Department of Clinical Nutrition, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China.
| |
Collapse
|
28
|
Yu Z, Zhang X, Zhang J, Feng Y, Zhang H, Wan Z, Xiao C, Zhang H, Wang Q, Huang C. Gestational exposure to ambient particulate matter and preterm birth: An updated systematic review and meta-analysis. ENVIRONMENTAL RESEARCH 2022; 212:113381. [PMID: 35523275 DOI: 10.1016/j.envres.2022.113381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/17/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
Previous studies on gestational particulate matter (PM) exposure and preterm birth (PTB) showed inconsistent results, and no study systematically examined the short-term effect of PM exposure on PTB subtypes. To investigate both long- and short-term effects of the evidence to date in general population, we searched for epidemiological studies on PM exposure and PTB that published in PubMed, Web of Science, Embase and Cochrane Library up to March 31, 2022. The protocol for this review was registered with PROSPERO (CRD42021265202). Heterogeneity was assessed by Cochran's Q test and I2 statistic. Publication bias was evaluated using funnel plots and Egger's tests. Subgroup analysis, meta-regression and sensitivity analysis were performed. Of 16,801 records, 84 eligible studies were finally included. The meta-analysis of long-term effect showed that per 10 μg/m3 increase in PM2.5 and PM10 during entire pregnancy were associated with PTB, the pooled odds ratios (ORs) were 1.084 (95% CI: 1.055-1.113) and 1.034 (95% CI: 1.018-1.049). Positive associations were found between PM2.5 in second trimester and PTB subtypes. For the short-term exposure, we observed that PTB was positively associated with a 10 μg/m3 increment in PM2.5 on lag day 2 and 3, the pooled ORs and 95% CIs were 1.003 (1.001-1.004) and 1.003 (1.001-1.005), with I2 of 65.30% and 76.60%. PM10 exposure on ave day 1 increased the risk of PTB, the pooled OR was 1.001 (95% CI: 1.000, 1.001). We also found that PM10 exposure in 2 weeks prior to birth increased PTB risk. Our results support the hypothesis of both long- and short-term PM2.5 exposure increase the risk of PTB. Further well-designed longitudinal studies and investigations into potential biological mechanisms are warranted.
Collapse
Affiliation(s)
- Zengli Yu
- School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xiaoan Zhang
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junxi Zhang
- National Health Commission Key Laboratory of Birth Defects Prevention; Key Laboratory of Population Defects Prevention, Zhengzhou, China
| | - Yang Feng
- School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Han Zhang
- School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Zhongxiao Wan
- School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Chenglong Xiao
- School of Earth Sciences, Chengdu University of Technology, Chengdu, China
| | - Huanhuan Zhang
- School of Public Health, Zhengzhou University, Zhengzhou, China; National Health Commission Key Laboratory of Birth Defects Prevention; Key Laboratory of Population Defects Prevention, Zhengzhou, China.
| | - Qiong Wang
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Cunrui Huang
- Vanke School of Public Health, Tsinghua University, Beijing, China
| |
Collapse
|
29
|
Shi X, Zheng Y, Cui H, Zhang Y, Jiang M. Exposure to outdoor and indoor air pollution and risk of overweight and obesity across different life periods: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113893. [PMID: 35917711 DOI: 10.1016/j.ecoenv.2022.113893] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/06/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Due to the highly evolved industrialization and modernization, air quality has deteriorated in most countries. As reported by the World Health Organization (WHO), air pollution is now considered as one of the major threats to global health and a principal risk factor for noncommunicable diseases. Meanwhile, the increasing worldwide prevalence of overweight and obesity is attracting more public attentions. Recently, accumulating epidemiological studies have provided evidence that overweight and obesity may be partially attributable to environmental exposure to air pollution. This review summarizes the epidemiological evidence for the correlation between exposure to various outdoor and indoor air pollutants (mainly particulate matter (PM), nitrogen oxides (NOx), ozone (O3), and polycyclic aromatic hydrocarbons (PAHs)) and overweight and obesity outcomes in recent years. Moreover, it discusses the multiple effects of air pollution during exposure periods throughout life and sex differences in populations. This review also describes the potential mechanism underlying the increased risk of obesity caused by air pollution, including inflammation, oxidative stress, metabolic imbalance, intestinal flora disorders and epigenetic modifications. Finally, this review proposes macro- and micro-measures to prevent the negative effects of air pollution exposure on the obesity prevalence.
Collapse
Affiliation(s)
- Xiaoyi Shi
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yuxin Zheng
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Haiwen Cui
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yuxi Zhang
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Menghui Jiang
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| |
Collapse
|
30
|
Rocha ADS, Falcão IR, Teixeira CSS, Alves FJO, Ferreira AJF, Silva NDJ, Almeida MFD, Ribeiro-Silva RDC. Determinants of preterm birth: proposal for a hierarchical theoretical model. CIENCIA & SAUDE COLETIVA 2022. [DOI: 10.1590/1413-81232022278.03232022en] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Abstract Preterm birth (PB) is a syndrome resulting from a complex relationship between multiple factors which do not have fully understood relationships and causality. This article discusses a hierarchical theoretical model of PB determinants, considering maternal characteristics such as sociodemographic, psychosocial, nutritional, behavioral and biological aspects, traditionally associated with increased risk of PB. The variables were distributed in six dimensions within three hierarchical levels (distal, intermediate and proximal). In this model, the socioeconomic determinants of the mother, family, household and neighborhood play indirect effects on PB through variables at the intermediate level, which in turn affect biological risk factors at the proximal level that have a direct effect on PB. The study presents a hierarchical theoretical model of the factors involved in the PB determination chain and their interrelationships. Understanding these interrelationships is an important step in trying to break the causal chain that makes some women vulnerable to preterm birth.
Collapse
Affiliation(s)
| | - Ila Rocha Falcão
- Universidade Federal da Bahia, Brazil; Fundação Oswaldo Cruz, Brazil
| | | | | | | | | | | | | |
Collapse
|
31
|
Rocha ADS, Falcão IR, Teixeira CSS, Alves FJO, Ferreira AJF, Silva NDJ, Almeida MFD, Ribeiro-Silva RDC. Determinants of preterm birth: proposal for a hierarchical theoretical model. CIENCIA & SAUDE COLETIVA 2022; 27:3139-3152. [PMID: 35894325 DOI: 10.1590/1413-81232022278.03232022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 05/05/2022] [Indexed: 11/22/2022] Open
Abstract
Preterm birth (PB) is a syndrome resulting from a complex relationship between multiple factors which do not have fully understood relationships and causality. This article discusses a hierarchical theoretical model of PB determinants, considering maternal characteristics such as sociodemographic, psychosocial, nutritional, behavioral and biological aspects, traditionally associated with increased risk of PB. The variables were distributed in six dimensions within three hierarchical levels (distal, intermediate and proximal). In this model, the socioeconomic determinants of the mother, family, household and neighborhood play indirect effects on PB through variables at the intermediate level, which in turn affect biological risk factors at the proximal level that have a direct effect on PB. The study presents a hierarchical theoretical model of the factors involved in the PB determination chain and their interrelationships. Understanding these interrelationships is an important step in trying to break the causal chain that makes some women vulnerable to preterm birth.
