1
|
Sheng N, Xing F, Wang J, Zhang QY, Nie R, Li-Ling J, Duan X, Xie HQ. Recent progress in bone-repair strategies in diabetic conditions. Mater Today Bio 2023; 23:100835. [PMID: 37928253 PMCID: PMC10623372 DOI: 10.1016/j.mtbio.2023.100835] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 10/02/2023] [Accepted: 10/14/2023] [Indexed: 11/07/2023] Open
Abstract
Bone regeneration following trauma, tumor resection, infection, or congenital disease is challenging. Diabetes mellitus (DM) is a metabolic disease characterized by hyperglycemia. It can result in complications affecting multiple systems including the musculoskeletal system. The increased number of diabetes-related fractures poses a great challenge to clinical specialties, particularly orthopedics and dentistry. Various pathological factors underlying DM may directly impair the process of bone regeneration, leading to delayed or even non-union of fractures. This review summarizes the mechanisms by which DM hampers bone regeneration, including immune abnormalities, inflammation, reactive oxygen species (ROS) accumulation, vascular system damage, insulin/insulin-like growth factor (IGF) deficiency, hyperglycemia, and the production of advanced glycation end products (AGEs). Based on published data, it also summarizes bone repair strategies in diabetic conditions, which include immune regulation, inhibition of inflammation, reduction of oxidative stress, promotion of angiogenesis, restoration of stem cell mobilization, and promotion of osteogenic differentiation, in addition to the challenges and future prospects of such approaches.
Collapse
Affiliation(s)
- Ning Sheng
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China
| | - Fei Xing
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China
| | - Jie Wang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China
| | - Qing-Yi Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China
| | - Rong Nie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China
| | - Jesse Li-Ling
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China
- Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, China
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Xin Duan
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China
| | - Hui-Qi Xie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China
- Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, China
| |
Collapse
|
2
|
Lu B, Zhang L. Association of a history of gestational diabetes mellitus with osteoporosis, bone mineral density, and trabecular bone score in postmenopausal women. Diabetol Metab Syndr 2023; 15:215. [PMID: 37884990 PMCID: PMC10605046 DOI: 10.1186/s13098-023-01194-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Studies on the association of gestational diabetes mellitus (GDM) with osteoporosis, and bone mineral density (BMD) have been inconsistent. The aim of this study was to investigate the association of a history of GDM with osteoporosis, BMD, and trabecular bone score (TBS) in postmenopausal women. METHODS Postmenopausal women from the National Health and Nutrition Examination Survey (NHANES) between 2007 and 2010, between 2013 and 2014, and between 2017 and 2018 were retrospectively included in this cross-sectional study. The logistic regression model was used to explore the relationship between GDM and osteoporosis, and a weighted linear regression model was applied to investigate the association between GDM and total femoral BMD, femoral neck BMD, and total TBS. Subgroup analysis of the association between GDM and osteoporosis was performed according to age, body mass index (BMI), and DM (yes or no). RESULTS Of the 6732 women included, 253 women (3.76%) had GDM. No significant differences in total femoral BMD, femoral neck BMD, and total TBS were observed between postmenopausal women with and without a history of GDM. However, a history of GDM was associated with a higher risk of osteoporosis in postmenopausal women [odds ratio (OR): 11.18, 95% confidence intervals (CI): 3.64 to 34.27, P < 0.001]. There was no significant difference between a history of GDM and osteoporosis in postmenopausal women whom BMI is normal and overweight women. However, there was an association between a history of GDM and osteoporosis in postmenopausal obese women (OR: 26.57, 95% CI 10.23 to 68.98, P < 0.001). CONCLUSION A history of GDM was associated with a higher risk of osteoporosis in postmenopausal women, particularly in postmenopausal obese women.
Collapse
Affiliation(s)
- Boqi Lu
- Department of Obstetrics, Haidian District Maternal and Child Health Care Hospital, Beijing, 100080, People's Republic of China
| | - Liping Zhang
- Department of Obstetrics, Huai'an Maternal and Child Health Care Center, 104 Renmin South Road, Huai'an, 223002, People's Republic of China.
| |
Collapse
|
3
|
Ng MY, Lin T, Chao SC, Chu PM, Yu CC. Potential Therapeutic Applications of Natural Compounds in Diabetes-Associated Periodontitis. J Clin Med 2022; 11:jcm11133614. [PMID: 35806899 PMCID: PMC9267692 DOI: 10.3390/jcm11133614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023] Open
Abstract
Diabetes mellitus (DM) is a major worldwide health burden. DM is a metabolic disease characterized by chronic hyperglycemia, and if left untreated, can lead to various complications. Individuals with uncontrolled DM are more susceptible to periodontitis due to both a hyper-inflammatory host response and an impaired immune response. Periodontitis, on the other hand, may exacerbate DM by increasing both local and systemic inflammatory components of DM-related complications. The current standard for periodontal treatment in diabetes-associated periodontitis (DP) focuses mostly on reducing bacterial load and less on controlling the excessive host response, and hence, may not be able to resolve DP completely. Over the past decade, natural compounds have emerged as an adjunct approach for modulating the host immune response with the hope of curing DP. The anti-oxidant, anti-inflammatory, and anti-diabetic characteristics of natural substances are well-known, and they can be found in regularly consumed foods and drinks, as well as plants. The pathophysiology of DP and the treatment benefits of various bioactive extracts for DP will be covered in this review.
Collapse
Affiliation(s)
- Min Yee Ng
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan; (M.Y.N.); (T.L.)
| | - Taichen Lin
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan; (M.Y.N.); (T.L.)
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Shih-Chi Chao
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 40201, Taiwan;
- Department of Medical Research and Education, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yi-lan, Luodong 265501, Taiwan
| | - Pei-Ming Chu
- Department of Anatomy, School of Medicine, China Medical University, Taichung 404333, Taiwan;
| | - Cheng-Chia Yu
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan; (M.Y.N.); (T.L.)
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 40201, Taiwan;
- Correspondence: ; Tel.: +886-4-2471-8668
| |
Collapse
|
4
|
Cheng K, Guo Q, Yang W, Wang Y, Sun Z, Wu H. Mapping Knowledge Landscapes and Emerging Trends of the Links Between Bone Metabolism and Diabetes Mellitus: A Bibliometric Analysis From 2000 to 2021. Front Public Health 2022; 10:918483. [PMID: 35719662 PMCID: PMC9204186 DOI: 10.3389/fpubh.2022.918483] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/16/2022] [Indexed: 01/09/2023] Open
Abstract
BackgroundDiabetes mellitus (DM) have become seriously threatens to human health and life quality worldwide. As a systemic metabolic disease, multiple studies have revealed that DM is related to metabolic bone diseases and always induces higher risk of fracture. In view of this, the links between bone metabolism (BM) and DM (BMDM) have gained much attention and numerous related papers have been published. Nevertheless, no prior studies have yet been performed to analyze the field of BMDM research through bibliometric approach. To fill this knowledge gap, we performed a comprehensive bibliometric analysis of the global scientific publications in this field.MethodsArticles and reviews regarding BMDM published between 2000 and 2021 were obtained from the Web of Science after manually screening. VOSviewer 1.6.16, CiteSpace V 5.8.R3, Bibliometrix, and two online analysis platforms were used to conduct the bibliometric and visualization analyses.ResultsA total of 2,525 documents including 2,255 articles and 270 reviews were retrieved. Our analysis demonstrated a steady increasing trend in the number of publications over the past 22 years (R2 = 0.989). The United States has occupied the leading position with the largest outputs and highest H-index. University of California San Francisco contributed the most publications, and Schwartz AV was the most influential author. Collaboration among institutions from different countries was relatively few. The journals that published the most BMDM-related papers were Bone and Osteoporosis International. Osteoporosis and related fractures are the main bone metabolic diseases of greatest concern in this field. According to co-cited references result, “high glucose environment,” “glycation end-product” and “sodium-glucose co-transporter” have been recognized as the current research focus in this domain. The keywords co-occurrence analysis indicated that “diabetic osteoporosis,” “osteoarthritis,” “fracture risk,” “meta-analysis,” “osteogenic differentiation,” “bone regeneration,” “osteogenesis,” and “trabecular bone score” might remain the research hotspots and frontiers in the near future.ConclusionAs a cross-discipline research field, the links between bone metabolism and diabetes mellitus are attracting increased attention. Osteoporosis and related fractures are the main bone metabolic diseases of greatest concern in this field. These insights may be helpful for clinicians to recognize diabetic osteopenia and provide more attention and support to such patients.
Collapse
Affiliation(s)
- Kunming Cheng
- Department of Intensive Care Unit, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Kunming Cheng
| | - Qiang Guo
- Department of Orthopaedic Surgery, Baodi Clinical College of Tianjin Medical University, Tianjin, China
| | - Weiguang Yang
- Graduate School of Tianjin Medical University, Tianjin, China
- Department of Orthopaedic Surgery, Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Yulin Wang
- Graduate School of Tianjin Medical University, Tianjin, China
- Department of Orthopaedic Surgery, Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Zaijie Sun
- Department of Orthopaedic Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
- *Correspondence: Zaijie Sun
| | - Haiyang Wu
- Graduate School of Tianjin Medical University, Tianjin, China
- Department of Orthopaedic Surgery, Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Haiyang Wu
| |
Collapse
|
5
|
Li Y, Shrestha A, Zhang H, Li L, Li D, Fu T, Song J, Ji P, Huang Y, Chen T. Impact of diabetes mellitus simulations on bone cell behavior through in vitro models. J Bone Miner Metab 2020; 38:607-619. [PMID: 32415376 DOI: 10.1007/s00774-020-01101-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 03/23/2020] [Indexed: 12/16/2022]
Abstract
Diabetes mellitus (DM) is related to impaired bone healing and an increased risk of bone fractures. While it is recognized that osteogenic differentiation and the function of osteoblasts are suppressed in DM, the influence of DM on osteoclasts is still unclear. Hyperglycemia and inflammatory environment are the hallmark of DM that causes dysregulation of various pro-inflammatory cytokines and alternated gene expression in periodontal ligament cells, osteoblasts, osteocytes, osteoclasts, and osteoclast precursors. A methodological review on conceptual and practical implications of in vitro study models is used for DM simulation on bone cells. Several major databases were screened to find literature related to the study objective. Published literature within last 20 years that used in vitro DM-simulated models to study how DM affects the cellular behavior of bone cells were selected for this review. Studies utilizing high glucose and serum acquired from diabetic animals are the mainly used methods to simulate the diabetic condition. The combination with various simulating factors such as lipopolysaccharide (LPS), hydrogen peroxide (H2O2), and advanced glycation end products (AGEs) have been reported in diabetic situations in vitro, as well. Through screening procedure, it was evident DM-simulated conditions exerted negative impact on bone-related cells. However, inconsistent results were found among different reported studies, which could be due to variation in culture conditions, concentrations of the stimulating factors and cell lineage, etc. This manuscript has concisely reviewed currently existing DM-simulated in vitro models and provides valuable insights of detailed components in simulating DM conditions in vitro. Studies using DM-simulated microenvironment revealed that in vitro simulation negatively impacted periodontal ligament cells, osteoblasts, osteocytes, osteoclasts, and osteoclast precursors. Contrarily, studies also indicated beneficial influence on bone-related cells when such conditions are reversed.
