1
|
Tang Z, Winnik J, Hennelly BM. Optical diffraction tomography using a self-reference module. BIOMEDICAL OPTICS EXPRESS 2025; 16:57-67. [PMID: 39816153 PMCID: PMC11729277 DOI: 10.1364/boe.545296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/06/2024] [Accepted: 11/19/2024] [Indexed: 01/18/2025]
Abstract
Optical diffraction tomography enables label-free, 3D refractive index (RI) imaging of biological samples. We present a novel, cost-effective approach to ODT that employs a modular design incorporating a self-reference holographic capture module. This two-part system consists of an illumination module and a capture module that can be seamlessly integrated with any life-science microscope using an automated alignment protocol. The illumination module employs a galvo-scanner system, providing precise control over the angular illumination, while the capture module utilises the principle of self-reference off-axis holography. The design has a compact form factor, simple alignment, and reduced cost. Furthermore, our system offers the capability to switch between two imaging modalities, ODT and real-time synthetic aperture digital holographic microscopy (SA-DHM), a unique feature not found in other setups. Experimental results are provided using a kidney cancer cell line. Experimental results are provided using a kidney cancer cell line.
Collapse
Affiliation(s)
- Zhengyuan Tang
- Department of Electronic Engineering, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Julianna Winnik
- The Institute of Micromechanics and Photonics, Faculty of Mechatronics, Warsaw University of Technology, Warsaw, Poland
| | - Bryan M. Hennelly
- Department of Electronic Engineering, Maynooth University, Maynooth, Co. Kildare, Ireland
- Department of Computer Science, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
2
|
Trelin A, Kussauer S, Weinbrenner P, Clasen A, David R, Rimmbach C, Reinhard F. ChiSCAT: Unsupervised Learning of Recurrent Cellular Micromotion Patterns from a Chaotic Speckle Pattern. NANO LETTERS 2024; 24:12374-12381. [PMID: 39316755 DOI: 10.1021/acs.nanolett.4c02425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
There is considerable evidence that action potentials are accompanied by "intrinsic optical signals", such as a nanometer-scale motion of the cell membrane. Here we present ChiSCAT, a technically simple imaging scheme that detects such signals with interferometric sensitivity. ChiSCAT combines illumination by a chaotic speckle pattern and interferometric scattering microscopy (iSCAT) to sensitively detect motion in any direction. The technique features reflective high-NA illumination, common-path suppression of vibrations, and a large field of view. This approach maximizes sensitivity to motion, but does not produce a visually interpretable image. We show that unsupervised learning based on matched filtering and motif discovery can recover underlying motion patterns and detect action potentials. We demonstrate these claims in an experiment on blebbistatin-paralyzed cardiomyocytes. ChiSCAT opens the door to action potential measurement in scattering tissue, including a living brain.
Collapse
Affiliation(s)
- Andrii Trelin
- Institute of Physics, University of Rostock, 18059 Rostock, Germany
- Department of Life, Light, and Matter of the Interdisciplinary Faculty at Rostock University, 18059 Rostock, Germany
| | - Sophie Kussauer
- Department of Life, Light, and Matter of the Interdisciplinary Faculty at Rostock University, 18059 Rostock, Germany
- Department of Cardiac Surgery, Rostock University Medical Centre, 18057 Rostock, Germany
| | - Paul Weinbrenner
- Institute of Physics, University of Rostock, 18059 Rostock, Germany
- Department of Life, Light, and Matter of the Interdisciplinary Faculty at Rostock University, 18059 Rostock, Germany
| | - Anja Clasen
- Institute of Physics, University of Rostock, 18059 Rostock, Germany
- Department of Life, Light, and Matter of the Interdisciplinary Faculty at Rostock University, 18059 Rostock, Germany
| | - Robert David
- Department of Life, Light, and Matter of the Interdisciplinary Faculty at Rostock University, 18059 Rostock, Germany
- Department of Cardiac Surgery, Rostock University Medical Centre, 18057 Rostock, Germany
| | - Christian Rimmbach
- Department of Life, Light, and Matter of the Interdisciplinary Faculty at Rostock University, 18059 Rostock, Germany
- Department of Cardiac Surgery, Rostock University Medical Centre, 18057 Rostock, Germany
| | - Friedemann Reinhard
- Institute of Physics, University of Rostock, 18059 Rostock, Germany
- Department of Life, Light, and Matter of the Interdisciplinary Faculty at Rostock University, 18059 Rostock, Germany
| |
Collapse
|
3
|
Zhao S, Zhou H, Lin S(S, Cao R, Yang C. Efficient, gigapixel-scale, aberration-free whole slide scanner using angular ptychographic imaging with closed-form solution. BIOMEDICAL OPTICS EXPRESS 2024; 15:5739-5755. [PMID: 39421788 PMCID: PMC11482188 DOI: 10.1364/boe.538148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 10/19/2024]
Abstract
Whole slide imaging provides a wide field-of-view (FOV) across cross-sections of biopsy or surgery samples, significantly facilitating pathological analysis and clinical diagnosis. Such high-quality images that enable detailed visualization of cellular and tissue structures are essential for effective patient care and treatment planning. To obtain such high-quality images for pathology applications, there is a need for scanners with high spatial bandwidth products, free from aberrations, and without the requirement for z-scanning. Here we report a whole slide imaging system based on angular ptychographic imaging with a closed-form solution (WSI-APIC), which offers efficient, tens-of-gigapixels, large-FOV, aberration-free imaging. WSI-APIC utilizes oblique incoherent illumination for initial high-level segmentation, thereby bypassing unnecessary scanning of the background regions and enhancing image acquisition efficiency. A GPU-accelerated APIC algorithm analytically reconstructs phase images with effective digital aberration corrections and improved optical resolutions. Moreover, an auto-stitching technique based on scale-invariant feature transform ensures the seamless concatenation of whole slide phase images. In our experiment, WSI-APIC achieved an optical resolution of 772 nm using a 10×/0.25 NA objective lens and captures 80-gigapixel aberration-free phase images for a standard 76.2 mm × 25.4 mm microscopic slide.
Collapse
Affiliation(s)
| | | | - Siyu (Steven) Lin
- Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Ruizhi Cao
- Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Changhuei Yang
- Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
4
|
Biswas P, Roy P, Jana S, Ray D, Das J, Chaudhuri B, Basunia RR, Sinha B, Sinha DK. Exploring the role of macromolecular crowding and TNFR1 in cell volume control. eLife 2024; 13:e92719. [PMID: 39297502 PMCID: PMC11581439 DOI: 10.7554/elife.92719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 09/18/2024] [Indexed: 11/22/2024] Open
Abstract
The excessive cosolute densities in the intracellular fluid create a physicochemical condition called macromolecular crowding (MMC). Intracellular MMC entropically maintains the biochemical thermodynamic equilibria by favoring associative reactions while hindering transport processes. Rapid cell volume shrinkage during extracellular hypertonicity elevates the MMC and disrupts the equilibria, potentially ushering cell death. Consequently, cells actively counter the hypertonic stress through regulatory volume increase (RVI) and restore the MMC homeostasis. Here, we establish fluorescence anisotropy of EGFP as a reliable tool for studying cellular MMC and explore the spatiotemporal dynamics of MMC during cell volume instabilities under multiple conditions. Our studies reveal that the actin cytoskeleton enforces spatially varying MMC levels inside adhered cells. Within cell populations, MMC is uncorrelated with nuclear DNA content but anti-correlated with the cell spread area. Although different cell lines have statistically similar MMC distributions, their responses to extracellular hypertonicity vary. The intensity of the extracellular hypertonicity determines a cell's ability for RVI, which correlates with nuclear factor kappa beta (NFkB) activation. Pharmacological inhibition and knockdown experiments reveal that tumor necrosis factor receptor 1 (TNFR1) initiates the hypertonicity-induced NFkB signaling and RVI. At severe hypertonicities, the elevated MMC amplifies cytoplasmic microviscosity and hinders receptor interacting protein kinase 1 (RIPK1) recruitment at the TNFR1 complex, incapacitating the TNFR1-NFkB signaling and consequently, RVI. Together, our studies unveil the involvement of TNFR1-NFkB signaling in modulating RVI and demonstrate the pivotal role of MMC in determining cellular osmoadaptability.
Collapse
Affiliation(s)
- Parijat Biswas
- School of Biological Sciences, Indian Association for the Cultivation of ScienceKolkataIndia
| | - Priyanka Roy
- School of Biological Sciences, Indian Association for the Cultivation of ScienceKolkataIndia
| | - Subhamoy Jana
- School of Biological Sciences, Indian Association for the Cultivation of ScienceKolkataIndia
| | - Dipanjan Ray
- School of Biological Sciences, Indian Association for the Cultivation of ScienceKolkataIndia
| | - Jibitesh Das
- Department of Biological Sciences, Indian Institute of Science Education and Research KolkataKolkataIndia
| | - Bipasa Chaudhuri
- School of Biological Sciences, Indian Association for the Cultivation of ScienceKolkataIndia
| | - Ridita Ray Basunia
- School of Biological Sciences, Indian Association for the Cultivation of ScienceKolkataIndia
| | - Bidisha Sinha
- Department of Biological Sciences, Indian Institute of Science Education and Research KolkataKolkataIndia
| | - Deepak Kumar Sinha
- School of Biological Sciences, Indian Association for the Cultivation of ScienceKolkataIndia
| |
Collapse
|
5
|
Huang Z, Cao L. Quantitative phase imaging based on holography: trends and new perspectives. LIGHT, SCIENCE & APPLICATIONS 2024; 13:145. [PMID: 38937443 PMCID: PMC11211409 DOI: 10.1038/s41377-024-01453-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 06/29/2024]
Abstract
In 1948, Dennis Gabor proposed the concept of holography, providing a pioneering solution to a quantitative description of the optical wavefront. After 75 years of development, holographic imaging has become a powerful tool for optical wavefront measurement and quantitative phase imaging. The emergence of this technology has given fresh energy to physics, biology, and materials science. Digital holography (DH) possesses the quantitative advantages of wide-field, non-contact, precise, and dynamic measurement capability for complex-waves. DH has unique capabilities for the propagation of optical fields by measuring light scattering with phase information. It offers quantitative visualization of the refractive index and thickness distribution of weak absorption samples, which plays a vital role in the pathophysiology of various diseases and the characterization of various materials. It provides a possibility to bridge the gap between the imaging and scattering disciplines. The propagation of wavefront is described by the complex amplitude. The complex-value in the complex-domain is reconstructed from the intensity-value measurement by camera in the real-domain. Here, we regard the process of holographic recording and reconstruction as a transformation between complex-domain and real-domain, and discuss the mathematics and physical principles of reconstruction. We review the DH in underlying principles, technical approaches, and the breadth of applications. We conclude with emerging challenges and opportunities based on combining holographic imaging with other methodologies that expand the scope and utility of holographic imaging even further. The multidisciplinary nature brings technology and application experts together in label-free cell biology, analytical chemistry, clinical sciences, wavefront sensing, and semiconductor production.
