1
|
Attendu X, Bloemen PR, Kind NH, Faber DJ, de Bruin DM, Boudoux C, van Leeuwen TG. All-reflective tethered capsule endoscope for multimodal optical coherence tomography in the esophagus. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:096003. [PMID: 39301278 PMCID: PMC11412323 DOI: 10.1117/1.jbo.29.9.096003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/22/2024]
Abstract
Significance Esophageal cancer is becoming increasingly prevalent in Western countries. Early detection is crucial for effective treatment. Multimodal imaging combining optical coherence tomography (OCT) with complementary optical imaging techniques may provide enhanced diagnostic capabilities by simultaneously assessing tissue morphology and biochemical content. Aim We aim to develop a tethered capsule endoscope (TCE) that can accommodate a variety of point-scanning techniques in addition to OCT without requiring design iterations on the optical or mechanical design. Approach We propose a TCE utilizing exclusively reflective optics to focus and steer light from and to a double-clad fiber. Specifically, we use an ellipsoidal mirror to achieve finite conjugation between the fiber tip and the imaging plane. Results We demonstrate a functional all-reflective TCE. We first detail the design, fabrication, and assembly steps required to obtain such a device. We then characterize its performance and demonstrate combined OCT at 1300 nm and visible spectroscopic imaging in the 500- to 700-nm range. Finally, we discuss the advantages and limitations of the proposed design. Conclusions An all-reflective TCE is feasible and allows for achromatic high-quality imaging. Such a device could be utilized as a platform for testing various combinations of modalities to identify the optimal candidates without requiring design iterations.
Collapse
Affiliation(s)
- Xavier Attendu
- University of Amsterdam, Amsterdam University Medical Center, Department of Biomedical Engineering and Physics, Amsterdam, The Netherlands
- Polytechnique Montréal, Centre d'Optique Photonique et Lasers, Department of Engineering Physics, Montréal, Québec, Canada
| | - Paul R Bloemen
- University of Amsterdam, Amsterdam University Medical Center, Department of Biomedical Engineering and Physics, Amsterdam, The Netherlands
| | - Niels H Kind
- University of Amsterdam, Amsterdam University Medical Center, Department of Biomedical Engineering and Physics, Amsterdam, The Netherlands
- University of Amsterdam, Amsterdam University Medical Center, Department of Development and Innovation of Medical Technologies, Amsterdam, The Netherlands
| | - Dirk J Faber
- University of Amsterdam, Amsterdam University Medical Center, Department of Biomedical Engineering and Physics, Amsterdam, The Netherlands
| | - Daniel M de Bruin
- University of Amsterdam, Amsterdam University Medical Center, Department of Biomedical Engineering and Physics, Amsterdam, The Netherlands
| | - Caroline Boudoux
- Polytechnique Montréal, Centre d'Optique Photonique et Lasers, Department of Engineering Physics, Montréal, Québec, Canada
| | - Ton G van Leeuwen
- University of Amsterdam, Amsterdam University Medical Center, Department of Biomedical Engineering and Physics, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Searles K, Shalabi N, Hohert G, Gharib N, Jayhooni SMH, Lane PM, Takahata K. Distal planar rotary scanner for endoscopic optical coherence tomography. Biomed Eng Lett 2024; 14:583-592. [PMID: 38645593 PMCID: PMC11026329 DOI: 10.1007/s13534-024-00353-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 04/23/2024] Open
Abstract
Optical coherence tomography (OCT) is becoming a more common endoscopic imaging modality for detecting and treating disease given its high resolution and image quality. To use OCT for 3-dimensional imaging of small lumen, embedding an optical scanner at the distal end of an endoscopic probe for circumferential scanning the probing light is a promising way to implement high-quality imaging unachievable with the conventional method of revolving an entire probe. To this end, the present work proposes a hollow and planar micro rotary actuator for its use as an endoscopic distal scanner. A miniaturized design of this ferrofluid-assisted electromagnetic actuator is prototyped to act as a full 360° optical scanner, which is integrated at the tip of a fiber-optic probe together with a gradient-index lens for use with OCT. The scanner is revealed to achieve a notably improved dynamic performance that shows a maximum speed of 6500 rpm, representing 325% of the same reported with the preceding design, while staying below the thermal limit for safe in-vivo use. The scanner is demonstrated to perform real-time OCT using human fingers as live tissue samples for the imaging tests. The acquired images display no shadows from the electrical wires to the scanner, given its hollow architecture that allows the probing light to pass through the actuator body, as well as the quality high enough to differentiate the dermis from the epidermis while resolving individual sweat glands, proving the effectiveness of the prototyped scanner design for endoscopic OCT application.
Collapse
Affiliation(s)
- Kyle Searles
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3 Canada
| | - Nabil Shalabi
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
| | - Geoffrey Hohert
- Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 4E6 Canada
| | - Nirvana Gharib
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
| | | | - Pierre M. Lane
- Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 4E6 Canada
| | - Kenichi Takahata
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3 Canada
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
| |
Collapse
|
3
|
Shi Y, Liu J, Gong Z, Burger C, Jayaraman V, Wang RK. Multi-channel delay sampling to extend imaging depth in high-speed swept-source OCT systems. OPTICS LETTERS 2024; 49:2217-2220. [PMID: 38691683 PMCID: PMC11275917 DOI: 10.1364/ol.517493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/19/2024] [Indexed: 05/03/2024]
Abstract
We present a multi-channel delay sampling method to extend imaging depth in high-speed swept-source optical coherence tomography (SS-OCT). A balanced detector captures interference signals, converting them into electrical signals, which are then split into N channels, each with fixed time delays determined by the length of electrical cables. Then, they are digitized by an N-channel acquisition card. A calibration procedure is utilized to compensate for non-uniform phase shifts resulting from fixed time delays. The N-channel signals are merged in k-space and resampled to obtain a linearized spectrum, which increases the sampling rate by a factor of N, thereby extending the ranging distance by N times, all without altering k-clock triggering or sacrificing other imaging performance. The signal-to-noise ratio and sensitivity within the original depth range also have been enhanced. This advancement contributes to the improvement of the overall performance of SS-OCT systems.
