1
|
Steele AG, Vette AH, Martin C, Masani K, Sayenko DG. Synergistic effects of transcutaneous spinal stimulation and neuromuscular electrical stimulation on lower limb force production: Time to deliver. PLoS One 2024; 19:e0296613. [PMID: 39213293 PMCID: PMC11364223 DOI: 10.1371/journal.pone.0296613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Transcutaneous spinal stimulation (TSS) and neuromuscular electrical stimulation (NMES) can facilitate self-assisted standing in individuals with paralysis. However, individual variability in responses to each modality may limit their effectiveness in generating the necessary leg extension force for full body weight standing. To address this challenge, we proposed combining TSS and NMES to enhance leg extensor muscle activation, with optimizing timing adjustment to maximize the interaction between the two modalities. METHODS To assess the effects of TSS and NMES on knee extension and plantarflexion force, ten neurologically intact participants underwent three conditions: (1) TSS control, (2) NMES control, and (3) TSS + NMES. TSS was delivered between the T10 and L2 vertebrae, while NMES was delivered to the skin over the right knee extensors and plantarflexors. TSS and NMES were administered using a 15 Hz train of three 0.5 ms biphasic pulses. During the TSS + NMES condition, the timing between modalities was adjusted in increments of ¼ the interval within a 15 Hz frequency, i.e., 66, 49.5, 33, 16.5, and 1 ms. RESULTS NMES combined with TSS, produced synergistic effects even on non-targeted muscle groups, thereby promoting leg extension across multiple joints in the kinematic chain. The sequence of NMES or TSS trains relative to each other did not significantly impact motor output. Notably, a delay of 16.5 to 49.5 ms between interleaved TSS and NMES pulses, each delivered at 15 Hz, results in more robust and synergistic responses in knee extensors and plantarflexors. CONCLUSIONS By adjusting the timing between TSS and NMES, we can optimize the combined use of these modalities for functional restoration. Our findings highlight the potential of integrated TSS and NMES protocols to enhance motor function, suggesting promising avenues for therapeutic applications, particularly in the rehabilitation of individuals with SCI.
Collapse
Affiliation(s)
- Alexander G. Steele
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, Texas, United States of America
| | - Albert H. Vette
- Department of Mechanical Engineering, Donadeo Innovation Centre for Engineering, University of Alberta, Edmonton, Alberta, Canada
- Glenrose Rehabilitation Hospital, Alberta Health Services, Edmonton, Alberta, Canada
| | - Catherine Martin
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, Texas, United States of America
| | - Kei Masani
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- KITE Research Institute–University Health Network, Toronto, ON, Canada
| | - Dimitry G. Sayenko
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, Texas, United States of America
| |
Collapse
|
2
|
Pinelli E, Zinno R, Barone G, Bragonzoni L. Barriers and facilitators to exoskeleton use in persons with spinal cord injury: a systematic review. Disabil Rehabil Assist Technol 2024; 19:2355-2363. [PMID: 38009458 DOI: 10.1080/17483107.2023.2287153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/15/2023] [Accepted: 11/18/2023] [Indexed: 11/28/2023]
Abstract
PURPOSE Exoskeleton can assist individuals with spinal cord injuries (SCI) with simple movements and transform their lives by enhancing strength and mobility. Nonetheless, the current utilization outside of rehabilitation contexts is limited. To promote the widespread adoption of exoskeletons, it is crucial to consider the acceptance of these devices for both rehabilitation and functional purposes. This systematic review aims to identify the barriers or facilitators of the use of lower limbs exoskeletons, thereby providing strategies to improve interventions and increase the adoption of these devices. METHODS A comprehensive search was conducted in EMBASE, Web of Science, Scopus, Cochrane, and PubMed. Studies reporting barriers and facilitators of exoskeleton use were included. The studies' quality was assessed using the Mixed Methods Appraisal Tool and undertook a thematic content analysis for papers examining the barriers and facilitators. RESULTS Fifteen articles met the inclusion criteria. These revealed various factors that impact the utilization of exoskeletons. Factors like age, engagement in an active lifestyle, and motivation were identified as facilitators, while fear of falling and unfulfilled expectations were recognized as barriers. Physical aspects such as fatigue, neuropathic discomfort, and specific health conditions were found to be barriers. CONCLUSION This systematic review provides a comprehensive overview of the barriers and facilitators to the use of exoskeleton technology. There are therefore still challenges to be faced, efforts must be made to improve its design, functionality, and accessibility. By addressing these barriers, exoskeletons can significantly improve the quality of life of people with SCI.
Collapse
Affiliation(s)
- Erika Pinelli
- Department for Life Quality Studies, University of Bologna, Rimini, Italy
| | - Raffaele Zinno
- Department for Life Quality Studies, University of Bologna, Rimini, Italy
| | - Giuseppe Barone
- Department for Life Quality Studies, University of Bologna, Rimini, Italy
| | - Laura Bragonzoni
- Department for Life Quality Studies, University of Bologna, Rimini, Italy
| |
Collapse
|
3
|
Rigoli A, Francis L, Nicholson M, Weber G, Redhead J, Iyer P. A systematic review of the effects of robotic exoskeleton training on energy expenditure and body composition in adults with spinal cord injury. Int J Rehabil Res 2024; 47:64-74. [PMID: 38616768 DOI: 10.1097/mrr.0000000000000626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Metabolic diseases disproportionately affect people with spinal cord injury (SCI). Increasing energy expenditure and remodeling body composition may offset deleterious consequences of SCI to improve cardiometabolic health. Evidence is emerging that robotic exoskeleton use increases physical activity in SCI, but little is known about its effects on energy expenditure and body composition. This study therefore aimed to evaluate the impact of robotic exoskeleton training on body composition and energy expenditure in adults with SCI. A systematic literature review was performed according to the Preferred Reporting Items for Systematic Review and Meta-Analysis guidelines. Five databases were searched to retrieve studies meeting pre-set eligibility criteria: adults with SCI, interventions evaluating the effects of robotic exoskeleton devices on body composition or energy expenditure. The PEDro scale guided quality assessments with findings described narratively. Of 2163 records, 10 studies were included. Robotic exoskeleton training does not significantly improve energy expenditure compared to other exercise interventions. Significant changes ( P < 0.05) in body composition, particularly reduced fat mass, however, were reported. High variability seen with the interventions was coupled with poor quality of the studies. While robotic exoskeleton interventions may propose modest cardiometabolic benefits in adults with SCI, further robust trials in larger samples are needed to strengthen these findings.
Collapse
Affiliation(s)
- Alessandra Rigoli
- The University of Sydney, Nutrition and Dietetics Group, Susan Wakil School of Nursing and Midwifery, The Charles Perkins Centre
| | - Lucinda Francis
- The University of Sydney, Nutrition and Dietetics Group, Susan Wakil School of Nursing and Midwifery, The Charles Perkins Centre
| | - Margaret Nicholson
- The University of Sydney, Nutrition and Dietetics Group, Susan Wakil School of Nursing and Midwifery, The Charles Perkins Centre
| | | | | | - Priya Iyer
- The University of Sydney, Nutrition and Dietetics Group, Susan Wakil School of Nursing and Midwifery, The Charles Perkins Centre
- Royal Rehab, Sydney, New South Wales, Australia
| |
Collapse
|
4
|
van Nes IJ, van Dijsseldonk RB, van Herpen FH, Rijken H, Geurts AC, Keijsers NL. Improvement of quality of life after 2-month exoskeleton training in patients with chronic spinal cord injury. J Spinal Cord Med 2024; 47:354-360. [PMID: 35377297 PMCID: PMC11044750 DOI: 10.1080/10790268.2022.2052502] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
OBJECTIVE To examine changes in quality of life (QoL) after an eight-week period of robotic exoskeleton training in a homogeneous group of patients with chronic complete spinal cord injury (SCI). DESIGN Prospective single-group pre-post study. SETTING Rehabilitation center. PARTICIPANTS Patients with a chronic (>6 months) motor complete SCI (T1-L1). INTERVENTION Twenty-four training sessions with the ReWalk exoskeleton over an eight-week period. MAIN OUTCOME MEASURE QoL, assessed with the sum score of the Short Form-36 with Walk Wheel modification (SF-36ww). Secondary outcome measures were the eight SF-36ww subdomains, satisfaction with bladder and bowel management, lower extremity joint passive range of motion (pROM), and lower extremity spasticity. RESULTS Twenty-one participants completed the training. QoL significantly improved after the training period (average SF-36 sum score 621 ± 90) compared to baseline (571 ± 133) (t(20)=-2.5, P=.02). Improvements were seen on the SF-36ww subdomains for pain (P=.003), social functioning (P=.03), mental health (P=.02), and general health perception (P=.01). Satisfaction with bladder management (range 1-5) improved from median 3 at baseline to 4 after exoskeleton training (P=0.01). No changes in satisfaction with bowel management (P=.11), pROM (hip-extension (P=.49), knee-extension (P=.36), ankle dorsiflexion (P=.69)), or spasticity (P=.94) were found. CONCLUSION Even in patients with chronic motor complete SCI and a relatively high level of QoL at baseline, a short-term exoskeleton training improved their QoL, pain and satisfaction with bladder management; findings that warrant further controlled studies in this specific SCI population.
Collapse
Affiliation(s)
- Ilse J.W. van Nes
- Department of Rehabilitation, Sint Maartenskliniek, Nijmegen, The Netherlands
| | - Rosanne B. van Dijsseldonk
- Department of Research, Sint Maartenskliniek, Nijmegen, The Netherlands
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frank H.M. van Herpen
- Department of Rehabilitation, Sint Maartenskliniek, Nijmegen, The Netherlands
- Department of Rehabilitation, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Hennie Rijken
- Department of Rehabilitation, Sint Maartenskliniek, Nijmegen, The Netherlands
| | - Alexander C.H. Geurts
- Department of Research, Sint Maartenskliniek, Nijmegen, The Netherlands
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Noël L.W. Keijsers
- Department of Research, Sint Maartenskliniek, Nijmegen, The Netherlands
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
5
|
Tao G, Yang S, Xu J, Wang L, Yang B. Global research trends and hotspots of artificial intelligence research in spinal cord neural injury and restoration-a bibliometrics and visualization analysis. Front Neurol 2024; 15:1361235. [PMID: 38628700 PMCID: PMC11018935 DOI: 10.3389/fneur.2024.1361235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Background Artificial intelligence (AI) technology has made breakthroughs in spinal cord neural injury and restoration in recent years. It has a positive impact on clinical treatment. This study explores AI research's progress and hotspots in spinal cord neural injury and restoration. It also analyzes research shortcomings related to this area and proposes potential solutions. Methods We used CiteSpace 6.1.R6 and VOSviewer 1.6.19 to research WOS articles on AI research in spinal cord neural injury and restoration. Results A total of 1,502 articles were screened, in which the United States dominated; Kadone, Hideki (13 articles, University of Tsukuba, JAPAN) was the author with the highest number of publications; ARCH PHYS MED REHAB (IF = 4.3) was the most cited journal, and topics included molecular biology, immunology, neurology, sports, among other related areas. Conclusion We pinpointed three research hotspots for AI research in spinal cord neural injury and restoration: (1) intelligent robots and limb exoskeletons to assist rehabilitation training; (2) brain-computer interfaces; and (3) neuromodulation and noninvasive electrical stimulation. In addition, many new hotspots were discussed: (1) starting with image segmentation models based on convolutional neural networks; (2) the use of AI to fabricate polymeric biomaterials to provide the microenvironment required for neural stem cell-derived neural network tissues; (3) AI survival prediction tools, and transcription factor regulatory networks in the field of genetics were discussed. Although AI research in spinal cord neural injury and restoration has many benefits, the technology has several limitations (data and ethical issues). The data-gathering problem should be addressed in future research, which requires a significant sample of quality clinical data to build valid AI models. At the same time, research on genomics and other mechanisms in this field is fragile. In the future, machine learning techniques, such as AI survival prediction tools and transcription factor regulatory networks, can be utilized for studies related to the up-regulation of regeneration-related genes and the production of structural proteins for axonal growth.
Collapse
Affiliation(s)
- Guangyi Tao
- College of Orthopedics and Traumatology, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Shun Yang
- Department of Pain, Henan Provincial Hospital of Traditional Chinese Medicine/The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Junjie Xu
- College of Orthopedics and Traumatology, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Linzi Wang
- College of Orthopedics and Traumatology, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Bin Yang
- Department of Pain, Henan Provincial Hospital of Traditional Chinese Medicine/The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| |
Collapse
|
6
|
Wan C, Huang S, Wang X, Ge P, Wang Z, Zhang Y, Li Y, Su B. Effects of robot-assisted gait training on cardiopulmonary function and lower extremity strength in individuals with spinal cord injury: A systematic review and meta-analysis. J Spinal Cord Med 2024; 47:6-14. [PMID: 36972206 PMCID: PMC10795646 DOI: 10.1080/10790268.2023.2188392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/18/2023] Open
Abstract
CONTEXT Robot-assisted gait training (RAGT) has been increasingly adopted in many rehabilitation facilities for walking function and activity in individuals with spinal cord injury (SCI). However, the effectiveness of RAGT on lower extremity strength and cardiopulmonary function, especially static pulmonary function, have not been clearly outlined. OBJECTIVE Determine the effect of RAGT on cardiopulmonary function and lower extremity strength in SCI survivors. METHODS Eight databases were systematically searched for randomized controlled trials comparing RAGT with conventional physical therapy or other non-robotic therapies for survivors with SCI. Study selection required lower extremity strength decline after SCI at baseline. The overall effects of RAGT were calculated using a meta-analytic method. Begg's test was used to assess the risk of publication bias. RESULTS The pooled analysis demonstrated that RAGT may have a positive effect for individuals with SCI on lower extremity strength enhancing (n = 408; standardized mean difference [SMD] = 0.81; 95% confidence interval [CI] = 0.14-1.48) and cardiopulmonary endurance(n = 104; standardized mean difference [SMD] = 2.24; 95% confidence interval [CI] = 0.28-4.19). However, no significant effect was established on static pulmonary function. No publication bias was observed according to the Begg's test. CONCLUSIONS RAGT may be a useful technique for improving lower limb strength and cardiovascular endurance in SCI survivors. The usefulness of RAGT in enhancing static pulmonary function was not demonstrated by the study. However, these results should be interpreted with caution, given the low number of selected studies and subjects. Clinical studies with large sample sizes will be necessary in the future.
Collapse
Affiliation(s)
- Chunli Wan
- Department of rehabilitation medicine, The First Affiliated Hospital of Nanjing Medical University/School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Sisi Huang
- Department of rehabilitation medicine, The First Affiliated Hospital of Nanjing Medical University/School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Xue Wang
- Department of rehabilitation medicine, The First Affiliated Hospital of Nanjing Medical University/School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Panli Ge
- Department of rehabilitation medicine, The First Affiliated Hospital of Nanjing Medical University/School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Zhixiang Wang
- Department of rehabilitation medicine, The First Affiliated Hospital of Nanjing Medical University/School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Yuting Zhang
- Department of rehabilitation medicine, The First Affiliated Hospital of Nanjing Medical University/School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Yongqiang Li
- Department of rehabilitation medicine, The First Affiliated Hospital of Nanjing Medical University/School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Bin Su
- Wuxi Central Rehabilitation Hospital/Wuxi Mental Health Center, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214151, China
| |
Collapse
|
7
|
Steele AG, Vette AH, Martin C, Masani K, Sayenko DG. Combining transcutaneous spinal stimulation and functional electrical stimulation increases force generated by lower limbs: When more is more. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.22.573119. [PMID: 38187778 PMCID: PMC10769419 DOI: 10.1101/2023.12.22.573119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Background Transcutaneous Spinal Stimulation (TSS) has been shown to promote activation of the lower limb and trunk muscles and is being actively explored for improving the motor outcomes of people with neurological conditions. However, individual responses to TSS vary, and often the muscle responses are insufficient to produce enough force for self-supported standing. Functional electrical stimulation (FES) can activate individual muscles and assist in closing this functional gap, but it introduces questions regarding timing between modalities. Methods To assess the effects of TSS and FES on force generation, ten neurologically intact participants underwent (1) TSS only, (2) FES only, and (3) TSS + FES. TSS was delivered using four electrodes placed at T10-T11 through the L1-L2 intervertebral spaces simultaneously, while FES was delivered to the skin over the right knee extensors and plantarflexors. For all conditions, TSS and FES were delivered using three 0.5 ms biphasic square-wave pulses at 15 Hz. During the TSS + FES condition, timing between the two modalities was adjusted in increments of ¼ time between pulses (16.5 ms). Results When TSS preceded FES, a larger force production was observed. We also determined several changes in muscle activation amplitude at different relative stimulus intervals, which help characterize our finding and indicate the facilitating and inhibitory effects of the modalities. Conclusions Utilizing a delay ranging from 15 to 30 ms between stimuli resulted in higher mean force generation in both the knee and ankle joints, regardless of the selected FES location (Average; knee: 112.0%, ankle: 103.1%).
