1
|
Platonova AA, Aleksandrova PV, Alekseeva AI, Kudryavtseva SP, Zotov AK, Zaytsev KI, Dolganov KB, Reshetov IV, Kurlov VN, Dolganova IN. Feasibility of Monitoring Tissue Properties During Microcirculation Disorder Using a Compact Fiber-Based Probe With Sapphire Tip. JOURNAL OF BIOPHOTONICS 2024; 17:e202400368. [PMID: 39354878 DOI: 10.1002/jbio.202400368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 10/03/2024]
Abstract
One of the urgent tasks of modern medicine is to detect microcirculation disorder during surgery to avoid possible consequences like tissue hypoxia, ischemia, and necrosis. To address this issue, in this article, we propose a compact probe with sapphire tip and optical sensing based on the principle of spatially resolved diffuse reflectance analysis. It allows for intraoperative measurement of tissue effective attenuation coefficient and its alteration during the changes of tissue condition, caused by microcirculation disorder. The results of experimental studies using (1) a tissue-mimicking phantom based on lipid emulsion and hemoglobin and (2) a model of hindlimb ischemia performed in a rat demonstrated the ability to detect rapid changes of tissue attenuation confirming the feasibility of the probe to sense the stressful exposure. Due to a compact design of the probe, it could be useful for rather wide surgical operations and diagnostic purposes as an auxiliary instrument.
Collapse
Affiliation(s)
- Alina A Platonova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| | - Polina V Aleksandrova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| | - Anna I Alekseeva
- Avtsyn Research Institute of Human Morphology of FSBSI "Petrovsky National Research Centre of Surgery", Moscow, Russia
| | - Sophya P Kudryavtseva
- Sechenov First Moscow State Medical University, N.V. Sklifosovskiy Institute of Clinical Medicine, Moscow, Russia
| | - Arsen K Zotov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
- Osipyan Institute of Solid State Physics of the Russian Academy of Sciences, Chernogolovka, Russia
| | - Kirill I Zaytsev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| | - Kirill B Dolganov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| | - Igor V Reshetov
- Sechenov First Moscow State Medical University, Institute for Cluster Oncology, Moscow, Russia
| | - Vladimir N Kurlov
- Osipyan Institute of Solid State Physics of the Russian Academy of Sciences, Chernogolovka, Russia
| | - Irina N Dolganova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
- Osipyan Institute of Solid State Physics of the Russian Academy of Sciences, Chernogolovka, Russia
| |
Collapse
|
2
|
Otic N, Sunwoo J, Huang Y, Martin A, Robinson MB, Zimmermann B, Carp S, Inder T, El-Dib M, Franceschini MA, Renna M. Multi-wavelength multi-distance diffuse correlation spectroscopy system for assessment of premature infants' cerebral hemodynamics. BIOMEDICAL OPTICS EXPRESS 2024; 15:1959-1975. [PMID: 38495689 PMCID: PMC10942694 DOI: 10.1364/boe.505783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 03/19/2024]
Abstract
Infants born at an extremely low gestational age (ELGA, < 29 weeks) are at an increased risk of intraventricular hemorrhage (IVH), and there is a need for standalone, safe, easy-to-use tools for monitoring cerebral hemodynamics. We have built a multi-wavelength multi-distance diffuse correlation spectroscopy device (MW-MD-DCS), which utilizes time-multiplexed, long-coherence lasers at 785, 808, and 853 nm, to simultaneously quantify the index of cerebral blood flow (CBFi) and the hemoglobin oxygen saturation (SO2). We show characterization data on liquid phantoms and demonstrate the system performance on the forearm of healthy adults, as well as clinical data obtained on two preterm infants.
Collapse
Affiliation(s)
- Nikola Otic
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
- Neurophotonics Center, Boston University, Boston, Massachusetts, USA
| | - John Sunwoo
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Yujing Huang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Alyssa Martin
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Mitchell B. Robinson
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | | | - Stefan Carp
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Terrie Inder
- Division of Newborn Medicine, Department of Pediatrics, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Mohamed El-Dib
- Division of Newborn Medicine, Department of Pediatrics, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Maria Angela Franceschini
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Marco Renna
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| |
Collapse
|
3
|
Ortega-Contreras JA, Alvarado-Méndez E, Almanza-Rodríguez G, Hernández MDC, Celaya-García L. Glucose Sensor Using Sol-Gel Coating Layer Deposited on PMMA Optical Fiber: An Enzyme Activity Measurement System. Gels 2023; 9:608. [PMID: 37623063 PMCID: PMC10453416 DOI: 10.3390/gels9080608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
In the present work, a biocatalytic glucose optical sensor produced by immobilizing glucose oxidase (GOD) as a recognition molecule over a PMMA (polymethylmethacrylate) optical fiber is introduced. An enzymatic encapsulation process was carried out using the sol-gel method, depositing a TEOS-based coating by immersion at the end of an optical fiber; the biosensor was characterized using different glucose levels. Finally, the best way to encapsulate the enzyme and prevent it from degrading is to perform the process at room temperature, and later implement the deposition of the coating on the fiber. The drying process was optimal below 8 °C.
Collapse
Affiliation(s)
| | - Edgar Alvarado-Méndez
- Department of Electronics Engineering, DICIS, Universidad de Guanajuato, Salamanca 36787, Mexico
| | - Guillermo Almanza-Rodríguez
- Department of Biochemical Engineering, Tecnológico Nacional de México, Celaya 38010, Mexico; (G.A.-R.); (M.d.C.H.)
| | - María del Carmen Hernández
- Department of Biochemical Engineering, Tecnológico Nacional de México, Celaya 38010, Mexico; (G.A.-R.); (M.d.C.H.)
| | - Luis Celaya-García
- Department of Mechanical Engineering, DICIS, Universidad de Guanajuato, Salamanca 36787, Mexico;
| |
Collapse
|
4
|
Dolganova IN, Zotov AK, Safonova LP, Aleksandrova PV, Reshetov IV, Zaytsev KI, Tuchin VV, Kurlov VN. Feasibility test of a sapphire cryoprobe with optical monitoring of tissue freezing. JOURNAL OF BIOPHOTONICS 2023; 16:e202200288. [PMID: 36510652 DOI: 10.1002/jbio.202200288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
This article describes a sapphire cryoprobe as a promising solution to the significant problem of modern cryosurgery that is the monitoring of tissue freezing. This probe consists of a sapphire rod manufactured by the edge-defined film-fed growth technique from Al2 O3 melt and optical fibers accommodated inside the rod and connected to the source and the detector. The probe's design enables detection of spatially resolved diffuse reflected intensities of tissue optical response, which are used for the estimation of tissue freezing depth. The current type of the 12.5-mm diameter sapphire probe cooled down by the liquid nitrogen assumes a superficial cryoablation. The experimental test made by using a gelatin-intralipid tissue phantom shows the feasibility of such concept, revealing the capabilities of monitoring the freezing depth up to 10 mm by the particular instrumentation realization of the probe. This justifies a potential of sapphire-based instruments aided by optical diagnosis in modern cryosurgery.
Collapse
Affiliation(s)
- Irina N Dolganova
- Osipyan Institute of Solid State Physics of the Russian Academy of Sciences, Chernogolovka, Russia
| | - Arsen K Zotov
- Osipyan Institute of Solid State Physics of the Russian Academy of Sciences, Chernogolovka, Russia
| | | | - Polina V Aleksandrova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| | - Igor V Reshetov
- Institute for Cluster Oncology, Sechenov University, Moscow, Russia
| | - Kirill I Zaytsev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| | - Valery V Tuchin
- Science Medical Center, Saratov State University, Saratov, Russia
- Institute of Precision Mechanics and Control, FRC "Saratov Scientific Centre of the Russian Academy of Sciences", Saratov, Russia
- Tomsk State University, Tomsk, Russia
| | - Vladimir N Kurlov
- Osipyan Institute of Solid State Physics of the Russian Academy of Sciences, Chernogolovka, Russia
| |
Collapse
|
5
|
Ayaz H, Baker WB, Blaney G, Boas DA, Bortfeld H, Brady K, Brake J, Brigadoi S, Buckley EM, Carp SA, Cooper RJ, Cowdrick KR, Culver JP, Dan I, Dehghani H, Devor A, Durduran T, Eggebrecht AT, Emberson LL, Fang Q, Fantini S, Franceschini MA, Fischer JB, Gervain J, Hirsch J, Hong KS, Horstmeyer R, Kainerstorfer JM, Ko TS, Licht DJ, Liebert A, Luke R, Lynch JM, Mesquida J, Mesquita RC, Naseer N, Novi SL, Orihuela-Espina F, O’Sullivan TD, Peterka DS, Pifferi A, Pollonini L, Sassaroli A, Sato JR, Scholkmann F, Spinelli L, Srinivasan VJ, St. Lawrence K, Tachtsidis I, Tong Y, Torricelli A, Urner T, Wabnitz H, Wolf M, Wolf U, Xu S, Yang C, Yodh AG, Yücel MA, Zhou W. Optical imaging and spectroscopy for the study of the human brain: status report. NEUROPHOTONICS 2022; 9:S24001. [PMID: 36052058 PMCID: PMC9424749 DOI: 10.1117/1.nph.9.s2.s24001] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
This report is the second part of a comprehensive two-part series aimed at reviewing an extensive and diverse toolkit of novel methods to explore brain health and function. While the first report focused on neurophotonic tools mostly applicable to animal studies, here, we highlight optical spectroscopy and imaging methods relevant to noninvasive human brain studies. We outline current state-of-the-art technologies and software advances, explore the most recent impact of these technologies on neuroscience and clinical applications, identify the areas where innovation is needed, and provide an outlook for the future directions.