Collapse
Affiliation(s)
- Yaping Shi
- Department of Bioengineering, University of Washington, Seattle, Washington 98105, USA
| | - Jian Liu
- Department of Bioengineering, University of Washington, Seattle, Washington 98105, USA
| | - Zhaoyu Gong
- Department of Bioengineering, University of Washington, Seattle, Washington 98105, USA
| | | | | | - Ruikang K. Wang
- Department of Bioengineering, University of Washington, Seattle, Washington 98105, USA
- Department of Ophthalmology, University of Washington, Seattle, Washington 98109, USA
| |
Collapse
|
4
|
Park HC, Li D, Liang R, Adrales G, Li X. Multifunctional Ablative Gastrointestinal Imaging Capsule (MAGIC) for Esophagus Surveillance and Interventions. BME FRONTIERS 2024; 5:0041. [PMID: 38577399 PMCID: PMC10993155 DOI: 10.34133/bmef.0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 03/04/2024] [Indexed: 04/06/2024] Open
Abstract
Objective and Impact Statement: A clinically viable technology for comprehensive esophagus surveillance and potential treatment is lacking. Here, we report a novel multifunctional ablative gastrointestinal imaging capsule (MAGIC) technology platform to address this clinical need. The MAGIC technology could also facilitate the clinical translation and adoption of the tethered capsule endomicroscopy (TCE) technology. Introduction: Recently developed optical coherence tomography (OCT) TCE technologies have shown a promising potential for surveillance of Barrett's esophagus and esophageal cancer in awake patients without the need for sedation. However, it remains challenging with the current TCE technology for detecting early lesions and clinical adoption due to its suboptimal resolution, imaging contrast, and lack of visual guidance during imaging. Methods: Our technology reported here integrates dual-wavelength OCT imaging (operating at 800 and 1300 nm), an ultracompact endoscope camera, and an ablation laser, aiming to enable comprehensive surveillance, guidance, and potential ablative treatment of the esophagus. Results: The MAGIC has been successfully developed with its multimodality imaging and ablation capabilities demonstrated by imaging swine esophagus ex vivo and in vivo. The 800-nm OCT imaging offers exceptional resolution and contrast for the superficial layers, well suited for detecting subtle changes associated with early neoplasia. The 1300-nm OCT imaging provides deeper penetration, essential for assessing lesion invasion. The built-in miniature camera affords a conventional endoscopic view for assisting capsule deployment and laser ablation. Conclusion: By offering complementary and clinically viable functions in a single device, the reported technology represents an effective solution for endoscopic screening, diagnosis, and potential ablation treatment of the esophagus of a patient in an office setting.
Collapse
Affiliation(s)
- Hyeon-Cheol Park
- Department of Biomedical Engineering,
Johns Hopkins University, Baltimore, MD 21205, USA
| | - Dawei Li
- Department of Biomedical Engineering,
Johns Hopkins University, Baltimore, MD 21205, USA
- Department of College of Future Technology,
Peking University, Beijing, 100871, China
| | - Rongguang Liang
- College of Optical Sciences,
University of Arizona, Tucson, AZ 85721, USA
| | - Gina Adrales
- Department of Surgery,
Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xingde Li
- Department of Biomedical Engineering,
Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
5
|
Gunalan A, Mattos LS. Towards OCT-Guided Endoscopic Laser Surgery-A Review. Diagnostics (Basel) 2023; 13:diagnostics13040677. [PMID: 36832167 PMCID: PMC9955820 DOI: 10.3390/diagnostics13040677] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Optical Coherence Tomography (OCT) is an optical imaging technology occupying a unique position in the resolution vs. imaging depth spectrum. It is already well established in the field of ophthalmology, and its application in other fields of medicine is growing. This is motivated by the fact that OCT is a real-time sensing technology with high sensitivity to precancerous lesions in epithelial tissues, which can be exploited to provide valuable information to clinicians. In the prospective case of OCT-guided endoscopic laser surgery, these real-time data will be used to assist surgeons in challenging endoscopic procedures in which high-power lasers are used to eradicate diseases. The combination of OCT and laser is expected to enhance the detection of tumors, the identification of tumor margins, and ensure total disease eradication while avoiding damage to healthy tissue and critical anatomical structures. Therefore, OCT-guided endoscopic laser surgery is an important nascent research area. This paper aims to contribute to this field with a comprehensive review of state-of-the-art technologies that may be exploited as the building blocks for achieving such a system. The paper begins with a review of the principles and technical details of endoscopic OCT, highlighting challenges and proposed solutions. Then, once the state of the art of the base imaging technology is outlined, the new OCT-guided endoscopic laser surgery frontier is reviewed. Finally, the paper concludes with a discussion on the constraints, benefits and open challenges associated with this new type of surgical technology.
Collapse
Affiliation(s)
- Ajay Gunalan
- Department of Advanced Robotics, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, 16145 Genoa, Italy
| | - Leonardo S. Mattos
- Department of Advanced Robotics, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
- Correspondence:
| |
Collapse
|
6
|
Endoscopic OCT Angiography Using Clinical Proximal-End Scanning Catheters. PHOTONICS 2022. [DOI: 10.3390/photonics9050329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Endoscopic optical coherence tomography angiography (OCTA) is a promising modality to inspect the microvasculature of inner organs in the early-stage tumor diagnosis. However, an endoscopic clinical proximal-end scanning catheter has limited flow imaging capability due to the nonuniform rotational distortion (NURD) and physiological motion. In this study, a combined local and global (CLG) optical flow algorithm was used to estimate the motion vectors caused by NURD and physiological motion. The motion vectors were used to bicubic-interpolation-resample the OCT structure to ensure that the circumferential pixels were equally spaced in the space domain. Then, angiograms were computed based on the statistical relation between inverse SNR (iSNR) and amplitude decorrelation (IDa), termed as IDa-OCTA. Finally, the ability of this technique for endoscopic OCTA imaging was demonstrated by flow phantom experiments and human nailfold capillary imaging.