Collapse
Affiliation(s)
- Alexander G Steele
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, 6550 Fannin Street, Houston, Texas, 77030, United States of America
| | - Albert H Vette
- Department of Mechanical Engineering, University of Alberta, Donadeo Innovation Centre for Engineering, 9211-116 Street NW, Edmonton, Alberta T6G 1H9, Canada
- Glenrose Rehabilitation Hospital, Alberta Health Services, 10230 111 Avenue NW, Edmonton, Alberta T5G 0B7, Canada
| | - Catherine Martin
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, 6550 Fannin Street, Houston, Texas, 77030, United States of America
| | - Kei Masani
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- KITE Research Institute - University Health Network, Toronto, ON M4G 3V9, Canada
| | - Dimitry G Sayenko
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, 6550 Fannin Street, Houston, Texas, 77030, United States of America
| |
Collapse
|
8
|
Bosteder KD, Moore A, Weeks A, Dawkins JD, Trammell M, Driver S, Hamilton R, Swank C. Intensity of overground robotic exoskeleton training in two persons with motor-complete tetraplegia: a case series. Spinal Cord Ser Cases 2023; 9:24. [PMID: 37391401 PMCID: PMC10313748 DOI: 10.1038/s41394-023-00584-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 07/02/2023] Open
Abstract
INTRODUCTION Participation in moderate-to-vigorous intensity physical activity (MVPA) is recommended to reduce chronic disease risk in individuals with tetraplegia. Assessing exercise intensity using traditional methods, such as heart rate, may be inaccurate in patients with motor-complete tetraplegia due to autonomic and neuromuscular dysfunction. Direct gas analysis may be more accurate. Overground robotic exoskeleton (ORE) training can be physiologically demanding. Yet, its utility as an aerobic exercise modality to facilitate MVPA in patients with chronic and acute motor-complete tetraplegia has not been explored. CASE PRESENTATION We present the results of two male participants with motor-complete tetraplegia who completed one ORE exercise session while intensity was assessed using a portable metabolic system and expressed in metabolic equivalents (METs). METs were calculated using a rolling 30-s average with 1 MET defined as 2.7 mL/kg/min and MVPA defined as MET ≥ 3.0. Participant A (28-year-old) with a chronic (12 yrs) spinal cord injury (C5, AIS A) completed 37.4 min of ORE exercise (28.9 min walking) achieving 1047 steps. Peak METs were 3.4 (average 2.3) with 3% of walk time spent in MVPA. Participant B (21-year-old) with an acute (2 months) spinal cord injury (C4, AIS A) completed 42.3 min of ORE exercise (40.5 min walking) achieving 1023 steps. Peak METs were 3.2 (average 2.6) with 12% of walk time spent in MVPA. Both participants tolerated activity well without observed adverse responses to activity. DISCUSSION ORE exercise may be an effective aerobic exercise modality that may increase participation in physical activity in patients with motor-complete tetraplegia.
Collapse
Affiliation(s)
- Katelyn D Bosteder
- Sports Therapy & Research Center, Baylor Scott & White Research Institute, Frisco, TX, USA.
| | - Ashlyn Moore
- Baylor Scott & White Institute for Rehabilitation, Dallas, TX, USA
| | - Ariana Weeks
- Baylor Scott & White Institute for Rehabilitation, Dallas, TX, USA
| | - Jonathan D Dawkins
- Sports Therapy & Research Center, Baylor Scott & White Research Institute, Frisco, TX, USA
- Baylor University Medical Center, Dallas, TX, USA
| | - Molly Trammell
- Baylor Scott & White Institute for Rehabilitation, Dallas, TX, USA
| | - Simon Driver
- Sports Therapy & Research Center, Baylor Scott & White Research Institute, Frisco, TX, USA
- Baylor Scott & White Institute for Rehabilitation, Dallas, TX, USA
- Baylor Scott & White Research Institute, Dallas, TX, USA
| | - Rita Hamilton
- Baylor Scott & White Institute for Rehabilitation, Dallas, TX, USA
- Baylor University Medical Center, Dallas, TX, USA
| | - Chad Swank
- Baylor Scott & White Institute for Rehabilitation, Dallas, TX, USA
- Baylor Scott & White Research Institute, Dallas, TX, USA
| |
Collapse
|
9
|
Craven BC, Cirnigliaro CM, Carbone LD, Tsang P, Morse LR. The Pathophysiology, Identification and Management of Fracture Risk, Sublesional Osteoporosis and Fracture among Adults with Spinal Cord Injury. J Pers Med 2023; 13:966. [PMID: 37373955 DOI: 10.3390/jpm13060966] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/26/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND The prevention of lower extremity fractures and fracture-related morbidity and mortality is a critical component of health services for adults living with chronic spinal cord injury (SCI). METHODS Established best practices and guideline recommendations are articulated in recent international consensus documents from the International Society of Clinical Densitometry, the Paralyzed Veterans of America Consortium for Spinal Cord Medicine and the Orthopedic Trauma Association. RESULTS This review is a synthesis of the aforementioned consensus documents, which highlight the pathophysiology of lower extremity bone mineral density (BMD) decline after acute SCI. The role and actions treating clinicians should take to screen, diagnose and initiate the appropriate treatment of established low bone mass/osteoporosis of the hip, distal femur or proximal tibia regions associated with moderate or high fracture risk or diagnose and manage a lower extremity fracture among adults with chronic SCI are articulated. Guidance regarding the prescription of dietary calcium, vitamin D supplements, rehabilitation interventions (passive standing, functional electrical stimulation (FES) or neuromuscular electrical stimulation (NMES)) to modify bone mass and/or anti-resorptive drug therapy (Alendronate, Denosumab, or Zoledronic Acid) is provided. In the event of lower extremity fracture, the need for timely orthopedic consultation for fracture diagnosis and interprofessional care following definitive fracture management to prevent health complications (venous thromboembolism, pressure injury, and autonomic dysreflexia) and rehabilitation interventions to return the individual to his/her pre-fracture functional abilities is emphasized. CONCLUSIONS Interprofessional care teams should use recent consensus publications to drive sustained practice change to mitigate fracture incidence and fracture-related morbidity and mortality among adults with chronic SCI.
Collapse
Affiliation(s)
- Beverley Catharine Craven
- KITE Research Institute, 520 Sutherland Dr, Toronto, ON M4G 3V9, Canada
- Faculty of Medicine, University of Toronto, Medical Sciences Building, 1 King's College Cir, Toronto, ON M5S 1A8, Canada
| | - Christopher M Cirnigliaro
- Department of Veterans Affairs Rehabilitation, Research, and Development Service, Spinal Cord Damage Research Center, Bronx, NY 10468, USA
| | - Laura D Carbone
- Department of Medicine: Rheumatology, Medical College of Georgia, Augusta University, 1120 15th St, Augusta, GA 30912, USA
| | - Philemon Tsang
- KITE Research Institute, 520 Sutherland Dr, Toronto, ON M4G 3V9, Canada
| | - Leslie R Morse
- Department of Rehabilitation Medicine, University of Minnesota, 500 Harvard St SE, Minneapolis, MN 55455, USA
| |
Collapse
|
10
|
Chandran VD, Nam S, Hexner D, Bauman WA, Pal S. Comparison of the dynamics of exoskeletal-assisted and unassisted locomotion in an FDA-approved lower extremity device: Controlled experiments and development of a subject-specific virtual simulator. PLoS One 2023; 18:e0270078. [PMID: 36763637 PMCID: PMC9916583 DOI: 10.1371/journal.pone.0270078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 01/25/2023] [Indexed: 02/12/2023] Open
Abstract
Robotic exoskeletons have considerable, but largely untapped, potential to restore mobility in individuals with neurological disorders, and other conditions that result in partial or complete immobilization. The growing demand for these devices necessitates the development of technology to characterize the human-robot system during exoskeletal-assisted locomotion (EAL) and accelerate robot design refinements. The goal of this study was to combine controlled experiments with computational modeling to build a virtual simulator of EAL. The first objective was to acquire a minimum empirical dataset comprising human-robot kinematics, ground reaction forces, and electromyography during exoskeletal-assisted and unassisted locomotion from an able-bodied participant. The second objective was to quantify the dynamics of the human-robot system using a subject-specific virtual simulator reproducing EAL compared to the dynamics of normal gait. We trained an able-bodied participant to ambulate independently in a Food and Drug Administration-approved exoskeleton, the ReWalk P6.0 (ReWalk Robotics, Yoknaem, Israel). We analyzed the motion of the participant during exoskeletal-assisted and unassisted walking, sit-to-stand, and stand-to-sit maneuvers, with simultaneous measurements of (i) three-dimensional marker trajectories, (ii) ground reaction forces, (iii) electromyography, and (iv) exoskeleton encoder data. We created a virtual simulator in OpenSim, comprising a whole-body musculoskeletal model and a full-scale exoskeleton model, to determine the joint kinematics and moments during exoskeletal-assisted and unassisted maneuvers. Mean peak knee flexion angles of the human subject during exoskeletal-assisted walking were 50.1° ± 0.6° (left) and 52.6° ± 0.7° (right), compared to 68.6° ± 0.3° (left) and 70.7° ± 1.1° (right) during unassisted walking. Mean peak knee extension moments during exoskeletal-assisted walking were 0.10 ± 0.10 Nm/kg (left) and 0.22 ± 0.11 Nm/kg (right), compared to 0.64 ± 0.07 Nm/kg (left) and 0.73 ± 0.10 Nm/kg (right) during unassisted walking. This work provides a foundation for parametric studies to characterize the effects of human and robot design variables, and predictive modeling to optimize human-robot interaction during EAL.
Collapse
Affiliation(s)
- Vishnu D. Chandran
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, United States of America
| | - Sanghyun Nam
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, United States of America
| | | | - William A. Bauman
- James J. Peters Veterans Affairs Medical Center, Bronx, New York, United States of America
- Department of Medicine and Rehabilitation & Human Performance, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Saikat Pal
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, United States of America
- Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, New Jersey, United States of America
| |
Collapse
|
11
|
Kruppa C, Benner S, Brinkemper A, Aach M, Reimertz C, Schildhauer TA. [New technologies and robotics]. UNFALLCHIRURGIE (HEIDELBERG, GERMANY) 2023; 126:9-18. [PMID: 36515725 DOI: 10.1007/s00113-022-01270-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/22/2022] [Indexed: 12/15/2022]
Abstract
The development of increasingly more complex computer and electromotor technologies enables the increasing use and expansion of robot-assisted systems in trauma surgery rehabilitation; however, the currently available devices are rarely comprehensively applied but are often used within pilot projects and studies. Different technological approaches, such as exoskeletal systems, functional electrical stimulation, soft robotics, neurorobotics and brain-machine interfaces are used and combined to read and process the communication between, e.g., residual musculature or brain waves, to transfer them to the executing device and to enable the desired execution.Currently, the greatest amount of evidence exists for the use of exoskeletal systems with different modes of action in the context of gait and stance rehabilitation in paraplegic patients; however, their use also plays a role in the rehabilitation of fractures close to the hip joint and endoprosthetic care. So-called single joint systems are also being tested in the rehabilitation of functionally impaired extremities, e.g., after knee prosthesis implantation. At this point, however, the current data situation is still too limited to be able to make a clear statement about the use of these technologies in the trauma surgery "core business" of rehabilitation after fractures and other joint injuries.For rehabilitation after limb amputation, in addition to the further development of myoelectric prostheses, the current development of "sentient" prostheses is of great interest. The use of 3D printing also plays a role in the production of individualized devices.Due to the current progress of artificial intelligence in all fields, ground-breaking further developments and widespread application possibilities in the rehabilitation of trauma patients are to be expected.
Collapse
Affiliation(s)
- Christiane Kruppa
- Chirurgische Klinik und Poliklinik, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil Bochum, Ruhr-Universität Bochum, Bochum, Deutschland.
| | - Sebastian Benner
- BG Service- und Rehabilitationszentrum, BG Unfallklinik Frankfurt am Main gGmbH, Frankfurt am Main, Deutschland
| | - Alexis Brinkemper
- Chirurgische Klinik und Poliklinik, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil Bochum, Ruhr-Universität Bochum, Bochum, Deutschland
| | - Mirko Aach
- Chirurgische Klinik und Poliklinik, Abteilung für Rückenmarkverletzte, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil Bochum, Ruhr-Universität Bochum, Bochum, Deutschland
| | - Christoph Reimertz
- BG Service- und Rehabilitationszentrum, BG Unfallklinik Frankfurt am Main gGmbH, Frankfurt am Main, Deutschland
| | - Thomas A Schildhauer
- Chirurgische Klinik und Poliklinik, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil Bochum, Ruhr-Universität Bochum, Bochum, Deutschland
| |
Collapse
|
12
|
Stampacchia G, Gazzotti V, Olivieri M, Andrenelli E, Bonaiuti D, Calabro RS, Carmignano SM, Cassio A, Fundaro C, Companini I, Mazzoli D, Cerulli S, Chisari C, Colombo V, Dalise S, Mazzoleni D, Melegari C, Merlo A, Boldrini P, Mazzoleni S, Posteraro F, Mazzucchelli M, Benanti P, Castelli E, Draicchio F, Falabella V, Galeri S, Gimigliano F, Grigioni M, Mazzon S, Molteni F, Morone G, Petrarca M, Picelli A, Senatore M, Turchetti G, Bizzarrini E. Gait robot-assisted rehabilitation in persons with spinal cord injury: A scoping review. NeuroRehabilitation 2022; 51:609-647. [PMID: 36502343 DOI: 10.3233/nre-220061] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Many robots are available for gait rehabilitation (BWSTRT and ORET) and their application in persons with SCI allowed an improvement of walking function. OBJECTIVE The aim of the study is to compare the effects of different robotic exoskeletons gait training in persons with different SCI level and severity. METHODS Sixty-two studies were included in this systematic review; the study quality was assessed according to GRADE and PEDro's scale. RESULTS Quality assessment of included studies (n = 62) demonstrated a prevalence of evidence level 2; the quality of the studies was higher for BWSTRT (excellent and good) than for ORET (fair and good). Almost all persons recruited for BWSTRT had an incomplete SCI; both complete and incomplete SCI were recruited for ORET. The SCI lesion level in the persons recruited for BWSTRT are from cervical to sacral; mainly from thoracic to sacral for ORET; a high representation of AIS D lesion resulted both for BWSTRT (30%) and for ORET (45%). The walking performance, tested with 10MWT, 6MWT, TUG and WISCI, improved after exoskeleton training in persons with incomplete SCI lesions, when at least 20 sessions were applied. Persons with complete SCI lesions improved the dexterity in walking with exoskeleton, but did not recover independent walking function; symptoms such as spasticity, pain and cardiovascular endurance improved. CONCLUSION Different exoskeletons are available for walking rehabilitation in persons with SCI. The choice about the kind of robotic gait training should be addressed on the basis of the lesion severity and the possible comorbidities.
Collapse
Affiliation(s)
| | - Valeria Gazzotti
- Centro Protesi Vigorso di Budrio, Istituto Nazionale Assicurazione Infortuni sul Lavoro (INAIL), Bologna, Italy
| | | | - Elisa Andrenelli
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| | | | | | - Simona Maria Carmignano
- Rehabilitation Therapeutic Center (CTR), Potenza, Italy.,University of Salerno, Salerno, Italy
| | - Anna Cassio
- Spinal Cord Unit and Intensive Rehabilitation Medicine, Ospedale di Fiorenzuola d'Arda, AUSL Piacenza, Piacenza, Italy
| | - Cira Fundaro
- Neurophysiopathology Unit, Istituti Clinici Scientifici Maugeri, IRCCS Montescano, Pavia, Italy
| | - Isabella Companini
- Department of Neuromotor and Rehabilitation, LAM-Motion Analysis Laboratory, San Sebastiano Hospital, AUSL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - David Mazzoli
- Gait and Motion Analysis Laboratory, Sol et Salus Ospedale Privato Accreditato, Rimini, Italy
| | - Simona Cerulli
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Carmelo Chisari
- Department of Translational Research and New Technologies in Medicine and Surgery, Neurorehabiltation Section, University of Pisa, Pisa, Italy
| | | | - Stefania Dalise
- Department of Translational Research and New Technologies in Medicine and Surgery, Neurorehabiltation Section, University of Pisa, Pisa, Italy
| | - Daniele Mazzoleni
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | | | - Andrea Merlo
- Gait and Motion Analysis Laboratory, Sol et Salus Ospedale Privato Accreditato, Rimini, Italy
| | - Paolo Boldrini
- Italian Society of Physical Medicine and Rehabilitation (SIMFER), Rome, Italy
| | - Stefano Mazzoleni
- Department of Electrical and Information Engineering, Politecnico di Bari, Bari, Italy
| | - Federico Posteraro
- Department of Rehabilitation, Versilia Hospital - AUSL12, Viareggio, Italy
| | | | | | - Enrico Castelli
- Department of Paediatric Neurorehabilitation, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Francesco Draicchio
- Department of Occupational and Environmental Medicine Epidemiology and Hygiene, INAIL, Rome, Italy
| | - Vincenzo Falabella
- Italian Federation of Persons with Spinal Cord Injuries (FAIP Onlus), Rome, Italy
| | | | - Francesca Gimigliano
- Department of Mental, Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Mauro Grigioni
- National Center for Innovative Technologies in Public Health, Italian National Institute of Health, Rome, Italy
| | - Stefano Mazzon
- Rehabilitation Unit, ULSS (Local Health Authority) Euganea, Camposampiero Hospital, Padua, Italy
| | - Franco Molteni
- Department of Rehabilitation Medicine, Villa Beretta Rehabilitation Center, Valduce Hospital, Lecco, Italy
| | | | - Maurizio Petrarca
- Movement Analysis and Robotics Laboratory (MARlab), IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Alessandro Picelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Michele Senatore
- Associazione Italiana dei Terapisti Occupazionali (AITO), Rome, Italy
| | | | - Emiliana Bizzarrini
- Department of Rehabilitation Medicine, Spinal Cord Unit, Gervasutta Hospital, Azienda Sanitaria Universitaria Friuli Centrale (ASU FC), Udine, Italy
| |
Collapse
|
13
|
Fallahzadeh Abarghuei A, Karimi MT. The Effects of Lower Limb Orthoses on Health Aspects of the Spinal Cord Injury Patients: A Systematic Review Using International Classification of Functioning, Disability, and Health (ICF) as a Reference Framework. Med J Islam Repub Iran 2022; 36:153. [PMID: 36654846 PMCID: PMC9832937 DOI: 10.47176/mjiri.36.153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Indexed: 12/24/2022] Open
Abstract
Background: One of the most important approaches in the rehabilitation of spinal cord injury (SCI) patients is the use of different orthoses. To date, no review has been published that analyzed the effects of orthoses on health aspects of spinal cord injury clients using the International Classification of Functioning, Disability and Health (ICF). Methods: A systematic literature search was done in some databases, including Medline, PubMed, Cochrane centered register of the controlled trial (CCTR), Cochrane database of systematic reviews (CDSR), a database of abstracts of reviews of effects (DARE), Embase, Google Scholar, and ISI Web of Knowledge. SCI was used in conjunction with terms like orthotic device, mechanical orthoses, external power orthoses, assistive devices, and functional electrical. The time frame for this search was from 1970 to 2022. Results: A total of 200 papers were found. Based on the titles and abstracts, 100 related papers were detected. After careful evaluation of the papers, 47 studies were selected for final analysis-53 papers were excluded due to duplication, non-English language, and lack of full-text. Conclusion: The results of 32 studies (70% of studies) support the efficiency of orthoses in walking and standing of SCI patients. In most of the included studies, the efficiency of orthoses was evaluated mostly based on body functions and structures, and their impact on other outcomes such as participation and quality of life (QoL) of SCI patients was unclear.