Collapse
Affiliation(s)
- Hasan Ayaz
- Drexel University, School of Biomedical Engineering, Science, and Health Systems, Philadelphia, Pennsylvania, United States
- Drexel University, College of Arts and Sciences, Department of Psychological and Brain Sciences, Philadelphia, Pennsylvania, United States
| | - Wesley B. Baker
- Children’s Hospital of Philadelphia, Division of Neurology, Philadelphia, Pennsylvania, United States
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Giles Blaney
- Tufts University, Department of Biomedical Engineering, Medford, Massachusetts, United States
| | - David A. Boas
- Boston University Neurophotonics Center, Boston, Massachusetts, United States
- Boston University, College of Engineering, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Heather Bortfeld
- University of California, Merced, Departments of Psychological Sciences and Cognitive and Information Sciences, Merced, California, United States
| | - Kenneth Brady
- Lurie Children’s Hospital, Northwestern University Feinberg School of Medicine, Department of Anesthesiology, Chicago, Illinois, United States
| | - Joshua Brake
- Harvey Mudd College, Department of Engineering, Claremont, California, United States
| | - Sabrina Brigadoi
- University of Padua, Department of Developmental and Social Psychology, Padua, Italy
| | - Erin M. Buckley
- Georgia Institute of Technology, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
- Emory University School of Medicine, Department of Pediatrics, Atlanta, Georgia, United States
| | - Stefan A. Carp
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, United States
| | - Robert J. Cooper
- University College London, Department of Medical Physics and Bioengineering, DOT-HUB, London, United Kingdom
| | - Kyle R. Cowdrick
- Georgia Institute of Technology, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
| | - Joseph P. Culver
- Washington University School of Medicine, Department of Radiology, St. Louis, Missouri, United States
| | - Ippeita Dan
- Chuo University, Faculty of Science and Engineering, Tokyo, Japan
| | - Hamid Dehghani
- University of Birmingham, School of Computer Science, Birmingham, United Kingdom
| | - Anna Devor
- Boston University, College of Engineering, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Turgut Durduran
- ICFO – The Institute of Photonic Sciences, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
- Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Spain
| | - Adam T. Eggebrecht
- Washington University in St. Louis, Mallinckrodt Institute of Radiology, St. Louis, Missouri, United States
| | - Lauren L. Emberson
- University of British Columbia, Department of Psychology, Vancouver, British Columbia, Canada
| | - Qianqian Fang
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| | - Sergio Fantini
- Tufts University, Department of Biomedical Engineering, Medford, Massachusetts, United States
| | - Maria Angela Franceschini
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, United States
| | - Jonas B. Fischer
- ICFO – The Institute of Photonic Sciences, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
| | - Judit Gervain
- University of Padua, Department of Developmental and Social Psychology, Padua, Italy
- Université Paris Cité, CNRS, Integrative Neuroscience and Cognition Center, Paris, France
| | - Joy Hirsch
- Yale School of Medicine, Department of Psychiatry, Neuroscience, and Comparative Medicine, New Haven, Connecticut, United States
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| | - Keum-Shik Hong
- Pusan National University, School of Mechanical Engineering, Busan, Republic of Korea
- Qingdao University, School of Automation, Institute for Future, Qingdao, China
| | - Roarke Horstmeyer
- Duke University, Department of Biomedical Engineering, Durham, North Carolina, United States
- Duke University, Department of Electrical and Computer Engineering, Durham, North Carolina, United States
- Duke University, Department of Physics, Durham, North Carolina, United States
| | - Jana M. Kainerstorfer
- Carnegie Mellon University, Department of Biomedical Engineering, Pittsburgh, Pennsylvania, United States
- Carnegie Mellon University, Neuroscience Institute, Pittsburgh, Pennsylvania, United States
| | - Tiffany S. Ko
- Children’s Hospital of Philadelphia, Division of Cardiothoracic Anesthesiology, Philadelphia, Pennsylvania, United States
| | - Daniel J. Licht
- Children’s Hospital of Philadelphia, Division of Neurology, Philadelphia, Pennsylvania, United States
| | - Adam Liebert
- Polish Academy of Sciences, Nalecz Institute of Biocybernetics and Biomedical Engineering, Warsaw, Poland
| | - Robert Luke
- Macquarie University, Department of Linguistics, Sydney, New South Wales, Australia
- Macquarie University Hearing, Australia Hearing Hub, Sydney, New South Wales, Australia
| | - Jennifer M. Lynch
- Children’s Hospital of Philadelphia, Division of Cardiothoracic Anesthesiology, Philadelphia, Pennsylvania, United States
| | - Jaume Mesquida
- Parc Taulí Hospital Universitari, Critical Care Department, Sabadell, Spain
| | - Rickson C. Mesquita
- University of Campinas, Institute of Physics, Campinas, São Paulo, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology, Campinas, São Paulo, Brazil
| | - Noman Naseer
- Air University, Department of Mechatronics and Biomedical Engineering, Islamabad, Pakistan
| | - Sergio L. Novi
- University of Campinas, Institute of Physics, Campinas, São Paulo, Brazil
- Western University, Department of Physiology and Pharmacology, London, Ontario, Canada
| | | | - Thomas D. O’Sullivan
- University of Notre Dame, Department of Electrical Engineering, Notre Dame, Indiana, United States
| | - Darcy S. Peterka
- Columbia University, Zuckerman Mind Brain Behaviour Institute, New York, United States
| | | | - Luca Pollonini
- University of Houston, Department of Engineering Technology, Houston, Texas, United States
| | - Angelo Sassaroli
- Tufts University, Department of Biomedical Engineering, Medford, Massachusetts, United States
| | - João Ricardo Sato
- Federal University of ABC, Center of Mathematics, Computing and Cognition, São Bernardo do Campo, São Paulo, Brazil
| | - Felix Scholkmann
- University of Bern, Institute of Complementary and Integrative Medicine, Bern, Switzerland
- University of Zurich, University Hospital Zurich, Department of Neonatology, Biomedical Optics Research Laboratory, Zürich, Switzerland
| | - Lorenzo Spinelli
- National Research Council (CNR), IFN – Institute for Photonics and Nanotechnologies, Milan, Italy
| | - Vivek J. Srinivasan
- University of California Davis, Department of Biomedical Engineering, Davis, California, United States
- NYU Langone Health, Department of Ophthalmology, New York, New York, United States
- NYU Langone Health, Department of Radiology, New York, New York, United States
| | - Keith St. Lawrence
- Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
- Western University, Department of Medical Biophysics, London, Ontario, Canada
| | - Ilias Tachtsidis
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| | - Yunjie Tong
- Purdue University, Weldon School of Biomedical Engineering, West Lafayette, Indiana, United States
| | - Alessandro Torricelli
- Politecnico di Milano, Dipartimento di Fisica, Milan, Italy
- National Research Council (CNR), IFN – Institute for Photonics and Nanotechnologies, Milan, Italy
| | - Tara Urner
- Georgia Institute of Technology, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
| | - Heidrun Wabnitz
- Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
| | - Martin Wolf
- University of Zurich, University Hospital Zurich, Department of Neonatology, Biomedical Optics Research Laboratory, Zürich, Switzerland
| | - Ursula Wolf
- University of Bern, Institute of Complementary and Integrative Medicine, Bern, Switzerland
| | - Shiqi Xu
- Duke University, Department of Biomedical Engineering, Durham, North Carolina, United States
| | - Changhuei Yang
- California Institute of Technology, Department of Electrical Engineering, Pasadena, California, United States
| | - Arjun G. Yodh
- University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, Pennsylvania, United States
| | - Meryem A. Yücel
- Boston University Neurophotonics Center, Boston, Massachusetts, United States
- Boston University, College of Engineering, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Wenjun Zhou
- University of California Davis, Department of Biomedical Engineering, Davis, California, United States
- China Jiliang University, College of Optical and Electronic Technology, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Acharya D, Mukherjea A, Cao J, Ruesch A, Schmitt S, Yang J, Smith MA, Kainerstorfer JM. Non-Invasive Spectroscopy for Measuring Cerebral Tissue Oxygenation and Metabolism as a Function of Cerebral Perfusion Pressure. Metabolites 2022; 12:metabo12070667. [PMID: 35888791 PMCID: PMC9323243 DOI: 10.3390/metabo12070667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 11/16/2022] Open
Abstract
Near-infrared spectroscopy (NIRS) and diffuse correlation spectroscopy (DCS) measure cerebral hemodynamics, which in turn can be used to assess the cerebral metabolic rate of oxygen (CMRO2) and cerebral autoregulation (CA). However, current mathematical models for CMRO2 estimation make assumptions that break down for cerebral perfusion pressure (CPP)-induced changes in CA. Here, we performed preclinical experiments with controlled changes in CPP while simultaneously measuring NIRS and DCS at rest. We observed changes in arterial oxygen saturation (~10%) and arterial blood volume (~50%) with CPP, two variables often assumed to be constant in CMRO2 estimations. Hence, we propose a general mathematical model that accounts for these variations when estimating CMRO2 and validate its use for CA monitoring on our experimental data. We observed significant changes in the various oxygenation parameters, including the coupling ratio (CMRO2/blood flow) between regions of autoregulation and dysregulation. Our work provides an appropriate model and preliminary experimental evidence for the use of NIRS- and DCS-based tissue oxygenation and metabolism metrics for non-invasive diagnosis of CA health in CPP-altering neuropathologies.
Collapse
Affiliation(s)
- Deepshikha Acharya
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA; (D.A.); (A.M.); (J.C.); (S.S.); (J.Y.); (M.A.S.)
| | - Ankita Mukherjea
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA; (D.A.); (A.M.); (J.C.); (S.S.); (J.Y.); (M.A.S.)
| | - Jiaming Cao
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA; (D.A.); (A.M.); (J.C.); (S.S.); (J.Y.); (M.A.S.)
| | - Alexander Ruesch
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA;
| | - Samantha Schmitt
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA; (D.A.); (A.M.); (J.C.); (S.S.); (J.Y.); (M.A.S.)
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA;
| | - Jason Yang
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA; (D.A.); (A.M.); (J.C.); (S.S.); (J.Y.); (M.A.S.)
| | - Matthew A. Smith
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA; (D.A.); (A.M.); (J.C.); (S.S.); (J.Y.); (M.A.S.)
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA;
| | - Jana M. Kainerstorfer
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA; (D.A.); (A.M.); (J.C.); (S.S.); (J.Y.); (M.A.S.)
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA;
- Correspondence:
| |
Collapse
|
7
|
Lee SY, Brothers RO, Turrentine KB, Quadri A, Sathialingam E, Cowdrick KR, Gillespie S, Bai S, Goldman-Yassen AE, Joiner CH, Brown RC, Buckley EM. Quantifying the Cerebral Hemometabolic Response to Blood Transfusion in Pediatric Sickle Cell Disease With Diffuse Optical Spectroscopies. Front Neurol 2022; 13:869117. [PMID: 35847200 PMCID: PMC9283827 DOI: 10.3389/fneur.2022.869117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
Red blood cell transfusions are common in patients with sickle cell disease who are at increased risk of stroke. Unfortunately, transfusion thresholds needed to sufficiently dilute sickle red blood cells and adequately restore oxygen delivery to the brain are not well defined. Previous work has shown that transfusion is associated with a reduction in oxygen extraction fraction and cerebral blood flow, both of which are abnormally increased in sickle patients. These reductions are thought to alleviate hemometabolic stress by improving the brain's ability to respond to increased metabolic demand, thereby reducing susceptibility to ischemic injury. Monitoring the cerebral hemometabolic response to transfusion may enable individualized management of transfusion thresholds. Diffuse optical spectroscopies may present a low-cost, non-invasive means to monitor this response. In this study, children with SCD undergoing chronic transfusion therapy were recruited. Diffuse optical spectroscopies (namely, diffuse correlation spectroscopy combined with frequency domain near-infrared spectroscopy) were used to quantify oxygen extraction fraction (OEF), cerebral blood volume (CBV), an index of cerebral blood flow (CBFi), and an index of cerebral oxygen metabolism (CMRO2i) in the frontal cortex immediately before and after transfusion. A subset of patients receiving regular monthly transfusions were measured during a subsequent transfusion. Data was captured from 35 transfusions in 23 patients. Transfusion increased median blood hemoglobin levels (Hb) from 9.1 to 11.7 g/dL (p < 0.001) and decreased median sickle hemoglobin (HbS) from 30.9 to 21.7% (p < 0.001). Transfusion decreased OEF by median 5.9% (p < 0.001), CBFi by median 21.2% (p = 0.020), and CBV by median 18.2% (p < 0.001). CMRO2i did not statistically change from pre-transfusion levels (p > 0.05). Multivariable analysis revealed varying degrees of associations between outcomes (i.e., OEF, CBFi, CBV, and CMRO2i), Hb, and demographics. OEF, CBFi, and CBV were all negatively associated with Hb, while CMRO2i was only associated with age. These results demonstrate that diffuse optical spectroscopies are sensitive to the expected decreases of oxygen extraction, blood flow, and blood volume after transfusion. Diffuse optical spectroscopies may be a promising bedside tool for real-time monitoring and goal-directed therapy to reduce stroke risk for sickle cell disease.
Collapse
Affiliation(s)
- Seung Yup Lee
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
- Department of Electrical and Computer Engineering, Kennesaw State University, Marietta, GA, United States
| | - Rowan O. Brothers
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Katherine B. Turrentine
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Ayesha Quadri
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Eashani Sathialingam
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Kyle R. Cowdrick
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Scott Gillespie
- Pediatric Biostatistics Core, Emory University School of Medicine, Atlanta, GA, United States
| | - Shasha Bai
- Pediatric Biostatistics Core, Emory University School of Medicine, Atlanta, GA, United States
| | - Adam E. Goldman-Yassen
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Clinton H. Joiner
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Aflac Cancer & Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, United States
| | - R. Clark Brown
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Aflac Cancer & Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, United States
| | - Erin M. Buckley
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Children's Research Scholar, Children's Healthcare of Atlanta, Atlanta, GA, United States
- *Correspondence: Erin M. Buckley
| |
Collapse
|
8
|
Zhang Z, Qi M, Hügli G, Khatami R. Quantitative Changes in Muscular and Capillary Oxygen Desaturation Measured by Optical Sensors during Continuous Positive Airway Pressure Titration for Obstructive Sleep Apnea. BIOSENSORS 2021; 12:bios12010003. [PMID: 35049631 PMCID: PMC8774245 DOI: 10.3390/bios12010003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/24/2021] [Accepted: 12/19/2021] [Indexed: 01/02/2023]
Abstract
Obstructive sleep apnea (OSA) is a common sleep disorder, and continuous positive airway pressure (CPAP) is the most effective treatment. Poor adherence is one of the major challenges in CPAP therapy. The recent boom of wearable optical sensors measuring oxygen saturation makes at-home multiple-night CPAP titrations possible, which may essentially improve the adherence of CPAP therapy by optimizing its pressure in a real-life setting economically. We tested whether the oxygen desaturations (ODs) measured in the arm muscle (arm_OD) by gold-standard frequency-domain multi-distance near-infrared spectroscopy (FDMD-NIRS) change quantitatively with titrated CPAP pressures in OSA patients together with polysomnography. We found that the arm_OD (2.08 ± 1.23%, mean ± standard deviation) was significantly smaller (p-value < 0.0001) than the fingertip OD (finger_OD) (4.46 ± 2.37%) measured by a polysomnography pulse oximeter. Linear mixed-effects models suggested that CPAP pressure was a significant predictor for finger_OD but not for arm_OD. Since FDMD-NIRS measures a mixture of arterial and venous OD, whereas a fingertip pulse oximeter measures arterial OD, our results of no association between arm_OD and finger_OD indicate that the arm_OD mainly represented venous desaturation. Arm_OD measured by optical sensors used for wearables may not be a suitable indicator of the CPAP titration effectiveness.
Collapse
Affiliation(s)
- Zhongxing Zhang
- Center for Sleep Medicine, Sleep Research and Epileptology, Clinic Barmelweid AG, 5017 Barmelweid, Switzerland; (M.Q.); (G.H.); (R.K.)
- Barmelweid Academy, Clinic Barmelweid AG, 5017 Barmelweid, Switzerland
- Correspondence:
| | - Ming Qi
- Center for Sleep Medicine, Sleep Research and Epileptology, Clinic Barmelweid AG, 5017 Barmelweid, Switzerland; (M.Q.); (G.H.); (R.K.)
| | - Gordana Hügli
- Center for Sleep Medicine, Sleep Research and Epileptology, Clinic Barmelweid AG, 5017 Barmelweid, Switzerland; (M.Q.); (G.H.); (R.K.)
| | - Ramin Khatami
- Center for Sleep Medicine, Sleep Research and Epileptology, Clinic Barmelweid AG, 5017 Barmelweid, Switzerland; (M.Q.); (G.H.); (R.K.)
