1
|
Leal KNDS, Santos da Silva AB, Fonseca EKB, Moreira OBDO, de Lemos LM, Leal de Oliveira MA, Stewart AJ, Arruda MAZ. Metallomic analysis of urine from individuals with and without Covid-19 infection reveals extensive alterations in metal homeostasis. J Trace Elem Med Biol 2024; 86:127557. [PMID: 39500269 DOI: 10.1016/j.jtemb.2024.127557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/14/2024] [Accepted: 10/25/2024] [Indexed: 12/08/2024]
Abstract
BACKGROUND Metal ions perform important functions in the body and their concentrations in cells and tissues are tightly controlled. Alterations in metal homeostasis can occur in certain disease states including infection. In this study urinary excretion of several metals including calcium, cadmium, cobalt, copper, iron, magnesium, nickel, selenium, and zinc in Covid-19 patients (n=35) and control (n=60) individuals, spanning ages and sexes. METHODS Urinary samples were analysed using ICP-MS and the differences in metal concentrations between the Covid-19-infected and control groups were assessed using multivariate data analysis and univariate data analysis employing Student's t-test and Pearson's correlation, with significance set at p<0.05. RESULTS The urinary concentrations of all metals analysed were significantly higher in the Covid-infected group (compared to controls), with the exception of copper, which was markedly reduced. The increase in calcium excretion was lower and magnesium excretion greater in Covid-19-positive individuals aged 41 or over compared to those aged 40 or lower. Whilst the increase in iron excretion was lower, and cobalt excretion greater in Covid-19-positive males compared to females. CONCLUSIONS The study highlights significant alterations in the handling of a range of metals in the body during Covid-19 infection. It also highlights both age and sex-specific differences in metal homeostasis. The results suggest an important role for copper in the body during Covid-19 infection and suggests that urinary concentrations of copper and other metals may serve as markers to predict progression of the disease.
Collapse
Affiliation(s)
- Ketolly Natanne da Silva Leal
- Institute of Chemistry, University of Campinas - Unicamp, PO Box 6154, Campinas, SP 13083-970, Brazil; National Institute of Science and Technology for Bioanalytics, Institute of Chemistry, University of Campinas - Unicamp, PO Box 6154, Campinas, SP 13083-970, Brazil; School of Medicine, Medical and Biological Sciences Building, University of St Andrews, North Haugh, St Andrews, KY16 9TF, United Kingdom
| | - Ana Beatriz Santos da Silva
- Institute of Chemistry, University of Campinas - Unicamp, PO Box 6154, Campinas, SP 13083-970, Brazil; National Institute of Science and Technology for Bioanalytics, Institute of Chemistry, University of Campinas - Unicamp, PO Box 6154, Campinas, SP 13083-970, Brazil
| | - Elisânia Kelly Barbosa Fonseca
- Institute of Chemistry, University of Campinas - Unicamp, PO Box 6154, Campinas, SP 13083-970, Brazil; National Institute of Science and Technology for Bioanalytics, Institute of Chemistry, University of Campinas - Unicamp, PO Box 6154, Campinas, SP 13083-970, Brazil
| | - Olívia Brito de Oliveira Moreira
- Analytical Chemistry and Chemometrics Group (GQAQ), Institute of Exact Sciences, Juiz de Fora Federal University - UFJF, Juiz de Fora, MG 36036-90, Brazil
| | | | - Marcone Augusto Leal de Oliveira
- National Institute of Science and Technology for Bioanalytics, Institute of Chemistry, University of Campinas - Unicamp, PO Box 6154, Campinas, SP 13083-970, Brazil; Analytical Chemistry and Chemometrics Group (GQAQ), Institute of Exact Sciences, Juiz de Fora Federal University - UFJF, Juiz de Fora, MG 36036-90, Brazil
| | - Alan J Stewart
- School of Medicine, Medical and Biological Sciences Building, University of St Andrews, North Haugh, St Andrews, KY16 9TF, United Kingdom
| | - Marco Aurélio Zezzi Arruda
- Institute of Chemistry, University of Campinas - Unicamp, PO Box 6154, Campinas, SP 13083-970, Brazil; National Institute of Science and Technology for Bioanalytics, Institute of Chemistry, University of Campinas - Unicamp, PO Box 6154, Campinas, SP 13083-970, Brazil.
| |
Collapse
|
2
|
Luo Z, Zhu N, Xiong K, Qiu F, Cao C. Analysis of the relationship between sleep-related disorders and cadmium in the US population. Front Public Health 2024; 12:1476383. [PMID: 39525462 PMCID: PMC11544537 DOI: 10.3389/fpubh.2024.1476383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Background Cadmium is a heavy metal that accumulates in the body due to environmental and occupational exposure. The neurotoxicity of cadmium received increasingly attention in recent years. Sleeping is regulated and coordinated by nervous system, however, little is known about the relationship between cadmium and sleep. This study aimed to examine the relationship between blood cadmium concentrations and sleep-related disorders in US adults. Methods This cross-sectional study used data on blood cadmium and sleep from the 2005-2008 and 2015-2020 National Health and Nutrition Examination Survey (NHANES). Weighted multiple regression, generalized weighted modeling, and weighted restricted cubic splines (RCS) were utilized to investigate the association between blood cadmium and sleep outcomes (sleep duration, trouble sleeping, symptoms of obstructive sleep apnea (OSA) and daytime sleepiness). Furthermore, subgroup analyses were conducted to investigate any differences in the associations between age, gender, ethnicity, education level, marital status, smoking status, alcohol consumption, diabetes mellitus (DM), cardiovascular disease (CVD) and hypertension groups. Results In 19,152 participants, the median blood cadmium concentration was 0.48 (IQR: 0.28, 0.82)μg/L. Compared with the lowest reference quartile, participants in the higher quartile had a significantly higher risk of insufficient sleeping (<7 h/night) in crude model (OR 1.53, 95% CI 1.33-1.74), Model 1 (OR 1.57, 95% CI 1.38-1.80) and Model 2 (OR 1.45, 95% CI 1.27-1.65). In the unadjusted model, individuals in the highest quartile of cadmium level had a significantly increased risk of OSA symptoms of 53% (OR = 1.53, 95% CI: 1.42, 1.65) compared with participants in the bottom quartile, and this risk increased by 35% (OR = 1.35, 95% CI: 1.23, 1.48) after adjusting for all covariates. Individuals in the highest quartile of cadmium level were 76% more likely to have a trouble sleeping than individuals in the lowest quartile in the unadjusted model (OR = 1.76, 95% CI: 1.31, 1.93), whereas in the fully adjusted model, this likelihood was 86% higher (OR = 1.86, 95% CI: 1.51, 1.96). A similar positive correlation was also observed for cadmium level and daytime sleepiness. However, no relationship was noted between cadmium and excessive sleep duration (≥9 h). A linear dose-response relationship was found between cadmium concentration and the risk of insufficient sleeping (P non-linearity = 0.321), OSA symptoms (P non-linearity = 0.176), trouble sleeping (P non-linearity = 0.682) and daytime sleepiness (P non-linearity = 0.565). Additionally, no significant interactions between cadmium concentrations and subgroup variables were identified (P for interaction>0.05). Conclusion Insufficient sleep, symptoms of OSA, trouble sleeping and daytime sleepiness were found to have a positive association with the blood cadmium concentration in US adults. However, further prospective studies are necessary to establish whether there is a causal relationship between these factors.
Collapse
Affiliation(s)
| | | | | | | | - Chao Cao
- Key Laboratory of Respiratory Disease of Ningbo, Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Ningbo University, Zhejiang, China
| |
Collapse
|
3
|
Zhang J, Xiong YW, Zhu HL, Tan LL, Zhou H, Zheng XM, Zhang YF, Chang W, Xu DX, Wei T, Guan SZ, Wang H. Adolescent co-exposure to environmental cadmium and high-fat diet induces cognitive decline via Larp7 m6A-mediated SIRT6 inhibition. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135159. [PMID: 39002485 DOI: 10.1016/j.jhazmat.2024.135159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/07/2024] [Accepted: 07/07/2024] [Indexed: 07/15/2024]
Abstract
The effects and underlying mechanisms of adolescent exposure to combined environmental hazards on cognitive function remain unclear. Here, using a combined exposure model, we found significant cognitive decline, hippocampal neuronal damage, and neuronal senescence in mice exposed to cadmium (Cd) and high-fat diet (HFD) during adolescence. Furthermore, we observed a significant downregulation of Sirtuin 6 (SIRT6) expression in the hippocampi of co-exposed mice. UBCS039, a specific SIRT6 activator, markedly reversed the above adverse effects. Further investigation revealed that co-exposure obviously reduced the levels of La ribonucleoprotein 7 (LARP7), disrupted the interaction between LARP7 and SIRT6, ultimately decreasing SIRT6 expression in mouse hippocampal neuronal cells. Overexpression of Larp7 reversed the combined exposure-induced SIRT6 decrease and senescence in mouse hippocampal neuronal cells. Additionally, the results showed notably elevated levels of Larp7 m6A and YTH domain family protein 2 (YTHDF2) in mouse hippocampal neuronal cells treated with the combined hazards. Ythdf2 short interfering RNA, RNA immunoprecipitation, and RNA stability assays further demonstrated that YTHDF2 mediated the degradation of Larp7 mRNA under combined exposure. Collectively, adolescent co-exposure to Cd and HFD causes hippocampal senescence and cognitive decline in mice by inhibiting LARP7-mediated SIRT6 expression in an m6A-dependent manner.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Yong-Wei Xiong
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, China
| | - Hua-Long Zhu
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, China
| | - Lu-Lu Tan
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Huan Zhou
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Xin-Mei Zheng
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Yu-Feng Zhang
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Wei Chang
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - De-Xiang Xu
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, China
| | - Tian Wei
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, China.
| | - Su-Zhen Guan
- School of Public Health, Ningxia Medical University, China.
| | - Hua Wang
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, China.
| |
Collapse
|
4
|
Gong Z, Song T, Hu M, Che Q, Guo J, Zhang H, Li H, Wang Y, Liu B, Shi N. Natural and socio-environmental factors in the transmission of COVID-19: a comprehensive analysis of epidemiology and mechanisms. BMC Public Health 2024; 24:2196. [PMID: 39138466 PMCID: PMC11321203 DOI: 10.1186/s12889-024-19749-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024] Open
Abstract
PURPOSE OF REVIEW There are significant differences in the transmission rate and mortality rate of COVID-19 under environmental conditions such as seasons and climates. However, the impact of environmental factors on the role of the COVID-19 pandemic and the transmission mechanism of the SARS-CoV-2 is unclear. Therefore, a comprehensive understanding of the impact of environmental factors on COVID-19 can provide innovative insights for global epidemic prevention and control policies and COVID-19 related research. This review summarizes the evidence of the impact of different natural and social environmental factors on the transmission of COVID-19 through a comprehensive analysis of epidemiology and mechanism research. This will provide innovative inspiration for global epidemic prevention and control policies and provide reference for similar infectious diseases that may emerge in the future. RECENT FINDINGS Evidence reveals mechanisms by which natural environmental factors influence the transmission of COVID-19, including (i) virus survival and transport, (ii) immune system damage, (iii) inflammation, oxidative stress, and cell death, and (iiii) increasing risk of complications. All of these measures appear to be effective in controlling the spread or mortality of COVID-19: (1) reducing air pollution levels, (2) rational use of ozone disinfection and medical ozone therapy, (3) rational exposure to sunlight, (4) scientific ventilation and maintenance of indoor temperature and humidity, (5) control of population density, and (6) control of population movement. Our review indicates that with the continuous mutation of SARS-CoV-2, high temperature, high humidity, low air pollution levels, and low population density more likely to slow down the spread of the virus.