Collapse
Affiliation(s)
- Abolghasem Fallahzadeh Abarghuei
- Department of Occupational Therapy, School of Rehabilitation Sciences, Shiraz
University of Medical Sciences, Shiraz, Iran
- Rehabilitation Sciences Research Center, Shiraz University of Medical Sciences,
Shiraz, Iran
| | - Mohammad Taghi Karimi
- Rehabilitation Sciences Research Center, Shiraz University of Medical Sciences,
Shiraz, Iran
| |
Collapse
|
14
|
Rodríguez-Fernández A, Lobo-Prat J, Tarragó R, Chaverri D, Iglesias X, Guirao-Cano L, Font-Llagunes JM. Comparing walking with knee-ankle-foot orthoses and a knee-powered exoskeleton after spinal cord injury: a randomized, crossover clinical trial. Sci Rep 2022; 12:19150. [PMID: 36351989 PMCID: PMC9646697 DOI: 10.1038/s41598-022-23556-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/02/2022] [Indexed: 11/11/2022] Open
Abstract
Recovering the ability to stand and walk independently can have numerous health benefits for people with spinal cord injury (SCI). Wearable exoskeletons are being considered as a promising alternative to conventional knee-ankle-foot orthoses (KAFOs) for gait training and assisting functional mobility. However, comparisons between these two types of devices in terms of gait biomechanics and energetics have been limited. Through a randomized, crossover clinical trial, this study compared the use of a knee-powered lower limb exoskeleton (the ABLE Exoskeleton) against passive orthoses, which are the current standard of care for verticalization and gait ambulation outside the clinical setting in people with SCI. Ten patients with SCI completed a 10-session gait training program with each device followed by user satisfaction questionnaires. Walking with the ABLE Exoskeleton improved gait kinematics compared to the KAFOs, providing a more physiological gait pattern with less compensatory movements (38% reduction of circumduction, 25% increase of step length, 29% improvement in weight shifting). However, participants did not exhibit significantly better results in walking performance for the standard clinical tests (Timed Up and Go, 10-m Walk Test, and 6-min Walk Test), nor significant reductions in energy consumption. These results suggest that providing powered assistance only on the knee joints is not enough to significantly reduce the energy consumption required by people with SCI to walk compared to passive orthoses. Active assistance on the hip or ankle joints seems necessary to achieve this outcome.
Collapse
Affiliation(s)
- Antonio Rodríguez-Fernández
- Biomechanical Engineering Lab, Deparment of Mechanical Engineering and Research Center for Biomedical Engineering, Universitat Politècnica de Catalunya, 08028, Barcelona, Spain.
- Institut de Recerca Sant Joan de Déu, 08950, Esplugues de Llobregat, Spain.
| | | | - Rafael Tarragó
- Grup de Recerca en Ciències de l'Esport INEFC Barcelona, Institut Nacional d'Educació Física de Catalunya, Universitat de Barcelona, Barcelona, 08038, Spain
| | - Diego Chaverri
- Grup de Recerca en Ciències de l'Esport INEFC Barcelona, Institut Nacional d'Educació Física de Catalunya, Universitat de Barcelona, Barcelona, 08038, Spain
| | - Xavier Iglesias
- Grup de Recerca en Ciències de l'Esport INEFC Barcelona, Institut Nacional d'Educació Física de Catalunya, Universitat de Barcelona, Barcelona, 08038, Spain
| | - Lluis Guirao-Cano
- Rehabilitation Service, Asepeyo Hospital Barcelona, 08174, Barcelona, Spain
| | - Josep M Font-Llagunes
- Biomechanical Engineering Lab, Deparment of Mechanical Engineering and Research Center for Biomedical Engineering, Universitat Politècnica de Catalunya, 08028, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, 08950, Esplugues de Llobregat, Spain
| |
Collapse
|
15
|
Charbonneau R, Loyola-Sanchez A, McIntosh K, MacKean G, Ho C. Exoskeleton use in acute rehabilitation post spinal cord injury: A qualitative study exploring patients' experiences. J Spinal Cord Med 2022; 45:848-856. [PMID: 34855574 PMCID: PMC9662053 DOI: 10.1080/10790268.2021.1983314] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
CONTEXT/OBJECTIVE Spinal cord injury (SCI) is intensely life altering, affecting multiple body systems and functions, including the ability to walk. Exoskeleton assisted walking (EAW) is a rehabilitation tool that aims to support locomotor training, yet little is known about the patient experience. The purpose of this qualitative study, part of a prospective observational case series, was to increase our understanding of SCI patient experience using a robotic exoskeleton in this acute post-injury period. DESIGN A qualitative descriptive approach was implemented in this study, with the aim to explore and understand participants' experience with EAW training. PARTICIPANTS/SETTING Nine of the 11 participants enrolled in the observational study agreed to participate in an interview. All participants had suffered a SCI, and had received their trauma care and inpatient rehabilitation at a tertiary center in Calgary, Alberta, Canada. RESULTS The benefits to EAW use described by participants were primarily psychological and included the joy of eye level contact, excitement at being able to walk with assistance, improvement in mood, and hope for the future. Potential physiological benefits include increased strength, decreased spasticity and reduced pain. Challenges to EAW use include weakness and fatigue, and a fear of incontinence. CONCLUSION Qualitative research will continue to be an important component in future research on the use of EAW training as part of the rehabilitation process. Increasing understanding of the participants experience with this novel therapeutic modality and technology will be fundamental to improve its implementation in clinical practice.
Collapse
Affiliation(s)
- Rebecca Charbonneau
- Department of Clinical Neuroscience, University of Calgary, Calgary, Canada,Correspondence to: Rebecca Charbonneau, Lead Spinal Cord Injury Program, Division of Physical Medicine & Rehabilitation, Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.Ph: (403)-944-4475.
| | | | - Kyle McIntosh
- Department of Clinical Neuroscience, University of Calgary, Calgary, Canada
| | - Gail MacKean
- Department of Clinical Neuroscience, University of Calgary, Calgary, Canada
| | - Chester Ho
- Department of Medicine, University of Alberta, Edmonton, Canada
| |
Collapse
|
16
|
The Outcomes of Robotic Rehabilitation Assisted Devices Following Spinal Cord Injury and the Prevention of Secondary Associated Complications. Medicina (B Aires) 2022; 58:medicina58101447. [PMID: 36295607 PMCID: PMC9611825 DOI: 10.3390/medicina58101447] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/05/2022] [Accepted: 10/12/2022] [Indexed: 11/23/2022] Open
Abstract
Spinal cord injuries (SCIs) have major consequences on the patient’s health and life. Voluntary muscle paralysis caused by spinal cord damage affects the patient’s independence. Following SCI, an irreversible motor and sensory deficit occurs (spasticity, muscle paralysis, atrophy, pain, gait disorders, pain). This pathology has implications on the whole organism: on the osteoarticular, muscular, cardiovascular, respiratory, gastrointestinal, genito-urinary, skin, metabolic disorders, and neuro-psychic systems. The rehabilitation process for a subject having SCIs can be considered complex, since the pathophysiological mechanism and biochemical modifications occurring at the level of spinal cord are not yet fully elucidated. This review aims at evaluating the impact of robotic-assisted rehabilitation in subjects who have suffered SCI, both in terms of regaining mobility as a major dysfunction in patients with SCI, but also in terms of improving overall fitness and cardiovascular function, respiratory function, as well as the gastrointestinal system, bone density and finally the psychosocial issues, based on multiple clinical trials, and pilot studies. The researched literature in the topic revealed that in order to increase the chances of neuro-motor recovery and to obtain satisfactory results, the combination of robotic therapy, a complex recovery treatment and specific medication is one of the best decisions. Furthermore, the use of these exoskeletons facilitates better/greater autonomy for patients, as well as optimal social integration.
Collapse
|
17
|
Duddy D, Doherty R, Connolly J, Loughrey J, Condell J, Hassan D, Faulkner M. The Cardiorespiratory Demands of Treadmill Walking with and without the Use of Ekso GT™ within Able-Bodied Participants: A Feasibility Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:6176. [PMID: 35627714 PMCID: PMC9141321 DOI: 10.3390/ijerph19106176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/04/2022] [Accepted: 05/14/2022] [Indexed: 12/07/2022]
Abstract
Individuals with neurological impairments tend to lead a predominantly sedentary lifestyle due to impaired gait function and mobility. This may be detrimental to health by negatively impacting cardiorespiratory fitness and muscular strength, and increasing the risk of developing secondary health problems. Powered exoskeletons are assistive devices that may aid neurologically impaired individuals in achieving the World Health Organisation's (WHO) physical activity (PA) guidelines for health. Increased PA should elicit a sufficient cardiorespiratory stimulus to provide health benefits to exoskeleton users. This study examined the cardiorespiratory demands of treadmill walking with and without the Ekso GT™ among able-bodied participants. The Ekso GT™ is a powered exoskeleton that enables individuals with neurological impairments to walk by supporting full body mass with motors attached at the hip and knee joints to generate steps. This feasibility study consisted of one group of healthy able-bodied individuals (n = 8). Participants completed two 12 min treadmill walking assessments, one with and one without the Ekso GT™ at the same fixed speed. Throughout each walking bout, various cardiorespiratory parameters, namely, volume of oxygen per kilogram (kg) of body mass (V˙O2·kg-1), volume of carbon dioxide per kg of body mass (V˙CO2·kg-1), respiratory exchange ratio (RER), ventilation (V˙E), heart rate (HR), and rate of perceived exertion (RPE), were recorded. Treadmill walking with Ekso GT™ elevated all recorded measurements to a significantly greater level (p ≤ 0.05) (except RER at 1 km·h-1; p = 0.230) than treadmill walking without the Ekso GT™ did at the same fixed speed. An increased cardiorespiratory response was recorded during treadmill walking with the exoskeleton. Exoskeleton walking may, therefore, be an effective method to increase PA levels and provide sufficient stimulus in accordance with the PA guidelines to promote cardiorespiratory fitness and subsequently enhance overall health.
Collapse
Affiliation(s)
- Damien Duddy
- Sports Lab North West, Atlantic Technological University Donegal, Letterkenny Campus, Port Road, F92 FC93 Letterkenny, Ireland; (R.D.); (M.F.)
| | - Rónán Doherty
- Sports Lab North West, Atlantic Technological University Donegal, Letterkenny Campus, Port Road, F92 FC93 Letterkenny, Ireland; (R.D.); (M.F.)
| | - James Connolly
- Department of Computing, Atlantic Technological University Donegal, Letterkenny Campus, Port Road, F92 FC93 Letterkenny, Ireland;
| | | | - Joan Condell
- School of Computing, Engineering and Intelligent Systems, Ulster University Magee, Londonderry BT48 7JL, UK;
| | - David Hassan
- Sport and Exercise Sciences Research Institute, Ulster University Jordanstown, Newtownabbey BT37 0QB, UK;
| | - Maria Faulkner
- Sports Lab North West, Atlantic Technological University Donegal, Letterkenny Campus, Port Road, F92 FC93 Letterkenny, Ireland; (R.D.); (M.F.)
| |
Collapse
|
18
|
Sports Energy Consumption Evaluation Based on Improved Adaptive Weighted Data Fusion Energy-Saving Algorithm. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:7261193. [PMID: 35498200 PMCID: PMC9054415 DOI: 10.1155/2022/7261193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/21/2022] [Accepted: 03/26/2022] [Indexed: 11/17/2022]
Abstract
The purpose of this study is to use a portable cardiopulmonary function tester to measure the effect of sports smart bracelets and smartphone application software in monitoring the energy consumption of different types of physical activities, and to select several popular sports software in daily life for research. The tester is an accurate reference value. It compares the energy consumption monitoring effect and error percentage of several software in periodic exercise and discusses the relationship between the measured value and reference value of several software, so as to provide a scientific basis for exercise for the majority of athletes. The selection of software provides a reference and chooses a more suitable movement method according to its own actual situation to achieve the most objective and effective periodic movement. In this study, the CMA (constant modulus algorithm) is introduced into the decision feedback equalizer, and the CMA-DFE (decision feedback equalization) algorithm is formed. Since the CMA algorithm adopts a fixed step size, there is no way to solve the contradiction between the convergence speed and the steady-state residual error, so a constant modulus algorithm with a variable step size is proposed. The algorithm increases the step size in its initial stage to increase the convergence speed and reduces the step size after the algorithm converges to reduce the steady-state residual error. This study replaces the traditional CMA algorithm with the constant modulus algorithm with a variable step size. In this section, two basic algorithms for calculating the adaptive weighting factor are first proposed. Due to its limitations, a modified adaptive weighting factor is proposed. During normal running, the Huawei Band relatively accurately monitors the number of steps and energy consumption, and the motion software of the motion software relatively accurately monitors the distance. The monitoring of distance and energy consumption is relatively accurate in the Codoon sports software; in jogging, the Huawei Band is relatively accurate in monitoring the number of steps; the LeDong sports software is relatively accurate in monitoring distance; and the Codoon sports software in the energy consumption is relatively accurate.
Collapse
|
19
|
Tamburella F, Lorusso M, Tramontano M, Fadlun S, Masciullo M, Scivoletto G. Overground robotic training effects on walking and secondary health conditions in individuals with spinal cord injury: systematic review. J Neuroeng Rehabil 2022; 19:27. [PMID: 35292044 PMCID: PMC8922901 DOI: 10.1186/s12984-022-01003-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 02/14/2022] [Indexed: 12/12/2022] Open
Abstract
Overground powered lower limb exoskeletons (EXOs) have proven to be valid devices in gait rehabilitation in individuals with spinal cord injury (SCI). Although several articles have reported the effects of EXOs in these individuals, the few reviews available focused on specific domains, mainly walking. The aim of this systematic review is to provide a general overview of the effects of commercial EXOs (i.e. not EXOs used in military and industry applications) for medical purposes in individuals with SCI. This systematic review was conducted following the PRISMA guidelines and it referred to MED-LINE, EMBASE, SCOPUS, Web of Science and Cochrane library databases. The studies included were Randomized Clinical Trials (RCTs) and non-RCT based on EXOs intervention on individuals with SCI. Out of 1296 studies screened, 41 met inclusion criteria. Among all the EXO studies, the Ekso device was the most discussed, followed by ReWalk, Indego, HAL and Rex devices. Since 14 different domains were considered, the outcome measures were heterogeneous. The most investigated domain was walking, followed by cardiorespiratory/metabolic responses, spasticity, balance, quality of life, human–robot interaction, robot data, bowel functionality, strength, daily living activity, neurophysiology, sensory function, bladder functionality and body composition/bone density domains. There were no reports of negative effects due to EXOs trainings and most of the significant positive effects were noted in the walking domain for Ekso, ReWalk, HAL and Indego devices. Ekso studies reported significant effects due to training in almost all domains, while this was not the case with the Rex device. Not a single study carried out on sensory functions or bladder functionality reached significance for any EXO. It is not possible to draw general conclusions about the effects of EXOs usage due to the lack of high-quality studies as addressed by the Downs and Black tool, the heterogeneity of the outcome measures, of the protocols and of the SCI epidemiological/neurological features. However, the strengths and weaknesses of EXOs are starting to be defined, even considering the different types of adverse events that EXO training brought about. EXO training showed to bring significant improvements over time, but whether its effectiveness is greater or less than conventional therapy or other treatments is still mostly unknown. High-quality RCTs are necessary to better define the pros and cons of the EXOs available today. Studies of this kind could help clinicians to better choose the appropriate training for individuals with SCI.