Collapse
Affiliation(s)
- Zhengzhong Huang
- Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Liangcai Cao
- Department of Precision Instrument, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
6
|
Aimakov N, Min E, Ban S, Lee S, Bae JK, You JS, Jung W. Implementation of a portable diffraction phase microscope for digital histopathology. JOURNAL OF BIOPHOTONICS 2024; 17:e202300496. [PMID: 38358045 DOI: 10.1002/jbio.202300496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/12/2024] [Accepted: 01/30/2024] [Indexed: 02/16/2024]
Abstract
Quantitative phase imaging (QPI) has a significant advantage in histopathology as it helps in differentiating biological tissue structures and cells without the need for staining. To make this capability more accessible, it is crucial to develop compact and portable systems. In this study, we introduce a portable diffraction phase microscopy (DPM) system that allows the acquisition of phase map images from various organs in mice using a low-NA objective lens. Our findings indicate that the cell and tissue structures observed in portable DPM images are similar to those seen in conventional histology microscope images. We confirmed that the developed system's performance is comparable to the benchtop DPM system. Additionally, we investigate the potential utility of digital histopathology by applying deep learning technology to create virtual staining of DPM images.
Collapse
Affiliation(s)
- Nurbolat Aimakov
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Eunjung Min
- Korea Photonics Technology Institute, Gwangju, Republic of Korea
| | - Sungbea Ban
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Sangjin Lee
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Jung Kweon Bae
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Joon S You
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- Incipian LLC, Laguna Niguel, California, USA
| | - Woonggyu Jung
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| |
Collapse
|
7
|
Verrier N, Debailleul M, Haeberlé O. Recent Advances and Current Trends in Transmission Tomographic Diffraction Microscopy. SENSORS (BASEL, SWITZERLAND) 2024; 24:1594. [PMID: 38475130 PMCID: PMC10934239 DOI: 10.3390/s24051594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024]
Abstract
Optical microscopy techniques are among the most used methods in biomedical sample characterization. In their more advanced realization, optical microscopes demonstrate resolution down to the nanometric scale. These methods rely on the use of fluorescent sample labeling in order to break the diffraction limit. However, fluorescent molecules' phototoxicity or photobleaching is not always compatible with the investigated samples. To overcome this limitation, quantitative phase imaging techniques have been proposed. Among these, holographic imaging has demonstrated its ability to image living microscopic samples without staining. However, for a 3D assessment of samples, tomographic acquisitions are needed. Tomographic Diffraction Microscopy (TDM) combines holographic acquisitions with tomographic reconstructions. Relying on a 3D synthetic aperture process, TDM allows for 3D quantitative measurements of the complex refractive index of the investigated sample. Since its initial proposition by Emil Wolf in 1969, the concept of TDM has found a lot of applications and has become one of the hot topics in biomedical imaging. This review focuses on recent achievements in TDM development. Current trends and perspectives of the technique are also discussed.
Collapse
Affiliation(s)
- Nicolas Verrier
- Institut Recherche en Informatique, Mathématiques, Automatique et Signal (IRIMAS UR UHA 7499), Université de Haute-Alsace, IUT Mulhouse, 61 rue Albert Camus, 68093 Mulhouse, France; (M.D.); (O.H.)
| | | | | |
Collapse
|
8
|
Buzalewicz I, Kaczorowska A, Fijałkowski W, Pietrowska A, Matczuk AK, Podbielska H, Wieliczko A, Witkiewicz W, Jędruchniewicz N. Quantifying the Dynamics of Bacterial Biofilm Formation on the Surface of Soft Contact Lens Materials Using Digital Holographic Tomography to Advance Biofilm Research. Int J Mol Sci 2024; 25:2653. [PMID: 38473902 DOI: 10.3390/ijms25052653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/15/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
The increase in bacterial resistance to antibiotics in recent years demands innovative strategies for the detection and combating of biofilms, which are notoriously resilient. Biofilms, particularly those on contact lenses, can lead to biofilm-related infections (e.g., conjunctivitis and keratitis), posing a significant risk to patients. Non-destructive and non-contact sensing techniques are essential in addressing this threat. Digital holographic tomography emerges as a promising solution. This allows for the 3D reconstruction of the refractive index distribution in biological samples, enabling label-free visualization and the quantitative analysis of biofilms. This tool provides insight into the dynamics of biofilm formation and maturation on the surface of transparent materials. Applying digital holographic tomography for biofilm examination has the potential to advance our ability to combat the antibiotic bacterial resistance crisis. A recent study focused on characterizing biofilm formation and maturation on six soft contact lens materials (three silicone hydrogels, three hydrogels), with a particular emphasis on Staphylococcus epidermis and Pseudomonas aeruginosa, both common culprits in ocular infections. The results revealed species- and time-dependent variations in the refractive indexes and volumes of biofilms, shedding light on cell dynamics, cell death, and contact lens material-related factors. The use of digital holographic tomography enables the quantitative analysis of biofilm dynamics, providing us with a better understanding and characterization of bacterial biofilms.
Collapse
Affiliation(s)
- Igor Buzalewicz
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
- Research and Development Centre, Regional Specialist Hospital in Wroclaw, 73A H. M. Kamienskiego St., 51-124 Wroclaw, Poland
| | - Aleksandra Kaczorowska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
- Laboratory of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, 14a F. Joliot-Curie St., 50-383 Wroclaw, Poland
| | | | - Aleksandra Pietrowska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Anna Karolina Matczuk
- Department of Pathology, Division of Microbiology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, 31 C.K. Norwida St., 51-375 Wroclaw, Poland
| | - Halina Podbielska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Alina Wieliczko
- Department of Epizootiology and Veterinary Administration with Clinic of Infectious Diseases, Wroclaw University of Environmental and Life Sciences, 45 Grunwaldzki Square, 50-366 Wroclaw, Poland
| | - Wojciech Witkiewicz
- Research and Development Centre, Regional Specialist Hospital in Wroclaw, 73A H. M. Kamienskiego St., 51-124 Wroclaw, Poland
| | - Natalia Jędruchniewicz
- Research and Development Centre, Regional Specialist Hospital in Wroclaw, 73A H. M. Kamienskiego St., 51-124 Wroclaw, Poland
| |
Collapse
|
9
|
Burguete-Lopez A, Makarenko M, Bonifazi M, Menezes de Oliveira BN, Getman F, Tian Y, Mazzone V, Li N, Giammona A, Liberale C, Fratalocchi A. Real-time simultaneous refractive index and thickness mapping of sub-cellular biology at the diffraction limit. Commun Biol 2024; 7:154. [PMID: 38321111 PMCID: PMC10847501 DOI: 10.1038/s42003-024-05839-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 01/20/2024] [Indexed: 02/08/2024] Open
Abstract
Mapping the cellular refractive index (RI) is a central task for research involving the composition of microorganisms and the development of models providing automated medical screenings with accuracy beyond 95%. These models require significantly enhancing the state-of-the-art RI mapping capabilities to provide large amounts of accurate RI data at high throughput. Here, we present a machine-learning-based technique that obtains a biological specimen's real-time RI and thickness maps from a single image acquired with a conventional color camera. This technology leverages a suitably engineered nanostructured membrane that stretches a biological analyte over its surface and absorbs transmitted light, generating complex reflection spectra from each sample point. The technique does not need pre-existing sample knowledge. It achieves 10-4 RI sensitivity and sub-nanometer thickness resolution on diffraction-limited spatial areas. We illustrate practical application by performing sub-cellular segmentation of HCT-116 colorectal cancer cells, obtaining complete three-dimensional reconstruction of the cellular regions with a characteristic length of 30 μm. These results can facilitate the development of real-time label-free technologies for biomedical studies on microscopic multicellular dynamics.
Collapse
Affiliation(s)
- Arturo Burguete-Lopez
- PRIMALIGHT, Computer, Electrical and Mathematical Sciences and Engineering (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Maksim Makarenko
- PRIMALIGHT, Computer, Electrical and Mathematical Sciences and Engineering (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Marcella Bonifazi
- PRIMALIGHT, Computer, Electrical and Mathematical Sciences and Engineering (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Physik-Institut, University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
| | - Barbara Nicoly Menezes de Oliveira
- PRIMALIGHT, Computer, Electrical and Mathematical Sciences and Engineering (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Fedor Getman
- PRIMALIGHT, Computer, Electrical and Mathematical Sciences and Engineering (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Yi Tian
- PRIMALIGHT, Computer, Electrical and Mathematical Sciences and Engineering (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Valerio Mazzone
- PRIMALIGHT, Computer, Electrical and Mathematical Sciences and Engineering (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Physik-Institut, University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
| | - Ning Li
- PRIMALIGHT, Computer, Electrical and Mathematical Sciences and Engineering (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Alessandro Giammona
- Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Segrate, Italy
| | - Carlo Liberale
- Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Andrea Fratalocchi
- PRIMALIGHT, Computer, Electrical and Mathematical Sciences and Engineering (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
10
|
Sun J, Yang B, Koukourakis N, Guck J, Czarske JW. AI-driven projection tomography with multicore fibre-optic cell rotation. Nat Commun 2024; 15:147. [PMID: 38167247 PMCID: PMC10762230 DOI: 10.1038/s41467-023-44280-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024] Open
Abstract
Optical tomography has emerged as a non-invasive imaging method, providing three-dimensional insights into subcellular structures and thereby enabling a deeper understanding of cellular functions, interactions, and processes. Conventional optical tomography methods are constrained by a limited illumination scanning range, leading to anisotropic resolution and incomplete imaging of cellular structures. To overcome this problem, we employ a compact multi-core fibre-optic cell rotator system that facilitates precise optical manipulation of cells within a microfluidic chip, achieving full-angle projection tomography with isotropic resolution. Moreover, we demonstrate an AI-driven tomographic reconstruction workflow, which can be a paradigm shift from conventional computational methods, often demanding manual processing, to a fully autonomous process. The performance of the proposed cell rotation tomography approach is validated through the three-dimensional reconstruction of cell phantoms and HL60 human cancer cells. The versatility of this learning-based tomographic reconstruction workflow paves the way for its broad application across diverse tomographic imaging modalities, including but not limited to flow cytometry tomography and acoustic rotation tomography. Therefore, this AI-driven approach can propel advancements in cell biology, aiding in the inception of pioneering therapeutics, and augmenting early-stage cancer diagnostics.
Collapse
Affiliation(s)
- Jiawei Sun
- Shanghai Artificial Intelligence Laboratory, Longwen Road 129, Xuhui District, 200232, Shanghai, China.
- Competence Center for Biomedical Computational Laser Systems (BIOLAS), TU Dresden, Helmholtzstrasse 18, 01069, Dresden, Germany.
- Laboratory of Measurement and Sensor System Technique (MST), TU Dresden, Dresden, Germany.
| | - Bin Yang
- Laboratory of Measurement and Sensor System Technique (MST), TU Dresden, Dresden, Germany
| | - Nektarios Koukourakis
- Competence Center for Biomedical Computational Laser Systems (BIOLAS), TU Dresden, Helmholtzstrasse 18, 01069, Dresden, Germany
- Laboratory of Measurement and Sensor System Technique (MST), TU Dresden, Dresden, Germany
| | - Jochen Guck
- Max Planck Institute for the Science of Light & Max Planck-Zentrum für Physik und Medizin, 91058, Erlangen, Germany
| | - Juergen W Czarske
- Competence Center for Biomedical Computational Laser Systems (BIOLAS), TU Dresden, Helmholtzstrasse 18, 01069, Dresden, Germany.