Collapse
|
7
|
de Oliveira RP, Baptista RP, Martins CBDC, Faletti A, Soletti RC, Borges HL, Machado JC. 3-D Endoluminal Ultrasound Biomicroscopic Imaging and Volumetry of Mouse Colon Tumors. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:2990-3001. [PMID: 34304909 DOI: 10.1016/j.ultrasmedbio.2021.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Currently, colonoscopy is considered the gold standard procedure for diagnosis of colorectal cancer (CRC), the third most common cancer in the United States. However, this technique fails to detect flat adenomas, serrated polyps and advanced adenomas, with miss rates of 34%, 27% and 14%, respectively. These miss rates, more frequent than previously supposed, suggest the need for new CRC screening tools. In the work described here, the potential application of a 40-MHz ultrasound system to generate a sequence of 2-D endoluminal ultrasound biomicroscopy (eUBM-2-D) images of a mouse model of colon cancer was investigated, and this image sequence was used to render eUBM-3-D images and to measure tumor volume. The technique was validated with tissue-mimicking phantoms and used in vivo with mice bearing colon polypoid tumors. Estimated volumes ranged from 0.174-7.909 mm3 for targets in validation phantoms and from 0.066-6.082 mm3 for mouse colon tumors.
Collapse
Affiliation(s)
| | - Renata Porciuncula Baptista
- Engineering Department of Electronics and Computing, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Anderson Faletti
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Rossana Colla Soletti
- Interdisciplinary Department, Federal University of Rio Grande do Sul, Tramandaí, RS, Brazil
| | - Helena Lobo Borges
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - João Carlos Machado
- Biomedical Engineering Program, COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Post-Graduation Program in Surgical Sciences, Department of Surgery, School of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
8
|
Song G, Jelly ET, Chu KK, Kendall WY, Wax A. A review of low-cost and portable optical coherence tomography. PROGRESS IN BIOMEDICAL ENGINEERING (BRISTOL, ENGLAND) 2021; 3:032002. [PMID: 37645660 PMCID: PMC10465117 DOI: 10.1088/2516-1091/abfeb7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Optical coherence tomography (OCT) is a powerful optical imaging technique capable of visualizing the internal structure of biological tissues at near cellular resolution. For years, OCT has been regarded as the standard of care in ophthalmology, acting as an invaluable tool for the assessment of retinal pathology. However, the costly nature of most current commercial OCT systems has limited its general accessibility, especially in low-resource environments. It is therefore timely to review the development of low-cost OCT systems as a route for applying this technology to population-scale disease screening. Low-cost, portable and easy to use OCT systems will be essential to facilitate widespread use at point of care settings while ensuring that they offer the necessary imaging performances needed for clinical detection of retinal pathology. The development of low-cost OCT also offers the potential to enable application in fields outside ophthalmology by lowering the barrier to entry. In this paper, we review the current development and applications of low-cost, portable and handheld OCT in both translational and research settings. Design and cost-reduction techniques are described for general low-cost OCT systems, including considerations regarding spectrometer-based detection, scanning optics, system control, signal processing, and the role of 3D printing technology. Lastly, a review of clinical applications enabled by low-cost OCT is presented, along with a detailed discussion of current limitations and outlook.
Collapse
Affiliation(s)
- Ge Song
- Author to whom any correspondence should be addressed.
| | | | - Kengyeh K Chu
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, United States of America
| | - Wesley Y Kendall
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, United States of America
| | - Adam Wax
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, United States of America
| |
Collapse
|
9
|
Zhang J, Nguyen T, Potsaid B, Jayaraman V, Burgner C, Chen S, Li J, Liang K, Cable A, Traverso G, Mashimo H, Fujimoto JG. Multi-MHz MEMS-VCSEL swept-source optical coherence tomography for endoscopic structural and angiographic imaging with miniaturized brushless motor probes. BIOMEDICAL OPTICS EXPRESS 2021; 12:2384-2403. [PMID: 33996236 PMCID: PMC8086463 DOI: 10.1364/boe.420394] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/10/2021] [Accepted: 03/18/2021] [Indexed: 05/02/2023]
Abstract
Swept source optical coherence tomography (SS-OCT) enables volumetric imaging of subsurface structure. However, applications requiring wide fields of view (FOV), rapid imaging, and higher resolutions have been challenging because multi-MHz axial scan (A-scan) rates are needed. We describe a microelectromechanical systems vertical cavity surface-emitting laser (MEMS-VCSEL) SS-OCT technology for A-scan rates of 2.4 and 3.0 MHz. Sweep to sweep calibration and resampling are performed using dual channel acquisition of the OCT signal and a Mach Zehnder interferometer signal, overcoming inherent optical clock limitations and enabling higher performance. We demonstrate ultrahigh speed structural SS-OCT and OCT angiography (OCTA) imaging of the swine gastrointestinal tract using a suite of miniaturized brushless motor probes, including a 3.2 mm diameter micromotor OCT catheter, a 12 mm diameter tethered OCT capsule, and a 12 mm diameter widefield OCTA probe. MEMS-VCSELs promise to enable ultrahigh speed SS-OCT with a scalable, low cost, and manufacturable technology, suitable for a diverse range of imaging applications.