Collapse
Affiliation(s)
- Federica Tamburella
- I.R.C.C.S. Santa Lucia Foundation (FSL), Via Ardeatina, 306, 00179, Rome, Italy.
| | - Matteo Lorusso
- I.R.C.C.S. Santa Lucia Foundation (FSL), Via Ardeatina, 306, 00179, Rome, Italy
| | - Marco Tramontano
- I.R.C.C.S. Santa Lucia Foundation (FSL), Via Ardeatina, 306, 00179, Rome, Italy
| | - Silvia Fadlun
- I.R.C.C.S. Santa Lucia Foundation (FSL), Via Ardeatina, 306, 00179, Rome, Italy
| | - Marcella Masciullo
- I.R.C.C.S. Santa Lucia Foundation (FSL), Via Ardeatina, 306, 00179, Rome, Italy
| | - Giorgio Scivoletto
- I.R.C.C.S. Santa Lucia Foundation (FSL), Via Ardeatina, 306, 00179, Rome, Italy
| |
Collapse
|
20
|
Yip CCH, Lam CY, Cheung KMC, Wong YW, Koljonen PA. Knowledge Gaps in Biophysical Changes After Powered Robotic Exoskeleton Walking by Individuals With Spinal Cord Injury—A Scoping Review. Front Neurol 2022; 13:792295. [PMID: 35359657 PMCID: PMC8960715 DOI: 10.3389/fneur.2022.792295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
In addition to helping individuals with spinal cord injury (SCI) regain the ability to ambulate, the rapidly evolving capabilities of robotic exoskeletons provide an array of secondary biophysical benefits which can reduce the complications resulting from prolonged immobilization. The proposed benefits of increased life-long over-ground walking capacity include improved upper body muscular fitness, improved circulatory response, improved bowel movement regularity, and reduced pain and spasticity. Beyond the positive changes related to physical and biological function, exoskeletons have been suggested to improve SCI individuals' quality of life (QOL) by allowing increased participation in day-to-day activities. Most of the currently available studies that have reported on the impact of exoskeletons on the QOL and prevention of secondary health complications on individuals with SCI, are of small scale and are heterogeneous in nature. Moreover, few meta-analyses and reviews have attempted to consolidate the dispersed data to reach more definitive conclusions of the effects of exoskeleton use. This scoping review seeks to provide an overview on the known effects of overground exoskeleton use, on the prevention of secondary health complications, changes to the QOL, and their effect on the independence of SCI individuals in the community settings. Moreover, the intent of the review is to identify gaps in the literature currently available, and to make recommendations on focus study areas and methods for future investigations.
Collapse
Affiliation(s)
- Christopher C. H. Yip
- Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Chor-Yin Lam
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Kenneth M. C. Cheung
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Yat Wa Wong
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Department of Orthopaedics and Traumatology, Maclehose Medical Rehabilitation Centre, Hong Kong West Cluster, Hospital Authority, Kowloon, Hong Kong SAR, China
| | - Paul A. Koljonen
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Department of Orthopaedics and Traumatology, Maclehose Medical Rehabilitation Centre, Hong Kong West Cluster, Hospital Authority, Kowloon, Hong Kong SAR, China
- *Correspondence: Paul A. Koljonen
| |
Collapse
|
21
|
Forte G, Leemhuis E, Favieri F, Casagrande M, Giannini AM, De Gennaro L, Pazzaglia M. Exoskeletons for Mobility after Spinal Cord Injury: A Personalized Embodied Approach. J Pers Med 2022; 12:jpm12030380. [PMID: 35330380 PMCID: PMC8954494 DOI: 10.3390/jpm12030380] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 02/05/2023] Open
Abstract
Endowed with inherent flexibility, wearable robotic technologies are powerful devices that are known to extend bodily functionality to assist people with spinal cord injuries (SCIs). However, rather than considering the specific psychological and other physiological needs of their users, these devices are specifically designed to compensate for motor impairment. This could partially explain why they still cannot be adopted as an everyday solution, as only a small number of patients use lower-limb exoskeletons. It remains uncertain how these devices can be appropriately embedded in mental representations of the body. From this perspective, we aimed to highlight the homeostatic role of autonomic and interoceptive signals and their possible integration in a personalized experience of exoskeleton overground walking. To ensure personalized user-centered robotic technologies, optimal robotic devices should be designed and adjusted according to the patient's condition. We discuss how embodied approaches could emerge as a means of overcoming the hesitancy toward wearable robots.
Collapse
Affiliation(s)
- Giuseppe Forte
- Dipartimento di Psicologia, “Sapienza” Università di Roma, Via dei Marsi 78, 00185 Rome, Italy; (E.L.); (A.M.G.); (L.D.G.); (M.P.)
- Body and Action Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
- Correspondence: (G.F.); (F.F.)
| | - Erik Leemhuis
- Dipartimento di Psicologia, “Sapienza” Università di Roma, Via dei Marsi 78, 00185 Rome, Italy; (E.L.); (A.M.G.); (L.D.G.); (M.P.)
- Body and Action Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| | - Francesca Favieri
- Dipartimento di Psicologia, “Sapienza” Università di Roma, Via dei Marsi 78, 00185 Rome, Italy; (E.L.); (A.M.G.); (L.D.G.); (M.P.)
- Body and Action Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
- Correspondence: (G.F.); (F.F.)
| | - Maria Casagrande
- Dipartimento di Psicologia Dinamica, Clinica e Salute, Università di Rome “Sapienza”, Via Degli Apuli 1, 00185 Rome, Italy;
| | - Anna Maria Giannini
- Dipartimento di Psicologia, “Sapienza” Università di Roma, Via dei Marsi 78, 00185 Rome, Italy; (E.L.); (A.M.G.); (L.D.G.); (M.P.)
| | - Luigi De Gennaro
- Dipartimento di Psicologia, “Sapienza” Università di Roma, Via dei Marsi 78, 00185 Rome, Italy; (E.L.); (A.M.G.); (L.D.G.); (M.P.)
- Body and Action Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| | - Mariella Pazzaglia
- Dipartimento di Psicologia, “Sapienza” Università di Roma, Via dei Marsi 78, 00185 Rome, Italy; (E.L.); (A.M.G.); (L.D.G.); (M.P.)
- Body and Action Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| |
Collapse
|
22
|
Sutor TW, Ghatas MP, Goetz LL, Lavis TD, Gorgey AS. Exoskeleton Training and Trans-Spinal Stimulation for Physical Activity Enhancement After Spinal Cord Injury (EXTra-SCI): An Exploratory Study. FRONTIERS IN REHABILITATION SCIENCES 2022; 2:789422. [PMID: 35169770 PMCID: PMC8842517 DOI: 10.3389/fresc.2021.789422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/30/2021] [Indexed: 11/30/2022]
Abstract
After spinal cord injury (SCI) physical activity levels decrease drastically, leading to numerous secondary health complications. Exoskeleton-assisted walking (EAW) may be one way to improve physical activity for adults with SCI and potentially alleviate secondary health complications. The effects of EAW may be limited, however, since exoskeletons induce passive movement for users who cannot volitionally contribute to walking. Trans-spinal stimulation (TSS) has shown the potential to enable those with even the most severe SCI to actively contribute to movements during EAW. To explore the effects of EAW training on improving secondary health complications in persons with SCI, participants with chronic (n = 8) were enrolled in an EAW program 2-3 times per week for 12 weeks. Anthropometrics (seated and supine waist and abdominal circumferences (WC and AC), body composition assessment (dual exposure x-ray absorptiometry-derived body fat percent, lean mass and total mass for the total body, legs, and trunk), and peak oxygen consumption (VO2 during a 6-minute walk test [6MWT]) were assessed before and after 12 weeks of EAW training. A subset of participants (n = 3) completed EAW training with concurrent TSS, and neuromuscular activity of locomotor muscles was assessed during a 10-m walk test (10MWT) with and without TSS following 12 weeks of EAW training. Upon completion of 12 weeks of training, reductions from baseline (BL) were found in seated WC (-2.2%, P = 0.036), seated AC (-2.9%, P = 0.05), and supine AC (-3.9%, P = 0.017). Percent fat was also reduced from BL for the total body (-1.4%, P = 0.018), leg (-1.3%, P = 0.018), and trunk (-2%, P = 0.036) regions. No effects were found for peak VO2. The addition of TSS for three individuals yielded individualized responses but generally increased knee extensor activity during EAW. Two of three participants who received TSS were also able to initiate more steps without additional assistance from the exoskeleton during a 10MWT. In summary, 12 weeks of EAW training significantly attenuated markers of obesity relevant to cardiometabolic health in eight men with chronic SCI. Changes in VO2 and neuromuscular activity with vs. without TSS were highly individualized and yielded no overall group effects.
Collapse
Affiliation(s)
- Tommy W. Sutor
- Spinal Cord Injury and Disorders Center, Hunter Holmes McGuire Veteran Affairs Medical Center, Richmond, VA, United States
| | - Mina P. Ghatas
- Spinal Cord Injury and Disorders Center, Hunter Holmes McGuire Veteran Affairs Medical Center, Richmond, VA, United States
| | - Lance L. Goetz
- Spinal Cord Injury and Disorders Center, Hunter Holmes McGuire Veteran Affairs Medical Center, Richmond, VA, United States
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, VA, United States
| | - Timothy D. Lavis
- Spinal Cord Injury and Disorders Center, Hunter Holmes McGuire Veteran Affairs Medical Center, Richmond, VA, United States
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, VA, United States
| | - Ashraf S. Gorgey
- Spinal Cord Injury and Disorders Center, Hunter Holmes McGuire Veteran Affairs Medical Center, Richmond, VA, United States
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
23
|
Koelewijn AD, Audu M, del-Ama AJ, Colucci A, Font-Llagunes JM, Gogeascoechea A, Hnat SK, Makowski N, Moreno JC, Nandor M, Quinn R, Reichenbach M, Reyes RD, Sartori M, Soekadar S, Triolo RJ, Vermehren M, Wenger C, Yavuz US, Fey D, Beckerle P. Adaptation Strategies for Personalized Gait Neuroprosthetics. Front Neurorobot 2021; 15:750519. [PMID: 34975445 PMCID: PMC8716811 DOI: 10.3389/fnbot.2021.750519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/18/2021] [Indexed: 11/13/2022] Open
Abstract
Personalization of gait neuroprosthetics is paramount to ensure their efficacy for users, who experience severe limitations in mobility without an assistive device. Our goal is to develop assistive devices that collaborate with and are tailored to their users, while allowing them to use as much of their existing capabilities as possible. Currently, personalization of devices is challenging, and technological advances are required to achieve this goal. Therefore, this paper presents an overview of challenges and research directions regarding an interface with the peripheral nervous system, an interface with the central nervous system, and the requirements of interface computing architectures. The interface should be modular and adaptable, such that it can provide assistance where it is needed. Novel data processing technology should be developed to allow for real-time processing while accounting for signal variations in the human. Personalized biomechanical models and simulation techniques should be developed to predict assisted walking motions and interactions between the user and the device. Furthermore, the advantages of interfacing with both the brain and the spinal cord or the periphery should be further explored. Technological advances of interface computing architecture should focus on learning on the chip to achieve further personalization. Furthermore, energy consumption should be low to allow for longer use of the neuroprosthesis. In-memory processing combined with resistive random access memory is a promising technology for both. This paper discusses the aforementioned aspects to highlight new directions for future research in gait neuroprosthetics.
Collapse
Affiliation(s)
- Anne D. Koelewijn
- Biomechanical Data Analysis and Creation (BIOMAC) Group, Machine Learning and Data Analytics Lab, Faculty of Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Musa Audu
- Department of Veterans Affairs, Louis Stokes Clevel and Veterans Affairs Medical Center, Advanced Platform Technology Center, Cleveland, OH, United States
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Antonio J. del-Ama
- Applied Mathematics, Materials Science and Technology and Electronic Technology Department, Rey Juan Carlos University, Mostoles, Spain
| | - Annalisa Colucci
- Clinical Neurotechnology Lab, Neuroscience Research Center (NWFZ), Department of Psychiatry and Neurosciences, Charité - Universita¨tsmedizin Berlin, Berlin, Germany
| | - Josep M. Font-Llagunes
- Biomechanical Engineering Lab, Department of Mechanical Engineering and Research Centre for Biomedical Engineering, Universitat Politècnica de Catalunya, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Antonio Gogeascoechea
- Department of Biomechanical Engineering, Faculty of Engineering Technology, University of Twente, Enschede, Netherlands
| | - Sandra K. Hnat
- Department of Veterans Affairs, Louis Stokes Clevel and Veterans Affairs Medical Center, Advanced Platform Technology Center, Cleveland, OH, United States
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Nathan Makowski
- Department of Veterans Affairs, Louis Stokes Clevel and Veterans Affairs Medical Center, Advanced Platform Technology Center, Cleveland, OH, United States
- Department of Physical Medicine and Rehabilitation, MetroHealth Medical Center, Cleveland, OH, United States
| | - Juan C. Moreno
- Neural Rehabilitation Group, Department of Translational Neuroscience, Cajal Institute, CSIC, Madrid, Spain
| | - Mark Nandor
- Department of Veterans Affairs, Louis Stokes Clevel and Veterans Affairs Medical Center, Advanced Platform Technology Center, Cleveland, OH, United States
- Department of Mechanical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Roger Quinn
- Department of Veterans Affairs, Louis Stokes Clevel and Veterans Affairs Medical Center, Advanced Platform Technology Center, Cleveland, OH, United States
- Department of Mechanical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Marc Reichenbach
- Chair of Computer Engineering, Brandenburg University of Technology Cottbus-Senftenberg, Cottbus, Germany
- Chair for Computer Architecture, Department of Computer Science, Faculty of Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ryan-David Reyes
- Department of Veterans Affairs, Louis Stokes Clevel and Veterans Affairs Medical Center, Advanced Platform Technology Center, Cleveland, OH, United States
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Massimo Sartori
- Department of Biomechanical Engineering, Faculty of Engineering Technology, University of Twente, Enschede, Netherlands
| | - Surjo Soekadar
- Clinical Neurotechnology Lab, Neuroscience Research Center (NWFZ), Department of Psychiatry and Neurosciences, Charité - Universita¨tsmedizin Berlin, Berlin, Germany
| | - Ronald J. Triolo
- Department of Veterans Affairs, Louis Stokes Clevel and Veterans Affairs Medical Center, Advanced Platform Technology Center, Cleveland, OH, United States
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Mareike Vermehren
- Clinical Neurotechnology Lab, Neuroscience Research Center (NWFZ), Department of Psychiatry and Neurosciences, Charité - Universita¨tsmedizin Berlin, Berlin, Germany
| | - Christian Wenger
- IHP-Leibniz Institut Fuer Innovative Mikroelektronik, Frankfurt (Oder), Germany
| | - Utku S. Yavuz
- Biomedical Signals and Systems Group, University of Twente, Enschede, Netherlands
| | - Dietmar Fey
- Chair for Computer Architecture, Department of Computer Science, Faculty of Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Philipp Beckerle
- Chair of Autonomous Systems and Mechatronics, Department of Electrical Engineering, Artificial Intelligence in Biomedical Engineering, Faculty of Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
24
|
Garnier-Villarreal M, Pinto D, Mummidisetty CK, Jayaraman A, Tefertiller C, Charlifue S, Taylor HB, Chang SH, McCombs N, Furbish CL, Field-Fote EC, Heinemann AW. Predicting Duration of Outpatient Physical Therapy Episodes for Individuals with Spinal Cord Injury Based on Locomotor Training Strategy. Arch Phys Med Rehabil 2021; 103:665-675. [PMID: 34648804 DOI: 10.1016/j.apmr.2021.07.815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 05/17/2021] [Accepted: 07/02/2021] [Indexed: 01/18/2023]
Abstract
OBJECTIVE To characterize individuals with spinal cord injuries (SCI) who use outpatient physical therapy or community wellness services for locomotor training and predict the duration of services, controlling for demographic, injury, quality of life, and service and financial characteristics. We explore how the duration of services is related to locomotor strategy. DESIGN Observational study of participants at 4 SCI Model Systems centers with survival. Weibull regression model to predict the duration of services. SETTING Rehabilitation and community wellness facilities at 4 SCI Model Systems centers. PARTICIPANTS Eligibility criteria were SCI or dysfunction resulting in motor impairment and the use of physical therapy or community wellness programs for locomotor/gait training. We excluded those who did not complete training or who experienced a disruption in training greater than 45 days. Our sample included 62 participants in conventional therapy and 37 participants in robotic exoskeleton training. INTERVENTIONS Outpatient physical therapy or community wellness services for locomotor/gait training. MAIN OUTCOME MEASURES SCI characteristics (level and completeness of injury) and the duration of services from medical records. Self-reported perceptions of SCI consequences using the SCI-Functional Index for basic mobility and SCI-Quality of Life measurement system for bowel difficulties, bladder difficulties, and pain interference. RESULTS After controlling for predictors, the duration of services for the conventional therapy group was an average of 63% longer than for the robotic exoskeleton group, however each visit was 50% shorter in total time. Men had an 11% longer duration of services than women had. Participants with complete injuries had a duration of services that was approximately 1.72 times longer than participants with incomplete injuries. Perceived improvement was larger in the conventional group. CONCLUSIONS Locomotor/gait training strategies are distinctive for individuals with SCI using a robotic exoskeleton in a community wellness facility as episodes are shorter but individual sessions are longer. Participants' preferences and the ability to pay for ongoing services may be critical factors associated with the duration of outpatient services.