- Laboratory of Measurement and Sensor System Technique (MST), TU Dresden, Dresden, Germany.
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany.
- Institute of Applied Physics, TU Dresden, Dresden, Germany.
| |
Collapse
|
11
|
Song Y, Tian C, Lee Y, Yoon M, Yoon SE, Cho SY. Nanosensor Chemical Cytometry: Advances and Opportunities in Cellular Therapy and Precision Medicine. ACS MEASUREMENT SCIENCE AU 2023; 3:393-403. [PMID: 38145025 PMCID: PMC10740128 DOI: 10.1021/acsmeasuresciau.3c00038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 12/26/2023]
Abstract
With the definition of therapeutics now encompassing transplanted or engineered cells and their molecular products, there is a growing scientific necessity for analytics to understand this new category of drugs. This Perspective highlights the recent development of new measurement science on label-free single cell analysis, nanosensor chemical cytometry (NCC), and their potential for cellular therapeutics and precision medicine. NCC is based on microfluidics integrated with fluorescent nanosensor arrays utilizing the optical lensing effect of a single cell to real-time extract molecular properties and correlate them with physical attributes of single cells. This new class of cytometry can quantify the heterogeneity of the multivariate physicochemical attributes of the cell populations in a completely label-free and nondestructive way and, thus, suggest the vein-to-vein conditions for the safe therapeutic applications. After the introduction of the NCC technology, we suggest the technological development roadmap for the maturation of the new field: from the sensor/chip design perspective to the system/software development level based on hardware automation and deep learning data analytics. The advancement of this new single cell sensing technology is anticipated to aid rich and multivariate single cell data setting and support safe and reliable cellular therapeutics. This new measurement science can lead to data-driven personalized precision medicine.
Collapse
Affiliation(s)
- Youngho Song
- School
of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Changyu Tian
- School
of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yullim Lee
- School
of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Minyeong Yoon
- School
of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sang Eun Yoon
- Division
of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Soo-Yeon Cho
- School
of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
12
|
Astratov VN, Sahel YB, Eldar YC, Huang L, Ozcan A, Zheludev N, Zhao J, Burns Z, Liu Z, Narimanov E, Goswami N, Popescu G, Pfitzner E, Kukura P, Hsiao YT, Hsieh CL, Abbey B, Diaspro A, LeGratiet A, Bianchini P, Shaked NT, Simon B, Verrier N, Debailleul M, Haeberlé O, Wang S, Liu M, Bai Y, Cheng JX, Kariman BS, Fujita K, Sinvani M, Zalevsky Z, Li X, Huang GJ, Chu SW, Tzang O, Hershkovitz D, Cheshnovsky O, Huttunen MJ, Stanciu SG, Smolyaninova VN, Smolyaninov II, Leonhardt U, Sahebdivan S, Wang Z, Luk’yanchuk B, Wu L, Maslov AV, Jin B, Simovski CR, Perrin S, Montgomery P, Lecler S. Roadmap on Label-Free Super-Resolution Imaging. LASER & PHOTONICS REVIEWS 2023; 17:2200029. [PMID: 38883699 PMCID: PMC11178318 DOI: 10.1002/lpor.202200029] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Indexed: 06/18/2024]
Abstract
Label-free super-resolution (LFSR) imaging relies on light-scattering processes in nanoscale objects without a need for fluorescent (FL) staining required in super-resolved FL microscopy. The objectives of this Roadmap are to present a comprehensive vision of the developments, the state-of-the-art in this field, and to discuss the resolution boundaries and hurdles which need to be overcome to break the classical diffraction limit of the LFSR imaging. The scope of this Roadmap spans from the advanced interference detection techniques, where the diffraction-limited lateral resolution is combined with unsurpassed axial and temporal resolution, to techniques with true lateral super-resolution capability which are based on understanding resolution as an information science problem, on using novel structured illumination, near-field scanning, and nonlinear optics approaches, and on designing superlenses based on nanoplasmonics, metamaterials, transformation optics, and microsphere-assisted approaches. To this end, this Roadmap brings under the same umbrella researchers from the physics and biomedical optics communities in which such studies have often been developing separately. The ultimate intent of this paper is to create a vision for the current and future developments of LFSR imaging based on its physical mechanisms and to create a great opening for the series of articles in this field.
Collapse
Affiliation(s)
- Vasily N. Astratov
- Department of Physics and Optical Science, University of North Carolina at Charlotte, Charlotte, North Carolina 28223-0001, USA
| | - Yair Ben Sahel
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yonina C. Eldar
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Luzhe Huang
- Electrical and Computer Engineering Department, University of California, Los Angeles, California 90095, USA
- Bioengineering Department, University of California, Los Angeles, California 90095, USA
- California Nano Systems Institute (CNSI), University of California, Los Angeles, California 90095, USA
| | - Aydogan Ozcan
- Electrical and Computer Engineering Department, University of California, Los Angeles, California 90095, USA
- Bioengineering Department, University of California, Los Angeles, California 90095, USA
- California Nano Systems Institute (CNSI), University of California, Los Angeles, California 90095, USA
- David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
| | - Nikolay Zheludev
- Optoelectronics Research Centre, University of Southampton, Southampton, SO17 1BJ, UK
- Centre for Disruptive Photonic Technologies, The Photonics Institute, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - Junxiang Zhao
- Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Zachary Burns
- Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Zhaowei Liu
- Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
- Material Science and Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Evgenii Narimanov
- School of Electrical Engineering, and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA
| | - Neha Goswami
- Quantitative Light Imaging Laboratory, Beckman Institute of Advanced Science and Technology, University of Illinois at Urbana-Champaign, Illinois 61801, USA
| | - Gabriel Popescu
- Quantitative Light Imaging Laboratory, Beckman Institute of Advanced Science and Technology, University of Illinois at Urbana-Champaign, Illinois 61801, USA
| | - Emanuel Pfitzner
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
| | - Philipp Kukura
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
| | - Yi-Teng Hsiao
- Institute of Atomic and Molecular Sciences (IAMS), Academia Sinica 1, Roosevelt Rd. Sec. 4, Taipei 10617 Taiwan
| | - Chia-Lung Hsieh
- Institute of Atomic and Molecular Sciences (IAMS), Academia Sinica 1, Roosevelt Rd. Sec. 4, Taipei 10617 Taiwan
| | - Brian Abbey
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, La Trobe University, Melbourne, Victoria, Australia
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, Victoria, Australia
| | - Alberto Diaspro
- Optical Nanoscopy and NIC@IIT, CHT, Istituto Italiano di Tecnologia, Via Enrico Melen 83B, 16152 Genoa, Italy
- DIFILAB, Department of Physics, University of Genoa, Via Dodecaneso 33, 16146 Genoa, Italy
| | - Aymeric LeGratiet
- Optical Nanoscopy and NIC@IIT, CHT, Istituto Italiano di Tecnologia, Via Enrico Melen 83B, 16152 Genoa, Italy
- Université de Rennes, CNRS, Institut FOTON - UMR 6082, F-22305 Lannion, France
| | - Paolo Bianchini
- Optical Nanoscopy and NIC@IIT, CHT, Istituto Italiano di Tecnologia, Via Enrico Melen 83B, 16152 Genoa, Italy
- DIFILAB, Department of Physics, University of Genoa, Via Dodecaneso 33, 16146 Genoa, Italy
| | - Natan T. Shaked
- Tel Aviv University, Faculty of Engineering, Department of Biomedical Engineering, Tel Aviv 6997801, Israel
| | - Bertrand Simon
- LP2N, Institut d’Optique Graduate School, CNRS UMR 5298, Université de Bordeaux, Talence France
| | - Nicolas Verrier
- IRIMAS UR UHA 7499, Université de Haute-Alsace, Mulhouse, France
| | | | - Olivier Haeberlé
- IRIMAS UR UHA 7499, Université de Haute-Alsace, Mulhouse, France
| | - Sheng Wang
- School of Physics and Technology, Wuhan University, China
- Wuhan Institute of Quantum Technology, China
| | - Mengkun Liu
- Department of Physics and Astronomy, Stony Brook University, USA
- National Synchrotron Light Source II, Brookhaven National Laboratory, USA
| | - Yeran Bai
- Boston University Photonics Center, Boston, MA 02215, USA
| | - Ji-Xin Cheng
- Boston University Photonics Center, Boston, MA 02215, USA
| | - Behjat S. Kariman
- Optical Nanoscopy and NIC@IIT, CHT, Istituto Italiano di Tecnologia, Via Enrico Melen 83B, 16152 Genoa, Italy
- DIFILAB, Department of Physics, University of Genoa, Via Dodecaneso 33, 16146 Genoa, Italy
| | - Katsumasa Fujita
- Department of Applied Physics and the Advanced Photonics and Biosensing Open Innovation Laboratory (AIST); and the Transdimensional Life Imaging Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
| | - Moshe Sinvani
- Faculty of Engineering and the Nano-Technology Center, Bar-Ilan University, Ramat Gan, 52900 Israel
| | - Zeev Zalevsky
- Faculty of Engineering and the Nano-Technology Center, Bar-Ilan University, Ramat Gan, 52900 Israel
| | - Xiangping Li
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 510632, China
| | - Guan-Jie Huang
- Department of Physics and Molecular Imaging Center, National Taiwan University, Taipei 10617, Taiwan
- Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Shi-Wei Chu
- Department of Physics and Molecular Imaging Center, National Taiwan University, Taipei 10617, Taiwan
- Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Omer Tzang
- School of Chemistry, The Sackler faculty of Exact Sciences, and the Center for Light matter Interactions, and the Tel Aviv University Center for Nanoscience and Nanotechnology, Tel Aviv 69978, Israel
| | - Dror Hershkovitz
- School of Chemistry, The Sackler faculty of Exact Sciences, and the Center for Light matter Interactions, and the Tel Aviv University Center for Nanoscience and Nanotechnology, Tel Aviv 69978, Israel
| | - Ori Cheshnovsky
- School of Chemistry, The Sackler faculty of Exact Sciences, and the Center for Light matter Interactions, and the Tel Aviv University Center for Nanoscience and Nanotechnology, Tel Aviv 69978, Israel
| | - Mikko J. Huttunen
- Laboratory of Photonics, Physics Unit, Tampere University, FI-33014, Tampere, Finland
| | - Stefan G. Stanciu
- Center for Microscopy – Microanalysis and Information Processing, Politehnica University of Bucharest, 313 Splaiul Independentei, 060042, Bucharest, Romania
| | - Vera N. Smolyaninova
- Department of Physics Astronomy and Geosciences, Towson University, 8000 York Rd., Towson, MD 21252, USA
| | - Igor I. Smolyaninov
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD 20742, USA
| | - Ulf Leonhardt
- Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sahar Sahebdivan
- EMTensor GmbH, TechGate, Donau-City-Strasse 1, 1220 Wien, Austria
| | - Zengbo Wang
- School of Computer Science and Electronic Engineering, Bangor University, Bangor, LL57 1UT, United Kingdom
| | - Boris Luk’yanchuk
- Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Limin Wu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Alexey V. Maslov
- Department of Radiophysics, University of Nizhny Novgorod, Nizhny Novgorod, 603022, Russia
| | - Boya Jin
- Department of Physics and Optical Science, University of North Carolina at Charlotte, Charlotte, North Carolina 28223-0001, USA
| | - Constantin R. Simovski
- Department of Electronics and Nano-Engineering, Aalto University, FI-00076, Espoo, Finland
- Faculty of Physics and Engineering, ITMO University, 199034, St-Petersburg, Russia
| | - Stephane Perrin
- ICube Research Institute, University of Strasbourg - CNRS - INSA de Strasbourg, 300 Bd. Sébastien Brant, 67412 Illkirch, France
| | - Paul Montgomery
- ICube Research Institute, University of Strasbourg - CNRS - INSA de Strasbourg, 300 Bd. Sébastien Brant, 67412 Illkirch, France
| | - Sylvain Lecler
- ICube Research Institute, University of Strasbourg - CNRS - INSA de Strasbourg, 300 Bd. Sébastien Brant, 67412 Illkirch, France
| |
Collapse
|
13
|
Liu X, Moscvin M, Oh S, Chen T, Choi W, Evans B, Rowell SM, Nadeem O, Mo CC, Sperling AS, Anderson KC, Yaqoob Z, Bianchi G, Sung Y. Characterizing dry mass and volume changes in human multiple myeloma cells upon treatment with proteotoxic and genotoxic drugs. Clin Exp Med 2023; 23:3821-3832. [PMID: 37421589 PMCID: PMC10777533 DOI: 10.1007/s10238-023-01124-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/20/2023] [Indexed: 07/10/2023]
Abstract
Multiple myeloma (MM) is a cancer of terminally differentiated plasma cells. MM remains incurable, but overall survival of patients has progressively increased over the past two decades largely due to novel agents such as proteasome inhibitors (PI) and the immunomodulatory agents. While these therapies are highly effective, MM patients can be de novo resistant and acquired resistance with prolonged treatment is inevitable. There is growing interest in early, accurate identification of responsive versus non-responsive patients; however, limited sample availability and need for rapid assays are limiting factors. Here, we test dry mass and volume as label-free biomarkers to monitor early response of MM cells to treatment with bortezomib, doxorubicin, and ultraviolet light. For the dry mass measurement, we use two types of phase-sensitive optical microscopy techniques: digital holographic tomography and computationally enhanced quantitative phase microscopy. We show that human MM cell lines (RPMI8226, MM.1S, KMS20, and AMO1) increase dry mass upon bortezomib treatment. This dry mass increase after bortezomib treatment occurs as early as 1 h for sensitive cells and 4 h for all tested cells. We further confirm this observation using primary multiple myeloma cells derived from patients and show that a correlation exists between increase in dry mass and sensitivity to bortezomib, supporting the use of dry mass as a biomarker. The volume measurement using Coulter counter shows a more complex behavior; RPMI8226 cells increase the volume at an early stage of apoptosis, but MM.1S cells show the volume decrease typically observed with apoptotic cells. Altogether, this cell study presents complex kinetics of dry mass and volume at an early stage of apoptosis, which may serve as a basis for the detection and treatment of MM cells.