Collapse
Affiliation(s)
- Yihan Li
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, 426#Songshibei Road, Yubei District, Chongqing, 401147, P.R. China
| | - Annie Shrestha
- Faculty of Dentistry, University of Toronto, Toronto, ON, M5G 1G6, Canada
| | - Hongmei Zhang
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, 426#Songshibei Road, Yubei District, Chongqing, 401147, P.R. China
| | - Lingjie Li
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, 426#Songshibei Road, Yubei District, Chongqing, 401147, P.R. China
| | - Dize Li
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, 426#Songshibei Road, Yubei District, Chongqing, 401147, P.R. China
| | - Tiwei Fu
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, 426#Songshibei Road, Yubei District, Chongqing, 401147, P.R. China
| | - Jinlin Song
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, 426#Songshibei Road, Yubei District, Chongqing, 401147, P.R. China
| | - Ping Ji
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, 426#Songshibei Road, Yubei District, Chongqing, 401147, P.R. China
| | - Yuanding Huang
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, 426#Songshibei Road, Yubei District, Chongqing, 401147, P.R. China.
| | - Tao Chen
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, 426#Songshibei Road, Yubei District, Chongqing, 401147, P.R. China.
| |
Collapse
|
6
|
Costantini S, Conte C. Bone health in diabetes and prediabetes. World J Diabetes 2019; 10:421-445. [PMID: 31523379 PMCID: PMC6715571 DOI: 10.4239/wjd.v10.i8.421] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 06/03/2019] [Accepted: 07/20/2019] [Indexed: 02/05/2023] Open
Abstract
Bone fragility has been recognized as a complication of diabetes, both type 1 diabetes (T1D) and type 2 diabetes (T2D), whereas the relationship between prediabetes and fracture risk is less clear. Fractures can deeply impact a diabetic patient's quality of life. However, the mechanisms underlying bone fragility in diabetes are complex and have not been fully elucidated. Patients with T1D generally exhibit low bone mineral density (BMD), although the relatively small reduction in BMD does not entirely explain the increase in fracture risk. On the contrary, patients with T2D or prediabetes have normal or even higher BMD as compared with healthy subjects. These observations suggest that factors other than bone mass may influence fracture risk. Some of these factors have been identified, including disease duration, poor glycemic control, presence of diabetes complications, and certain antidiabetic drugs. Nevertheless, currently available tools for the prediction of risk inadequately capture diabetic patients at increased risk of fracture. Aim of this review is to provide a comprehensive overview of bone health and the mechanisms responsible for increased susceptibility to fracture across the spectrum of glycemic status, spanning from insulin resistance to overt forms of diabetes. The management of bone fragility in diabetic patient is also discussed.
Collapse
Affiliation(s)
- Silvia Costantini
- Department of Immunology, Transplantation and Infectious Diseases, Vita-Salute San Raffaele University, Milan 20123, Italy
- Epatocentro Ticino, Lugano 6900, Switzerland
| | - Caterina Conte
- Department of Immunology, Transplantation and Infectious Diseases, Vita-Salute San Raffaele University, Milan 20123, Italy
- IRCCS Ospedale San Raffaele, Internal Medicine and Transplantation, Milan 20123, Italy
| |
Collapse
|
7
|
Advanced Glycation End Products of Bovine Serum Albumin Suppressed Th1/Th2 Cytokine but Enhanced Monocyte IL-6 Gene Expression via MAPK-ERK and MyD88 Transduced NF-κB p50 Signaling Pathways. Molecules 2019; 24:molecules24132461. [PMID: 31277476 PMCID: PMC6652144 DOI: 10.3390/molecules24132461] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/28/2019] [Accepted: 07/01/2019] [Indexed: 02/06/2023] Open
Abstract
Advanced glycation end products (AGE), the most known aging biomarker, may cause “inflamm-aging” (i.e., chronic low-grade inflammation that develops with aging) in both aged and diabetes groups. However, the molecular bases of inflamm-aging remain obscure. We prepared AGE by incubating BSA (0.0746 mmol/L) + glucose (0.5 mol/L) at 37 °C in 5% CO2–95% air for 1–180 days. The lysine glycation in BSA–AGE reached 77% on day 30 and 100% after day 130, whereas the glycation of arginine and cysteine was minimal. The Nε-(carboxymethyl)-lysine content in BSA–AGE was also increased with increasing number of incubation days. The lectin-binding assay revealed that the glycation of BSA not only altered the conformational structure, but lost binding capacity with various lectins. An immunological functional assay showed that BSA–AGE > 8 μg/mL significantly suppressed normal human Th1 (IL-2 and IFN-γ) and Th2 (IL-10) mRNA expression, whereas AGE > 0.5 μg/mL enhanced monocyte IL-6 production irrelevant to cell apoptosis. The AGE-enhanced monocyte IL-6 production was via MAPK–ERK and MyD88-transduced NF-κBp50 signaling pathways. To elucidate the structure–function relationship of BSA–AGE-enhanced IL-6 production, we pre-preincubated BSA–AGE with different carbohydrate-degrading, protein-degrading, and glycoprotein-degrading enzymes. We found that trypsin and carboxypeptidase Y suppressed whereas β-galactosidase enhanced monocyte IL-6 production. In conclusion, BSA–AGE exerted both immunosuppressive and pro-inflammatory effects that are the molecular basis of inflamm-aging in aged and diabetes groups.
Collapse
|
8
|
Abstract
It is well known that bone loss accompanies aging in both men and women and contributes to skeletal fragility in the older population, but changes that occur to the bone tissue matrix itself are less well known. These changes in bone quality aggravate the skeletal fragility associated with loss of bone mass. Bone tissue quality is affected by age-related changes in bone mineral, collagen and its cross-linking profiles, water compartments and even non-collagenous proteins. It is commonly assumed that greater tissue mineralization accompanies aging as bone turnover slows down in elderly individuals, but the data for this are weak. However, there may be changes in the quality of the mineral crystals, and the substitutions found within the crystal. Both enzymatically-mediated and non-enzymatically-mediated collagen cross-links multiply with age. The former tend to make the bone stiffer and stronger, but the latter, while making the bone stiffer can also make it more brittle and more likely to fracture. Bone pore water that is not bound to collagen or mineral increases with age as bone mass is lost, but water that is bound to collagen and mineral declines with age. These changes contribute to skeletal fragility by reducing the amount that bone can deform before fracturing. Finally, non-collagenous proteins have physical properties that can alter matrix mechanical properties and can also have molecular signaling functions that regulate bone remodeling. Whether these change with age, how they change, and how this affects skeletal fragility with aging is still largely a black box, and requires much more investigation. The roles of any of these factors in skeletal fragility are difficult to assess clinically as there is no easy or economical way to evaluate them, but a picture of fragility in the aging skeleton is incomplete without them.
Collapse
Affiliation(s)
- David B Burr
- Dept. of Anatomy and Cell Biology, Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, United States of America; Dept. of Biomedical Engineering, Indiana University-Purdue University, Indianapolis (IUPUI), United States of America.
| |
Collapse
|
9
|
Zhang JY, Cao XX, Wen HX, Zhang HY. Correlation analysis of levels of inflammatory cytokines and nitric oxide in peripheral blood with urine proteins and renal function in patients with gestational hypertension. Exp Ther Med 2019; 17:657-662. [PMID: 30651847 PMCID: PMC6307447 DOI: 10.3892/etm.2018.7004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 10/10/2018] [Indexed: 12/28/2022] Open
Abstract
The aim of the study was to investigate correlations among inflammatory cytokines, nitric oxide (NO) level, urine protein, renal function and blood pressure in peripheral blood of patients with hypertensive disorder complicating pregnancy (HDCP). A total of 60 patients diagnosed with HDCP in the Obstetrics Department of Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology from May 2016 to April 2017 were selected. The patients were divided into the HDCP (n=20), mild pre-eclampsia (n=20) and severe pre-eclampsia (n=20) groups. Additionally, 20 healthy pregnant women were selected as the control group. General data of the patients were collected. NO, renal function and 24-h urine protein were measured. The systolic and diastolic blood pressure, C-reactive protein (CRP), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in the HDCP group was significantly higher than that in the control group. The CRP, TNF-α and IL-6 levels in the pre-eclampsia groups were higher than those in the gestational hypertension group (P<0.05). The NO level in peripheral blood of patients in the pre-eclampsia groups was lower than that in the gestational hypertension group (P<0.05). The levels of 24-h urine protein, homocysteine (Hcy), cystatin-C (Cys-C), serum creatinine (SCr), urea and β2 microglobulin in the pre-eclampsia groups were higher than those in the gestational hypertension group (P<0.05). Gestational age and the levels of baseline blood pressure, inflammatory cytokines, 24-h urine protein and renal function have independent predictive value for the occurrence of HDCP (P<0.05). The results show that, 24-h urine protein, renal function and inflammatory cytokines are closely correlated with the occurrence of HDCP, which can reflect the severity and prognosis of the disease to a certain extent. In addition, it has important reference value for the assessment and treatment of the disease.
Collapse
Affiliation(s)
- Jing-Yang Zhang
- Department of Cardiac Function, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430016, P.R. China
| | - Xiao-Xiao Cao
- Department of Cardiac Function, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430016, P.R. China
| | - Hong-Xia Wen
- Department of Cardiac Function, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430016, P.R. China
| | - Hong-Yan Zhang
- Department of Cardiac Function, Xiangyang Central Hospital (The Affiliated Hospital of Hubei University of Arts and Science) Xiangcheng, Xiangyang, Hubei 441021, P.R. China
| |
Collapse
|
10
|
Islam S, Mir AR, Abidi M, Talha M, Zafar A, Habib S, Moinuddin. Methylglyoxal modified IgG generates autoimmune response in rheumatoid arthritis. Int J Biol Macromol 2018; 118:15-23. [PMID: 29906533 DOI: 10.1016/j.ijbiomac.2018.06.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 06/06/2018] [Accepted: 06/08/2018] [Indexed: 01/18/2023]
Abstract
The detection of autoantibodies generated against modified proteins that stimulate cellular and humoral immune response has developed a lot of interest in the recent years and a search for biomarkers for the early detection of diseases has increased. IgG protein has earned attention for its possible modifications under hyperglycaemic conditions in rheumatoid arthritis, wherein dicarbonyl stress has been reported to alter the structural integrity of the protein. This report suggests that the interaction of the methylglyoxal with the IgG has consequences in the autoimmunopathology of rheumatoid arthritis. Our molecular docking analysis of methylglyoxal and IgG revealed a close interaction between the two molecules. TNBS studies confirmed the interaction by showing a decline in free lysine-arginine content post-MG modifications in IgG. The modified IgG was thermally more stable and showed the generation of glycation adducts N-epsilon-carboxyethyllysine. Rheumatoid arthritis patients showed enhanced carbonyl stress which was expected to induce structural changes in the epitope makeup of IgG. The ELISA studies and gel retardation assay confirmed auto-antibodies against MG modified IgG (MG-IgG) pointing towards the generation of neoepitopes upon IgG after interaction with MG. This study establishes the IgG modification in RA patients under alter carbonyl concentrations.
