1
|
Mozumder M, Hirvi P, Nissilä I, Hauptmann A, Ripoll J, Singh DE. Diffuse optical tomography of the brain: effects of inaccurate baseline optical parameters and refinements using learned post-processing. BIOMEDICAL OPTICS EXPRESS 2024; 15:4470-4485. [PMID: 39347006 PMCID: PMC11427210 DOI: 10.1364/boe.524245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/24/2024] [Accepted: 06/24/2024] [Indexed: 10/01/2024]
Abstract
Diffuse optical tomography (DOT) uses near-infrared light to image spatially varying optical parameters in biological tissues. In functional brain imaging, DOT uses a perturbation model to estimate the changes in optical parameters, corresponding to changes in measured data due to brain activity. The perturbation model typically uses approximate baseline optical parameters of the different brain compartments, since the actual baseline optical parameters are unknown. We simulated the effects of these approximate baseline optical parameters using parameter variations earlier reported in literature, and brain atlases from four adult subjects. We report the errors in estimated activation contrast, localization, and area when incorrect baseline values were used. Further, we developed a post-processing technique based on deep learning methods that can reduce the effects due to inaccurate baseline optical parameters. The method improved imaging of brain activation changes in the presence of such errors.
Collapse
Affiliation(s)
- Meghdoot Mozumder
- Department of Technical Physics, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Pauliina Hirvi
- Department of Mathematics and Systems Analysis, Aalto University, P.O. Box 11100, 00076 Aalto, Finland
| | - Ilkka Nissilä
- Department of Neuroscience and Biomedical Engineering, Aalto University, P.O. Box 12200, 00076 Aalto, Finland
| | - Andreas Hauptmann
- Research Unit of Mathematical Sciences, University of Oulu, Oulu, Finland
- Department of Computer Science, University College London, London WC1E 6BT, United Kingdom
| | - Jorge Ripoll
- Department of Bioengineering, Universidad Carlos III de Madrid, 28911 Leganés, Madrid, Spain
| | - David E Singh
- Departamento de Informática, Universidad Carlos III de Madrid, 28911 Leganés, Madrid, Spain
| |
Collapse
|
2
|
Deng H, Liao L, Wu J, Wan L. Intravesical Electrical Stimulation Improves Abnormal Prefrontal Brain Activity in Patients With Underactive Bladder: A Possible Central Mechanism. Int Neurourol J 2023; 27:260-270. [PMID: 38171326 PMCID: PMC10762371 DOI: 10.5213/inj.2346232.116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/11/2023] [Indexed: 01/05/2024] Open
Abstract
PURPOSE The aim of this study was to explore the mechanisms of central brain action in patients with neurogenic underactive bladder (UAB) treated with intravesical electrical stimulation (IVES). METHODS We prospectively recruited patients with neurogenic UAB who chose to receive IVES treatment and healthy subjects (HS). At baseline, the following data were obtained: a 72-hour voiding diary; measurements of postvoid residual urine (PVR), voiding efficiency (VE) and first sensation of bladder filling (FS); American Urological Association Symptom Index Quality of Life (AUA-SI-QOL) scores, and functional near-infrared spectroscopy scans of the prefrontal cortex in the voiding stage. All UAB patients were re-evaluated for these indices after completing 4 weeks of IVES. A >50% improvement in PVR was defined as successful IVES treatment. Prefrontal activity was analyzed using the NIRS_KIT software, corrected with the false discovery rate (P<0.05). Statistical analysis was performed using IBM SPSS Statistics ver. 22.0, and P<0.05 was considered statistically significant. RESULTS Eighteen UAB patients and 16 HS were included. IVES treatment was successful in 11 UAB patients and failed in 7. The PVR, VE, 24-hour clean intermittent catheterization, FS volume, and AUA-SI-QOL scores of the UAB group significantly improved after successful IVES treatment. BA9 (right dorsolateral prefrontal cortex [DLPFC]) and BA10 (right frontal pole) were significantly activated after successful IVES, and no significant difference was found between the successful group and HS group after IVES. Before IVES, BA10 (right frontal pole) was significantly deactivated in the failed group compared with the successful group. CONCLUSION The possible central mechanism of IVES treatment for neurogenic UAB is that IVES reactivates the right DLPFC and right frontal pole.
Collapse
Affiliation(s)
- Han Deng
- Department of Urology, China Rehabilitation Research Centre, Rehabilitation School of Capital Medical University, Beijing, China
| | - Limin Liao
- Department of Urology, China Rehabilitation Research Centre, Rehabilitation School of Capital Medical University, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- University of Health and Rehabilitation Sciences, Qingdao, China
- Cheeloo College of Medicine, Shandong University, Jinan, China
- Wenzhou Medical University, Wenzhou, China
| | - Juan Wu
- Department of Urology, China Rehabilitation Research Centre, Rehabilitation School of Capital Medical University, Beijing, China
| | - Li Wan
- Department of Urology, China Rehabilitation Research Centre, Rehabilitation School of Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Kolnik SE, Marquard R, Brandon O, Puia-Dumitrescu M, Valentine G, Law JB, Natarajan N, Dighe M, Mourad PD, Wood TR, Mietzsch U. Preterm infants variability in cerebral near-infrared spectroscopy measurements in the first 72-h after birth. Pediatr Res 2023; 94:1408-1415. [PMID: 37138026 DOI: 10.1038/s41390-023-02618-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/29/2023] [Accepted: 04/06/2023] [Indexed: 05/05/2023]
Abstract
BACKGROUND Cerebral near-infrared spectroscopy is a non-invasive tool used to measure regional cerebral tissue oxygenation (rScO2) initially validated in adult and pediatric populations. Preterm neonates, vulnerable to neurologic injury, are attractive candidates for NIRS monitoring; however, normative data and the brain regions measured by the current technology have not yet been established for this population. METHODS This study's aim was to analyze continuous rScO2 readings within the first 6-72 h after birth in 60 neonates without intracerebral hemorrhage born at ≤1250 g and/or ≤30 weeks' gestational age (GA) to better understand the role of head circumference (HC) and brain regions measured. RESULTS Using a standardized brain MRI atlas, we determined that rScO2 in infants with smaller HCs likely measures the ventricular spaces. GA is linearly correlated, and HC is non-linearly correlated, with rScO2 readings. For HC, we infer that rScO2 is lower in infants with smaller HCs due to measuring the ventricular spaces, with values increasing in the smallest HCs as the deep cerebral structures are reached. CONCLUSION Clinicians should be aware that in preterm infants with small HCs, rScO2 displayed may reflect readings from the ventricular spaces and deep cerebral tissue. IMPACT Clinicians should be aware that in preterm infants with small head circumferences, cerebral near-infrared spectroscopy readings of rScO2 displayed may reflect readings from the ventricular spaces and deep cerebral tissue. This highlights the importance of rigorously re-validating technologies before extrapolating them to different populations. Standard rScO2 trajectories should only be established after determining whether the mathematical models used in NIRS equipment are appropriate in premature infants and the brain region(s) NIRS sensors captures in this population, including the influence of both gestational age and head circumference.
Collapse
Affiliation(s)
- Sarah E Kolnik
- Department of Pediatrics, Division of Neonatology, University of Washington School of Medicine, Seattle, WA, USA.
| | | | - Olivia Brandon
- Department of Pediatrics, Division of Neonatology, University of Washington School of Medicine, Seattle, WA, USA
| | - Mihai Puia-Dumitrescu
- Department of Pediatrics, Division of Neonatology, University of Washington School of Medicine, Seattle, WA, USA
| | - Gregory Valentine
- Department of Pediatrics, Division of Neonatology, University of Washington School of Medicine, Seattle, WA, USA
| | - Janessa B Law
- Department of Pediatrics, Division of Neonatology, University of Washington School of Medicine, Seattle, WA, USA
| | - Niranjana Natarajan
- Department of Pediatrics, Division of Neonatology, University of Washington School of Medicine, Seattle, WA, USA
- Department of Neurology, Division of Child Neurology, University of Washington School of Medicine, Seattle, WA, USA
| | - Manjiri Dighe
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Pierre D Mourad
- Division of Engineering and Mathematics, School of STEM, University of Washington, Bothell, WA, USA
- Department of Neurological Surgery, School of Medicine, University of Washington, Seattle, WA, USA
| | - Thomas R Wood
- Department of Pediatrics, Division of Neonatology, University of Washington School of Medicine, Seattle, WA, USA
| | - Ulrike Mietzsch
- Department of Pediatrics, Division of Neonatology, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
4
|
Hirvi P, Kuutela T, Fang Q, Hannukainen A, Hyvönen N, Nissilä I. Effects of atlas-based anatomy on modelled light transport in the neonatal head. Phys Med Biol 2023; 68:135019. [PMID: 37167982 PMCID: PMC10460200 DOI: 10.1088/1361-6560/acd48c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 04/21/2023] [Accepted: 05/11/2023] [Indexed: 05/13/2023]
Abstract
Objective.Diffuse optical tomography (DOT) provides a relatively convenient method for imaging haemodynamic changes related to neuronal activity on the cerebral cortex. Due to practical challenges in obtaining anatomical images of neonates, an anatomical framework is often created from an age-appropriate atlas model, which is individualized to the subject based on measurements of the head geometry. This work studies the approximation error arising from using an atlas instead of the neonate's own anatomical model.Approach.We consider numerical simulations of frequency-domain (FD) DOT using two approaches, Monte Carlo simulations and diffusion approximation via finite element method, and observe the variation in (1) the logarithm of amplitude and phase shift measurements, and (2) the corresponding inner head sensitivities (Jacobians), due to varying segmented anatomy. Varying segmentations are sampled by registering 165 atlas models from a neonatal database to the head geometry of one individual selected as the reference model. Prior to the registration, we refine the segmentation of the cerebrospinal fluid (CSF) by separating the CSF into two physiologically plausible layers.Main results.In absolute measurements, a considerable change in the grey matter or extracerebral tissue absorption coefficient was found detectable over the anatomical variation. In difference measurements, a small local 10%-increase in brain absorption was clearly detectable in the simulated measurements over the approximation error in the Jacobians, despite the wide range of brain maturation among the registered models.Significance.Individual-level atlas models could potentially be selected within several weeks in gestational age in DOT difference imaging, if an exactly age-appropriate atlas is not available. The approximation error method could potentially be implemented to improve the accuracy of atlas-based imaging. The presented CSF segmentation algorithm could be useful also in other model-based imaging modalities. The computation of FD Jacobians is now available in the widely-used Monte Carlo eXtreme software.
Collapse
Affiliation(s)
- Pauliina Hirvi
- Aalto University, Department of
Mathematics and Systems Analysis, PO Box 11100, FI-00076 AALTO,
Finland
| | - Topi Kuutela
- Aalto University, Department of
Mathematics and Systems Analysis, PO Box 11100, FI-00076 AALTO,
Finland
| | - Qianqian Fang
- Northeastern University, Department of
Bioengineering, 360 Huntington Ave, Boston, MA 02115, United States of
America
| | - Antti Hannukainen
- Aalto University, Department of
Mathematics and Systems Analysis, PO Box 11100, FI-00076 AALTO,
Finland
| | - Nuutti Hyvönen
- Aalto University, Department of
Mathematics and Systems Analysis, PO Box 11100, FI-00076 AALTO,
Finland
| | - Ilkka Nissilä
- Aalto University, Department of
Neuroscience and Biomedical Engineering, PO Box 12200, FI-00076 AALTO,
Finland
| |
Collapse
|
5
|
Li X, Fang R, Liao L, Li X. Real-time changes in brain activity during tibial nerve stimulation for overactive bladder: Evidence from functional near-infrared spectroscopy hype scanning. Front Neurosci 2023; 17:1115433. [PMID: 37090808 PMCID: PMC10113489 DOI: 10.3389/fnins.2023.1115433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 03/17/2023] [Indexed: 04/07/2023] Open
Abstract
Purpose To use functional near-infrared spectroscopy (fNIRS) to identify changes in brain activity during tibial nerve stimulation (TNS) in patients with overactive bladder (OAB) responsive to therapy. Methods Eighteen patients with refractory idiopathic OAB patients were recruited consecutively for this pilot study. At baseline, all patients completed 3 days voiding diary, Quality-of-Life score, Perception-of-Bladder-Condition, and Overactive-Bladder-Symptom score. Then 4 region-of-interest (ROI) fNIRS scans with 3 blocks were conducted for each patient. The block design was used: 60 s each for the task and rest periods and 3 to 5 repetitions of each period. A total of 360 s of data were collected. During the task period, patients used transcutaneous tibial nerve stimulation (TTNS) of 20-Hz frequency and a 0.2-millisecond pulse width and 30-milliamp stimulatory current to complete the experiment. The initial scan was obtained with a sham stimulation with an empty bladder, and a second was obtained with a verum stimulation with an empty bladder. Patients were given water till strong desire to void, and the third fNIRS scan with a verum stimulation was performed. The patients then needed to urinate since they could not tolerate the SDV condition for a long time. After a period of rest, the patients then were given water until they exhibited SDV state. The fourth scan with sham fNIRS scan in the SDV state was performed. NIRS_KIT software was used to analyze prefrontal activity, corrected by false discovery rate (FDR, p < 0.05). Statistical analyses were performed using GraphPad Prism software; p < 0.05 was considered significant. Results TTNS treatment was successful in 16 OAB patients and unsuccessful in 2. The 3 days voiding diary, Quality-of-Life score, Perception-of-Bladder-Condition, and Overactive-Bladder-Symptom score were significantly improved after TNS in the successfully treated group but not in the unsuccessfully treated group. The dorsolateral prefrontal cortex (DLPFC) (BA 9, Chapters 25 and 26) and the frontopolar area (FA) (BA 10, Chapters 35, 45, and 46) were significantly activated during TNS treatment with an empty bladder rather than with an SDV. Compared with the successfully treated group, the unsuccessfully treated group did not achieve statistical significance with an empty bladder and an SDV state. Conclusion fNIRS confirms that TNS influences brain activity in patients with OAB who respond to therapy. That may be the central mechanism of action of TNS.