Collapse
Affiliation(s)
- Zhaoyuan Gong
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Tian Song
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Mingzhi Hu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qianzi Che
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jing Guo
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Haili Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Huizhen Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yanping Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Bin Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Nannan Shi
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
5
|
Baumert BO, Wang H, Samy S, Park SK, Lam CN, Dunn K, Pinto-Pacheco B, Walker D, Landero J, Conti D, Chatzi L, Hu H, Goodrich JA. Environmental pollutant risk factors for worse COVID-19 related clinical outcomes in predominately hispanic and latino populations. ENVIRONMENTAL RESEARCH 2024; 252:119072. [PMID: 38729411 PMCID: PMC11198996 DOI: 10.1016/j.envres.2024.119072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Per- and poly-fluorinated compounds (PFAS) and heavy metals constitute two classes of environmental exposures with known immunotoxicant effects. In this pilot study, we aimed to evaluate the impact of exposure to heavy metals and PFAS on COVID-19 severity. We hypothesized that elevated plasma-PFAS concentrations and urinary heavy metal concentrations would be associated with increased odds of ICU admission in COVID-19 hospitalized individuals. METHODS Using the University of Southern California Clinical Translational Sciences Institute (SC-CTSI) biorepository of hospitalized COVID-19 patients, urinary concentrations of 15 heavy metals and urinary creatinine were measured in n = 101 patients and plasma concentrations of 13 PFAS were measured in n = 126 patients. COVID-19 severity was determined based on whether a patient was admitted to the ICU during hospitalization. Associations of metals and PFAS with ICU admission were assessed using logistic regression models, controlling for age, sex, ethnicity, smoking status, and for metals, urinary dilution. RESULTS The average age of patients was 55 ± 14.2 years. Among SC-CTSI participants with urinary measurement of heavy metals and blood measures of PFAS, 54.5% (n = 61) and 54.8% (n = 80) were admitted to the ICU, respectively. For heavy metals, we observed higher levels of Cd, Cr, and Cu in ICU patients. The strongest associations were with Cadmium (Cd). After accounting for covariates, each 1 SD increase in Cd resulted in a 2.00 (95% CI: 1.10-3.60; p = 0.03) times higher odds of admission to the ICU. When including only Hispanic or Latino participants, the effect estimates between cadmium and ICU admission remained similar. Results for PFAS were less consistent, with perfluorodecanesulfonic acid (PFDS) exhibiting a positive but non-significant association with ICU admission (Odds ratio, 95% CI: 1.50, 0.97-2.20) and perfluorodecanoic acid (PFDA) exhibiting a negative association with ICU admission (0.53, 0.31-0.88). CONCLUSIONS This study supports the hypothesis that environmental exposures may impact COVID-19 severity.
Collapse
Affiliation(s)
- Brittney O Baumert
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Hongxu Wang
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Shar Samy
- Department of Environmental and Occupational Health Sciences, University of Washington School of Public Health, Seattle, WA, United States
| | - Sung Kyun Park
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Chun Nok Lam
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Kathryn Dunn
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Brismar Pinto-Pacheco
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Douglas Walker
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Julio Landero
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - David Conti
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Leda Chatzi
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Howard Hu
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.
| | - Jesse A Goodrich
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.
| |
Collapse
|
6
|
Shen R, Chen S, Shen J, Lv L, Wei T. Association between missing teeth number and all-cause and cardiovascular mortality: NHANES 1999-2004 and 2009-2014. J Periodontol 2024; 95:571-581. [PMID: 37793053 DOI: 10.1002/jper.23-0277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/05/2023] [Accepted: 09/10/2023] [Indexed: 10/06/2023]
Abstract
BACKGROUND The association between tooth loss and all-cause and cardiovascular mortality requires further investigation. METHODS This study included 17993 participants from the National Health and Nutrition Examination Surveys (NHANES) 1999-2004 and 2009-2014. Weighted multivariable Cox proportional hazard models were used to assess the association between tooth loss and all-cause and cardiovascular mortality. Restricted cubic splines (RCS) were incorporated in the models to explore potential nonlinear relationships. RESULTS Over a median follow-up of 116 months, 2152 participants died, including 625 cardiovascular deaths. Compared to participants without missing teeth, participants with 11-19 missing teeth had the highest risk of all-cause mortality (hazard ratio [HR] 1.89, 95% confidence interval [CI] 1.43-2.51), while participants with 6-10 missing teeth had the highest risk of cardiovascular mortality (HR 2.51, 95% CI 1.68-3.76). RCS analyses revealed nonlinear associations between number of missing teeth and all-cause (p < 0.001) and cardiovascular (p = 0.001) mortality. With < 10 missing teeth, each additional missing tooth increased all-cause and cardiovascular mortality by 6% (HR 1.06, 95% CI 1.03-1.09) and 9% (HR 1.09, 95% CI 1.03-1.15), respectively. However, when the number of missing teeth was ≥10, the risk of mortality did not continue to increase with more missing teeth. A significant interaction was found between tooth loss and age (p < 0.001 for both outcomes). CONCLUSION We observed an inverted L-shaped association between tooth loss and mortality, wherein risks increased with more missing teeth until 10, but did not continue increasing thereafter. The association was stronger in adults < 65 years old.
Collapse
Affiliation(s)
- Ruming Shen
- Lishui Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuaijie Chen
- Lishui Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiayi Shen
- Lishui Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lingchun Lv
- Lishui Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tiemin Wei
- Lishui Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
7
|
Liu H, Liu M, Qiao L, Yang Z, He Y, Bao M, Lin X, Han J. Association of blood cadmium levels and all-cause mortality among adults with rheumatoid arthritis: The NHANES cohort study. J Trace Elem Med Biol 2024; 83:127406. [PMID: 38308912 DOI: 10.1016/j.jtemb.2024.127406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
BACKGROUND The potential impact of environmental cadmium exposure on the prognosis of patients with rheumatoid arthritis (RA) remains unclear, despite its known association with various adverse health outcomes. METHODS In this study, a total of 1285 RA patients were included in the National Health and Nutrition Examination Survey (NHANES) conducted between 2003 and 2016. The Cox regression model was employed to investigate the relationship between blood cadmium levels and the risk of all-cause mortality in RA patients. RESULTS During a mean follow-up duration of 105.9 months, 341 patient deaths were recorded. After adjusting for multiple factors, elevated blood cadmium was strongly correlated with an increased risk of all-cause mortality in patients with RA. With one unit rise in natural logarithm-transformed blood cadmium concentrations, the risk of patient death increased by 107%. The adjusted hazard ratios for each quartile of blood cadmium demonstrated a significant upward trend (P < 0.001). A linear dose-response relationship of blood cadmium concentrations with all-cause mortality was also distinctive (P < 0.001). Consistent findings were ascertained when conducting stratified analyses by age, gender, race, education level, body mass index, smoking status, and drinking status. CONCLUSIONS Elevated blood cadmium levels may serve as a risk factor for increased death risk in RA patients.
Collapse
Affiliation(s)
- Haobiao Liu
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Mian Liu
- Department of Bioengineering, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Lichun Qiao
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Zhihao Yang
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Yujie He
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Miaoye Bao
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Xue Lin
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Jing Han
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, 710061, China; Key Laboratory of Environment and Genes Related to Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
8
|
Park SK, Wang X, Lee S, Hu H. Do we underestimate risk of cardiovascular mortality due to lead exposure? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171511. [PMID: 38453073 PMCID: PMC11753055 DOI: 10.1016/j.scitotenv.2024.171511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/21/2023] [Accepted: 03/03/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND Studies using data from the National Health and Nutrition Examination Survey-III (NHANES-III) have demonstrated significant prospective associations between blood lead levels and increased mortality. Bone lead represents cumulative lead burden and thus is a better biomarker for assessing chronic impacts, but its in vivo assessment requires special K-x-ray fluorescence (KXRF) instrumentation. Our team recently developed an algorithm predicting bone lead levels from a combination of blood lead levels, age and other socioeconomic and behavioral variables. We examined the associations of our algorithm-estimated bone lead levels and mortality in NHANES-III. METHODS We included 11,628 adults followed up to December 31, 2019. Estimated tibia lead and patella lead levels were calculated using our prediction algorithms. We used survey-weighted Cox proportional hazards models to compute hazard ratios (HRs) and 95 % confidence intervals (CIs). RESULTS During the median follow-up of 26.8 years, 4900 participants died (mortality rate = 1398 per 100,000 adults/year). Geometric means (95 % CIs) of blood lead, predicted tibia lead, and predicted patella lead were 2.69 μg/dL (2.54, 2.84), 6.73 μg/g (6.22, 7.25), and 16.3 μg/g (15.9, 16.8), respectively. The associations for all-cause mortality were similar between blood lead and bone lead. However, the associations for cardiovascular mortality were much greater with predicted bone lead markers compared to blood lead: for comparing participants at the 90th vs. 10th percentiles of exposure, HR = 3.32 (95 % CI: 1.93-5.73) for tibia lead, 2.42 (1.56-3.76) for patella lead, 1.63 (1.25-2.14) for blood lead. The population attributable fractions for cardiovascular disease mortality if everyone's lead concentrations were declined to the 10th percentiles were 45.8 % (95 % CI: 28.1-59.4) for tibia lead, 33.1 % (18.1-45.8) for patella lead, and 22.8 % (10.4-33.8) for blood lead. CONCLUSIONS These findings suggest that risk assessment for cardiovascular mortality based on blood lead levels may underestimate the true mortality risk of lead exposure.
Collapse
Affiliation(s)
- Sung Kyun Park
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MA, USA; Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MA, USA.
| | - Xin Wang
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MA, USA
| | - Seulbi Lee
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MA, USA
| | - Howard Hu
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MA, USA; Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
9
|
Chiu LC, Lee CS, Hsu PC, Li HH, Chan TM, Hsiao CC, Kuo SCH, Ko HW, Lin SM, Wang CH, Lin HC, Chu PH, Yen TH. Urinary cadmium concentration is associated with the severity and clinical outcomes of COVID-19: a bicenter observational cohort study. Environ Health 2024; 23:29. [PMID: 38504259 PMCID: PMC10949676 DOI: 10.1186/s12940-024-01070-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/05/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND Cadmium and nickel exposure can cause oxidative stress, induce inflammation, inhibit immune function, and therefore has significant impacts on the pathogenesis and severity of many diseases. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can also provoke oxidative stress and the dysregulation of inflammatory and immune responses. This study aimed to assess the potential associations of cadmium and nickel exposure with the severity and clinical outcomes of patients with coronavirus disease 2019 (COVID-19). METHODS We performed a retrospective, observational, bicenter cohort analysis of patients with SARS-CoV-2 infection in Taiwan between June 2022 and July 2023. Cadmium and nickel concentrations in blood and urine were measured within 3 days of the diagnosis of acute SARS-CoV-2 infection, and the severity and clinical outcomes of patients with COVID-19 were analyzed. RESULTS A total of 574 patients were analyzed and divided into a severe COVID-19 group (hospitalized patients) (n = 252; 43.9%), and non-severe COVID-19 group (n = 322; 56.1%). The overall in-hospital mortality rate was 11.8% (n = 68). The severe COVID-19 patients were older, had significantly more comorbidities, and significantly higher neutrophil/lymphocyte ratio, C-reactive protein, and interleukin-6 than the non-severe COVID-19 patients (all p < 0.05). Blood and urine cadmium and urine nickel concentrations were significantly higher in the severe COVID-19 patients than in the non-severe COVID-19 patients. Among the severe COVID-19 patients, those in higher urine cadmium/creatinine quartiles had a significantly higher risk of organ failure (i.e., higher APACHE II and SOFA scores), higher neutrophil/lymphocyte ratio, lower PaO2/FiO2 requiring higher invasive mechanical ventilation support, higher risk of acute respiratory distress syndrome, and higher 60-, 90-day, and all-cause hospital mortality (all p < 0.05). Multivariable logistic regression models revealed that urine cadmium/creatinine was independently associated with severe COVID-19 (adjusted OR 1.643 [95% CI 1.060-2.547], p = 0.026), and that a urine cadmium/creatinine value > 2.05 μg/g had the highest predictive value (adjusted OR 5.349, [95% CI 1.118-25.580], p = 0.036). CONCLUSIONS Urine cadmium concentration in the early course of COVID-19 could predict the severity and clinical outcomes of patients and was independently associated with the risk of severe COVID-19.