Collapse
Affiliation(s)
- Jason Zhang
- Department of Electrical Engineering and Computer Science, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- These authors contributed equally to this work
| | - Tan Nguyen
- Department of Electrical Engineering and Computer Science, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- These authors contributed equally to this work
| | - Benjamin Potsaid
- Department of Electrical Engineering and Computer Science, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Advanced Imaging Group, Thorlabs Inc., Newton, NJ 07860, USA
| | | | | | - Siyu Chen
- Department of Electrical Engineering and Computer Science, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jinxi Li
- Department of Electrical Engineering and Computer Science, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kaicheng Liang
- Department of Electrical Engineering and Computer Science, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alex Cable
- Advanced Imaging Group, Thorlabs Inc., Newton, NJ 07860, USA
| | - Giovanni Traverso
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA
- Division of Gastroenterology, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Hiroshi Mashimo
- Harvard Medical School, Boston, MA 02115, USA
- Veterans Affairs Boston Healthcare System, Boston, MA 02132, USA
| | - James G. Fujimoto
- Department of Electrical Engineering and Computer Science, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
10
|
Chen TH, Wu YC, Tsai TY, Chueh CB, Huang BH, Huang YP, Tsai MT, Yasuno Y, Lee HC. Effect of A-scan rate and interscan interval on optical coherence angiography. BIOMEDICAL OPTICS EXPRESS 2021; 12:722-736. [PMID: 33680538 PMCID: PMC7901325 DOI: 10.1364/boe.409636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/04/2020] [Accepted: 12/22/2020] [Indexed: 05/25/2023]
Abstract
Optical coherence tomography angiography (OCTA) can provide rapid, volumetric, and noninvasive imaging of tissue microvasculature without the requirement of exogenous contrast agents. To investigate how A-scan rate and interscan time affected the contrast and dynamic range of OCTA, we developed a 1.06-µm swept-source OCT system enabling 100-kHz or 200-kHz OCT using two light sources. After system settings were carefully adjusted, almost the same detection sensitivity was achieved between the 100-kHz and 200-kHz modalities. OCTA of ear skin was performed on five mice. We used the variable interscan time analysis algorithm (VISTA) and the designated scanning protocol with OCTA images reconstructed through the correlation mapping method. With a relatively long interscan time (e.g., 12.5 ms vs. 6.25 ms for 200-kHz OCT), OCTA can identify more intricate microvascular networks. OCTA image sets with the same interscan time (e.g., 12.5 ms) were compared. OCTA images acquired with a 100-kHz A-scan rate showed finer microvasculature than did other imaging modalities. We performed quantitative analysis on the contrast from OCTA images reconstructed with different A-scan rates and interscan time intervals in terms of vessel area, total vessel length, and junction density.
Collapse
Affiliation(s)
- Ting-Hao Chen
- Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Chun Wu
- Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan
| | - Ting-Yen Tsai
- Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan
| | - Chuan-Bor Chueh
- Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan
| | - Bo-Huei Huang
- Department of Electrical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yin-Peng Huang
- Graduate Institute of Networking and Multimedia, National Taiwan University, Taipei 10617, Taiwan
| | - Meng-Tsan Tsai
- Department of Electrical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Taoyuan 33306, Taiwan
| | - Yoshiaki Yasuno
- Computational Optics Group, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan
| | - Hsiang-Chieh Lee
- Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan
- Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Molecular Imaging Center, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
11
|
Nguyen TH, Ahsen OO, Liang K, Zhang J, Mashimo H, Fujimoto JG. Correction of circumferential and longitudinal motion distortion in high-speed catheter/endoscope-based optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2021; 12:226-246. [PMID: 33520383 PMCID: PMC7818954 DOI: 10.1364/boe.409074] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/13/2020] [Accepted: 11/19/2020] [Indexed: 05/06/2023]
Abstract
Catheter/endoscope-based optical coherence tomography (OCT) is a powerful modality that visualizes structural information in luminal organs. Increases in OCT speed have reduced motion artifacts by enabling acquisition faster than or comparable to the time scales of physiological motion. However motion distortion remains a challenge because catheter/endoscope OCT imaging involves both circumferential and longitudinal scanning of tissue. This paper presents a novel image processing method to estimate and correct motion distortion in both the circumferential and longitudinal directions using a single en face image from a volumetric data set. The circumferential motion distortion is estimated and corrected using the en face image. Then longitudinal motion distortion is estimated and corrected using diversity of image features along the catheter pullback direction. Finally, the OCT volume is resampled and motion corrected. Results are presented on synthetic images and clinical OCT images of the human esophagus.
Collapse
Affiliation(s)
- Tan Huu Nguyen
- Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- PathAI Inc., 120 Brookline Ave, Boston, MA 02215, USA
| | - Osman Oguz Ahsen
- Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kaicheng Liang
- Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jason Zhang
- Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Hiroshi Mashimo
- Veterans Affairs Boston Healthcare System, MA 02130, USA
- Havard Medical School, MA 02130, USA
| | - James G. Fujimoto
- Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
12
|
Shi W, Chen C, Pasarikovski CR, Gao W, Yang VXD. Differential phase standard-deviation-based optical coherence tomographic angiography for human retinal imaging in vivo. APPLIED OPTICS 2019; 58:3401-3409. [PMID: 31044835 DOI: 10.1364/ao.58.003401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/25/2019] [Indexed: 06/09/2023]
Abstract
We present a differential phase standard-deviation (DPSD)-based optical coherence tomographic (OCT) angiography (OCTA) technique to calculate the angiography images of the human retina. The standard deviation was calculated along the depth direction on the differential phase image of two B-scans (from the same position, at different times) to contrast dynamic vascular signals. The performance of a DPSD was verified by both phantom and in vivo experiments. When compared to other OCTA algorithms such as phase variance OCT, speckle variance OCT, and optical microangiography, we showed that a DPSD achieved improved image contrast and higher sensitivity. Furthermore, we also found the improved signal-to-noise ratio and contrast-to-noise ratio of 1.6 dB and 0.5, respectively, in large scanning range images.
Collapse
|
13
|
Ahsen OO, Liang K, Lee HC, Wang Z, Fujimoto JG, Mashimo H. Assessment of chronic radiation proctopathy and radiofrequency ablation treatment follow-up with optical coherence tomography angiography: A pilot study. World J Gastroenterol 2019; 25:1997-2009. [PMID: 31086467 PMCID: PMC6487379 DOI: 10.3748/wjg.v25.i16.1997] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/12/2019] [Accepted: 02/16/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Chronic radiation proctopathy (CRP) occurs as a result of pelvic radiation therapy and is associated with formation of abnormal vasculature that may lead to persistent rectal bleeding. While incidence is declining due to refinement of radiation delivery techniques, CRP remains one of the major complications of pelvic radiation therapy and significantly affects patient quality of life. Radiofrequency ablation (RFA) is an emerging treatment modality for eradicating abnormal vasculature associated with CRP. However, questions remain regarding CRP pathophysiology and optimal disease management.