Collapse
Affiliation(s)
- Xunhua Li
- Department of Urology, China Rehabilitation Research Center, School of Rehabilitation, Capital Medical University, Beijing, China
- University of Health and Rehabilitation Sciences, Qingdao, China
| | - Rui Fang
- Department of Occupational Therapy, China Rehabilitation Research Center, Beijing, China
| | - Limin Liao
- Department of Urology, China Rehabilitation Research Center, School of Rehabilitation, Capital Medical University, Beijing, China
- University of Health and Rehabilitation Sciences, Qingdao, China
- China Rehabilitation Science Institute, Beijing, China
| | - Xing Li
- Department of Urology, China Rehabilitation Research Center, School of Rehabilitation, Capital Medical University, Beijing, China
- University of Health and Rehabilitation Sciences, Qingdao, China
| |
Collapse
|
6
|
Vera DA, García HA, Waks-Serra MV, Carbone NA, Iriarte DI, Pomarico JA. Reconstruction of light absorption changes in the human head using analytically computed photon partial pathlengths in layered media. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2023; 40:C126-C137. [PMID: 37132982 DOI: 10.1364/josaa.482288] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Functional near infrared spectroscopy has been used in recent decades to sense and quantify changes in hemoglobin concentrations in the human brain. This noninvasive technique can deliver useful information concerning brain cortex activation associated with different motor/cognitive tasks or external stimuli. This is usually accomplished by considering the human head as a homogeneous medium; however, this approach does not explicitly take into account the detailed layered structure of the head, and thus, extracerebral signals can mask those arising at the cortex level. This work improves this situation by considering layered models of the human head during reconstruction of the absorption changes in layered media. To this end, analytically calculated mean partial pathlengths of photons are used, which guarantees fast and simple implementation in real-time applications. Results obtained from synthetic data generated by Monte Carlo simulations in two- and four-layered turbid media suggest that a layered description of the human head greatly outperforms typical homogeneous reconstructions, with errors, in the first case, bounded up to ∼20% maximum, while in the second case, the error is usually larger than 75%. Experimental measurements on dynamic phantoms support this conclusion.
Collapse
|
7
|
Maheswari KU, Thilak M, SenthilKumar N, Nagaprasad N, Jule LT, Seenivasan V, Ramaswamy K. Regression analysis on forward modeling of diffuse optical tomography system for carcinoma cell detection. Sci Rep 2023; 13:2406. [PMID: 36765152 PMCID: PMC9918525 DOI: 10.1038/s41598-023-29063-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 01/30/2023] [Indexed: 02/12/2023] Open
Abstract
The forward model design was employed in the Diffuse Optical Tomography (DOT) system to determine the optimal photonic flux in soft tissues like the brain and breast. Absorption coefficient (mua), reduced scattering coefficient (mus), and photonic flux (phi) were the parameters subjected to optimization. The Box-Behnken Design (BBD) method of the Response Surface Methodology (RSM) was applied to enhance the Diffuse Optical Tomography experimental system. The DC modulation voltages applied to different laser diodes of 850 nm and 780 nm wavelengths and spacing between the source and detector are the two factors operating on three optimization parameters that predicted the result through two-dimensional tissue image contours. The analysis of the Variance (ANOVA) model developed was substantial (R2 = > 0.954). The experimental results indicate that spacing and wavelength were more influential factors for rebuilding image contour. The position of the tumor in soft tissues is inspired by parameters like absorption coefficient and scattering coefficient, which depend on DC voltages applied to the Laser diode. This regression method predicted the values throughout the studied parameter space and was suitable for enhancement learning of diffuse optical tomography systems. The range of residual error percentage evaluated between experimental and predicted values for mua, mus, and phi was 0.301%, 0.287%, and 0.1%, respectively.
Collapse
Affiliation(s)
- K Uma Maheswari
- Department of Electronics and Communication Engineering, SRM TRP Engineering College, Trichy, India
| | - M Thilak
- Department of Mechanical Engineering, SRM TRP Engineering College, Trichy, India
| | - N SenthilKumar
- Department of Mechanical Engineering, SRM TRP Engineering College, Trichy, India
| | - N Nagaprasad
- Department of Mechanical Engineering, ULTRA College of Engineering and Technology, Madurai, 625 104, Tamil Nadu, India
| | - Leta Tesfaye Jule
- Department of Physics, College of Natural and Computational Science, Dambi Dollo University, Dembi Dolo, Ethiopia.,Centre for Excellence-Indigenous Knowledge, Innovative Technology Transfer and Entrepreneurship, Dambi Dollo University, Dembi Dolo, Ethiopia
| | - Venkatesh Seenivasan
- Department of Mechanical Engineering, Sri Eshwar College of Engineering, Coimbatore, India
| | - Krishnaraj Ramaswamy
- Centre for Excellence-Indigenous Knowledge, Innovative Technology Transfer and Entrepreneurship, Dambi Dollo University, Dembi Dolo, Ethiopia. .,Department of Mechanical Engineering, College of Engineering and Technology, Dambi Dollo University, Dembi Dolo, Ethiopia.
| |
Collapse
|
8
|
Yatsyk LM, Karkashadze GA, Altunin VV, Povalyaeva IA, Prudnikov PA, Namazova-Baranova LS, Vishneva EA. Functional Near-Infrared Spectroscopy as Promising Method for Studying Cognitive Functions in Children. CURRENT PEDIATRICS 2023. [DOI: 10.15690/vsp.v21i6.2490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The description of new promising method of functional neuroimaging, functional near-infrared spectroscopy (fNIRS), is presented. General information on functional tomography and its features in children are given. Brief description on the history of fNIRS development, the method itself, its advantages and disadvantages are covered. fNIRS implementation areas in science and clinical practice are clarified. fNIRS features are described, and the role of this method among others in functional tomography is determined. It was noted that fNIRS significantly complements other research and diagnostic methods, including functional magnetic resonance imaging, electroencephalography, induced potentials, thereby expanding the range of scientific and clinical issues that can be solved by functional neuroimaging.
Collapse
Affiliation(s)
- L. M. Yatsyk
- Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery
| | - G. A. Karkashadze
- Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery
| | - V. V. Altunin
- Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery
| | - I. A. Povalyaeva
- Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery
| | - P. A. Prudnikov
- Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery
| | - L. S. Namazova-Baranova
- Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery; Pirogov Russian National Research Medical University
| | - E. A. Vishneva
- Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery; Pirogov Russian National Research Medical University
| |
Collapse
|
9
|
Zhao H, Buckley EM. Influence of oversimplifying the head anatomy on cerebral blood flow measurements with diffuse correlation spectroscopy. NEUROPHOTONICS 2023; 10:015010. [PMID: 37006324 PMCID: PMC10062384 DOI: 10.1117/1.nph.10.1.015010] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/03/2023] [Indexed: 06/19/2023]
Abstract
Significance Diffuse correlation spectroscopy (DCS) is an emerging optical modality for non-invasive assessment of an index of regional cerebral blood flow. By the nature of this noninvasive measurement, light must pass through extracerebral layers (i.e., skull, scalp, and cerebral spinal fluid) before detection at the tissue surface. To minimize the contribution of these extracerebral layers to the measured signal, an analytical model has been developed that treats the head as a series of three parallel and infinitely extending slabs (mimicking scalp, skull, and brain). The three-layer model has been shown to provide a significant improvement in cerebral blood flow estimation over the typically used model that treats the head as a bulk homogenous medium. However, the three-layer model is still a gross oversimplification of the head geometry that ignores head curvature, the presence of cerebrospinal fluid (CSF), and heterogeneity in layer thickness. Aim Determine the influence of oversimplifying the head geometry on cerebral blood flow estimated with the three-layer model. Approach Data were simulated with Monte Carlo in a four-layer slab medium and a three-layer sphere medium to isolate the influence of CSF and curvature, respectively. Additionally, simulations were performed on magnetic resonance imaging (MRI) head templates spanning a wide-range of ages. Simulated data were fit to both the homogenous and three-layer model for CBF. Finally, to mitigate the errors in potential CBF estimation due to the difficulty in defining layer thickness, we investigated an approach to identify an equivalent, "optimized" thickness via a pressure modulation. Results Both head curvature and failing to account for CSF lead to significant errors in the estimation of CBF. However, the effect of curvature and CSF on relative changes in CBF is minimal. Further, we found that CBF was underestimated in all MRI-templates, although the magnitude of these underestimations was highly influenced by small variations in the source and detector optode positioning. The optimized thickness obtained from pressure modulation did not improve estimation accuracy of CBF, although it did significantly improve the estimation accuracy of relative changes in CBF. Conclusions In sum, these findings suggest that the three-layer model holds promise for improving estimation of relative changes in cerebral blood flow; however, estimations of absolute cerebral blood flow with the approach should be viewed with caution given that it is difficult to account for appreciable sources of error, such as curvature and CSF.
Collapse
Affiliation(s)
- Hongting Zhao
- Georgia Institute of Technology and Emory University, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
| | - Erin M. Buckley
- Georgia Institute of Technology and Emory University, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
- Emory University School of Medicine, Department of Pediatrics, Atlanta, Georgia, United States
- Children’s Healthcare of Atlanta, Children’s Research Scholar, Atlanta, Georgia, United States
| |
Collapse
|
10
|
Crum J, Zhang X, Noah A, Hamilton A, Tachtsidis I, Burgess PW, Hirsch J. An Approach to Neuroimaging Interpersonal Interactions in Mental Health Interventions. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:669-679. [PMID: 35144035 PMCID: PMC9271588 DOI: 10.1016/j.bpsc.2022.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 12/31/2021] [Accepted: 01/25/2022] [Indexed: 11/20/2022]
Abstract
BACKGROUND Conventional paradigms in clinical neuroscience tend to be constrained in terms of ecological validity, raising several challenges to studying the mechanisms mediating treatments and outcomes in clinical settings. Addressing these issues requires real-world neuroimaging techniques that are capable of continuously collecting data during free-flowing interpersonal interactions and that allow for experimental designs that are representative of the clinical situations in which they occur. METHODS In this work, we developed a paradigm that fractionates the major components of human-to-human verbal interactions occurring in clinical situations and used functional near-infrared spectroscopy to assess the brain systems underlying clinician-client discourse (N = 30). RESULTS Cross-brain neural coupling between people was significantly greater during clinical interactions compared with everyday life verbal communication, particularly between the prefrontal cortex (e.g., inferior frontal gyrus) and inferior parietal lobule (e.g., supramarginal gyrus). The clinical tasks revealed extensive increases in activity across the prefrontal cortex, especially in the rostral prefrontal cortex (area 10), during periods in which participants were required to silently reason about the dysfunctional cognitions of the other person. CONCLUSIONS This work demonstrates a novel experimental approach to investigating the neural underpinnings of interpersonal interactions that typically occur in clinical settings, and its findings support the idea that particular prefrontal systems might be critical to cultivating mental health.
Collapse
Affiliation(s)
- James Crum
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom.
| | - Xian Zhang
- Brain Function Laboratory, Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Adam Noah
- Brain Function Laboratory, Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Antonia Hamilton
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - Ilias Tachtsidis
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Paul W Burgess
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - Joy Hirsch
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom; Brain Function Laboratory, Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut; Department of Neuroscience, Yale School of Medicine, New Haven, Connecticut; Department of Comparative Medicine, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
11
|
Hirano D, Kimura N, Yano H, Enoki M, Aikawa M, Goto Y, Taniguchi T. Different brain activation patterns in the prefrontal area between self-paced and high-speed driving tasks. JOURNAL OF BIOPHOTONICS 2022; 15:e202100295. [PMID: 35103406 DOI: 10.1002/jbio.202100295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/18/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
The purpose of this study was to investigate the effects on prefrontal cortex brain activity when participants attempted to stop a car accurately at a stop line when driving at different speeds using functional near-infrared spectroscopy (fNIRS). Twenty healthy subjects with driving experience drove their own cars for a distance of 60 m five times each at their own pace or as fast as possible. The variation in the distance between the stop line and the car was not significantly different between the self-paced and high-speed tasks. However, oxygenated hemoglobin concentration in the prefrontal cortex was significantly higher in the high-speed task than in the self-paced task. These findings suggest that driving at high speed requires more divided attention than driving at self-paced speed, even though the participants were able to stop the car at the same distance from the target. This study shows the advantages and usefulness of fNIRS .