Collapse
Affiliation(s)
- Li-Chung Chiu
- Department of Thoracic Medicine, Linkou Branch, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chung-Shu Lee
- Department of Thoracic Medicine, Linkou Branch, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Thoracic Medicine, New Taipei Municipal TuCheng Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Ping-Chih Hsu
- Department of Thoracic Medicine, Linkou Branch, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hsin-Hsien Li
- Department of Thoracic Medicine, Linkou Branch, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Respiratory Therapy, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Tien-Ming Chan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Division of Rheumatology, Allergy, and Immunology, Linkou Branch, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ching-Chung Hsiao
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Nephrology, New Taipei Municipal TuCheng Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Scott Chih-Hsi Kuo
- Department of Thoracic Medicine, Linkou Branch, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - How-Wen Ko
- Department of Thoracic Medicine, Linkou Branch, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shu-Min Lin
- Department of Thoracic Medicine, Linkou Branch, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chun-Hua Wang
- Department of Thoracic Medicine, Linkou Branch, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Horng-Chyuan Lin
- Department of Thoracic Medicine, Linkou Branch, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Pao-Hsien Chu
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Cardiology, Linkou Branch, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Tzung-Hai Yen
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Department of Nephrology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Linkou, No. 5, Fu-Shing St., GuiShan, Taoyuan, 33305, Taiwan.
- Clinical Poison Center, Center for Tissue Engineering, Kidney Research Center, Chang Gung Memorial Hospital, Taoyuan, 33305, Taiwan.
| |
Collapse
|
10
|
Wang B, Liu C, Guo Z, Li R, Wang Y, Dong C, Sun D. Association of dietary inflammatory index with constipation: Evidence from the National Health and Nutrition Examination Survey. Food Sci Nutr 2024; 12:2122-2130. [PMID: 38455207 PMCID: PMC10916608 DOI: 10.1002/fsn3.3914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 03/09/2024] Open
Abstract
The association of dietary inflammatory index (DII) with constipation has not been well studied in general population. Therefore, the aim of this cross-sectional study was to investigate whether DII is associated with constipation in a large representative sample of the US population. Data were obtained from the 2005-2010 National Health and Nutrition Examination Survey (NHANES). A total of 12,308 participants aged ≥20 years were included in the analysis. DII was calculated based on a single 24-h dietary recall, and constipation was defined as having fewer than three bowel movements per week by the questionnaire on bowel health. Logistic regression analysis demonstrated a significant positive association between DII score and constipation, with each unit increase in DII score associated with a 20% increase in constipation risk (95% CI: 1.13-1.28). Subgroup analysis revealed high odds ratios (ORs) among individuals classified as "Other Race" (OR: 1.42, 95% CI: 1.12-1.80) and "Non-Hispanic White" (OR: 1.31, 95% CI: 1.12-1.54). In addition, RCS analysis indicated a nonlinear relationship between DII and constipation among individuals with a BMI less than 25 (OR: 1.17, 95% CI: 1.07-1.28), while the overall trend remained positive correlation (OR: 1.20, 95% CI: 1.10-1.31). Briefly, our study suggests that there may be a link between DII and constipation, which has implications for the development of dietary interventions aimed at preventing and managing constipation. However, this association was complex and variable depending on individual factors such as BMI and racial background and needed to establish longitudinal studies to confirm the underlying mechanisms between DII and constipation.
Collapse
Affiliation(s)
- Bo Wang
- Department of Paediatric SurgeryTianjin Medical University General HospitalTianjinChina
| | - Chunxiang Liu
- Department of Paediatric SurgeryTianjin Medical University General HospitalTianjinChina
| | - Zheng Guo
- Department of Paediatric SurgeryTianjin Medical University General HospitalTianjinChina
| | - Rui Li
- Department of Paediatric SurgeryTianjin Medical University General HospitalTianjinChina
| | - Yuchao Wang
- Department of Paediatric SurgeryTianjin Medical University General HospitalTianjinChina
| | - Caixia Dong
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnosis, School of PharmacyTianjin Medical UniversityTianjinChina
| | - Daqing Sun
- Department of Paediatric SurgeryTianjin Medical University General HospitalTianjinChina
| |
Collapse
|
11
|
Zhou J, Hong H, Zhao J, Fang R, Chen S, Tang C. Metabolome analysis to investigate the effect of heavy metal exposure and chemoprevention agents on toxic injury caused by a multi-heavy metal mixture in rats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167513. [PMID: 37783434 DOI: 10.1016/j.scitotenv.2023.167513] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/04/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
Heavy metal pollution is a significant threat to both the environment and living organisms. This is especially vital considering the persistent and cumulative nature of heavy metal exposure, which can lead to severe and chronic health consequences for individuals. Therefore, implementing effective treatments is critical to addressing the serious public health issues posed by heavy metal pollution. In this study, nontargeted metabolomics was carried out to investigate the metabolic changes associated with long-term low-dose intake of mixed heavy metal pollutants (MHMPs) in liver, kidney, and plasma samples of Sprague-Dawley (SD) rats with and without treatment to reveal the underlying toxic effects of MHMPs and the effects of chemoprevention agents, including epigallocatechin-3-gallate (EGCG), trisodium citrate dihydrate (TCD), and glutathione (GSH). In the liver, kidney, and plasma, we observed a total of 21, 69, and 16 metabolites, respectively, exhibiting significant differences (P < 0.05, fold change >1.2 or <0.83, and VIP ≥ 1) between the control group and the mixture group. The findings demonstrated that exposure to MHMPs leads to the dysregulation of numerous metabolic pathways, with a particular emphasis on purine metabolism and aminoacyl-tRNA biosynthesis with upregulated renal purine metabolites and downregulated hepatic purine metabolites as well as renal aminoacyl-tRNA biosynthesis-related metabolites. However, the application of chemical protectants was shown to partially restore the metabolic alterations induced by MHMPs, particularly purine metabolism-related metabolites, including hepatic adenine and renal adenine, guanine, guanosine, adenosine monophosphate (AMP), and hypoxanthine. In addition, liver adenosine, kidney inosine and L-phenylalanine were considered the main regulated sites based on their significant correlations with multiple heavy metals. Our study provides crucial insights into the toxicological mechanisms of heavy metal pollution and has the potential to guide the development of effective preventive strategies.
Collapse
Affiliation(s)
- Jinyue Zhou
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Hang Hong
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jinshun Zhao
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Rui Fang
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Shushu Chen
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Chunlan Tang
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China.
| |
Collapse
|
12
|
Jarrell ZR, Lee CM, Kim KH, He X, Smith MR, Raha JR, Bhatnagar N, Orr M, Kang SM, Chen Y, Jones DP, Go YM. Metabolic reprograming and increased inflammation by cadmium exposure following early-life respiratory syncytial virus infection-the involvement of protein S-palmitoylation. Toxicol Sci 2023; 197:kfad112. [PMID: 37941452 PMCID: PMC10823773 DOI: 10.1093/toxsci/kfad112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023] Open
Abstract
Early-life respiratory syncytial virus (RSV) infection (eRSV) is one of the leading causes of serious pulmonary disease in children. eRSV is associated with higher risk of developing asthma and compromised lung function later in life. Cadmium (Cd) is a toxic metal, widely present in the environment and in food. We recently showed that eRSV re-programs metabolism and potentiates Cd toxicity in the lung, and our transcriptome-metabolome-wide study showed strong associations between S-palmitoyl transferase expression and Cd-stimulated lung inflammation and fibrosis signaling. Limited information is available on the mechanism by which eRSV re-programs metabolism and potentiates Cd toxicity in the lung. In the current study, we used a mouse model to examine the role of protein S-palmitoylation (Pr-S-Pal) in low dose Cd-elevated lung metabolic disruption and inflammation following eRSV. Mice exposed to eRSV were later treated with Cd (3.3 mg CdCl2/L) in drinking water for 6 weeks (RSV+Cd). The role of Pr-S-Pal was studied using a palmitoyl transferase inhibitor, 2-bromopalmitate (BP, 10 µM). Inflammatory marker analysis showed that cytokines, chemokines and inflammatory cells were highest in the RSV+Cd group, and BP decreased inflammatory markers. Lung metabolomics analysis showed that pathways including phenylalanine, tyrosine and tryptophan, phosphatidylinositol and sphingolipid were altered across treatments. BP antagonized metabolic disruption of sphingolipid and glycosaminoglycan metabolism by RSV+Cd, consistent with BP effect on inflammatory markers. This study shows that Cd exposure following eRSV has a significant impact on subsequent inflammatory response and lung metabolism, which is mediated by Pr-S-Pal, and warrants future research for a therapeutic target.
Collapse
Affiliation(s)
- Zachery R Jarrell
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, Georgia 30322, USA
| | - Choon-Myung Lee
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, Georgia 30322, USA
| | - Ki-Hye Kim
- Center for Inflammation, Immunity and Infection, Georgia State University, Atlanta, Georgia 30303, USA
| | - Xiaojia He
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, Georgia 30322, USA
| | - Matthew R Smith
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, Georgia 30322, USA
- Atlanta Veterans Affairs Medical Center, Decatur, Georgia 30033, USA
| | - Jannatul R Raha
- Center for Inflammation, Immunity and Infection, Georgia State University, Atlanta, Georgia 30303, USA
| | - Noopur Bhatnagar
- Center for Inflammation, Immunity and Infection, Georgia State University, Atlanta, Georgia 30303, USA
| | - Michael Orr
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, Georgia 30322, USA
| | - Sang-Moo Kang
- Center for Inflammation, Immunity and Infection, Georgia State University, Atlanta, Georgia 30303, USA
| | - Yan Chen
- Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | - Dean P Jones
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, Georgia 30322, USA
| | - Young-Mi Go
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
13
|
Chen C, Zhang S, Yang T, Wang C, Han G. Associations between environmental heavy metals exposure and preserved ratio impaired spirometry in the U.S. adults. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:108274-108287. [PMID: 37749472 PMCID: PMC10611825 DOI: 10.1007/s11356-023-29688-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/23/2023] [Indexed: 09/27/2023]
Abstract
We examined 9556 individuals aged 18 to 79 years who had information on spirometry testing and heavy metals and used multivariable logistic or linear regression to evaluate associations between serum levels of cadmium, lead, and mercury and PRISm and lung function in U.S. adults, which were conducted first in all participants, and then separately in never/former smokers and current smokers. The overall prevalence of PRISm was 7.02%. High levels of serum cadmium were significantly associated with PRISm in all individuals, no matter in never/former smokers (quartile 4 vs 1, the OR = 2.517, 95% CI = 1.376-4.604, p-trend = 0.0077) and current smokers (quartile 4 vs 1, the OR = 2.201, 95% CI = 1.265-3.830, p-trend = 0.0020). Serum lead and mercury were not significantly correlated with PRISm, regardless of smoking status. Serum cadmium was strongly correlated with lower FEV1/FVC, regardless of smoking status. Besides, serum cadmium was also significantly related to lower FVC % predicted in never/former smokers and lower FEV1% predicted in current smokers. Serum lead was strongly correlated with lower FVC % predicted and FEV1/FVC in all individuals and never/former smokers. And serum mercury was significantly associated with decrements in FVC % predicted in all individuals and current smokers. These findings demonstrate that serum cadmium is associated with a higher risk of PRISm and lower lung function, with the most significant effect on FEV1/FVC in particular. Our results also indicate that exposure to lead and mercury negatively affects lung function in never/former smokers and current smokers, respectively.