Collapse
Affiliation(s)
- Sidra Islam
- Department of Biochemistry, Jawarharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Abdul Rouf Mir
- Department of Biochemistry, Jawarharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Minhal Abidi
- Department of Biochemistry, Jawarharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Mohd Talha
- Department of Biochemistry, Jawarharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Atif Zafar
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Safia Habib
- Department of Biochemistry, Jawarharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Moinuddin
- Department of Biochemistry, Jawarharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India.
| |
Collapse
|
11
|
Acevedo C, Sylvia M, Schaible E, Graham JL, Stanhope KL, Metz LN, Gludovatz B, Schwartz AV, Ritchie RO, Alliston TN, Havel PJ, Fields AJ. Contributions of Material Properties and Structure to Increased Bone Fragility for a Given Bone Mass in the UCD-T2DM Rat Model of Type 2 Diabetes. J Bone Miner Res 2018; 33:1066-1075. [PMID: 29342321 PMCID: PMC6011658 DOI: 10.1002/jbmr.3393] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 12/30/2017] [Accepted: 01/10/2018] [Indexed: 12/18/2022]
Abstract
Adults with type 2 diabetes (T2D) have a higher fracture risk for a given bone quantity, but the mechanisms remain unclear. Using a rat model of polygenic obese T2D, we demonstrate that diabetes significantly reduces whole-bone strength for a given bone mass (μCT-derived BMC), and we quantify the roles of T2D-induced deficits in material properties versus bone structure; ie, geometry and microarchitecture. Lumbar vertebrae and ulnae were harvested from 6-month-old lean Sprague-Dawley rats, obese Sprague-Dawley rats, and diabetic obese UCD-T2DM rats (diabetic for 69 ± 7 days; blood glucose >200 mg/dL). Both obese rats and those with diabetes had reduced whole-bone strength for a given BMC. In obese rats, this was attributable to structural deficits, whereas in UCD-T2DM rats, this was attributable to structural deficits and to deficits in tissue material properties. For the vertebra, deficits in bone structure included thinner and more rod-like trabeculae; for the ulnae, these deficits included inefficient distribution of bone mass to resist bending. Deficits in ulnar material properties in UCD-T2DM rats were associated with increased non-enzymatic crosslinking and impaired collagen fibril deformation. Specifically, small-angle X-ray scattering revealed that diabetes reduced collagen fibril ultimate strain by 40%, and those changes coincided with significant reductions in the elastic, yield, and ultimate tensile properties of the bone tissue. Importantly, the biomechanical effects of these material property deficits were substantial. Prescribing diabetes-specific tissue yield strains in high-resolution finite element models reduced whole-bone strength by a similar amount (and in some cases a 3.4-fold greater amount) as the structural deficits. These findings provide insight into factors that increase bone fragility for a given bone mass in T2D; not only does diabetes associate with less biomechanically efficient bone structure, but diabetes also reduces tissue ductility by limiting collagen fibril deformation, and in doing so, reduces the maximum load capacity of the bone. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Claire Acevedo
- Department of Orthopaedic Surgery, University of California, San Francisco, CA, USA.,Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Meghan Sylvia
- Department of Orthopaedic Surgery, University of California, San Francisco, CA, USA
| | - Eric Schaible
- Experimental Systems Group, Advanced Light Source, Berkeley, CA, USA
| | - James L Graham
- Department of Molecular Biosciences, University of California, Davis, Davis, CA, USA.,Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - Kimber L Stanhope
- Department of Molecular Biosciences, University of California, Davis, Davis, CA, USA.,Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - Lionel N Metz
- Department of Orthopaedic Surgery, University of California, San Francisco, CA, USA
| | - Bernd Gludovatz
- School of Mechanical and Manufacturing Engineering, UNSW Sydney, NSW, Australia
| | - Ann V Schwartz
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Robert O Ritchie
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Tamara N Alliston
- Department of Orthopaedic Surgery, University of California, San Francisco, CA, USA
| | - Peter J Havel
- Department of Molecular Biosciences, University of California, Davis, Davis, CA, USA.,Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - Aaron J Fields
- Department of Orthopaedic Surgery, University of California, San Francisco, CA, USA
| |
Collapse
|
12
|
Rathinavelu S, Guidry-Elizondo C, Banu J. Molecular Modulation of Osteoblasts and Osteoclasts in Type 2 Diabetes. J Diabetes Res 2018; 2018:6354787. [PMID: 30525054 PMCID: PMC6247387 DOI: 10.1155/2018/6354787] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 07/16/2018] [Accepted: 08/14/2018] [Indexed: 02/08/2023] Open
Abstract
Diabetes is a common disease affecting majority of populations worldwide. Since 1980, there has been an increase in the number of people diagnosed as prediabetic and diabetic. Diabetes is characterized by high levels of circulating glucose and leads to most microvascular and macrovascular complications such as retinopathy, nephropathy, neuropathy, stroke, and myocardial infarction. Bone marrow vascular disruption and increased adiposity are also linked to various complications in type II diabetes mellitus. In addition to these complications, type 2 diabetic patients also have fragile bones caused by faulty mineralization mainly due to increased adiposity among diabetic patients that affects both osteoblast and osteoclast functions. Other factors that increase fracture risk in diabetic patients are increased oxidative stress, inflammation, and drugs administered to diabetic patients. This review reports the modulation of different pathways that affect bone metabolism in diabetic conditions.
Collapse
Affiliation(s)
- Selvalakshmi Rathinavelu
- Department of Health and Biomedical Sciences, College of Health Affairs, University of Texas Rio Grande Valley, 1201, W University Dr, Edinburg, TX 78539, USA
| | - Crissy Guidry-Elizondo
- Department of Health and Biomedical Sciences, College of Health Affairs, University of Texas Rio Grande Valley, 1201, W University Dr, Edinburg, TX 78539, USA
| | - Jameela Banu
- Department of Health and Biomedical Sciences, College of Health Affairs, University of Texas Rio Grande Valley, 1201, W University Dr, Edinburg, TX 78539, USA
- Department of Biology, College of Sciences, University of Texas Rio Grande Valley, 1201, W University Dr, Edinburg, TX 78539, USA
| |
Collapse
|
13
|
Abstract
Bone healing involves complex biological pathways and interactions among various cell types and microenvironments. Among them, the monocyte–macrophage–osteoclast lineage and the mesenchymal stem cell–osteoblast lineage are critical, in addition to an initial inflammatory microenvironment. These cellular interactions induce the necessary inflammatory milieu and provide the cells for bone regeneration and immune modulation. Increasing age is accompanied with a rise in the basal state of inflammation, potentially impairing osteogenesis. The translational potential of this article: Translational research has shown multiple interactions between inflammation, ageing, and bone regeneration. This review presents recent, relevant considerations regarding the effects of inflammation and ageing on bone healing.
Collapse
Affiliation(s)
- Emmanuel Gibon
- Corresponding author. Department of Orthopaedic Surgery, Stanford University, 300 Pasteur Drive, Edwards Building R116, Stanford, CA 94305, USA.Department of Orthopaedic SurgeryStanford University300 Pasteur DriveEdwards Building R116StanfordCA94305USA
| | | | | | | |
Collapse
|
14
|
Napoli N, Chandran M, Pierroz DD, Abrahamsen B, Schwartz AV, Ferrari SL. Mechanisms of diabetes mellitus-induced bone fragility. Nat Rev Endocrinol 2017; 13:208-219. [PMID: 27658727 DOI: 10.1038/nrendo.2016.153] [Citation(s) in RCA: 632] [Impact Index Per Article: 90.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The risk of fragility fractures is increased in patients with either type 1 diabetes mellitus (T1DM) or type 2 diabetes mellitus (T2DM). Although BMD is decreased in T1DM, BMD in T2DM is often normal or even slightly elevated compared with an age-matched control population. However, in both T1DM and T2DM, bone turnover is decreased and the bone material properties and microstructure of bone are altered; the latter particularly so when microvascular complications are present. The pathophysiological mechanisms underlying bone fragility in diabetes mellitus are complex, and include hyperglycaemia, oxidative stress and the accumulation of advanced glycation endproducts that compromise collagen properties, increase marrow adiposity, release inflammatory factors and adipokines from visceral fat, and potentially alter the function of osteocytes. Additional factors including treatment-induced hypoglycaemia, certain antidiabetic medications with a direct effect on bone and mineral metabolism (such as thiazolidinediones), as well as an increased propensity for falls, all contribute to the increased fracture risk in patients with diabetes mellitus.
Collapse
Affiliation(s)
- Nicola Napoli
- Unit of Endocrinology and Diabetes, Department of Medicine, Università Campus Bio-Medico di Roma, Via Alvaro di Portillo 21, 00128 Roma, Italy
- Division of Bone and Mineral Diseases, Washington University in St Louis, St Louis, Missouri, USA
- Diabetes and Bone Network
| | - Manju Chandran
- Osteoporosis and Bone Metabolism Unit, Department of Endocrinology, Singapore General Hospital, Outram Road, 169608 Singapore
| | - Dominique D Pierroz
- International Osteoporosis Foundation (IOF), Rue Juste-Olivier 9, 1260 Nyon, Switzerland
| | - Bo Abrahamsen
- University of Southern Denmark, Department of Medicine, Faculty of Health, Holbaek Hospital, Holbaek, Denmark
| | - Ann V Schwartz
- Department of Epidemiology and Biostatistics, University of California, 550 16th Street, San Francisco, California 94158, USA
| | - Serge L Ferrari
- Service of Bone Diseases, Geneva University Hospital and Faculty of Medicine, Rue Gabrielle-Perret-Gentil 4, 1205 Geneva, Switzerland
| | | |
Collapse
|
15
|
Russo GT, Giandalia A, Romeo EL, Nunziata M, Muscianisi M, Ruffo MC, Catalano A, Cucinotta D. Fracture Risk in Type 2 Diabetes: Current Perspectives and Gender Differences. Int J Endocrinol 2016; 2016:1615735. [PMID: 28044077 PMCID: PMC5164892 DOI: 10.1155/2016/1615735] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 09/19/2016] [Accepted: 09/22/2016] [Indexed: 02/07/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is associated with an increased risk of osteoporotic fractures, resulting in disabilities and increased mortality. The pathophysiological mechanisms linking diabetes to osteoporosis have not been fully explained, but alterations in bone structure and quality are well described in diabetic subjects, likely due to a combination of different factors. Insulin deficiency and dysfunction, obesity and hyperinsulinemia, altered level of oestrogen, leptin, and adiponectin as well as diabetes-related complications, especially peripheral neuropathy, orthostatic hypotension, or reduced vision due to retinopathy may all be associated with an impairment in bone metabolism and with the increased risk of fractures. Finally, medications commonly used in the treatment of T2DM may have an impact on bone metabolism and on fracture risk, particularly in postmenopausal women. When considering the impact of hypoglycaemic drugs on bone, it is important to balance their potential direct effects on bone quality with the risk of falling-related fractures due to the associated hypoglycaemic risk. In this review, experimental and clinical evidence connecting bone metabolism and fracture risk to T2DM is discussed, with particular emphasis on hypoglycaemic treatments and gender-specific implications.