- Barmelweid Academy, Clinic Barmelweid AG, 5017 Barmelweid, Switzerland
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| |
Collapse
|
9
|
Pham T, Fernandez C, Blaney G, Tgavalekos K, Sassaroli A, Cai X, Bibu S, Kornbluth J, Fantini S. Noninvasive Optical Measurements of Dynamic Cerebral Autoregulation by Inducing Oscillatory Cerebral Hemodynamics. Front Neurol 2021; 12:745987. [PMID: 34867729 PMCID: PMC8637213 DOI: 10.3389/fneur.2021.745987] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/13/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: Cerebral autoregulation limits the variability of cerebral blood flow (CBF) in the presence of systemic arterial blood pressure (ABP) changes. Monitoring cerebral autoregulation is important in the Neurocritical Care Unit (NCCU) to assess cerebral health. Here, our goal is to identify optimal frequency-domain near-infrared spectroscopy (FD-NIRS) parameters and apply a hemodynamic model of coherent hemodynamics spectroscopy (CHS) to assess cerebral autoregulation in healthy adult subjects and NCCU patients. Methods: In five healthy subjects and three NCCU patients, ABP oscillations at a frequency around 0.065 Hz were induced by cyclic inflation-deflation of pneumatic thigh cuffs. Transfer function analysis based on wavelet transform was performed to measure dynamic relationships between ABP and oscillations in oxy- (O), deoxy- (D), and total- (T) hemoglobin concentrations measured with different FD-NIRS methods. In healthy subjects, we also obtained the dynamic CBF-ABP relationship by using FD-NIRS measurements and the CHS model. In healthy subjects, an interval of hypercapnia was performed to induce cerebral autoregulation impairment. In NCCU patients, the optical measurements of autoregulation were linked to individual clinical diagnoses. Results: In healthy subjects, hypercapnia leads to a more negative phase difference of both O and D oscillations vs. ABP oscillations, which are consistent across different FD-NIRS methods and are highly correlated with a more negative phase difference CBF vs. ABP. In the NCCU, a less negative phase difference of D vs. ABP was observed in one patient as compared to two others, indicating a better autoregulation in that patient. Conclusions: Non-invasive optical measurements of induced phase difference between D and ABP show the strongest sensitivity to cerebral autoregulation. The results from healthy subjects also show that the CHS model, in combination with FD-NIRS, can be applied to measure the CBF-ABP dynamics for a better direct measurement of cerebral autoregulation.
Collapse
Affiliation(s)
- Thao Pham
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Cristianne Fernandez
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Giles Blaney
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Kristen Tgavalekos
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Angelo Sassaroli
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Xuemei Cai
- Department of Neurology, Tufts University School of Medicine, Boston, MA, United States
| | - Steve Bibu
- Department of Neurology, Tufts University School of Medicine, Boston, MA, United States
| | - Joshua Kornbluth
- Department of Neurology, Tufts University School of Medicine, Boston, MA, United States
| | - Sergio Fantini
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| |
Collapse
|
10
|
Mohammad PPS, Isarangura S, Eddins A, Parthasarathy AB. Comparison of functional activation responses from the auditory cortex derived using multi-distance frequency domain and continuous wave near-infrared spectroscopy. NEUROPHOTONICS 2021; 8:045004. [PMID: 34926716 PMCID: PMC8673635 DOI: 10.1117/1.nph.8.4.045004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 11/29/2021] [Indexed: 05/08/2023]
Abstract
Significance: Quantitative measurements of cerebral hemodynamic changes due to functional activation are widely accomplished with commercial continuous wave (CW-NIRS) instruments despite the availability of the more rigorous multi-distance frequency domain (FD-NIRS) approach. A direct comparison of the two approaches to functional near-infrared spectroscopy can help in the interpretation of optical data and guide implementations of diffuse optical instruments for measuring functional activation. Aim: We explore the differences between CW-NIRS and multi-distance FD-NIRS by comparing measurements of functional activation in the human auditory cortex. Approach: Functional activation of the human auditory cortex was measured using a commercial frequency domain near-infrared spectroscopy instrument for 70 dB sound pressure level broadband noise and pure tone (1000 Hz) stimuli. Changes in tissue oxygenation were calculated using the modified Beer-Lambert law (CW-NIRS approach) and the photon diffusion equation (FD-NIRS approach). Results: Changes in oxygenated hemoglobin measured with the multi-distance FD-NIRS approach were about twice as large as those measured with the CW-NIRS approach. A finite-element simulation of the functional activation problem was performed to demonstrate that tissue oxygenation changes measured with the CW-NIRS approach is more accurate than that with multi-distance FD-NIRS. Conclusions: Multi-distance FD-NIRS approaches tend to overestimate functional activation effects, in part due to partial volume effects.
Collapse
Affiliation(s)
| | - Sittiprapa Isarangura
- University of South Florida, Department of Communication Sciences and Disorders, Tampa, Florida, United States
| | - Ann Eddins
- University of South Florida, Department of Communication Sciences and Disorders, Tampa, Florida, United States
| | - Ashwin B. Parthasarathy
- University of South Florida, Department of Electrical Engineering, Tampa, Florida, United States
| |
Collapse
|
11
|
Zhang Z, Qi M, Hügli G, Khatami R. The Challenges and Pitfalls of Detecting Sleep Hypopnea Using a Wearable Optical Sensor: Comparative Study. J Med Internet Res 2021; 23:e24171. [PMID: 34326039 PMCID: PMC8367170 DOI: 10.2196/24171] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 02/26/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
Background Obstructive sleep apnea (OSA) is the most prevalent respiratory sleep disorder occurring in 9% to 38% of the general population. About 90% of patients with suspected OSA remain undiagnosed due to the lack of sleep laboratories or specialists and the high cost of gold-standard in-lab polysomnography diagnosis, leading to a decreased quality of life and increased health care burden in cardio- and cerebrovascular diseases. Wearable sleep trackers like smartwatches and armbands are booming, creating a hope for cost-efficient at-home OSA diagnosis and assessment of treatment (eg, continuous positive airway pressure [CPAP] therapy) effectiveness. However, such wearables are currently still not available and cannot be used to detect sleep hypopnea. Sleep hypopnea is defined by ≥30% drop in breathing and an at least 3% drop in peripheral capillary oxygen saturation (Spo2) measured at the fingertip. Whether the conventional measures of oxygen desaturation (OD) at the fingertip and at the arm or wrist are identical is essentially unknown. Objective We aimed to compare event-by-event arm OD (arm_OD) with fingertip OD (finger_OD) in sleep hypopneas during both naïve sleep and CPAP therapy. Methods Thirty patients with OSA underwent an incremental, stepwise CPAP titration protocol during all-night in-lab video-polysomnography monitoring (ie, 1-h baseline sleep without CPAP followed by stepwise increments of 1 cmH2O pressure per hour starting from 5 to 8 cmH2O depending on the individual). Arm_OD of the left biceps muscle and finger_OD of the left index fingertip in sleep hypopneas were simultaneously measured by frequency-domain near-infrared spectroscopy and video-polysomnography photoplethysmography, respectively. Bland-Altman plots were used to illustrate the agreements between arm_OD and finger_OD during baseline sleep and under CPAP. We used t tests to determine whether these measurements significantly differed. Results In total, 534 obstructive apneas and 2185 hypopneas were recorded. Of the 2185 hypopneas, 668 (30.57%) were collected during baseline sleep and 1517 (69.43%), during CPAP sleep. The mean difference between finger_OD and arm_OD was 2.86% (95% CI 2.67%-3.06%, t667=28.28; P<.001; 95% limits of agreement [LoA] –2.27%, 8.00%) during baseline sleep and 1.83% (95% CI 1.72%-1.94%, t1516=31.99; P<.001; 95% LoA –2.54%, 6.19%) during CPAP. Using the standard criterion of 3% saturation drop, arm_OD only recognized 16.32% (109/668) and 14.90% (226/1517) of hypopneas at baseline and during CPAP, respectively. Conclusions arm_OD is 2% to 3% lower than standard finger_OD in sleep hypopnea, probably because the measured arm_OD originates physiologically from arterioles, venules, and capillaries; thus, the venous blood adversely affects its value. Our findings demonstrate that the standard criterion of ≥3% OD drop at the arm or wrist is not suitable to define hypopnea because it could provide large false-negative results in diagnosing OSA and assessing CPAP treatment effectiveness.
Collapse
Affiliation(s)
- Zhongxing Zhang
- Center for Sleep Medicine, Sleep Research and Epileptology, Barmelweid, Switzerland.,Barmelweid Academy, Clinic Barmelweid AG, Barmelweid, Switzerland
| | - Ming Qi
- Center for Sleep Medicine, Sleep Research and Epileptology, Barmelweid, Switzerland
| | - Gordana Hügli
- Center for Sleep Medicine, Sleep Research and Epileptology, Barmelweid, Switzerland
| | - Ramin Khatami
- Center for Sleep Medicine, Sleep Research and Epileptology, Barmelweid, Switzerland.,Barmelweid Academy, Clinic Barmelweid AG, Barmelweid, Switzerland.,Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland
| |
Collapse
|
12
|
Zavriyev AI, Kaya K, Farzam P, Farzam PY, Sunwoo J, Jassar AS, Sundt TM, Carp SA, Franceschini MA, Qu JZ. The role of diffuse correlation spectroscopy and frequency-domain near-infrared spectroscopy in monitoring cerebral hemodynamics during hypothermic circulatory arrests. JTCVS Tech 2021; 7:161-177. [PMID: 34318236 PMCID: PMC8311503 DOI: 10.1016/j.xjtc.2021.01.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVES Real-time noninvasive monitoring of cerebral blood flow (CBF) during surgery is key to reducing mortality rates associated with adult cardiac surgeries requiring hypothermic circulatory arrest (HCA). We explored a method to monitor cerebral blood flow during different brain protection techniques using diffuse correlation spectroscopy (DCS), a noninvasive optical technique which, combined with frequency-domain near-infrared spectroscopy (FDNIRS), also provides a measure of oxygen metabolism. METHODS We used DCS in combination with FDNIRS to simultaneously measure hemoglobin oxygen saturation (SO2), an index of cerebral blood flow (CBFi), and an index of cerebral metabolic rate of oxygen (CMRO2i) in 12 patients undergoing cardiac surgery with HCA. RESULTS Our measurements revealed that a negligible amount of blood is delivered to the cerebral cortex during HCA with retrograde cerebral perfusion, indistinguishable from HCA-only cases (median CBFi drops of 93% and 95%, respectively) with consequent similar decreases in SO2 (mean decrease of 0.6 ± 0.1% and 0.9 ± 0.2% per minute, respectively); CBFi and SO2 are mostly maintained with antegrade cerebral perfusion; the relationship of CMRO2i to temperature is given by CMRO2i = 0.052e0.079T. CONCLUSIONS FDNIRS-DCS is able to detect changes in CBFi, SO2, and CMRO2i with intervention and can become a valuable tool for optimizing cerebral protection during HCA.
Collapse
Key Words
- ACP, antegrade cerebral perfusion
- CBFi, cerebral blood flow (index)
- CMRO2i, cerebral metabolic rate of oxygen (index)
- CPB, cardiopulmonary bypass
- DCS, diffuse correlation spectroscopy
- EEG, electroencephalography
- FDNIRS, frequency-domain near-infrared spectroscopy
- HCA, hypothermic circulatory arrest
- NIRS, near-infrared spectroscopy
- RCP, retrograde cerebral perfusion
- SO2, hemoglobin oxygen saturation
- TCD, transcranial Doppler ultrasound
- antegrade cerebral perfusion
- brain imaging
- cerebral blood flow
- diffuse correlation spectroscopy
- hypothermic circulatory arrest
- near-infrared spectroscopy
- rSO2, regional oxygen saturation
- retrograde cerebral perfusion
Collapse
Affiliation(s)
- Alexander I. Zavriyev
- Department of Radiology, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Kutlu Kaya
- Department of Radiology, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Parisa Farzam
- Department of Radiology, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Parya Y. Farzam
- Department of Radiology, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - John Sunwoo
- Department of Radiology, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Arminder S. Jassar
- Division of Cardiac Surgery, Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Thoralf M. Sundt
- Division of Cardiac Surgery, Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Stefan A. Carp
- Department of Radiology, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Maria Angela Franceschini
- Department of Radiology, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Jason Z. Qu
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| |
Collapse
|
13
|
Hoang LQ, Chi HBL, Khanh DNN, Vy NTT, Hanh PX, Vu TN, Lam HT, Phuong NTK. Development of a low-cost colorimeter and its application for determination of environmental pollutants. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 249:119212. [PMID: 33248889 DOI: 10.1016/j.saa.2020.119212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 06/12/2023]
Abstract
Herein, a novel colorimeter based on the Beer-Lambert law was designed for detection of environmental pollutants in water with a high precision, simple, and miniaturized device using a tetracycline-Eu3+ complex, cadmium reduction, diazotization, 1,10-phenanthroline, and periodate oxidation. The newly developed colorimeter could detect many environmental pollutants including tetracycline, nitrate, nitrite, Fe, and Mn, which were used to evaluate its performance. Simultaneously, a modified algorithm was applied to extend the linear response range. The colorimeter was comprised of an Red Green Blue Light Emitting Diode (RGB LED) light, focusing len, 3D printed stand for the cuvette, and light-sensitive photodiode detector. Microcontroller Arduino Uno processing technology was used to form a stable integrated structure. With the use of a novel algorithm, the device exhibited a wide linear response, ranging from 0-20, 0-17, 0-0.3, 0-1.75, and 0-15 mg/L for tetracycline, N-NO3-, N-NO2-, Fe, and Mn, respectively, and low limits of detection (0.88, 0.34, 0.031, 0.08, and 0.47 mg/L for tetracycline, N-NO3-, N-NO2-, Fe, and Mn, respectively). The advantages of high precision and low cost allow the novel design to be used for the detection of environmental pollutants.