Collapse
Affiliation(s)
- Xili Liu
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Maria Moscvin
- Amyloidosis Program, Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Seungeun Oh
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Tianzeng Chen
- Amyloidosis Program, Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Wonshik Choi
- Department of Physics, Korea University, Seoul, Korea
| | - Benjamin Evans
- Amyloidosis Program, Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Sean M Rowell
- Department of Medical Oncology, LeBow Institute for Myeloma Therapeutics and Jerome Lipper Multiple Myeloma Center, Dana Farber Cancer Institute, Boston, MA, 02115, USA
| | - Omar Nadeem
- Department of Medical Oncology, LeBow Institute for Myeloma Therapeutics and Jerome Lipper Multiple Myeloma Center, Dana Farber Cancer Institute, Boston, MA, 02115, USA
| | - Clifton C Mo
- Department of Medical Oncology, LeBow Institute for Myeloma Therapeutics and Jerome Lipper Multiple Myeloma Center, Dana Farber Cancer Institute, Boston, MA, 02115, USA
| | - Adam S Sperling
- Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Kenneth C Anderson
- Department of Medical Oncology, LeBow Institute for Myeloma Therapeutics and Jerome Lipper Multiple Myeloma Center, Dana Farber Cancer Institute, Boston, MA, 02115, USA
| | - Zahid Yaqoob
- Laser Biomedical Research Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Giada Bianchi
- Amyloidosis Program, Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| | - Yongjin Sung
- College of Engineering and Applied Science, University of Wisconsin, Milwaukee, WI, 53211, USA.
| |
Collapse
|
14
|
Dou Y, Cao M, Wang X, Liu X, Yuan X. Coded aperture temporal compressive digital holographic microscopy. OPTICS LETTERS 2023; 48:5427-5430. [PMID: 37831884 DOI: 10.1364/ol.503788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023]
Abstract
We report a coded aperture temporal compressive digital holographic microscopy (CATCHY) system to capture high-speed high-resolution samples by integrating snapshot compressive imaging (SCI) into digital holographic microscopy. Specifically, a two-dimensional (2D) detector samples a 4D (x, y, z, t) spatiotemporal data in a compressive manner, and after this, an efficient deep learning-based video SCI reconstruction algorithm is employed to reconstruct the desired 4D data cube. Up to ten high-resolution microscopic images are reconstructed from a snapshot measurement captured by our CATCHY system. Experimental results demonstrate the potential to visualize the 3D dynamic process of micro-nanostructures and imaging biological samples with high spatial and temporal resolution.
Collapse
|
15
|
Kang S, Zhou R, Brelen M, Mak HK, Lin Y, So PTC, Yaqoob Z. Mapping nanoscale topographic features in thick tissues with speckle diffraction tomography. LIGHT, SCIENCE & APPLICATIONS 2023; 12:200. [PMID: 37607903 PMCID: PMC10444882 DOI: 10.1038/s41377-023-01240-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/11/2023] [Accepted: 07/19/2023] [Indexed: 08/24/2023]
Abstract
Resolving three-dimensional morphological features in thick specimens remains a significant challenge for label-free imaging. We report a new speckle diffraction tomography (SDT) approach that can image thick biological specimens with ~500 nm lateral resolution and ~1 μm axial resolution in a reflection geometry. In SDT, multiple-scattering background is rejected through spatiotemporal gating provided by dynamic speckle-field interferometry, while depth-resolved refractive index maps are reconstructed by developing a comprehensive inverse-scattering model that also considers specimen-induced aberrations. Benefiting from the high-resolution and full-field quantitative imaging capabilities of SDT, we successfully imaged red blood cells and quantified their membrane fluctuations behind a turbid medium with a thickness of 2.8 scattering mean-free paths. Most importantly, we performed volumetric imaging of cornea inside an ex vivo rat eye and quantified its optical properties, including the mapping of nanoscale topographic features of Dua's and Descemet's membranes that had not been previously visualized.
Collapse
Affiliation(s)
- Sungsam Kang
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Renjie Zhou
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China.
| | - Marten Brelen
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Heather K Mak
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yuechuan Lin
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Peter T C So
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Zahid Yaqoob
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA.
| |
Collapse
|
16
|
Tang M, Han Y, Jia D, Yang Q, Cheng JX. Far-field super-resolution chemical microscopy. LIGHT, SCIENCE & APPLICATIONS 2023; 12:137. [PMID: 37277396 PMCID: PMC10240140 DOI: 10.1038/s41377-023-01182-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 06/07/2023]
Abstract
Far-field chemical microscopy providing molecular electronic or vibrational fingerprint information opens a new window for the study of three-dimensional biological, material, and chemical systems. Chemical microscopy provides a nondestructive way of chemical identification without exterior labels. However, the diffraction limit of optics hindered it from discovering more details under the resolution limit. Recent development of super-resolution techniques gives enlightenment to open this door behind far-field chemical microscopy. Here, we review recent advances that have pushed the boundary of far-field chemical microscopy in terms of spatial resolution. We further highlight applications in biomedical research, material characterization, environmental study, cultural heritage conservation, and integrated chip inspection.
Collapse
Affiliation(s)
- Mingwei Tang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- Intelligent Perception Research Institute, Zhejiang Lab, Hangzhou, 311100, China
| | - Yubing Han
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Danchen Jia
- Department of Biomedical Engineering, Department of Electrical and Computer Engineering, Photonics Center, Boston University, Boston, MA, 02459, USA
| | - Qing Yang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- Intelligent Perception Research Institute, Zhejiang Lab, Hangzhou, 311100, China
| | - Ji-Xin Cheng
- Department of Biomedical Engineering, Department of Electrical and Computer Engineering, Photonics Center, Boston University, Boston, MA, 02459, USA.
| |
Collapse
|
17
|
Juntunen C, Abramczyk AR, Shea P, Sung Y. Spectroscopic Microtomography in the Short-Wave Infrared Wavelength Range. SENSORS (BASEL, SWITZERLAND) 2023; 23:5164. [PMID: 37299895 PMCID: PMC10255538 DOI: 10.3390/s23115164] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/15/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023]
Abstract
Spectroscopic microtomography provides the ability to perform 4D (3D structural and 1D chemical) imaging of a thick microscopic specimen. Here, we demonstrate spectroscopic microtomography in the short-wave infrared (SWIR) wavelength using digital holographic tomography, which captures both the absorption coefficient and refractive index. A broadband laser in tandem with a tunable optical filter allows us to scan the wavelength from 1100 to 1650 nm. Using the developed system, we measure human hair and sea urchin embryo samples. The resolution estimated with gold nanoparticles is 1.51 μm (transverse) and 1.57 μm (axial) for the field of view of 307 × 246 μm2. The developed technique will enable accurate and efficient analyses of microscopic specimens that have a distinctive absorption or refractive index contrast in the SWIR range.
Collapse
Affiliation(s)
| | | | | | - Yongjin Sung
- College of Engineering and Applied Science, University of Wisconsin-Milwaukee, 3200 N Cramer St., Milwaukee, WI 53211, USA
| |
Collapse
|
18
|
Min E, Aimakov N, Lee S, Ban S, Yang H, Ahn Y, You JS, Jung W. Multi-contrast digital histopathology of mouse organs using quantitative phase imaging and virtual staining. BIOMEDICAL OPTICS EXPRESS 2023; 14:2068-2079. [PMID: 37206137 PMCID: PMC10191651 DOI: 10.1364/boe.484516] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 05/21/2023]
Abstract
Quantitative phase imaging (QPI) has emerged as a new digital histopathologic tool as it provides structural information of conventional slide without staining process. It is also capable of imaging biological tissue sections with sub-nanometer sensitivity and classifying them using light scattering properties. Here we extend its capability further by using optical scattering properties as imaging contrast in a wide-field QPI. In our first step towards validation, QPI images of 10 major organs of a wild-type mouse have been obtained followed by H&E-stained images of the corresponding tissue sections. Furthermore, we utilized deep learning model based on generative adversarial network (GAN) architecture for virtual staining of phase delay images to a H&E-equivalent brightfield (BF) image analogues. Using the structural similarity index, we demonstrate similarities between virtually stained and H&E histology images. Whereas the scattering-based maps look rather similar to QPI phase maps in the kidney, the brain images show significant improvement over QPI with clear demarcation of features across all regions. Since our technology provides not only structural information but also unique optical property maps, it could potentially become a fast and contrast-enriched histopathology technique.