Collapse
Affiliation(s)
- Daisuke Hirano
- Graduate School of Health and Welfare Sciences, International University of Health and Welfare, Minato, Tokyo, Japan
- Department of Occupational Therapy, School of Health Sciences, International University of Health and Welfare, Otawara, Tochigi, Japan
| | - Naotoshi Kimura
- Graduate School of Health and Welfare Sciences, International University of Health and Welfare, Minato, Tokyo, Japan
- Department of Rehabilitation, International University of Health and Welfare Ichikawa Hospital, Ichikawa, Chiba, Japan
| | - Hana Yano
- Graduate School of Health and Welfare Sciences, International University of Health and Welfare, Minato, Tokyo, Japan
- Department of Occupational Therapy, School of Health Sciences, International University of Health and Welfare, Otawara, Tochigi, Japan
| | - Miku Enoki
- Graduate School of Health and Welfare Sciences, International University of Health and Welfare, Minato, Tokyo, Japan
- Department of Rehabilitation, International University of Health and Welfare Shioya Hospital, Yaita, Tochigi, Japan
| | - Maya Aikawa
- Graduate School of Health and Welfare Sciences, International University of Health and Welfare, Minato, Tokyo, Japan
- Department of Rehabilitation, International University of Health and Welfare Shioya Hospital, Yaita, Tochigi, Japan
| | - Yoshinobu Goto
- Graduate School of Health and Welfare Sciences, International University of Health and Welfare, Minato, Tokyo, Japan
- Faculty of Medicine, School of Medicine, International University of Health and Welfare, Narita, Chiba, Japan
- Department of Occupational Therapy, School of Health Sciences at Fukuoka, International University of Health and Welfare, Okawa, Fukuoka, Japan
| | - Takamichi Taniguchi
- Graduate School of Health and Welfare Sciences, International University of Health and Welfare, Minato, Tokyo, Japan
- Department of Occupational Therapy, School of Health Sciences, International University of Health and Welfare, Otawara, Tochigi, Japan
| |
Collapse
|
12
|
Kao TC, Sung KB. Quantifying tissue optical properties of human heads in vivo using continuous-wave near-infrared spectroscopy and subject-specific three-dimensional Monte Carlo models. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:083021. [PMID: 35733242 PMCID: PMC9214577 DOI: 10.1117/1.jbo.27.8.083021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
SIGNIFICANCE Quantifying subject-specific optical properties (OPs) including absorption and transport scattering coefficients of tissues in the human head could improve the modeling of photon propagation for the analysis of functional near-infrared spectroscopy (fNIRS) data and dosage quantification in therapeutic applications. Current methods employ diffuse approximation, which excludes a low-scattering cerebrospinal fluid compartment and causes errors. AIM This work aims to quantify OPs of the scalp, skull, and gray matter in vivo based on accurate Monte Carlo (MC) modeling. APPROACH Iterative curve fitting was applied to quantify tissue OPs from multidistance continuous-wave NIR reflectance spectra. An artificial neural network (ANN) was trained using MC-simulated reflectance values based on subject-specific voxel-based tissue models to replace MC simulations as the forward model in curve fitting. To efficiently generate sufficient data for training the ANN, the efficiency of MC simulations was greatly improved by white MC simulations, increasing the detectors' acceptance angle, and building a lookup table for interpolation. RESULTS The trained ANN was six orders of magnitude faster than the original MC simulations. OPs of the three tissue compartments were quantified from NIR reflectance spectra measured at the forehead of five healthy subjects and their uncertainties were estimated. CONCLUSIONS This work demonstrated an MC-based iterative curve fitting method to quantify subject-specific tissue OPs in-vivo, with all OPs except for scattering coefficients of scalp within the ranges reported in the literature, which could aid the modeling of photon propagation in human heads.
Collapse
Affiliation(s)
- Tzu-Chia Kao
- National Taiwan University, Graduate Institute of Biomedical Electronics and Bioinformatics, Taipei, Taiwan
| | - Kung-Bin Sung
- National Taiwan University, Graduate Institute of Biomedical Electronics and Bioinformatics, Taipei, Taiwan
- National Taiwan University, Department of Electrical Engineering, Taipei, Taiwan
- National Taiwan University, Molecular Imaging Center, Taipei, Taiwan
| |
Collapse
|
13
|
García HA, Vera DA, Waks Serra MV, Baez GR, Iriarte DI, Pomarico JA. Theoretical investigation of photon partial pathlengths in multilayered turbid media. BIOMEDICAL OPTICS EXPRESS 2022; 13:2516-2529. [PMID: 35519258 PMCID: PMC9045903 DOI: 10.1364/boe.449514] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 05/20/2023]
Abstract
Functional near infrared spectroscopy (fNIRS) is a valuable tool for assessing oxy- and deoxyhemoglobin concentration changes (Δ[HbO] and Δ[HbR], respectively) in the human brain. To this end, photon pathlengths in tissue are needed to convert from light attenuation to Δ[HbO] and Δ[HbR]. Current techniques describe the human head as a homogeneous medium, in which case these pathlengths are easily computed. However, the head is more appropriately described as a layered medium; hence, the partial pathlengths in each layer are required. The current way to do this is by means of Monte Carlo (MC) simulations, which are time-consuming and computationally expensive. In this work, we introduce an approach to theoretically calculate these partial pathlengths, which are computed several times faster than MC simulations. Comparison of our approach with MC simulations show very good agreement. Results also suggest that these analytical expressions give much more specific information about light absorption in each layer than in the homogeneous case.
Collapse
|
14
|
Vera DA, García HA, Victoria Waks Serra M, Baez GR, Iriarte DI, Pomarico JA. A Monte Carlo study of near infrared light propagation in the human head with lesions-a time-resolved approach. Biomed Phys Eng Express 2022; 8. [PMID: 35235912 DOI: 10.1088/2057-1976/ac59f3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/01/2022] [Indexed: 11/11/2022]
Abstract
Several clinical conditions leading to traumatic brain injury can cause hematomas or edemas inside the cerebral tissue. If these are not properly treated in time, they are prone to produce long-term neurological disabilities, or even death. Low-cost, portable and easy-to-handle devices are desired for continuous monitoring of these conditions and Near Infrared Spectroscopy (NIRS) techniques represent an appropriate choice. In this work, we use Time-Resolved (TR) Monte Carlo simulations to present a study of NIR light propagation over a digital MRI phantom. Healthy and injured (hematoma/edema) situations are considered. TR Diffuse Reflectance simulations for different lesion volumes and interoptode distances are performed in the frontal area and the left parietal area. Results show that mean partial pathlengths, photon measurement density functions and time dependent contrasts are sensitive to the presence of lesions, allowing their detection mainly for intermediate optodes separations, which proves that these metrics represent robust means of diagnose and monitoring. Conventional Continuous Wave (CW) contrasts are also presented as a particular case of the time dependent ones, but they result less sensitive to the lesions, and have higher associated uncertainties.
Collapse
Affiliation(s)
- Demián A Vera
- Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires (CIFICEN, UNCPBA-CICPBA - CONICET) Pinto 399, B7000GHG-Tandil, Buenos Aires, Argentina
| | - Héctor A García
- Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires (CIFICEN, UNCPBA-CICPBA - CONICET) Pinto 399, B7000GHG-Tandil, Buenos Aires, Argentina
| | - Ma Victoria Waks Serra
- Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires (CIFICEN, UNCPBA-CICPBA - CONICET) Pinto 399, B7000GHG-Tandil, Buenos Aires, Argentina
| | - Guido R Baez
- Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires (CIFICEN, UNCPBA-CICPBA - CONICET) Pinto 399, B7000GHG-Tandil, Buenos Aires, Argentina
| | - Daniela I Iriarte
- Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires (CIFICEN, UNCPBA-CICPBA - CONICET) Pinto 399, B7000GHG-Tandil, Buenos Aires, Argentina
| | - Juan A Pomarico
- Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires (CIFICEN, UNCPBA-CICPBA - CONICET) Pinto 399, B7000GHG-Tandil, Buenos Aires, Argentina
| |
Collapse
|
15
|
Maria A, Hirvi P, Kotilahti K, Heiskala J, Tuulari JJ, Karlsson L, Karlsson H, Nissilä I. Imaging affective and non-affective touch processing in two-year-old children. Neuroimage 2022; 251:118983. [PMID: 35149231 DOI: 10.1016/j.neuroimage.2022.118983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 12/22/2021] [Accepted: 02/07/2022] [Indexed: 10/19/2022] Open
Abstract
Touch is an important component of early parent-child interaction and plays a critical role in the socio-emotional development of children. However, there are limited studies on touch processing amongst children in the age range from one to three years. The present study used frequency-domain diffuse optical tomography (DOT) to investigate the processing of affective and non-affective touch over left frontotemporal brain areas contralateral to the stimulated forearm in two-year-old children. Affective touch was administered by a single stroke with a soft brush over the child's right dorsal forearm at 3 cm/s, while non-affective touch was provided by multiple brush strokes at 30 cm/s. We found that in the insula, the total haemoglobin (HbT) response to slow brushing was significantly greater than the response to fast brushing (slow > fast). Additionally, a region in the postcentral gyrus, Rolandic operculum and superior temporal gyrus exhibited greater response to fast brushing than slow brushing (fast > slow). These findings confirm that an adult-like pattern of haemodynamic responses to affective and non-affective touch can be recorded in two-year-old subjects using DOT. To improve the accuracy of modelling light transport in the two-year-old subjects, we used a published age-appropriate atlas and deformed it to match the exterior shape of each subject's head. We estimated the combined scalp and skull, and grey matter (GM) optical properties by fitting simulated data to calibrated and coupling error corrected phase and amplitude measurements. By utilizing a two-compartment cerebrospinal fluid (CSF) model, the accuracy of estimation of GM optical properties and the localization of activation in the insula was improved. The techniques presented in this paper can be used to study neural development of children at different ages and illustrate that the technology is well-tolerated by most two-year-old children and not excessively sensitive to subject movement. The study points the way towards exciting possibilities in functional imaging of deeper functional areas near sulci in small children.
Collapse
Affiliation(s)
- Ambika Maria
- University of Turku, Department of Clinical Medicine, Turku Brain and Mind Center, FinnBrain Birth Cohort Study, Finland; University of Turku and Turku University Hospital, Department of Psychiatry, Finland
| | - Pauliina Hirvi
- Aalto University, Department of Neuroscience and Biomedical Engineering, P.O. Box 12200, AALTO FI-00076, Finland; Aalto University, Department of Mathematics and Systems Analysis, Finland
| | - Kalle Kotilahti
- Aalto University, Department of Neuroscience and Biomedical Engineering, P.O. Box 12200, AALTO FI-00076, Finland; University of Turku, Department of Clinical Medicine, Turku Brain and Mind Center, FinnBrain Birth Cohort Study, Finland
| | - Juha Heiskala
- HUS Medical Imaging Center, Clinical Neurophysiology; Clinical Neurosciences, Helsinki, University Hospital and University of Helsinki, Helsinki, Finland
| | - Jetro J Tuulari
- University of Turku, Department of Clinical Medicine, Turku Brain and Mind Center, FinnBrain Birth Cohort Study, Finland; University of Turku and Turku University Hospital, Department of Psychiatry, Finland; Turku Collegium for Science, Medicine and Technology, TCSMT, University of Turku, Finland
| | - Linnea Karlsson
- University of Turku, Department of Clinical Medicine, Turku Brain and Mind Center, FinnBrain Birth Cohort Study, Finland; University of Turku and Turku University Hospital, Department of Psychiatry, Finland; University of Turku and Turku University Hospital, Department of Paediatrics and Adolescent Medicine, Finland; Centre for Population Health Research, Turku University Hospital and University of Turku, Turku, Finland
| | - Hasse Karlsson
- University of Turku, Department of Clinical Medicine, Turku Brain and Mind Center, FinnBrain Birth Cohort Study, Finland; University of Turku and Turku University Hospital, Department of Psychiatry, Finland
| | - Ilkka Nissilä
- Aalto University, Department of Neuroscience and Biomedical Engineering, P.O. Box 12200, AALTO FI-00076, Finland.
| |
Collapse
|
16
|
Lohrengel S, Mahmoudzadeh M, Oumri F, Salmon S, Wallois F. A homogenized cerebrospinal fluid model for diffuse optical tomography in the neonatal head. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2022; 38:e3538. [PMID: 34617416 DOI: 10.1002/cnm.3538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Diffuse optical tomography is a non-invasive and non-irradiating medical imaging technique that is particularly suitable for cerebral monitoring of newborns since it can be used at the bedside of the patient. Here, a new model for optical tomography in the neonatal brain is presented that takes into account the presence of arachnoid trabeculae in the cerebrospinal fluid (CSF). It is known that the classical diffusion approximation (DA) for light propagation is at the limit of validity in the CSF layer due to the low values of the absorption and scattering coefficients. The new model is obtained by the DA of the homogenized radiative transfer equation and is rigorously justified. Numerical results in two and three dimensions attest for the improved sensitivity of the new model to the presence of perturbations in the brain layer.