Collapse
Affiliation(s)
- Le Quoc Hoang
- Gia Dinh High School, 44, Vo Oanh, Binh Thanh District, Ho Chi Minh City, Viet Nam
| | | | - Dang Nguyen Nha Khanh
- Hochiminh City Institute of Resources Geography, Vietnam Academy of Science and Technology, 01 Mac Dinh Chi, District 1, Ho Chi Minh City, Viet Nam
| | - Ngo Thi Tuong Vy
- Hochiminh City Institute of Resources Geography, Vietnam Academy of Science and Technology, 01 Mac Dinh Chi, District 1, Ho Chi Minh City, Viet Nam
| | - Phan Xuan Hanh
- Faculty of Electrical & Electronics Engineering, Ho Chi Minh City University of Technology, Ly Thuong Kiet, District 11, Ho Chi Minh City, Viet Nam
| | - Truong Nguyen Vu
- National Institute of Applied Mechanics and Informatics, Vietnam Academy of Science and Technology, 291 Dien Bien Phu, District 3, Ho Chi Minh City, Viet Nam
| | - Hoang Thuc Lam
- Gia Dinh High School, 44, Vo Oanh, Binh Thanh District, Ho Chi Minh City, Viet Nam
| | - Nguyen Thi Kim Phuong
- Hochiminh City Institute of Resources Geography, Vietnam Academy of Science and Technology, 01 Mac Dinh Chi, District 1, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
14
|
Applegate MB, Gómez CA, Roblyer D. Modulation frequency selection and efficient look-up table inversion for frequency domain diffuse optical spectroscopy. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-200393RR. [PMID: 33768742 PMCID: PMC7992233 DOI: 10.1117/1.jbo.26.3.036007] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/02/2021] [Indexed: 05/02/2023]
Abstract
SIGNIFICANCE Frequency domain diffuse optical spectroscopy (FD-DOS) uses intensity modulated light to measure the absorption and reduced scattering coefficients of turbid media such as biological tissue. Some FD-DOS instruments utilize a single modulation frequency, whereas others use hundreds of frequencies. The effect of modulation frequency choice and measurement bandwidth on optical property (OP) extraction accuracy has not yet been fully characterized. AIM We aim to assess the effect of modulation frequency selection on OP extraction error and develop a high-speed look-up table (LUT) approach for OP estimation. APPROACH We first used noise-free simulations of light transport in homogeneous media to determine optimized iterative inversion model parameters and developed a new multi-frequency LUT method to increase the speed of inversion. We then used experimentally derived noise models for two FD-DOS instruments to generate realistic simulated data for a broad range of OPs and modulation frequencies to test OP extraction accuracy. RESULTS We found that repeated measurements at a single low-frequency (110 MHz) yielded essentially identical OP errors as a broadband frequency sweep (35 evenly spaced frequencies between 50 and 253 MHz) for these noise models. The inclusion of modulation frequencies >300 MHz diminished overall performance for one of the instruments. Additionally, we developed a LUT inversion algorithm capable of increasing inversion speeds by up to 6 × , with 1000 inversions / s and ∼1 % error when a single modulation frequency was used. CONCLUSION These results suggest that simpler single-frequency systems are likely sufficient for many applications and pave the way for a new generation of simpler digital FD-DOS systems capable of rapid, large-volume measurements with real-time feedback.
Collapse
Affiliation(s)
- Matthew B. Applegate
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Carlos A. Gómez
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Darren Roblyer
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
- Address all correspondence to Darren Roblyer,
| |
Collapse
|
15
|
Forcione M, Yakoub KM, Chiarelli AM, Perpetuini D, Merla A, Sun R, Sawosz P, Belli A, Davies DJ. Dynamic contrast-enhanced near-infrared spectroscopy using indocyanine green on moderate and severe traumatic brain injury: a prospective observational study. Quant Imaging Med Surg 2020; 10:2085-2097. [PMID: 33139989 PMCID: PMC7547258 DOI: 10.21037/qims-20-742] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND The care given to moderate and severe traumatic brain injury (TBI) patients may be hampered by the inability to tailor their treatments according to their neurological status. Contrast-enhanced near-infrared spectroscopy (NIRS) with indocyanine green (ICG) could be a suitable neuromonitoring tool. METHODS Monitoring the effective attenuation coefficients (EAC), we compared the ICG kinetics between five TBI and five extracranial trauma patients, following a venous-injection of 5 mL of 1 mg/mL ICG, using two commercially available NIRS devices. RESULTS A significantly slower passage of the dye through the brain of the TBI group was observed in two parameters related to the first ICG inflow into the brain (P=0.04; P=0.01). This is likely related to the reduction of cerebral perfusion following TBI. Significant changes in ICG optical properties minutes after injection (P=0.04) were registered. The acquisition of valid optical data in a clinical environment was challenging. CONCLUSIONS Future research should analyze abnormalities in the ICG kinetic following brain trauma, test how these values can enhance care in TBI, and adapt the current optical devices to clinical settings. Also, studies on the pattern in changes of ICG optical properties after venous injection can improve the accuracy of the values detected.
Collapse
Affiliation(s)
- Mario Forcione
- University Hospitals Birmingham NHS Foundation Trust, National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre (NIHR-SRMRC), Mindelsohn Way, Birmingham, UK
- University of Birmingham, Neuroscience & Ophthalmology Research Group, Institute of Inflammation & Ageing, College of Medical and Dental Sciences, Edgbaston, Birmingham, UK
| | - Kamal Makram Yakoub
- University Hospitals Birmingham NHS Foundation Trust, National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre (NIHR-SRMRC), Mindelsohn Way, Birmingham, UK
| | - Antonio Maria Chiarelli
- University G. D’Annunzio of Chieti-Pescara, Institute for Advanced Biomedical Technologies, Department of Neuroscience, Imaging and Clinical Sciences, Chieti, Italy
| | - David Perpetuini
- University G. D’Annunzio of Chieti-Pescara, Institute for Advanced Biomedical Technologies, Department of Neuroscience, Imaging and Clinical Sciences, Chieti, Italy
| | - Arcangelo Merla
- University G. D’Annunzio of Chieti-Pescara, Institute for Advanced Biomedical Technologies, Department of Neuroscience, Imaging and Clinical Sciences, Chieti, Italy
| | - Rosa Sun
- University Hospitals Birmingham NHS Foundation Trust, National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre (NIHR-SRMRC), Mindelsohn Way, Birmingham, UK
| | - Piotr Sawosz
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Trojdena 4, Warsaw, Poland
| | - Antonio Belli
- University Hospitals Birmingham NHS Foundation Trust, National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre (NIHR-SRMRC), Mindelsohn Way, Birmingham, UK
- University of Birmingham, Neuroscience & Ophthalmology Research Group, Institute of Inflammation & Ageing, College of Medical and Dental Sciences, Edgbaston, Birmingham, UK
| | - David James Davies
- University Hospitals Birmingham NHS Foundation Trust, National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre (NIHR-SRMRC), Mindelsohn Way, Birmingham, UK
- University of Birmingham, Neuroscience & Ophthalmology Research Group, Institute of Inflammation & Ageing, College of Medical and Dental Sciences, Edgbaston, Birmingham, UK
| |
Collapse
|
16
|
Feder I, Duadi H, Fixler D. Single wavelength measurements of absorption coefficients based on iso-pathlength point. BIOMEDICAL OPTICS EXPRESS 2020; 11:5760-5771. [PMID: 33149984 PMCID: PMC7587282 DOI: 10.1364/boe.401591] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/03/2020] [Accepted: 09/03/2020] [Indexed: 05/31/2023]
Abstract
In optical sensing, to reveal the chemical composition of tissues, the main challenge is isolating absorption from scattering. Most techniques use multiple wavelengths, which adds an error due to the optical pathlength differences. We suggest using a unique measurement angle for cylindrical tissues, the iso-pathlength (IPL) point, which depends on tissue geometry only (specifically the effective radius). We present a method for absorption assessment from a single wavelength at multiple measurement angles. The IPL point presented similar optical pathlengths for different tissues, both in simulation and experiments, hence it is optimal. Finally, in vivo measurements validated our proposed method.
Collapse
|
17
|
Blaney G, Sassaroli A, Fantini S. Dual-slope imaging in highly scattering media with frequency-domain near-infrared spectroscopy. OPTICS LETTERS 2020; 45:4464-4467. [PMID: 32796984 PMCID: PMC9356654 DOI: 10.1364/ol.394829] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/06/2020] [Indexed: 05/27/2023]
Abstract
We present theoretical and experimental demonstrations of a novel, to the best of our knowledge, diffuse optical imaging method that is based on the concept of dual slopes (DS) in frequency-domain near-infrared spectroscopy. We consider a special array of sources and detectors that collects intensity (I) and phase (ϕ) data with multiple DS sets. We have recently shown that DSϕ reflectance data features a deeper sensitivity with respect to DSI reflectance data. Here, for the first time, we describe a DS imaging approach based on the Moore-Penrose inverse of the sensitivity matrix for multiple DS data sets. Using a circular 8-source/9-detector array that generates 16 DS data sets at source-detector distances in the range 20-40 mm, we show that DSI images are more sensitive to superficial (<5mm) perturbations, whereas DSϕ images are more sensitive to deeper (>10mm) perturbations in highly scattering media.
Collapse
|
18
|
Fantini S, Sassaroli A. Frequency-Domain Techniques for Cerebral and Functional Near-Infrared Spectroscopy. Front Neurosci 2020; 14:300. [PMID: 32317921 PMCID: PMC7154496 DOI: 10.3389/fnins.2020.00300] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/16/2020] [Indexed: 12/31/2022] Open
Abstract
This article reviews the basic principles of frequency-domain near-infrared spectroscopy (FD-NIRS), which relies on intensity-modulated light sources and phase-sensitive optical detection, and its non-invasive applications to the brain. The simpler instrumentation and more straightforward data analysis of continuous-wave NIRS (CW-NIRS) accounts for the fact that almost all the current commercial instruments for cerebral NIRS have embraced the CW technique. However, FD-NIRS provides data with richer information content, which complements or exceeds the capabilities of CW-NIRS. One example is the ability of FD-NIRS to measure the absolute optical properties (absorption and reduced scattering coefficients) of tissue, and thus the absolute concentrations of oxyhemoglobin and deoxyhemoglobin in brain tissue. This article reviews the measured values of such optical properties and hemoglobin concentrations reported in the literature for animal models and for the human brain in newborns, infants, children, and adults. We also review the application of FD-NIRS to functional brain studies that focused on slower hemodynamic responses to brain activity (time scale of seconds) and faster optical signals that have been linked to neuronal activation (time scale of 100 ms). Another example of the power of FD-NIRS data is related to the different regions of sensitivity featured by intensity and phase data. We report recent developments that take advantage of this feature to maximize the sensitivity of non-invasive optical signals to brain tissue relative to more superficial extracerebral tissue (scalp, skull, etc.). We contend that this latter capability is a highly appealing quality of FD-NIRS, which complements absolute optical measurements and may result in significant advances in the field of non-invasive optical sensing of the brain.
Collapse
Affiliation(s)
- Sergio Fantini
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | | |
Collapse
|
19
|
Optics Based Label-Free Techniques and Applications in Brain Monitoring. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10062196] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Functional near-infrared spectroscopy (fNIRS) has been utilized already around three decades for monitoring the brain, in particular, oxygenation changes in the cerebral cortex. In addition, other optical techniques are currently developed for in vivo imaging and in the near future can be potentially used more in human brain research. This paper reviews the most common label-free optical technologies exploited in brain monitoring and their current and potential clinical applications. Label-free tissue monitoring techniques do not require the addition of dyes or molecular contrast agents. The following optical techniques are considered: fNIRS, diffuse correlations spectroscopy (DCS), photoacoustic imaging (PAI) and optical coherence tomography (OCT). Furthermore, wearable optical brain monitoring with the most common applications is discussed.