Collapse
Affiliation(s)
- Chen Chen
- National Center for Respiratory MedicineNational Clinical Research Center for Respiratory DiseasesInstitute of Respiratory MedicineDepartment of Traditional Chinese Medicine for Pulmonary Diseases, Center of Respiratory Medicine, Chinese Academy of Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Shunan Zhang
- National Center for Respiratory MedicineNational Clinical Research Center for Respiratory DiseasesInstitute of Respiratory MedicineDepartment of Traditional Chinese Medicine for Pulmonary Diseases, Center of Respiratory Medicine, Chinese Academy of Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Ting Yang
- National Center for Respiratory MedicineNational Clinical Research Center for Respiratory DiseasesInstitute of Respiratory MedicineDepartment of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, Chinese Academy of Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China.
| | - Chen Wang
- National Center for Respiratory MedicineNational Clinical Research Center for Respiratory DiseasesInstitute of Respiratory MedicineDepartment of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, Chinese Academy of Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China
| | - Guiling Han
- National Center for Respiratory MedicineNational Clinical Research Center for Respiratory DiseasesInstitute of Respiratory MedicineDepartment of Traditional Chinese Medicine for Pulmonary Diseases, Center of Respiratory Medicine, Chinese Academy of Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| |
Collapse
|
14
|
Wu M, Dou L, Abudoula A, Shu Y, Wang Y. Cadmium exposure is associated with decreased muscle strength in middle-aged and older adults. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:101424-101432. [PMID: 37648927 DOI: 10.1007/s11356-023-29481-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 08/20/2023] [Indexed: 09/01/2023]
Abstract
Cadmium, a toxic heavy metal, is ubiquitous in the environment. No previous research has evaluated the relationship of blood and urine cadmium levels with muscle strength measured by isokinetic knee extensor strength. This analysis included participants who were aged 50 years or older and had measurements of cadmium in blood (n = 2052) and urine (n = 811) from the National Health and Nutrition Examination Survey. Blood and urine cadmium levels were assessed by atomic absorption spectrometry and inductively coupled plasma-mass spectrometry, respectively. Isokinetic dynamometry was used to assess knee extensor strength (peak force). Linear regression models were used to examine the association between cadmium exposure and peak force, with adjustment for potential confounders. The median values (25-75th percentiles) of blood cadmium and creatinine-corrected urine cadmium were 0.50 μg/L (0.40-0.70) and 0.43 μg/g (0.27-0.71), respectively. After adjusting for potential confounders, linear dose-response relationships of peak force with blood and urine cadmium concentrations were observed in the present study. Compared to participants in the highest quartile of blood cadmium and urine cadmium, the peak force decreased by 6.99 Newton (95% CI: -21.96, 7.98) and 26.84 Newton (95% CI: -44.34, -9.34) in participants in the lowest quartiles, respectively. The observed associations were more evident among men participants. Our findings suggest that the cadmium levels have a dose response relationship with decreased muscle strength measured by isokinetic knee extensor strength in middle aged and older adults. Further longitudinal investigations are required to disentangle these complexities on this issue.
Collapse
Affiliation(s)
- Mingyang Wu
- Xiangya School of Public Health, Central South University, Changsha, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Linfei Dou
- Xiangya School of Public Health, Central South University, Changsha, China
| | - Aisimila Abudoula
- Xiangya School of Public Health, Central South University, Changsha, China
| | - Yanling Shu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Youjie Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
15
|
Zhang Y, Liu M, Xie R. Associations between cadmium exposure and whole-body aging: mediation analysis in the NHANES. BMC Public Health 2023; 23:1675. [PMID: 37653508 PMCID: PMC10469832 DOI: 10.1186/s12889-023-16643-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/29/2023] [Indexed: 09/02/2023] Open
Abstract
INTRODUCTION Even though cadmium (Cd) exposure and cellular senescence (telomere length) have been linked in previous studies, composite molecular aging biomarkers are more significant and reliable factors to consider when examining the connection between metal exposure and health outcomes. The purpose of this research was to assess the association between urinary cadmium (U-Cd) and whole-body aging (phenotypic age). METHODS Phenotypic age was calculated from chronological age and 9 molecular biomarkers. Multivariate linear regression models, subgroup analysis, and smoothing curve fitting were used to explore the linear and nonlinear relationship between U-Cd and phenotypic age. Mediation analysis was performed to explore the mediating effect of U-Cd on the association between smoking and phenotypic age. RESULTS This study included 10,083 participants with a mean chronological age and a mean phenotypic age of 42.24 years and 42.34 years, respectively. In the fully adjusted model, there was a positive relationship between U-Cd and phenotypic age [2.13 years per 1 ng/g U-Cd, (1.67, 2.58)]. This association differed by sex, age, and smoking subgroups (P for interaction < 0.05). U-Cd mediated a positive association between serum cotinine and phenotypic age, mediating a proportion of 23.2%. CONCLUSIONS Our results suggest that high levels of Cd exposure are associated with whole-body aging.
Collapse
Affiliation(s)
- Ya Zhang
- Department of Gland Surgery, The Affiliated Nanhua Hospital, Hengyang Medical school, University of South China, Hengyang, 421002, China
| | - Mingjiang Liu
- Department of Hand & Microsurgery, The Affiliated Nanhua Hospital, Hengyang Medical school, University of South China, No.336 Dongfeng South Road, Zhuhui District, Hunan Province, Hengyang, 421002, China
| | - Ruijie Xie
- Department of Hand & Microsurgery, The Affiliated Nanhua Hospital, Hengyang Medical school, University of South China, No.336 Dongfeng South Road, Zhuhui District, Hunan Province, Hengyang, 421002, China.
- Hengyang Medical school, University of South China, Hengyang, 421002, China.
| |
Collapse
|
16
|
Wang P, Zhao S, Hu X, Tan Q, Tan Y, Shi D. Association of dietary total antioxidant capacity and its distribution across three meals with all-cause, cancer, and non-cancer mortality among cancer survivors: the US National Health and Nutrition Examination Survey, 1999-2018. Front Nutr 2023; 10:1141380. [PMID: 37485382 PMCID: PMC10359731 DOI: 10.3389/fnut.2023.1141380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023] Open
Abstract
The effect of the antioxidant capacity of diet and its distribution across three meals on mortality risk among cancer patients remains unexplored. We aimed to prospectively investigate the association of dietary total antioxidant capacity (DAC) and its distribution across three meals with all-cause, cancer, and noncancer mortality among cancer survivors. We included 5,009 patients with cancer from the National Health and Nutrition Examination Survey conducted between 1999 and 2018. The adjusted hazard ratio (aHR) was estimated using the survey-weighted Cox proportional hazards model. During a median follow-up of 7.9 years, 1811 deaths, including 575 cancer-related deaths, were recorded. Among cancer survivors, compared with participants in the lowest quartile of total DAC from three meals, those in the highest quartile had a 24% decreased risk of noncancer mortality (aHR = 0.76, 95% confidence interval [CI]: 0.60-0.92), but not of all-cause and cancer mortality (each p trend >0.1). However, this association became insignificant for total DAC after excluding dinner DAC. In addition, higher dinner DAC rather than breakfast or lunch DAC was associated with a 21% lower risk of all-cause mortality (aHR = 0.79, 95% CI: 0.65-0.98) and 28% lower risk of noncancer mortality (aHR = 0.72, 95% CI: 0.57-0.90). Similar associations were found for ΔDAC (dinner DAC - breakfast DAC) with noncancer mortality (aHR = 0.56, 95% CI: 0.38-0.83), but DAC was not associated with cancer mortality (p trend >0.3). Among cancer survivors, total DAC from three meals was associated with reduced noncancer mortality, with the primary effect attributable to increased DAC intake from dinner. Our findings emphasize that DAC consumption from dinner should be advocated to reduce mortality risk in cancer survivors.
Collapse
Affiliation(s)
- Peng Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Shengnan Zhao
- Department of Nutrition Food and Children’s Health, School of Public Health, Weifang Medical University, Weifang, China
| | - Xiao Hu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| | - Qilong Tan
- Department of Epidemiology and Biostatistics, School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Yaoyu Tan
- Department of Nutrition and Food Hygiene, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Dan Shi
- Department of Nutrition and Food Hygiene, School of Public Health, Chongqing Medical University, Chongqing, China
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, China
| |
Collapse
|
17
|
Chen S, Shen R, Shen J, Lyu L, Wei T. Association of blood cadmium with all-cause and cause-specific mortality in patients with hypertension. Front Public Health 2023; 11:1106732. [PMID: 37469695 PMCID: PMC10353433 DOI: 10.3389/fpubh.2023.1106732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 06/15/2023] [Indexed: 07/21/2023] Open
Abstract
Background Cadmium is a commonly found heavy metal with a prolonged biological half-life, which results in long-term health burden for the population. Prior studies have demonstrated an association between blood cadmium and hypertension. However, few studies examined the relationship between blood cadmium and long-term health outcomes in patients with hypertension. This study aimed to investigate the association of blood cadmium with mortality in patients with hypertension. Methods This study analyzed data from the National Health and Nutrition Examination Survey 1999-2012. Complex sampling-weighted multivariate Cox proportional hazards models were used to evaluate the hazard ratios (HRs) of all-cause, cardiovascular, and Alzheimer's disease mortality in patients with hypertension classified by blood cadmium concentrations' quantiles. Results The study included 12,208 patients with hypertension with a median follow-up duration of 10.8 years. During this period, there were 4,485 all-cause deaths, including 1,520 cardiovascular deaths and 180 Alzheimer's disease deaths. Compared with the lowest quintile of blood cadmium (≤0.25 μg/L) group, the highest quintile of blood cadmium (≥0.80 μg/L) group's adjusted HRs were 1.85 (95% CI, 1.59-2.14) for all-cause mortality, 1.76 (95% CI, 1.33-2.34) for cardiovascular mortality, and 3.41 (95% CI, 1.54-7.51) for Alzheimer's disease mortality. Additionally, the adjusted HR for cardiovascular mortality was 2.12 (95% CI, 1.36-3.30) in never-smoking patients with hypertension. Conclusion Higher blood cadmium is associated with increased risks of all-cause, cardiovascular, and Alzheimer's disease mortality in patients with hypertension. The effect of blood cadmium on cardiovascular mortality may be more pronounced in never-smoking hypertensive patients.