Collapse
Affiliation(s)
- Stephanie Lohrengel
- Laboratoire de Mathématiques LMR CNRS UMR 9008, Université de Reims-Champagne Ardenne, Moulin de la Housse, Reims, France
| | - Mahdi Mahmoudzadeh
- INSERM UMR-S 1105, GRAMFC, Université de Picardie-Jules Verne, CHU Sud, Amiens, France
| | - Farah Oumri
- Laboratoire de Mathématiques LMR CNRS UMR 9008, Université de Reims-Champagne Ardenne, Moulin de la Housse, Reims, France
| | - Stéphanie Salmon
- Laboratoire de Mathématiques LMR CNRS UMR 9008, Université de Reims-Champagne Ardenne, Moulin de la Housse, Reims, France
| | - Fabrice Wallois
- INSERM UMR-S 1105, GRAMFC, Université de Picardie-Jules Verne, CHU Sud, Amiens, France
| |
Collapse
|
17
|
Ong SK, Husain SF, Wee HN, Ching J, Kovalik JP, Cheng MS, Schwarz H, Tang TB, Ho CS. Integration of the Cortical Haemodynamic Response Measured by Functional Near-Infrared Spectroscopy and Amino Acid Analysis to Aid in the Diagnosis of Major Depressive Disorder. Diagnostics (Basel) 2021; 11:diagnostics11111978. [PMID: 34829325 PMCID: PMC8617819 DOI: 10.3390/diagnostics11111978] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 01/02/2023] Open
Abstract
Background: Major depressive disorder (MDD) is a debilitating condition with a high disease burden and medical comorbidities. There are currently few to no validated biomarkers to guide the diagnosis and treatment of MDD. In the present study, we evaluated the differences between MDD patients and healthy controls (HCs) in terms of cortical haemodynamic responses during a verbal fluency test (VFT) using functional near-infrared spectroscopy (fNIRS) and serum amino acid profiles, and ascertained if these parameters were correlated with clinical characteristics. Methods: Twenty-five (25) patients with MDD and 25 age-, gender-, and ethnicity-matched HCs were recruited for the study. Real-time monitoring of the haemodynamic response during completion of a VFT was quantified using a 52-channel NIRS system. Serum samples were analysed and quantified by liquid chromatography-mass spectrometry for amino acid profiling. Receiver-operating characteristic (ROC) curves were used to classify potential candidate biomarkers. Results: The MDD patients had lower prefrontal and temporal activation during completion of the VFT than HCs. The MDD patients had lower mean concentrations of oxy-Hb in the left orbitofrontal cortex (OFC), and lower serum histidine levels. When the oxy-haemoglobin response was combined with the histidine concentration, the sensitivity and specificity of results improved significantly from 66.7% to 73.3% and from 65.0% to 90.0% respectively, as compared to results based only on the NIRS response. Conclusions: These findings demonstrate the use of combination biomarkers to aid in the diagnosis of MDD. This technique could be a useful approach to detect MDD with greater precision, but additional studies are required to validate the methodology.
Collapse
Affiliation(s)
- Samantha K. Ong
- Department of Psychological Medicine, National University Health System, Singapore 119228, Singapore;
| | - Syeda F. Husain
- Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore 119276, Singapore;
| | - Hai Ning Wee
- Cardiovascular and Metabolic Disorders Programme, Duke-NUS Graduate Medical School, Singapore 169609, Singapore; (H.N.W.); (J.C.); (J.-P.K.)
| | - Jianhong Ching
- Cardiovascular and Metabolic Disorders Programme, Duke-NUS Graduate Medical School, Singapore 169609, Singapore; (H.N.W.); (J.C.); (J.-P.K.)
| | - Jean-Paul Kovalik
- Cardiovascular and Metabolic Disorders Programme, Duke-NUS Graduate Medical School, Singapore 169609, Singapore; (H.N.W.); (J.C.); (J.-P.K.)
| | - Man Si Cheng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (M.S.C.); (H.S.)
| | - Herbert Schwarz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (M.S.C.); (H.S.)
| | - Tong Boon Tang
- Centre for Intelligent Signal and Imaging Research (CISIR), University Teknologi PETRONAS, Bandar Seri Iskandar 32610, Perak, Malaysia;
| | - Cyrus S. Ho
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Correspondence: ; Tel.: +65-67795555
| |
Collapse
|
18
|
Wojtkiewicz S, Liebert A. Parallel, multi-purpose Monte Carlo code for simulation of light propagation in segmented tissues. Biocybern Biomed Eng 2021. [DOI: 10.1016/j.bbe.2021.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Greco FA, McKee AC, Kowall NW, Hanlon EB. Near-Infrared Optical Spectroscopy In Vivo Distinguishes Subjects with Alzheimer's Disease from Age-Matched Controls. J Alzheimers Dis 2021; 82:791-802. [PMID: 34092628 PMCID: PMC8385529 DOI: 10.3233/jad-201021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Background: Medical imaging methods such as PET and MRI aid clinical assessment of Alzheimer’s disease (AD). Less expensive, less technically demanding, and more widely deployable technologies are needed to expand objective screening for diagnosis, treatment, and research. We previously reported brain tissue near-infrared optical spectroscopy (NIR) in vitro indicating the potential to meet this need. Objective: To determine whether completely non-invasive, clinical, NIR in vivo can distinguish AD patients from age-matched controls and to show the potential of NIR as a clinical screen and monitor of therapeutic efficacy. Methods: NIR spectra were acquired in vivo. Three groups were studied: autopsy-confirmed AD, control and mild cognitive impairment (MCI). A feature selection approach using the first derivative of the intensity normalized spectra was used to discover spectral regions that best distinguished “AD-alone” (i.e., without other significant neuropathology) from controls. The approach was then applied to other autopsy-confirmed AD cases and to clinically diagnosed MCI cases. Results: Two regions about 860 and 895 nm completely separate AD patients from controls and differentiate MCI subjects according to the degree of impairment. The 895 nm feature is more important in separating MCI subjects from controls (ratio-of-weights: 1.3); the 860 nm feature is more important for distinguishing MCI from AD (ratio-of-weights: 8.2). Conclusion: These results form a proof of the concept that near-infrared spectroscopy can detect and classify diseased and normal human brain in vivo. A clinical trial is needed to determine whether the two features can track disease progression and monitor potential therapeutic interventions.
Collapse
Affiliation(s)
- Frank A Greco
- VA Bedford Healthcare System, Medical Research & Development Service, Bedford, MA, USA
| | - Ann C McKee
- VA Bedford Healthcare System, Medical Research & Development Service, Bedford, MA, USA.,VA Boston Healthcare System, Neurology Service, Boston, MA, USA.,Boston University School of Medicine, Alzheimer's Disease Center, and Chronic Traumatic Encephalopathy Center, Boston, MA, USA.,Boston University School of Medicine, Department of Pathology and Laboratory Medicine, and Department of Neurology, Boston, MA, USA
| | - Neil W Kowall
- VA Boston Healthcare System, Neurology Service, Boston, MA, USA.,Boston University School of Medicine, Alzheimer's Disease Center, and Chronic Traumatic Encephalopathy Center, Boston, MA, USA.,Boston University School of Medicine, Department of Pathology and Laboratory Medicine, and Department of Neurology, Boston, MA, USA
| | - Eugene B Hanlon
- VA Bedford Healthcare System, Medical Research & Development Service, Bedford, MA, USA
| |
Collapse
|
20
|
Pang D, Liao L. Abnormal functional connectivity within the prefrontal cortex in interstitial cystitis/bladder pain syndrome (IC/BPS): A pilot study using resting state functional near-infrared spectroscopy (rs-fNIRS). Neurourol Urodyn 2021; 40:1634-1642. [PMID: 34130350 DOI: 10.1002/nau.24729] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/16/2021] [Accepted: 05/25/2021] [Indexed: 12/30/2022]
Abstract
PURPOSE To investigate the abnormalities of functional connectivity (FC) within the prefrontal cortex (PFC) of patients with interstitial cystitis/bladder pain syndrome (IC/BPS) based on resting state functional near-infrared spectroscopy (rs-fNIRS) data using FC matrix analysis. MATERIALS AND METHODS Ten patients with IC/BPS (females, 9; mean age, 56.9 ± 12.432 years) and 15 age- and gender-matched healthy controls (HC) (females, 12; mean age, 55.067 ± 7.46 years) participated in this rs-fNIRS study. Two rs-fNIRS scans were performed (when the bladder was empty and when the desire to void was strong). The Pearson's correlation coefficient between the time series of the 22 channels was calculated to obtain a 22 × 22 FC matrix for each subject. A two-sample t-test (p < .05) was performed to compare group differences in the FC matrix between patients with IC/BPS and HC. RESULTS FC was significantly decreased within the PFC in the IC/BPS group based on a two-sample t-test (p < .05) compared with HC. FC decreased in a wider range of brain regions during the strong desire to void state (4 brain regions and 28 edges) when compared with the empty bladder state (3 brain regions and 18 edges). CONCLUSION FC abnormalities in IC/BPS patients may lead to frontal lobe disorders involved in processing sensory integration, motivation drive, emotional control, and decision-making whether to urinate, leading to urinary control dysfunction manifested as typical clinical IC/BPS symptoms. Our results may provide new insight into the pathogenesis of IC/BPS and new brain biomarkers for diagnosis.
Collapse
Affiliation(s)
- Dongqing Pang
- School of Rehabilitation, Capital Medical University, Beijing, China.,Department of Urology, China Rehabilitation Research Centre, Beijing, China.,Department of Urology, Capital Medical University, Beijing, China
| | - Limin Liao
- School of Rehabilitation, Capital Medical University, Beijing, China.,Department of Urology, China Rehabilitation Research Centre, Beijing, China.,Department of Urology, Capital Medical University, Beijing, China
| |
Collapse
|
21
|
Wei Y, Chen Q, Curtin A, Tu L, Tang X, Tang Y, Xu L, Qian Z, Zhou J, Zhu C, Zhang T, Wang J. Functional near-infrared spectroscopy (fNIRS) as a tool to assist the diagnosis of major psychiatric disorders in a Chinese population. Eur Arch Psychiatry Clin Neurosci 2021; 271:745-757. [PMID: 32279143 DOI: 10.1007/s00406-020-01125-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/30/2020] [Indexed: 01/18/2023]
Abstract
Advances in neuroimaging have promised the development of specific and objective biomarkers for the diagnosis and treatment of psychiatric disorders. Recently, functional near-infrared spectroscopy (fNIRS) has been used during cognitive tasks to measure cortical dysfunction associated with mental illnesses such as Schizophrenia (SCH), Major-Depressive disorder (MD) and Bipolar Disorder (BD). We investigated the ability of fNIRS as a clinically viable tool to successfully distinguish healthy individuals from those with major psychiatric disorders. 316 patients with major psychiatric disorders (198 SCH/54 MD/64 BP) and 101 healthy controls were included in this study. Changes in oxygenated-hemoglobin during a Chinese language verbal fluency test were measured using a 52-channel fNIRS machine over the bilateral temporal and frontal lobe areas. We evaluated the ability of two task-evoked features selected from prior studies the Integral and Centroid values, to identify individuals with major diagnoses. Both the integral value of frontal and centroid value of temporal showed sensitivity in classifying individuals with mental disorders from healthy controls. However, using a combined index featuring both the integral value and centroid value to differentiate psychiatric disorders from healthy controls with an AUC of 0.913, differentiate individuals with mood disorders from healthy controls showed an AUC of 0.899, while for schizophrenia the AUC was 0.737. Our data suggest that fNIRS can be used as a candidate biomarker during differential diagnosis individuals with mood or psychosis disorders and offer a step towards individualization of treatment.
Collapse
Affiliation(s)
- YanYan Wei
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wanping Nan Road, Shanghai, 200030, People's Republic of China
| | - Qi Chen
- The 102nd Hospital of the Liberation of Army, Changzhou, 213003, People's Republic of China
| | - Adrian Curtin
- School of Biomedical Engineering & Health Sciences, Drexel University, Philadelphia, PA, 19104, USA
- Med-X Institute, Shanghai Jiao Tong University, Shanghai, 200300, People's Republic of China
| | - Li Tu
- The 102nd Hospital of the Liberation of Army, Changzhou, 213003, People's Republic of China
| | - Xiaochen Tang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wanping Nan Road, Shanghai, 200030, People's Republic of China
| | - YingYing Tang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wanping Nan Road, Shanghai, 200030, People's Republic of China
| | - LiHua Xu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wanping Nan Road, Shanghai, 200030, People's Republic of China
| | - ZhenYing Qian
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wanping Nan Road, Shanghai, 200030, People's Republic of China
| | - Jie Zhou
- Shanghai Med-X Engineering Research Center, The School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China
| | - ChaoZhe Zhu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - TianHong Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wanping Nan Road, Shanghai, 200030, People's Republic of China.
| | - JiJun Wang
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Insitute, Shanghai, People's Republic of China.
| |
Collapse
|
22
|
Cai L, Nitta T, Yokota S, Obata T, Okada E, Kawaguchi H. Targeting brain regions of interest in functional near-infrared spectroscopy-Scalp-cortex correlation using subject-specific light propagation models. Hum Brain Mapp 2021; 42:1969-1986. [PMID: 33621388 PMCID: PMC8046049 DOI: 10.1002/hbm.25367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 12/05/2020] [Accepted: 01/31/2021] [Indexed: 11/11/2022] Open
Abstract
Targeting specific brain regions of interest by the accurate positioning of optodes (emission and detection probes) on the scalp remains a challenge for functional near‐infrared spectroscopy (fNIRS). Since fNIRS data does not provide any anatomical information on the brain cortex, establishing the scalp‐cortex correlation (SCC) between emission‐detection probe pairs on the scalp and the underlying brain regions in fNIRS measurements is extremely important. A conventional SCC is obtained by a geometrical point‐to‐point manner and ignores the effect of light scattering in the head tissue that occurs in actual fNIRS measurements. Here, we developed a sensitivity‐based matching (SBM) method that incorporated the broad spatial sensitivity of the probe pair due to light scattering into the SCC for fNIRS. The SCC was analyzed between head surface fiducial points determined by the international 10–10 system and automated anatomical labeling brain regions for 45 subject‐specific head models. The performance of the SBM method was compared with that of three conventional geometrical matching (GM) methods. We reveal that the light scattering and individual anatomical differences in the head affect the SCC, which indicates that the SBM method is compulsory to obtain the precise SCC. The SBM method enables us to evaluate the activity of cortical regions that are overlooked in the SCC obtained by conventional GM methods. Together, the SBM method could be a promising approach to guide fNIRS users in designing their probe arrangements and in explaining their measurement data.