Collapse
|
20
|
Sassaroli A, Blaney G, Fantini S. Dual-slope method for enhanced depth sensitivity in diffuse optical spectroscopy. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2019; 36:1743-1761. [PMID: 31674440 PMCID: PMC7160974 DOI: 10.1364/josaa.36.001743] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Using diffusion theory, we show that a dual-slope method is more effective than single-slope methods or single-distance methods at enhancing sensitivity to deeper tissue. The dual-slope method requires a minimum of two sources and two detectors arranged in specially configured arrays. In particular, we present diffusion theory results for a symmetrical linear array of two sources (separated by 55 mm) that sandwich two detectors (separated by 15 mm), for which dual slopes achieve maximal sensitivity at a depth of about 5 mm for direct current (DC) intensity (as measured in continuous-wave spectroscopy) and 11 mm for phase (as measured in frequency-domain spectroscopy) under typical values of the tissue optical properties (absorption coefficient: ∼0.01mm-1, reduced scattering coefficient: ∼1mm-1). This result is a major advance over single-distance or single-slope data, which feature maximal sensitivity to shallow tissue (<2mm for the intensity, <5mm for the phase).
Collapse
|
21
|
Lee SY, Zheng C, Brothers R, Buckley EM. Small separation frequency-domain near-infrared spectroscopy for the recovery of tissue optical properties at millimeter depths. BIOMEDICAL OPTICS EXPRESS 2019; 10:5362-5377. [PMID: 31646051 PMCID: PMC6788586 DOI: 10.1364/boe.10.005362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 05/27/2023]
Abstract
Millimeter-depth sensitivity with frequency domain near-infrared spectroscopy has been challenging due to the breakdown of the diffusion equation for source-detection separations < 1cm. To overcome this challenge, we employ a Monte-Carlo lookup table-based inverse algorithm to fit small separation (3-6 mm) frequency-domain near-infrared spectroscopy (FDNIRS) data for absorption and reduced scattering coefficients. We verify this small separation FDNIRS method through a series of in vitro and in vivo studies. In vitro, we observed a root mean squared percent error (RMSE) in estimation of the reduced scattering coefficient and absorption coefficient of 2.8% and 7.6%, respectively, in liquid phantoms consisting of Intralipid and Indian ink, and a RMSE in estimation of oxygen saturation and total hemoglobin concentrations of 7.8 and 11.2%, respectively, in blood-mixed liquid phantoms. Next, we demonstrate one particularly valuable in vivo application of this technique wherein we non-invasively measure the optical properties of the mouse brain (n = 4). We find that the measured resting state cerebral oxygen saturation and hemoglobin concentration are consistent with literature reported values, and we observe expected trends during a hyper-/hypoxia challenge that qualitatively mimic changes in partial pressure of oxygen (pO2) measured simultaneously with an invasive pO2 sensor. Further, through simulations of the mouse head geometry, we demonstrate that the skull and scalp exert minimal influence on the estimate oxygen saturation, while leading to small but systematic underestimation of total hemoglobin concentration. In total, these results demonstrate the robustness of small separation FDNIRS to assess tissue optical properties at millimeter depth resolution.
Collapse
Affiliation(s)
- Seung Yup Lee
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 1760 Haygood Dr. NE, Atlanta, GA 30322, USA
| | - Corey Zheng
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Rowan Brothers
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 1760 Haygood Dr. NE, Atlanta, GA 30322, USA
| | - Erin M. Buckley
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 1760 Haygood Dr. NE, Atlanta, GA 30322, USA
- Department of Pediatrics, Emory University School of Medicine, 2015 Uppergate Dr., Atlanta, GA 30322, USA
- Children’s Research Scholar, Children’s Healthcare of Atlanta, 2015 Uppergate Dr., Atlanta, GA 30322, USA
| |
Collapse
|
22
|
Blaney G, Sassaroli A, Pham T, Krishnamurthy N, Fantini S. Multi-distance frequency-domain optical measurements of coherent cerebral hemodynamics. PHOTONICS 2019; 6:83. [PMID: 34079837 PMCID: PMC8168742 DOI: 10.3390/photonics6030083] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We report non-invasive, bilateral optical measurements on the forehead of five healthy human subjects, of 0.1 Hz oscillatory hemodynamics elicited either by cyclic inflation of pneumatic thigh cuffs, or by paced breathing. Optical intensity and the phase of photon-density waves were collected with frequency-domain near-infrared spectroscopy at seven source-detector distances (11-40 mm). Coherent hemodynamic oscillations are represented by phasors of oxyhemoglobin (O) and deoxyhemoglobin (D) concentrations, and by the vector D/O that represents the amplitude ratio and phase difference of D and O. We found that, on average, the amplitude ratio (|D/O|) and the phase difference (∠(D/O)) obtained with single-distance intensity at 11-40 mm increase from 0.1 and -330°, to 0.2 and -200°, respectively. Single-distance phase and the intensity slope featured a weaker dependence on source-detector separation, and yielded |D/O| and ∠(D/O) values of about 0.5 and -200°, respectively, at distances greater than 20 mm. The key findings are: (1) single-distance phase and intensity slope are sensitive to deeper tissue compared to single-distance intensity; (2) deeper tissue hemodynamic oscillations, which more closely represent the brain, feature D and O phasors that are consistent with a greater relative flow-to-volume contributions in brain tissue compared to extracerebral, superficial tissue.
Collapse
Affiliation(s)
- Giles Blaney
- Tufts University, Department of Biomedical Engineering
| | | | - Thao Pham
- Tufts University, Department of Biomedical Engineering
| | | | | |
Collapse
|
23
|
Pham T, Tgavalekos K, Sassaroli A, Blaney G, Fantini S. Quantitative measurements of cerebral blood flow with near-infrared spectroscopy. BIOMEDICAL OPTICS EXPRESS 2019; 10:2117-2134. [PMID: 31061774 PMCID: PMC6484993 DOI: 10.1364/boe.10.002117] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/07/2019] [Accepted: 03/20/2019] [Indexed: 05/29/2023]
Abstract
We propose a new near-infrared spectroscopy (NIRS) method for quantitative measurements of cerebral blood flow (CBF). Because this method uses concepts of coherent hemodynamics spectroscopy (CHS), we identify this new method with the acronym NIRS-CHS. We tested this method on the prefrontal cortex of six healthy human subjects during mean arterial pressure (MAP) transients induced by the rapid deflation of pneumatic thigh cuffs. A comparison of CBF dynamics measured with NIRS-CHS and with diffuse correlation spectroscopy (DCS) showed a good agreement for characteristic times of the CBF transient. We also report absolute measurements of baseline CBF with NIRS-CHS (69 ± 6 ml/100g/min over the six subjects). NIRS-CHS can provide more accurate measurements of CBF with respect to previously reported NIRS surrogates of CBF.
Collapse
Affiliation(s)
- Thao Pham
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Kristen Tgavalekos
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Angelo Sassaroli
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Giles Blaney
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Sergio Fantini
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| |
Collapse
|
24
|
Tgavalekos K, Pham T, Krishnamurthy N, Sassaroli A, Fantini S. Frequency-resolved analysis of coherent oscillations of local cerebral blood volume, measured with near-infrared spectroscopy, and systemic arterial pressure in healthy human subjects. PLoS One 2019; 14:e0211710. [PMID: 30753203 PMCID: PMC6372153 DOI: 10.1371/journal.pone.0211710] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 01/19/2019] [Indexed: 01/18/2023] Open
Abstract
We report a study on twenty-two healthy human subjects of the dynamic relationship between cerebral hemoglobin concentration ([HbT]), measured with near-infrared spectroscopy (NIRS) in the prefrontal cortex, and systemic arterial blood pressure (ABP), measured with finger plethysmography. [HbT] is a measure of local cerebral blood volume (CBV). We induced hemodynamic oscillations at discrete frequencies in the range 0.04-0.20 Hz with cyclic inflation and deflation of pneumatic cuffs wrapped around the subject's thighs. We modeled the transfer function of ABP and [HbT] in terms of effective arterial (K(a)) and venous (K(v)) compliances, and a cerebral autoregulation time constant (τ(AR)). The mean values (± standard errors) of these parameters across the twenty-two subjects were K(a) = 0.01 ± 0.01 μM/mmHg, K(v) = 0.09 ± 0.05 μM/mmHg, and τ(AR) = 2.2 ± 1.3 s. Spatially resolved measurements in a subset of eight subjects reveal a spatial variability of these parameters that may exceed the inter-subject variability at a set location. This study sheds some light onto the role that ABP and cerebral blood flow (CBF) play in the dynamics of [HbT] measured with NIRS, and paves the way for new non-invasive optical studies of cerebral blood flow and cerebral autoregulation.
Collapse
Affiliation(s)
- Kristen Tgavalekos
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, United States of America
| | - Thao Pham
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, United States of America
| | - Nishanth Krishnamurthy
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, United States of America
| | - Angelo Sassaroli
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, United States of America
| | - Sergio Fantini
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, United States of America
| |
Collapse
|
25
|
Chaianantakul N, Wutthi K, Kamput N, Pramanpol N, Janphuang P, Pummara W, Phimon K, Phatthanakun R. Development of mini-spectrophotometer for determination of plasma glucose. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 204:670-676. [PMID: 29982158 DOI: 10.1016/j.saa.2018.06.107] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 06/27/2018] [Accepted: 06/30/2018] [Indexed: 06/08/2023]
Abstract
This work demonstrates a novel compact spectrophotometer, "Mini-spectrophotometer", designed for plasma glucose detection. Unlike conventional spectrophotometer, a light source of the mini spectrophotometer is replaced by a light-emitting diode (LED), and a fabricated polymer-based microwell is used as a cuvette. To validate the downsizing spectrophotometer prototype, the efficiency and reliability for glucose determination are investigated. Using a certain light intensified from LED, the within-run precision of mini-spectrophotometer is found to be 3.9-8.4% while the between-run precision is 6.7-10.8%. The linearity for the quantification of glucose was up to 500 mg dL-1 and the recovery 99.1 ± 3.4% is obtained. The sensitive and selective detection of glucose has been observed; with limit of detection (LOD) of 13.5 mg dL-1 and limit of quantification (LOQ) of 46.2 mg dL-1, respectively. Hemoglobin and triglyceride at high concentration slightly interferes with the proposed instrument. From comparative studies, there are no significant differences between the glucose concentration measured by mini-spectrophotometer and Shimadzu (r2 = 0.9862) or CECIL spectrophotometer (r2 = 0.9853). Using Passing-Bablok regression analysis, the results obtained from mini-spectrophotometer are in close agreement with the two conventional spectrophotometers. Furthermore, using microwell, the sample volume and reagent used in the process can be reduced. The in-house developed mini-spectrophotometer is capable of detecting plasma glucose while maintaining a compact system, demonstrating the potential of high performance, cost-effective, and portable spectrophotometer for clinical chemistry analysis in small routine, research, and teaching medical laboratory technologist.
Collapse
Affiliation(s)
- Natpasit Chaianantakul
- Department of Medical Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand.
| | - Kanchaporn Wutthi
- Department of Medical Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Nattanit Kamput
- Department of Medical Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Nuttawan Pramanpol
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima, 30000, Thailand
| | - Pattanaphong Janphuang
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima, 30000, Thailand
| | - Watcharapon Pummara
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima, 30000, Thailand
| | - Kantapon Phimon
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima, 30000, Thailand
| | - Rungrueang Phatthanakun
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima, 30000, Thailand
| |
Collapse
|
26
|
Tommasi F, Ignesti E, Fini L, Martelli F, Cavalieri S. Random laser based method for direct measurement of scattering properties. OPTICS EXPRESS 2018; 26:27615-27627. [PMID: 30469824 DOI: 10.1364/oe.26.027615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Optical sensing is a very important method for investigating different kinds of samples. Recently, we proposed a new kind of optical sensor based on random lasing [ Sci. Rep.6, 35225 (2016)], that couples the advantages of stimulated emission in detecting small variations on scattering properties of a sensed material, to the needs of no alteration of the sample under investigation. Here, we present a method to achieve a quantitative measurement of the scattering properties of a material. The results on samples of calibrated microspheres show a dependence of the peak intensity of the emission spectrum on the transport mean free path of the light within the sample, whatever the dimension (down to ≈100 nm of particle diameter) and the concentration of scatterers dispersed in the sensed material. A direct and fast measurement of the scattering properties is obtained by calibration with a well-known and inexpensive reference medium.
Collapse
|
27
|
Carp SA, Farzam P, Redes N, Hueber DM, Franceschini MA. Combined multi-distance frequency domain and diffuse correlation spectroscopy system with simultaneous data acquisition and real-time analysis. BIOMEDICAL OPTICS EXPRESS 2017; 8:3993-4006. [PMID: 29026684 PMCID: PMC5611918 DOI: 10.1364/boe.8.003993] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/29/2017] [Accepted: 07/29/2017] [Indexed: 05/19/2023]
Abstract
Frequency domain near infrared spectroscopy (FD-NIRS) and diffuse correlation spectroscopy (DCS) have emerged as synergistic techniques for the non-invasive assessment of tissue health. Combining FD-NIRS oximetry with DCS measures of blood flow, the tissue oxygen metabolic rate can be quantified, a parameter more closely linked to underlying physiology and pathology than either NIRS or DCS estimates alone. Here we describe the first commercially available integrated instrument, called the "MetaOx", designed to enable simultaneous FD-NIRS and DCS measurements at rates of 10 + Hz, and offering real-time data evaluation. We show simultaneously acquired characterization data demonstrating performance equivalent to individual devices and sample in vivo measurements of pulsation resolved blood flow, forearm occlusion hemodynamic changes and muscle oxygen metabolic rate monitoring during stationary bike exercise.