Collapse
Affiliation(s)
- Giuseppina T. Russo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
- *Giuseppina T. Russo:
| | - Annalisa Giandalia
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Elisabetta L. Romeo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Morabito Nunziata
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Marco Muscianisi
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Maria Concetta Ruffo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Antonino Catalano
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Domenico Cucinotta
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| |
Collapse
|
16
|
Yang X, Gandhi C, Rahman MM, Appleford M, Sun LW, Wang X. Age-Related Effects of Advanced Glycation End Products (Ages) in Bone Matrix on Osteoclastic Resorption. Calcif Tissue Int 2015. [PMID: 26204848 DOI: 10.1007/s00223-015-0042-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Advanced glycation end products (AGEs) accumulate in bone extracellular matrix as people age. Previous studies have shown controversial results regarding the role of in situ AGEs accumulation in osteoclastic resorption. To address this issue, this study cultured human osteoclast cells directly on human cadaveric bone slices from different age groups (young and elderly) to warrant its relevance to in vivo conditions. The cell culture was terminated on the 3rd, 7th, and 10th day, respectively, to assess temporal changes in the number of differentiated osteoclasts, the number and size of osteoclastic resorption pits, the amount of bone resorbed, as well as the amount of matrix AGEs released in the medium by resorption. In addition, the in situ concentration of matrix AGEs at each resorption pit was also estimated based on its AGEs autofluorescent intensity. The results indicated that (1) osteoclastic resorption activities were significantly correlated with the donor age, showing larger but shallower resorption pits on the elderly bone substrates than on the younger ones; (2) osteoclast resorption activities were not significantly dependent on the in situ AGEs concentration in bone matrix, and (3) a correlation was observed between osteoclast activities and the concentration of AGEs released by the resorption. These results suggest that osteoclasts tend to migrate away from initial anchoring sites on elderly bone substrate during resorption compared to younger bone substrates. However, such behavior is not directly related to the in situ concentration of AGEs in bone matrix at the resorption sites.
Collapse
Affiliation(s)
- Xiao Yang
- School of Biological Sciences and Medical Engineering, Beihang University, Beijing, China
- Department of Mechanical Engineering, The University of Texas at San Antonio (UTSA), One UTSA Circle, San Antonio, TX, 78249, USA
| | - Chintan Gandhi
- Departments of Biomedical Engineering, The University of Texas at San Antonio (UTSA), One UTSA Circle, San Antonio, TX, 78249, USA
| | - Md Mizanur Rahman
- Department of Medicine, University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, USA
| | - Mark Appleford
- Departments of Biomedical Engineering, The University of Texas at San Antonio (UTSA), One UTSA Circle, San Antonio, TX, 78249, USA
| | - Lian-Wen Sun
- School of Biological Sciences and Medical Engineering, Beihang University, Beijing, China
| | - Xiaodu Wang
- Departments of Biomedical Engineering, The University of Texas at San Antonio (UTSA), One UTSA Circle, San Antonio, TX, 78249, USA.
- Department of Mechanical Engineering, The University of Texas at San Antonio (UTSA), One UTSA Circle, San Antonio, TX, 78249, USA.
| |
Collapse
|
17
|
Sakamoto E, Mihara C, Ikuta T, Inagaki Y, Kido J, Nagata T. Inhibitory effects of advanced glycation end-products and Porphyromonas gingivalis
lipopolysaccharide on the expression of osteoblastic markers of rat bone marrow cells in culture. J Periodontal Res 2015. [DOI: 10.1111/jre.12310] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- E. Sakamoto
- Department of Periodontology and Endodontology; Institute of Health Biosciences; Tokushima University Graduate School; Tokushima Japan
| | - C. Mihara
- Department of Periodontology and Endodontology; Institute of Health Biosciences; Tokushima University Graduate School; Tokushima Japan
| | - T. Ikuta
- Department of Periodontology and Endodontology; Institute of Health Biosciences; Tokushima University Graduate School; Tokushima Japan
| | - Y. Inagaki
- Department of Periodontology and Endodontology; Institute of Health Biosciences; Tokushima University Graduate School; Tokushima Japan
| | - J. Kido
- Department of Periodontology and Endodontology; Institute of Health Biosciences; Tokushima University Graduate School; Tokushima Japan
| | - T. Nagata
- Department of Periodontology and Endodontology; Institute of Health Biosciences; Tokushima University Graduate School; Tokushima Japan
| |
Collapse
|
18
|
Okuda M, Taguchi Y, Takahashi S, Tanaka A, Umeda M. Effects of High Glucose for Hard Tissue Formation on Type II Diabetes Model Rat Bone Marrow Cells In Vitro. J HARD TISSUE BIOL 2015. [DOI: 10.2485/jhtb.24.77] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Makiko Okuda
- Department of Periodontology, Osaka Dental University
| | | | | | - Akio Tanaka
- Department of Oral Pathology, Osaka Dental University
| | - Makoto Umeda
- Department of Periodontology, Osaka Dental University
| |
Collapse
|
19
|
Willett TL, Pasquale J, Grynpas MD. Collagen modifications in postmenopausal osteoporosis: advanced glycation endproducts may affect bone volume, structure and quality. Curr Osteoporos Rep 2014; 12:329-37. [PMID: 24880722 DOI: 10.1007/s11914-014-0214-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The classic model of postmenopausal osteoporosis (PM-OP) starts with the depletion of estrogen, which in turn stimulates imbalanced bone remodeling, resulting in loss of bone mass/volume. Clinically, this leads to fractures because of structural weakness. Recent work has begun to provide a more complete picture of the mechanisms of PM-OP involving oxidative stress and collagen modifications known as advanced glycation endproducts (AGEs). On one hand, AGEs may drive imbalanced bone remodeling through signaling mediated by the receptor for AGEs (RAGE), stimulating resorption and inhibiting formation. On the other hand, AGEs are associated with degraded bone material quality. Oxidative stress promotes the formation of AGEs, inhibits normal enzymatically derived crosslinking and can degrade collagen structure, thereby reducing fracture resistance. Notably, there are multiple positive feedback loops that can exacerbate the mechanisms of PM-OP associated with oxidative stress and AGEs. Anti-oxidant therapies may have the potential to inhibit the oxidative stress based mechanisms of this disease.
Collapse
Affiliation(s)
- Thomas L Willett
- Musculoskeletal Research Laboratory, Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, 60 Murray Street, Box 42, Toronto, Ontario, Canada, M5T 3L9,
| | | | | |
Collapse
|
20
|
Kageyama Y, Takahashi M, Nagafusa T, Torikai E, Nagano A. Methotrexate reduces the levels of pentosidine and 8-hydroxy-deoxy guanosine in patients with rheumatoid arthritis. Mod Rheumatol 2014. [DOI: 10.3109/s10165-007-0607-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
21
|
Montagnani A, Gonnelli S. Antidiabetic therapy effects on bone metabolism and fracture risk. Diabetes Obes Metab 2013; 15:784-91. [PMID: 23368527 DOI: 10.1111/dom.12077] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 09/25/2012] [Accepted: 01/21/2013] [Indexed: 12/22/2022]
Abstract
Patients with diabetes are at greater risk of fractures mostly due to not only to extraskeletal factors, such as propensity to fall, but also to bone quality alteration, which reduces bone strength. In people with diabetes, insulin deficiency and hyperglycaemia seem to play a role in determining bone formation alteration by advanced glycation end product (AGE) accumulation or AGE/RAGE (receptors for AGE) axis imbalance, which directly influence osteoblast activity. Moreover, hyperglycaemia and oxidative stress are able to negatively influence osteocalcin production and the Wnt signalling pathways with an imbalance of osteoblast/osteoclast activity leading to bone quality reduction as global effect. In addition, other factors such as insulin growth factors and peroxisome proliferator-activated receptor-γ pathways seem to have an important role in the pathophysiology of osteoporosis in diabetes. Although there are conflicting data in literature, adequate glycaemic control with hypoglycaemic treatment may be an important element in preventing bone tissue alterations in both type 1 and type 2 diabetes. Attention should be paid to the use of thiazolidinediones, especially in older women, because the direct negative effect on bone could exceed the positive effect of glycaemic control. Finally, preliminary data on animals and in humans suggest the hypothesis that incretins and dipeptidyl peptidase-4 inhibitors could have a positive effect on bone metabolism by a direct effect on bone cells; however, such issue needs further investigations.
Collapse
Affiliation(s)
- A Montagnani
- Metabolic Bone Diseases and Osteoporosis Ambulatory, Internal Medicine Unit, Misericordia Hospital, Grosseto, Italy.
| | | |
Collapse
|
22
|
Grover HS, Luthra S. Molecular mechanisms involved in the bidirectional relationship between diabetes mellitus and periodontal disease. J Indian Soc Periodontol 2013; 17:292-301. [PMID: 24049328 PMCID: PMC3768178 DOI: 10.4103/0972-124x.115642] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Accepted: 05/29/2013] [Indexed: 12/15/2022] Open
Abstract
Both diabetes and periodontitis are chronic diseases. Diabetes has many adverse effects on the periodontium, and conversely periodontitis may have deleterious effects further aggravating the condition in diabetics. The potential common pathophysiologic pathways include those associated with inflammation, altered host responses, altered tissue homeostasis, and insulin resistance. This review examines the relationship that exists between periodontal diseases and diabetes mellitus with a focus on potential common pathophysiologic mechanisms.
Collapse
Affiliation(s)
- Harpreet Singh Grover
- Department of Periodontics and Oral Implantology, SGT Dental College, Hospital and Research Institute, Gurgaon, Haryana, India
| | - Shailly Luthra
- Department of Periodontics and Oral Implantology, SGT Dental College, Hospital and Research Institute, Gurgaon, Haryana, India
| |
Collapse
|
23
|
Fernández JM, Molinuevo MS, Sedlinsky C, Schurman L, Cortizo AM, McCarthy AD. Strontium ranelate prevents the deleterious action of advanced glycation endproducts on osteoblastic cells via calcium channel activation. Eur J Pharmacol 2013; 706:41-7. [PMID: 23499695 DOI: 10.1016/j.ejphar.2013.02.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 02/15/2013] [Accepted: 02/24/2013] [Indexed: 11/24/2022]
Abstract
Accumulation of advanced glycation endproducts (AGEs) in bone tissue occurs in ageing and in Diabetes mellitus, and is partly responsible for the increased risk of low-stress bone fractures observed in these conditions. In this study we evaluated whether the anti-osteoporotic agent strontium ranelate can prevent the deleterious effects of AGEs on bone cells, and possible mechanisms of action involved. Using mouse MC3T3E1 osteoblastic cells in culture we evaluated the effects of 0.1mM strontium ranelate and/or 100 μg/ml AGEs-modified bovine serum albumin (AGEs-BSA) on cell proliferation, osteogenic differentiation and pro-inflammatory cytokine production. We found that AGEs-BSA alone decreased osteoblastic proliferation and differentiation (P<0.01) while increasing IL-1β and TNFα production (P<0.01). On its own, strontium ranelate induced opposite effects: an increase in osteoblast proliferation and differentiation (P<0.01) and a decrease in cytokine secretion (P<0.01). Additionally, strontium ranelate prevented the inhibitory and pro-inflammatory actions of AGEs-BSA on osteoblastic cells (P<0.01). These effects of strontium ranelate were blocked by co-incubation with either the MAPK inhibitor PD98059, or the calcium channel blocker nifedipine. We also evaluated by Western blotting the activation status of ERK (a MAPK) and b-catenin. Activation of both signaling pathways was decreased by AGEs treatment, and this inhibitory effect was prevented if AGEs were co-incubated with strontium ranelate (P<0.01). On its own, strontium ranelate increased both pERK and activated b-catenin levels. In conclusion, this study demonstrates that strontium ranelate can prevent the deleterious in vitro actions of AGEs on osteoblastic cells in culture by mechanisms that involve calcium channel, MAPK and b-catenin activation.