Collapse
Affiliation(s)
- Lin Cai
- Department of Electronics and Electrical Engineering, Keio University, Yokohama, Japan
| | - Tomonori Nitta
- Department of Electronics and Electrical Engineering, Keio University, Yokohama, Japan
| | - Sho Yokota
- Department of Electronics and Electrical Engineering, Keio University, Yokohama, Japan
| | - Takayuki Obata
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Eiji Okada
- Department of Electronics and Electrical Engineering, Keio University, Yokohama, Japan
| | - Hiroshi Kawaguchi
- Department of Electronics and Electrical Engineering, Keio University, Yokohama, Japan.,Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan.,Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki, Japan
| |
Collapse
|
23
|
Abstract
More than four decades have passed since the first example of a light-activated (caged) compound was described. In the intervening years, a large number of light-responsive derivatives have been reported, several of which have found utility under a variety of in vitro conditions using cells and tissues. Light-triggered bioactivity furnishes spatial and temporal control, and offers the possibility of precision dosing and orthogonal communication with different biomolecules. These inherent attributes of light have been advocated as advantageous for the delivery and/or activation of drugs at diseased sites for a variety of indications. However, the tissue penetrance of light is profoundly wavelength-dependent. Only recently have phototherapeutics that are photoresponsive in the optical window of tissue (600-900 nm) been described. This Review highlights these recent discoveries, along with their limitations and clinical opportunities. In addition, we describe preliminary in vivo studies of prospective phototherapeutics, with an emphasis on the path that remains to be navigated in order to translate light-activated drugs into clinically useful therapeutics. Finally, the unique attributes of phototherapeutics is highlighted by discussing several potential disease applications.
Collapse
|
24
|
Surkar SM, Hoffman RM, Harbourne R, Kurz MJ. Cognitive-Motor Interference Heightens the Prefrontal Cortical Activation and Deteriorates the Task Performance in Children With Hemiplegic Cerebral Palsy. Arch Phys Med Rehabil 2020; 102:225-232. [PMID: 32976843 DOI: 10.1016/j.apmr.2020.08.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/07/2020] [Indexed: 01/19/2023]
Abstract
OBJECTIVE To compare the prefrontal cortex (PFC) activation and task performance during single- and dual-task conditions between typically developing (TD) children and children with hemiplegic cerebral palsy (HCP). DESIGN A prospective, comparative design. SETTING Research laboratory. PARTICIPANTS Participants (N=21) included 12 TD children (age, 6.0±1.1y) and 9 children with HCP (age, 7.2±3.1). INTERVENTIONS Not applicable. MAIN OUTCOME MEASURES PFC activation was assessed by measuring the concentration of oxygenated hemoglobin while the children performed a shape-matching task with their more affected arm while sitting on a stable (single task) vs dynamic surface (dual task). The task performance was assessed with the total number of shapes matched, dual-task cost, and reaction time (RT). RESULTS For both conditions, the children with HCP exhibited greater PFC activation, matched a fewer shapes, and had slower RT than the TD children. These differences were accentuated during the dual-task condition and the dual-task cost was greater. An increase in the PFC activation during the dual-task condition was tightly correlated with a higher dual-task cost in children with HCP (r=0.77, P=.01). CONCLUSIONS Children with HCP appear to have a heightened amount of PFC activity while performing a dual task. The greater cortical activity may be a result of the finite attentional resources that are shared between both the motor as well as cognitive demands of the task. The cognitive-motor interference is likely exacerbated in children with HCP because of the structural and functional brain changes as a result of an insult to the developing brain.
Collapse
Affiliation(s)
- Swati M Surkar
- Department of Physical Therapy, East Carolina University, Greenville, North Carolina; Department of Physical Therapy, Munroe Meyer Institute of Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska
| | - Rashelle M Hoffman
- Department of Physical Therapy, Munroe Meyer Institute of Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska
| | - Regina Harbourne
- Department of Physical Therapy John G. Rangos School of Health Sciences, Duquesne University, Pittsburgh, Pennsylvania
| | - Max J Kurz
- Department of Physical Therapy, Munroe Meyer Institute of Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska; Cognitive Neuroscience of Development & Aging (CoNDA) Center, University of Nebraska Medical Center, Omaha, Nebraska.
| |
Collapse
|
25
|
Vera DA, Baez GR, García HA, Iriarte DI, Pomarico JA. A comparison between plausible models in layered turbid media with geometrical variations applying a Bayesian selection criterion. Biomed Phys Eng Express 2020; 6:055020. [PMID: 33444251 DOI: 10.1088/2057-1976/abae48] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
One possible application of Near Infrared techniques is to analyze human brain metabolic activity. Currently used models take into account the layered structure of the human head but, usually, they do not consider the non-planar surface of some of the boundaries, i.e. gray matter, which results in a much more complex structure, thus leading to more sophisticated models and longer calculation times. The main objective of this work is to determine if it is worth to replace a planar layered structure by a non-planar one. To this end we implement a Bayesian-based quantitative methodology for choosing between two competitive models describing light propagation in layered turbid media. Experiments of time-resolved diffuse reflectance measurements are performed in layered phantoms and complemented with numerical calculations. The resulting Distributions of Time of Flight of both models are compared using Bayesian model selection analysis. The non-planar interface was introduced in the simulations by a simple surface parametrization. Results suggest that, under certain conditions, a multilayer model with planar boundaries is good enough.
Collapse
Affiliation(s)
- Demián A Vera
- Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires (CIFICEN, UNCPBA-CICPBA - CONICET) Pinto 399, B7000GHG-Tandil, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
26
|
Park JJ, Kim C, Jeon JP. Monitoring of Delayed Cerebral Ischemia in Patients with Subarachnoid Hemorrhage via Near-Infrared Spectroscopy. J Clin Med 2020; 9:jcm9051595. [PMID: 32456319 PMCID: PMC7290832 DOI: 10.3390/jcm9051595] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/11/2020] [Accepted: 05/22/2020] [Indexed: 02/06/2023] Open
Abstract
We investigated the role of near infrared spectroscopy (NIRS) in identifying delayed cerebral ischemia (DCI) in patients with subarachnoid hemorrhage (SAH). We measured the cerebral regional oxygen saturation (rSO2) continuously for 14 days. The differences in rSO2 according to DCI were analyzed. We also compared the diagnostic accuracy of NIRS and transcranial Doppler ultrasonography (TCD) for DCI detection using the area under receiver operator characteristic (ROC) curve. Fifty-two patients treated with coil embolization were enrolled, including 18 with DCI (34.6%) and 34 without DCI (65.4%). Significant differences in rSO2 levels were observed from days 7 to 9. The rSO2 level was 60.95 (58.10-62.30) at day 7 in the DCI vs. 63.90 (62.50-67.10) in the non-DCI patients. By day 8, it was 59.50 (56.90-64.50) in the DCI vs. 63.30 (59.70-68.70) in the non-DCI cases. By day 9, it was 61.85 (59.40-65.20) in the DCI vs. 66.00 (62.70-68.30) in the non-DCI. A decline of >12.7% in SO2 rate yielded a sensitivity of 94.44% (95% CI: 72.7-99.9%) and a specificity of 70.59% (95% CI: 52.5-84.9%) for identifying DCI. Changes in NIRS tended to yield better diagnostic accuracy than TCD, but were not statistically significant. NIRS is a feasible method for real-time detection of DCI.
Collapse
Affiliation(s)
- Jeong Jin Park
- Department of Neurology, Konkuk University Medical Center, Seoul 05030, Korea;
| | - Chulho Kim
- Department of Neurology, Hallym University College of Medicine, Chuncheon 24253, Korea;
- Division of Big Data and Artificial Intelligence, Chuncheon Sacred Heart Hospital, Chuncheon 24253, Korea
| | - Jin Pyeong Jeon
- Division of Big Data and Artificial Intelligence, Chuncheon Sacred Heart Hospital, Chuncheon 24253, Korea
- Institute of New Frontier Stroke Research, Hallym University College of Medicine, Chuncheon 24253, Korea
- Department of Neurosurgery, Hallym University College of Medicine, Chuncheon 24253, Korea
- Genetic and Research Inc., Chuncheon 24253, Korea
- Correspondence: ; Tel.: +82-33-240-5171; Fax: +82-33-240-9970
| |
Collapse
|
27
|
Zarei M, Ansari MA, Zare K. The Temporal Confounding Effects of Extra-cerebral Contamination Factors on the Hemodynamic Signal Measured by Functional Near-Infrared Spectroscopy. J Lasers Med Sci 2020; 10:S73-S81. [PMID: 32021678 DOI: 10.15171/jlms.2019.s14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Introduction: Functional near-infrared spectroscopy (fNIRS) has been broadly applied for optical brain imaging. This method is hemodynamic-based functional brain imaging relying on the measurement of the neurovascular coupling to detect changes in cerebral neuronal activities. The extra-cerebral hemodynamic changes are important contaminating factors in fNIRS measurements. This error signal can be misinterpreted as cerebral activities during fNIRS studies. Recently, it was assumed that temporal changes in deoxygenated hemoglobin concentration [HHb] was hardly affected by superficial blood flow, and it was proposed that the activation maps could be determined from [HHb] at large source-detector separation. Methods: In the current study, we measured the temporal changes in [HHb] using a continueswave fNIRS device at large source-detector separation, while superficial blood flow was stimulated by infrared lasers. A mesh-based Monte Carlo code was applied to estimate fNIRS sensitivity to superficial hemodynamic changes in a realistic 3D MRI-based brain phantom. Results: First, we simulated photon migration in a four-layered human-head slab model to calculate PPLs and fNIRS sensitivity. Then, the localization of the infrared laser inside a realistic brain model was studied using the Monte Carlo method. Finally, the changes in [HHb] over the prefrontal cortex of six adult males were measured by fNIRS at a source-detector separation of 3 cm. The results demonstrated that the relation between fNIRS sensitivity and an increase in S-D separation was nonlinear and a correlation between shallow and deep signals was observed. Conclusion: The presented results demonstrated that the temporal changes in the superficial blood flow could strongly affect HHb measurement at large source-detector separation. Hence, the cerebral activity map extracted from the [HHb] signal was mainly contaminated by superficial blood flow.
Collapse
Affiliation(s)
- Mehrdad Zarei
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Mohammad Ali Ansari
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Kourosh Zare
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
28
|
Ando T, Nakamura T, Fujii T, Shiono T, Nakamura T, Suzuki M, Anzue-Satoi N, Narumi K, Watanabe H, Korenaga T, Okada E, Inoue Y. Non-contact acquisition of brain function using a time-extracted compact camera. Sci Rep 2019; 9:17854. [PMID: 31780759 PMCID: PMC6882904 DOI: 10.1038/s41598-019-54458-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 11/12/2019] [Indexed: 11/09/2022] Open
Abstract
A revolution in functional brain imaging techniques is in progress in the field of neurosciences. Optical imaging techniques, such as high-density diffuse optical tomography (HD-DOT), in which source-detector pairs of probes are placed on subjects' heads, provide better portability than conventional functional magnetic resonance imaging (fMRI) equipment. However, these techniques remain costly and can only acquire images at up to a few measurements per square centimetre, even when multiple detector probes are employed. In this study, we demonstrate functional brain imaging using a compact and affordable setup that employs nanosecond-order pulsed ordinary laser diodes and a time-extracted image sensor with superimposition capture of scattered components. Our technique can simply and easily attain a high density of measurement points without requiring probes to be attached, and can directly capture two-dimensional functional brain images. We have demonstrated brain activity imaging using a phantom that mimics the optical properties of an adult human head, and with a human subject, have measured cognitive brain activation while the subject is solving simple arithmetical tasks.