Collapse
Affiliation(s)
- Eunjung Min
- Systems Neuroscience and Neuroengineering, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Nurbolat Aimakov
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Sangjin Lee
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Sungbea Ban
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Hyunmo Yang
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Yujin Ahn
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Joon S. You
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- Incipian LLC, Laguna Niguel, California, USA
| | - Woonggyu Jung
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| |
Collapse
|
19
|
Liang F, Zhu J, Chai H, Feng Y, Zhao P, Liu S, Yang Y, Lin L, Cao L, Wang W. Non-Invasive and Minute-Frequency 3D Tomographic Imaging Enabling Long-Term Spatiotemporal Observation of Single Cell Fate. SMALL METHODS 2023:e2201492. [PMID: 36950762 DOI: 10.1002/smtd.202201492] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Non-invasive and rapid imaging technique at subcellular resolution is significantly important for multiple biological applications such as cell fate study. Label-free refractive-index (RI)-based 3D tomographic imaging constitutes an excellent candidate for 3D imaging of cellular structures, but its full potential in long-term spatiotemporal cell fate observation is locked due to the lack of an efficient integrated system. Here, a long-term 3D RI imaging system incorporating a cutting-edge white light diffraction phase microscopy module with spatiotemporal stability, and an acoustofluidic device to roll and culture single cells in a customized live cell culture chamber is reported. Using this system, 3D RI imaging experiments are conducted for 250 cells and demonstrate efficient cell identification with high accuracy. Importantly, long-term and frequency-on-demand 3D RI imaging of K562 and MCF-7 cancer cells reveal different characteristics during normal cell growth, drug-induced cell apoptosis, and necrosis of drug-treated cells. Overall, it is believed that the proposed 3D tomographic imaging technique opens up a new avenue for visualizing intracellular structures and will find many applications such as disease diagnosis and nanomedicine.
Collapse
Affiliation(s)
- Fei Liang
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Junwen Zhu
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Huichao Chai
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Yongxiang Feng
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Peng Zhao
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Shaofeng Liu
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Yuanmu Yang
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Linhan Lin
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Liangcai Cao
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Wenhui Wang
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
20
|
Oh KJ, Ban H, Choi S, Ko H, Kim HY. HEVC extension for phase hologram compression. OPTICS EXPRESS 2023; 31:9146-9164. [PMID: 37157490 DOI: 10.1364/oe.479281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Compressing digital holograms have growing attention nowadays due to their huge amount of original data sizes. Although many progresses have been reported for full-complex holograms, the coding performance for phase-only holograms (POHs) has been quite limited so far. In this paper, we present a very efficient compression method for POHs. It extends the conventional video coding standard HEVC (High Efficiency Video Coding) in such a way that the standard can be able to compress not only the natural images but also the phase images effectively. First, we suggest a proper way to calculate differences, distances and clipped values for phase signals by considering the inherent periodicity of phases. Then, some of the HEVC encoding and decoding processes are modified accordingly. The experimental results show that the proposed extension significantly outperforms the original HEVC for POH video sequences; specifically, average BD-rate reductions of 63.3% and 65.5% are achieved in phase domain and numerical reconstruction domain, respectively. It is worth mentioning that the modified encoding & decoding processes are very minimal and also applicable to the VVC (Versatile Video Coding), which is a successor of the HEVC.
Collapse
|
21
|
Rusak A, Buzalewicz I, Mrozowska M, Wiatrak B, Haczkiewicz-Leśniak K, Olbromski M, Kmiecik A, Krzyżak E, Pietrowska A, Moskal J, Podhorska-Okołów M, Podbielska H, Dzięgiel P. Multimodal study of CHI3L1 inhibition and its effect on angiogenesis, migration, immune response and refractive index of cellular structures in glioblastoma. Biomed Pharmacother 2023; 161:114520. [PMID: 36921538 DOI: 10.1016/j.biopha.2023.114520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/27/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Glioblastoma is one of the most aggressive tumours with a poor response to treatment and a poor prognosis for patients. One of the proteins expressed in glioblastoma tissue is CHI3L1 (YKL-40), which is upregulated and known for its angiogenesis-supporting and pro-tumour immunomodulatory effects in a variety of cancers. In this paper we present the anti-angiogenic, anti-migratory and immunomodulatory effects of the compound G721-0282, an inhibitor of CHI3L1. The inhibitor-induced changes were investigated using conventional techniques as well as the novel label-free digital holographic tomography (DHT), a quantitative phase imaging technique that allows the reconstruction of the refractive index (RI), which is used as an image contrast for 3D visualisation of living cells. DHT allowed digital staining of individual cells and intercellular structures based only on their specific RI. Quantitative spatially resolved analysis of the RI data shows that the concentration of G721-0282 leads to significant changes in the density of cells and their intracellular structures (in particular the cytoplasm and nucleus), in the volume of lipid droplets and in protein concentrations. Studies in the U-87 MG glioblastoma cell line, THP-1 monocytes differentiated into macrophages, human microvascular endothelial cells (HMEC-1) and in the spheroid model of glioblastoma composed of U-87 MG, HMEC-1 and macrophages suggest that inhibition of CHI3L1 may have potential in the antitumour treatment of glioblastoma. In this paper, we also propose a spheroid model for in vitro studies that mimics this type of tumour.
Collapse
Affiliation(s)
- Agnieszka Rusak
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, T. Chalubinskiego 6a St., 50-368 Wroclaw, Poland.
| | - Igor Buzalewicz
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 27 Wybrzeze S. Wyspianskiego St., 50-370 Wroclaw, Poland.
| | - Monika Mrozowska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, T. Chalubinskiego 6a St., 50-368 Wroclaw, Poland.
| | - Benita Wiatrak
- Department of Pharmacology, Faculty of Medicine, J. Mikulicza-Radeckiego 2 Street, 50-345 Wroclaw, Poland.
| | - Katarzyna Haczkiewicz-Leśniak
- Department of Ultrastructural Research, Faculty of Medicine, Wroclaw Medical University, T. Chalubinskiego 6a St, 50-368 Wroclaw, Poland.
| | - Mateusz Olbromski
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, T. Chalubinskiego 6a St., 50-368 Wroclaw, Poland.
| | - Alicja Kmiecik
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, T. Chalubinskiego 6a St., 50-368 Wroclaw, Poland.
| | - Edward Krzyżak
- Department of Basic Chemical Sciences, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A St., 50-556 Wroclaw, Poland.
| | - Aleksandra Pietrowska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 27 Wybrzeze S. Wyspianskiego St., 50-370 Wroclaw, Poland.
| | - Jakub Moskal
- Department of Neurosurgery, Poznan University of Medical Sciences, S. Przybyszewskiego 49 St., 60-355 Poznan, Poland.
| | - Marzenna Podhorska-Okołów
- Department of Ultrastructural Research, Faculty of Medicine, Wroclaw Medical University, T. Chalubinskiego 6a St, 50-368 Wroclaw, Poland.
| | - Halina Podbielska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 27 Wybrzeze S. Wyspianskiego St., 50-370 Wroclaw, Poland.
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, T. Chalubinskiego 6a St., 50-368 Wroclaw, Poland; Department of Physiotherapy, University School of Physical Education, I. Paderewskiego 35 Al., 51-612 Wroclaw, Poland.
| |
Collapse
|
22
|
Dinc NU, Saba A, Madrid-Wolff J, Gigli C, Boniface A, Moser C, Psaltis D. From 3D to 2D and back again. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:777-793. [PMID: 39634355 PMCID: PMC11501230 DOI: 10.1515/nanoph-2022-0512] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/20/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2024]
Abstract
The prospect of massive parallelism of optics enabling fast and low energy cost operations is attracting interest for novel photonic circuits where 3-dimensional (3D) implementations have a high potential for scalability. Since the technology for data input-output channels is 2-dimensional (2D), there is an unavoidable need to take 2D-nD transformations into account. Similarly, the 3D-2D and its reverse transformations are also tackled in a variety of fields such as optical tomography, additive manufacturing, and 3D optical memories. Here, we review how these 3D-2D transformations are tackled using iterative techniques and neural networks. This high-level comparison across different, yet related fields could yield a useful perspective for 3D optical design.
Collapse
Affiliation(s)
- Niyazi Ulas Dinc
- Optics Laboratory, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
- Laboratory of Applied Photonics Devices, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Amirhossein Saba
- Optics Laboratory, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Jorge Madrid-Wolff
- Laboratory of Applied Photonics Devices, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Carlo Gigli
- Optics Laboratory, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Antoine Boniface
- Laboratory of Applied Photonics Devices, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Christophe Moser
- Laboratory of Applied Photonics Devices, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Demetri Psaltis
- Optics Laboratory, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
23
|
He Y, Zhou N, Ziemczonok M, Wang Y, Lei L, Duan L, Zhou R. Standardizing image assessment in optical diffraction tomography. OPTICS LETTERS 2023; 48:395-398. [PMID: 36638466 DOI: 10.1364/ol.478554] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Optical diffraction tomography (ODT) has gradually become a popular label-free imaging technique that offers diffraction-limited resolution by mapping an object's three-dimensional (3D) refractive index (RI) distribution. However, there is a lack of comprehensive quantitative image assessment metrics in ODT for studying how various experimental conditions influence image quality, and subsequently optimizing the experimental conditions. In this Letter, we propose to standardize the image assessment in ODT by proposing a set of metrics, including signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and structural distinguishability (SD). To test the feasibility of the metrics, we performed experiments on angle-scanning ODT by varying the number of illumination angles, RI contrast of samples, sample feature sizes, and sample types (e.g., standard polystyrene beads and 3D printed structures) and evaluated the RI tomograms with SNR, CNR, and SD. We further quantitatively studied how image quality can be improved, and tested the image assessment metrics on subcellular structures of living cells. We envision the proposed image assessment metrics may greatly benefit end-users for assessing the RI tomograms, as well as experimentalists for optimizing ODT instruments.
Collapse
|
24
|
Zhang Q, Zhou C, Yu W, Sun Y, Guo G, Wang X. Isotropic imaging-based contactless manipulation for single-cell spatial heterogeneity analysis. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
25
|
Quantitative Phase Imaging Detecting the Hypoxia-Induced Patterns in Healthy and Neoplastic Human Colonic Epithelial Cells. Cells 2022; 11:cells11223599. [PMID: 36429026 PMCID: PMC9688862 DOI: 10.3390/cells11223599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Hypoxia is a frequent phenomenon during carcinogenesis and may lead to functional and structural changes in proliferating cancer cells. Colorectal cancer (CRC) is one of the most common neoplasms in which hypoxia is associated with progression. The aim of this study was to assess the optical parameters and microanatomy of CRC and the normal intestinal epithelium cells using the digital holotomography (DHT) method. The examination was conducted on cancer (HT-29, LoVo) and normal colonic cells (CCD-18Co) cultured in normoxic and hypoxic environments. The assessment included optical parameters such as the refractive index (RI) and dry mass as well as the morphological features. Hypoxia decreased the RI in all cells as well as in their cytoplasm, nucleus, and nucleoli. The opposite tendency was noted for spheroid-vesicular structures, where the RI was higher for the hypoxic state. The total volume of hypoxic CCD-18Co and LoVo cells was decreased, while an increase in this parameter was observed for HT-29 cells. Hypoxia increased the radius and cell volume, including the dry mass of the vesicular content. The changes in the optics and morphology of hypoxic cells may suggest the possibility of using DHT in the detection of circulating tumor cells (CTCs).