Collapse
Affiliation(s)
- Juan Manuel Fernández
- Laboratorio de Investigación en Osteopatías y Metabolismo Mineral, Facultad de Ciencias Exactas, Universidad Nacional de La Plata. 47 y 115, (1900) La Plata, Argentina
| | | | | | | | | | | |
Collapse
|
24
|
Mori H, Okada Y, Kishikawa H, Inokuchi N, Sugimoto H, Tanaka Y. Effects of raloxifene on lipid and bone metabolism in postmenopausal women with type 2 diabetes. J Bone Miner Metab 2013; 31:89-95. [PMID: 22868657 DOI: 10.1007/s00774-012-0379-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 07/01/2012] [Indexed: 01/22/2023]
Abstract
Evidence suggests that bone quality is poorer and fracture risk is higher in patients with diabetes, even those with normal bone mineral density. The aim of this study was to determine the effects of raloxifene on lipid, bone, and glucose metabolism in postmenopausal women with type 2 diabetes. The study subjects (144 postmenopausal women aged less than 80 years with type 2 diabetes) were randomly assigned into three groups: no medication, alfacalcidol 1 μg/day, or raloxifene hydrochloride 60 mg/day. The primary endpoint was the change in LDL-C at 6 months. Raloxifene significantly decreased the levels of bone metabolism markers NTX and BAP at 6 months in patients with diabetes. The primary endpoint, LDL-C at 6 months, was significantly lower in the raloxifene group than in the other two groups. However, percent changes in HDL-C were not significantly different among the three groups. Although glucose metabolism was unaffected, homocysteine, a bone quality marker, was significantly decreased at 6 months in the raloxifene group. The percent improvement in LDL-C did not correlate with percent improvement in any bone metabolism or bone quality markers. Raloxifene, unlike estrogen, improved LDL-C and decreased homocysteine, indicating that raloxifene can potentially improve LDL-C as well as bone quality in postmenopausal women with type 2 diabetes.
Collapse
Affiliation(s)
- Hiroko Mori
- The First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Okazaki K, Yamaguchi T, Tanaka KI, Notsu M, Ogawa N, Yano S, Sugimoto T. Advanced glycation end products (AGEs), but not high glucose, inhibit the osteoblastic differentiation of mouse stromal ST2 cells through the suppression of osterix expression, and inhibit cell growth and increasing cell apoptosis. Calcif Tissue Int 2012; 91:286-96. [PMID: 22903508 DOI: 10.1007/s00223-012-9641-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 07/21/2012] [Indexed: 11/30/2022]
Abstract
Diabetes mellitus is known to be associated with osteoporotic fractures through a decrease in osteoblastic bone formation rather than an increase in osteoclastic bone resorption. However, its precise mechanism is unknown, and we examined whether or not high glucose or advanced glycation end products (AGEs), which play key roles in the pathogenesis and complications of diabetes, would affect the osteoblastic differentiation, growth, and apoptosis of mouse stromal ST2 cells. Ten to 200 μg/mL AGE2 or AGE3 alone dose-dependently inhibited the mineralization. AGE2 or AGE3 alone (200 μg/mL) significantly inhibited alkaline phosphatase (ALP) activities as well as the mineralization of the cells (p < 0.01). In contrast, 22 mM glucose alone or in combination with 200 μg/mL AGE2 or AGE3 did not affect these cellular phenotypes. Real-time PCR showed that AGE2 or AGE3 alone (200 μg/mL) significantly decreased mRNA expressions of osteocalcin as well as osterix on day 14 (p < 0.01). Western blot analysis showed that AGE2 or AGE3 alone (200 μg/mL) also decreased the levels of Runx2 and osterix protein expressions on days 7 and 14. AGE2 or AGE3 significantly suppressed cell growth and increased apoptotic cell death in time- and dose-dependent manners (p < 0.01). Moreover, AGE3 alone (200 μg/mL) significantly increased mRNA expression of the receptor for AGEs (RAGE) on days 2 and 3 (p < 0.01). These results suggest that AGE2 and AGE3, but not high glucose, may inhibit the osteoblastic differentiation of stromal cells by decreasing osterix expression and partly by increasing RAGE expression, as well as inhibiting cell growth and increasing cell apoptosis.
Collapse
Affiliation(s)
- Kyoko Okazaki
- Department of Internal Medicine, Shimane University, Enya-cho, Izumo, Shimane, Japan
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW To discuss current literature and hypotheses pertaining to the pathophysiology of increased bone fragility and fracture in men and women with type 2 diabetes mellitus. RECENT FINDINGS Despite high bone mineral density, studies have shown that men and women with type 2 diabetes mellitus (T2DM) are at increased risk for fracture. Complications of T2DM including retinopathy and autonomic dysfunction may contribute to bone fracture by increasing fall risk. Nephropathy may lead to renal osteodystrophy. Lean mass and potentially fat mass, may additionally contribute to skeletal health in diabetes. There is increasing acknowledgement that the marrow microenvironment is critical to efficient bone remodeling. Medications including thiazolidinediones and selective serotonin reuptake inhibitors may also impair bone remodeling by acting on mesenchymal stem cell differentiation and osteoblastogenesis. T2DM is associated with significant alterations in systemic inflammation, advanced glycation end-product accumulation and reactive oxygen species generation. These systemic changes may also directly and adversely impact the remodeling cycle and lead to bone fragility in T2DM, though more research is needed. SUMMARY Fracture is a devastating event with dismal health consequences. Identifying the extrinsic and intrinsic biochemical causes of bone fracture in T2DM will speed the discovery of effective strategies for fracture prevention and treatment in this at-risk population.
Collapse
Affiliation(s)
- Kendall F Moseley
- Division of Endocrinology, Johns Hopkins Bayview Medical Center, Baltimore, Maryland, USA.
| |
Collapse
|
27
|
Yamaguchi T, Sugimoto T. Bone metabolism and fracture risk in type 2 diabetes mellitus. BONEKEY REPORTS 2012; 1:36. [PMID: 23951442 PMCID: PMC3727726 DOI: 10.1038/bonekey.2012.27] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 01/16/2012] [Indexed: 12/18/2022]
Abstract
Osteoporosis and type 2 diabetes mellitus (T2DM), both prevalent in aging and westernized societies, adversely affect the health of elderly people by causing fractures and vascular complications, respectively. Recent experimental and clinical studies show that the disorders are etiologically related through the actions of osteocalcin and adiponectin. Meta-analyses of multiple clinical studies show that the hip fracture risk of T2DM patients is increased 1.4-1.7-fold compared with non-DM controls, even though the patients' bone mineral density (BMD) is not diminished. Vertebral fracture risk of the T2DM patients is also increased, and BMD measurement is not sensitive enough to assess this risk. These findings suggest that bone fragility in T2DM patients depends on bone quality deterioration rather than bone mass reduction. Surrogate markers are therefore needed to supplement the partial effectiveness of BMD testing in assessing the fracture risk of the T2DM patients. Markers related to advanced glycation end products may be candidates. These substances modulate bone quality in DM. Until research establishes the usefulness of surrogate markers, physicians should assess fracture risk in T2DM patients not only by measuring the BMD, but also by taking a fracture history and evaluating prior vertebral fractures using spinal X-rays.
Collapse
Affiliation(s)
- Toru Yamaguchi
- Department of Internal Medicine 1, Shimane University Faculty of Medicine, Shimane, Japan
| | - Toshitsugu Sugimoto
- Department of Internal Medicine 1, Shimane University Faculty of Medicine, Shimane, Japan
| |
Collapse
|
28
|
Thomas MV, Puleo DA. Infection, inflammation, and bone regeneration: a paradoxical relationship. J Dent Res 2011; 90:1052-61. [PMID: 21248364 PMCID: PMC3169879 DOI: 10.1177/0022034510393967] [Citation(s) in RCA: 217] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 11/17/2010] [Accepted: 11/18/2010] [Indexed: 02/06/2023] Open
Abstract
Various strategies have been developed to promote bone regeneration in the craniofacial region. Most of these interventions utilize implantable materials or devices. Infections resulting from colonization of these implants may result in local tissue destruction in a manner analogous to periodontitis. This destruction is mediated via the expression of various inflammatory mediators and tissue-destructive enzymes. Given the well-documented association among microbial biofilms, inflammatory mediators, and tissue destruction, it seems reasonable to assume that inflammation may interfere with bone healing and regeneration. Paradoxically, recent evidence also suggests that the presence of certain pro-inflammatory mediators is actually required for bone healing. Bone injury (e.g., subsequent to a fracture or surgical intervention) is followed by a choreographed cascade of events, some of which are dependent upon the presence of pro-inflammatory mediators. If inflammation resolves promptly, then proper bone healing may occur. However, if inflammation persists (which might occur in the presence of an infected implant or graft material), then the continued inflammatory response may result in suboptimal bone formation. Thus, the effect of a given mediator is dependent upon the temporal context in which it is expressed. Better understanding of this temporal sequence may be used to optimize regenerative outcomes.
Collapse
Affiliation(s)
- M V Thomas
- Department of Oral Health Practice, University of Kentucky College of Dentistry, 800 Rose Street, Room D-124, Lexington, KY 40536-0297, USA.
| | | |
Collapse
|
29
|
Blakytny R, Spraul M, Jude EB. Review: The diabetic bone: a cellular and molecular perspective. INT J LOW EXTR WOUND 2011; 10:16-32. [PMID: 21444607 DOI: 10.1177/1534734611400256] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
With the increasing worldwide prevalence of diabetes the resulting complications, their consequences and treatment will lead to a greater social and financial burden on society. One of the many organs to be affected is bone. Loss of bone is observed in type 1 diabetes, in extreme cases mirroring osteoporosis, thus a greater risk of fracture. In the case of type 2 diabetes, both a loss and an increase of bone has been observed, although in both cases the quality of the bone overall was poorer, again leading to a greater risk of fracture. Once a fracture has occurred, healing is delayed in diabetes, including nonunion. The reasons leading to such changes in the state of the bone and fracture healing in diabetes is under investigation, including at the cellular and the molecular levels. In comparison with our knowledge of events in normal bone homeostasis and fracture healing, that for diabetes is much more limited, particularly in patients. However, progress is being made, especially with the use of animal models for both diabetes types. Identifying the molecular and cellular changes in the bone in diabetes and understanding how they arise will allow for targeted intervention to improve diabetic bone, thus helping to counter conditions such as Charcot foot as well as preventing fracture and accelerating healing when a fracture does occur.