Collapse
Affiliation(s)
- Takamasa Ando
- Technology Innovation Division, Panasonic Corporation, Moriguchi, Osaka, 570-8501, Japan.
| | - Tatsuya Nakamura
- Technology Innovation Division, Panasonic Corporation, Moriguchi, Osaka, 570-8501, Japan
| | - Toshiya Fujii
- Technology Innovation Division, Panasonic Corporation, Moriguchi, Osaka, 570-8501, Japan
| | - Teruhiro Shiono
- Technology Innovation Division, Panasonic Corporation, Moriguchi, Osaka, 570-8501, Japan
| | - Tasuku Nakamura
- Technology Innovation Division, Panasonic Corporation, Moriguchi, Osaka, 570-8501, Japan
| | - Masato Suzuki
- Technology Innovation Division, Panasonic Corporation, Moriguchi, Osaka, 570-8501, Japan
| | - Naomi Anzue-Satoi
- Technology Innovation Division, Panasonic Corporation, Moriguchi, Osaka, 570-8501, Japan
| | - Kenji Narumi
- Technology Innovation Division, Panasonic Corporation, Moriguchi, Osaka, 570-8501, Japan
| | - Hisashi Watanabe
- Technology Innovation Division, Panasonic Corporation, Moriguchi, Osaka, 570-8501, Japan
| | - Tsuguhiro Korenaga
- Technology Innovation Division, Panasonic Corporation, Moriguchi, Osaka, 570-8501, Japan
| | - Eiji Okada
- Department of Electronics and Electrical Engineering, Keio University, Yokohama, Kanagawa, 223-8522, Japan
| | - Yasunori Inoue
- Technology Innovation Division, Panasonic Corporation, Moriguchi, Osaka, 570-8501, Japan
| |
Collapse
|
29
|
Wang L, Ayaz H, Izzetoglu M. Investigation of the source-detector separation in near infrared spectroscopy for healthy and clinical applications. JOURNAL OF BIOPHOTONICS 2019; 12:e201900175. [PMID: 31291506 DOI: 10.1002/jbio.201900175] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 05/20/2023]
Abstract
Understanding near infrared light propagation in tissue is vital for designing next generation optical brain imaging devices. Monte Carlo (MC) simulations provide a controlled mechanism to characterize and evaluate contributions of diverse near infrared spectroscopy (NIRS) sensor configurations and parameters. In this study, we developed a multilayer adult digital head model under both healthy and clinical settings and assessed light-tissue interaction through MC simulations in terms of partial differential pathlength, mean total optical pathlength, diffuse reflectance, detector light intensity and spatial sensitivity profile of optical measurements. The model incorporated four layers: scalp, skull, cerebrospinal-fluid and cerebral cortex with and without a customizable lesion for modeling hematoma of different sizes and depths. The effect of source-detector separation (SDS) on optical measurements' sensitivity to brain tissue was investigated. Results from 1330 separate simulations [(4 lesion volumes × 4 lesion depths for clinical +3 healthy settings) × 7 SDS × 10 simulation = 1330)] each with 100 million photons indicated that selection of SDS is critical to acquire optimal measurements from the brain and recommended SDS to be 25 to 35 mm depending on the wavelengths to obtain optical monitoring of the adult brain function. The findings here can guide the design of future NIRS probes for functional neuroimaging and clinical diagnostic systems.
Collapse
Affiliation(s)
- Lei Wang
- Drexel University, School of Biomedical Engineering, Science and Health Systems, Philadelphia, Pennsylvania
| | - Hasan Ayaz
- Drexel University, School of Biomedical Engineering, Science and Health Systems, Philadelphia, Pennsylvania
- Department of Family and Community Health, University of Pennsylvania, Philadelphia, Pennsylvania
- Children's Hospital of Philadelphia, Center for Injury Research and Prevention, Philadelphia, Pennsylvania
| | - Meltem Izzetoglu
- Villanova University, Electrical and Computer Engineering, Villanova, Pennsylvania
| |
Collapse
|
30
|
Sudakou A, Wojtkiewicz S, Lange F, Gerega A, Sawosz P, Tachtsidis I, Liebert A. Depth-resolved assessment of changes in concentration of chromophores using time-resolved near-infrared spectroscopy: estimation of cytochrome-c-oxidase uncertainty by Monte Carlo simulations. BIOMEDICAL OPTICS EXPRESS 2019; 10:4621-4635. [PMID: 31565513 PMCID: PMC6757481 DOI: 10.1364/boe.10.004621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 06/10/2023]
Abstract
Time-resolved near-infrared spectroscopy (TR-NIRS) measurements can be used to recover changes in concentrations of tissue constituents ( Δ C ) by applying the moments method and the Beer-Lambert law. In this work we carried out the error propagation analysis allowing to calculate the standard deviations of uncertainty in estimation of the Δ C . Here, we show the process of choosing wavelengths for the evaluation of hemodynamic (oxy-, deoxyhemoglobin) and metabolic (cytochrome-c-oxidase (CCO)) responses within the brain tissue as measured with an in-house developed TR-NIRS multi-wavelength system, which measures at 16 consecutive wavelengths separated by 12.5 nm and placed between 650 and 950 nm. Data generated with Monte Carlo simulations on three-layered model (scalp, skull, brain) for wavelengths range from 650 to 950 nm were used to carry out the error propagation analysis for varying choices of wavelengths. For a detector with a spectrally uniform responsivity, the minimal standard deviation of the estimated changes in CCO within the brain layer, σ Δ C CCO brain = 0.40 µM, was observed for the 16 consecutive wavelengths from 725 to 912.5 nm. For realistic a detector model, i.e. the spectral responsivity characteristic is considered, the minimum, σ Δ C CCO brain = 0.47 µM, was observed at the 16 consecutive wavelengths from 688 to 875 nm. We introduce the method of applying the error propagation analysis to data as measured with spectral TR-NIRS systems to calculate uncertainty of recovery of tissue constituents concentrations.
Collapse
Affiliation(s)
- Aleh Sudakou
- Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Trojdena 4, 02-109 Warsaw, Poland
| | - Stanislaw Wojtkiewicz
- Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Trojdena 4, 02-109 Warsaw, Poland
- School of Computer Science, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Frédéric Lange
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom
| | - Anna Gerega
- Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Trojdena 4, 02-109 Warsaw, Poland
| | - Piotr Sawosz
- Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Trojdena 4, 02-109 Warsaw, Poland
| | - Ilias Tachtsidis
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom
| | - Adam Liebert
- Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Trojdena 4, 02-109 Warsaw, Poland
| |
Collapse
|
31
|
Afshari A, Ghassemi P, Lin J, Halprin M, Wang J, Mendoza G, Weininger S, Pfefer TJ. Cerebral oximetry performance testing with a 3D-printed vascular array phantom. BIOMEDICAL OPTICS EXPRESS 2019; 10:3731-3746. [PMID: 31452971 PMCID: PMC6701524 DOI: 10.1364/boe.10.003731] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 05/13/2023]
Abstract
Cerebral oximetry based on near-infrared spectroscopy represents a unique noninvasive tool for real-time surgical monitoring, yet studies have shown a significant discrepancy in accuracy among commercial systems. Towards the establishment of a standardized method for performance testing, we have studied a solid phantom approach - based on a 3D-printed cerebrovascular module (CVM) incorporating an array of 148 cylindrical channels - that has several advantages over liquid phantoms. Development and characterization of a CVM prototype are described, including high-resolution imaging and spectrophotometry measurements. The CVM was filled with whole bovine blood tuned over an oxygen saturation range of 30-90% and molded-silicone layers simulating extracerebral tissues were used to evaluate penetration depth. Saturation measurement accuracy was assessed in two commercially-available clinical cerebral oximeters. For one oximeter, both neonatal and pediatric sensors showed a high degree of precision, whereas accuracy was strongly dependent on saturation level and extracerebral geometry. The second oximeter showed worse precision, yet greater robustness to variations in extracerebral layers. These results indicate that 3D-printed channel array phantoms represent a promising new approach for standardized testing of clinical oximeters.
Collapse
|
32
|
Wickenheisser VA, Zywot EM, Rabjohns EM, Lee HH, Lawrence DS, Tarrant TK. Laser Light Therapy in Inflammatory, Musculoskeletal, and Autoimmune Disease. Curr Allergy Asthma Rep 2019; 19:37. [PMID: 31267251 DOI: 10.1007/s11882-019-0869-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
PURPOSE OF REVIEW The goal of this review is to summarize the field to date and to discuss strengths and limitations of low-level laser (light) therapy (LLLT) for the future investigation as a treatment of inflammatory disease. RECENT FINDINGS LLLT is a promising therapeutic, particularly for those diseases of skin and joints because they are most accessible to treatment. Indeed, the known mechanisms of LLLT support its use for anti-inflammatory purposes, as well as stimulation of tissue growth and repair. Although the standard of care for the majority of inflammatory diseases is immunosuppressive agents such as corticosteroids with undesirable toxicities, LLLT offers a unique approach by being non-invasive and incurring minimal side effects. It is also relatively inexpensive and accessible and even has the possibility to be patient directed at home. There is evidence that LLLT is able to modulate the immune system at the skin and joint, and it has been shown to be efficacious in humans by affecting bacterial colonization as it may pertain to chronic rhinosinusitis. However, there is variability in the methods of laser application as well as a lack of evidence for laser type, dose-ranging studies, and wavelength selection that create barriers to the implementation of LLLT without further more rigorous and standardized study. The heterogeneity makes it difficult to draw strong conclusions about the efficacy of LLLT and its mechanisms.
Collapse
Affiliation(s)
| | - Emilia Marta Zywot
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, USA
| | - Emily Mary Rabjohns
- Duke Department of Medicine, Division of Rheumatology and Immunology, DUMC 3874, 200 Trent Dr., Durham, NC, 27710, USA
| | - Hyun Ho Lee
- Duke Department of Medicine, Division of Rheumatology and Immunology, DUMC 3874, 200 Trent Dr., Durham, NC, 27710, USA
| | - David S Lawrence
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, USA
- Department of Chemistry, University of North Carolina, Chapel Hill, USA
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, USA
| | - Teresa Kathleen Tarrant
- Duke School of Medicine, Durham, NC, USA.
- Duke Department of Medicine, Division of Rheumatology and Immunology, DUMC 3874, 200 Trent Dr., Durham, NC, 27710, USA.
| |
Collapse
|
33
|
Liu Y, Liu H, Yan H, Liu Y, Zhang J, Shan W, Lai P, Li H, Ren L, Li Z, Nie L. Aggregation-Induced Absorption Enhancement for Deep Near-Infrared II Photoacoustic Imaging of Brain Gliomas In Vivo. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801615. [PMID: 31016108 PMCID: PMC6469237 DOI: 10.1002/advs.201801615] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 12/10/2018] [Indexed: 05/18/2023]
Abstract
The delineation of brain gliomas margins still poses challenges to precise imaging and targeted therapy, mainly due to strong light attenuation of the skull and high background interference. With deep penetration and high sensitivity, photoacoustic (PA) imaging (PAI) in the second near-infrared (NIR II) window holds great potential for brain gliomas imaging. Herein, mesoionic dye A1094 encapsulated in Arg-Gly-Asp-modified hepatitis B virus core protein (RGD-HBc) is designed and synthesized for effective NIR II PAI of brain gliomas. An aggregation-induced absorption enhancement mechanism is discovered in vitro and in vivo. It is also demonstrated that A1094@RGD-HBc, with an enhanced absorption in the NIR II window, displays ninefold PA signal amplification in vivo, allowing for precise PAI of the brain gliomas at a depth up to 5.9 mm. In addition, with the application of abovementioned agent, high-resolution PAI and ultrasensitive single photon emission computed tomography images of brain gliomas are acquired with accurate co-localization. Collectively, the results suggest great promise of A1094@RGD-HBc for diagnostic imaging and precise delineation of brain gliomas in clinical applications.
Collapse
Affiliation(s)
- Yajing Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics& Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361102China
| | - Huanhuan Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics& Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361102China
| | - Huixiang Yan
- Department of UltrasonographySecond Clinical College of Jinan UniversityShenzhen People's HospitalShenzhen518020China
| | - Yingchao Liu
- Department of NeurosurgeryProvincial Hospital Affiliated to Shandong UniversityShandong250021China
| | - Jinsen Zhang
- Department of NeurosurgeryHuashan HospitalFudan UniversityShanghai200040China
| | - Wenjun Shan
- Department of BiomaterialsCollege of MaterialsXiamen UniversityXiamen361005China
| | - Puxiang Lai
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHong Kong999077China
| | - Honghui Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics& Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361102China
| | - Lei Ren
- Department of BiomaterialsCollege of MaterialsXiamen UniversityXiamen361005China
| | - Zijing Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics& Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361102China
| | - Liming Nie
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics& Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361102China
| |
Collapse
|
34
|
Zhang Z, Wang Y, Zhang Q, Zhao W, Chen X, Zhai J, Chen M, Du B, Deng X, Ji F, Wang C, Xiang Y, Li D, Wu H, Dong Q, Chen C, Li J. The effects of CACNA1C gene polymorphism on prefrontal cortex in both schizophrenia patients and healthy controls. Schizophr Res 2019; 204:193-200. [PMID: 30268820 DOI: 10.1016/j.schres.2018.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/28/2017] [Accepted: 09/09/2018] [Indexed: 11/28/2022]
Abstract
CACNA1C gene polymorphism rs2007044 has been reported to be associated with schizophrenia, but its underlying brain mechanism is not clear. First, we conducted an exploratory functional magnetic resonance imaging (fMRI) study using an N-BACK task and a Stroop task in 194 subjects (55 schizophrenia patients and 139 healthy controls). Our whole brain analysis found that the risk allele was associated with reduced activation of the left inferior frontal gyrus (IFG) during the Stroop task (cluster size = 390 voxels, P < 0.05 TFCE-FWE corrected; peak MNI coordinates: x = -57, y = -6, z = 30). We also conducted a functional near-infrared spectroscopy (fNIRS) study using the same Stroop task in an independent sample of 126 healthy controls to validate the fMRI finding. Our repeated-measures ANCOVA on the six channels (20, 27, 33, 34, 40 and 46) within the left IFG also found significant result. The polymorphism rs2007044 showed significant effect on the oxy-Hb data (F = 5.072, P = 0.026) and showed significant interaction effect with channels on the deoxy-Hb data (F = 2.841, P = 0.015). Taken together, results of this study suggested that rs2007044 could affect the activation of the left IFG, which was a possible brain mechanism underlying the association between CACNA1C gene polymorphism and schizophrenia.