AIM To study feasibility of optical coherence tomography angiography (OCTA) for investigating subsurface vascular alterations in CRP and response to RFA treatment.
METHODS Two patients with normal rectum and 8 patients referred for, or undergoing endoscopic RFA treatment for CRP were imaged with a prototype ultrahigh-speed optical coherence tomography (OCT) system over 15 OCT/colonoscopy visits (2 normal patients, 5 RFA-naïve patients, 8 RFA-follow-up visits). OCT and OCTA was performed by placing the OCT catheter onto the dentate line and rectum without endoscopic guidance. OCTA enabled depth-resolved microvasculature imaging using motion contrast from flowing blood, without requiring injected dyes. OCTA features of normal and abnormal microvasculature were assessed in the mucosa and submucosa. Blinded reading of OCTA images was performed to assess the association of abnormal rectal microvasculature with CRP and RFA treatment, and rectal telangiectasia density endoscopic scoring.
RESULTS OCTA/OCT images are intrinsically co-registered and enabled depth-resolved visualization of microvasculature in the mucosa and submucosa. OCTA visualized normal vascular patterns with regular honeycomb patterns vs abnormal vasculature with distorted honeycomb patterns and ectatic/tortuous microvasculature in the rectal mucosa. Normal arterioles and venules < 200 μm in diameter versus abnormal heterogenous enlarged arterioles and venules > 200 μm in diameter were visualized in the rectal submucosa. Abnormal mucosal vasculature occurred in 0 of 2 normal patients and 3 of 5 RFA-naïve patients, while abnormal submucosal vasculature occurred more often, in 1 of 2 normal patients and 5 of 5 RFA-naïve patients. After RFA treatment, vascular abnormalities decreased, with abnormal mucosal vasculature observed in 0 of 8 RFA-follow-up visits and abnormal submucosal vasculature observed in only and 2 of 8 RFA-follow-up visits.
CONCLUSION OCTA visualizes depth-resolved microvascular abnormalities in CRP, allowing assessment of superficial features which are endoscopically visible as well as deeper vasculature which cannot be seen endoscopically. OCTA/OCT of the rectum can be performed in conjunction with, or independently from endoscopy. Further studies are warranted to investigate if OCTA/OCT can elucidate pathophysiology of CRP or improve management.
Collapse
Affiliation(s)
- Osman Oguz Ahsen
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Kaicheng Liang
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Hsiang-Chieh Lee
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Zhao Wang
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - James G Fujimoto
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Hiroshi Mashimo
- Gastroenterology Section, VA Boston Healthcare System, Harvard School of Medicine, Boston, MA 02130, United States
| |
Collapse
|
14
|
Computer-Aided Analysis of Gland-Like Subsurface Hyposcattering Structures in Barrett’s Esophagus Using Optical Coherence Tomography. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8122420] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
(1) Background: Barrett’s esophagus (BE) is a complication of chronic gastroesophageal reflux disease and is a precursor to esophageal adenocarcinoma. The clinical implication of subsurface glandular structures of Barrett’s esophagus is not well understood. Optical coherence tomography (OCT), also known as volumetric laser endomicroscopy (VLE), can assess subsurface glandular structures, which appear as subsurface hyposcattering structures (SHSs). The aim of this study is to develop a computer-aided algorithm and apply it to investigate the characteristics of SHSs in BE using clinical VLE data; (2) Methods: SHSs were identified with an initial detection followed by machine learning. Comprehensive SHS characteristics including the number, volume, depth, size and shape were quantified. Clinical VLE datasets collected from 35 patients with a history of dysplasia undergoing BE surveillance were analyzed to study the general SHS distribution and characteristics in BE. A subset of radiofrequency ablation (RFA) patient data were further analyzed to investigate the pre-RFA SHS characteristics and post-RFA treatment response; (3) Results: SHSs in the BE region were significantly shallower, more vertical, less eccentric, and more regular, as compared with squamous SHSs. SHSs in the BE region which became neosquamous epithelium after RFA were shallower than those in the regions that remained BE. Pre-ablation squamous SHSs with higher eccentricity correlated strongly with larger reduction of post-ablation BE length for less elderly patients; (4) Conclusions: The computer algorithm is potentially a valuable tool for studying the roles of SHSs in BE.
Collapse
|
15
|
Luo Y, Cui D, Yu X, Bo E, Wang X, Wang N, Braganza CS, Chen S, Liu X, Xiong Q, Chen S, Chen S, Liu L. Endomicroscopic optical coherence tomography for cellular resolution imaging of gastrointestinal tracts. JOURNAL OF BIOPHOTONICS 2018; 11:e201700141. [PMID: 28787543 DOI: 10.1002/jbio.201700141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/04/2017] [Accepted: 08/06/2017] [Indexed: 06/07/2023]
Abstract
Our ability to detect neoplastic changes in gastrointestinal (GI) tracts is limited by the lack of an endomicroscopic imaging tool that provides cellular-level structural details of GI mucosa over a large tissue area. In this article, we report a fiber-optic-based micro-optical coherence tomography (μOCT) system and demonstrate its capability to acquire cellular-level details of GI tissue through circumferential scanning. The system achieves an axial resolution of 2.48 μm in air and a transverse resolution of 4.8 μm with a depth-of-focus (DOF) of ~150 μm. To mitigate the issue of limited DOF, we used a rigid sheath to maintain a circular lumen and center the distal-end optics. The sensitivity is tested to be 98.8 dB with an illumination power of 15.6 mW on the sample. With fresh swine colon tissues imaged ex vivo, detailed structures such as crypt lumens and goblet cells can be clearly resolved, demonstrating that this fiber-optic μOCT system is capable of visualizing cellular-level morphological features. We also demonstrate that time-lapsed frame averaging and imaging speckle reduction are essential for clearly visualizing cellular-level details. Further development of a clinically viable μOCT endomicroscope is likely to improve the diagnostic outcome of GI cancers.