Collapse
Affiliation(s)
- Aline Dos Santos Rocha
- Escola de Nutrição, Universidade Federal da Bahia, Salvador. Centro de Integração de Dados e Conhecimentos para Saúde (Cidacs), Fundação Oswaldo Cruz. R. Mundo 121, ed. Tecnocentro, sl. 315, Trobogy. 41745-715 Salvador BA Brasil.
| | - Ila Rocha Falcão
- Escola de Nutrição, Universidade Federal da Bahia, Salvador. Centro de Integração de Dados e Conhecimentos para Saúde (Cidacs), Fundação Oswaldo Cruz. R. Mundo 121, ed. Tecnocentro, sl. 315, Trobogy. 41745-715 Salvador BA Brasil.
| | - Camila Silveira Silva Teixeira
- Centro de Integração de Dados e Conhecimentos para Saúde (Cidacs), Fundação Oswaldo Cruz. Instituto de Saúde Coletiva, Universidade Federal da Bahia. Salvador BA Brasil
| | - Flávia Jôse Oliveira Alves
- Centro de Integração de Dados e Conhecimentos para Saúde (Cidacs), Fundação Oswaldo Cruz. Instituto de Saúde Coletiva, Universidade Federal da Bahia. Salvador BA Brasil
| | - Andrêa Jacqueline Fortes Ferreira
- Centro de Integração de Dados e Conhecimentos para Saúde (Cidacs), Fundação Oswaldo Cruz. Instituto de Saúde Coletiva, Universidade Federal da Bahia. Salvador BA Brasil
| | - Natanael de Jesus Silva
- Centro de Integração de Dados e Conhecimentos para Saúde (Cidacs), Fundação Oswaldo Cruz. Instituto de Saúde Global de Barcelona, Hospital Clínic. Barcelona Espanha
| | | | - Rita de Cássia Ribeiro-Silva
- Escola de Nutrição, Universidade Federal da Bahia, Salvador. Centro de Integração de Dados e Conhecimentos para Saúde (Cidacs), Fundação Oswaldo Cruz. R. Mundo 121, ed. Tecnocentro, sl. 315, Trobogy. 41745-715 Salvador BA Brasil.
| |
Collapse
|
32
|
Imam B, Rahmatinia M, Shahsavani A, Khodagholi F, Hopke PK, Bazazzpour S, Hadei M, Yarahmadi M, Abdollahifar MA, Torkmahalleh MA, Kermani M, Ilkhani S, MirBehbahani SH. Autism-like symptoms by exposure to air pollution and valproic acid-induced in male rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:59263-59286. [PMID: 35384534 DOI: 10.1007/s11356-022-19865-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Exposure to air pollution during prenatal or neonatal periods is associated with autism spectrum disorder (ASD) according to epidemiology studies. Furthermore, prenatal exposure to valproic acid (VPA) has also been found to be associated with an increased prevalence of ASD. To assess the association between simultaneous exposure to VPA and air pollutants, seven exposure groups of rats were included in current study (PM2.5 and gaseous pollutants exposed - high dose of VPA (PGE-high); PM2.5 and gaseous pollutants exposed - low dose of VPA (PGE-low); gaseous pollutants only exposed - high dose of VPA (GE-high); gaseous pollutants only exposed - low dose of VPA (GE-low); clean air exposed - high dose of VPA (CAE-high); clean air exposed - low dose of VPA (CAE-low) and clean air exposed (CAE)). The pollution-exposed rats were exposed to air pollutants from embryonic day (E0) to postnatal day 42 (PND42). In all the induced groups, decreased oxidative stress biomarkers, decreased oxytocin receptor (OXTR) levels, and increased the expression of interleukin 6 (IL-6), interleukin 1β (IL-1β), and tumor necrosis factor alpha (TNF-α) were found. The volumes of the cerebellum, hippocampus, striatum, and prefrontal decreased in all induced groups in comparison to CAE. Additionally, increased numerical density of glial cells and decreased of numerical density of neurons were found in all induced groups. Results show that simultaneous exposure to air pollution and VPA can cause ASD-related behavioral deficits and air pollution reinforced the mechanism of inducing ASD ̉s in VPA-induced rat model of autism.
Collapse
Affiliation(s)
- Bahran Imam
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Rahmatinia
- Student Research Committee, Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Shahsavani
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Air Quality and Climate Change Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Philip K Hopke
- Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA
- Institute for a Sustainable Environment, Clarkson University, Potsdam, NY, 13699, USA
| | - Shahriyar Bazazzpour
- Student Research Committee, Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Hadei
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Yarahmadi
- Environmental and Occupational Health Center, Ministry of Health and Medical Education, Tehran, Iran
| | - Mohammad-Amin Abdollahifar
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Amouei Torkmahalleh
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, Kazakhstan, 010000
| | - Majid Kermani
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Saba Ilkhani
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
33
|
Zhang B, Gong X, Han B, Chu M, Gong C, Yang J, Chen L, Wang J, Bai Z, Zhang Y. Ambient PM 2.5 exposures and systemic inflammation in women with early pregnancy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154564. [PMID: 35302014 DOI: 10.1016/j.scitotenv.2022.154564] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/21/2022] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
The association between ambient fine particulate matter (PM2.5) and systemic inflammation in women with early pregnancy is unclear. This study estimated the effects of PM2.5 exposures on inflammatory biomarkers in women with normal early pregnancy (NEP) or clinically recognized early pregnancy loss (CREPL). Serum interleukin-1beta (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) were measured in 228 early pregnant women recruited in Tianjin, China. Maternal PM2.5 exposures at lag 0 through lag 30 before blood collection were estimated using temporally-adjusted land use regression models. Daily exposures to ambient PM10, NO2, SO2, CO and 8-hours maximum ozone were estimated using city-level concentrations. Single-day lag effects at lag 0 through lag 7 were estimated using multivariable linear regression models. Distributed lag effects and cumulative effects over the preceding seven days and 30 days were estimated using distributed lag non-linear models. Serum IL-1β (8.0% increase at lag 3), IL-6 (33.9% increase at lag 5) and TNF-α (12.7% increase at lag 5) in early pregnant women were significantly increased with an interquartile range increase in PM2.5 exposures adjusted for temporal confounders and demographic characteristics. These effects were robust in several two-pollutant models. Distributed lag effects over the preceding 30 days also showed that the three cytokines were significantly increased with PM2.5 on some lag days. Among all cumulative effects of PM2.5 on the three cytokines in all subjects or in the two groups, only IL-6 was significantly increased in CREPL women over the preceding seven days and 30 days. No significant cumulative effect of PM2.5 was observed in NEP women. In conclusion, exposure to ambient PM2.5 may induce systemic inflammation in women in the first trimester of pregnancy. Whether the PM2.5-related cumulative increase in maternal IL-6 is involved in the pathogenic mechanisms of early pregnancy loss needs to be identified in future research.
Collapse
Affiliation(s)
- Bumei Zhang
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xian Gong
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Bin Han
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Mengyu Chu
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Chen Gong
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Junnan Yang
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Li Chen
- School of Geographic and Environmental Sciences, Tianjin Normal University, Tianjin, China
| | - Jianmei Wang
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhipeng Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China; Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Yujuan Zhang
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China.
| |
Collapse
|
34
|
Chen T, Norback D, Deng Q, Huang C, Qian H, Zhang X, Sun Y, Wang T, Zhang Y, Li B, Kan H, Wei L, Liu C, Xu Y, Zhao Z. Maternal exposure to PM 2.5/BC during pregnancy predisposes children to allergic rhinitis which varies by regions and exclusive breastfeeding. ENVIRONMENT INTERNATIONAL 2022; 165:107315. [PMID: 35635966 DOI: 10.1016/j.envint.2022.107315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/02/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Increasing prevalence of childhood allergic rhinitis(AR) needs a deeper understanding on the potential adverse effects of early life exposure to air pollution. OBJECTIVES The main aim was to evaluate the effects of maternal exposure to PM2.5 and chemical constituents during pregnancy on preschool children's AR, and further to explore the modification effects of regions and exclusive breastfeeding. METHODS A multi-center population-based study was performed in 6 cities from 3 regions of China in 2011-2012. Maternal exposure to ambient PM2.5 and main chemical constituents(BC, OM, SO42-, NO3-, NH4+) during pregnancy was assessed and a longitudinal prospective analysis was applied on preschool children's AR. The modification effects of regions and exclusive breastfeeding were investigated. RESULTS A total of 8.8% and 9.8% of children reported doctor-diagnosed allergic rhinitis(DDAR) and current hay fever, respectively, and 48.6% had less than 6 months of exclusive breastfeeding. The means of PM2.5 during pregnancy were 52.7 μg/m3, 70.3 μg/m3 and 76.4 μg/m3 in the east, north and central south of China, respectively. Multilevel log-binomial model regression showed that each interquartile range(IQR) increase of PM2.5 during pregnancy was associated with an average increase in prevalence ratio (PR) of DDAR by 1.43(95% confidence interval(CI): 1.11, 1.84) and current hay fever by 1.79(95% CI: 1.26, 2.55), respectively. Among chemical constituents, black carbon (BC) had the strongest associations. Across 3 regions, the eastern cities had the highest associations, followed by those in the central south and the north. For those equal to or longer than 6 months of exclusive breastfeeding, the associations were significantly reduced. CONCLUSIONS Children in east of China had the highest risks of developing AR per unit increase of maternal exposure to PM2.5 during pregnancy, especially BC constituent. Remarkable decline was found in association with an increase in breastfeeding for ≥6 months, in particular in east of China.