Collapse
Affiliation(s)
- Zhifang Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, PR China
| | - Yanyan Wang
- Department of Psychiatry, HePing Hospital of Chang Zhou, Jiangsu 213003, China
| | - Qiumei Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, PR China; School of Mental Health, Jining Medical University, 45# Jianshe South Road, Jining 272013, Shandong Province, PR China
| | - Wan Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, PR China
| | - Xiongying Chen
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, PR China
| | - Jinguo Zhai
- School of Mental Health, Jining Medical University, 45# Jianshe South Road, Jining 272013, Shandong Province, PR China
| | - Min Chen
- School of Mental Health, Jining Medical University, 45# Jianshe South Road, Jining 272013, Shandong Province, PR China
| | - Boqi Du
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, PR China
| | - Xiaoxiang Deng
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, PR China
| | - Feng Ji
- School of Mental Health, Jining Medical University, 45# Jianshe South Road, Jining 272013, Shandong Province, PR China
| | | | - Yutao Xiang
- Beijing Anding Hospital, Beijing 100088, PR China; Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau
| | - Dawei Li
- Center for Cognitive Neuroscience, Duke University, Durham, NC, USA
| | - Hongjie Wu
- Shengli Hospital of Shengli Petroleum Administration Bureau, Dongying 257022, Shandong Province, PR China
| | - Qi Dong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, PR China
| | - Chuansheng Chen
- Department of Psychology and Social Behavior, University of California, Irvine, CA 92697, United States
| | - Jun Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, PR China.
| |
Collapse
|
35
|
Hernandez-Martin E, Marcano F, Modroño-Pascual C, Casanova-González O, Plata-Bello J, González-Mora JL. Is it possible to measure hemodynamic changes in the prefrontal cortex through the frontal sinus using continuous wave DOT systems? BIOMEDICAL OPTICS EXPRESS 2019; 10:817-837. [PMID: 30800517 PMCID: PMC6377888 DOI: 10.1364/boe.10.000817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/11/2018] [Accepted: 12/23/2018] [Indexed: 05/20/2023]
Abstract
The present work shows the capability of near infrared (NIR) light to reach the cerebral cortex through the frontal sinus using continuous-wave techniques (CW-DOT) in a dual study. On the one hand, changes in time during the tracking of a blood dye in the prefrontal cortex were monitored. On the other hand, hemodynamic changes induced by low frequency of transcranial magnetic stimulation applied on the prefrontal cortex were recorded. The results show how NIR light projected through the frontal sinus reaches the cerebral cortex target, providing enough information to have a reliable measurement of cortical hemodynamic changes using CW-DOT.
Collapse
|
36
|
Yoshiike T, Honma M, Yamada N, Kim Y, Kuriyama K. Effects of bright light exposure on human fear conditioning, extinction, and associated prefrontal activation. Physiol Behav 2018; 194:268-276. [DOI: 10.1016/j.physbeh.2018.06.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/31/2018] [Accepted: 06/11/2018] [Indexed: 12/12/2022]
|
37
|
Myllylä T, Harju M, Korhonen V, Bykov A, Kiviniemi V, Meglinski I. Assessment of the dynamics of human glymphatic system by near-infrared spectroscopy. JOURNAL OF BIOPHOTONICS 2018; 11:e201700123. [PMID: 28802090 DOI: 10.1002/jbio.201700123] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 07/25/2017] [Accepted: 08/10/2017] [Indexed: 06/07/2023]
Abstract
Fluctuations in brain water content has attracted increasing interest, particularly as regards studies of the glymphatic system, which is connected with the complex organization of dural lymphatic vessels, responsible for cleaning tissue. Disturbances of glymphatic circulation are associated with several brain disorders, including dementia. This article introduces an approach to noninvasive measurement of water dynamics in the human brain utilizing near-infrared spectroscopy (NIRS). We demonstrate the possibility to sense dynamic variations of water content between the skull and grey matter, for instance, in the subarachnoid space. Measured fluctuations in water content, especially in the cerebrospinal fluid (CSF), are assumed to be correlated with the dynamics of glymphatic circulation. The sampling volume for the NIRS optode was estimated by Monte Carlo modelling for the wavelengths of 660, 740, 830 and 980 nm. In addition, using combinations of these wavelengths, this article presents the calculation models for quantifying water and haemodynamics. The presented NIRS technique allows long-term functional brain monitoring, including sleeping time. Furthermore, it is used in combination with different magnetic neuroimaging techniques, particularly magnetic resonance encephalography. Using the combined setup, we report the preliminary results on the interaction between CSF and blood oxygen level-dependent fluctuations.
Collapse
Affiliation(s)
- Teemu Myllylä
- Optoelectronics and Measurement Techniques Unit, University of Oulu, Oulu, Finland
- Oulu Functional Neuroimaging Group, Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Markus Harju
- Inverse Problems Group, Department of Mathematical Sciences, University of Oulu, Oulu, Finland
| | - Vesa Korhonen
- Oulu Functional Neuroimaging Group, Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Department of Diagnostic Radiology, Medical Research Center (MRC), Oulu University Hospital, Oulu, Finland
| | - Alexander Bykov
- Optoelectronics and Measurement Techniques Unit, University of Oulu, Oulu, Finland
- Department of Photonics and Optical Information Technology, ITMO University, St Petersburg, Russia
| | - Vesa Kiviniemi
- Oulu Functional Neuroimaging Group, Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Department of Diagnostic Radiology, Medical Research Center (MRC), Oulu University Hospital, Oulu, Finland
| | - Igor Meglinski
- Optoelectronics and Measurement Techniques Unit, University of Oulu, Oulu, Finland
- Department of Photonics and Optical Information Technology, ITMO University, St Petersburg, Russia
- Institute of Biology, Irkutsk State University, Irkutsk, Russia
- Institute of Engineering Physics for Biomedicine, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russia
| |
Collapse
|
38
|
Issard C, Gervain J. Variability of the hemodynamic response in infants: Influence of experimental design and stimulus complexity. Dev Cogn Neurosci 2018; 33:182-193. [PMID: 29397345 PMCID: PMC6969282 DOI: 10.1016/j.dcn.2018.01.009] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 01/26/2018] [Accepted: 01/26/2018] [Indexed: 12/27/2022] Open
Abstract
Measuring brain activity in developmental populations remains a major challenge despite great technological advances. Among the numerous available methods, functional near-infrared spectroscopy (fNIRS), an imaging modality that probes the hemodynamic response, is a powerful tool for recording brain activity in a great variety of situations and populations. Neurocognitive studies with infants have often reported inverted hemodynamic responses, i.e. a decrease instead of an increase in regional blood oxygenation, but the exact physiological explanation and cognitive interpretation of this response remain unclear. Here, we first provide an overview of the basic principles of NIRS and its use in cognitive developmental neuroscience. We then review the infant fNIRS literature to show that the hemodynamic response is modulated by experimental design and stimulus complexity, sometimes leading to hemodynamic responses with non-canonical shapes. We also argue that this effect is further modulated by the age of participants, the cortical regions involved, and the developmental stage of the tested cognitive process. We argue that this variability needs to be taken into account when designing and interpreting developmental studies measuring the hemodynamic response.
Collapse
Affiliation(s)
- Cécile Issard
- Laboratoire Psychologie de la Perception, Université Paris Descartes, Centre Universitaire des Saints-Pères, 45 rue des Saints Pères, 75006 Paris, France.
| | - Judit Gervain
- Laboratoire Psychologie de la Perception, Université Paris Descartes, Centre Universitaire des Saints-Pères, 45 rue des Saints Pères, 75006 Paris, France; Laboratoire Psychologie de la Perception, CNRS UMR 8242, Centre Universitaire des Saints-Pères, 45 rue des Saints Pères, 75006 Paris, France.
| |
Collapse
|
39
|
An observational study of the optimal placement of a cerebral oximeter probe to avoid the frontal sinus in children. J Clin Monit Comput 2017; 32:849-854. [PMID: 29230624 DOI: 10.1007/s10877-017-0087-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 12/01/2017] [Indexed: 10/18/2022]
Abstract
The frontal sinus is an airspace behind the brow ridge in the skull and can affect the accuracy of the regional cerebral oxygen saturation measurements. We evaluated the optimal location for placement of a cerebral oximeter probe while avoiding the frontal sinus in pediatric patients. This retrospective observational study included 203 pediatric patients aged 3-17 years who had undergone brain computed tomography from November 2010 to December 2015. The patients were divided into five subgroups based on their age. The frontal sinus height was measured from the superior orbital rim. Pneumatization of the frontal sinus was not visible in 78% (3-5 years) and 22% (6-8 years) of the patients. The mean (SD) of the frontal sinus height was 5.9 (3.4), 9.5 (4.1), 14.0 (6.2) 18.6 (8.4), and 21.1 (7.9) mm in the 3-5, 6-8, 9-11, 12-14, and 15-17 year age-groups, respectively. Age was positively correlated with the frontal sinus height (r = 0.61, P < 0.001, 95% confidence interval [CI] 0.513-0.688). A frontal sinus height shorter than 1, 2, and 3 cm were seen in 10 of 11 (91%), 69 of 74 (94%), and 108 of 118 (90%) patients aged 3-5, 6-10, and 11-17 years, respectively. When oximeter probes are applied in pediatric patients, placement based on age can help avoid the frontal sinus.
Collapse
|
40
|
Kiguchi M, Funane T, Sato H. A novel measurand independent of the distance between the source and detector for continuous wave near-infrared spectroscopy. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2017; 88:064301. [PMID: 28668007 DOI: 10.1063/1.4989791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A new measurand is proposed for use in continuous wave near-infrared spectroscopy (cw-NIRS). The conventional measurand of cw-NIRS is l△c, which is the product of the change in the hemoglobin concentration (△c) and the partial path lengh (l), which depends on the source-detector (SD) distance (d). The SD distance must remain constant during cw-NIRS measurements, and we cannot compare the l△c value with that obtained using a different SD distance. In addition, the conventional measurand obtained using the standard measurement style sometimes includes a contribution from the human scalp. The SD distance independent (SID) measurand obtained using multi-SD distances is proportional to the product of the change in hemoglobin concentration and the derivative of the partial path length for the deep region with no scalp contribution under the assumption of a layer model. The principle of SID was validated by the layered phantom study. In order to check the limitation of assumption, a human study was conducted. The value of the SID measurand for the left side of the forehead during working memory task was approximately independent of the SD distance between 16 and 32 mm. The SID measurand and the standardized optode arrangement using flexible SD distances in a head coordinate system must be helpful for comparing the data in a population study.
Collapse
Affiliation(s)
- Masashi Kiguchi
- Center for Exploratory Research, Hitachi, Ltd., Hatoyama, Saitama 350-0395, Japan
| | - Tsukasa Funane
- Center for Exploratory Research, Hitachi, Ltd., Hatoyama, Saitama 350-0395, Japan
| | - Hiroki Sato
- Center for Exploratory Research, Hitachi, Ltd., Hatoyama, Saitama 350-0395, Japan
| |
Collapse
|
41
|
Ateş FE, Cangöz B, Özel Kızıl ET, Baskak B, Baran Z, Özgüven HD. Frontal activity during a verbal emotional working memory task in patients with Alzheimer's disease: A functional near-infrared spectroscopy study. Psychiatry Res Neuroimaging 2017; 261:29-34. [PMID: 28126617 DOI: 10.1016/j.pscychresns.2016.12.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 11/08/2016] [Accepted: 12/08/2016] [Indexed: 10/20/2022]
Abstract
Emotional working memory (EWM) is suggested as a working memory (WM) type, distinguished to process emotional stimuli, and may or may not be spared in Alzheimer's disease (AD). The aim was to compare patients with AD and healthy older adults (HC) on verbal EWM performance and accompanying prefrontal cortex activity. Twenty AD patients along with 20 HC individuals are required to complete an emotional one-back task in three conditions (neutral, positive and negative word lists). Prefrontal oxyhemoglobin (oxyHb) concentrations were measured simultaneously by a 24- channel functional near infrared spectroscopy device. Correct response rates were similar in two groups in all conditions. Reaction times were comparable in the EWM positive condition but longer in the AD group in EWMneutral and negative conditions. In the HC group, emotional words had no significant effect on WM. On the other hand, positive compared to neutral words led to greater activation in the left ventral prefrontal cortex (VPFC) in AD group. When compared to HCs, activity in the VPFC was significantly higher in AD patients during the positive condition. Positive words facilitated WM performance in participants with AD. Activity in VPFC may be the functional correlate of this phenomenon.