Collapse
Affiliation(s)
- Yuemei Luo
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
| | - Dongyao Cui
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
| | - Xiaojun Yu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
| | - En Bo
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
| | - Xianghong Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
| | - Nanshuo Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
| | - Cilwyn S Braganza
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
| | - Shufen Chen
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
| | - Xinyu Liu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
| | - Qiaozhou Xiong
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
| | - Si Chen
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
| | - Shi Chen
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
| | - Linbo Liu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
16
|
Liang K, Wang Z, Ahsen OO, Lee HC, Potsaid BM, Jayaraman V, Cable A, Mashimo H, Li X, Fujimoto JG. Cycloid scanning for wide field optical coherence tomography endomicroscopy and angiography in vivo. OPTICA 2018; 5:36-43. [PMID: 29682598 PMCID: PMC5909979 DOI: 10.1364/optica.5.000036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/27/2017] [Indexed: 05/18/2023]
Abstract
Devices that perform wide field-of-view (FOV) precision optical scanning are important for endoscopic assessment and diagnosis of luminal organ disease such as in gastroenterology. Optical scanning for in vivo endoscopic imaging has traditionally relied on one or more proximal mechanical actuators, limiting scan accuracy and imaging speed. There is a need for rapid and precise two-dimensional (2D) microscanning technologies to enable the translation of benchtop scanning microscopies to in vivo endoscopic imaging. We demonstrate a new cycloid scanner in a tethered capsule for ultrahigh speed, side-viewing optical coherence tomography (OCT) endomicroscopy in vivo. The cycloid capsule incorporates two scanners: a piezoelectrically actuated resonant fiber scanner to perform a precision, small FOV, fast scan and a micromotor scanner to perform a wide FOV, slow scan. Together these scanners distally scan the beam circumferentially in a 2D cycloid pattern, generating an unwrapped 1 mm × 38 mm strip FOV. Sequential strip volumes can be acquired with proximal pullback to image centimeter-long regions. Using ultrahigh speed 1.3 μm wavelength swept-source OCT at a 1.17 MHz axial scan rate, we imaged the human rectum at 3 volumes/s. Each OCT strip volume had 166 × 2322 axial scans with 8.5 μm axial and 30 μm transverse resolution. We further demonstrate OCT angiography at 0.5 volumes/s, producing volumetric images of vasculature. In addition to OCT applications, cycloid scanning promises to enable precision 2D optical scanning for other imaging modalities, including fluorescence confocal and nonlinear microscopy.
Collapse
Affiliation(s)
- Kaicheng Liang
- Department of Electrical Engineering and Computer Science, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Zhao Wang
- Department of Electrical Engineering and Computer Science, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Osman O. Ahsen
- Department of Electrical Engineering and Computer Science, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Hsiang-Chieh Lee
- Department of Electrical Engineering and Computer Science, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Benjamin M. Potsaid
- Department of Electrical Engineering and Computer Science, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Thorlabs, Newton, New Jersey 07860, USA
| | | | | | - Hiroshi Mashimo
- Veterans Affairs Boston Healthcare System, Boston, Massachusetts 02130, USA
- Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Xingde Li
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - James G. Fujimoto
- Department of Electrical Engineering and Computer Science, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
17
|
Ahsen OO, Lee HC, Liang K, Wang Z, Figueiredo M, Huang Q, Potsaid B, Jayaraman V, Fujimoto JG, Mashimo H. Ultrahigh-speed endoscopic optical coherence tomography and angiography enables delineation of lateral margins of endoscopic mucosal resection: a case report. Therap Adv Gastroenterol 2017; 10:931-936. [PMID: 29204188 PMCID: PMC5703108 DOI: 10.1177/1756283x17739503] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Osman O. Ahsen
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Kaicheng Liang
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Zhao Wang
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Qin Huang
- VA Boston Healthcare System, West Roxbury, MA, and Harvard Medical School, Boston, MA, USA
| | - Benjamin Potsaid
- Massachusetts Institute of Technology, Cambridge, MA, and Thorlabs, Inc., Newton, NJ, USA
| | | | | | - Hiroshi Mashimo
- VA Boston Healthcare System, West Roxbury, MA, and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
18
|
Lee HC, Ahsen OO, Liang K, Wang Z, Figueiredo M, Giacomelli MG, Potsaid B, Huang Q, Mashimo H, Fujimoto JG. Endoscopic optical coherence tomography angiography microvascular features associated with dysplasia in Barrett's esophagus (with video). Gastrointest Endosc 2017; 86:476-484.e3. [PMID: 28167119 PMCID: PMC5545067 DOI: 10.1016/j.gie.2017.01.034] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 01/27/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Angiogenesis is associated with neoplastic progression of Barrett's esophagus (BE). Volumetric optical coherence tomography angiography (OCTA) visualizes subsurface microvasculature without exogenous contrast agents. We investigated the association of OCTA microvascular features with low-grade dysplasia (LGD) and high-grade dysplasia (HGD). METHODS Fifty-two patients undergoing BE surveillance or endoscopic eradication therapies for dysplasia were imaged using volumetric OCTA and corresponding histologic diagnoses wre obtained to yield 97 data sets (nondysplastic BE [NDBE], 74; LGD, 10; HGD, 13). After evaluating OCTA image quality, 54 datasets (NDBE, 35; LGD, 8; HGD, 11) from 32 patients were used to develop a training and reading protocol. The association of abnormal vessel branching and heterogeneous vessel size with LGD/HGD and a regular honeycomb vessel pattern with NDBE were investigated. RESULTS Blinded OCTA reading of 41 OCTA datasets (NDBE, 27; LGD, 7; HGD, 7) was performed by readers with various levels of OCT/OCTA experience including 3 OCT trainees, 1 gastroenterologist, and 2 gastroenterology fellows. Among the 6 readers, OCTA features of abnormal vessel branching and heterogeneous vessel size had an overall 94% sensitivity (95% CI, 89-99) and 69% specificity (95% CI, 62-76) for differentiating LGD/HGD versus NDBE with a mean reading time of 45 seconds per data set and moderate (kappa = .58) interobserver agreement. CONCLUSIONS Volumetric en face OCTA imaging enables rapid examination of depth resolved microvascular features with near-microscopic resolution. OCTA can visualize microvascular features associated with LGD/HGD with high accuracy, which motivates new technologic advances and future studies investigating the diagnostic performance of OCTA.