Collapse
Affiliation(s)
- Shuaijie Chen
- Department of Cardiology, Lishui Hospital, College of Medicine, Zhejiang University, Lishui, China
- College of Medicine, Zhejiang University, Hangzhou, China
| | - Ruming Shen
- Department of Cardiology, Lishui Hospital, College of Medicine, Zhejiang University, Lishui, China
- College of Medicine, Zhejiang University, Hangzhou, China
| | - Jiayi Shen
- Department of Cardiology, Lishui Hospital, College of Medicine, Zhejiang University, Lishui, China
| | - Lingchun Lyu
- Department of Cardiology, Lishui Hospital, College of Medicine, Zhejiang University, Lishui, China
| | - Tiemin Wei
- Department of Cardiology, Lishui Hospital, College of Medicine, Zhejiang University, Lishui, China
| |
Collapse
|
18
|
Gu J, Li K, Lin H, Wang Y, Zhou Y, Chen D, Gu X, Shi H. Cadmium induced immunosuppression through TLR-IκBα-NFκB signaling by promoting autophagic degradation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115017. [PMID: 37196523 DOI: 10.1016/j.ecoenv.2023.115017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/10/2023] [Accepted: 05/13/2023] [Indexed: 05/19/2023]
Abstract
Environmental and occupational exposure to cadmium (Cd) poses a serious threat to human health. Recent studies indicate that Cd perturbs the immune system and increases the risk of pathogenicity and mortality of bacterial or virus infection. However, the underlying mechanism of Cd-modulated immune responses remains unclear. In this study, we aim to investigate the role of Cd in the immune function of mouse spleen tissues and its primary T cells with Concanavalin A (ConA, a well-known T cell mitogen) activation condition, and elucidate the molecular mechanism. The results showed that Cd exposure inhibited ConA-induced the expressions of tumor necrosis factor alpha (TNF-α) and interferon gamma (IFN-γ) in mouse spleen tissues. Furthermore, the transcriptomic profile by RNA-sequence reveals that: (1) Cd exposure can alter immune system process; (2) Cd may affect the NFκB signaling pathway. Both in vitro and in vivo results showed that Cd exposure reduced ConA-activated toll-like receptor 9 (TLR9)-IκBα-NFκB signaling, and the expressions of TLR9, TNF-α and IFN-γ, which were effectively reversed by autophagy-lysosomal inhibitors. All these results confirmedly demonstrated that, by promoting the autophagy-lysosomal degradation of TLR9, Cd suppressed immune response under ConA activation condition. This study provides insight on the mechanism of Cd immunnotoxicity, which might contribute to the prevention of Cd toxicity in the future.
Collapse
Affiliation(s)
- Jie Gu
- Central Laboratory of the Fourth Affiliated Hospital of Jiangsu University, Zhenjiang 212013, China; School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Kongdong Li
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Hong Lin
- Animal, Plant and Food Inspection Center, Nanjing Customs, Nanjing 210019, China
| | - Yanwei Wang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Yang Zhou
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Dongfeng Chen
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Xin Gu
- King's Own Institute, Sydney 2000, Australia; The University of Newcastle, 2308, Australia
| | - Haifeng Shi
- Central Laboratory of the Fourth Affiliated Hospital of Jiangsu University, Zhenjiang 212013, China; School of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
19
|
Larson-Casey JL, Liu S, Pyles JM, Lapi SE, Saleem K, Antony VB, Gonzalez ML, Crossman DK, Carter AB. Impaired PPARγ activation by cadmium exacerbates infection-induced lung injury. JCI Insight 2023; 8:e166608. [PMID: 36928191 PMCID: PMC10243824 DOI: 10.1172/jci.insight.166608] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/15/2023] [Indexed: 03/18/2023] Open
Abstract
Emerging data indicate an association between environmental heavy metal exposure and lung disease, including lower respiratory tract infections (LRTIs). Here, we show by single-cell RNA sequencing an increase in Pparg gene expression in lung macrophages from mice exposed to cadmium and/or infected with Streptococcus pneumoniae. However, the heavy metal cadmium or infection mediated an inhibitory posttranslational modification of peroxisome proliferator-activated receptor γ (PPARγ) to exacerbate LRTIs. Cadmium and infection increased ERK activation to regulate PPARγ degradation in monocyte-derived macrophages. Mice harboring a conditional deletion of Pparg in monocyte-derived macrophages had more severe S. pneumoniae infection after cadmium exposure, showed greater lung injury, and had increased mortality. Inhibition of ERK activation with BVD-523 protected mice from lung injury after cadmium exposure or infection. Moreover, individuals residing in areas of high air cadmium levels had increased cadmium concentration in their bronchoalveolar lavage (BAL) fluid, increased barrier dysfunction, and showed PPARγ inhibition that was mediated, at least in part, by ERK activation in isolated BAL cells. These observations suggest that impaired activation of PPARγ in monocyte-derived macrophages exacerbates lung injury and the severity of LRTIs.
Collapse
Affiliation(s)
| | - Shanrun Liu
- Division of Clinical Immunology and Rheumatology, Department of Medicine
| | | | | | - Komal Saleem
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine
| | - Veena B. Antony
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine
| | | | - David K. Crossman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - A. Brent Carter
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine
- Birmingham Veterans Administration Medical Center, Birmingham, Alabama, USA
| |
Collapse
|
20
|
Haidar Z, Fatema K, Shoily SS, Sajib AA. Disease-associated metabolic pathways affected by heavy metals and metalloid. Toxicol Rep 2023; 10:554-570. [PMID: 37396849 PMCID: PMC10313886 DOI: 10.1016/j.toxrep.2023.04.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/21/2023] [Accepted: 04/23/2023] [Indexed: 07/04/2023] Open
Abstract
Increased exposure to environmental heavy metals and metalloids and their associated toxicities has become a major threat to human health. Hence, the association of these metals and metalloids with chronic, age-related metabolic disorders has gained much interest. The underlying molecular mechanisms that mediate these effects are often complex and incompletely understood. In this review, we summarize the currently known disease-associated metabolic and signaling pathways that are altered following different heavy metals and metalloids exposure, alongside a brief summary of the mechanisms of their impacts. The main focus of this study is to explore how these affected pathways are associated with chronic multifactorial diseases including diabetes, cardiovascular diseases, cancer, neurodegeneration, inflammation, and allergic responses upon exposure to arsenic (As), cadmium (Cd), chromium (Cr), iron (Fe), mercury (Hg), nickel (Ni), and vanadium (V). Although there is considerable overlap among the different heavy metals and metalloids-affected cellular pathways, these affect distinct metabolic pathways as well. The common pathways may be explored further to find common targets for treatment of the associated pathologic conditions.
Collapse
|
21
|
Wang WJ, Lu X, Li Z, Peng K, Zhan P, Fu L, Wang Y, Zhao H, Wang H, Xu DX, Tan ZX. Early-life cadmium exposure elevates susceptibility to allergic asthma in ovalbumin-sensitized and challenged mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114799. [PMID: 36933479 DOI: 10.1016/j.ecoenv.2023.114799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/28/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
Increasing evidence have demonstrated that early-life exposure to environmental toxicants elevates risk of allergic asthma. Cadmium (Cd) is widely present in the environment. The purposes of this study were to evaluate the impact of early-life Cd exposure on susceptibility to ovalbumin (OVA)-evoked allergic asthma. Newly weaned mice were subjected to a low concentration of CdCl2 (1 mg/L) by drinking water for 5 consecutive weeks. Penh value, an index of airway obstruction, was increased in OVA-stimulated and challenged pups. Abundant inflammatory cells were observed in the lung of OVA-exposed pups. Goblet cell hyperplasia and mucus secretion were shown in the airway of OVA-stimulated and challenged pups. Early-life Cd exposure exacerbated OVA-evoked airway hyperreactivity, Goblet cell hyperplasia and mucus secretion. The in vitro experiments showed that mucoprotein gene MUC5AC mRNA was upregulated in Cd-exposed bronchial epithelial cells. Mechanistically, endoplasmic reticulum (ER) stress-related molecules GRP78, p-eIF2α, CHOP, p-IRE1α and spliced XBP-1 (sXBP-1) were elevated in Cd-subjected bronchial epithelial cells. The blockade of ER stress, using chemical inhibitor 4-PBA or sXBP-1 siRNA interference, attenuated Cd-induced MUC5AC upregulation in bronchial epithelial cells. These results indicate that early-life Cd exposure aggravates OVA-induced allergic asthma partially through inducing ER stress in bronchial epithelial cells.
Collapse
Affiliation(s)
- Wen-Jing Wang
- The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Xue Lu
- Department of Toxicology, Anhui Medical University, Hefei, China
| | - Zhao Li
- The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Kun Peng
- The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Ping Zhan
- The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Lin Fu
- The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Yan Wang
- Department of Toxicology, Anhui Medical University, Hefei, China
| | - Hui Zhao
- The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Hua Wang
- Department of Toxicology, Anhui Medical University, Hefei, China
| | - De-Xiang Xu
- Department of Toxicology, Anhui Medical University, Hefei, China.
| | - Zhu-Xia Tan
- The Second Affiliated Hospital, Anhui Medical University, Hefei, China.
| |
Collapse
|
22
|
Fan Y, Tao C, Li Z, Huang Y, Yan W, Zhao S, Gao B, Xu Q, Qin Y, Wang X, Peng Z, Covaci A, Li Y, Xia Y, Lu C. Association of Endocrine-Disrupting Chemicals with All-Cause and Cause-Specific Mortality in the U.S.: A Prospective Cohort Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2877-2886. [PMID: 36728834 DOI: 10.1021/acs.est.2c07611] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Wide exposure to endocrine-disrupting chemicals (EDCs) poses a great risk on human health. However, few large-scale cohort studies have comprehensively estimated the association between EDCs exposure and mortality risk. This study aimed to investigate the association of urinary EDCs exposure with mortality risk and quantify attributable mortality and economic loss. Multivariable Cox proportional hazards regression models were performed to investigate the association of 38 representative EDCs exposure with mortality risk in the National Health and Nutrition Examination Survey (NHANES). During a median follow-up of 7.7 years, 47,279 individuals were enrolled. All-cause mortality was positively associated with 1-hydroxynaphthalene, 2-hydroxynaphthalene, cadmium, antimony, cobalt, and monobenzyl phthalate. Cancer mortality was positively associated with cadmium. Cardiovascular disease (CVD) mortality was positively associated with 1-hydroxynaphthalene, 2-hydroxynaphthalene, and 2-hydroxyfluorene. Nonlinear U-shaped relationships were found between all-cause mortality and cadmium and cobalt, which was also identified between 2-hydroxyfluorene and CVD mortality. J-shaped association of cadmium exposure with cancer mortality was also determined. EDCs exposure may cause 56.52% of total deaths (1,528,500 deaths) and around 1,897 billion USD in economic costs. Exposure to certain phthalates, polycyclic aromatic hydrocarbons, phytoestrogens, or toxic metals, even at substantially low levels, is significantly associated with mortality and induces high economic costs.