Collapse
|
26
|
Ossowski P, Kuś A, Krauze W, Tamborski S, Ziemczonok M, Kuźbicki Ł, Szkulmowski M, Kujawińska M. Near-infrared, wavelength, and illumination scanning holographic tomography. BIOMEDICAL OPTICS EXPRESS 2022; 13:5971-5988. [PMID: 36733741 PMCID: PMC9872886 DOI: 10.1364/boe.468046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 06/18/2023]
Abstract
We present a holographic tomography technique in which the projections are acquired using both wavelength and illumination scanning in the near-infrared region. We show how to process the acquired data to obtain correct values of three-dimensional refractive index distributions in both single-wavelength and multi-wavelength data acquisition schemes and how to properly account for the dispersion of the sample. We perform numerical and experimental comparisons of different illumination scenarios to determine the most efficient measurement protocol. We show that the multi-wavelength protocol is advantageous in terms of signal-to-noise ratio and contrast-to-noise ratio over single-wavelength protocols, even for the same number of projections used for reconstructions. Finally, we show that this approach is suitable for providing high-quality refractive index distributions of relatively thick colon cancer samples.
Collapse
Affiliation(s)
- Paweł Ossowski
- Warsaw University of Technology, Institute of Micromechanics and Photonics, Boboli 8 street, Warsaw, 02-525, Poland
| | - Arkadiusz Kuś
- Warsaw University of Technology, Institute of Micromechanics and Photonics, Boboli 8 street, Warsaw, 02-525, Poland
| | - Wojciech Krauze
- Warsaw University of Technology, Institute of Micromechanics and Photonics, Boboli 8 street, Warsaw, 02-525, Poland
| | - Szymon Tamborski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Toruń, Poland
| | - Michał Ziemczonok
- Warsaw University of Technology, Institute of Micromechanics and Photonics, Boboli 8 street, Warsaw, 02-525, Poland
| | - Łukasz Kuźbicki
- Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland
| | - Maciej Szkulmowski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Toruń, Poland
| | - Małgorzata Kujawińska
- Warsaw University of Technology, Institute of Micromechanics and Photonics, Boboli 8 street, Warsaw, 02-525, Poland
| |
Collapse
|
27
|
Ibrahim DGA. 3D Shape reconstruction of normal and cancerous red blood cells using digital holographic tomography: Combination of angular spectrum method and multiplicative technique. J Microsc 2022; 287:156-166. [PMID: 35802005 DOI: 10.1111/jmi.13133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/23/2022] [Accepted: 07/05/2022] [Indexed: 12/01/2022]
Abstract
Since the red blood cell shape affects the Oxygen transport, so a robust method to reconstruct the 3D shape of an RBC from different projections is presented. A robust one-piece polarizing holographic microscope setup is used to record inline holograms of normal and cancerous red blood cells (RBCs) with high stability. The inline holograms are corrected by flat fielding and windowed Fourier filtering methods to mitigate the zero-order and the defocused twin image due to the inline recording configuration to the least measure. The corrected inline holograms are then reconstructed by the angular spectrum method to extract the 2D wrapping phase-contrast images. The 2D wrapping phase-contrast images are then unwrapped using the graph cuts algorithm to extract the continuous 2D phase-contrast images. The continuous 2D phase-contrast images are reconstructed at different projections by the multiplicative technique to extract the 3D shape of the normal and the cancerous RBCs. Experimental results show that any deformation in the shape of the normal and the cancerous RBCs can be seen clearly at any rotational angle in 3D. This method, which is based on the degree of deformation from the best fitting, can be used as an alternative method of counting method for discrimination between normal and cancerous cells and hence diagnoses the disease easily. This article is protected by copyright. All rights reserved.
Collapse
|
28
|
Zhang J, Yang D, Lv W, Jin X, Shi Y. Three-dimensional phase and intensity reconstruction from coherent modulation imaging measurements. OPTICS EXPRESS 2022; 30:20415-20430. [PMID: 36224787 DOI: 10.1364/oe.460648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/11/2022] [Indexed: 06/16/2023]
Abstract
Coherent modulation imaging is a lensless imaging technique, where a complex-valued image can be recovered from a single diffraction pattern using the iterative algorithm. Although mostly applied in two dimensions, it can be tomographically combined to produce three-dimensional (3D) images. Here we present a 3D reconstruction procedure for the sample's phase and intensity from coherent modulation imaging measurements. Pre-processing methods to remove illumination probe, inherent ambiguities in phase reconstruction results, and intensity fluctuation are given. With the projections extracted by our method, standard tomographic reconstruction frameworks can be used to recover accurate quantitative 3D phase and intensity images. Numerical simulations and optical experiments validate our method.
Collapse
|
29
|
He Y, He S, Kandel ME, Lee YJ, Hu C, Sobh N, Anastasio MA, Popescu G. Cell Cycle Stage Classification Using Phase Imaging with Computational Specificity. ACS PHOTONICS 2022; 9:1264-1273. [PMID: 35480491 PMCID: PMC9026251 DOI: 10.1021/acsphotonics.1c01779] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Indexed: 06/01/2023]
Abstract
Traditional methods for cell cycle stage classification rely heavily on fluorescence microscopy to monitor nuclear dynamics. These methods inevitably face the typical phototoxicity and photobleaching limitations of fluorescence imaging. Here, we present a cell cycle detection workflow using the principle of phase imaging with computational specificity (PICS). The proposed method uses neural networks to extract cell cycle-dependent features from quantitative phase imaging (QPI) measurements directly. Our results indicate that this approach attains very good accuracy in classifying live cells into G1, S, and G2/M stages, respectively. We also demonstrate that the proposed method can be applied to study single-cell dynamics within the cell cycle as well as cell population distribution across different stages of the cell cycle. We envision that the proposed method can become a nondestructive tool to analyze cell cycle progression in fields ranging from cell biology to biopharma applications.
Collapse
Affiliation(s)
- Yuchen
R. He
- Department
of Electrical and Computer Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Beckman
Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Shenghua He
- Department
of Computer Science & Engineering, Washington
University in St. Louis, St. Louis, Missouri 63130, United States
| | - Mikhail E. Kandel
- Department
of Electrical and Computer Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Beckman
Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Young Jae Lee
- Beckman
Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Neuroscience
Program, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Chenfei Hu
- Department
of Electrical and Computer Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Beckman
Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Nahil Sobh
- Beckman
Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- NCSA
Center for Artificial Intelligence Innovation, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Mark A. Anastasio
- Department
of Electrical and Computer Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Beckman
Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Department
of Bioengineering, University of Illinois
at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Gabriel Popescu
- Department
of Electrical and Computer Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Beckman
Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Department
of Bioengineering, University of Illinois
at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
30
|
Hugonnet H, Lee MJ, Park YK. Quantitative phase and refractive index imaging of 3D objects via optical transfer function reshaping. OPTICS EXPRESS 2022; 30:13802-13809. [PMID: 35472985 DOI: 10.1364/oe.454533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Deconvolution phase microscopy enables high-contrast visualization of transparent samples through reconstructions of their transmitted phases or refractive indexes. Herein, we propose a method to extend 2D deconvolution phase microscopy to thick 3D samples. The refractive index distribution of a sample can be obtained at a specific axial plane by measuring only four intensity images obtained under optimized illumination patterns. Also, the optical phase delay of a sample can be measured using different illumination patterns.
Collapse
|
31
|
Li T, Zhang D, Zhang Q, Lei W, Dong J. Scanning-free digital holography for decoupling the refractive index and thickness via a constrained equation of higher degree. OPTICS EXPRESS 2022; 30:9685-9702. [PMID: 35299389 DOI: 10.1364/oe.451884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
Digital holography is one of the most popular quantitative phase imaging techniques, but the refractive index and the thickness are always coupled in the phase. To solve the decoupling problem, multiple scanning methods such as tomography and total reflection are usually used, which is time-consuming. To increase the imaging speed and reduce the system cost, it is urgent to seek the decoupling method of scanning-free digital holography. In this paper, we find that the decoupling method of scanning-free digital holography can be transformed into a problem of solving constrained higher order equations. By introducing the Fresnel reflection formula, a six-degree equation about refractive index is constructed and the corresponding algorithm for solving the equation is given. By using the algorithm, the refractive index and thickness can be decoupled successfully. A series of results show that the proposed method is effective and has high anti-noise performance. This method provides a mathematical possibility for scanning-free digital holography to decouple the refractive index and complex pixel stepped thickness distributions. Therefore, it may provide a theoretical basis for the subsequent development of a real scanning-free digital holography system, which may have potential applications in the measurement of optical devices produced by the modern film deposition process and etching process.
Collapse
|
32
|
Schiebelbein A, Pedrini G. Lensless phase imaging microscopy using multiple intensity diffraction patterns obtained under coherent and partially coherent illumination. APPLIED OPTICS 2022; 61:B271-B278. [PMID: 35201149 DOI: 10.1364/ao.444824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
In this paper, we show how high-resolution phase imaging is obtained from multiple intensity diffraction patterns. The results of the experiments carried out with different microscopic phase and amplitude samples illuminated with coherent and partially coherent light are presented. A comparison with experimental results obtained by digital holographic microscopy is given, and advantages/disadvantages of the techniques are discussed.
Collapse
|
33
|
Optical Diffraction Tomography Using Nearly In-Line Holography with a Broadband LED Source. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12030951] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
We present optical tomography methods for a 3D refractive index reconstruction of weakly scattering objects using LED light sources. We are able to record holograms by minimizing the optical path difference between the signal and reference beams while separating the scattered field from its twin image. We recorded multiple holograms by illuminating the LEDs sequentially and reconstructed the 3D refractive index reconstruction of the sample. The reconstructions show high signal-to-noise ratio in which the effect of speckle artifacts is highly minimized due to the partially incoherent illumination of the LEDs. Results from combining different illumination wavelengths are also described demonstrating higher acquisition speed.
Collapse
|
34
|
Roadmap on Digital Holography-Based Quantitative Phase Imaging. J Imaging 2021; 7:jimaging7120252. [PMID: 34940719 PMCID: PMC8703719 DOI: 10.3390/jimaging7120252] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 12/02/2022] Open
Abstract
Quantitative Phase Imaging (QPI) provides unique means for the imaging of biological or technical microstructures, merging beneficial features identified with microscopy, interferometry, holography, and numerical computations. This roadmap article reviews several digital holography-based QPI approaches developed by prominent research groups. It also briefly discusses the present and future perspectives of 2D and 3D QPI research based on digital holographic microscopy, holographic tomography, and their applications.