Collapse
Affiliation(s)
- Hsiang-Chieh Lee
- Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Osman O Ahsen
- Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Kaicheng Liang
- Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Zhao Wang
- Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | - Michael G Giacomelli
- Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Benjamin Potsaid
- Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA; Advanced Imaging Group, Thorlabs, Inc, Newton, New Jersey, USA
| | - Qin Huang
- VA Boston Healthcare System, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Hiroshi Mashimo
- VA Boston Healthcare System, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - James G Fujimoto
- Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
19
|
Liang K, Ahsen OO, Wang Z, Lee HC, Liang W, Potsaid BM, Tsai TH, Giacomelli MG, Jayaraman V, Mashimo H, Li X, Fujimoto JG. Endoscopic forward-viewing optical coherence tomography and angiography with MHz swept source. OPTICS LETTERS 2017; 42:3193-3196. [PMID: 28809905 PMCID: PMC5875690 DOI: 10.1364/ol.42.003193] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 07/20/2017] [Indexed: 05/20/2023]
Abstract
Endoscopic optical coherence tomography (OCT) instruments are mostly side viewing and rely on at least one proximal scan, thus limiting accuracy of volumetric imaging and en face visualization. Previous forward-viewing OCT devices had limited axial scan speeds. We report a forward-viewing fiber scanning 3D-OCT probe with 900 μm field of view and 5 μm transverse resolution, imaging at 1 MHz axial scan rate in the human gastrointestinal tract. The probe is 3.3 mm diameter and 20 mm rigid length, thus enabling passage through the endoscopic channel. The scanner has 1.8 kHz resonant frequency, and each volumetric acquisition takes 0.17 s with 2 volumes/s display. 3D-OCT and angiography imaging of the colon was performed during surveillance colonoscopy.
Collapse
Affiliation(s)
- Kaicheng Liang
- Department of Electrical Engineering and Computer Science, and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Osman O. Ahsen
- Department of Electrical Engineering and Computer Science, and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Zhao Wang
- Department of Electrical Engineering and Computer Science, and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Hsiang-Chieh Lee
- Department of Electrical Engineering and Computer Science, and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Wenxuan Liang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Benjamin M. Potsaid
- Department of Electrical Engineering and Computer Science, and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Thorlabs, Newton, New Jersey 07860, USA
| | - Tsung-Han Tsai
- Department of Electrical Engineering and Computer Science, and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Michael G. Giacomelli
- Department of Electrical Engineering and Computer Science, and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | - Hiroshi Mashimo
- Veterans Affairs Boston Healthcare System, Boston, Massachusetts 02130, USA
- Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Xingde Li
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - James G. Fujimoto
- Department of Electrical Engineering and Computer Science, and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
20
|
Yin B, Hyun C, Gardecki JA, Tearney GJ. Extended depth of focus for coherence-based cellular imaging. OPTICA 2017; 4:959-965. [PMID: 29675447 PMCID: PMC5902383 DOI: 10.1364/optica.4.000959] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Improving lateral resolution for cross-sectional optical coherence tomography (OCT) imaging is difficult due to the rapid divergence of light once it is focused to a small spot. To overcome this obstacle, we introduce a fiber optics system that generates a coaxially focused multimode (CAFM) beam for depth of focus (DOF) extension. We fabricated a CAFM beam OCT probe and show that the DOF is more than fivefold that of a conventional Gaussian beam, enabling cross-sectional imaging of biological tissues with clearly resolved cellular and subcellular structures over more than a 400 μm depth range. The compact and straightforward design and high-resolution extended DOF imaging capabilities of this technique suggests that it will be very useful for endoscopic cross-sectional imaging of human internal organs in vivo.
Collapse
Affiliation(s)
- Biwei Yin
- Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital, 55 Fruit Street, Boston, Massachusetts 02114, USA
| | - Chulho Hyun
- Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital, 55 Fruit Street, Boston, Massachusetts 02114, USA
| | - Joseph A. Gardecki
- Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital, 55 Fruit Street, Boston, Massachusetts 02114, USA
| | - Guillermo J. Tearney
- Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital, 55 Fruit Street, Boston, Massachusetts 02114, USA
- Harvard-MIT Division of Health Sciences and Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
- Department of Pathology, Harvard Medical School and Massachusetts General Hospital, 55 Fruit Street, Boston, Massachusetts 02114, USA
- Corresponding author:
| |
Collapse
|
21
|
Zhu J, Merkle CW, Bernucci MT, Chong SP, Srinivasan VJ. Can OCT Angiography Be Made a Quantitative Blood Measurement Tool? APPLIED SCIENCES-BASEL 2017; 7. [PMID: 30009045 PMCID: PMC6042878 DOI: 10.3390/app7070687] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Optical Coherence Tomography Angiography (OCTA) refers to a powerful class of OCT scanning protocols and algorithms that selectively enhance the imaging of blood vessel lumens, based mainly on the motion and scattering of red blood cells (RBCs). Though OCTA is widely used in clinical and basic science applications for visualization of perfused blood vessels, OCTA is still primarily a qualitative tool. However, more quantitative hemodynamic information would better delineate disease mechanisms, and potentially improve the sensitivity for detecting early stages of disease. Here, we take a broader view of OCTA in the context of microvascular hemodynamics and light scattering. Paying particular attention to the unique challenges presented by capillaries versus larger supplying and draining vessels, we critically assess opportunities and challenges in making OCTA a quantitative tool.