Collapse
Affiliation(s)
- Tianyi Chen
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Dan Norback
- Department of Medical Sciences, Uppsala University, Uppsala SE-751, Sweden
| | - Qihong Deng
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| | - Chen Huang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Hua Qian
- School of Energy & Environment, Southeast University, Nanjing 210096, China
| | - Xin Zhang
- Research Center for Environmental Science and Engineering, Shanxi University, Taiyuan 030006, China
| | - Yuexia Sun
- Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin University, Tianjin 300072, China
| | - Tingting Wang
- School of Nursing & Health Management, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Yinping Zhang
- Department of Building Science, Tsinghua University, Beijing 100084, China
| | - Baizhan Li
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Chongqing University, Chongqing 400030, China
| | - Haidong Kan
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety of the Ministry of Education, NHC Key Laboratory of Health Technology Assessment (Fudan University), Shanghai Typhoon Institute/CMA, Shanghai Key Laboratory of Meteorology and Health, Shanghai 200030, China; IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai 200438, China; WMO/IGAC MAP-AQ Asian Office Shanghai, Fudan University, Shanghai 200438, China
| | - Lan Wei
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Cong Liu
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China.
| | - Yanyi Xu
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety of the Ministry of Education, NHC Key Laboratory of Health Technology Assessment (Fudan University), Shanghai Typhoon Institute/CMA, Shanghai Key Laboratory of Meteorology and Health, Shanghai 200030, China; IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai 200438, China; WMO/IGAC MAP-AQ Asian Office Shanghai, Fudan University, Shanghai 200438, China.
| | - Zhuohui Zhao
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety of the Ministry of Education, NHC Key Laboratory of Health Technology Assessment (Fudan University), Shanghai Typhoon Institute/CMA, Shanghai Key Laboratory of Meteorology and Health, Shanghai 200030, China; IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai 200438, China; WMO/IGAC MAP-AQ Asian Office Shanghai, Fudan University, Shanghai 200438, China.
| |
Collapse
|
35
|
Song AY, Feinberg JI, Bakulski KM, Croen LA, Fallin MD, Newschaffer CJ, Hertz-Picciotto I, Schmidt RJ, Ladd-Acosta C, Volk HE. Prenatal Exposure to Ambient Air Pollution and Epigenetic Aging at Birth in Newborns. Front Genet 2022; 13:929416. [PMID: 35836579 PMCID: PMC9274082 DOI: 10.3389/fgene.2022.929416] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/23/2022] [Indexed: 11/24/2022] Open
Abstract
In utero air pollution exposure has been associated with adverse birth outcomes, yet effects of air pollutants on regulatory mechanisms in fetal growth and critical windows of vulnerability during pregnancy are not well understood. There is evidence that epigenetic alterations may contribute to these effects. DNA methylation (DNAm) based age estimators have been developed and studied extensively with health outcomes in recent years. Growing literature suggests environmental factors, such as air pollution and smoking, can influence epigenetic aging. However, little is known about the effect of prenatal air pollution exposure on epigenetic aging. In this study, we leveraged existing data on prenatal air pollution exposure and cord blood DNAm from 332 mother-child pairs in the Early Autism Risk Longitudinal Investigation (EARLI) and Markers of Autism Risk in Babies-Learning Early Signs (MARBLES), two pregnancy cohorts enrolling women who had a previous child diagnosed with autism spectrum disorder, to assess the relationship of prenatal exposure to air pollution and epigenetic aging at birth. DNAm age was computed using existing epigenetic clock algorithms for cord blood tissue-Knight and Bohlin. Epigenetic age acceleration was defined as the residual of regressing chronological gestational age on DNAm age, accounting for cell type proportions. Multivariable linear regression models and distributed lag models (DLMs), adjusting for child sex, maternal race/ethnicity, study sites, year of birth, maternal education, were completed. In the single-pollutant analysis, we observed exposure to PM2.5, PM10, and O3 during preconception period and pregnancy period were associated with decelerated epigenetic aging at birth. For example, pregnancy average PM10 exposure (per 10 unit increase) was associated with epigenetic age deceleration at birth (weeks) for both Knight and Bohlin clocks (β = -0.62, 95% CI: -1.17, -0.06; β = -0.32, 95% CI: -0.63, -0.01, respectively). Weekly DLMs revealed that increasing PM2.5 during the first trimester and second trimester were associated with decelerated epigenetic aging and that increasing PM10 during the preconception period was associated with decelerated epigenetic aging, using the Bohlin clock estimate. Prenatal ambient air pollution exposure, particularly in early and mid-pregnancy, was associated with decelerated epigenetic aging at birth.
Collapse
Affiliation(s)
- Ashley Y. Song
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Jason I. Feinberg
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Kelly M. Bakulski
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Lisa A. Croen
- Division of Research, Kaiser Permanente, Oakland, CA, United States
| | - M. Daniele Fallin
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Craig J. Newschaffer
- College of Health and Human Development, Pennsylvania State University, State College, PA, United States
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, UC Davis, Davis CA and the UC Davis MIND Institute, Sacramento, CA, United States
| | - Rebecca J. Schmidt
- Department of Public Health Sciences, UC Davis, Davis CA and the UC Davis MIND Institute, Sacramento, CA, United States
| | - Christine Ladd-Acosta
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Heather E. Volk
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| |
Collapse
|
36
|
Ni Y, Loftus CT, Szpiro AA, Young MT, Hazlehurst MF, Murphy LE, Tylavsky FA, Mason WA, LeWinn KZ, Sathyanarayana S, Barrett ES, Bush NR, Karr CJ. Associations of Pre- and Postnatal Air Pollution Exposures with Child Behavioral Problems and Cognitive Performance: A U.S. Multi-Cohort Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:67008. [PMID: 35737514 PMCID: PMC9222764 DOI: 10.1289/ehp10248] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
BACKGROUND Population studies support the adverse associations of air pollution exposures with child behavioral functioning and cognitive performance, but few studies have used spatiotemporally resolved pollutant assessments. OBJECTIVES We investigated these associations using more refined exposure assessments in 1,967 mother-child dyads from three U.S. pregnancy cohorts in six cities in the ECHO-PATHWAYS Consortium. METHODS Pre- and postnatal nitrogen dioxide (NO2) and particulate matter (PM) ≤2.5μm in aerodynamic diameter (PM2.5) exposures were derived from an advanced spatiotemporal model. Child behavior was reported as Total Problems raw score using the Child Behavior Checklist at age 4-6 y. Child cognition was assessed using cohort-specific cognitive performance scales and quantified as the Full-Scale Intelligence Quotient (IQ). We fitted multivariate linear regression models that were adjusted for sociodemographic, behavioral, and psychological factors to estimate associations per 2-unit increase in pollutant in each exposure window and examined modification by child sex. Identified critical windows were further verified by distributed lag models (DLMs). RESULTS Mean NO2 and PM2.5 ranged from 8.4 to 9.0 ppb and 8.4 to 9.1 μg/m3, respectively, across pre- and postnatal windows. Average child Total Problems score and IQ were 22.7 [standard deviation (SD): 18.5] and 102.6 (SD: 15.3), respectively. Children with higher prenatal NO2 exposures were likely to have more behavioral problems [β: 1.24; 95% confidence interval (CI): 0.39, 2.08; per 2 ppb NO2], particularly NO2 in the first and second trimester. Each 2-μg/m3 increase in PM2.5 at age 2-4 y was associated with a 3.59 unit (95% CI: 0.35, 6.84) higher Total Problems score and a 2.63 point (95% CI: -5.08, -0.17) lower IQ. The associations between PM2.5 and Total Problems score were generally stronger in girls. Most predefined windows identified were not confirmed by DLMs. DISCUSSION Our study extends earlier findings that have raised concerns about impaired behavioral functioning and cognitive performance in children exposed to NO2 and PM2.5 in utero and in early life. https://doi.org/10.1289/EHP10248.