Collapse
|
30
|
Montagnani A, Gonnelli S, Alessandri M, Nuti R. Osteoporosis and risk of fracture in patients with diabetes: an update. Aging Clin Exp Res 2011; 23:84-90. [PMID: 21743287 DOI: 10.1007/bf03351073] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Diabetes mellitus (DM) and osteoporotic fractures are two of the most important causes of mortality and morbidity in older subjects. Recent data report a close association between fragility fracture risk and DM of both type 1 (DM1) and type 2 (DM2). However, DM1 is associated with reduced bone mineral density (BMD), whereas patients with DM2 generally have normal or increased BMD. This apparent paradox may be explained by the fact that, at a given level of BMD, diabetic patients present lower bone quality with respect to non-diabetics, as shown by several studies reporting that diabetes may affect bone tissue by means of various mechanisms, including hyperinsulinemia, deposition of advanced glycosylation endproducts (AGEs) in collagen, reduced serum levels of IGF-1, hypercalciuria, renal failure, microangiopathy and inflammation. In addition, the propensity to fall and several comorbidities may further explain the higher fracture incidence in DM patients with respect to the general population. It is reasonable to expect that close metabolic control of diabetes may improve bone status, although its effect on reduction of fracture risk has not yet been demonstrated. However, metformin has a direct effect on bone tissue by reducing AGE accumulation, whereas insulin acts directly on osteoclast activity, and thiazolidinediones (TZD) may have a negative effect by switching mesenchymal progenitor cells to adipose rather than bone tissue. New prospects include the incretins, a class of antidiabetic drugs which may play a role linking nutrition and bone metabolism. Better knowledge on how diabetes and its treatments influence bone tissue may lie at the basis of effective prevention of bone fracture in diabetic patients. Thus, close glycemic control, adequate intake of calcium and vitamin D, screening for low BMD, and prevention and treatment of diabetic complications are key elements in the management of osteoporosis in both DM1 and DM2. Attention should be paid to treating diabetes with TZD in women with DM2, particularly if elderly. Lastly, patients with osteoporosis and diabetes should be offered the same pharmacological treatments as non-diabetics, although specific trials on the effects of anti-osteoporotic drugs in the diabetic population are lacking.
Collapse
Affiliation(s)
- Andrea Montagnani
- Metabolic Bone Diseases and Osteoporosis Unit, Department of Internal Medicine, Misericordia Hospital, Via Senese, Grosseto, Italy.
| | | | | | | |
Collapse
|
31
|
Osteoporosi nei pazienti con diabete mellito. ITALIAN JOURNAL OF MEDICINE 2011. [DOI: 10.1016/j.itjm.2010.09.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
32
|
Abstract
Diabetes mellitus (DM) is a complex disease with varying degrees of systemic and oral complications. The periodontium is also a target for diabetic damage. Diabetes is a pandemic in both developed and developing countries. In recent years, a link between periodontitis and diabetes mellitus has been postulated. The oral cavity serves as a continuous source of infectious agents that could further worsen the diabetic status of the patient and serve as an important risk factor deterioration of diabetes mellitus. The present review highlights the relationship between diabetes mellitus and periodontitis. The potential mechanisms involved in the deterioration of diabetic status and periodontal disease are also discussed.
Collapse
Affiliation(s)
- Abhijit Gurav
- Department of Periodontics, Tatyasaheb Kore Dental College and Research Centre, New Pargaon, Kolhapur, Maharashtra, India.
| | | |
Collapse
|
33
|
Abstract
Osteoporosis and type 2 diabetes mellitus (T2DM) are now prevalent in aging and westernized societies, and adversely affect the health of the elderly people by causing fractures and vascular complications, respectively. Recent experimental and clinical studies show that both disorders are etiologically related to each other through the actions of osteocalcin and adiponectin. Meta-analyses of multiple clinical studies show that hip fracture risk of T2DM patients is increased to 1.4 to 1.7-folds, although BMD of the patients is not diminished. Vertebral fracture risk of T2DM patients is also increased, and BMD is not useful for assessing its risk. These findings suggest that bone fragility in T2DM depends on bone quality deterioration rather than bone mass reduction. Thus, surrogate markers are needed to replace the insensitivity of BMD in assessing fracture risks of T2DM patients. Markers related to advanced glycation end products as well as insulin-like growth factor-I may be such candidates, because these substances were experimentally shown to modulate bone quality in DM. In practice, it is important for physicians to assess fracture risk in T2DM patients by evaluating prior VFs and fracture histories using spine X-ray and interview, respectively, until the usefulness of surrogate markers is established.
Collapse
Affiliation(s)
- Toru Yamaguchi
- Internal Medicine 1, Shimane University Faculty of Medicine, Japan.
| | | |
Collapse
|
34
|
Yamaguchi T. Bone fragility in type 2 diabetes mellitus. World J Orthop 2010; 1:3-9. [PMID: 22474621 PMCID: PMC3302026 DOI: 10.5312/wjo.v1.i1.3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 07/27/2010] [Accepted: 08/04/2010] [Indexed: 02/06/2023] Open
Abstract
The number of patients with osteoporosis or type 2 diabetes mellitus (T2DM) is increasing in aging and westernized societies. Both disorders predispose elderly people to disabling conditions by causing fractures and vascular complications, respectively. It is well documented that bone metabolism and glucose/fat metabolism are etiologically related to each other through osteocalcin action and Wnt signaling. Bone fragility in T2DM, which is not reflected by bone mineral density (BMD), depends on bone quality deterioration rather than bone mass reduction. Thus, surrogate markers are needed to replace the insensitivity of BMD in assessing fracture risks of T2DM patients. Pentosidine, the endogenous secretory receptor for advanced glycation endproducts, and insulin-like growth factor-I seem to be such candidates, although further studies are required to clarify whether or not these markers could predict the occurrence of new fractures of T2DM patients in a prospective fashion.
Collapse
|
35
|
Xu Y, Toure F, Qu W, Lin L, Song F, Shen X, Rosario R, Garcia J, Schmidt AM, Yan SF. Advanced glycation end product (AGE)-receptor for AGE (RAGE) signaling and up-regulation of Egr-1 in hypoxic macrophages. J Biol Chem 2010; 285:23233-40. [PMID: 20507991 DOI: 10.1074/jbc.m110.117457] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Receptor for advanced glycation end product (RAGE)-dependent signaling has been implicated in ischemia/reperfusion injury in the heart, lung, liver, and brain. Because macrophages contribute to vascular perturbation and tissue injury in hypoxic settings, we tested the hypothesis that RAGE regulates early growth response-1 (Egr-1) expression in hypoxia-exposed macrophages. Molecular analysis, including silencing of RAGE, or blockade of RAGE with sRAGE (the extracellular ligand-binding domain of RAGE), anti-RAGE IgG, or anti-AGE IgG in THP-1 cells, and genetic deletion of RAGE in peritoneal macrophages, revealed that hypoxia-induced up-regulation of Egr-1 is mediated by RAGE signaling. In addition, the observation of increased cellular release of RAGE ligand AGEs in hypoxic THP-1 cells suggests that recruitment of RAGE in hypoxia is stimulated by rapid production of RAGE ligands in this setting. Finally, we show that mDia-1, previously shown to interact with the RAGE cytoplasmic domain, is essential for hypoxia-stimulated regulation of Egr-1, at least in part through protein kinase C betaII, ERK1/2, and c-Jun NH(2)-terminal kinase signaling triggered by RAGE ligands. Our findings highlight a novel mechanism by which an extracellular signal initiated by RAGE ligand AGEs regulates Egr-1 in a manner requiring mDia-1.
Collapse
Affiliation(s)
- Yunlu Xu
- Division of Surgical Science, Department of Surgery, Columbia University Medical Center, New York, New York 10032, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Yamamoto M, Yamaguchi T, Yamauchi M, Sugimoto T. Low serum level of the endogenous secretory receptor for advanced glycation end products (esRAGE) is a risk factor for prevalent vertebral fractures independent of bone mineral density in patients with type 2 diabetes. Diabetes Care 2009; 32:2263-8. [PMID: 19752174 PMCID: PMC2782988 DOI: 10.2337/dc09-0901] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Patients with type 2 diabetes are known to have an increased risk for fracture compared with non-type 2 diabetic control subjects, despite having higher bone mineral density (BMD). We previously showed that serum pentosidine, one of the advanced glycation end products (AGEs), was associated with prevalent vertebral fractures (VFs) in those with type 2 diabetes. The involvement of the endogenous secretory receptor for AGEs (esRAGE) in VFs in those with type 2 diabetes, however, is still unknown. RESEARCH DESIGN AND METHODS We compared parameters including esRAGE, pentosidine, and BMD in Japanese type 2 diabetic patients (137 men >50 years old and 140 postmenopausal women) with and without VFs. RESULTS The esRAGE-to-pentosidine ratio in type 2 diabetic patients with VFs was significantly lower than in those without VFs (men: 7.1 +/- 2.8 vs. 9.4 +/- 6.2, P = 0.013, respectively; women: 4.7 +/- 2.7 vs. 8.2 +/- 5.4, P < 0.001, respectively). Multivariate logistic regression analysis adjusted for age, BMI, A1C, serum creatinine, duration of diabetes, therapeutic agents, diabetes complications, osteoporotic risk factors, and lumbar BMD identified the serum esRAGE level and esRAGE-to-pentosidine ratio as factors associated with the presence of VFs, independent of BMD in men (odds ratio [OR] 0.46 [95% CI 0.25-0.84], P = 0.012; and OR 0.34 [0.15-0.76], P = 0.009, respectively) and in women (OR 0.32 [0.16-0.67], P = 0.002; and OR 0.14 [0.04-0.43], P = 0.001, respectively). CONCLUSIONS These results show that serum esRAGE level and esRAGE-to-pentosidine ratio are more useful than BMD for assessing the risk of VFs in type 2 diabetic patients.