Collapse
Affiliation(s)
- Fatma Ebru Ateş
- Hacettepe University, Department of Psychology, Turkey; School of Psychology - Keynes College, AG9, University of Kent, Canterbury, Kent CT2 7NP, United Kingdom.
| | - Banu Cangöz
- Hacettepe University, Department of Psychology, Turkey
| | - Erguvan Tuğba Özel Kızıl
- Ankara University Faculty of Medicine, Psychiatry Department, Ankara University, Brain Research and Applications Center (BAUM), Turkey
| | - Bora Baskak
- Ankara University Faculty of Medicine, Psychiatry Department, Ankara University, Brain Research and Applications Center (BAUM), Turkey
| | - Zeynel Baran
- Hacettepe University, Department of Psychology, Turkey
| | - Halise Devrimci Özgüven
- Ankara University Faculty of Medicine, Psychiatry Department, Ankara University, Brain Research and Applications Center (BAUM), Turkey
| |
Collapse
|
42
|
Holmgaard F, Vedel AG, Langkilde A, Nilsson JC, Ravn HB. Does depth of the frontal sinus affect near-infrared spectroscopy measurement? Perfusion 2016; 31:659-661. [PMID: 27235422 DOI: 10.1177/0267659116649425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Near-infrared spectroscopy (NIRS) is a non-invasive method that reflects real-time cerebral oxygenation (rSO2) by the use of two adhesive optodes placed on the forehead of the patient. Frontal sinuses vary anatomically and a large frontal sinus might compromise the NIRS signal since the NIRS optodes are placed at the skin surface superficial to the underlying frontal sinus. The aim of this case-series was to elucidate whether there is a difference in the obligate changes in rSO2 during cardiac surgery between patients with a small as opposed to a large anterior-posterior distance of the frontal sinus based on magnetic resonance imaging. Two matched groups with small (n = 5) vs. large (n = 5) frontal sinus (3.2 vs. 18.1 millimeters) in this case-series showed no difference in obligate changes of rSO2 (p = 0.54).
Collapse
Affiliation(s)
- Frederik Holmgaard
- 1 Department of Cardiothoracic Anesthesiology, Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Anne G Vedel
- 1 Department of Cardiothoracic Anesthesiology, Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Annika Langkilde
- 2 Department of Radiology, Diagnostic Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jens C Nilsson
- 1 Department of Cardiothoracic Anesthesiology, Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Hanne Berg Ravn
- 1 Department of Cardiothoracic Anesthesiology, Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
43
|
Milej D, Abdalmalak A, Janusek D, Diop M, Liebert A, St Lawrence K. Time-resolved subtraction method for measuring optical properties of turbid media. APPLIED OPTICS 2016; 55:1507-13. [PMID: 26974605 DOI: 10.1364/ao.55.001507] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Near-infrared spectroscopy is a noninvasive optical method used primarily to monitor tissue oxygenation due to the absorption properties of hemoglobin. Accurate estimation of hemoglobin concentrations and other light absorbers requires techniques that can separate the effect of absorption from the much greater effect of light scattering. One of the most advanced methods is time-resolved near-infrared spectroscopy (TR-NIRS), which measures the absorption and scattering coefficients of a turbid medium by modeling the recorded distribution time of flight of photons. A challenge with TR-NIRS is that it requires accurate characterization of the dispersion caused by the system. In this study, we present a method for circumventing this problem by applying statistical moment analysis to two time-of-flight distributions measured at separated source-detector distances. Simulations based on analytical models and Monte Carlo code, and tissue-mimicking phantoms, were used to demonstrate its accuracy for source-detector distances typically used in neuroimaging applications. The simplicity of the approach is well suited to real-time applications requiring accurate quantification of the optical properties of a turbid medium.
Collapse
|
44
|
Liang LY, Shewokis PA, Getchell N. Brain Activation in the Prefrontal Cortex during Motor and Cognitive Tasks in Adults. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/jbbs.2016.612042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
45
|
Fukuda K, Takao A. Multichannel Signal Processing Method for Disturbance Cancelation in Brain Function Measurements Using Near-Infrared Spectroscopy. ADVANCED BIOMEDICAL ENGINEERING 2016. [DOI: 10.14326/abe.5.49] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Keiko Fukuda
- Tokyo Metropolitan College of Industrial Technology
| | - Akira Takao
- Tokyo Metropolitan College of Industrial Technology
| |
Collapse
|
46
|
Gregory AJ, Hatem MA, Yee K, Grocott HP. Optimal Placement of Cerebral Oximeter Monitors to Avoid the Frontal Sinus as Determined by Computed Tomography. J Cardiothorac Vasc Anesth 2016; 30:127-33. [DOI: 10.1053/j.jvca.2015.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Indexed: 11/11/2022]
|
47
|
Nourhashemi M, Mahmoudzadeh M, Wallois F. Thermal impact of near-infrared laser in advanced noninvasive optical brain imaging. NEUROPHOTONICS 2016; 3:015001. [PMID: 27115020 PMCID: PMC4802390 DOI: 10.1117/1.nph.3.1.015001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 12/03/2015] [Indexed: 05/04/2023]
Abstract
The propagation of laser light in human tissues is an important issue in functional optical imaging. We modeled the thermal effect of different laser powers with various spot sizes and different head tissue characteristics on neonatal and adult quasirealistic head models. The photothermal effect of near-infrared laser (800 nm) was investigated by numerical simulation using finite-element analysis. Our results demonstrate that the maximum temperature increase on the brain for laser irradiance between 0.127 (1 mW) and [Formula: see text] (100 mW) at a 1 mm spot size, ranged from 0.0025°C to 0.26°C and from 0.03°C to 2.85°C at depths of 15.9 and 4.9 mm in the adult and neonatal brain, respectively. Due to the shorter distance of the head layers from the neonatal head surface, the maximum temperature increase was higher in the neonatal brain than in the adult brain. Our results also show that, at constant power, spot size changes had a lesser heating effect on deeper tissues. While the constraints for safe laser irradiation to the brain are dictated by skin safety, these results can be useful to optimize laser parameters for a variety of laser applications in the brain. Moreover, combining simulation and adequate in vitro experiments could help to develop more effective optical imaging to avoid possible tissue damage.
Collapse
Affiliation(s)
- Mina Nourhashemi
- Université de Picardie, INSERM U 1105, GRAMFC, CHU Sud, rue René Laennec, 80054 Amiens Cedex 1, France
| | - Mahdi Mahmoudzadeh
- Université de Picardie, INSERM U 1105, GRAMFC, CHU Sud, rue René Laennec, 80054 Amiens Cedex 1, France
| | - Fabrice Wallois
- Université de Picardie, INSERM U 1105, GRAMFC, CHU Sud, rue René Laennec, 80054 Amiens Cedex 1, France
- Address all correspondence to: Fabrice Wallois, E-mail:
| |
Collapse
|
48
|
Baskak B, Baran Z, Devrimci-Özgüven H, Münir K, Öner Ö, Özel-Kızıl T. Effect of a socıal defeat experıence on prefrontal actıvıty ın schızophrenıa. Psychiatry Res 2015. [PMID: 26208745 PMCID: PMC4816220 DOI: 10.1016/j.pscychresns.2015.07.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The social defeat (SD) hypothesis of schizophrenia posits that repeated experiences of SD may lead to sensitization of the mesolimbic dopaminergic system and to precipitation of psychosis. Based on previous definitions adapted to a human experimental paradigm, we prepared a computer simulation of SD to mimic this subjective experience. We measured prefrontal cortex (PFC) activity in subjects with schizophrenia and healthy controls during exposure to a single SD experience with functional near infrared spectroscopy. PFC activity declined in both groups. Compared with the control condition, SD exposure was associated with a broader decline in left ventromedial, right medial and right lateral PFC activity in healthy controls (n=25), and a sharper decline in right ventrolateral PFC activity in subjects with schizophrenia (n=25). The activity in the right ventrolateral PFC, was significantly lower in patients compared with controls. This may be due to a deficiency in emotion regulation or self-control, or it may be related to impaired empathy in schizophrenia. Different patterns of brain activity during the SD experience in subjects with schizophrenia versus healthy controls may provide indirect evidence regarding the SD hypothesis of schizophrenia.
Collapse
Affiliation(s)
- Bora Baskak
- Ankara University, School of Medicine, Psychiatry Department, AUBAUM-Brain Research Center, Ankara, Turkey.
| | - Zeynel Baran
- Hacettepe University, Department of Psychology, Division of Experimental Psychology, Ankara, Turkey
| | - Halise Devrimci-Özgüven
- Ankara University, School of Medicine, Psychiatry Department, AUBAUM-Brain Research Center, Ankara, Turkey
| | - Kerim Münir
- Harvard Medical School, Boston Children’s Hospital, Developmental Medicine Center, Boston, MA, USA
| | - Özgür Öner
- Ankara University Child Psychiatry Department, Ankara, Turkey
| | - Tuğba Özel-Kızıl
- Ankara University, School of Medicine, Psychiatry Department, AUBAUM-Brain Research Center, Ankara, Turkey
| |
Collapse
|
49
|
Francis R, Khan B, Alexandrakis G, Florence J, MacFarlane D. NIR light propagation in a digital head model for traumatic brain injury (TBI). BIOMEDICAL OPTICS EXPRESS 2015; 6:3256-67. [PMID: 26417498 PMCID: PMC4574654 DOI: 10.1364/boe.6.003256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 08/03/2015] [Accepted: 08/03/2015] [Indexed: 05/07/2023]
Abstract
Near infrared spectroscopy (NIRS) is capable of detecting and monitoring acute changes in cerebral blood volume and oxygenation associated with traumatic brain injury (TBI). Wavelength selection, source-detector separation, optode density, and detector sensitivity are key design parameters that determine the imaging depth, chromophore separability, and, ultimately, clinical usefulness of a NIRS instrument. We present simulation results of NIR light propagation in a digital head model as it relates to the ability to detect intracranial hematomas and monitor the peri-hematomal tissue viability. These results inform NIRS instrument design specific to TBI diagnosis and monitoring.
Collapse
Affiliation(s)
- Robert Francis
- Raytheon, 1601 N Plano Rd, Richardson, TX 75081, USA
- Department of Electrical Engineering, University of Texas Dallas, 800 W Campbell Rd, Richardson, TX 75080, USA
| | - Bilal Khan
- Department of Electrical Engineering, University of Texas Dallas, 800 W Campbell Rd, Richardson, TX 75080, USA
- Department of Bioengineering, University of Texas Arlington, 500 UTA Boulevard, Arlington, TX 76010, USA
| | - George Alexandrakis
- Department of Bioengineering, University of Texas Arlington, 500 UTA Boulevard, Arlington, TX 76010, USA
| | - James Florence
- Department of Electrical Engineering, University of Texas Dallas, 800 W Campbell Rd, Richardson, TX 75080, USA
| | - Duncan MacFarlane
- Department of Electrical Engineering, University of Texas Dallas, 800 W Campbell Rd, Richardson, TX 75080, USA
| |
Collapse
|
50
|
Kurihara K, Kawaguchi H, Obata T, Ito H, Okada E. Magnetic resonance imaging appropriate for construction of subject-specific head models for diffuse optical tomography. BIOMEDICAL OPTICS EXPRESS 2015; 6:3197-3209. [PMID: 26417492 PMCID: PMC4574648 DOI: 10.1364/boe.6.003197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 07/24/2015] [Accepted: 07/24/2015] [Indexed: 06/05/2023]
Abstract
Subject-specific head models of which their geometry is based on structural magnetic resonance images are essential to accurately estimate the spatial sensitivity profiles for image reconstruction in diffuse optical tomography. T1-weighted magnetic resonance images, which are commonly used for structural imaging, are not sufficient for the threshold-based segmentation of the superficial tissues. Two types of pulse sequences, which provide a high contrast among the superficial tissues, are introduced to complement the segmentation to construct the subject-specific head models. The magnetic resonance images acquired by the proposed pulse sequences are robust to the threshold level and adequate for the threshold-based segmentation of the superficial tissues compared to the T1- and T2-weighted images. The total scan time of the proposed pulse sequences is less than one-fourth of that for the T2-weighted pulse sequence.
Collapse
Affiliation(s)
- Kazuki Kurihara
- Department of Electronics and Electrical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Hiroshi Kawaguchi
- Human Informatics Research Institute, National Institute of Advanced Industrial Science and Technology, Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
- Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Takayuki Obata
- Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Hiroshi Ito
- Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
- Advanced Clinical Research Center, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Eiji Okada
- Department of Electronics and Electrical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| |
Collapse
|