Collapse
|
35
|
León-Rodríguez M, Rayas JA, Martínez-García A, Martínez-González A, Téllez-Quiñones A, Porras-Aguilar R. Panoramic reconstruction of quasi-cylindrical objects with digital holography and a conical mirror. OPTICS LETTERS 2021; 46:4749-4752. [PMID: 34598190 DOI: 10.1364/ol.433434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
In this work, we present a panoramic digital holographic system for the first time capable of obtaining 3D information of a quasi-cylindrical object by using a conical mirror. The proposed panoramic digital holographic system is able to scan the entire surface of the object to determine the amplitude and phase simultaneously. This paper demonstrates the feasibility of analyzing quasi-cylindrical objects in a short time (0.5 s) with a single camera and a minimum number of optical components. In addition, it can be applied to determine not only topographic measurement of the cylindrical surface but also measurements of radial deformations. Experimental results are presented at different magnifications, thus illustrating its capabilities and versatility.
Collapse
|
36
|
Géloën A, Isaieva K, Isaiev M, Levinson O, Berger E, Lysenko V. Intracellular Detection and Localization of Nanoparticles by Refractive Index Measurement. SENSORS 2021; 21:s21155001. [PMID: 34372238 PMCID: PMC8347443 DOI: 10.3390/s21155001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 01/24/2023]
Abstract
The measuring of nanoparticle toxicity faces an important limitation since it is based on metrics exposure, the concentration at which cells are exposed instead the true concentration inside the cells. In vitro studies of nanomaterials would benefit from the direct measuring of the true intracellular dose of nanoparticles. The objective of the present study was to state whether the intracellular detection of nanodiamonds is possible by measuring the refractive index. Based on optical diffraction tomography of treated live cells, the results show that unlabeled nanoparticles can be detected and localized inside cells. The results were confirmed by fluorescence measurements. Optical diffraction tomography paves the way to measuring the true intracellular concentrations and the localization of nanoparticles which will improve the dose-response paradigm of pharmacology and toxicology in the field of nanomaterials.
Collapse
Affiliation(s)
- Alain Géloën
- UMR Ecologie Microbienne Lyon (LEM), CNRS 5557, INRAE 1418, Claude Bernard University of Lyon, VetAgro Sup, Research Team “Bacterial Opportunistic Pathogens and Environment” (BPOE), University of Lyon, F-69622 Villeurbanne, France;
- Correspondence:
| | - Karyna Isaieva
- IADI, INSERM, Université de Lorraine, F-54000 Nancy, France;
| | - Mykola Isaiev
- LEMTA, CNRS, Université de Lorraine, F-54000 Nancy, France;
| | - Olga Levinson
- Ray Techniques LTD, P.O. Box 39162, Jerusalem 9139101, Israel;
| | - Emmanuelle Berger
- UMR Ecologie Microbienne Lyon (LEM), CNRS 5557, INRAE 1418, Claude Bernard University of Lyon, VetAgro Sup, Research Team “Bacterial Opportunistic Pathogens and Environment” (BPOE), University of Lyon, F-69622 Villeurbanne, France;
| | - Vladimir Lysenko
- Light Matter Institute, UMR-5306, Claude Bernard University of Lyon, 2 rue Victor Grignard, F-69622 Villeurbanne, France;
| |
Collapse
|
37
|
Zdańkowski P, Winnik J, Patorski K, Gocłowski P, Ziemczonok M, Józwik M, Kujawińska M, Trusiak M. Common-path intrinsically achromatic optical diffraction tomography. BIOMEDICAL OPTICS EXPRESS 2021; 12:4219-4234. [PMID: 34457410 PMCID: PMC8367224 DOI: 10.1364/boe.428828] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
In this work we propose an open-top like common-path intrinsically achromatic optical diffraction tomography system. It operates as a total-shear interferometer and employs Ronchi-type amplitude diffraction grating, positioned in between the camera and the tube lens without an additional 4f system, generating three-beam interferograms with achromatic second harmonic. Such configuration makes the proposed system low cost, compact and immune to vibrations. We present the results of the measurements of 3D-printed cell phantom using laser diode (coherent) and superluminescent diode (partially coherent) light sources. Broadband light sources can be naturally employed without the need for any cumbersome compensation because of the intrinsic achromaticity of the interferometric recording (holograms generated by -1st and +1st conjugated diffraction orders are not affected by the illumination wavelength). The results show that the decreased coherence offers much reduced coherent noise and higher fidelity tomographic reconstruction especially when applied nonnegativity constraint regularization procedure.
Collapse
Affiliation(s)
- Piotr Zdańkowski
- Warsaw University of Technology, Institute of Micromechanics and Photonics, 8 Św. A. Boboli st., 02-525 Warsaw, Poland
- These authors contributed equally to this work
| | - Julianna Winnik
- Warsaw University of Technology, Institute of Micromechanics and Photonics, 8 Św. A. Boboli st., 02-525 Warsaw, Poland
- These authors contributed equally to this work
| | - Krzysztof Patorski
- Warsaw University of Technology, Institute of Micromechanics and Photonics, 8 Św. A. Boboli st., 02-525 Warsaw, Poland
| | - Paweł Gocłowski
- Warsaw University of Technology, Institute of Micromechanics and Photonics, 8 Św. A. Boboli st., 02-525 Warsaw, Poland
| | - Michał Ziemczonok
- Warsaw University of Technology, Institute of Micromechanics and Photonics, 8 Św. A. Boboli st., 02-525 Warsaw, Poland
| | - Michał Józwik
- Warsaw University of Technology, Institute of Micromechanics and Photonics, 8 Św. A. Boboli st., 02-525 Warsaw, Poland
| | - Małgorzata Kujawińska
- Warsaw University of Technology, Institute of Micromechanics and Photonics, 8 Św. A. Boboli st., 02-525 Warsaw, Poland
| | - Maciej Trusiak
- Warsaw University of Technology, Institute of Micromechanics and Photonics, 8 Św. A. Boboli st., 02-525 Warsaw, Poland
| |
Collapse
|
38
|
Chen X, Kandel ME, Popescu G. Spatial light interference microscopy: principle and applications to biomedicine. ADVANCES IN OPTICS AND PHOTONICS 2021; 13:353-425. [PMID: 35494404 PMCID: PMC9048520 DOI: 10.1364/aop.417837] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In this paper, we review spatial light interference microscopy (SLIM), a common-path, phase-shifting interferometer, built onto a phase-contrast microscope, with white-light illumination. As one of the most sensitive quantitative phase imaging (QPI) methods, SLIM allows for speckle-free phase reconstruction with sub-nanometer path-length stability. We first review image formation in QPI, scattering, and full-field methods. Then, we outline SLIM imaging from theory and instrumentation to diffraction tomography. Zernike's phase-contrast microscopy, phase retrieval in SLIM, and halo removal algorithms are discussed. Next, we discuss the requirements for operation, with a focus on software developed in-house for SLIM that enables high-throughput acquisition, whole slide scanning, mosaic tile registration, and imaging with a color camera. We introduce two methods for solving the inverse problem using SLIM, white-light tomography, and Wolf phase tomography. Lastly, we review the applications of SLIM in basic science and clinical studies. SLIM can study cell dynamics, cell growth and proliferation, cell migration, mass transport, etc. In clinical settings, SLIM can assist with cancer studies, reproductive technology, blood testing, etc. Finally, we review an emerging trend, where SLIM imaging in conjunction with artificial intelligence brings computational specificity and, in turn, offers new solutions to outstanding challenges in cell biology and pathology.
Collapse
|
39
|
Moteki N. Measuring the complex forward-scattering amplitude of single particles by self-reference interferometry: CAS-v1 protocol. OPTICS EXPRESS 2021; 29:20688-20714. [PMID: 34266153 DOI: 10.1364/oe.423175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/18/2021] [Indexed: 06/13/2023]
Abstract
Theoretical and experimental bases are given for measuring the complex forward-scattering amplitude of single particles through self-reference interferometry. Our analyses reveal the nondimensional parameters that primarily control the accuracy and resolution of the complex amplitude data. We propose a measurement protocol, Complex Amplitude Sensing version 1 (CAS-v1), for effectively utilizing self-reference interferometry as a universal tool for inline measurements of the complex forward-scattering amplitude of single sub- and super-micron particles suspended in a fluid flow. The CAS-v1 protocol will facilitate applications of self-reference interferometry to real-time particle measurements in the industrial, biomedical, and environmental sciences.
Collapse
|
40
|
Kim J, Go T, Lee SJ. Accurate real-time monitoring of high particulate matter concentration based on holographic speckles and deep learning. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124637. [PMID: 33309383 DOI: 10.1016/j.jhazmat.2020.124637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/26/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
Accurate real-time monitoring of particulate matter (PM) has emerged as a global issue due to the hazardous effects of PM on public health and industry. However, conventional PM monitoring techniques are usually cumbersome and require expensive equipments. In this study, Holo-SpeckleNet is proposed as a fast and accurate PM concentration measurement technique with high throughput using a deep learning based holographic speckle pattern analysis. Speckle pattern datasets of PMs for a wide range of PM concentrations were acquired by using a digital in-line holography microscopy system. Deep autoencoder and regression algorithms were trained with the captured speckle pattern datasets to directly measure PM concentration from speckle pattern images without any air intake device and time-consuming post image processing. The proposed technique was applied to predict various PM concentrations using the test datasets, optimize hyperparameters, and compare its performance with a convolutional neural network (CNN) algorithm. As a result, high PM concentration values can be measured over air quality index of 150, above which human exposure is unhealthy. In addition, the proposed technique exhibits higher measurement accuracy and less overfitting than the CNN with a relative error of 7.46 ± 3.92%. It can be applied to design a compact air quality monitoring device for highly accurate and real-time measurement of PM concentrations under hazardous environment, such as factories or construction sites.
Collapse
Affiliation(s)
- Jihwan Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang 37673, South Korea
| | - Taesik Go
- Division of Biomedical Engineering, College of Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, South Korea
| | - Sang Joon Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang 37673, South Korea.
| |
Collapse
|
41
|
Ryu D, Ryu D, Baek Y, Cho H, Kim G, Kim YS, Lee Y, Kim Y, Ye JC, Min HS, Park Y. DeepRegularizer: Rapid Resolution Enhancement of Tomographic Imaging Using Deep Learning. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:1508-1518. [PMID: 33566760 DOI: 10.1109/tmi.2021.3058373] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Optical diffraction tomography measures the three-dimensional refractive index map of a specimen and visualizes biochemical phenomena at the nanoscale in a non-destructive manner. One major drawback of optical diffraction tomography is poor axial resolution due to limited access to the three-dimensional optical transfer function. This missing cone problem has been addressed through regularization algorithms that use a priori information, such as non-negativity and sample smoothness. However, the iterative nature of these algorithms and their parameter dependency make real-time visualization impossible. In this article, we propose and experimentally demonstrate a deep neural network, which we term DeepRegularizer, that rapidly improves the resolution of a three-dimensional refractive index map. Trained with pairs of datasets (a raw refractive index tomogram and a resolution-enhanced refractive index tomogram via the iterative total variation algorithm), the three-dimensional U-net-based convolutional neural network learns a transformation between the two tomogram domains. The feasibility and generalizability of our network are demonstrated using bacterial cells and a human leukaemic cell line, and by validating the model across different samples. DeepRegularizer offers more than an order of magnitude faster regularization performance compared to the conventional iterative method. We envision that the proposed data-driven approach can bypass the high time complexity of various image reconstructions in other imaging modalities.