Collapse
Affiliation(s)
- Yu Ni
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington, USA
| | - Christine T. Loftus
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington, USA
| | - Adam A. Szpiro
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, Washington, USA
| | - Michael T. Young
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington, USA
| | - Marnie F. Hazlehurst
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington, USA
| | - Laura E. Murphy
- Department of Psychiatry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Frances A. Tylavsky
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - W. Alex Mason
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Kaja Z. LeWinn
- Department of Psychiatry, School of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Sheela Sathyanarayana
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington, USA
- Department of Pediatrics, School of Medicine, University of Washington, Seattle, Washington, USA
- Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Emily S. Barrett
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey, USA
| | - Nicole R. Bush
- Department of Psychiatry, School of Medicine, University of California, San Francisco, San Francisco, California, USA
- Department of Pediatrics, School of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Catherine J. Karr
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington, USA
- Department of Pediatrics, School of Medicine, University of Washington, Seattle, Washington, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington, USA
| |
Collapse
|
37
|
Xu X, Qin N, Zhao W, Tian Q, Si Q, Wu W, Iskander N, Yang Z, Zhang Y, Duan X. A three-dimensional LUR framework for PM 2.5 exposure assessment based on mobile unmanned aerial vehicle monitoring. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 301:118997. [PMID: 35176409 DOI: 10.1016/j.envpol.2022.118997] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 06/14/2023]
Abstract
Land use regression (LUR) models have been widely used in epidemiological studies and risk assessments related to air pollution. Although efforts have been made to improve the performance of LUR models so that they capture the spatial heterogeneity of fine particulate matter (PM2.5) in high-density cities, few studies have revealed the vertical differences in PM2.5 exposure. This study proposes a three-dimensional LUR (3-D LUR) assessment framework for PM2.5 exposure that combines a high-resolution LUR model with a vertical PM2.5 variation model to investigate the results of horizontal and vertical mobile PM2.5 monitoring campaigns. High-resolution LUR models that were developed independently for daytime and nighttime were found to explain 51% and 60% of the PM2.5 variation, respectively. Vertical measurements of PM2.5 from three regions were first parameterized to produce a coefficient of variation for the concentration (CVC) to define the rate at which PM2.5 changes at a certain height relative to the ground. The vertical variation model for PM2.5 was developed based on a spline smoothing function in a generalized additive model (GAM) framework with an adjusted R2 of 0.91 and explained 92.8% of the variance. PM2.5 exposure levels for the population in the study area were estimated based on both the LUR models and the 3-D LUR framework. The 3-D LUR framework was found to improve the accuracy of exposure estimation in the vertical direction by avoiding exposure estimation errors of up to 5%. Although the 3-D LUR-based assessment did not indicate significant variation in estimates of premature mortality that could be attributed to PM2.5, exposure to this pollutant was found to differ in the vertical direction. The 3-D LUR framework has the potential to provide accurate exposure estimates for use in future epidemiological studies and health risk assessments.
Collapse
Affiliation(s)
- Xiangyu Xu
- School of Energy and Environmental Engineering, University of Science and Technology of Beijing, Beijing 100083, China
| | - Ning Qin
- School of Energy and Environmental Engineering, University of Science and Technology of Beijing, Beijing 100083, China
| | - Wenjing Zhao
- School of Energy and Environmental Engineering, University of Science and Technology of Beijing, Beijing 100083, China
| | - Qi Tian
- School of Energy and Environmental Engineering, University of Science and Technology of Beijing, Beijing 100083, China
| | - Qi Si
- School of Energy and Environmental Engineering, University of Science and Technology of Beijing, Beijing 100083, China
| | - Weiqi Wu
- School of Energy and Environmental Engineering, University of Science and Technology of Beijing, Beijing 100083, China
| | - Nursiya Iskander
- School of Energy and Environmental Engineering, University of Science and Technology of Beijing, Beijing 100083, China
| | - Zhenchun Yang
- Duke Global Health Institute, Duke University, Durham, NC 27708, United States
| | - Yawei Zhang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xiaoli Duan
- School of Energy and Environmental Engineering, University of Science and Technology of Beijing, Beijing 100083, China.
| |
Collapse
|
38
|
Du H, Sun Y, Zhang Y, Wang S, Zhu H, Chen S, Pan H. Interaction of PM 2.5 and pre-pregnancy body mass index on birth weight: A nationwide prospective cohort study. Front Endocrinol (Lausanne) 2022; 13:963827. [PMID: 35957820 PMCID: PMC9360486 DOI: 10.3389/fendo.2022.963827] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/05/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Fine particulate matter (PM2.5), one of the most common air pollutants worldwide, has been associated with many adverse birth outcomes in some studies. Pre-pregnancy body mass index (BMI) is an important indicator of maternal obesity that may also contribute to a wide range of birthweight outcomes. Both PM2.5 and maternal obesity have been found associated with issues on neonatal birthweight respectively, and more attentions and interests are focusing on their combined effect on pregnancy outcomes. PURPOSE To explore the modifying effect of pre-pregnancy BMI on the association between gestational PM2.5 and birthweight; to investigate the interactive effect between gestational PM2.5 and pre-pregnancy BMI on birthweight among pregnant women during three trimesters and the whole pregnancy. METHODS This nationwide cohort study used the National Free Preconception Health Examination Project (NFPHEP) data collected from January 1, 2010, to December 31, 2012. A total population of 248,501 Chinese women from 220 counties registered this project. Pre-pregnancy BMI as a common anthropometric examination was collected during preconception investigation, and gestational PM2.5 was derived from a hindcast model for historical PM2.5 estimation from satellite-retrieved aerosol optic depth. Subgroup analysis was conducted to explore a potential modifying effect on the association between PM2.5 and birthweight during pregnancy by four pre-pregnancy BMI subgroups. Interaction analysis by introducing product terms to multivariable linear regression was also used to examine whether there was an interactive relationship between PM2.5 and pre-pregnancy BMI. RESULTS Totally, 193,461 participants were included in our study. The average concentration of PM2.5 was 75.33 μg/m3. Higher exposure of PM2.5 during the entire pregnancy was associated with higher birthweight (17.15 g per 10 μg/m3; 95% CI:16.15, 18.17). Each 10 μg/m3 increase in PM2.5 during the first, second, and third trimesters was associated with increases in birthweight by 14.93 g (95%CI: 13.96, 15.89), 13.75 g (95% CI: 12.81, 14.69), and 8.79 g (95% CI: 8.09, 9.49), respectively. Higher pre-pregnancy BMI per kg/m2 was associated with an increase of birthweight by 7.012 g (95% CI: 6.121, 7.902). Product terms between PM2.5 and pre-pregnancy BMI were significant for the first, second trimesters, and the entire duration of pregnancy. CONCLUSIONS Our results found both gestational PM2.5 exposure and pre-pregnancy BMI respectively correlated with the increase of birthweight. A negative interaction between pre-pregnancy BMI and gestational PM2.5 was discovered in term of birthweight gain. Avoidance of high-dose exposure to PM2.5 during the early and middle stages of pregnancy and pre-pregnancy overweight/obesity may help prevent high birthweight.