Collapse
Affiliation(s)
| | - Daniel Pinto
- College of Health Sciences, Marquette University, Milwaukee, Wisconsin.
| | - Chaithanya K Mummidisetty
- Max Näder Center for Rehabilitation Technologies and Outcomes Research, Shirley Ryan AbilityLab, Chicago, Illinois
| | - Arun Jayaraman
- Max Näder Center for Rehabilitation Technologies and Outcomes Research, Shirley Ryan AbilityLab, Chicago, Illinois; Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Candy Tefertiller
- Craig Hospital, Englewood, Colorado; University of Colorado, Denver, Colorado
| | - Susan Charlifue
- Craig Hospital, Englewood, Colorado; University of Colorado, Denver, Colorado
| | | | - Shuo-Hsiu Chang
- UT Health Science Center at Houston, Houston, Texas; Neurorecovery Research Center, TIRR Memorial Hermann, Houston, Texas
| | - Nicholas McCombs
- Max Näder Center for Rehabilitation Technologies and Outcomes Research, Shirley Ryan AbilityLab, Chicago, Illinois
| | | | - Edelle C Field-Fote
- Shepherd Center, Atlanta, Georgia; Division of Physical Therapy, Emory University School of Medicine, Atlanta, Georgia
| | - Allen W Heinemann
- Max Näder Center for Rehabilitation Technologies and Outcomes Research, Shirley Ryan AbilityLab, Chicago, Illinois; Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
25
|
Park JH, Kim HS, Jang SH, Hyun DJ, Park SI, Yoon J, Lim H, Kim MJ. Cardiorespiratory Responses to 10 Weeks of Exoskeleton-Assisted Overground Walking Training in Chronic Nonambulatory Patients with Spinal Cord Injury. SENSORS 2021; 21:s21155022. [PMID: 34372258 PMCID: PMC8347087 DOI: 10.3390/s21155022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 12/14/2022]
Abstract
Exercise intensity of exoskeleton-assisted walking in patients with spinal cord injury (SCI) has been reported as moderate. However, the cardiorespiratory responses to long-term exoskeleton-assisted walking have not been sufficiently investigated. We investigated the cardiorespiratory responses to 10 weeks of exoskeleton-assisted walking training in patients with SCI. Chronic nonambulatory patients with SCI were recruited from an outpatient clinic. Walking training with an exoskeleton was conducted three times per week for 10 weeks. Oxygen consumption and heart rate (HR) were measured during a 6-min walking test at pre-, mid-, and post-training. Exercise intensity was determined according to the metabolic equivalent of tasks (METs) for SCI and HR relative to the HR reserve (%HRR). Walking efficiency was calculated as oxygen consumption divided by walking speed. The exercise intensity according to the METs (both peak and average) corresponded to moderate physical activity and did not change after training. The %HRR demonstrated a moderate (peak %HRR) and light (average %HRR) exercise intensity level, and the average %HRR significantly decreased at post-training compared with mid-training (31.6 ± 8.9% to 24.3 ± 7.3%, p = 0.013). Walking efficiency progressively improved after training. Walking with an exoskeleton for 10 weeks may affect the cardiorespiratory system in chronic patients with SCI.
Collapse
Affiliation(s)
- Jae Hyeon Park
- Department of Rehabilitation Medicine, Hanyang University Guri Hospital, 153 Gyeongchun-ro, Guri-si 11923, Korea; (J.H.P.); (S.H.J.)
| | - Hyeon Seong Kim
- Department of Rehabilitation Medicine, Hanyang University College of Medicine, 222-1 Wangsimni-ro, Seoul 04763, Korea;
| | - Seong Ho Jang
- Department of Rehabilitation Medicine, Hanyang University Guri Hospital, 153 Gyeongchun-ro, Guri-si 11923, Korea; (J.H.P.); (S.H.J.)
- Department of Rehabilitation Medicine, Hanyang University College of Medicine, 222-1 Wangsimni-ro, Seoul 04763, Korea;
| | - Dong Jin Hyun
- Robotics Lab, R&D Division of Hyundai Motor Company, 37 Cheoldobangmulgwan-ro, Uiwang-si 16082, Korea; (D.J.H.); (S.I.P.); (J.Y.); (H.L.)
| | - Sang In Park
- Robotics Lab, R&D Division of Hyundai Motor Company, 37 Cheoldobangmulgwan-ro, Uiwang-si 16082, Korea; (D.J.H.); (S.I.P.); (J.Y.); (H.L.)
| | - JuYoung Yoon
- Robotics Lab, R&D Division of Hyundai Motor Company, 37 Cheoldobangmulgwan-ro, Uiwang-si 16082, Korea; (D.J.H.); (S.I.P.); (J.Y.); (H.L.)
| | - Hyunseop Lim
- Robotics Lab, R&D Division of Hyundai Motor Company, 37 Cheoldobangmulgwan-ro, Uiwang-si 16082, Korea; (D.J.H.); (S.I.P.); (J.Y.); (H.L.)
| | - Mi Jung Kim
- Department of Rehabilitation Medicine, Hanyang University College of Medicine, 222-1 Wangsimni-ro, Seoul 04763, Korea;
- Correspondence: ; Tel.: +82-2-2290-9353
| |
Collapse
|
26
|
Xiang XN, Zong HY, Ou Y, Yu X, Cheng H, Du CP, He HC. Exoskeleton-assisted walking improves pulmonary function and walking parameters among individuals with spinal cord injury: a randomized controlled pilot study. J Neuroeng Rehabil 2021; 18:86. [PMID: 34030720 PMCID: PMC8146689 DOI: 10.1186/s12984-021-00880-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/19/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Exoskeleton-assisted walking (EAW) is expected to improve the gait of spinal cord injury (SCI) individuals. However, few studies reported the changes of pulmonary function (PF) parameters after EAW trainings. Hence, we aimed to explore the effect of EAW on PF parameters, 6-min walk test (6MWT) and lower extremity motor score (LEMS) in individuals with SCI and to compare those with conventional trainings. METHODS In this prospective, single-center, single-blinded randomized controlled pilot study, 18 SCI participants were randomized into the EAW group (n = 9) and conventional group (n = 9) and received 16 sessions of 50-60 min training (4 days/week, 4 weeks). Pulmonary function parameters consisting of the forced vital capacity (FVC), forced expiratory volume in 1 s (FEV1), forced expiratory flow (FEF), peak expiratory flow, and maximal voluntary ventilation, 6MWT with assisted devices and LEMS were reported pre- and post-training. RESULTS Values of FVC (p = 0.041), predicted FVC% (p = 0.012) and FEV1 (p = 0.013) were significantly greater in EAW group (FVC: 3.8 ± 1.1 L; FVC% pred = 94.1 ± 24.5%; FEV1: 3.5 ± 1.0 L) compared with conventional group (FVC: 2.8 ± 0.8 L; FVC% pred = 65.4 ± 17.6%; FEV1: 2.4 ± 0.6 L) after training. Participants in EAW group completed 6MWT with median 17.3 m while wearing the exoskeleton. There was no difference in LEMS and no adverse event. CONCLUSIONS The current results suggest that EAW has potential benefits to facilitate PF parameters among individuals with lower thoracic neurological level of SCI compared with conventional trainings. Additionally, robotic exoskeleton helped walking. TRIAL REGISTRATION Registered on 22 May 2020 at Chinese Clinical Trial Registry (ChiCTR2000033166). http://www.chictr.org.cn/edit.aspx?pid=53920&htm=4 .
Collapse
Affiliation(s)
- Xiao-Na Xiang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Hui-Yan Zong
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yi Ou
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xi Yu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Hong Cheng
- University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, People's Republic of China
| | - Chun-Ping Du
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Hong-Chen He
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China. .,School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China. .,Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
27
|
Duddy D, Doherty R, Connolly J, McNally S, Loughrey J, Faulkner M. The Effects of Powered Exoskeleton Gait Training on Cardiovascular Function and Gait Performance: A Systematic Review. SENSORS (BASEL, SWITZERLAND) 2021; 21:3207. [PMID: 34063123 PMCID: PMC8124924 DOI: 10.3390/s21093207] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/23/2021] [Accepted: 04/29/2021] [Indexed: 12/26/2022]
Abstract
Patients with neurological impairments often experience physical deconditioning, resulting in reduced fitness and health. Powered exoskeleton training may be a successful method to combat physical deconditioning and its comorbidities, providing patients with a valuable and novel experience. This systematic review aimed to conduct a search of relevant literature, to examine the effects of powered exoskeleton training on cardiovascular function and gait performance. Two electronic database searches were performed (2 April 2020 to 12 February 2021) and manual reference list searches of relevant manuscripts were completed. Studies meeting the inclusion criteria were systematically reviewed in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. n = 63 relevant titles were highlighed; two further titles were identified through manual reference list searches. Following analysis n = 23 studies were included. Data extraction details included; sample size, age, gender, injury, the exoskeleton used, intervention duration, weekly sessions, total sessions, session duration and outcome measures. Results indicated that exoskeleton gait training elevated energy expenditure greater than wheelchair propulsion and improved gait function. Patients exercised at a moderate-intensity. Powered exoskeletons may increase energy expenditure to a similar level as non-exoskeleton walking, which may improve cardiovascular function more effectively than wheelchair propulsion alone.
Collapse
Affiliation(s)
- Damien Duddy
- Sports Lab North West, Letterkenny Institute of Technology, Port Road, Letterkenny, F92 FC93 Donegal, Ireland; (R.D.); (M.F.)
| | - Rónán Doherty
- Sports Lab North West, Letterkenny Institute of Technology, Port Road, Letterkenny, F92 FC93 Donegal, Ireland; (R.D.); (M.F.)
| | - James Connolly
- Department of Computing, Letterkenny Institute of Technology, Port Road, Letterkenny, F92 FC93 Donegal, Ireland;
| | - Stephen McNally
- No Barriers Foundation, Letterkenny, F92 TW27 Donegal, Ireland; (S.M.); (J.L.)
| | - Johnny Loughrey
- No Barriers Foundation, Letterkenny, F92 TW27 Donegal, Ireland; (S.M.); (J.L.)
| | - Maria Faulkner
- Sports Lab North West, Letterkenny Institute of Technology, Port Road, Letterkenny, F92 FC93 Donegal, Ireland; (R.D.); (M.F.)
| |
Collapse
|
28
|
Morse LR, Field-Fote EC, Contreras-Vidal J, Noble-Haeusslein LJ, Rodreick M, Shields RK, Sofroniew M, Wudlick R, Zanca JM. Meeting Proceedings for SCI 2020: Launching a Decade of Disruption in Spinal Cord Injury Research. J Neurotrauma 2021; 38:1251-1266. [PMID: 33353467 DOI: 10.1089/neu.2020.7174] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The spinal cord injury (SCI) research community has experienced great advances in discovery research, technology development, and promising clinical interventions in the past decade. To build upon these advances and maximize the benefit to persons with SCI, the National Institutes of Health (NIH) hosted a conference February 12-13, 2019 titled "SCI 2020: Launching a Decade of Disruption in Spinal Cord Injury Research." The purpose of the conference was to bring together a broad range of stakeholders, including researchers, clinicians and healthcare professionals, persons with SCI, industry partners, regulators, and funding agency representatives to break down existing communication silos. Invited speakers were asked to summarize the state of the science, assess areas of technological and community readiness, and build collaborations that could change the trajectory of research and clinical options for people with SCI. In this report, we summarize the state of the science in each of five key domains and identify the gaps in the scientific literature that need to be addressed to move the field forward.
Collapse
Affiliation(s)
- Leslie R Morse
- Department of Rehabilitation Medicine, University of Minnesota School of Medicine, Minneapolis, Minnesota, USA
| | - Edelle C Field-Fote
- Shepherd Center, Atlanta, Georgia, USA.,Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jose Contreras-Vidal
- Laboratory for Non-Invasive Brain Machine Interfaces, NSF IUCRC BRAIN, Cullen College of Engineering, University of Houston, Houston, Texas, USA
| | - Linda J Noble-Haeusslein
- Departments of Neurology and Psychology and the Institute of Neuroscience, University of Texas at Austin, Austin, Texas, USA
| | | | - Richard K Shields
- Department of Physical Therapy and Rehabilitation Science, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Michael Sofroniew
- Department of Neurobiology, University of California, Los Angeles, California, USA
| | - Robert Wudlick
- Department of Rehabilitation Medicine, University of Minnesota School of Medicine, Minneapolis, Minnesota, USA
| | - Jeanne M Zanca
- Spinal Cord Injury Research, Kessler Foundation, West Orange, New Jersey, USA.,Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | | |
Collapse
|
29
|
Androwis GJ, Sandroff BM, Niewrzol P, Fakhoury F, Wylie GR, Yue G, DeLuca J. A pilot randomized controlled trial of robotic exoskeleton-assisted exercise rehabilitation in multiple sclerosis. Mult Scler Relat Disord 2021; 51:102936. [PMID: 33878619 DOI: 10.1016/j.msard.2021.102936] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 02/21/2021] [Accepted: 03/29/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Co-occurring mobility and cognitive impairments are common, debilitating, and poorly-managed with pharmacological therapies in persons with multiple sclerosis (MS). Exercise rehabilitation (ER), particularly walking ER, has been suggested as one of the best approaches for managing these manifestations of MS. However, there is a focal lack of efficacy of ER on mobility and cognitive outcomes in persons with MS who present with substantial neurological disability. Such severe neurological disability oftentimes precludes the ability for participation in highly-intensive and repetitive ER that is necessary for eliciting adaptations in mobility and cognition. To address such a concern, robotic exoskeleton-assisted ER (REAER) might represent a promising intervention approach for managing co-occurring mobility and cognitive impairments in those with substantial MS disability who might not benefit from traditional ER. METHODS The current pilot single-blind, randomized controlled trial (RCT) compared the effects of 4-weeks of REAER with 4-weeks of conventional gait training (CGT) as a standard-of-care control condition on functional mobility (timed up-and-go; TUG), walking endurance (six-minute walk test; 6MWT), cognitive processing speed (CPS; Symbol Digit Modalities Test; SDMT), and brain connectivity (thalamocortical resting-state functional connectivity (RSFC) based on fMRI) outcomes in 10 persons with substantial MS-related neurological disability. RESULTS Overall, compared with CGT, 4-weeks of REAER was associated with large improvements in functional mobility (ηp2=.38), CPS (ηp2=.53), and RSFC between the thalamus and ventromedial prefrontal cortex (ηp2=.72), but not walking endurance (ηp2=.01). Further, changes in RSFC were moderately associated with changes in TUG, 6MWT, and SDMT performance, respectively, whereby increased thalamocortical RSFC was associated with improved functional mobility, walking endurance, and CPS (|ρ|>.36). CONCLUSION The current pilot RCT provides initial support for REAER as an approach for improving functional mobility and CPS, perhaps based on adaptive and integrative central nervous system plasticity, namely increases in RSFC between the thalamus and ventromedial prefrontal cortex, in a small sample of persons with substantial MS disability. Such a pilot trial provides proof-of-concept data for the design and implementation of an appropriately-powered RCT of REAER in a larger sample of persons with MS who present with co-occurring impairments in both mobility and cognitive functioning.