Collapse
|
42
|
Pedrini G, Claus D. Phase retrieval using bidirectional interference. APPLIED OPTICS 2021; 60:3517-3525. [PMID: 33983260 DOI: 10.1364/ao.415927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/27/2021] [Indexed: 06/12/2023]
Abstract
In this paper we describe a phase retrieval algorithm using constraints given by diffraction patterns and phase difference obtained from bidirectional interference. Wave propagation and linear phase ramps are used to connect the recordings. At least three patterns are recorded and processed (two diffraction patterns and one interference pattern). The quality of the results can be improved when recording and processing more patterns. The method works well with non-sparse samples and short (few millimeter) recording distances. Simulations, comparisons with other methods, and experimental validations are presented.
Collapse
|
43
|
Lu CW, Belashov AV, Zhikhoreva AA, Semenova IV, Cheng CJ, Su LY, Wu CH. Application of digital holographic tomography in antitumor effect of cantharides complex on 4T1 breast cancer cells. APPLIED OPTICS 2021; 60:3365-3373. [PMID: 33983241 DOI: 10.1364/ao.416943] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
The study focuses on a methodology providing noninvasive monitoring and evaluation of the antitumor effect of traditional Chinese medicine, cantharides complex (canth), on 4T1 breast tumor cells. Digital holographic tomography (DHT) and developed data post-processing algorithms were used for quantitative estimation of changes in optical and morphological parameters of cells. We calculated and compared data on the refractive index, thickness, and projected area of 4T1 breast tumor cells in control untreated specimens and those treated with doxorubicin hydrochloride (DOX), canth, and their combinations. Post-treatment changes in cellular morphology recorded by DHT demonstrated that the two drugs led to noticeably different morphological changes in cells that can be presumably associated with different pathways of their death, apoptosis, or necrosis. The effect of combined treatment with these two drugs strongly depended on their relative concentrations and could lead to changes characteristic either for DOX or for canth; however, being more profound than those obtained when using each drug solely. The results obtained by DHT are in a good correspondence with commonly used cell viability analysis and immunofluorescent analysis of changes in cellular cytoskeleton.
Collapse
|
44
|
Guo R, Barnea I, Shaked NT. Limited-angle tomographic phase microscopy utilizing confocal scanning fluorescence microscopy. BIOMEDICAL OPTICS EXPRESS 2021; 12:1869-1881. [PMID: 33996204 PMCID: PMC8086471 DOI: 10.1364/boe.419598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 05/03/2023]
Abstract
We present a multimodal imaging technique, combining tomographic phase microscopy with limited angular projection range and number, and two-channel spinning-disk confocal scanning fluorescence microscopy. This technique allows high-accuracy 3D refractive index (RI) profiling of live cells in spite of the missing projections. The cellular outer shape and its interior organelles measured by the confocal fluorescence imaging not only specify the cell in molecular levels, but also provide the 3D distributions of the whole cell as well as its organelles. We take these additional 3D morphological details as constraints in Gerchberg-Papoulis-based optical diffraction tomography algorithm. We then obtain an accurate 3D RI tomogram, even with a sparse angular range having a small number of perspective projections, otherwise providing low-accuracy RI reconstruction. Then, we obtain both cellular molecular specificity and inner RI values of the cell and its organelles. We compare the reconstructed 3D RI profiles of various samples, demonstrating the superiority of the proposed technique.
Collapse
|
45
|
Balasubramani V, Kuś A, Tu HY, Cheng CJ, Baczewska M, Krauze W, Kujawińska M. Holographic tomography: techniques and biomedical applications [Invited]. APPLIED OPTICS 2021; 60:B65-B80. [PMID: 33798138 DOI: 10.1364/ao.416902] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/20/2021] [Indexed: 05/23/2023]
Abstract
Holographic tomography (HT) is an advanced label-free optical microscopic imaging method used for biological studies. HT uses digital holographic microscopy to record the complex amplitudes of a biological sample as digital holograms and then numerically reconstruct the sample's refractive index (RI) distribution in three dimensions. The RI values are a key parameter for label-free bio-examination, which correlate with metabolic activities and spatiotemporal distribution of biophysical parameters of cells and their internal organelles, tissues, and small-scale biological objects. This article provides insight on this rapidly growing HT field of research and its applications in biology. We present a review summary of the HT principle and highlight recent technical advancement in HT and its applications.
Collapse
|
46
|
Jiao Y, He YR, Kandel ME, Liu X, Lu W, Popescu G. Computational interference microscopy enabled by deep learning. APL PHOTONICS 2021; 6:046103. [PMID: 35308602 PMCID: PMC8931864 DOI: 10.1063/5.0041901] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Quantitative phase imaging (QPI) has been widely applied in characterizing cells and tissues. Spatial light interference microscopy (SLIM) is a highly sensitive QPI method due to its partially coherent illumination and common path interferometry geometry. However, SLIM's acquisition rate is limited because of the four-frame phase-shifting scheme. On the other hand, off-axis methods such as diffraction phase microscopy (DPM) allow for single-shot QPI. However, the laser-based DPM system is plagued by spatial noise due to speckles and multiple reflections. In a parallel development, deep learning was proven valuable in the field of bioimaging, especially due to its ability to translate one form of contrast into another. Here, we propose using deep learning to produce synthetic, SLIM-quality, and high-sensitivity phase maps from DPM using single-shot images as the input. We used an inverted microscope with its two ports connected to the DPM and SLIM modules such that we have access to the two types of images on the same field of view. We constructed a deep learning model based on U-net and trained on over 1000 pairs of DPM and SLIM images. The model learned to remove the speckles in laser DPM and overcame the background phase noise in both the test set and new data. The average peak signal-to-noise ratio, Pearson correlation coefficient, and structural similarity index measure were 29.97, 0.79, and 0.82 for the test dataset. Furthermore, we implemented the neural network inference into the live acquisition software, which now allows a DPM user to observe in real-time an extremely low-noise phase image. We demonstrated this principle of computational interference microscopy imaging using blood smears, as they contain both erythrocytes and leukocytes, under static and dynamic conditions.
Collapse
Affiliation(s)
- Yuheng Jiao
- Quantitative Light Imaging Laboratory, Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuchen R. He
- Quantitative Light Imaging Laboratory, Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Mikhail E. Kandel
- Quantitative Light Imaging Laboratory, Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Xiaojun Liu
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wenlong Lu
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Gabriel Popescu
- Quantitative Light Imaging Laboratory, Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Author to whom correspondence should be addressed:
| |
Collapse
|
47
|
Inoue K, Anand A, Cho M. Angular spectrum matching for digital holographic microscopy under extremely low light conditions. OPTICS LETTERS 2021; 46:1470-1473. [PMID: 33720214 DOI: 10.1364/ol.416002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
Digital holographic microscopy (DHM) is a future three-dimensional (3D) microscopy due to its high-resolution and high-precision 3D images. Thus, it is getting attention in bioinformatics, semiconductor defect detection, etc. However, some limitations still exist. Especially, high-speed holographic imaging requires high-power lasers, which are difficult to image on highly absorbent or light-sensitive samples. To overcome these issues, we propose a new, to the best of our knowledge, digital hologram recovery algorithm called angular spectrum matching (ASM), which achieves hologram imitation to recover holograms in digital holography at low light intensities. The hologram used for the background phase comparison is recorded without objects; thus, no power limitation is required. The ASM utilizes this background hologram to recover dark holograms. We present experimental results showing improved DHM numerical reconstructions and recovered holograms under extremely low light conditions.
Collapse
|
48
|
Yi F, Park S, Moon I. High-throughput label-free cell detection and counting from diffraction patterns with deep fully convolutional neural networks. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-200328R. [PMID: 33686845 PMCID: PMC7939515 DOI: 10.1117/1.jbo.26.3.036001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
SIGNIFICANCE Digital holographic microscopy (DHM) is a promising technique for the study of semitransparent biological specimen such as red blood cells (RBCs). It is important and meaningful to detect and count biological cells at the single cell level in biomedical images for biomarker discovery and disease diagnostics. However, the biological cell analysis based on phase information of images is inefficient due to the complexity of numerical phase reconstruction algorithm applied to raw hologram images. New cell study methods based on diffraction pattern directly are desirable. AIM Deep fully convolutional networks (FCNs) were developed on raw hologram images directly for high-throughput label-free cell detection and counting to assist the biological cell analysis in the future. APPROACH The raw diffraction patterns of RBCs were recorded by use of DHM. Ground-truth mask images were labeled based on phase images reconstructed from RBC holograms using numerical reconstruction algorithm. A deep FCN, which is UNet, was trained on the diffraction pattern images to achieve the label-free cell detection and counting. RESULTS The implemented deep FCNs provide a promising way to high-throughput and label-free counting of RBCs with a counting accuracy of 99% at a throughput rate of greater than 288 cells per second and 200 μm × 200 μm field of view at the single cell level. Compared to convolutional neural networks, the FCNs can get much better results in terms of accuracy and throughput rate. CONCLUSIONS High-throughput label-free cell detection and counting were successfully achieved from diffraction patterns with deep FCNs. It is a promising approach for biological specimen analysis based on raw hologram directly.
Collapse
Affiliation(s)
- Faliu Yi
- University of Texas Southwestern Medical Center, Department of Clinical Science, Dallas, Texas, United States
| | - Seonghwan Park
- Daegu Gyeongbuk Institute of Science and Technology, Department of Robotics Engineering, Dalseong-gun, Daegu, Republic of Korea
| | - Inkyu Moon
- Daegu Gyeongbuk Institute of Science and Technology, Department of Robotics Engineering, Dalseong-gun, Daegu, Republic of Korea
| |
Collapse
|
49
|
Di J, Han W, Liu S, Wang K, Tang J, Zhao J. Sparse-view imaging of a fiber internal structure in holographic diffraction tomography via a convolutional neural network. APPLIED OPTICS 2021; 60:A234-A242. [PMID: 33690374 DOI: 10.1364/ao.404276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/29/2020] [Indexed: 06/12/2023]
Abstract
Deep learning has recently shown great potential in computational imaging. Here, we propose a deep-learning-based reconstruction method to realize the sparse-view imaging of a fiber internal structure in holographic diffraction tomography. By taking the sparse-view sinogram as the input and the cross-section image obtained by the dense-view sinogram as the ground truth, the neural network can reconstruct the cross-section image from the sparse-view sinogram. It performs better than the corresponding filtered back-projection algorithm with a sparse-view sinogram, both in the case of simulated data and real experimental data.
Collapse
|
50
|
Ayoub AB, Lim J, Antoine EE, Psaltis D. 3D reconstruction of weakly scattering objects from 2D intensity-only measurements using the Wolf transform. OPTICS EXPRESS 2021; 29:3976-3984. [PMID: 33770986 DOI: 10.1364/oe.414543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
A new approach to optical diffraction tomography (ODT) based on intensity measurements is presented. By applying the Wolf transform directly to intensity measurements, we observed unexpected behavior in the 3D reconstruction of the sample. Such a reconstruction does not explicitly represent a quantitative measure of the refractive index of the sample; however, it contains interesting qualitative information. This 3D reconstruction exhibits edge enhancement and contrast enhancement for nanostructures compared with the conventional 3D refractive index reconstruction and thus could be used to localize nanoparticles such as lipids inside a biological sample.
Collapse
|