Collapse
Affiliation(s)
- Hanze Du
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, Translation Medicine Centre, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuxin Sun
- Eight-Year Program of Clinical Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuelun Zhang
- Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shirui Wang
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, Translation Medicine Centre, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Huijuan Zhu
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, Translation Medicine Centre, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Shi Chen
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, Translation Medicine Centre, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Shi Chen, ; Hui Pan,
| | - Hui Pan
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- *Correspondence: Shi Chen, ; Hui Pan,
| |
Collapse
|
39
|
Yen HC, Lin CH, Lin MC, Hsu YC, Lin YH. Prenatal Exposure to Air Pollution and Immune Thrombocytopenia: A Nationwide Population-Based Cohort Study. Front Pediatr 2022; 10:837101. [PMID: 35372164 PMCID: PMC8975147 DOI: 10.3389/fped.2022.837101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/11/2022] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Immune thrombocytopenia (ITP) is one of the most common hematologic disorders in children. However, its etiology is still unclear. Epidemiological studies have shown that air pollution is a plausible risk factor in stimulation of oxidative stress, induction of inflammation, and onset of autoimmune diseases. The objective of this article is to examine the effects of prenatal exposure to air pollution on the occurrence of immune thrombocytopenia (ITP) in children. MATERIALS AND METHODS This is a nationwide, population-based, matched case-control study. Using data from Taiwan's Maternal and Child Health Database (MCHD), we identified 427 children with ITP less than 6 years of age and age-matched controls without ITP between 2004 and 2016. Levels of prenatal exposure to air pollutants were obtained from 71 Environmental Protection Administration monitoring stations across Taiwan according to the maternal residence during pregnancy. Patients who had outpatient visits or admission with diagnosis of ITP and subsequently received first-line treatment of intravenous immunoglobulin or oral glucocorticoids were defined as incidence cases. RESULTS Prenatal exposure to particulate matter <10 μm (PM10) in diameter and the pollutant standard index (PSI) increased the risk of childhood ITP. Conversely, carbon monoxide (CO) exposure during pregnancy was negatively associated with the development of ITP. CONCLUSION Certain prenatal air pollutant exposure may increase the incidence of ITP in children.
Collapse
Affiliation(s)
- Hsin-Chien Yen
- Children's Medical Center, Taichung Veterans General Hospital, Taichung City, Taiwan
| | - Chien-Heng Lin
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City, Taiwan
| | - Ming-Chih Lin
- Children's Medical Center, Taichung Veterans General Hospital, Taichung City, Taiwan.,School of Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan.,Department of Food and Nutrition, Providence University, Taichung City, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung City, Taiwan.,Department of Post-baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung City, Taiwan
| | - Ya-Chi Hsu
- Children's Medical Center, Taichung Veterans General Hospital, Taichung City, Taiwan
| | - Yi-Hsuan Lin
- Children's Medical Center, Taichung Veterans General Hospital, Taichung City, Taiwan
| |
Collapse
|
40
|
Shi W, Jiang M, Kan L, Zhang T, Yu Q, Wu Z, Xue S, Fei X, Jin C. Association Between Ambient Air Pollutants Exposure and Preterm Birth in Women Who Underwent in vitro Fertilization: A Retrospective Cohort Study From Hangzhou, China. Front Med (Lausanne) 2021; 8:785600. [PMID: 34966762 PMCID: PMC8710591 DOI: 10.3389/fmed.2021.785600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022] Open
Abstract
Objectives: Exposure to air pollutants has been linked to preterm birth (PTB) after natural conception. However, few studies have explored the effects of air pollution on PTB in patients who underwent in vitro fertilization (IVF). We aimed to investigate the association between ambient air pollutants exposure and PTB risk in IVF patients. Methods: This retrospective cohort study included 2,195 infertile women who underwent IVF treatment from January 2017 and September 2020 in Hangzhou Women's Hospital. Totally 1,005 subjects who underwent a first fresh embryo(s) transfer cycle were analyzed in this study. Residential exposure to ambient six air pollutants (PM2.5, PM10, SO2, NO2, CO, O3) during various periods of the IVF timeline were estimated by satellite remote-sensing and ground measurement. Cox proportional hazards models for discrete time were used to explore the association between pollutants exposure and incident PTB, with adjustment for confounders. Stratified analyses were employed to explore the effect modifiers. Results: The clinical pregnancy and PTB rates were 61.2 and 9.3%, respectively. We found that PM2.5 exposure was significantly associated with an increased risk of PTB during 85 days before oocyte retrieval [period A, adjusted hazard ratio, HR=1.09, 95%CI: 1.02–1.21], gonadotropin start to oocyte retrieval [period B, 1.07 (1.01–1.19)], first trimester of pregnancy [period F, 1.06 (1.01–1.14)], and the entire IVF pregnancy [period I, 1.07 (1.01–1.14)], respectively. An interquartile range increment in PM10 during periods A and B was significantly associated with PTB at 1.15 (1.04–1.36), 1.12 (1.03–1.28), and 1.14 (1.01–1.32) for NO2 during period A. The stratified analysis showed that the associations were stronger for women aged <35 years and those who underwent two embryos transferred. Conclusions: Our study suggests ambient PM2.5, PM10, and NO2 exposure were significantly associated with elevated PTB risk in IVF patients, especially at early stages of IVF cycle and during pregnancy.
Collapse
Affiliation(s)
- Wenming Shi
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China.,School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Meiyan Jiang
- Department of Reproductive Medicine, Hangzhou Women's Hospital, Hangzhou, China
| | - Lena Kan
- Division of Population, Family and Reproductive Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Tiantian Zhang
- School of Public Health, Fudan University, Shanghai, China
| | - Qiong Yu
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zexuan Wu
- Department of Reproductive Center, Peking University Shenzhen Hospital, Shenzhen, China
| | - Shuya Xue
- Hangzhou Medical College, Hangzhou, China
| | - Xiaoyang Fei
- Department of Reproductive Medicine, Hangzhou Women's Hospital, Hangzhou, China
| | - Changbo Jin
- Shanghai Key Laboratory of Maternal-Fetal Medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
41
|
Funk WE, Montgomery N, Bae Y, Chen J, Chow T, Martinez MP, Lurmann F, Eckel SP, McConnell R, Xiang AH. Human Serum Albumin Cys34 Adducts in Newborn Dried Blood Spots: Associations With Air Pollution Exposure During Pregnancy. Front Public Health 2021; 9:730369. [PMID: 35004563 PMCID: PMC8733257 DOI: 10.3389/fpubh.2021.730369] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 11/22/2021] [Indexed: 12/30/2022] Open
Abstract
Background: Increasing evidence suggests that exposure to air pollution during pregnancy is associated with adverse pregnancy outcomes. However, biomarkers associated with air pollution exposure are widely lacking and often transient. In addition, ascertaining biospecimens during pregnacy to assess the prenatal environment remains largely infeasible. Objectives: To address these challenges, we investigated relationships between air pollution exposure during pregnancy and human serum albumin Cys34 (HSA-Cys34) adducts in newborn dried blood spots (DBS) samples, which captures an integration of perinatal exposures to small reactive molecules in circulating blood. Methods: Newborn DBS were obtained from a state archive for a cohort of 120 children born at one Kaiser Permanente Southern California (KPSC) hospitals in 2007. These children were selected to maximize the range of residential air pollution exposure during the entire pregnancy to PM2.5, PM10, NO2, O3, based on monthly estimates interpolated from regulatory monitoring sites. HSA-Cys34 adducts were selected based on previously reported relationships with air pollution exposure and oxidative stress. Results: Six adducts measured in newborn DBS samples were associated with air pollution exposures during pregnancy; these included direct oxidation products, adducts formed with small thiol compounds, and adducts formed with reactive aldehydes. Two general trends were identified: Exposure to air pollution late in pregnancy (i.e., in the last 30 days) was associated with increased oxidative stress, and exposure to air pollution earlier in pregnancy (i.e., not in the last 30 days) was associated with decreased oxidative stress around the time of birth. Discussion: Air pollution exposure occurring during pregnancy can alter biology and leave measurable impacts on the developing infant captured in the newborn DBS adductome, which represents a promising tool for investigating adverse birth outcomes in population-based studies.