Collapse
Affiliation(s)
- Stefan A. Carp
- Harvard Medical School, Massachusetts General Hospital, Martinos Center for Biomedical Imaging, 149 13th St., Charlestown, MA 02129, USA
| | - Parisa Farzam
- Harvard Medical School, Massachusetts General Hospital, Martinos Center for Biomedical Imaging, 149 13th St., Charlestown, MA 02129, USA
| | - Norin Redes
- ISS Inc., 1602 Newton Drive, Champaign, IL 61822, USA
| | | | - Maria Angela Franceschini
- Harvard Medical School, Massachusetts General Hospital, Martinos Center for Biomedical Imaging, 149 13th St., Charlestown, MA 02129, USA
| |
Collapse
|
28
|
Chiarelli AM, Maclin EL, Low KA, Fantini S, Fabiani M, Gratton G. Low-resolution mapping of the effective attenuation coefficient of the human head: a multidistance approach applied to high-density optical recordings. NEUROPHOTONICS 2017; 4:021103. [PMID: 28466026 PMCID: PMC5400126 DOI: 10.1117/1.nph.4.2.021103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 03/30/2017] [Indexed: 05/29/2023]
Abstract
Near infrared (NIR) light has been widely used for measuring changes in hemoglobin concentration in the human brain (functional NIR spectroscopy, fNIRS). fNIRS is based on the differential measurement and estimation of absorption perturbations, which, in turn, are based on correctly estimating the absolute parameters of light propagation. To do so, it is essential to accurately characterize the baseline optical properties of tissue (absorption and reduced scattering coefficients). However, because of the diffusive properties of the medium, separate determination of absorption and scattering across the head is challenging. The effective attenuation coefficient (EAC), which is proportional to the geometric mean of absorption and reduced scattering coefficients, can be estimated in a simpler fashion by multidistance light decay measurements. EAC mapping could be of interest for the scientific community because of its absolute information content, and because light propagation is governed by the EAC for source-detector distances exceeding 1 cm, which sense depths extending beyond the scalp and skull layers. Here, we report an EAC mapping procedure that can be applied to standard fNIRS recordings, yielding topographic maps with 2- to 3-cm resolution. Application to human data indicates the importance of venous sinuses in determining regional EAC variations, a factor often overlooked.
Collapse
Affiliation(s)
| | - Edward L. Maclin
- University of Illinois, Beckman Institute, Urbana, Illinois, United States
| | - Kathy A. Low
- University of Illinois, Beckman Institute, Urbana, Illinois, United States
| | - Sergio Fantini
- Tufts University, Department of Biomedical Engineering, Medford, Massachusetts, United States
| | - Monica Fabiani
- University of Illinois, Beckman Institute, Urbana, Illinois, United States
- University of Illinois, Department of Psychology, Champaign, Illinois, United States
| | - Gabriele Gratton
- University of Illinois, Beckman Institute, Urbana, Illinois, United States
- University of Illinois, Department of Psychology, Champaign, Illinois, United States
| |
Collapse
|
29
|
Borycki D, Kholiqov O, Srinivasan VJ. Reflectance-mode interferometric near-infrared spectroscopy quantifies brain absorption, scattering, and blood flow index in vivo. OPTICS LETTERS 2017; 42:591-594. [PMID: 28146535 PMCID: PMC5565174 DOI: 10.1364/ol.42.000591] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Interferometric near-infrared spectroscopy (iNIRS) is a new technique that measures time-of-flight- (TOF-) resolved autocorrelations in turbid media, enabling simultaneous estimation of optical and dynamical properties. Here, we demonstrate reflectance-mode iNIRS for noninvasive monitoring of a mouse brain in vivo. A method for more precise quantification with less static interference from superficial layers, based on separating static and dynamic components of the optical field autocorrelation, is presented. Absolute values of absorption, reduced scattering, and blood flow index (BFI) are measured, and changes in BFI and absorption are monitored during a hypercapnic challenge. Absorption changes from TOF-resolved iNIRS agree with absorption changes from continuous wave NIRS analysis, based on TOF-integrated light intensity changes, an effective path length, and the modified Beer-Lambert Law. Thus, iNIRS is a promising approach for quantitative and noninvasive monitoring of perfusion and optical properties in vivo.
Collapse
|
30
|
Hoshi Y, Yamada Y. Overview of diffuse optical tomography and its clinical applications. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:091312. [PMID: 27420810 DOI: 10.1117/1.jbo.21.9.091312] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 06/13/2016] [Indexed: 05/23/2023]
Abstract
Near-infrared diffuse optical tomography (DOT), one of the most sophisticated optical imaging techniques for observations through biological tissue, allows 3-D quantitative imaging of optical properties, which include functional and anatomical information. With DOT, it is expected to be possible to overcome the limitations of conventional near-infrared spectroscopy (NIRS) as well as offering the potential for diagnostic optical imaging. However, DOT has been under development for more than 30 years, and the difficulties in development are attributed to the fact that light is strongly scattered and that diffusive photons are used for the image reconstruction. The DOT algorithm is based on the techniques of inverse problems. The radiative transfer equation accurately describes photon propagation in biological tissue, while, because of its high computation load, the diffusion equation (DE) is often used as the forward model. However, the DE is invalid in low-scattering and/or highly absorbing regions and in the vicinity of light sources. The inverse problem is inherently ill-posed and highly undetermined. Here, we first summarize NIRS and then describe various approaches in the efforts to develop accurate and efficient DOT algorithms and present some examples of clinical applications. Finally, we discuss the future prospects of DOT.
Collapse
Affiliation(s)
- Yoko Hoshi
- Hamamatsu University School of Medicine, Department of Biomedical Optics, Institute for Medical Photonics Research, Preeminent Medical Photonics Education and Research Center, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Yukio Yamada
- University of Electro-Communications, Brain Science Inspired Life Support Research Center, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
| |
Collapse
|
31
|
Reduced cerebral blood flow and oxygen metabolism in extremely preterm neonates with low-grade germinal matrix- intraventricular hemorrhage. Sci Rep 2016; 6:25903. [PMID: 27181339 PMCID: PMC4867629 DOI: 10.1038/srep25903] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 04/25/2016] [Indexed: 01/24/2023] Open
Abstract
Low-grade germinal matrix-intraventricular hemorrhage (GM-IVH) is the most common complication in extremely premature neonates. The occurrence of GM-IVH is highly associated with hemodynamic instability in the premature brain, yet the long-term impact of low-grade GM-IVH on cerebral blood flow and neuronal health have not been fully investigated. We used an innovative combination of frequency-domain near infrared spectroscopy and diffuse correlation spectroscopy (FDNIRS-DCS) to measure cerebral oxygen saturation (SO2) and an index of cerebral blood flow (CBFi) at the infant’s bedside and compute an index of cerebral oxygen metabolism (CMRO2i). We enrolled twenty extremely low gestational age (ELGA) neonates (seven with low-grade GM-IVH) and monitored them weekly until they reached full-term equivalent age. During their hospital stay, we observed consistently lower CBFi and CMRO2i in ELGA neonates with low-grade GM-IVH compared to neonates without hemorrhages. Furthermore, lower CBFi and CMRO2i in the former group persists even after the resolution of the hemorrhage. In contrast, SO2 does not differ between groups. Thus, CBFi and CMRO2i may have better sensitivity than SO2 in detecting GM-IVH-related effects on infant brain development. FDNIRS-DCS methods may have clinical benefit for monitoring the evolution of GM-IVH, evaluating treatment response, and potentially predicting neurodevelopmental outcome.
Collapse
|
32
|
Borycki D, Kholiqov O, Chong SP, Srinivasan VJ. Interferometric Near-Infrared Spectroscopy (iNIRS) for determination of optical and dynamical properties of turbid media. OPTICS EXPRESS 2016; 24:329-54. [PMID: 26832264 PMCID: PMC4741353 DOI: 10.1364/oe.24.000329] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
We introduce and implement interferometric near-infrared spectroscopy (iNIRS), which simultaneously extracts optical and dynamical properties of turbid media through analysis of a spectral interference fringe pattern. The spectral interference fringe pattern is measured using a Mach-Zehnder interferometer with a frequency-swept narrow linewidth laser. Fourier analysis of the detected signal is used to determine time-of-flight (TOF)-resolved intensity, which is then analyzed over time to yield TOF-resolved intensity autocorrelations. This approach enables quantification of optical properties, which is not possible in conventional, continuous-wave near-infrared spectroscopy (NIRS). Furthermore, iNIRS quantifies scatterer motion based on TOF-resolved autocorrelations, which is a feature inaccessible by well-established diffuse correlation spectroscopy (DCS) techniques. We prove this by determining TOF-resolved intensity and temporal autocorrelations for light transmitted through diffusive fluid phantoms with optical thicknesses of up to 55 reduced mean free paths (approximately 120 scattering events). The TOF-resolved intensity is used to determine optical properties with time-resolved diffusion theory, while the TOF-resolved intensity autocorrelations are used to determine dynamics with diffusing wave spectroscopy. iNIRS advances the capabilities of diffuse optical methods and is suitable for in vivo tissue characterization. Moreover, iNIRS combines NIRS and DCS capabilities into a single modality.
Collapse
Affiliation(s)
- Dawid Borycki
- Biomedical Engineering Department, University of California Davis, Davis, CA 95616,
USA
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun,
Poland
| | - Oybek Kholiqov
- Biomedical Engineering Department, University of California Davis, Davis, CA 95616,
USA
| | - Shau Poh Chong
- Biomedical Engineering Department, University of California Davis, Davis, CA 95616,
USA
| | - Vivek J. Srinivasan
- Biomedical Engineering Department, University of California Davis, Davis, CA 95616,
USA
| |
Collapse
|
33
|
Zimmermann BB, Fang Q, Boas DA, Carp SA. Frequency domain near-infrared multiwavelength imager design using high-speed, direct analog-to-digital conversion. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:16010. [PMID: 26813081 PMCID: PMC4726736 DOI: 10.1117/1.jbo.21.1.016010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 12/14/2015] [Indexed: 05/18/2023]
Abstract
Frequency domain near-infrared spectroscopy (FD-NIRS) has proven to be a reliable method for quantification of tissue absolute optical properties. We present a full-sampling direct analog-to-digital conversion FD-NIR imager. While we developed this instrument with a focus on high-speed optical breast tomographic imaging, the proposed design is suitable for a wide-range of biophotonic applications where fast, accurate quantification of absolute optical properties is needed. Simultaneous dual wavelength operation at 685 and 830 nm is achieved by concurrent 67.5 and 75 MHz frequency modulation of each laser source, respectively, followed by digitization using a high-speed (180 MS/s) 16-bit A/D converter and hybrid FPGA-assisted demodulation. The instrument supports 25 source locations and features 20 concurrently operating detectors. The noise floor of the instrument was measured at <1.4 pW/√Hz, and a dynamic range of 115+ dB, corresponding to nearly six orders of magnitude, has been demonstrated. Titration experiments consisting of 200 different absorption and scattering values were conducted to demonstrate accurate optical property quantification over the entire range of physiologically expected values.
Collapse
Affiliation(s)
- Bernhard B. Zimmermann
- Harvard Medical School, Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Building 149, 13th Street, Charlestown, Massachusetts 02129, United States
- Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Qianqian Fang
- Northeastern University, Department of Bioengineering, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - David A. Boas
- Harvard Medical School, Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Building 149, 13th Street, Charlestown, Massachusetts 02129, United States
| | - Stefan A. Carp
- Harvard Medical School, Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Building 149, 13th Street, Charlestown, Massachusetts 02129, United States
- Address all correspondence to: Stefan A. Carp, E-mail:
| |
Collapse
|
34
|
Demel A, Feilke K, Schöning M, Wolf M, Poets CF, Franz AR. Healthy term and moderately preterm infants have similar cerebral oxygen saturation and cerebral blood flow volumes during early post-natal transition. Acta Paediatr 2015; 104:e330-6. [PMID: 25867534 DOI: 10.1111/apa.13023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 02/17/2015] [Accepted: 04/08/2015] [Indexed: 11/30/2022]
Abstract
AIM This pilot study evaluated changes in regional cerebral oxygen saturation and cerebral blood flow volume during the transitional period in healthy term and moderately preterm infants. METHODS The cohort comprised 16 preterm infants and seven full-term infants with mean gestational ages of 34 and 39 weeks, respectively. Longitudinal measurements were conducted during the first three days after birth. Regional cerebral oxygen saturation was determined bilaterally by frequency domain near-infrared spectroscopy. Flow volumes were determined in internal carotid and vertebral arteries by multiplying the time-averaged velocity by the cross-sectional area: cerebral blood flow volume was calculated as the sum of flow volumes and adjusted for brain weight. RESULTS Brain weight-adjusted cerebral blood flow volumes and regional cerebral oxygen saturation were similar in preterm and term infants. Regional cerebral oxygen saturation did not correlate with brain weight-adjusted cerebral blood flow volume. Right and left brain weight-adjusted internal carotid flow volumes did not correlate with right and left regional cerebral oxygen saturation. CONCLUSION Our findings suggest that during the first three days after birth there was adequate cardiorespiratory adaptation, cerebral perfusion and adequate compensation through the arterial circle of Willis in both healthy term and moderately preterm infants.