Collapse
Affiliation(s)
- Masahiro Yamamoto
- Department of Internal Medicine 1, Shimane University Faculty of Medicine, Shimane, Japan.
| | | | | | | |
Collapse
|
37
|
Yoshida T, Flegler A, Kozlov A, Stern PH. Direct inhibitory and indirect stimulatory effects of RAGE ligand S100 on sRANKL-induced osteoclastogenesis. J Cell Biochem 2009; 107:917-25. [DOI: 10.1002/jcb.22192] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
38
|
Lee KH, Choi EM. Effect of pine pollen extract on experimental chronic arthritis. Phytother Res 2009; 23:651-7. [DOI: 10.1002/ptr.2526] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
39
|
Takizawa M, Suzuki K, Matsubayashi T, Kikuyama M, Suzuki H, Takahashi K, Katsuta H, Mitsuhashi J, Nishida S, Yamaguchi S, Yoshimoto K, Itagaki E, Ishida H. Increased bone resorption may play a crucial role in the occurrence of osteopenia in patients with type 2 diabetes: Possible involvement of accelerated polyol pathway in its pathogenesis. Diabetes Res Clin Pract 2008; 82:119-26. [PMID: 18774197 DOI: 10.1016/j.diabres.2008.07.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Revised: 07/02/2008] [Accepted: 07/02/2008] [Indexed: 11/28/2022]
Abstract
In order to investigate the underlying mechanism of alterations in bone mineral metabolism in patients with type 2 diabetes, we determined circulating levels of bone functional markers along with urinary excretion of sorbitol (SOR) and bone mineral density (BMD), and also examined their mutual interrelationship. A total of 151 male type 2 diabetic patients were examined in this study. Forty-eight age-matched male healthy subjects were also studied as the controls. A significant reduction of serum intact osteocalcin (i-OC) was found in the diabetic groups (p<0.01). On the other hand, circulating levels of tartrate resistant acid phosphatase (TRAP) in the diabetic patients were significantly higher than those in the controls (p<0.01). Interestingly, a significantly negative relationship was observed between BMD and serum TRAP (p<0.01), although no significant relationship was noted between BMD and serum i-OC in diabetic patients. Urinary excretion of SOR was significantly elevated in the diabetic patients when compared with the controls (p<0.01). In addition, a significantly positive correlation was observed between serum TRAP and urinary SOR (p<0.01), but not between serum i-OC and urinary SOR. Elevated serum TRAP in diabetes was reduced after the administration of aldose reductase inhibitor (p<0.05). It seems most likely that the increase in osteoclastic function probably due to accelerated polyol pathway plays a crucial role in the pathogenesis of decreased bone mineral content in male patients with type 2 diabetes.
Collapse
Affiliation(s)
- Makoto Takizawa
- Third Department of Internal Medicine, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Care of patients with diabetes should include assessment of bone health. The extension of the average life expectancy of people with diabetes, which has accompanied improvements in medical care, has also increased the significance of osteoporosis. In addition to the usual causes of osteoporosis associated with aging, bone health is also compromised by diabetes. Studies on bone involvement in patients with diabetes mellitus have generated conflicting results, largely because of the pathogenetic complexity of the condition. It is now clear that patients with type 1 diabetes have lower bone mineral density (BMD) and a higher risk of fractures. Evidence is emerging that patients with type 2 diabetes who have complications are also at increased risk of certain types of osteoporotic fractures, despite having a higher BMD when compared to patients with type 1 diabetes. Although many factors, including number and type of falls, visual impairment, neuropathy, and reduced muscle strength, influence the probability of fractures, the most significant factor seems to be the strength of the bone itself. Thus, sarcopenia, a reduction in muscle mass and muscle strength, is considered one of the main determinants of bone fragility. The aim of this review is to examine the occurrence of osteoporosis in type 1 and type 2 diabetes.
Collapse
|
41
|
Methotrexate reduces the levels of pentosidine and 8-hydroxy-deoxy guanosine in patients with rheumatoid arthritis. Mod Rheumatol 2007; 17:398-402. [PMID: 17929132 DOI: 10.1007/s10165-007-0607-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2007] [Accepted: 06/01/2007] [Indexed: 10/22/2022]
Abstract
This study was performed to investigate whether methotrexate (MTX) affects the levels of oxidative stress markers, including pentosidine one of the glycation end products (AGEs) or 8-hydroxy-deoxy guanosine (8-OHdG). These stress markers represent DNA damage; 19 rheumatoid arthritis (RA) patients underwent MTX treatment. The levels of serum total, urinary total, urinary-free pentosidine and also urinary 8-OHdG, as well as clinical parameters, including disease activity scores for 28 joints (DAS28) were measured at baseline and at 3 and 6 months after the initial treatment with MTX. After the initial treatment with MTX, serum total and urinary total pentosidine levels were reduced at 6 months, and urinary-free pentosidine levels were reduced at 3 and 6 months. Urinary 8-OHdG levels also were significantly reduced at 6 months after the initial treatment with MTX. This study demonstrated that MTX plays a role as a regulator against pentosidine formation and oxidative DNA damage in RA patients.
Collapse
|
42
|
Alikhani M, Alikhani Z, Boyd C, MacLellan CM, Raptis M, Liu R, Pischon N, Trackman PC, Gerstenfeld L, Graves DT. Advanced glycation end products stimulate osteoblast apoptosis via the MAP kinase and cytosolic apoptotic pathways. Bone 2007; 40:345-53. [PMID: 17064973 PMCID: PMC1913208 DOI: 10.1016/j.bone.2006.09.011] [Citation(s) in RCA: 242] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Revised: 07/21/2006] [Accepted: 09/05/2006] [Indexed: 12/27/2022]
Abstract
We have previously shown that diabetes significantly enhances apoptosis of osteoblastic cells in vivo and that the enhanced apoptosis contributes to diabetes impaired new bone formation. A potential mechanism is enhanced apoptosis stimulated by advanced glycation end products (AGEs). To investigate this further, an advanced glycation product, carboxymethyl lysine modified collagen (CML-collagen), was injected in vivo and stimulated a 5-fold increase in calvarial periosteal cell apoptosis compared to unmodified collagen. It also induced apoptosis in primary cultures of human or neonatal rat osteoblastic cells or MC3T3-E1 cells in vitro. Moreover, the apoptotic effect was largely mediated through RAGE receptor. CML-collagen increased p38 and JNK activity 3.2- and 4.4-fold, respectively. Inhibition of p38 and JNK reduced CML-collagen stimulated apoptosis by 45% and 59% and by 90% when used together (P<0.05). The predominant apoptotic pathway induced by CML-collagen involved caspase-8 activation of caspase-3 and was independent of NF-kappaB activation. When osteoblastic cells were exposed to a long-term low dose incubation with CML-collagen, there was a higher degree of apoptosis compared to short-term incubation. In more differentiated osteoblastic cultures, apoptosis was enhanced even further. These results indicate that advanced glycation end products, which accumulate in diabetic and aged individuals, may promote apoptosis of osteoblastic cells and contribute to deficient bone formation.
Collapse
Affiliation(s)
- Mani Alikhani
- Department of Periodontology and Oral Biology, Boston University School of Dental Medicine, Boston, Massachusetts 02118
| | - Zoubin Alikhani
- Department of Periodontology and Oral Biology, Boston University School of Dental Medicine, Boston, Massachusetts 02118
| | - Coy Boyd
- Department of Periodontology and Oral Biology, Boston University School of Dental Medicine, Boston, Massachusetts 02118
| | - Christine M. MacLellan
- Department of Periodontology and Oral Biology, Boston University School of Dental Medicine, Boston, Massachusetts 02118
| | - Markos Raptis
- Department of Periodontology and Oral Biology, Boston University School of Dental Medicine, Boston, Massachusetts 02118
| | - Rongkun Liu
- Department of Periodontology and Oral Biology, Boston University School of Dental Medicine, Boston, Massachusetts 02118
| | - Nicole Pischon
- Department of Periodontology and Oral Biology, Boston University School of Dental Medicine, Boston, Massachusetts 02118
| | - Philip C. Trackman
- Department of Periodontology and Oral Biology, Boston University School of Dental Medicine, Boston, Massachusetts 02118
| | - Louis Gerstenfeld
- Department of Orthopedics, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Dana T. Graves
- Department of Periodontology and Oral Biology, Boston University School of Dental Medicine, Boston, Massachusetts 02118
| |
Collapse
|
43
|
Abstract
The present study was undertaken to compare the oxidant statuses of mice with collagen-induced arthritis (CIA) and those of healthy mice. For this purpose, serum oxidant products and arthritic profiles were measured in DBA/1J mice with CIA. In addition, the levels of oxidation products and the activities of antioxidant enzymes were determined in liver, heart, spleen, kidney, lung and brain. The induction of arthritis significantly increased anti-collagen antibody, rheumatoid factor, interleukin (IL)-1beta, IL-6, protein carbonyl (PCO), advanced glycation end-products (AGE), malondialdehyde (MDA) and low density lipoprotein (LDL)-cholesterol levels in serum (P < 0.05). CIA in DBA/1J mice was associated with significantly lower activities of superoxide dismutase, glutathione peroxidase and glutathione reductase in spleen but higher levels of oxidation products in spleen, kidney and liver than healthy normal mice (P < 0.05). However, lower concentrations of oxidized protein and higher activities of antioxidant enzymes were observed in CIA mouse lung and brain than in healthy normal mice. Dexamethasone treated CIA mice had decreased arthritis-related indices and showed: reduced PCO and AGE in spleen and brain, and increased PCO and AGE in heart, kidney and lung; increased MDA in heart, spleen, lung and brain; reduced SOD and GR activities in lung and brain; increased GPx activity in spleen and brain; and increased GR activity heart and spleen. These data suggest that mice with CIA were more susceptible to oxidative damage in the spleen and liver under the chronic inflammatory conditions.
Collapse
Affiliation(s)
- Eun-Mi Choi
- Department of Food and Nutrition, Kyung Hee University, 1, Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Korea.
| |
Collapse
|
44
|
Abstract
BACKGROUND The purpose of this review is to provide the reader with practical knowledge concerning the relationship between diabetes mellitus and periodontal diseases. Over 200 articles have been published in the English literature over the past 50 years examining the relationship between these two chronic diseases. Data interpretation is often confounded by varying definitions of diabetes and periodontitis and different clinical criteria applied to prevalence, extent, and severity of periodontal diseases, levels of glycemic control, and complications associated with diabetes. METHODS This article provides a broad overview of the predominant findings from research published in English over the past 20 years, with reference to certain "classic" articles published prior to that time. RESULTS This article describes current diagnostic and classification criteria for diabetes and answers the following questions: 1) Does diabetes affect the risk of periodontitis, and does the level of metabolic control of diabetes have an impact on this relationship? 2) Do periodontal diseases affect the pathophysiology of diabetes mellitus or the metabolic control of diabetes? 3) What are the mechanisms by which these two diseases interrelate? and 4) How do people with diabetes and periodontal disease respond to periodontal treatment? CONCLUSIONS Diabetes increases the risk of periodontal diseases, and biologically plausible mechanisms have been demonstrated in abundance. Less clear is the impact of periodontal diseases on glycemic control of diabetes and the mechanisms through which this occurs. Inflammatory periodontal diseases may increase insulin resistance in a way similar to obesity, thereby aggravating glycemic control. Further research is needed to clarify this aspect of the relationship between periodontal diseases and diabetes.