Collapse
Affiliation(s)
- Ghaith J Androwis
- Kessler Foundation, West Orange, New Jersey, USA; Department of Physical Medicine and Rehabilitation, Rutgers, New Jersey Medical School, Newark, New Jersey, USA.
| | - Brian M Sandroff
- Kessler Foundation, West Orange, New Jersey, USA; Department of Physical Medicine and Rehabilitation, Rutgers, New Jersey Medical School, Newark, New Jersey, USA
| | | | | | - Glenn R Wylie
- Kessler Foundation, West Orange, New Jersey, USA; Department of Physical Medicine and Rehabilitation, Rutgers, New Jersey Medical School, Newark, New Jersey, USA
| | - Guang Yue
- Kessler Foundation, West Orange, New Jersey, USA; Department of Physical Medicine and Rehabilitation, Rutgers, New Jersey Medical School, Newark, New Jersey, USA
| | - John DeLuca
- Kessler Foundation, West Orange, New Jersey, USA; Department of Physical Medicine and Rehabilitation, Rutgers, New Jersey Medical School, Newark, New Jersey, USA
| |
Collapse
|
30
|
Evans RW, Shackleton CL, West S, Derman W, Laurie Rauch HG, Baalbergen E, Albertus Y. Robotic Locomotor Training Leads to Cardiovascular Changes in Individuals With Incomplete Spinal Cord Injury Over a 24-Week Rehabilitation Period: A Randomized Controlled Pilot Study. Arch Phys Med Rehabil 2021; 102:1447-1456. [PMID: 33839105 DOI: 10.1016/j.apmr.2021.03.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 02/09/2021] [Accepted: 03/02/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To describe the effect of robotic locomotor training (RLT) and activity-based training (ABT) on cardiovascular indices during various physiological positions in individuals with spinal cord injury. DESIGN Randomized controlled pilot study. SETTING Private practice: Therapy & Beyond Centre - Walking with Brandon Foundation, Sports Science Institute of South Africa, Cape Town, South Africa. PARTICIPANTS Participants with chronic traumatic motor incomplete tetraplegia (N=16) who resided in the Western Cape, South Africa. INTERVENTION Robotic locomotor training (Ekso GT) and activity-based training over a 24-week intervention. MAIN OUTCOME MEASURES Brachial and ankle blood pressure, heart rate, heart rate variability, and cardiovascular efficiency during 4 physiological positions. RESULTS No differences between groups or over time were evident in resting systolic and diastolic blood pressure, ankle systolic pressure, ankle brachial pressure index, and heart rate variability. Standing heart rate at 24 weeks was significantly higher in the ABT group (95.58±12.61 beats/min) compared with the RLT group (75.14±14.96 beats/min) (P=.05). In the RLT group, no significant changes in heart rate variability (standard deviation R-R interval and root mean square of successive differences) was found between the standing and 6-minute walk test physiological positions throughout the intervention. Cardiovascular efficiency in the RLT group during the 6-minute walk test improved from 11.1±2.6 at baseline to 7.5±2.8 beats per meter walked at 6 weeks and was maintained from 6 to 24 weeks. CONCLUSIONS Large effect sizes and significant differences between groups found in this pilot study support the clinical effectiveness of RLT and ABT for changing cardiovascular indices as early as 6 weeks and up to 24 weeks of rehabilitation. RLT may be more effective than ABT in improving cardiac responses to orthostatic stress. Based on heart rate variability metrics, the stimulus of standing has comparable effects to RLT on the parasympathetic nervous system. Cardiovascular efficiency of exoskeleton walking improved, particularly over the first 6 weeks. Both the RLT and ABT interventions were limited in their effect on brachial and ankle blood pressure. A randomized controlled trial with a larger sample size is warranted to further examine these findings.
Collapse
Affiliation(s)
- Robert W Evans
- Division of Exercise Science and Sports Medicine, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town
| | - Claire L Shackleton
- Division of Exercise Science and Sports Medicine, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town
| | - Sacha West
- Department of Sport Management, Cape Peninsula University of Technology, Cape Town
| | - Wayne Derman
- Institute of Sport and Exercise Medicine, Division of Orthopaedic Surgery, Faculty of Medicine and Health Sciences, University of Stellenbosch, Cape Town; IOC Research Centre, South Africa
| | - H G Laurie Rauch
- Division of Exercise Science and Sports Medicine, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town
| | - Ed Baalbergen
- Rehabilitation Unit, Life Vincent Pallotti Hospital, Cape Town, South Africa
| | - Yumna Albertus
- Division of Exercise Science and Sports Medicine, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town.
| |
Collapse
|
31
|
Tan K, Koyama S, Sakurai H, Teranishi T, Kanada Y, Tanabe S. Wearable robotic exoskeleton for gait reconstruction in patients with spinal cord injury: A literature review. J Orthop Translat 2021; 28:55-64. [PMID: 33717982 PMCID: PMC7930505 DOI: 10.1016/j.jot.2021.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/25/2020] [Accepted: 01/07/2021] [Indexed: 12/13/2022] Open
Abstract
Objectives Wearable robotic exoskeletons (WREs) have been globally developed to achieve gait reconstruction in patients with spinal cord injury (SCI). The present study aimed to enable evidence-based decision-making in selecting the optimal WRE according to residual motor function and to provide a new perspective on further development of appropriate WREs. Methods The current review was conducted by searching PubMed, Web of Science, and Google Scholar for relevant studies published from April 2015 to February 2020. Selected studies were analysed with a focus on the participants’ neurological level of SCI, amount of training (number of training sessions and duration of the total training period), gait speed and endurance achieved, and subgroup exploration of the number of persons for assistance and the walking aid used among patients with cervical level injury. Results A total of 28 articles (nine using Ekso, three using Indego, ten using ReWalk, one using REX, five using Wearable Power-Assist Locomotor) involving 228 patients were included in the analysis. Across all WREs, T6 was the most frequently reported level of SCI. The amount of training showed a wide distribution (number of training sessions: 2–230 sessions [30–120 min per session]; duration of the total training period: 1–24 weeks [1–5 times per week]). The mean gait speed was 0.31 m/s (standard deviation [SD] 0.14), and the mean distance on the 6-min walking test as a measure of endurance was 108.9 m (SD 46.7). The subgroup exploration aimed at patients with cervical level injury indicated that 59.2% of patients were able to ambulate with no physical assistance and several patients used a walker as a walking aid. Conclusion The number of cervical level injury increased, as compared to the number previously indicated by a prior similar review. Training procedure was largely different among studies. Further improvement based on gait performance is required for use and dissemination in daily life. The translational potential of this article The present review reveals the current state of the clinical effectiveness of WREs for gait reconstruction in patients with SCI, contributing to evidence-based device application and further development.
Collapse
Affiliation(s)
- Koki Tan
- Graduate School of Health Sciences, Fujita Health University, Toyoake, Aichi, Japan
| | - Soichiro Koyama
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, Toyoake, Aichi, Japan
| | - Hiroaki Sakurai
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, Toyoake, Aichi, Japan
| | - Toshio Teranishi
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, Toyoake, Aichi, Japan
| | - Yoshikiyo Kanada
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, Toyoake, Aichi, Japan
| | - Shigeo Tanabe
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, Toyoake, Aichi, Japan
- Corresponding author.
| |
Collapse
|
32
|
DiPasquale J, Trammell M, Clark K, Fowler H, Callender L, Bennett M, Swank C. Intensity of usual care physical therapy during inpatient rehabilitation for people with neurologic diagnoses. PM R 2021; 14:46-57. [PMID: 33599119 DOI: 10.1002/pmrj.12577] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/02/2021] [Accepted: 02/09/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND Early, intense rehabilitation is essential to promote recovery after stroke, spinal cord injury (SCI), and traumatic brain injury (TBI). However, intensity of usual care rehabilitation interventions during inpatient rehabilitation are poorly characterized. OBJECTIVE To describe the intensity of usual care rehabilitation interventions completed during the subacute phase of recovery from neurologic injury. DESIGN Observational. SETTING Inpatient rehabilitation facility. INTERVENTIONS Twenty-two usual care physical therapy interventions were grouped into six categories: gait (four activities), functional (two), strengthening (four), aerobic (six), balance (four), and wheelchair (two). PATIENTS Patients admitted to inpatient rehabilitation with a primary diagnosis of stroke, SCI or TBI within 6 months of injury. MAIN OUTCOME MEASURE(S) Cardiovascular intensity (physiological and perceived) was recorded during rehabilitation activity sessions. Physiological intensity was assessed by heart rate reserve (HRR) via a Polar A370 Fitness Watch and characterized as very light (<30%), light (30-39%), moderate (40-59%), vigorous (60-89%), and near maximal (≥90%). Perceived intensity was assessed using the Rating of Perceived Exertion scale. RESULTS Patients (stroke n = 16 [number of activity sessions = 388/average session duration = 15.1 min]; SCI n = 15 [299/27.3 min]; TBI n = 15 [340/13.4 min]) participated. For patients with stroke, moderate-to-vigorous HRR was attained between 42% (aerobic exercise) to 55% (wheelchair propulsion) of activity sessions. For patients with SCI, moderate-to-vigorous HRR was attained between 29% (strength training) to 46% (gait training) of activity sessions. For patients with TBI, moderate-to-vigorous HRR was attained between 29% (balance activities) to 47% (gait training) of activity sessions. Associations between HRR and rate of perceived exertion were very weak across stroke (r = 0.12), SCI (r = 0.18), and TBI (r = 0.27). CONCLUSIONS Patients with stroke, SCI, and TBI undergoing inpatient rehabilitation achieve moderate-to-vigorous intensity during some usual care activities such as gait training. Patient perception of intensity was dissimilar to physiological response.
Collapse
Affiliation(s)
- Jake DiPasquale
- Baylor Scott and White Institute for Rehabilitation, Dallas, Texas, USA
| | - Molly Trammell
- Baylor Scott and White Institute for Rehabilitation, Dallas, Texas, USA
| | - Kelly Clark
- Baylor Scott and White Institute for Rehabilitation, Dallas, Texas, USA
| | - Hayden Fowler
- Baylor Scott and White Institute for Rehabilitation, Dallas, Texas, USA
| | - Librada Callender
- Baylor Scott and White Institute for Rehabilitation, Dallas, Texas, USA
| | - Monica Bennett
- Baylor Scott & White Research Institute, Dallas, Texas, USA
| | - Chad Swank
- Baylor Scott and White Institute for Rehabilitation, Dallas, Texas, USA
| |
Collapse
|
33
|
Postol N, Lamond S, Galloway M, Palazzi K, Bivard A, Spratt NJ, Marquez J. The Metabolic Cost of Exercising With a Robotic Exoskeleton: A Comparison of Healthy and Neurologically Impaired People. IEEE Trans Neural Syst Rehabil Eng 2021; 28:3031-3039. [PMID: 33211660 DOI: 10.1109/tnsre.2020.3039202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
While neuro-recovery is maximized through active engagement, it has been suggested that the use of robotic exoskeletons in neuro-rehabilitation provides passive therapy. Using oxygen consumption (VO2) as an indicator of energy expenditure, we investigated the metabolic requirements of completing exercises in a free-standing robotic exoskeleton, with 20 healthy and 12 neurologically impaired participants (six with stroke, and six with multiple sclerosis (MS)). Neurological participants were evaluated pre- and post- 12 weeks of twice weekly robotic therapy. Healthy participants were evaluated in, and out of, the exoskeleton. Both groups increased their VO2 level from baseline during exoskeleton-assisted exercise (Healthy: mean change in VO2 = 2.10 ± 1.61 ml/kg/min, p =< 0.001; Neurological: 1.38 ± 1.22, p = 0.002), with a lower predicted mean in the neurological sample (-1.08, 95%CI -2.02, -0.14, p = 0.02). Healthy participants exercised harder out of the exoskeleton than in it (difference in VO2 = 3.50, 95%CI 2.62, 4.38, p =< 0.001). There was no difference in neurological participants' predicted mean VO2 pre- and post- 12 weeks of robotic therapy 0.45, 95%CI -0.20, 1.11, p = 0.15), although subgroup analysis revealed a greater change after 12 weeks of robotic therapy in those with stroke (MS: -0.06, 95%CI -0.78, 0.66, p = 0.85; stroke: 1.00, 95%CI 0.3, 1.69, p = 0.01; difference = 1.06, p = 0.04). Exercise in a free-standing robotic exoskeleton is not passive in healthy or neurologically impaired people, and those with stroke may derive more benefit than those with MS.
Collapse
|
34
|
Energy cost and psychological impact of robotic-assisted gait training in people with spinal cord injury: effect of two different types of devices. Neurol Sci 2021; 42:3357-3366. [PMID: 33411195 DOI: 10.1007/s10072-020-04954-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/30/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND In the last years, there has been an intense technological development of robotic devices for gait rehabilitation in spinal cord injury (SCI) patients. The aim of the present study was to evaluate energy cost and psychological impact during a rehabilitation program with two different types of robotic rehabilitation systems (stationary system on a treadmill, Lokomat, and overground walking system, Ekso GT). METHODS Fifteen SCI patients with different injury levels underwent robot-assisted gait training sessions, divided into 2 phases: in the first phase, all subjects completed 3 sessions both Lokomat and Ekso GT. Afterwards, participants were randomly assigned to Lokomat or the Ekso for 17 sessions. A questionnaire, investigating the subjective psychological impact (SPI) during gait training, was administered. The functional outcome measures were oxygen consumption (VO2), carbon dioxide production (VCO2), metabolic equivalent of task (MET), walking economy, and heart rate (HR). RESULTS The metabolic responses (7.73 ± 1.02 mL/kg/min) and MET values (3.20 ± 1.01) during robotic overground walking resulted to be higher than those during robotic treadmill walking (3.91 ± 0.93 mL/kg/min and 1.58 ± 0.44; p < 0.01). Both devices showed high scores in emotion and satisfaction. Overground walking resulted in higher scores of fatigue, mental effort, and discomfort while walking with Lokomat showed a higher score in muscle relaxation. All patients showed improvements in walking economy due to a decrease in energy cost with increased speed and workload. CONCLUSIONS Overground robotic-assisted gait training in rehabilitation program needs higher cognitive and cardiovascular efforts than robot-assisted gait training on a treadmill.
Collapse
|
35
|
Reyes RD, Kobetic R, Nandor M, Makowski N, Audu M, Quinn R, Triolo R. Effect of Joint Friction Compensation on a "Muscle-First" Motor-Assisted Hybrid Neuroprosthesis. Front Neurorobot 2020; 14:588950. [PMID: 33362502 PMCID: PMC7759638 DOI: 10.3389/fnbot.2020.588950] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/12/2020] [Indexed: 11/21/2022] Open
Abstract
This study assessed the metabolic energy consumption of walking with the external components of a “Muscle-First” Motor Assisted Hybrid Neuroprosthesis (MAHNP), which combines implanted neuromuscular stimulation with a motorized exoskeleton. The “Muscle-First” approach prioritizes generating motion with the wearer's own muscles via electrical stimulation with the actuators assisting on an as-needed basis. The motorized exoskeleton contributes passive resistance torques at both the hip and knee joints of 6Nm and constrains motions to the sagittal plane. For the muscle contractions elicited by neural stimulation to be most effective, the motorized joints need to move freely when not actively assisting the desired motion. This study isolated the effect of the passive resistance or “friction” added at the joints by the assistive motors and transmissions on the metabolic energy consumption of walking in the device. Oxygen consumption was measured on six able-bodied subjects performing 6 min walk tests at three different speeds (0.4, 0.8, and 1.2 m/s) under two different conditions: one with the motors producing no torque to compensate for friction, and the other having the motors injecting power to overcome passive friction based on a feedforward friction model. Average oxygen consumption in the uncompensated condition across all speeds, measured in Metabolic Equivalent of Task (METs), was statistically different than the friction compensated condition. There was an average decrease of 8.8% for METs and 1.9% for heart rate across all speeds. While oxygen consumption was reduced when the brace performed friction compensation, other factors may have a greater contribution to the metabolic energy consumption when using the device. Future studies will assess the effects of gravity compensation on the muscular effort required to lift the weight of the distal segments of the exoskeleton as well as the sagittal plane constraint on walking motions in individuals with spinal cord injuries (SCI).
Collapse
Affiliation(s)
- Ryan-David Reyes
- Advanced Platform Technology Center, Department of Veterans Affairs, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, United States.,Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Rudolf Kobetic
- Advanced Platform Technology Center, Department of Veterans Affairs, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, United States
| | - Mark Nandor
- Advanced Platform Technology Center, Department of Veterans Affairs, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, United States.,Department of Mechanical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Nathaniel Makowski
- Advanced Platform Technology Center, Department of Veterans Affairs, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, United States.,Department of Physical Medicine & Rehabilitation, MetroHealth Medical Center, Cleveland, OH, United States
| | - Musa Audu
- Advanced Platform Technology Center, Department of Veterans Affairs, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, United States.,Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Roger Quinn
- Department of Mechanical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Ronald Triolo
- Advanced Platform Technology Center, Department of Veterans Affairs, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, United States.,Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
36
|
Choi HJ, Kim GS, Chai JH, Ko CY. Effect of Gait Training Program with Mechanical Exoskeleton on Body Composition of Paraplegics. J Multidiscip Healthc 2020; 13:1879-1886. [PMID: 33299324 PMCID: PMC7721297 DOI: 10.2147/jmdh.s285682] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
Purpose To identify the effect of a 52-weeks gait training program with an exoskeletal body-powered gait orthosis on the body composition of paraplegics. Patients and Methods Ten subjects with spinal cord injury at the thoracolumbar spine level for more than 2 years participated and were divided into exercise (n=5) and nonexercise (n=5) groups. A gait training program comprising stages 1–6 with customized exoskeletal body-powered gait orthosis was conducted for 52-weeks. A six-stage gait training program was conducted to manage the body composition and prevent obesity, and the changes in the body composition before and after the program were determined through bioelectrical impedance analysis. Results No significant changes in weight, fat-free mass (kg), lean body mass (kg), and percent fat mass (%) are seen in the exercise group before and after the 52-weeks program. However, fat-free mass (pre = 47.3± 6.5, post = 44.3 ± 5.4, kg), lean body mass (pre = 45.2 ± 6.3, post = 42.3±5.2, kg), and percent fat mass (pre = 30.1 ± 12.1, post = 40.9 ± 9.1, kg) show significant changes (p < 0.05) in the nonexercise group. In the nonexercise group, among lean body mass changes over 52-weeks in the upper limbs (−31%), trunks (−9.7%), and lower limbs (−8.6%), upper limbs exhibit the most significant decrease (p < 0.05). Conclusion The gait training program with exoskeletal body-powered gait orthosis has a positive effect on fat management in the whole body and lean body mass loss in paraplegics. Furthermore, it is effective in preventing continuous muscle loss and in maintaining health by reducing body fat. Body composition measurements with bioelectrical impedance analysis for paraplegics can be applied in various clinical areas and can be combined with various arbitration methods such as rehabilitation program.