Collapse
Affiliation(s)
- A Demel
- Department of Neonatology; University Children's Hospital Tuebingen; Tuebingen Germany
| | - K Feilke
- Department of Neonatology; University Children's Hospital Tuebingen; Tuebingen Germany
| | - M Schöning
- Department of Neuropediatrics; University Children's Hospital Tuebingen; Tuebingen Germany
| | - M Wolf
- Biomedical Optics Research Laboratory; Division of Neonatology; University Hospital Zurich; Zurich Switzerland
| | - CF Poets
- Department of Neonatology; University Children's Hospital Tuebingen; Tuebingen Germany
| | - AR Franz
- Department of Neonatology; University Children's Hospital Tuebingen; Tuebingen Germany
| |
Collapse
|
35
|
Vekshin NL, Frolova MS, Kovalev VI, Begunova EA. Tyndall’s hypochromism in suspensions. Biophysics (Nagoya-shi) 2015. [DOI: 10.1134/s000635091501025x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
36
|
Lemaillet P, Bouchard JP, Hwang J, Allen DW. Double-integrating-sphere system at the National Institute of Standards and Technology in support of measurement standards for the determination of optical properties of tissue-mimicking phantoms. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:121310. [PMID: 26505172 DOI: 10.1117/1.jbo.20.12.121310] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 09/29/2015] [Indexed: 05/22/2023]
Abstract
There is a need for a common reference point that will allow for the comparison of the optical properties of tissue-mimicking phantoms. After a brief review of the methods that have been used to measure the phantoms for a contextual backdrop to our approach, this paper reports on the establishment of a standardized double-integrating-sphere platform to measure absorption and reduced scattering coefficients of tissue-mimicking biomedical phantoms. The platform implements a user-friendly graphical user interface in which variations of experimental configurations and model-based analysis are implemented to compute the coefficients based on a modified inverse adding-doubling algorithm allowing a complete uncertainty evaluation. Repeatability and validation of the measurement results of solid phantoms are demonstrated for three samples of different thicknesses, d = 5.08 mm, 7.09 mm, and 9.92 mm, with an absolute error estimate of 4.0% to 5.0% for the absorption coefficient and 11% to 12% for the reduced scattering coefficient (k = 2). The results are in accordance with those provided by the manufacturer. Measurements with different polarization angles of the incident light are also presented, and the resulting optical properties were determined to be equivalent within the estimated uncertainties.
Collapse
Affiliation(s)
- Paul Lemaillet
- National Institute of Standards and Technology, Physical Measurement Laboratory, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | | | - Jeeseong Hwang
- National Institute of Standards and Technology, Physical Measurement Laboratory, 325 Broadway Street, Boulder, Colorado 80305, United States
| | - David W Allen
- National Institute of Standards and Technology, Physical Measurement Laboratory, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
37
|
Selb J, Ogden TM, Dubb J, Fang Q, Boas DA. Comparison of a layered slab and an atlas head model for Monte Carlo fitting of time-domain near-infrared spectroscopy data of the adult head. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:16010. [PMID: 24407503 PMCID: PMC3886581 DOI: 10.1117/1.jbo.19.1.016010] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 12/11/2013] [Accepted: 12/13/2013] [Indexed: 05/18/2023]
Abstract
Near-infrared spectroscopy (NIRS) estimations of the adult brain baseline optical properties based on a homogeneous model of the head are known to introduce significant contamination from extracerebral layers. More complex models have been proposed and occasionally applied to in vivo data, but their performances have never been characterized on realistic head structures. Here we implement a flexible fitting routine of time-domain NIRS data using graphics processing unit based Monte Carlo simulations. We compare the results for two different geometries: a two-layer slab with variable thickness of the first layer and a template atlas head registered to the subject's head surface. We characterize the performance of the Monte Carlo approaches for fitting the optical properties from simulated time-resolved data of the adult head. We show that both geometries provide better results than the commonly used homogeneous model, and we quantify the improvement in terms of accuracy, linearity, and cross-talk from extracerebral layers.
Collapse
Affiliation(s)
- Juliette Selb
- Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Optics Division, Building 149, 13th Street, Charlestown, Massachusetts 02129
- Address all correspondence to: Juliette Selb, E-mail:
| | - Tyler M. Ogden
- Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Optics Division, Building 149, 13th Street, Charlestown, Massachusetts 02129
| | - Jay Dubb
- Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Optics Division, Building 149, 13th Street, Charlestown, Massachusetts 02129
| | - Qianqian Fang
- Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Optics Division, Building 149, 13th Street, Charlestown, Massachusetts 02129
| | - David A. Boas
- Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Optics Division, Building 149, 13th Street, Charlestown, Massachusetts 02129
| |
Collapse
|
38
|
Simultaneous measurement of deep tissue blood flow and oxygenation using noncontact diffuse correlation spectroscopy flow-oximeter. Sci Rep 2013; 3:1358. [PMID: 23446991 PMCID: PMC3584314 DOI: 10.1038/srep01358] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 02/14/2013] [Indexed: 01/10/2023] Open
Abstract
We report a novel noncontact diffuse correlation spectroscopy flow-oximeter for simultaneous quantification of relative changes in tissue blood flow (rBF) and oxygenation (Δ[oxygenation]). The noncontact probe was compared against a contact probe in tissue-like phantoms and forearm muscles (n = 10), and the dynamic trends in both rBF and Δ[oxygenation] were found to be highly correlated. However, the magnitudes of Δ[oxygenation] measured by the two probes were significantly different. Monte Carlo simulations and phantom experiments revealed that the arm curvature resulted in a significant underestimation (~−20%) for the noncontact measurements in Δ[oxygenation], but not in rBF. Other factors that may cause the residual discrepancies between the contact and noncontact measurements were discussed, and further comparisons with other established technologies are needed to identify/quantify these factors. Our research paves the way for noncontact and simultaneous monitoring of blood flow and oxygenation in soft and vulnerable tissues without distorting tissue hemodynamics.
Collapse
|
39
|
Grondona P, Di Rocco HO, Iriarte DI, Pomarico JA, Ranea-Sandoval HF, Bilmes GM. Enhancement of photoacoustic detection of inhomogeneities in polymers. PAPERS IN PHYSICS 2013. [DOI: 10.4279/pip.050005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
We report a series of experiments on laser pulsed photoacoustic excitationin turbid polymer samples addressed to evaluate the sound speed in the samples and the presence of inhomogeneities in the bulk. We describe a system which allows the direct measurement of the speed of the detected waves by engraving the surface of the piece under study with a fiduciary pattern of black lines..We also describe how this pattern helps to enhance the sensitivity for the detection of an inhomogeneity in the bulk. These two facts are useful for studies in soft matter systems including, perhaps, biological samples. We have performed an experimental analysis on Grilon® samples in different situations and we show the limitations of the method. Received: 7 December 2012, Accepted: 19 June 2013; Reviewed by: V. Lakshminarayanan, Waterloo University, Canada; Edited by: J. J. Niemela; DOI: http://dx.doi.org/10.4279/PIP.050005Cite as: P. Grondona, H. O. Di Rocco, D. I. Iriarte, J. A. Pomarico, H. F. Ranea-Sandoval, G. M. Bilmes, Papers in Physics 5, 050005 (2013)
Collapse
|
40
|
Hallacoglu B, Sassaroli A, Fantini S. Optical characterization of two-layered turbid media for non-invasive, absolute oximetry in cerebral and extracerebral tissue. PLoS One 2013; 8:e64095. [PMID: 23724023 PMCID: PMC3660388 DOI: 10.1371/journal.pone.0064095] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 04/09/2013] [Indexed: 11/18/2022] Open
Abstract
We introduce a multi-distance, frequency-domain, near-infrared spectroscopy (NIRS) method to measure the optical coefficients of two-layered media and the thickness of the top layer from diffuse reflectance measurements. This method features a direct solution based on diffusion theory and an inversion procedure based on the Levenberg-Marquardt algorithm. We have validated our method through Monte Carlo simulations, experiments on tissue-like phantoms, and measurements on the forehead of three human subjects. The Monte Carlo simulations and phantom measurements have shown that, in ideal two-layered samples, our method accurately recovers the top layer thickness (L), the absorption coefficient (µ a ) and the reduced scattering coefficient (µ' s ) of both layers with deviations that are typically less than 10% for all parameters. Our method is aimed at absolute measurements of hemoglobin concentration and saturation in cerebral and extracerebral tissue of adult human subjects, where the top layer (layer 1) represents extracerebral tissue (scalp, skull, dura mater, subarachnoid space, etc.) and the bottom layer (layer 2) represents cerebral tissue. Human subject measurements have shown a significantly greater total hemoglobin concentration in cerebral tissue (82±14 µM) with respect to extracerebral tissue (30±7 µM). By contrast, there was no significant difference between the hemoglobin saturation measured in cerebral tissue (56%±10%) and extracerebral tissue (62%±6%). To our knowledge, this is the first time that an inversion procedure in the frequency domain with six unknown parameters with no other prior knowledge is used for the retrieval of the optical coefficients and top layer thickness with high accuracy on two-layered media. Our absolute measurements of cerebral hemoglobin concentration and saturation are based on the discrimination of extracerebral and cerebral tissue layers, and they can enhance the impact of NIRS for cerebral hemodynamics and oxygenation assessment both in the research arena and clinical practice.
Collapse
Affiliation(s)
- Bertan Hallacoglu
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA.
| | | | | |
Collapse
|
41
|
Strangman GE, Zhang Q, Li Z. Scalp and skull influence on near infrared photon propagation in the Colin27 brain template. Neuroimage 2013; 85 Pt 1:136-49. [PMID: 23660029 DOI: 10.1016/j.neuroimage.2013.04.090] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 04/09/2013] [Accepted: 04/18/2013] [Indexed: 11/24/2022] Open
Abstract
Near-infrared neuromonitoring (NIN) is based on near-infrared spectroscopy (NIRS) measurements performed through the intact scalp and skull. Despite the important effects of overlying tissue layers on the measurement of brain hemodynamics, the influence of scalp and skull on NIN sensitivity are not well characterized. Using 3555 Monte Carlo simulations, we estimated the sensitivity of individual continuous-wave NIRS measurements to brain activity over the entire adult human head by introducing a small absorption perturbation to brain gray matter and quantifying the influence of scalp and skull thickness on this sensitivity. After segmenting the Colin27 template into five tissue types (scalp, skull, cerebrospinal fluid, gray matter and white matter), the average scalp thickness was 6.9 ± 3.6 mm (range: 3.6-11.2mm), while the average skull thickness was 6.0 ± 1.9 mm (range: 2.5-10.5mm). Mean NIN sensitivity - defined as the partial path length through gray matter divided by the total photon path length - ranged from 0.06 (i.e., 6% of total path length) at a 20mm source-detector separation, to over 0.19 at 50mm separations. NIN sensitivity varied substantially around the head, with occipital pole exhibiting the highest NIRS sensitivity to gray matter, whereas inferior frontal regions had the lowest sensitivity. Increased scalp and skull thickness were strongly associated with decreased sensitivity to brain tissue. Scalp thickness always exhibited a slightly larger effect on sensitivity than skull thickness, but the effect of both varied with SD separation. We quantitatively characterize sensitivity around the head as well as the effects of scalp and skull, which can be used to interpret NIN brain activation studies as well as guide the design, development and optimization of NIRS devices and sensors.
Collapse
Affiliation(s)
- Gary E Strangman
- Neural Systems Group, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA, USA.
| | | | | |
Collapse
|
42
|
Detectability of absorption and reduced scattering coefficients in frequency-domain measurements using a realistic head phantom. SENSORS 2012; 13:152-64. [PMID: 23262479 PMCID: PMC3574670 DOI: 10.3390/s130100152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 12/17/2012] [Accepted: 12/18/2012] [Indexed: 11/17/2022]
Abstract
Detection limits of the changes in absorption and reduced scattering coefficients were investigated using a frequency-domain near-infrared system in a realistic head phantom. The results were quantified in terms of the maximum detectable depth for different activation volumes in the range of 0.8-20 microliters. The non-linear relation between the maximum detectable depth and the magnitude of changes in the absorption coefficient conform well with the Born approximation to the diffusion equation. The minimal detectable changes in the reduced scattering coefficient measured in terms of the phase signal were found to be approximately twice as large as that of the absorption coefficient using the AC signal for the same volume and at the same depth. The phase delay, which can be used to quantify the fast neuronal optical response in the human brain, showed a linear dependence on the reciprocal of the reduced scattering coefficient, as predicted by the Rytov approximation.