Collapse
Affiliation(s)
- Yun Fan
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Department of Microbes and Infection, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Chengzhe Tao
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Zhi Li
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yuna Huang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Wenkai Yan
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Shuangshuang Zhao
- Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing 210004, China
| | - Beibei Gao
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Qiaoqiao Xu
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yufeng Qin
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Department of Microbes and Infection, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xinru Wang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Zhihang Peng
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, Wilrijk 2610, Belgium
| | - You Li
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Chuncheng Lu
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
23
|
Qu B, Wu S, Zhao P, Ma ZF, Goodacre R, Yuan L, Chen Y. Geographical pattern of minerals and its association with health disparities in the USA. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023:10.1007/s10653-023-01510-1. [PMID: 36805365 DOI: 10.1007/s10653-023-01510-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
This study aimed to determine the common latent patterns of geographical distribution of health-related minerals across the USA and to evaluate the real-world cumulative effects of these patterns on overall population health. It was an ecological study using county-level data (3080 contiguous counties) on the concentrations of 14 minerals (i.e., aluminum, arsenic, calcium, copper, iron, lead, magnesium, manganese, mercury, phosphorus, selenium, sodium, titanium, zinc) in stream sediments (or surface soils), and the measurements of overall health including life expectancy at birth, age-specific mortality risks and cause-specific (summarized by 21 mutually exclusive groups) mortality rates. Latent class analysis (LCA) was employed to identify the common clusters of life expectancy-related minerals based on their concentration characteristics. Multivariate linear regression analyses were then conducted to examine the relationship between the LCA-derived clusters and the health measurements, with adjustment for potential confounding factors. Five minerals (i.e., arsenic, calcium, selenium, sodium and zinc) were associated with life expectancy and were analyzed in LCA. Three clusters were determined across the USA, the 'common' (n = 2056, 66.8%), 'infertile' (n = 739, 24.0%) and 'plentiful' (n = 285, 9.3%) clusters. Residents in counties with the 'infertile' profile were associated with the shortest life expectancy, highest mortality risks at all ages, and highest mortality rates for many reasons including the top five leading causes of death: cardiovascular diseases, neoplasms, neurological disorders, chronic respiratory conditions, and diabetes, urogenital, blood and endocrine diseases. Results remained statistically significant after confounding adjustment. Our study brings novel perspectives regarding environmental geochemistry to explain health disparities in the USA.
Collapse
Affiliation(s)
- Bingjie Qu
- Xi'an Jiaotong-Liverpool University, Wisdom Lake Academy of Pharmacy, Suzhou, China
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
| | - Shiqiang Wu
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Peng Zhao
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Zheng Feei Ma
- Centre for Public Health and Wellbeing, School of Health and Social Wellbeing, College of Health, Science and Society, University of the West of England, Bristol, UK
| | - Royston Goodacre
- Department of Biochemistry and Systems Biology, Centre for Metabolomics Research, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Linxi Yuan
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Ying Chen
- Xi'an Jiaotong-Liverpool University, Wisdom Lake Academy of Pharmacy, Suzhou, China.
| |
Collapse
|
24
|
Sakurai M, Suwazono Y, Nogawa K, Watanabe Y, Takami M, Ogra Y, Tanaka YK, Iwase H, Tanaka K, Ishizaki M, Kido T, Nakagawa H. Cadmium body burden and health effects after restoration of cadmium-polluted soils in cadmium-polluted areas in the Jinzu River basin. Environ Health Prev Med 2023; 28:49. [PMID: 37690834 PMCID: PMC10495241 DOI: 10.1265/ehpm.23-00132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/21/2023] [Indexed: 09/12/2023] Open
Abstract
BACKGROUND Itai-itai disease is caused by environmental cadmium (Cd) pollution in the Jinzu River basin in Japan. To reduce the Cd contamination of rice, soil restoration of paddy fields was carried out. We evaluated the effect of soil restoration on the health status of residents of the former Cd-polluted area. METHODS Participants were 1,030 men and 944 women who lived in the area of restoration of Cd-polluted rice paddies. First morning urine was collected and urinary Cd, β2-microglobulin (β2MG), and N-acetyl-β-D-glucosaminidase (NAG) levels were measured. Associations among age, years of residence before and after soil restoration, and urinary Cd, β2MG, and NAG levels were evaluated by multiple regression analysis. RESULTS The geometric mean (interquartile range) of urinary Cd (µg/g Cr) was 1.00 (0.58-1.68) in men and 1.67 (1.02-2.91) in women. The geometric means of urinary β2MG (µg/g Cr) and NAG (U/g Cr) were 174.6 (92.6-234.2) and 1.47 (0.72-3.14) in men, and 217.6 (115.3-28.7) and 1.48 (0.73-2.96) in women, respectively. Urinary Cd, β2MG, and NAG were significantly positively correlated (p < 0.01 all). Age and duration of residence in the Cd-polluted area before soil restoration were independently associated with urinary Cd, β2MG, and NAG. Among the 916 participants who had resided in the area before the soil restoration, urinary Cd concentrations were significantly higher, thus by 1.03-fold (95% CI, 1.01-1.04) in men and 1.03-fold (95% CI, 1.01-1.05) in women, when the years of residence before soil restoration by each 5-years increment. By contrast, urinary Cd concentrations were significantly lower, thus 0.97-fold (95% CI, 0.96-0.99) lower in men and 0.97-fold (95% CI, 0.95-0.99) lower in women, by each 5-year increment of residence after soil restoration. A similar association was observed for urinary β2MG concentration, and no significant association was observed for urinary NAG levels in men or women. CONCLUSIONS Cd exposure and associated renal tubular dysfunction in residents of a former Cd-polluted area were influenced by Cd exposure from the environment prior to soil restoration. Soil restoration in Cd-polluted areas reduced the Cd exposure of local residents.
Collapse
Affiliation(s)
- Masaru Sakurai
- Department of Social and Environmental Medicine, Kanazawa Medical University, Uchinada 920-0293, Japan
| | - Yasushi Suwazono
- Department of Occupational and Environmental Medicine, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Kazuhiro Nogawa
- Department of Occupational and Environmental Medicine, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Yuuka Watanabe
- Department of Occupational and Environmental Medicine, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Miyuki Takami
- Department of Occupational and Environmental Medicine, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Yasumitsu Ogra
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Yu-Ki Tanaka
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Hirotaro Iwase
- Department of Legal Medicine, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Kayo Tanaka
- Department of Legal Medicine, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Masao Ishizaki
- Department of Social and Environmental Medicine, Kanazawa Medical University, Uchinada 920-0293, Japan
| | - Teruhiko Kido
- School of Health Sciences, Kanazawa University, Kanazawa 920-0942, Japan
| | - Hideaki Nakagawa
- Department of Social and Environmental Medicine, Kanazawa Medical University, Uchinada 920-0293, Japan
| |
Collapse
|
25
|
Shen R, Chen S, Lei W, Shen J, Lv L, Wei T. Nonfood Probiotic, Prebiotic, and Synbiotic Use Reduces All-Cause and Cardiovascular Mortality Risk in Older Adults: A Population-Based Cohort Study. J Nutr Health Aging 2023; 27:391-397. [PMID: 37248763 DOI: 10.1007/s12603-023-1921-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/14/2023] [Indexed: 05/31/2023]
Abstract
OBJECTIVES Pro-, pre-, and synbiotic supplements improve cardiovascular risk factors. However, the association between nonfood pro-, pre-, and synbiotics (NPPS) and long-term all-cause and cardiovascular mortality has not been studied. Thus, our objective was to determine the impact of nonfood pro-, pre-, and synbiotics on all-cause and cardiovascular mortality. DESIGN, SETTING, AND PARTICIPANTS This was a retrospective, cohort study of 4837 nationally representative American participants aged 65 years or older with a median follow-up duration of 77 months. MEASUREMENTS All-cause and cardiovascular mortality were measured. RESULTS A total of 1556 participants died during the median 77-month follow-up, and 517 died from cardiovascular disease. Compared with participants without NPPS use, participants who used NPPS experienced a reduced risk of all-cause mortality by nearly 41% (hazard ratio 0.59, 95% CI 0.43 to 0.79) and cardiovascular mortality by 52% (HR 0.48, 95% CI 0.30 to 0.76). Such an effect persisted in most subgroup analyses and complete-case analyses. CONCLUSION AND RELEVANCE In this study, we found a protective effect of NPPS against all-cause and cardiovascular mortality in Americans aged 65 years or older. Nonfood pro-, pre-, and synbiotics can be a novel, inexpensive, low-risk treatment addition for all-cause and cardiovascular mortality for older individuals.
Collapse
Affiliation(s)
- R Shen
- Tiemin Wei, Department of Cardiology, Lishui Hospital, Zhejiang University School of Medicine, No.289, Kuocang Road, Liandu District, Lishui, China. Tel: 86+139 0588 7981, . Co-corresponding author: Lingchun Lv, E-mail:
| | | | | | | | | | | |
Collapse
|
26
|
Chen Y, Ma ZF, Yu D, Jiang Z, Wang B, Yuan L. Geographical distribution of trace elements (selenium, zinc, iron, copper) and case fatality rate of COVID-19: a national analysis across conterminous USA. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:4423-4436. [PMID: 35098416 PMCID: PMC8801196 DOI: 10.1007/s10653-022-01204-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 01/09/2022] [Indexed: 06/01/2023]
Abstract
Severe outcome particularly death is the largest burden of COVID-19. Clinical observations showed preliminary data that deficiency in certain trace elements, essential for the normal activity of immune system, may be associated with worse COVID-19 outcome. Relevant study of environmental epidemiology has yet to be explored. We investigated the geographical association between concentrations of Se, Zn, Fe and Cu in surface soils and case fatality rate of COVID-19 in USA. Two sets of database, including epidemiological data of COVID-19 (including case fatality rate, from the University of John Hopkinson) and geochemical concentration data of Se, Zn, Fe and Cu in surface soils (from the National Geochemical Survey), were mapped according to geographical location at the county level across conterminous USA. Characteristics of population, socio-demographics and residential environment by county were also collected. Seven cross-sectional sampling dates, with a 4-week interval between adjacent dates, constructed an observational investigation over 24 weeks from October 8, 2020, to March 25, 2021. Multivariable fractional (logit) outcome regression analyses were used to assess the association with adjustment for potential confounding factors. In USA counties with the lowest concentration of Zn, the case fatality rate of COVID-19 was the highest, after adjustment for other influencing factors. Associations of Se, Fe and Cu with case fatality rate of COVID-19 were either inconsistent over time or disappeared after adjustment for Zn. Our large study provides epidemiological evidence suggesting an association of Zn with COVID-19 severity, suggesting Zn deficiency should be avoided.
Collapse
Affiliation(s)
- Ying Chen
- Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Zheng Feei Ma
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Dahai Yu
- Primary Care Centre Versus Arthritis, School of Medicine, Keele University, Keele, ST5 5BG, UK
| | - Zifei Jiang
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Bo Wang
- Suzhou Centre for Disease Control and Prevention, Suzhou, 215004, China
| | - Linxi Yuan
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China.
| |
Collapse
|
27
|
Li Z, Fan Y, Tao C, Yan W, Huang Y, Qian H, Xu Q, Wan T, Chen Y, Qin Y, Lu C. Association between exposure to cadmium and risk of all-cause and cause-specific mortality in the general US adults: A prospective cohort study. CHEMOSPHERE 2022; 307:136060. [PMID: 35981619 DOI: 10.1016/j.chemosphere.2022.136060] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/15/2022] [Accepted: 08/09/2022] [Indexed: 05/25/2023]
Abstract
BACKGROUND Cadmium has been suggested to accumulate in the body over a lifetime, posing a great threat to human health. So far, few studies have studied the association between cadmium exposure and long-term health outcomes in adults. OBJECTIVES To investigate the risk of mortality with blood cadmium level in adults (participants of NHANES, 1999-2014). METHODS We evaluated the associations between cadmium and risk of mortality. Data on mortality and cadmium exposure were collected in NHANES database including 39,865 participants. Multivariate Cox regression models were established for calculating hazard ratios (HRs) and 95%CI between cadmium exposure and all-cause and specific-cause mortality outcomes. RESULTS Totally, 39,865 individuals with 19,260 males (48.3%) and 20,605 females (51.7%) were included in the study. During a total of 341,017 person-years of follow-up 5,094 deaths were documented, including 1,067 cardiovascular disease (CVD) and 890 cancers. Compared with the lowest quantile of cadmium exposure level group, the adjusted HRs in the highest quantile cadmium exposure level group were 1.73 (95%CI: 1.52-1.97) for all-cause mortality, 1.72 (95%CI: 1.28-2.30) for CVD mortality and 1.87 (95%CI: 1.49-2.36) for cancer mortality, respectively (P for trend: <0.001). Additionally, significant interactions with smoking status in the stratified analyses of all-cause mortality and cancer mortality, age in the stratified analyses of cancer mortality were found (P for interaction: 0.002, <0.001 and 0.012). CONCLUSIONS In this nationwide representative sample of the population, we found that higher blood cadmium concentration was associated with increased risks of all-cause and specific-cause mortality. These data further evidence the link between mortality and cadmium concentration. It is of great importance for both policy makers and the public to minimize cadmium exposure, and to reduce long-term adverse health effects.