Collapse
Affiliation(s)
- Jun Zhu
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, USA
| | - Conrad W. Merkle
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, USA
| | - Marcel T. Bernucci
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, USA
| | - Shau Poh Chong
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, USA
| | - Vivek J. Srinivasan
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, USA
- Department of Ophthalmology and Vision Science, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
- Correspondence: ; Tel.: +1-530-752-9277
| |
Collapse
|
22
|
Gora MJ, Suter MJ, Tearney GJ, Li X. Endoscopic optical coherence tomography: technologies and clinical applications [Invited]. BIOMEDICAL OPTICS EXPRESS 2017; 8:2405-2444. [PMID: 28663882 PMCID: PMC5480489 DOI: 10.1364/boe.8.002405] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/20/2017] [Accepted: 03/27/2017] [Indexed: 05/07/2023]
Abstract
In this paper, we review the current state of technology development and clinical applications of endoscopic optical coherence tomography (OCT). Key design and engineering considerations are discussed for most OCT endoscopes, including side-viewing and forward-viewing probes, along with different scanning mechanisms (proximal-scanning versus distal-scanning). Multi-modal endoscopes that integrate OCT with other imaging modalities are also discussed. The review of clinical applications of endoscopic OCT focuses heavily on diagnosis of diseases and guidance of interventions. Representative applications in several organ systems are presented, such as in the cardiovascular, digestive, respiratory, and reproductive systems. A brief outlook of the field of endoscopic OCT is also discussed.
Collapse
Affiliation(s)
- Michalina J Gora
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
- ICube Laboratory, CNRS, Strasbourg University, 1 Place de l'Hopital, Strasbourg 67091, France
| | - Melissa J Suter
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
- Department of Medicine, Division of Pulmonary and Critical Care, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Guillermo J Tearney
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
- Department of Pathology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | - Xingde Li
- Department of Biomedical Engineering, Department of Electrical and Computer Engineering, and Department of Oncology, Johns Hopkins University, 720 Rutland Avenue, Traylor 710, Baltimore, MD 21205, USA
| |
Collapse
|
23
|
Swanson EA, Fujimoto JG. The ecosystem that powered the translation of OCT from fundamental research to clinical and commercial impact [Invited]. BIOMEDICAL OPTICS EXPRESS 2017; 8:1638-1664. [PMID: 28663854 PMCID: PMC5480569 DOI: 10.1364/boe.8.001638] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/14/2017] [Accepted: 02/14/2017] [Indexed: 05/18/2023]
Abstract
25 years is a relatively short period of time for a medical technology to become a standard of care impacting the treatment of millions of people every year. Yet 25 years ago there were no OCT companies, no OCT products, no OCT markets, and only one journal article published using the term OCT (optical coherence tomography). OCT has had a tremendous scientific, clinical, and economic impact on society. Today, it is estimated that there are ~30 Million OCT imaging procedures performed worldwide every year and the OCT system market is approaching $1B per year. OCT has helped diagnose patients with retinal disease at early treatable stages, preventing or greatly reducing irreversible vision loss. The technology has facilitated pharmaceutical development and contributed to fundamental understanding of disease mechanisms in multiple fields. The invention and translation of OCT from fundamental research to daily clinical practice would not have been possible without a complex ecosystem involving interaction among physics, engineering, and clinical medicine; government funding of fundamental and clinical research; collaborative and competitive research in the academic sector; entrepreneurship and industry; addressing real clinical needs; harnessing the innovation that occurs at the boundaries of disciplines; and economic and societal impact. This invited review paper discusses the translation of OCT from fundamental research to clinical practice and commercial impact, as well as describes the ecosystem that helped power OCT to where it is today and will continue to drive future advances. While OCT is an example of a technology that has had a powerful impact, there are many biomedical technologies which are poised for translation to clinical practice, and it is our hope that highlighting this ecosystem will help accelerate their translation and clinical impact.
Collapse
Affiliation(s)
- Eric A. Swanson
- Department of Electrical Engineering & Computer Science and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Acacia Communications Inc., Maynard, MA, USA
| | - James G. Fujimoto
- Department of Electrical Engineering & Computer Science and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
24
|
Chen CL, Wang RK. Optical coherence tomography based angiography [Invited]. BIOMEDICAL OPTICS EXPRESS 2017; 8:1056-1082. [PMID: 28271003 PMCID: PMC5330554 DOI: 10.1364/boe.8.001056] [Citation(s) in RCA: 270] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/16/2017] [Indexed: 05/18/2023]
Abstract
Optical coherence tomography (OCT)-based angiography (OCTA) provides in vivo, three-dimensional vascular information by the use of flowing red blood cells as intrinsic contrast agents, enabling the visualization of functional vessel networks within microcirculatory tissue beds non-invasively, without a need of dye injection. Because of these attributes, OCTA has been rapidly translated to clinical ophthalmology within a short period of time in the development. Various OCTA algorithms have been developed to detect the functional micro-vasculatures in vivo by utilizing different components of OCT signals, including phase-signal-based OCTA, intensity-signal-based OCTA and complex-signal-based OCTA. All these algorithms have shown, in one way or another, their clinical values in revealing micro-vasculatures in biological tissues in vivo, identifying abnormal vascular networks or vessel impairment zones in retinal and skin pathologies, detecting vessel patterns and angiogenesis in eyes with age-related macular degeneration and in skin and brain with tumors, and monitoring responses to hypoxia in the brain tissue. The purpose of this paper is to provide a technical oriented overview of the OCTA developments and their potential pre-clinical and clinical applications, and to shed some lights on its future perspectives. Because of its clinical translation to ophthalmology, this review intentionally places a slightly more weight on ophthalmic OCT angiography.
Collapse
Affiliation(s)
- Chieh-Li Chen
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, WA 98195, USA
- Department of Ophthalmology, University of Washington, 325 9th Ave, Seattle, WA 98104, USA
| | - Ruikang K. Wang
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, WA 98195, USA
- Department of Ophthalmology, University of Washington, 325 9th Ave, Seattle, WA 98104, USA
| |
Collapse
|