Collapse
Affiliation(s)
- Hyuk-Jae Choi
- Department of Rehabilitation Therapy Training Research, Rehabilitation Engineering Research Institute, Incheon, Republic of Korea
| | - Gyoo-Suk Kim
- Department of Rehabilitation Therapy Training Research, Rehabilitation Engineering Research Institute, Incheon, Republic of Korea
| | - Jung Hoon Chai
- Department of Sports Medicine, Soonchunhyang University, Asan, Chungcheongnam-do, Republic of Korea
| | - Chang-Yong Ko
- Department of Research & Development, Refind Inc., Wonju, Gangwon-do, Republic of Korea
| |
Collapse
|
37
|
Knezevic S, Asselin PK, Cirnigliaro CM, Kornfeld S, Emmons RR, Spungen AM. Oxygen Uptake During Exoskeletal-Assisted Walking in Persons With Paraplegia. Arch Phys Med Rehabil 2020; 102:185-195. [PMID: 33181116 DOI: 10.1016/j.apmr.2020.08.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 08/06/2020] [Accepted: 08/11/2020] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To determine the cardiometabolic demands associated with exoskeletal-assisted walking (EAW) in persons with paraplegia. This study will further examine if training in the device for 60 sessions modifies cost of transport (CT). DESIGN Prospective cohort study. Measurements over the course of a 60-session training program, approximately 20 sessions apart. SETTING James J. Peters Bronx Veterans Affairs Medical Center, Center for the Medical Consequences of Spinal Cord Injury Research Center. PARTICIPANTS The participants' demographics (N=5) were 37-61 years old, body mass index (calculated as weight in kilograms divided by height in meters squared) of 22.7-28.6, level of injury from T1-T11, and 2-14 years since injury. INTERVENTIONS Powered EAW. MAIN OUTCOME MEASURES Oxygen consumption per unit time (V˙O2, mL/min/kg), velocity (m/min), cost of transport (V˙O2/velocity), and rating of perceived exertion (RPE). RESULTS With training: EAW velocity significantly improved (Pre: 51±51m; 0.14±0.14m/s vs Post: 99±42m; 0.28±0.12m/s, P=.023), RPE significantly decreased (Pre: 13±6 vs Post: 7±4, P=.001), V˙O2 significantly improved (Pre: 9.76±1.23 mL/kg/m vs Post: 12.73±2.30 mL/kg/m, P=.04), and CT was reduced from the early to the later stages of training (3.66±5.2 vs 0.87±0.85 mL/kg/m). CONCLUSIONS The current study suggests that EAW training improves oxygen uptake efficiency and walking velocities, with a lower perception of exertion.
Collapse
Affiliation(s)
- Steven Knezevic
- VA RR&D National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, New York; Department of Kinesiology, William Paterson University, Wayne, New Jersey.
| | - Pierre K Asselin
- VA RR&D National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, New York; Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Christopher M Cirnigliaro
- VA RR&D National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, New York
| | - Stephen Kornfeld
- VA RR&D National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, New York; Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; Spinal Cord Injury Service, James J. Peters VA Medical Center, Bronx, New York
| | - Racine R Emmons
- Department of Kinesiology, William Paterson University, Wayne, New Jersey
| | - Ann M Spungen
- VA RR&D National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, New York; Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
38
|
Asselin P, Cirnigliaro CM, Kornfeld S, Knezevic S, Lackow R, Elliott M, Bauman WA, Spungen AM. Effect of Exoskeletal-Assisted Walking on Soft Tissue Body Composition in Persons With Spinal Cord Injury. Arch Phys Med Rehabil 2020; 102:196-202. [PMID: 33171129 DOI: 10.1016/j.apmr.2020.07.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 07/23/2020] [Accepted: 07/25/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To determine the effect of overground walking using a powered exoskeleton on soft tissue body composition in persons with spinal cord injury (SCI). DESIGN A prospective, single group observational pilot study. SETTING Medical center. PARTICIPANTS Persons (N=8) with chronic (>6mo) SCI between 18 and 65 years old who weighed less than 100 kg. INTERVENTIONS Overground ambulation training using a powered exoskeleton (ReWalk) for 40 sessions, with each session lasting up to 2 hours, with participants training 3 times per week. MAIN OUTCOME MEASURE(S) Dual-energy x-ray absorptiometry (DXA) was used to measure lean mass (LM) and fat mass (FM) from the whole body, arms, legs and trunk. DXA was also used to assess visceral adipose tissue (VAT). Walking performance was measured by 6-minute walk test. RESULTS Participants significantly lost total body FM (-1.8±1.2kg, P=.004) with the loss of adiposity distributed over several regional sites. Six of the 8 participants lost VAT, with the average loss in VAT trending toward significance (-0.141kg, P=.06). LM for the group was not significantly changed. CONCLUSIONS Sustained and weekly use of powered exoskeletons in persons with SCI has the potential to reduce FM with inferred improvements in health.
Collapse
Affiliation(s)
- Pierre Asselin
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY; Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY.
| | - Christopher M Cirnigliaro
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY
| | - Stephen Kornfeld
- Spinal Cord Injury Service, James J. Peters VA Medical Center, Bronx, NY
| | - Steven Knezevic
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY
| | - Rachel Lackow
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY
| | - Michael Elliott
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY
| | - William A Bauman
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY; Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Ann M Spungen
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY; Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
39
|
Ehrlich-Jones L, Crown DS, Kinnett-Hopkins D, Field-Fote E, Furbish C, Mummidisetty CK, Bond RA, Forrest G, Jayaraman A, Heinemann AW. Clinician Perceptions of Robotic Exoskeletons for Locomotor Training After Spinal Cord Injury: A Qualitative Approach. Arch Phys Med Rehabil 2020; 102:203-215. [PMID: 33171130 DOI: 10.1016/j.apmr.2020.08.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 08/04/2020] [Accepted: 08/10/2020] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To describe the experiences of clinicians who have used robotic exoskeletons in their practice and acquire information that can guide clinical decisions and training strategies related to robotic exoskeletons. DESIGN Qualitative, online survey study, and 4 single-session focus groups followed by thematic analysis to define themes. SETTING Focus groups were conducted at 3 regional rehabilitation hospitals and 1 Veteran's Administration (VA) Medical Center. PARTICIPANTS Clinicians (N=40) reported their demographic characteristics and clinical experience using robotic exoskeletons. Twenty-nine clinicians participated in focus groups at regional hospitals that use robotic exoskeletons, as well as 1 VA Medical Center. INTERVENTIONS Not applicable. MAIN OUTCOME MEASURE Clinicians' preferences, experiences, training strategies, and clinical decisions on how robotic exoskeleton devices are used with Veterans and civilians with spinal cord injury. RESULTS Clinicians had an average of 3 years of experience using exoskeletons in clinical and research settings. Major themes emerging from focus group discussions included appropriateness of patient goals, patient selection criteria, realistic patient expectations, patient and caregiver training for use of exoskeletons, perceived benefits, preferences regarding specific exoskeletons, and device limitations and therapy recommendations. CONCLUSIONS Clinicians identified benefits of exoskeleton use including decreased physical burden and fatigue while maximizing patient mobility, increased safety of clinicians and patients, and expanded device awareness and preferences. Suitability of exoskeletons for patients with various characteristics and managing expectations were concerns. Clinicians identified research opportunities as technology continues to advance toward safer, lighter, and hands-free devices.
Collapse
Affiliation(s)
- Linda Ehrlich-Jones
- Shirley Ryan AbilityLab, Center for Rehabilitation Outcomes Research, Chicago, IL; Northwestern University Feinberg School of Medicine, Department of Physical Medicine & Rehabilitation, Chicago, IL.
| | - Deborah S Crown
- Shirley Ryan AbilityLab, Center for Rehabilitation Outcomes Research, Chicago, IL
| | - Dominique Kinnett-Hopkins
- Northwestern University Feinberg School of Medicine, Department of Physical Medicine & Rehabilitation, Chicago, IL
| | - Edelle Field-Fote
- Shepherd Center, Spinal Cord Injury Research, Atlanta, GA; Emory University, Division of Physical Therapy, Atlanta, GA
| | - Cathy Furbish
- Shepherd Center, Spinal Cord Injury Research, Atlanta, GA
| | - Chaithanya K Mummidisetty
- Northwestern University Feinberg School of Medicine, Department of Physical Medicine & Rehabilitation, Chicago, IL
| | - Rachel A Bond
- Shirley Ryan AbilityLab, Center for Rehabilitation Outcomes Research, Chicago, IL
| | - Gail Forrest
- Kessler Foundation, Center for Spinal Stimulation, East Hanover, NJ; Rutgers New Jersey Medical School, Newark, NJ
| | - Arun Jayaraman
- Northwestern University Feinberg School of Medicine, Department of Physical Medicine & Rehabilitation, Chicago, IL
| | - Allen W Heinemann
- Northwestern University Feinberg School of Medicine, Department of Physical Medicine & Rehabilitation, Chicago, IL
| |
Collapse
|
40
|
van Dijsseldonk RB, van Nes IJW, Geurts ACH, Keijsers NLW. Exoskeleton home and community use in people with complete spinal cord injury. Sci Rep 2020; 10:15600. [PMID: 32973244 PMCID: PMC7515902 DOI: 10.1038/s41598-020-72397-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/07/2020] [Indexed: 11/15/2022] Open
Abstract
A consequence of a complete spinal cord injury (SCI) is the loss of gait capacity. Wearable exoskeletons for the lower extremity enable household and community ambulation in people with SCI. This study assessed the amount, purpose, and location of exoskeleton use in the home and community environment, without any restrictions. The number of steps taken was read from the exoskeleton software. Participants kept a daily logbook, and completed two user experience questionnaires (Quebec User Evaluation of Satisfaction with assistive Technology (D-QUEST) and System Usability Scale (SUS)). Fourteen people with a complete SCI used the ReWalk exoskeleton a median of 9 (range [1-15]) out of 16 ([12-21]) days, in which participants took a median of 3,226 ([330-28,882]) steps. The exoskeleton was mostly used for exercise purposes (74%) and social interaction (20%). The main location of use was outdoors (48%). Overall, participants were satisfied with the exoskeleton (D-QUEST 3.7 ± 0.4) and its usability (SUS 72.5 [52.5-95.0]). Participants with complete SCI report satisfaction with the exoskeleton for exercise and social interaction in the home and community, but report limitations as an assistive device during daily life.
Collapse
Affiliation(s)
- Rosanne B van Dijsseldonk
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.
- Department of Research, Sint Maartenskliniek, Nijmegen, The Netherlands.
| | - Ilse J W van Nes
- Department of Rehabilitation, Sint Maartenskliniek, Nijmegen, The Netherlands
| | - Alexander C H Geurts
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Rehabilitation, Sint Maartenskliniek, Nijmegen, The Netherlands
| | - Noël L W Keijsers
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Research, Sint Maartenskliniek, Nijmegen, The Netherlands
| |
Collapse
|
41
|
Kinnett-Hopkins D, Mummidisetty CK, Ehrlich-Jones L, Crown D, Bond RA, Applebaum MH, Jayaraman A, Furbish C, Forrest G, Field-Fote E, Heinemann AW. Users with spinal cord injury experience of robotic Locomotor exoskeletons: a qualitative study of the benefits, limitations, and recommendations. J Neuroeng Rehabil 2020; 17:124. [PMID: 32917287 PMCID: PMC7488437 DOI: 10.1186/s12984-020-00752-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 08/31/2020] [Indexed: 01/13/2023] Open
Abstract
Background Persons with spinal cord injury (SCI) may experience both psychological and physiological benefits from robotic locomotor exoskeleton use, and knowledgeable users may have valuable perspectives to inform future development. The objective of this study is to gain insight into the experiences, perspectives, concerns, and suggestions on the use of robotic locomotor exoskeletons by civilians and veterans living with SCI. Methods Participants reported their demographic characteristics and the extent of robotic exoskeleton use in an online survey. Then, 28 experienced robotic locomotor exoskeleton users participated in focus groups held at three regional hospitals that specialize in rehabilitation for persons with SCI. We used a qualitative description approach analysis to analyze the data, and included thematic analysis. Results Participants expressed that robotic exoskeletons were useful in therapy settings but, in their current form, were not practical for activities of daily living due to device limitations. Participants detailed the psychological benefits of being eye-level with their non-disabled peers and family members, and some reported physiologic improvements in areas such as bowel and bladder function. Participants detailed barriers of increased fatigue, spasticity, and spasms and expressed dissatisfaction with the devices due to an inability to use them independently and safely. Participants provided suggestions to manufacturers for technology improvements. Conclusions The varied opinions and insights of robotic locomotor exoskeletons users with SCI add to our knowledge of device benefits and limitations.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Gail Forrest
- Kessler Foundation, East Hanover, USA.,Rutgers New Jersey Medical School, Newark, USA
| | - Edelle Field-Fote
- Shepherd Center, Atlanta, USA.,Division of Physical Therapy, Emory University, Atlanta, USA
| | | |
Collapse
|
42
|
Delgado AD, Escalon MX, Bryce TN, Weinrauch W, Suarez SJ, Kozlowski AJ. Safety and feasibility of exoskeleton-assisted walking during acute/sub-acute SCI in an inpatient rehabilitation facility: A single-group preliminary study. J Spinal Cord Med 2020; 43:657-666. [PMID: 31603395 PMCID: PMC7534310 DOI: 10.1080/10790268.2019.1671076] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Context/objective: Information on the safety and feasibility of lower extremity powered exoskeletons for persons with acute/sub-acute spinal cord injury (SCI) is limited. Understanding the safety and feasibility of employing powered exoskeletons in acute/sub-acute (<6 months post injury) at a SCI acute inpatient rehabilitation (SCI-AIR) facility could guide clinical practice and provide a basis for larger clinical trials on efficacy and effectiveness. Design: Single group observational study. Setting: SCI-AIR. Participants: Participants (n = 12; age: 28-71 years; 58% AIS D; 58% male) with neurological levels of injuries ranging from C2 to L3. Interventions: Up to 90 min of exoskeleton-assisted locomotor training was provided up to three times per week during SCI-AIR. Outcome measures: Safety of device use during inpatient locomotor training was quantified as the number of adverse events (AE) per device exposure hour. Feasibility of device use was defined in terms of protocol compliance, intensity, and proficiency. Results: Concerning safety, symptomatic hypotension was the most common AE reported at 111-events/exoskeleton-hours. Protocol compliance had a mean (SD) of 54% (30%). For intensity, 77% of participants incorporated variable assistance into at least 1 walking session; 70% of participants' sessions were completed with a higher RPE than the physical therapist. In proficiency, 58% achieved at least minimal assistance when walking with the device. Conclusion: Exoskeleton training in SCI-AIR can be safe and feasible for newly injured individuals with SCI who have clinically defined ambulatory goals. Nonetheless, sufficient controls to minimize risks for AEs, such as hypotensive events, are required.
Collapse
Affiliation(s)
- Andrew D. Delgado
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York City, New York, USA,The Graduate School, Icahn School of Medicine at Mount Sinai, New York City, New York, USA,Correspondence to: Andrew D. Delgado, Department of Rehabilitation Medicine and Human Performance, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, New York10029, USA; Ph: 212-241-9478.
| | - Miguel X. Escalon
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Thomas N. Bryce
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - William Weinrauch
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Stephanie J. Suarez
- Sports Therapy and Rehabilitation Services (STARS), Northwell Health, East Meadow, New York, USA
| | - Allan J. Kozlowski
- Department of Epidemiology and Biostatistics, Michigan State University, Grand Rapids, Michigan, USA,John F. Butzer Center for Research & Innovation, Mary Free Bed Rehabilitation Hospital, Grand Rapids, Michigan, USA
| |
Collapse
|
43
|
Hong E, Gorman PH, Forrest GF, Asselin PK, Knezevic S, Scott W, Wojciehowski SB, Kornfeld S, Spungen AM. Mobility Skills With Exoskeletal-Assisted Walking in Persons With SCI: Results From a Three Center Randomized Clinical Trial. Front Robot AI 2020; 7:93. [PMID: 33501260 PMCID: PMC7805715 DOI: 10.3389/frobt.2020.00093] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/09/2020] [Indexed: 11/17/2022] Open
Abstract
Background: Clinical exoskeletal-assisted walking (EAW) programs for individuals with spinal cord injury (SCI) have been established, but many unknown variables remain. These include addressing staffing needs, determining the number of sessions needed to achieve a successful walking velocity milestone for ambulation, distinguishing potential achievement goals according to level of injury, and deciding the number of sessions participants need to perform in order to meet the Food and Drug Administration (FDA) criteria for personal use prescription in the home and community. The primary aim of this study was to determine the number of sessions necessary to achieve adequate EAW skills and velocity milestones, and the percentage of participants able to achieve these skills by 12 sessions and to determine the skill progression over the course of 36 sessions. Methods: A randomized clinical trial (RCT) was conducted across three sites, in persons with chronic (≥6 months) non-ambulatory SCI. Eligible participants were randomized (within site) to either the EAW arm first (Group 1), three times per week for 36 sessions, striving to be completed in 12 weeks or the usual activity arm (UA) first (Group 2), followed by a crossover to the other arm for both groups. The 10-meter walk test seconds (s) (10MWT), 6-min walk test meters (m) (6MWT), and the Timed-Up-and-Go (s) (TUG) were performed at 12, 24, and 36 sessions. To test walking performance in the exoskeletal devices, nominal velocities and distance milestones were chosen prior to study initiation, and were used for the 10MWT (≤ 40s), 6MWT (≥80m), and TUG (≤ 90s). All walking tests were performed with the exoskeletons. Results: A total of 50 participants completed 36 sessions of EAW training. At 12 sessions, 31 (62%), 35 (70%), and 36 (72%) participants achieved the 10MWT, 6MWT, and TUG milestones, respectively. By 36 sessions, 40 (80%), 41 (82%), and 42 (84%) achieved the 10MWT, 6MWT, and TUG criteria, respectively. Conclusions: It is feasible to train chronic non-ambulatory individuals with SCI in performance of EAW sufficiently to achieve reasonable mobility skill outcome milestones.