Collapse
Affiliation(s)
- William E. Funk
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Evanston, IL, United States
| | - Nathan Montgomery
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Evanston, IL, United States
| | - Yeunook Bae
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Evanston, IL, United States
| | - Jiexi Chen
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Evanston, IL, United States
| | - Ting Chow
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, CA, United States
| | - Mayra P. Martinez
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, CA, United States
| | - Fred Lurmann
- Sonoma Technology, Inc., Petaluma, CA, United States
| | - Sandrah P. Eckel
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Rob McConnell
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Anny H. Xiang
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, CA, United States
| |
Collapse
|
42
|
Michikawa T, Morokuma S, Takeda Y, Yamazaki S, Nakahara K, Takami A, Yoshino A, Sugata S, Saito S, Hoshi J, Kato K, Nitta H, Nishiwaki Y. Maternal exposure to fine particulate matter over the first trimester and umbilical cord insertion abnormalities. Int J Epidemiol 2021; 51:191-201. [PMID: 34524459 DOI: 10.1093/ije/dyab192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 08/16/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Our hypothesis was that exposure to fine particulate matter (PM2.5) is related to abnormal cord insertion, which is categorized as a form of placental implantation abnormality. We investigated the association between exposure to total PM2.5 and its chemical components over the first trimester and abnormal cord insertion, which contributes to the occurrence of adverse birth outcomes. METHODS From the Japan Perinatal Registry Network database, we used data on 83 708 women who delivered singleton births at 39 cooperating hospitals in 23 Tokyo wards (2013-2015). We collected PM2.5 on a filter and measured daily concentrations of carbon and ion components. Then, we calculated the average concentrations over the first trimester (0-13 weeks of gestation) for each woman. A multilevel logistic-regression model with the hospital as a random effect was used to estimate the odds ratios (ORs) of abnormal cord insertion. RESULTS Among the 83 708 women (mean age at delivery = 33.7 years), the frequency of abnormal cord insertion was 4.5%, the median concentration [interquartile range (IQR)] of total PM2.5 was 16.1 (3.61) μg/m3 and the OR per IQR for total PM2.5 was 1.14 (95% confidence interval = 1.06-1.23). In the total PM2.5-adjusted models, total carbon, organic carbon, nitrate, ammonium and chloride were positively associated with abnormal insertion. Organic carbon was consistently, and nitrate tended to be, associated with specific types of abnormal insertion (marginal or velamentous cord insertion). CONCLUSIONS Exposure to total PM2.5 and some of its components over the first trimester increased the likelihood of abnormal cord insertion.
Collapse
Affiliation(s)
- Takehiro Michikawa
- Department of Environmental and Occupational Health, School of Medicine, Toho University, Tokyo, Japan
| | - Seiich Morokuma
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuki Takeda
- Department of Environmental and Occupational Health, School of Medicine, Toho University, Tokyo, Japan
| | - Shin Yamazaki
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
| | - Kazushige Nakahara
- Department of Obstetrics and Gynaecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akinori Takami
- Regional Environment Conservation Division, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
| | - Ayako Yoshino
- Regional Environment Conservation Division, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
| | - Seiji Sugata
- Regional Environment Conservation Division, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
| | - Shinji Saito
- Tokyo Metropolitan Research Institute for Environmental Protection, Tokyo, Japan
| | - Junya Hoshi
- Tokyo Metropolitan Research Institute for Environmental Protection, Tokyo, Japan
| | - Kiyoko Kato
- Department of Obstetrics and Gynaecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroshi Nitta
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
| | - Yuji Nishiwaki
- Department of Environmental and Occupational Health, School of Medicine, Toho University, Tokyo, Japan
| |
Collapse
|
43
|
Takeda Y, Michikawa T, Morokuma S, Yamazaki S, Nakahara K, Yoshino A, Sugata S, Takami A, Saito S, Hoshi J, Kato K, Nitta H, Nishiwaki Y. Trimester-Specific Association of Maternal Exposure to Fine Particulate Matter and its Components With Birth and Placental Weight in Japan. J Occup Environ Med 2021; 63:771-778. [PMID: 34491964 DOI: 10.1097/jom.0000000000002254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE We investigated which trimester of exposure to PM2.5 and its components was associated with birth and placental weight, and the fetoplacental weight ratio. METHODS The study included 63,990 women who delivered singleton term births within 23 Tokyo wards between 2013 and 2015. Each day, we collected fine particles on a filter, and analyzed their chemical constituents, including carbons and ions. Trimester-specific exposure to each pollutant was estimated based on the average daily concentrations. RESULTS Over the third trimester, sulfate exposure tended to be inversely associated with birth weight, and decreased placental weight (difference for highest vs lowest quintile groups = -6.7 g, 95% confidence interval = -12.5 to -0.9). For fetoplacental weight ratio, there was no relationship. CONCLUSIONS Sulfate exposure over the third trimester may reduce birth weight, particularly placental weight.
Collapse
Affiliation(s)
- Yuki Takeda
- Department of Environmental and Occupational Health, Toho University Graduate School of Medicine, 5-21-16 Omori-nishi, Ota-ku, Tokyo 143-8540, Japan (Dr Takeda, Dr Michikawa, and Dr Nishiwaki); Department of Environmental and Occupational Health, School of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo 143-8540, Japan (Dr Michikawa and Dr Nishiwaki); Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan (Dr Morokuma); Health and Environmental Risk Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan (Dr Yamazaki and Dr Nitta); Department of Obstetrics and Gynaecology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan (Dr Nakahara and Dr Kato); Regional Environment Conservation Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan (Dr Yoshino, Dr Sugata, and Dr Takami); Tokyo Metropolitan Research Institute for Environmental Protection, 1-7-5 Shinsuna, Koto-ku, Tokyo 136-0075, Japan (Dr Saito and Dr Hoshi)
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Marczynski M, Lieleg O. Forgotten but not gone: Particulate matter as contaminations of mucosal systems. BIOPHYSICS REVIEWS 2021; 2:031302. [PMID: 38505633 PMCID: PMC10903497 DOI: 10.1063/5.0054075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/14/2021] [Indexed: 03/21/2024]
Abstract
A decade ago, environmental issues, such as air pollution and the contamination of the oceans with microplastic, were prominently communicated in the media. However, these days, political topics, as well as the ongoing COVID-19 pandemic, have clearly taken over. In spite of this shift in focus regarding media representation, researchers have made progress in evaluating the possible health risks associated with particulate contaminations present in water and air. In this review article, we summarize recent efforts that establish a clear link between the increasing occurrence of certain pathological conditions and the exposure of humans (or animals) to airborne or waterborne particulate matter. First, we give an overview of the physiological functions mucus has to fulfill in humans and animals, and we discuss different sources of particulate matter. We then highlight parameters that govern particle toxicity and summarize our current knowledge of how an exposure to particulate matter can be related to dysfunctions of mucosal systems. Last, we outline how biophysical tools and methods can help researchers to obtain a better understanding of how particulate matter may affect human health. As we discuss here, recent research has made it quite clear that the structure and functions of those mucosal systems are sensitive toward particulate contaminations. Yet, our mechanistic understanding of how (and which) nano- and microparticles can compromise human health via interacting with mucosal barriers is far from complete.
Collapse
|
45
|
Chen J, Li PH, Fan H, Li C, Zhang Y, Ju D, Deng F, Guo X, Guo L, Wu S. Weekly-specific ambient fine particular matter exposures before and during pregnancy were associated with risks of small for gestational age and large for gestational age: results from Project ELEFANT. Int J Epidemiol 2021; 51:202-212. [PMID: 34432047 DOI: 10.1093/ije/dyab166] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 07/21/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Investigations on the potential effects of ambient fine particulate matter (PM2.5) on large for gestational age (LGA) are limited. Furthermore, no study has explored weekly-specific susceptible exposure windows for small for gestational age (SGA) and LGA. This study evaluated the associations of exposure to ambient PM2.5 over the preconception and entire-pregnancy periods with risks of SGA and LGA, as well as explored critical weekly-specific exposure windows. METHODS 10 916 singleton pregnant women with 24-42 completed gestational weeks from the Project Environmental and LifEstyle FActors iN metabolic health throughout life-course Trajectories between 2014 and 2016 were included in this study. Distributed lag models (DLMs) incorporated in Cox proportional-hazards models were applied to explore the associations of maternal exposure to weekly ambient PM2.5 throughout 12 weeks before pregnancy and pregnancy periods with risks of SGA and LGA after controlling for potential confounders. RESULTS For a 10-μg/m3 increase in maternal exposure to PM2.5, positive associations with SGA were observed during the 1st to 9th preconceptional weeks and the 1st to 2nd gestational weeks (P<0.05), with the strongest association in the 5th preconceptional week [hazard ratio (HR), 1.06; 95% confidential interval (CI), 1.03-1.09]. For LGA, positive associations were observed during the 1st to 12th preconceptional weeks and the 1st to 5th gestational weeks (P<0.05), with the strongest association in the 7th preconceptional week (HR, 1.10; 95% CI, 1.08-1.12). CONCLUSIONS Exposure to high-level ambient PM2.5 is associated with increased risks of both SGA and LGA, and the most susceptible exposure windows are the preconception and early-pregnancy periods.