Collapse
Affiliation(s)
- Brian L Mealey
- Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| | | |
Collapse
|
45
|
Webster J, Wilke M, Stahl P, Kientsch-Engel R, Münch G. [Maillard reaction products in food as pro-inflammatory and pro-arteriosclerotic factors of degenerative diseases]. Z Gerontol Geriatr 2006; 38:347-53. [PMID: 16244820 DOI: 10.1007/s00391-005-0263-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2004] [Accepted: 09/03/2004] [Indexed: 12/30/2022]
Abstract
Heating of food induces the formation of Maillard reaction products (MRPs) caused by the reaction of reducing sugars with proteins or amino acids. Analogous reactions occur in the human body, eventually forming "Advanced Glycation Endproducts" (AGEs). AGEs accumulate in aging tissues accelerating degenerative-inflammatory and proliferative processes. MRPs present in food can also directly cause inflammatory processes in the intestines and, once absorbed, would support and reinforce any inflammatory and degenerative process occurring in the body. The contribution of AGEs (and additional MRPs) in the development of diabetic complications as well as nephropathy, neuropathy, micro- and macroangiopathies is now well established. Which of the MRPs or AGEs in particular induce these cellular processes is currently unknown. Thus the exact knowledge of the chemical structures of the MRPs could help to minimize the formation of "harmful MRPs" that occur due to heating in food processing. Because MRPs play a decisive role in the successful marketing of edibles due to their characteristics as flavor components, it is important to increase the amount of innocuous and palatable MRPs, and minimize signal active pro-inflammatory MRPs by the use of defined preparation methods. It is practicable to use low-priced immunological methods for the quantitative determination of specific MRPs or AGEs. In the medical area, the knowledge of the signal active MRP/AGE structures provides the opportunity to measure their concentrations in body fluids and tissues and thus determine their influence on inflammatory and age-related degenerative processes (e. g., late diabetic complications, arteriosclerosis, degeneration of neurons). From a clinical perspective, the application of RAGE antagonists after an appropriate chemical diagnosis could be effective in supporting the treatment of affected patient groups, especially older diabetic and dialysis patients.
Collapse
Affiliation(s)
- J Webster
- Comparative Genomics Center , James Cook University, Townsville, Australia
| | | | | | | | | |
Collapse
|
46
|
Ding KH, Wang ZZ, Hamrick MW, Deng ZB, Zhou L, Kang B, Yan SL, She JX, Stern DM, Isales CM, Mi QS. Disordered osteoclast formation in RAGE-deficient mouse establishes an essential role for RAGE in diabetes related bone loss. Biochem Biophys Res Commun 2005; 340:1091-7. [PMID: 16403440 DOI: 10.1016/j.bbrc.2005.12.107] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2005] [Accepted: 12/15/2005] [Indexed: 10/25/2022]
Abstract
The mechanisms underlying diabetes-mediated bone loss are not well defined. It has been reported that the advanced glycation endproducts (AGEs) and receptor for AGEs (RAGEs) are involved in diabetic complications. Here, mice deficient in RAGE were used as a model for investigating the effects of RAGE on bone mass. We found that RAGE-/- mice have a significantly increased bone mass and bone biomechanical strength and a decreased number of osteoclasts compared to wild-type mice. The serum levels of IL-6 and bone breakdown marker pyridinoline were significantly decreased in RAGE-/- mice. RAGE-/- mice maintain bone mass following ovariectomy, whereas wild-type mice lose bone mass. Furthermore, osteoclast-like cells do express RAGE mRNA. Our data therefore indicate that RAGE serves as a positive factor to regulate the osteoclast formation, directly implicates a role for RAGE in diabetes-promoted bone destruction, and documents that the AGE-RAGE interaction may account for diabetes associated bone loss.
Collapse
Affiliation(s)
- Ke-Hong Ding
- Department of Medicine, Medical College of Georgia, Augusta, GA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Odetti P, Rossi S, Monacelli F, Poggi A, Cirnigliaro M, Federici M, Federici A. Advanced glycation end products and bone loss during aging. Ann N Y Acad Sci 2005; 1043:710-7. [PMID: 16037297 DOI: 10.1196/annals.1333.082] [Citation(s) in RCA: 191] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
It is well known that bone mass density decreases with age. Age-related bone mass loss is ascribed to several factors. Nonenzymatic glycation has been proposed as a new potential factor in the loss of bone during aging. In this study we evaluated the concentration of pentosidine, an advanced glycation end product, in cortical and trabecular bone and in the plasma of subjects undergoing orthopedic surgery. The relationship between these parameters and a clinical index of osteoporosis was also studied. Samples of bone and plasma of 104 nondiabetic subjects (74 women and 30 men), 72 +/- 1 years old, were studied. Pentosidine was determined by HPLC after decalcification and hydrolysis. The radiologic Singh index was evaluated blindly by orthopedic surgeons to provide the degree of osteoporosis. Pentosidine concentration of cortical bone shows a significant exponential increase with age (r = 0.610, P < 0.001). This increase, however, is not seen in the trabecular bone, which is characterized by a large spread in the data. Interestingly the concentration of cortical pentosidine is also related to the Singh score (r(s) = -0.274, P < 0.01). Plasma pentosidine has a significant exponential correlation with age (r = +0.339, P < 0.001) and a linear correlation with the cortical bone pentosidine (r = +0.248, P < 0.05). This study demonstrates that pentosidine increases exponentially in cortical bone during aging, and is thus a good biomarker for the degree of bone mass density loss. The trabecular bone concentration of pentosidine is more variable, probably because of the turnover rate and the local environment; plasma pentosidine might provide information on the bone turnover rate.
Collapse
Affiliation(s)
- Patrizio Odetti
- Division of Geriatrics, Department of Internal Medicine and Medical Specialties (D.I.M.I.), Viale Benedetto XV, 6, 16132 Genova, Italy.
| | | | | | | | | | | | | |
Collapse
|
48
|
Kurebayashi S, Xu X, Ishii S, Shiraishi M, Kouhara H, Kasayama S. A novel thiazolidinedione MCC-555 down-regulates tumor necrosis factor-alpha-induced expression of vascular cell adhesion molecule-1 in vascular endothelial cells. Atherosclerosis 2005; 182:71-7. [PMID: 16115476 DOI: 10.1016/j.atherosclerosis.2005.02.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2004] [Revised: 12/23/2004] [Accepted: 02/08/2005] [Indexed: 12/21/2022]
Abstract
Thiazolidinediones (TZDs) are anti-diabetic agents that enhance insulin sensitivity through activating peroxisome proliferator-activated receptor (PPAR) gamma. Besides their glucose-lowering effects, TZDs are shown to exhibit anti-inflammatory properties in vascular cells, although their precise molecular mechanisms are unknown. In the present study, we examined the effects of a novel TZD MCC-555, which has unique characteristics of ability to activate not only PPARgamma but also PPARalpha and PPARdelta on vascular cell adhesion molecule-1 (VCAM-1) expression in vascular endothelial cells (ECs). Human aortic ECs were treated with MCC-555, followed by stimulation with tumor necrosis factor (TNF)-alpha. Cell surface VCAM-1 protein expression and human monocytoid U937 cell adhesion to these cells were determined. MCC-555 efficiently inhibited TNF-alpha-stimulated VCAM-11expression and U937 cell adhesion. Transient transfection of bovine aortic ECs with a VCAM-1 promoter construct revealed that MCC-555 inhibited TNF-alpha-induced VCAM-1 promoter activity. Electrophoretic mobility-shift assay demonstrated that MCC-555 reduced the amount of nuclear factor-kappaB (NF-kappaB) bound to its recognition site on the VCAM-1 promoter. The considered PPARdelta activator GW501516 and the considered PPARalpha activator fenofibrate also inhibited TNF-alpha-induced VCAM-1 expression, whereas pioglitazone and rosiglitazone did not. These results indicate that MCC-555 is a strong TZD agent to inhibit the cytokine-induced VCAM-1 expression in vascular ECs. This effect is exerted probably through activation of PPARalpha and/or PPARdelta, rather than PPARgamma, mediating down-regulation of NF-kappaB activity.
Collapse
Affiliation(s)
- Shogo Kurebayashi
- Department of Molecular Medicine, Osaka University Graduate School of Medicine (C-4), 2-2 Yamada-oka, Suita-city, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
49
|
Carrington JL. Aging bone and cartilage: cross-cutting issues. Biochem Biophys Res Commun 2005; 328:700-8. [PMID: 15694404 DOI: 10.1016/j.bbrc.2004.12.041] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2004] [Indexed: 10/26/2022]
Abstract
Aging is a major risk factor for osteoarthritis and osteoporosis. Yet, these are not necessary outcomes of aging, and the relationship between age-related changes in bone and cartilage and development of disease is not clear. There are some well-described cellular changes associated with aging in multiple tissues that appear to be fundamental to the decline in function of cartilage and bone. A better understanding of age-related changes in cells and tissues is necessary to mitigate or, hopefully, avoid loss of bone and cartilage with aging. In addition, a better understanding of the dynamics of tissue maintenance in vivo is critical to developing tissue replacement and repair therapies. The role of stem cells in this process, and why tissues are not well maintained with advancing age, are frontiers for future aging research.
Collapse
Affiliation(s)
- Jill L Carrington
- Department of Health and Human Services, Biology of Aging Program, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
50
|
Hein GE, Köhler M, Oelzner P, Stein G, Franke S. The advanced glycation end product pentosidine correlates to IL-6 and other relevant inflammatory markers in rheumatoid arthritis. Rheumatol Int 2004; 26:137-41. [PMID: 15580352 DOI: 10.1007/s00296-004-0518-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2004] [Accepted: 07/25/2004] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Oxidative stress and inflammatory processes accelerate the formation of advanced glycation end products (AGE), e.g. of pentosidine. The aim of this study was to investigate the relationships between levels of pentosidine in serum and synovial fluid, proinflammatory cytokines, other markers of inflammatory activity, and the state of radiologically visible bone destruction in patients with rheumatoid arthritis (RA). OBJECTIVES One hundred thirty-three nondiabetic RA patients and 56 age-matched, healthy subjects were included. Serum and synovial fluid pentosidine, erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), and rheumatoid factor levels were determined. In 30 patients, the proinflammatory cytokines interleukin (IL)-1beta, IL-6, and TNF-alpha and the soluble receptors sIL-2R, sIL-6R, sTNF-alpha, and RI/RII were also measured. RESULTS Serum levels of pentosidine were on average significantly higher in RA patients than in healthy subjects and correlated significantly to ESR, CRP, and serum levels of IL-6. Serum and synovial fluid pentosidine did not show any differences. Rheumatoid factor-positive RA patients had higher pentosidine levels in the synovial fluid than rheumatoid factor-negative patients. Correlations could not be found between pentosidine and the other cytokines or cytokine receptors measured. CONCLUSION The binding of AGE on cell receptors induces activation of nuclear factor kappa B, resulting in enhanced synthesis of proinflammatory cytokines. Moreover, AGE generation may also lead to the formation of new, immunologically relevant epitopes at synovial proteins. Both mechanisms could contribute to initiation and perpetuation of the inflammatory and destructive processes in RA.
Collapse
Affiliation(s)
- Gert E Hein
- Rheumatology and Osteology, Department of Internal Medicine III, Friedrich Schiller University of Jena, 07740 Jena, Germany.
| | | | | | | | | |
Collapse
|