Collapse
Affiliation(s)
- EunKyoung Hong
- Spinal Cord Damage Research Center, James J. Peters VA Medical Center, Bronx, NY, United States.,Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Peter H Gorman
- Department of Neurology, University of Maryland School of Medicine and Chief, Division of Rehabilitation Medicine, University of Maryland Rehabilitation and Orthopaedic Institute, Baltimore, MD, United States
| | - Gail F Forrest
- Center for Spinal Stimulation and Center for Mobility and Rehabilitation Engineering, Kessler Foundation, West Orange, NJ, United States.,Physical Medicine & Rehabilitation, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Pierre K Asselin
- Spinal Cord Damage Research Center, James J. Peters VA Medical Center, Bronx, NY, United States.,Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Steven Knezevic
- Spinal Cord Damage Research Center, James J. Peters VA Medical Center, Bronx, NY, United States
| | - William Scott
- Department of Neurology, University of Maryland School of Medicine and VA Maryland Healthcare System, Baltimore, MD, United States
| | - Sandra Buffy Wojciehowski
- Center for Spinal Stimulation and Center for Mobility and Rehabilitation Engineering, Kessler Foundation, West Orange, NJ, United States.,Performance Exercise Attitude and Knowledge Center, Craig Hospital, Englewood, CO, United States
| | - Stephen Kornfeld
- Spinal Cord Damage Research Center, James J. Peters VA Medical Center, Bronx, NY, United States.,Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ann M Spungen
- Spinal Cord Damage Research Center, James J. Peters VA Medical Center, Bronx, NY, United States.,Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
44
|
Hicks AL. Locomotor training in people with spinal cord injury: is this exercise? Spinal Cord 2020; 59:9-16. [PMID: 32581307 DOI: 10.1038/s41393-020-0502-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 06/02/2020] [Accepted: 06/05/2020] [Indexed: 11/09/2022]
Abstract
Locomotor training holds tremendous appeal to people with spinal cord injury who are wheelchair dependent, as the reacquisition of gait remains one of the most coveted goals in this population. For the last few decades this type of training has remained primarily in the clinical environment, as it requires the use of expensive treadmills with bodyweight support or complex overhead suspension tracks to facilitate overground walking. The development of powered exoskeletons has taken locomotor training out of the clinic, both improving accessibility and providing a potential option for community ambulation in people with lower limb paralysis. A question that has yet to be answered, however, is whether or not locomotor training offers a sufficiently intense stimulus to induce improvements in fitness or health. As inactivity-related secondary health complications are a major source of morbidity and mortality in people with SCI, it would be important to characterize the potential of locomotor training to not only improve functional walking ability, but also improve health-related fitness. This narrative review will summarize the key literature in this area to determine whether locomotor training challenges the cardiovascular, muscular or metabolic systems enough to be considered a viable form of exercise.
Collapse
Affiliation(s)
- Audrey L Hicks
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
45
|
Tsai CY, Delgado AD, Weinrauch WJ, Manente N, Levy I, Escalon MX, Bryce TN, Spungen AM. Exoskeletal-Assisted Walking During Acute Inpatient Rehabilitation Leads to Motor and Functional Improvement in Persons With Spinal Cord Injury: A Pilot Study. Arch Phys Med Rehabil 2019; 101:607-612. [PMID: 31891715 DOI: 10.1016/j.apmr.2019.11.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/05/2019] [Accepted: 11/17/2019] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To explore the potential effects of incorporating exoskeletal-assisted walking (EAW) into spinal cord injury (SCI) acute inpatient rehabilitation (AIR) on facilitating functional and motor recovery when compared with standard of care AIR. DESIGN A quasi-experimental design with a prospective intervention group (AIR with EAW) and a retrospective control group (AIR only). SETTING SCI AIR facility. PARTICIPANTS Ten acute inpatient participants with SCI who were eligible for locomotor training were recruited in the intervention group. Twenty inpatients with SCI were identified as matched controls by reviewing an AIR database, Uniform Data System for Medical Rehabilitation, by an individual blinded to the study. Both groups (N=30) were matched based on etiology, paraplegia/tetraplegia, completeness of injury, age, and sex. INTERVENTION EAW incorporated into SCI AIR. MAIN OUTCOME MEASURES FIM score, International Standards for Neurological Classification of Spinal Cord Injury Upper Extremity Motor Score and Lower Extremity Motor Scores (LEMS), and EAW session results, including adverse events, walking time, and steps. RESULTS Changes from admission to discharge LEMS and FIM scores were significantly greater in the intervention group (LEMS change: 14.3±10.1; FIM change: 37.8±10.8) compared with the control group (LEMS change: 4.6±6.1; FIM change: 26.5±14.3; Mann-Whitney U tests: LEMS, P<.01 and FIM, P<.05). One adverse event (minor skin abrasion) occurred during 42 walking sessions. Participants on average achieved 31.5 minutes of up time and 18.2 minutes of walk time with 456 steps in one EAW session. CONCLUSIONS Incorporation of EAW into standard of care AIR is possible. AIR with incorporated EAW has the potential to facilitate functional and motor recovery compared with AIR without EAW.
Collapse
Affiliation(s)
- Chung-Ying Tsai
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, New York; Spinal Cord Damage Research Center, James J. Peters VA Medical Center, Bronx, New York.
| | - Andrew D Delgado
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, New York
| | - William J Weinrauch
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Nicholas Manente
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Isaiah Levy
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Miguel X Escalon
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Thomas N Bryce
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ann M Spungen
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, New York; Spinal Cord Damage Research Center, James J. Peters VA Medical Center, Bronx, New York
| |
Collapse
|
46
|
Systemic inflammation in traumatic spinal cord injury. Exp Neurol 2019; 325:113143. [PMID: 31843491 DOI: 10.1016/j.expneurol.2019.113143] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 12/06/2019] [Accepted: 12/10/2019] [Indexed: 01/08/2023]
|
47
|
Khan AS, Livingstone DC, Hurd CL, Duchcherer J, Misiaszek JE, Gorassini MA, Manns PJ, Yang JF. Retraining walking over ground in a powered exoskeleton after spinal cord injury: a prospective cohort study to examine functional gains and neuroplasticity. J Neuroeng Rehabil 2019; 16:145. [PMID: 31752911 PMCID: PMC6868817 DOI: 10.1186/s12984-019-0585-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/30/2019] [Indexed: 12/12/2022] Open
Abstract
Background Powered exoskeletons provide a way to stand and walk for people with severe spinal cord injury. Here, we used the ReWalk exoskeleton to determine the training dosage required for walking proficiency, the sensory and motor changes in the nervous system with training, and the functionality of the device in a home-like environment. Methods Participants with chronic (> 1 yr) motor complete or incomplete spinal cord injury, who were primarily wheelchair users, were trained to walk in the ReWalk for 12 weeks. Measures were taken before, during, immediately after, and 2–3 months after training. Measures included walking progression, sitting balance, skin sensation, spasticity, and strength of the corticospinal tracts. Results Twelve participants were enrolled with 10 completing training. Training progression and walking ability: The progression in training indicated about 45 sessions to reach 80% of final performance in training. By the end of training, participants walked at speeds of 0.28–0.60 m/s, and distances of 0.74–1.97 km in 1 h. The effort of walking was about 3.3 times that for manual wheelchair propulsion. One non-walker with an incomplete injury became a walker without the ReWalk after training. Sensory and motor measures: Sitting balance was improved in some, as seen from the limits of stability and sway speed. Neuropathic pain showed no long term changes. Change in spasticity was mixed with suggestion of differences between those with high versus low spasticity prior to training. The strength of motor pathways from the brain to back extensor muscles remained unchanged. Adverse events: Minor adverse events were encountered by the participants and trainer (skin abrasions, non-injurious falls). Field testing: The majority of participants could walk on uneven surfaces outdoors. Some limitations were encountered in home-like environments. Conclusion For individuals with severe SCI, walking proficiency in the ReWalk requires about 45 sessions of training. The training was accompanied by functional improvements in some, especially in people with incomplete injuries. Trial registration NCT02322125 Registered 22 December 2014. Electronic supplementary material The online version of this article (10.1186/s12984-019-0585-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Atif S Khan
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Donna C Livingstone
- Department of Physical Therapy, University of Alberta, 2-50 Corbett Hall, Edmonton, AB, T6G 2G4, Canada
| | - Caitlin L Hurd
- Department of Physical Therapy, University of Alberta, 2-50 Corbett Hall, Edmonton, AB, T6G 2G4, Canada
| | | | - John E Misiaszek
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.,Occupational Therapy, University of Alberta, Edmonton, Alberta, Canada
| | - Monica A Gorassini
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.,Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Patricia J Manns
- Department of Physical Therapy, University of Alberta, 2-50 Corbett Hall, Edmonton, AB, T6G 2G4, Canada
| | - Jaynie F Yang
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada. .,Department of Physical Therapy, University of Alberta, 2-50 Corbett Hall, Edmonton, AB, T6G 2G4, Canada.
| |
Collapse
|
48
|
Maher JL, Baunsgaard CB, van Gerven J, Palermo AE, Biering-Sorensen F, Mendez A, Irwin RW, Nash MS. Differences in Acute Metabolic Responses to Bionic and Nonbionic Ambulation in Spinal Cord Injured Humans and Controls. Arch Phys Med Rehabil 2019; 101:121-129. [PMID: 31465760 DOI: 10.1016/j.apmr.2019.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 07/22/2019] [Indexed: 01/06/2023]
Abstract
OBJECTIVES To (1) compare energy expenditure during seated rest, standing, and prolonged bionic ambulation or bipedal ambulation in participants with spinal cord injury (SCI) and noninjured controls, respectively, and (2) test effects on postbionic ambulation glycemia in SCI. DESIGN Two independent group comparison of SCI and controls. SETTING Academic Medical Center. PARTICIPANTS Ten participants with chronic SCI (C7-T1, American Spinal Injury Association Impairment Scale A-C) and 10 controls (N=20). INTERVENTIONS A commercial bionic exoskeleton. MAIN OUTCOME MEASURES Absolute and relative (to peak) oxygen consumption, perceived exertion, carbohydrate/fat oxidation, energy expenditure, and postbionic ambulation plasma glucose/insulin. RESULTS Average work intensity accompanying 45 minutes of outdoor bionic ambulation was <40% peak oxygen consumption, with negligible drift after reaching steady state. Rating of perceived exertion (RPE) did not differ between groups and reflected low exertion. Absolute energy costs for bionic ambulation and nonbionic ambulation were not different between groups despite a 565% higher ambulation velocity in controls and 3.3× higher kilocalorie per meter in SCI. Fuel partitioning was similar between groups and the same within groups for carbohydrate and fat oxidation. Nonsignificant (9%) lowering of the area under a glucose tolerance curve following bionic ambulation required 20% less insulin than at rest. CONCLUSION Work intensity during prolonged bionic ambulation for this bionic exoskeleton is below a threshold for cardiorespiratory conditioning but above seated rest and passive standing. Bionic ambulation metabolism is consistent with low RPE and unchanged fuel partitioning from seated rest. Bionic ambulation did not promote beneficial effects on glycemia in well-conditioned, euglycemic participants. These findings may differ in less fit individuals with SCI or those with impaired glucose tolerance. Observed trends favoring this benefit suggest they are worthy of testing.
Collapse
Affiliation(s)
- Jennifer L Maher
- Miami Project to Cure Paralysis, University of Miami, Miller School of Medicine, Miami, Florida.
| | | | - Jan van Gerven
- Radboud University, Nijmegen Medical Center, Nijmegen, the Netherlands
| | - Anne E Palermo
- Miami Project to Cure Paralysis, University of Miami, Miller School of Medicine, Miami, Florida
| | | | - Armando Mendez
- Division of Endocrinology, Diabetes and Metabolism, Diabetes Research Institute, University of Miami, Miller School of Medicine, Miami, Florida
| | - Robert W Irwin
- Department of Physical Medicine and Rehabilitation, University of Miami, Miller School of Medicine, Miami, Florida
| | - Mark S Nash
- Miami Project to Cure Paralysis, University of Miami, Miller School of Medicine, Miami, Florida; Department of Neurological Surgery and Physical Medicine & Rehabilitation, University of Miami, Miller School of Medicine, Miami, Florida
| |
Collapse
|
49
|
Zimmermann G, Bolter L, Sluka R, Höller Y, Bathke AC, Thomschewski A, Leis S, Lattanzi S, Brigo F, Trinka E. Sample sizes and statistical methods in interventional studies on individuals with spinal cord injury: A systematic review. J Evid Based Med 2019; 12:200-208. [PMID: 31231977 PMCID: PMC6771853 DOI: 10.1111/jebm.12356] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 05/12/2019] [Indexed: 12/13/2022]
Abstract
AIM Prevalence and incidence of spinal cord injury (SCI) are low. However, sample sizes have not been systematically examined yet, although this might represent useful information for study planning and power considerations. Therefore, our objective was to determine the median sample size in clinical trials on SCI individuals. Moreover, within small-sample size studies, statistical methods and awareness of potential problems regarding small samples were examined. METHODS We systematically reviewed all studies on human SCI individuals published between 2014 and 2015, where the effect of an intervention on one or more health-related outcomes was assessed by means of a hypothesis test. If at least one group had a size <20, the study was classified as a small sample size study. PubMed was searched for eligible studies; subsequently, data on sample sizes and statistical methods were extracted and summarized descriptively. RESULTS Out of 8897 studies 207 were included. Median total sample size was 18 (range 4-582). Small sample sizes were found in 167/207 (81%) studies, resulting limitations and implications for statistical analyses were mentioned in 109/167 (65%) studies. CONCLUSIONS Although most recent SCI trials have been conducted with small samples, the consequences on statistical analysis methods and the validity of the results are rarely acknowledged.
Collapse
Affiliation(s)
- Georg Zimmermann
- Department of NeurologyChristian Doppler Medical Centre, Paracelsus Medical UniversitySalzburgAustria
- Spinal Cord Injury and Tissue Regeneration Centre SalzburgParacelsus Medical UniversitySalzburgAustria
- Department of MathematicsParis Lodron UniversitySalzburgAustria
| | | | - Ronny Sluka
- Department of PsychologyParis Lodron UniversitySalzburgAustria
| | - Yvonne Höller
- Department of NeurologyChristian Doppler Medical Centre, Paracelsus Medical UniversitySalzburgAustria
| | - Arne C. Bathke
- Department of MathematicsParis Lodron UniversitySalzburgAustria
| | - Aljoscha Thomschewski
- Department of NeurologyChristian Doppler Medical Centre, Paracelsus Medical UniversitySalzburgAustria
- Spinal Cord Injury and Tissue Regeneration Centre SalzburgParacelsus Medical UniversitySalzburgAustria
- Department of PsychologyParis Lodron UniversitySalzburgAustria
| | - Stefan Leis
- Department of NeurologyChristian Doppler Medical Centre, Paracelsus Medical UniversitySalzburgAustria
| | - Simona Lattanzi
- Neurological Clinic, Department of Experimental and Clinical MedicineMarche Polytechnic UniversityAnconaItaly
| | - Francesco Brigo
- Department of Neurosciences, Biomedicine and Movement SciencesUniversity of VeronaVeronaItaly
- Division of NeurologyFranz Tappeiner HospitalMeranoItaly
| | - Eugen Trinka
- Department of NeurologyChristian Doppler Medical Centre, Paracelsus Medical UniversitySalzburgAustria
- Department of Public HealthHealth Services Research and Health Technology Assessment, UMITHall i. T.Austria
| |
Collapse
|
50
|
Pantera É. [Exoskeletons for restoring motor functions]. SOINS; LA REVUE DE REFERENCE INFIRMIERE 2019; 64:52-55. [PMID: 31345312 DOI: 10.1016/j.soin.2019.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Paraplegia results in deficiencies and impairments which have an impact on the somatic and psychological state of patients. Powered exoskeleton orthoses can be used in certain conditions. Studies assessing the criteria for walking with an exoskeleton have highlighted interesting parameters for the creation of a functional orthosis.
Collapse
Affiliation(s)
- Éric Pantera
- Centre de médecine physique et de réadaptation fonctionnelle, rue de Lozelle, 63330 Poinsat, France.
| |
Collapse
|