Collapse
Affiliation(s)
- Juan Chen
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Peng-Hui Li
- Department of Environmental Science, School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, China
| | - Haojun Fan
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China.,Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Chen Li
- Department of Occupational & Environmental Health, Tianjin Medical University, Tianjin, China
| | - Ying Zhang
- Medical Genetic Laboratory, Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin, China
| | - Duan Ju
- Medical Genetic Laboratory, Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin, China
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Liqiong Guo
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China.,Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Shaowei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| |
Collapse
|
46
|
Long J, Zhang M, Wang G, Hong X, Ji Y, Bustamante-Helfrich B, Wang X, Mueller NT. Association of Placental Pathology With Childhood Blood Pressure Among Children Born Preterm. Am J Hypertens 2021; 34:1154-1162. [PMID: 34424290 PMCID: PMC9526806 DOI: 10.1093/ajh/hpab097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/08/2021] [Accepted: 08/12/2021] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND The in utero pathologies underlying the link between preterm birth and offspring high blood pressure (BP) are still unknown. We investigated the prospective associations of placental histopathological findings with childhood BP among children born preterm. METHODS Our study sample included 546 mother-child pairs with preterm birth (before 37 weeks gestation) enrolled from 1999 to 2013 at the Boston Medical Center. Early preterm birth was defined as gestational age between 23 and 34 weeks. We histologically classified maternal placental pathology using the latest recommended categories: no placental complications, histologic chorioamnionitis, maternal vascular malperfusion, and other placental complications. We calculated age-, sex-, and height-specific systolic BP (SBP) percentiles for children using the 2017 American Academy of Pediatrics Clinical Practice Guideline. We used linear regression models with generalized estimating equations to examine the associations. RESULTS The mean (standard deviation (SD)) postnatal follow-up of the study children was 9.29 (4.1) years. After adjusting for potential confounders, histologic chorioamnionitis was associated with a 5.42 percentile higher childhood SBP (95% confidence interval: 0.32, 10.52) compared with no placental pathologic findings. This association was stronger among early preterm children. Maternal vascular malperfusion was associated with a 8.44 percentile higher childhood SBP among early preterm children (95% confidence interval: 1.54, 15.34) but the association was attenuated (6.25, 95% confidence interval: -0.76, 13.26) after additional adjustment for child standardized birthweight, a potential mediator of the association. CONCLUSIONS These findings suggest that among children born preterm, especially those born early preterm, both placental histologic chorioamnionitis and vascular malperfusion may help to differentiate a child's risk of high BP.
Collapse
Affiliation(s)
- Jingmiao Long
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, Maryland, USA
| | - Mingyu Zhang
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, Maryland, USA
| | - Guoying Wang
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Xiumei Hong
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Yuelong Ji
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Blandine Bustamante-Helfrich
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Clinical and Applied Science Education (Pathology), University of the Incarnate Word School of Osteopathic Medicine, San Antonio, Texas, USA
| | - Xiaobin Wang
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Noel T Mueller
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, Maryland, USA
- Correspondence: Noel T. Mueller ()
| |
Collapse
|
47
|
Li S, Peng L, Wu X, Xu G, Cheng P, Hao J, Huang Z, Xu M, Chen S, Zhang C, Hao J. Long-term impact of ambient air pollution on preterm birth in Xuzhou, China: a time series study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:41039-41050. [PMID: 33772720 DOI: 10.1007/s11356-021-13621-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
Accumulating evidence witnesses the negative influence of air pollution on human health, but the relationship between air pollution and premature babies has been inconsistent. In this study, the association between weekly average concentration of air pollutants and preterm birth (PTB) was conducted in Xuzhou, a heavy industry city, in China. We constructed a distributed lag non-linear model (DLNM), an ecological study, to access the associations between ambient air pollutants and PTB in this study. Totally, 5408 premature babies were included, and the weekly average levels of PM2.5, PM10, SO2, NO2, O3, and CO were 61.24, 110.21, 22.55, 40.55, 104.45, and 1.04 mg/m3, respectively. We found that PM2.5, PM10, SO2, and NO2 significantly increased the risk of PTB, and the susceptibility windows of these contaminants were the second trimester and third trimester (from 12 to 29 weeks). Every 10 μg/m3 increase of PM2.5, PM10, SO2, and NO2, the greatest relative risk (RR) values and 95% confidence interval (CI) on PTB were 1.0075 [95% CI, 1.0019-1.0131], 1.0053 [95% CI, 1.0014-1.0092], 1.0203 [95% CI, 1.0030-1.0379], and 1.0170 [95% CI, 1.0052-1.0289] in lag 16th, 18th, 19th, and 20th gestational weeks, respectively. No significant influence of O3 and CO were found on preterm birth. Subgroup analysis showed that the risk of premature delivery was higher for younger pregnant women and in warm season. This finding shows that prenatal exposure to ambient air pollutants is associated with preterm birth, and there existed an exposure window period.
Collapse
Affiliation(s)
- Sha Li
- Department of Maternal Child and Adolescent Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Lei Peng
- Xuzhou Maternal and Child Health Family Planning Service Center, 46 Heping Road, Xuzhou, 221000, Jiangsu, China
| | - Xiaochang Wu
- Department of Maternal Child and Adolescent Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Geng Xu
- Xuzhou Maternal and Child Health Family Planning Service Center, 46 Heping Road, Xuzhou, 221000, Jiangsu, China
| | - Peng Cheng
- Department of Maternal Child and Adolescent Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Jingwen Hao
- Department of Maternal Child and Adolescent Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Zhaohui Huang
- Department of Maternal Child and Adolescent Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Center for Woman and Child Health, No. 38 Gongwan Road, Hefei, 230001, Anhui, China
| | - Meng Xu
- Xuzhou Center for Disease Prevention and Control, Xuzhou, 221000, China
| | - Shuting Chen
- Yunlong District Maternal and Child Health Family Planning Service Center, Xuzhou, China
| | - Chao Zhang
- Department of Maternal Child and Adolescent Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Jiahu Hao
- Department of Maternal Child and Adolescent Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
48
|
Johnson NM, Hoffmann AR, Behlen JC, Lau C, Pendleton D, Harvey N, Shore R, Li Y, Chen J, Tian Y, Zhang R. Air pollution and children's health-a review of adverse effects associated with prenatal exposure from fine to ultrafine particulate matter. Environ Health Prev Med 2021; 26:72. [PMID: 34253165 PMCID: PMC8274666 DOI: 10.1186/s12199-021-00995-5] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/01/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Particulate matter (PM), a major component of ambient air pollution, accounts for a substantial burden of diseases and fatality worldwide. Maternal exposure to PM during pregnancy is particularly harmful to children's health since this is a phase of rapid human growth and development. METHOD In this review, we synthesize the scientific evidence on adverse health outcomes in children following prenatal exposure to the smallest toxic components, fine (PM2.5) and ultrafine (PM0.1) PM. We highlight the established and emerging findings from epidemiologic studies and experimental models. RESULTS Maternal exposure to fine and ultrafine PM directly and indirectly yields numerous adverse birth outcomes and impacts on children's respiratory systems, immune status, brain development, and cardiometabolic health. The biological mechanisms underlying adverse effects include direct placental translocation of ultrafine particles, placental and systemic maternal oxidative stress and inflammation elicited by both fine and ultrafine PM, epigenetic changes, and potential endocrine effects that influence long-term health. CONCLUSION Policies to reduce maternal exposure and health consequences in children should be a high priority. PM2.5 levels are regulated, yet it is recognized that minority and low socioeconomic status groups experience disproportionate exposures. Moreover, PM0.1 levels are not routinely measured or currently regulated. Consequently, preventive strategies that inform neighborhood/regional planning and clinical/nutritional recommendations are needed to mitigate maternal exposure and ultimately protect children's health.