Collapse
|
43
|
Wigal SB, Polzonetti CM, Stehli A, Gratton E. Phase synchronization of oxygenation waves in the frontal areas of children with attention-deficit hyperactivity disorder detected by optical diffusion spectroscopy correlates with medication. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:127002. [PMID: 23232795 PMCID: PMC3518849 DOI: 10.1117/1.jbo.17.12.127002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The beneficial effects of pharmacotherapy on children with attention-deficit hyperactivity disorder (ADHD) are well documented. We use near-infrared spectroscopy (NIRS) methodology to determine reorganization of brain neurovascular properties following the medication treatment. Twenty-six children with ADHD (ages six through 12) participated in a modified laboratory school protocol to monitor treatment response with lisdexamfetamine dimesylate (LDX; Vyvanse®, Shire US Inc.). All children refrained from taking medication for at least two weeks (washout period). To detect neurovascular reorganization, we measured changes in synchronization of oxy (HbO2) and deoxy (HHb) hemoglobin waves between the two frontal lobes. Participants without medication displayed average baseline HbO2 phase difference at about -7-deg. and HHb differences at about 240-deg.. This phase synchronization index changed after pharmacological intervention. Medication induced an average phase changes of HbO2 after first medication to 280-deg. and after medication optimization to 242-deg.. Instead first medication changed of the average HHb phase difference at 186-deg. and then after medication optimization to 120-deg. In agreement with findings of White et al., and Varela et al., we associated the phase synchronization differences of brain hemodynamics in children with ADHD with lobe specific hemodynamic reorganization of HbO2- and HHB oscillations following medication status.
Collapse
Affiliation(s)
- Sharon B. Wigal
- University of California Irvine, Child Development Center, Department of Pediatrics, 19722 MacArthur Boulevard Irvine, California 92612
| | - Chiara M. Polzonetti
- University of California Irvine, Child Development Center, Department of Pediatrics, 19722 MacArthur Boulevard Irvine, California 92612
| | - Annamarie Stehli
- University of California Irvine, Child Development Center, Department of Pediatrics, 19722 MacArthur Boulevard Irvine, California 92612
| | - Enrico Gratton
- University of California Irvine, Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, 3120 Natural Science II Building, Irvine, California 92697
| |
Collapse
|
44
|
Scholkmann F, Gerber U, Wolf M, Wolf U. End-tidal CO2: an important parameter for a correct interpretation in functional brain studies using speech tasks. Neuroimage 2012; 66:71-9. [PMID: 23099101 DOI: 10.1016/j.neuroimage.2012.10.025] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 09/21/2012] [Accepted: 10/16/2012] [Indexed: 12/30/2022] Open
Abstract
The aim was to investigate the effect of different speech tasks, i.e. recitation of prose (PR), alliteration (AR) and hexameter (HR) verses and a control task (mental arithmetic (MA) with voicing of the result on end-tidal CO2 (PETCO2), cerebral hemodynamics and oxygenation. CO2 levels in the blood are known to strongly affect cerebral blood flow. Speech changes breathing pattern and may affect CO2 levels. Measurements were performed on 24 healthy adult volunteers during the performance of the 4 tasks. Tissue oxygen saturation (StO2) and absolute concentrations of oxyhemoglobin ([O2Hb]), deoxyhemoglobin ([HHb]) and total hemoglobin ([tHb]) were measured by functional near-infrared spectroscopy (fNIRS) and PETCO2 by a gas analyzer. Statistical analysis was applied to the difference between baseline before the task, 2 recitation and 5 baseline periods after the task. The 2 brain hemispheres and 4 tasks were tested separately. A significant decrease in PETCO2 was found during all 4 tasks with the smallest decrease during the MA task. During the recitation tasks (PR, AR and HR) a statistically significant (p<0.05) decrease occurred for StO2 during PR and AR in the right prefrontal cortex (PFC) and during AR and HR in the left PFC. [O2Hb] decreased significantly during PR, AR and HR in both hemispheres. [HHb] increased significantly during the AR task in the right PFC. [tHb] decreased significantly during HR in the right PFC and during PR, AR and HR in the left PFC. During the MA task, StO2 increased and [HHb] decreased significantly during the MA task. We conclude that changes in breathing (hyperventilation) during the tasks led to lower CO2 pressure in the blood (hypocapnia), predominantly responsible for the measured changes in cerebral hemodynamics and oxygenation. In conclusion, our findings demonstrate that PETCO2 should be monitored during functional brain studies investigating speech using neuroimaging modalities, such as fNIRS, fMRI to ensure a correct interpretation of changes in hemodynamics and oxygenation.
Collapse
Affiliation(s)
- F Scholkmann
- Institute of Complementary Medicine KIKOM, University of Bern, 3010 Bern, Switzerland; Biomedical Optics Research Laboratory, Division of Neonatology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - U Gerber
- Institute of Complementary Medicine KIKOM, University of Bern, 3010 Bern, Switzerland
| | - M Wolf
- Biomedical Optics Research Laboratory, Division of Neonatology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - U Wolf
- Institute of Complementary Medicine KIKOM, University of Bern, 3010 Bern, Switzerland.
| |
Collapse
|
45
|
Biswas SK, Kanhirodan R, Vasu RM, Roy D. Practical fully three-dimensional reconstruction algorithms for diffuse optical tomography. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2012; 29:1017-1026. [PMID: 22673433 DOI: 10.1364/josaa.29.001017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We have developed an efficient fully three-dimensional (3D) reconstruction algorithm for diffuse optical tomography (DOT). The 3D DOT, a severely ill-posed problem, is tackled through a pseudodynamic (PD) approach wherein an ordinary differential equation representing the evolution of the solution on pseudotime is integrated that bypasses an explicit inversion of the associated, ill-conditioned system matrix. One of the most computationally expensive parts of the iterative DOT algorithm, the reevaluation of the Jacobian in each of the iterations, is avoided by using the adjoint-Broyden update formula to provide low rank updates to the Jacobian. In addition, wherever feasible, we have also made the algorithm efficient by integrating along the quadratic path provided by the perturbation equation containing the Hessian. These algorithms are then proven by reconstruction, using simulated and experimental data and verifying the PD results with those from the popular Gauss-Newton scheme. The major findings of this work are as follows: (i) the PD reconstructions are comparatively artifact free, providing superior absorption coefficient maps in terms of quantitative accuracy and contrast recovery; (ii) the scaling of computation time with the dimension of the measurement set is much less steep with the Jacobian update formula in place than without it; and (iii) an increase in the data dimension, even though it renders the reconstruction problem less ill conditioned and thus provides relatively artifact-free reconstructions, does not necessarily provide better contrast property recovery. For the latter, one should also take care to uniformly distribute the measurement points, avoiding regions close to the source so that the relative strength of the derivatives for measurements away from the source does not become insignificant.
Collapse
|
46
|
Le Pommellec JY, L’Huillier JP. Analyse théorique et expérimentale de la diffusion de la lumière générée par une diode électroluminescente dans des répliques tissulaires. Ing Rech Biomed 2011. [DOI: 10.1016/j.irbm.2011.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
47
|
Brydegaard M, Merdasa A, Jayaweera H, Ålebring J, Svanberg S. Versatile multispectral microscope based on light emitting diodes. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2011; 82:123106. [PMID: 22225198 DOI: 10.1063/1.3660810] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
We describe the development of a novel multispectral microscope, based on light-emitting diodes, capable of acquiring megapixel images in thirteen spectral bands from the ultraviolet to the near infrared. The system captures images and spectra in transmittance, reflectance, and scattering modes. We present as examples of applications ground truth measurements for remote sensing and parasitology diagnostics. The system is a general purpose scientific instrument that could be used to develop dedicated simplified instruments with optimal bands and mode selection.
Collapse
|
48
|
Boas DA, Franceschini MA. Haemoglobin oxygen saturation as a biomarker: the problem and a solution. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2011; 369:4407-24. [PMID: 22006898 PMCID: PMC3263786 DOI: 10.1098/rsta.2011.0250] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Near-infrared spectroscopy measures of haemoglobin oxygen saturation are often used as an indicator of sufficient oxygen delivery to assess injury susceptibility and tissue damage. They have also often been used as a surrogate measure of oxygen metabolism. Unfortunately, these measures have generally failed to provide robust indicators of injury and metabolism. In this paper, we first review when haemoglobin oxygen saturation does work as a robust indicator, and then detail when and why it fails for assessing brain injury and breast cancer. Finally, we discuss the solution to obtain more robust measures of tissue injury and cancer by combining oxygen saturation measurements with measures of blood flow and volume to more accurately estimate oxygen metabolism.
Collapse
Affiliation(s)
- David A Boas
- Optics Division of the Martinos Center for Biomedical Imaging, Harvard Medical School, Massachusetts General Hospital, 149 13th St rm 2301, Charlestown, MA 02129, USA.
| | | |
Collapse
|
49
|
Xu G, Piao D, Dehghani H. The utility of direct-current as compared to frequency domain measurements in spectrally-constrained diffuse optical tomography toward cancer imaging. Technol Cancer Res Treat 2011; 10:403-16. [PMID: 21895026 DOI: 10.7785/tcrt.2012.500218] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This work investigates, by means of analytical and simulation studies, the performance of spectrally-constrained image reconstruction in Continuous-Wave or Direct-Current (DC) and Frequency Domain (FD) near-infrared optical tomography. A recent analytic approach for estimating the accuracy of target recovery and the level of background artifact for optical tomography at single wavelength, based on the analysis of parametric reconstruction uncertainty level (PRUL), is extended to spectrally-constrained optical tomography. The analytical model is implemented to rank three sets of wavelengths that had been used as spectral prior in an independent experimental study. Subsequent simulation appraises the recovery of oxygenated hemoglobin (HbO), deoxygenated hemoglobin (Hb), water (H2O), scattering amplitude (A), and scattering power (b) using DC-only, DC-excluded FD, and DC-included FD, based on the three sets of wavelengths as the spectral prior. The simulation results support the analytic ranking of the performance of the three sets of spectral priors, and generally agree with the performance outcome of DC-only versus that of DC-excluded FD and DC-included FD. Specifically, this study indicate that: 1) the rank of overall quality of chromophore recovery is Hb, H2O, and HbO from the highest to lowest; and in the scattering part the A is always better recovered than b. This outcome does suggest that the DC-only information gives rise to unique solution to the image reconstruction routine under the given spectral prior. 2) DC-information is not-redundant in FD-reconstruction, as the artifact levels of DC-included FD reconstruction are always lower than those of DC-excluded FD. 3) The artifact level as represented by the noise-to-contrast-ratio is almost always the lowest in DC-only, leading to generally better resolution of multiple targets of identical contrasts over the background than in FD. However, the FD could outperform DC in the recovery of scattering properties including both A and b when the spectral prior is less optimal, implying the benefit of phase-information in scattering recovery in the context of spectrally-constrained optical tomography.
Collapse
Affiliation(s)
- Guan Xu
- School of Electrical and Computer Engineering, Oklahoma State University, Stillwater, OK, USA
| | | | | |
Collapse
|
50
|
Irwin D, Dong L, Shang Y, Cheng R, Kudrimoti M, Stevens SD, Yu G. Influences of tissue absorption and scattering on diffuse correlation spectroscopy blood flow measurements. BIOMEDICAL OPTICS EXPRESS 2011; 2:1969-85. [PMID: 21750773 PMCID: PMC3130582 DOI: 10.1364/boe.2.001969] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 06/13/2011] [Accepted: 06/14/2011] [Indexed: 05/19/2023]
Abstract
In this study we evaluate the influences of optical property assumptions on near-infrared diffuse correlation spectroscopy (DCS) flow index measurements. The optical properties, absorption coefficient (µ(a)) and reduced scattering coefficient (µ(s)'), are independently varied using liquid phantoms and measured concurrently with the flow index using a hybrid optical system combining a dual-wavelength DCS flow device with a commercial frequency-domain tissue-oximeter. DCS flow indices are calculated at two wavelengths (785 and 830 nm) using measured µ(a) and µ(s)' or assumed constant µ(a) and µ(s)'. Inaccurate µ(s)' assumptions resulted in much greater flow index errors than inaccurate µ(a). Underestimated/overestimated µ(s)' from -35%/+175% lead to flow index errors of +110%/-80%, whereas underestimated/overestimated µ(a) from -40%/+150% lead to -20%/+40%, regardless of the wavelengths used. Examination of a clinical study involving human head and neck tumors indicates up to +280% flow index errors resulted from inter-patient optical property variations. These findings suggest that studies involving significant µ(a) and µ(s)' changes should concurrently measure flow index and optical properties for accurate extraction of blood flow information.
Collapse
Affiliation(s)
- Daniel Irwin
- Center for Biomedical Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Lixin Dong
- Center for Biomedical Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Yu Shang
- Center for Biomedical Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Ran Cheng
- Center for Biomedical Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Mahesh Kudrimoti
- Department of Radiation Medicine, University of Kentucky Chandler Hospital, Lexington, KY 40536, USA
| | - Scott D. Stevens
- Department of Radiology, University of Kentucky Chandler Hospital, Lexington, KY 40536, USA
| | - Guoqiang Yu
- Center for Biomedical Engineering, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|