Collapse
Affiliation(s)
- Zhi Li
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yun Fan
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Department of Microbes and Infection, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Chengzhe Tao
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Wenkai Yan
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yuna Huang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Hong Qian
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Qiaoqiao Xu
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Tingya Wan
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yiyuan Chen
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yufeng Qin
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Department of Microbes and Infection, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Chuncheng Lu
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
28
|
Bulka CM, Enggasser AE, Fry RC. Epigenetics at the Intersection of COVID-19 Risk and Environmental Chemical Exposures. Curr Environ Health Rep 2022; 9:477-489. [PMID: 35648356 PMCID: PMC9157479 DOI: 10.1007/s40572-022-00353-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW Several environmental contaminants have been implicated as contributors to COVID-19 susceptibility and severity. Immunomodulation and epigenetic regulation have been hypothesized as mediators of this relationship, but the precise underlying molecular mechanisms are not well-characterized. This review examines the evidence for epigenetic modification at the intersection of COVID-19 and environmental chemical exposures. RECENT FINDINGS Numerous environmental contaminants including air pollutants, toxic metal(loid)s, per- and polyfluorinated substances, and endocrine disrupting chemicals are hypothesized to increase susceptibility to the SARS-CoV-2 virus and the risk of severe COVID-19, but few studies currently exist. Drawing on evidence that many environmental chemicals alter the epigenetic regulation of key immunity genes and pathways, we discuss how exposures likely perturb host antiviral responses. Specific mechanisms vary by contaminant but include general immunomodulation as well as regulation of viral entry and recognition, inflammation, and immunologic memory pathways, among others. Associations between environmental contaminants and COVID-19 are likely mediated, in part, by epigenetic regulation of key immune pathways involved in the host response to SARS-CoV-2.
Collapse
Affiliation(s)
- Catherine M Bulka
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Adam E Enggasser
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, 166A Rosenau Hall, CB #7431, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
29
|
Wu L, Cui F, Ma J, Huang Z, Zhang S, Xiao Z, Li J, Ding X, Niu P. Associations of multiple metals with lung function in welders by four statistical models. CHEMOSPHERE 2022; 298:134202. [PMID: 35257699 DOI: 10.1016/j.chemosphere.2022.134202] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/23/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Exposure to heavy metals has been related to decreased lung function in workers. However, due to limitations in statistical methods for mixtures, previous studies mainly focused on single or several toxic metals, with few studies involving metal exposome and lung function. OBJECTIVES The study aimed to evaluate the effects of co-exposure to the metal mixtures on multiple parameters of pulmonary function tests and to identify the elements that play an essential role in elastic-net regression (ENET), multivariate linear regression, bayesian kernel machine regression (BKMR), and quantile g-computation (QG-C) models. METHODS We have recruited 186 welders from Anhui (China) in 2019. And their end-of-shift urine and lung function measure data were collected with informed consent. The urinary concentrations of 23 metals were measured by inductively coupled urinary mass spectrometry. The lung function measures including forced vital capacity (FVC), forced expiratory volume in 1 s (FEV1) and peak expiratory flow (PEF) were also detected as outcome indicators. Four statistical methods, ENET, multivariate linear regression, BKMR, and QG-C models were used to evaluate the associations of element mixtures on lung function comprehensively. RESULTS Lead and cadmium were negatively associated with FVC and FEV1, nickel and chromium were inversely associated with PEF, and strontium showed significant positive effects in linear regression models, which were consistent with the results in BKMR and QG-C models. Both BKMR and QG-C models showed a significantly negative overall effect of metal mixtures on lung function parameters (FVC, FEV1, and PEF). Meanwhile, BKMR showed the non-linear relationships of cadmium with FVC. CONCLUSION Multi-pollutant mixtures of metals were negatively associated with lung function. Lead, cadmium, nickel, and strontium might be crucial elements. Our findings highlight a need to prioritize workers' environmental health, and guide future research into the toxic mechanisms of metal-mediated lung function injury.
Collapse
Affiliation(s)
- Luli Wu
- School of Public Health and the Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Fengtao Cui
- Occupational Disease Prevention and Control Hospital of Huaibei Mining Co., Ltd, Huaibei, Anhui Province, 235000, China
| | - Junxiang Ma
- School of Public Health and the Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Zhengjie Huang
- Occupational Disease Prevention and Control Hospital of Huaibei Mining Co., Ltd, Huaibei, Anhui Province, 235000, China
| | - Shixuan Zhang
- School of Public Health and the Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Zhongxin Xiao
- Central Lab, Capital Medical University, Beijing, 100069, China
| | - Jie Li
- School of Public Health and the Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| | - Xinping Ding
- Occupational Disease Prevention and Control Hospital of Huaibei Mining Co., Ltd, Huaibei, Anhui Province, 235000, China.
| | - Piye Niu
- School of Public Health and the Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
30
|
Fuller R, Landrigan PJ, Balakrishnan K, Bathan G, Bose-O'Reilly S, Brauer M, Caravanos J, Chiles T, Cohen A, Corra L, Cropper M, Ferraro G, Hanna J, Hanrahan D, Hu H, Hunter D, Janata G, Kupka R, Lanphear B, Lichtveld M, Martin K, Mustapha A, Sanchez-Triana E, Sandilya K, Schaefli L, Shaw J, Seddon J, Suk W, Téllez-Rojo MM, Yan C. Pollution and health: a progress update. Lancet Planet Health 2022; 6:e535-e547. [PMID: 35594895 DOI: 10.1016/s2542-5196(22)00090-0] [Citation(s) in RCA: 517] [Impact Index Per Article: 172.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 05/23/2023]
Abstract
The Lancet Commission on pollution and health reported that pollution was responsible for 9 million premature deaths in 2015, making it the world's largest environmental risk factor for disease and premature death. We have now updated this estimate using data from the Global Burden of Diseases, Injuriaes, and Risk Factors Study 2019. We find that pollution remains responsible for approximately 9 million deaths per year, corresponding to one in six deaths worldwide. Reductions have occurred in the number of deaths attributable to the types of pollution associated with extreme poverty. However, these reductions in deaths from household air pollution and water pollution are offset by increased deaths attributable to ambient air pollution and toxic chemical pollution (ie, lead). Deaths from these modern pollution risk factors, which are the unintended consequence of industrialisation and urbanisation, have risen by 7% since 2015 and by over 66% since 2000. Despite ongoing efforts by UN agencies, committed groups, committed individuals, and some national governments (mostly in high-income countries), little real progress against pollution can be identified overall, particularly in the low-income and middle-income countries, where pollution is most severe. Urgent attention is needed to control pollution and prevent pollution-related disease, with an emphasis on air pollution and lead poisoning, and a stronger focus on hazardous chemical pollution. Pollution, climate change, and biodiversity loss are closely linked. Successful control of these conjoined threats requires a globally supported, formal science-policy interface to inform intervention, influence research, and guide funding. Pollution has typically been viewed as a local issue to be addressed through subnational and national regulation or, occasionally, using regional policy in higher-income countries. Now, however, it is increasingly clear that pollution is a planetary threat, and that its drivers, its dispersion, and its effects on health transcend local boundaries and demand a global response. Global action on all major modern pollutants is needed. Global efforts can synergise with other global environmental policy programmes, especially as a large-scale, rapid transition away from all fossil fuels to clean, renewable energy is an effective strategy for preventing pollution while also slowing down climate change, and thus achieves a double benefit for planetary health.
Collapse
Affiliation(s)
- Richard Fuller
- Global Alliance on Health and Pollution, Geneva, Switzerland.
| | - Philip J Landrigan
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, USA
| | - Kalpana Balakrishnan
- Department of Environmental Health Engineering, Sri Ramachandra University, Chennai, India
| | | | - Stephan Bose-O'Reilly
- Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, University Hospital Munich, Munich, Germany
| | - Michael Brauer
- School of Population and Public Health, The University of British Columbia, Vancouver, BC, Canada
| | - Jack Caravanos
- Environmental Public Health Sciences, School of Global Health, New York University, New York, NY, USA
| | - Tom Chiles
- Biology Department, Boston College, Chestnut Hill, MA, USA
| | | | - Lilian Corra
- Global Alliance on Health and Pollution, Geneva, Switzerland
| | - Maureen Cropper
- Department of Economics, University of Maryland, College Park, MD, USA
| | | | - Jill Hanna
- Global Alliance on Health and Pollution, Geneva, Switzerland
| | | | - Howard Hu
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - David Hunter
- Translational Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | | | - Rachael Kupka
- Global Alliance on Health and Pollution, Geneva, Switzerland
| | - Bruce Lanphear
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Maureen Lichtveld
- Environmental and Occupational Health Department, University of Pittsburgh, Pittsburgh, PA, USA
| | - Keith Martin
- Consortium of Universities for Global Health, Washington, DC, USA
| | | | - Ernesto Sanchez-Triana
- Global Practice on Environment and Natural Resources, The World Bank, Washington, DC, USA
| | - Karti Sandilya
- Global Alliance on Health and Pollution, Geneva, Switzerland
| | - Laura Schaefli
- Global Alliance on Health and Pollution, Geneva, Switzerland
| | - Joseph Shaw
- O'Neil School of Public and Environmental Affairs, Indiana University, Bloomington, IN, USA
| | - Jessica Seddon
- Air Quality, Ross Center, World Resources Institute, Washington, DC, USA
| | - William Suk
- Hazardous Substances Research Branch, Division of Extramural Research and Training, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Martha María Téllez-Rojo
- Centro de Investigación en Nutrición y Salud, Instituto Nacional de Salud Pública, Avenida Universidad, Cuernavaca, Mexico
| | - Chonghuai Yan
- Ministry of Education, Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
31
|
Weaver AK, Head JR, Gould CF, Carlton EJ, Remais JV. Environmental Factors Influencing COVID-19 Incidence and Severity. Annu Rev Public Health 2022; 43:271-291. [PMID: 34982587 PMCID: PMC10044492 DOI: 10.1146/annurev-publhealth-052120-101420] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Emerging evidence supports a link between environmental factors-including air pollution and chemical exposures, climate, and the built environment-and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission and coronavirus disease 2019 (COVID-19) susceptibility and severity. Climate, air pollution, and the built environment have long been recognized to influence viral respiratory infections, and studies have established similar associations with COVID-19 outcomes. More limited evidence links chemical exposures to COVID-19. Environmental factors were found to influence COVID-19 through four major interlinking mechanisms: increased risk of preexisting conditions associated with disease severity; immune system impairment; viral survival and transport; and behaviors that increase viral exposure. Both data and methodologic issues complicate the investigation of these relationships, including reliance on coarse COVID-19 surveillance data; gaps in mechanistic studies; and the predominance of ecological designs. We evaluate the strength of evidence for environment-COVID-19 relationships and discuss environmental actions that might simultaneously address the COVID-19 pandemic, environmental determinants of health, and health disparities.