Collapse
Affiliation(s)
- Natalie M Johnson
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX, 77843, USA.
| | | | - Jonathan C Behlen
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX, 77843, USA
| | - Carmen Lau
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, 77843, USA
| | - Drew Pendleton
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX, 77843, USA
| | - Navada Harvey
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX, 77843, USA
| | - Ross Shore
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX, 77843, USA
| | - Yixin Li
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Jingshu Chen
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, 77843, USA
| | - Yanan Tian
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, 77843, USA
| | - Renyi Zhang
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
49
|
Qi C, Shang L, Yang W, Huang L, Yang L, Xin J, Wang S, Yue J, Zeng L, Chung MC. Maternal exposure to O 3 and NO 2 may increase the risk of newborn congenital hypothyroidism: a national data-based analysis in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:34621-34629. [PMID: 33655476 PMCID: PMC8275538 DOI: 10.1007/s11356-021-13083-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
Maternal exposure to air pollution during pregnancy is associated with adverse outcomes in the offspring, but limited studies focused on the impacts of gaseous air pollution on newborn congenital hypothyroidism (CH). Therefore, a national data-based analysis was conducted to explore the association between maternal exposure to gaseous air pollution and the incidence of CH in China. Annual average exposure levels of SO2, NO2, CO, and O3 from January 1, 2014, to December 30, 2014, were acquired from the Chinese Air Quality Online Monitoring and Analysis Platform. The annual incidence of newborn CH from October 1, 2014, to September 30, 2015, was collected from the Chinese Maternal and Child Health Surveillance Network. Temperature and toxic metal in wastewater in 2014 were also collected as covariates. Maternal exposure to O3 and NO2 in 1 μg/m3 level increment was positively associated with newborn CH, with an OR of 1.055 (95% CI 1.011, 1.102) and 1.097 (95% CI 1.019, 1.182) after adjusting for covariates completely. Compared with the lowest level of O3, maternal exposure to the 4th quartile of O3 was positively associated with newborn CH (OR 1.393, 95% CI 1.081, 1.794) after adjusting for covariates completely. And the 3rd and 4th quartiles of NO2 were associated positively with CH (OR 1.576, 95% CI 1.025, 2.424, and OR 1.553, 95% CI 0.999, 2.414, respectively) compared with the lowest level of NO2. By fitting the ROC curve, 93.688 μg/m3 in O3 might be used as cutoff to predict the incidence of newborn CH in China.
Collapse
Affiliation(s)
- Cuifang Qi
- Department of Obstetrics and Gynecology, Maternal & Child Health Center, The First Affiliated Hospital of Xi’an Jiaotong University, No. 277, West Yanta Road, Xi’an,, Shaanxi 710061 People’s Republic of China
| | - Li Shang
- Department of Obstetrics and Gynecology, Maternal & Child Health Center, The First Affiliated Hospital of Xi’an Jiaotong University, No. 277, West Yanta Road, Xi’an,, Shaanxi 710061 People’s Republic of China
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an,, Shaanxi 710061 People’s Republic of China
| | - Wenfang Yang
- Department of Obstetrics and Gynecology, Maternal & Child Health Center, The First Affiliated Hospital of Xi’an Jiaotong University, No. 277, West Yanta Road, Xi’an,, Shaanxi 710061 People’s Republic of China
| | - Liyan Huang
- Department of Obstetrics and Gynecology, Maternal & Child Health Center, The First Affiliated Hospital of Xi’an Jiaotong University, No. 277, West Yanta Road, Xi’an,, Shaanxi 710061 People’s Republic of China
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an,, Shaanxi 710061 People’s Republic of China
| | - Liren Yang
- Department of Obstetrics and Gynecology, Maternal & Child Health Center, The First Affiliated Hospital of Xi’an Jiaotong University, No. 277, West Yanta Road, Xi’an,, Shaanxi 710061 People’s Republic of China
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an,, Shaanxi 710061 People’s Republic of China
| | - Juan Xin
- Department of Obstetrics and Gynecology, Maternal & Child Health Center, The First Affiliated Hospital of Xi’an Jiaotong University, No. 277, West Yanta Road, Xi’an,, Shaanxi 710061 People’s Republic of China
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an,, Shaanxi 710061 People’s Republic of China
| | - Shanshan Wang
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an,, Shaanxi 710061 People’s Republic of China
| | - Jie Yue
- Department of Obstetrics and Gynecology, Maternal & Child Health Center, The First Affiliated Hospital of Xi’an Jiaotong University, No. 277, West Yanta Road, Xi’an,, Shaanxi 710061 People’s Republic of China
| | - Lingxia Zeng
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an,, Shaanxi 710061 People’s Republic of China
| | - Mei Chun Chung
- Department of Obstetrics and Gynecology, Maternal & Child Health Center, The First Affiliated Hospital of Xi’an Jiaotong University, No. 277, West Yanta Road, Xi’an,, Shaanxi 710061 People’s Republic of China
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA USA
| |
Collapse
|
50
|
Bongaerts E, Aengenheister L, Dugershaw BB, Manser P, Roeffaers MBJ, Ameloot M, Nawrot TS, Bové H, Buerki-Thurnherr T. Label-free detection of uptake, accumulation, and translocation of diesel exhaust particles in ex vivo perfused human placenta. J Nanobiotechnology 2021; 19:144. [PMID: 34001140 PMCID: PMC8130319 DOI: 10.1186/s12951-021-00886-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/06/2021] [Indexed: 01/24/2023] Open
Abstract
Background Pregnant women and developing fetuses comprise a particularly vulnerable population as multiple studies have shown associations between prenatal air pollution exposure and adverse pregnancy outcomes. However, the mechanisms underlying the observed developmental toxicity are mostly unknown, in particular, if pollution particles can cross the human placenta to reach the fetal circulation. Results Here, we investigated the accumulation and translocation of diesel exhaust particles (DEPs), as a model particle for combustion-derived pollution, in human perfused placentae using label-free detection by femtosecond pulsed laser illumination. The results do not reveal a significant particle transfer across term placentae within 6 h of perfusion. However, DEPs accumulate in placental tissue, especially in the syncytiotrophoblast layer that mediates a wealth of essential functions to support and maintain a successful pregnancy. Furthermore, DEPs are found in placental macrophages and fetal endothelial cells, showing that some particles can overcome the syncytiotrophoblasts to reach the fetal capillaries. Few particles are also observed inside fetal microvessels. Conclusions Overall, we show that DEPs accumulate in key cell types of the placental tissue and can cross the human placenta, although in limited amounts. These findings are crucial for risk assessment and protection of pregnant women and highlight the urgent need for further research on the direct and indirect placenta-mediated developmental toxicity of ambient particulates. ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-00886-5.
Collapse
Affiliation(s)
- Eva Bongaerts
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Leonie Aengenheister
- Laboratory for Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - Battuja B Dugershaw
- Laboratory for Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - Pius Manser
- Laboratory for Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | | | - Marcel Ameloot
- Biomedical Research Institute, Hasselt University, Agoralaan Building C, 3590, Diepenbeek, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium.,Department of Public Health and Primary Care, KU Leuven, Herestraat 49, Box 703, 3000, Leuven, Belgium
| | - Hannelore Bové
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium. .,Biomedical Research Institute, Hasselt University, Agoralaan Building C, 3590, Diepenbeek, Belgium.
| | - Tina Buerki-Thurnherr
- Laboratory for Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland.
| |
Collapse
|