Collapse
Affiliation(s)
- Amanda K Weaver
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California, USA; ,
| | - Jennifer R Head
- Department of Epidemiology, School of Public Health, University of California, Berkeley, Berkeley, California, USA;
| | - Carlos F Gould
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA;
- Department of Earth System Science, Stanford University, Stanford, California, USA
| | - Elizabeth J Carlton
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado, Anschutz, Aurora, Colorado, USA;
| | - Justin V Remais
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California, USA; ,
| |
Collapse
|
32
|
Han D, Song N, Wang W, Chen T, Miao Z. Subacute cadmium exposure modulates Th1 polarization to trigger ER stress-induced porcine hepatocyte apoptosis via regulation of miR-369-TNFα axis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:16576-16587. [PMID: 34648162 DOI: 10.1007/s11356-021-16883-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd), as a common environmental pollutant, has been reported to cause T lymphocyte dysfunction and cell apoptosis in multiple organs. However, whether subacute Cd exposure can induce apoptosis of hepatocytes and the relationship with Th1/Th2 imbalance were still unclear. In this study, ten 6-week-old piglets were selected and randomly assigned into two groups, the control group and the Cd group. The control group was fed with the standard diet, and for the Cd group, the standard diet was supplemented with 20 mg/kg CdCl2; liver tissue was collected on the 40th day of the experiment. Immunofluorescence, qRT-PCR, and western blot were performed to detect the expression of miR-369, Th1/Th2 biomarkers, endoplasmic reticulum (ER) stress-related genes, and apoptotic genes. TUNEL assay was applied to stain apoptotic hepatocytes. In the Cd group, the apoptosis of hepatocytes was significantly increased, and associated with the declined expression of miR-369, Th1 polarization, the elevated expression of ER stress pathway genes and their downstream pro-apoptosis genes, and downregulated expression of anti-apoptotic genes. These results manifest that subacute Cd exposure mediates Th1 polarization to promote ER stress-induced porcine hepatocyte apoptosis via regulating miR-369-TNFα. These results not only provide a basis for the enrichment of Cd toxicology but also support a theoretical foundation for the prevention and therapy of Cd poisoning. Schematic diagram illustrating the proposed mechanism of subacute cadmium exposure modulates Th1 polarization to trigger ER stress-induced porcine hepatocyte apoptosis via regulation of miR-369-TNFα axis.
Collapse
Affiliation(s)
- Dongxu Han
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Nuan Song
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Wei Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Ting Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Zhiying Miao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
33
|
Kang H, Hu H, Park SK. Serum antioxidant status and mortality from influenza and pneumonia in US adults. Public Health Nutr 2022; 25:1-10. [PMID: 35000647 PMCID: PMC9271125 DOI: 10.1017/s1368980022000027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/09/2021] [Accepted: 01/04/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE We examined the association between serum antioxidant status and mortality from influenza and pneumonia in US adults. DESIGN Serum concentrations of antioxidants included vitamin C, vitamin A, vitamin E, sum of α- and β-carotene, β-cryptoxanthin, lutein + zeaxanthin and lycopene. We computed total antioxidant capacity (TAC) as a measure of composite antioxidant status in serum. Survey-weighted Cox proportional hazard models were used to compute hazard ratios (HR) and 95 % CI comparing quartiles of each antioxidant and TAC. SETTING Data from the US National Health and Nutrition Examination Survey (NHANES)-III. PARTICIPANTS A total of 7428 NHANES-III participants ≥45 years of age. RESULTS With a weighted-median follow-up of 16·8 years, 154 participants died from influenza/pneumonia. After adjustment for covariates, serum vitamin C, the sum of α- and β-carotene and TAC were nonlinearly associated with influenza/pneumonia mortality, with the statistically significant smallest HR at the third quartile v. the first quartile (HR = 0·38 (95 % CI: 0·19, 0·77), 0·29 (0·16, 0·51) and 0·30 (0·15, 0·59), respectively). HR comparing the fourth v. the first quartiles were weaker and nonsignificant: 0·57 (95 % CI: 0·27, 1·17), 0·70 (0·41, 1·19) and 0·65 (0·31, 1·35), respectively. Serum lycopene had a monotonic association with influenza/pneumonia mortality (HR = 0·43 (95 % CI: 0·23, 0·83) comparing the fourth v. the first quartile, Pfor trend = 0·01). CONCLUSIONS The current study suggests that antioxidant intake as reflected by serum concentrations may reduce mortality risk from influenza or pneumonia in the US general population. These findings warrant further confirmation in other populations with different settings (e.g. a shorter-term association with influenza infection).
Collapse
Affiliation(s)
- Habyeong Kang
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI48109, USA
| | - Howard Hu
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Sung Kyun Park
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI48109, USA
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| |
Collapse
|
34
|
Sakurai M, Suwazono Y, Nishijo M, Nogawa K, Watanabe Y, Yoneda K, Ishizaki M, Morikawa Y, Kido T, Nakagawa H. The Relationship between the Urinary Cadmium Concentration and Cause-Specific Mortality in Subjects without Severe Renal Damage: A 35-Year Follow-Up Study in a Cadmium-Polluted Area of Japan. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18157747. [PMID: 34360038 PMCID: PMC8345790 DOI: 10.3390/ijerph18157747] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 11/26/2022]
Abstract
We evaluated the association between urinary cadmium concentration (uCd, μg/g Cr) and risk of cause-specific mortality according to urinary β2-microglobulin (MG) concentration. Participants were 1383 male and 1700 female inhabitants of the Cd-polluted Kakehashi River basin. The uCd and β2-MG were evaluated in a survey in 1981–1982, where those participants were followed-up over 35 years later. Among the participants with a urinary β2-MG < 1000, the hazard ratios (HRs) (95% confidence interval) for mortality were significantly higher in those with a uCd of ≥10.0 compared with <5.0 for cardiovascular disease [HR 1.92 (1.08–3.40) for men, 1.71 (1.07–2.71) for women], pneumonia or influenza [2.10 (1.10–4.00) for men, 2.22 (1.17–4.19) for women], and digestive diseases [for men; 3.81 (1.49–9.74)]. The uCd was significantly associated with mortality from heart failure in women and digestive diseases in men, after adjustment for other causes of death using the Fine and Gray competing risk regression model. For participants with a urinary β2-MG of ≥1000, no significant association was observed between uCd and any major cause of death. In the absence of kidney damage, Cd may increase the risk of death from cardiovascular disease, pneumonia, and digestive diseases.
Collapse
Affiliation(s)
- Masaru Sakurai
- Department of Social and Environmental Medicine, Kanazawa Medical University, Ishikawa 920-0293, Japan; (K.Y.); (M.I.); (H.N.)
- Health Evaluation Center, Kanazawa Medical University, Ishikawa 920-0293, Japan
- Correspondence:
| | - Yasushi Suwazono
- Department of Occupation and Environmental Medicine, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (Y.S.); (K.N.); (Y.W.)
| | - Muneko Nishijo
- Department of Epidemiology and Public Health, Kanazawa Medical University, Ishikawa 920-0293, Japan;
| | - Kazuhiro Nogawa
- Department of Occupation and Environmental Medicine, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (Y.S.); (K.N.); (Y.W.)
| | - Yuuka Watanabe
- Department of Occupation and Environmental Medicine, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (Y.S.); (K.N.); (Y.W.)
| | - Kazuka Yoneda
- Department of Social and Environmental Medicine, Kanazawa Medical University, Ishikawa 920-0293, Japan; (K.Y.); (M.I.); (H.N.)
| | - Masao Ishizaki
- Department of Social and Environmental Medicine, Kanazawa Medical University, Ishikawa 920-0293, Japan; (K.Y.); (M.I.); (H.N.)
- Health Evaluation Center, Kanazawa Medical University, Ishikawa 920-0293, Japan
| | - Yuko Morikawa
- School of Nursing, Kanazawa Medical University, Ishikawa 920-0293, Japan;
| | - Teruhiko Kido
- School of Health Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Ishikawa 920-0942, Japan;
| | - Hideaki Nakagawa
- Department of Social and Environmental Medicine, Kanazawa Medical University, Ishikawa 920-0293, Japan; (K.Y.); (M.I.); (H.N.)
| |
Collapse
|
35
|
Kawada T. Comment on "Environmental Cadmium and Mortality from Influenza and Pneumonia in U.S. Adults". ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:48003. [PMID: 33825548 PMCID: PMC8041263 DOI: 10.1289/ehp9032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Affiliation(s)
- Tomoyuki Kawada
- Department of Hygiene and Public Health, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
36
|
Park SK, Hu H. Response to "Comment on 'Environmental Cadmium and Mortality from Influenza and Pneumonia in U.S. Adults'". ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:48004. [PMID: 33825547 PMCID: PMC8041264 DOI: 10.1289/ehp9263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Affiliation(s)
- Sung Kyun Park
- Department of Epidemiology, University of Michigan (UM) School of Public Health, Ann Arbor, Michigan, USA
- Department of Environmental Health Sciences, UM School of Public Health, Ann Arbor, Michigan, USA
| | - Howard Hu
- Department of Environmental Health Sciences, UM School of Public Health, Ann Arbor, Michigan, USA
- Department of Environmental and Occupational Health Sciences, University of Washington School of Public Health, Seattle, Washington, USA
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
37
|
Domingo JL, Marquès M. The effects of some essential and toxic metals/metalloids in COVID-19: A review. Food Chem Toxicol 2021; 152:112161. [PMID: 33794307 PMCID: PMC8006493 DOI: 10.1016/j.fct.2021.112161] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 03/25/2021] [Indexed: 12/23/2022]
Abstract
Thousands of studies have been conducted in order to understand in depth the characteristics of the novel coronavirus SARS-CoV-2, its infectivity and ways of transmission, and very especially everything related to the clinical and severity of the COVID-19, as well as the potential treatments. In this sense, the role that essential and toxic metals/metalloids have in the development and course of this disease is being studied. Metals/metalloids such as arsenic, cadmium, lead, mercury or vanadium, are elements with known toxic effects in mammals, while trace elements such as cobalt, copper, iron, manganese, selenium and zinc are considered essential. Given the importance of metals/metalloids in nutrition and human health, the present review was aimed at assessing the relationship between various essential and toxic metals/metalloids and the health outcomes related with the COVID-19. We are in the position to conclude that particular attention must be paid to the load/levels of essential trace elements in COVID-19 patients, mainly zinc and selenium. On the other hand, the exposure to air pollutants in general, and toxic metal/metalloids in particular, should be avoided as much as possible to reduce the possibilities of viral infections, including SARS-CoV-2.
Collapse
Affiliation(s)
- Jose L Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira i Virgili, Sant Llorens 21, 43201, Reus, Catalonia, Spain.
| | - Montse Marquès
- Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira i Virgili, Sant Llorens 21, 43201, Reus, Catalonia, Spain
| |
Collapse
|