1
|
Wang P, Shao Y, Al-Nusaif M, Zhang J, Yang H, Yang Y, Kim K, Li S, Liu C, Cai H, Le W. Pathological characteristics of axons and alterations of proteomic and lipidomic profiles in midbrain dopaminergic neurodegeneration induced by WDR45-deficiency. Mol Neurodegener 2024; 19:62. [PMID: 39183331 PMCID: PMC11346282 DOI: 10.1186/s13024-024-00746-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 07/17/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Although WD repeat domain 45 (WDR45) mutations have been linked to β -propeller protein-associated neurodegeneration (BPAN), the precise molecular and cellular mechanisms behind this disease remain elusive. This study aims to shed light on the impacts of WDR45-deficiency on neurodegeneration, specifically axonal degeneration, within the midbrain dopaminergic (DAergic) system. We hope to better understand the disease process by examining pathological and molecular alterations, especially within the DAergic system. METHODS To investigate the impacts of WDR45 dysfunction on mouse behaviors and DAergic neurons, we developed a mouse model in which WDR45 was conditionally knocked out in the midbrain DAergic neurons (WDR45cKO). Through a longitudinal study, we assessed alterations in the mouse behaviors using open field, rotarod, Y-maze, and 3-chamber social approach tests. We utilized a combination of immunofluorescence staining and transmission electron microscopy to examine the pathological changes in DAergic neuron soma and axons. Additionally, we performed proteomic and lipidomic analyses of the striatum from young and aged mice to identify the molecules and processes potentially involved in the striatal pathology during aging. Further more, primary midbrain neuronal culture was employed to explore the molecular mechanisms leading to axonal degeneration. RESULTS Our study of WDR45cKO mice revealed a range of deficits, including impaired motor function, emotional instability, and memory loss, coinciding with the profound reduction of midbrain DAergic neurons. The neuronal loss, we observed massive axonal enlargements in the dorsal and ventral striatum. These enlargements were characterized by the accumulation of extensively fragmented tubular endoplasmic reticulum (ER), a hallmark of axonal degeneration. Proteomic analysis of the striatum showed that the differentially expressed proteins were enriched in metabolic processes. The carbohydrate metabolic and protein catabolic processes appeared earlier, and amino acid, lipid, and tricarboxylic acid metabolisms were increased during aging. Of note, we observed a tremendous increase in the expression of lysophosphatidylcholine acyltransferase 1 (Lpcat1) that regulates phospholipid metabolism, specifically in the conversion of lysophosphatidylcholine (LPC) to phosphatidylcholine (PC) in the presence of acyl-CoA. The lipidomic results consistently suggested that differential lipids were concentrated on PC and LPC. Axonal degeneration was effectively ameliorated by interfering Lpcat1 expression in primary cultured WDR45-deficient DAergic neurons, proving that Lpcat1 and its regulated lipid metabolism, especially PC and LPC metabolism, participate in controlling the axonal degeneration induced by WDR45 deficits. CONCLUSIONS In this study, we uncovered the molecular mechanisms underlying the contribution of WDR45 deficiency to axonal degeneration, which involves complex relationships between phospholipid metabolism, autophagy, and tubular ER. These findings greatly advance our understanding of the fundamental molecular mechanisms driving axonal degeneration and may provide a foundation for developing novel mechanistically based therapeutic interventions for BPAN and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Panpan Wang
- Liaoning Provincial Key Laboratory for Research On the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
| | - Yaping Shao
- Liaoning Provincial Key Laboratory for Research On the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
| | - Murad Al-Nusaif
- Liaoning Provincial Key Laboratory for Research On the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
| | - Jun Zhang
- Liaoning Provincial Key Laboratory for Research On the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
| | - Huijia Yang
- Liaoning Provincial Key Laboratory for Research On the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
| | - Yuting Yang
- Liaoning Provincial Key Laboratory for Research On the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
| | - Kunhyok Kim
- Liaoning Provincial Key Laboratory for Research On the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
| | - Song Li
- Liaoning Provincial Key Laboratory for Research On the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
| | - Cong Liu
- Interdisciplinary Research Center On Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Huaibin Cai
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Weidong Le
- Liaoning Provincial Key Laboratory for Research On the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China.
- Institute of Neurology, Sichuan Academy of Medical Science, Sichuan Provincial Hospital, Chengdu, 610072, China.
| |
Collapse
|
2
|
Le W, Wang P, Al-Nusaif M, Zhang J, Yang H, Yang Y, Kim K, Li S, Liu C, Cai H. Pathological characteristics of axons and proteome patterns in midbrain dopaminergic neurodegeneration induced by WDR45-deficiency. RESEARCH SQUARE 2023:rs.3.rs-2901370. [PMID: 37292937 PMCID: PMC10246098 DOI: 10.21203/rs.3.rs-2901370/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Background Although WD repeats domain 45 (WDR45) mutations have been linked to β-propeller protein-associated neurodegeneration (BPAN), the precise molecular and cellular mechanisms behind this disease remain elusive. This study aims to shed light on the effects of WDR45-deficiency on neurodegeneration, specifically axonal degeneration, within the midbrain dopaminergic (DAergic) system. By examining pathological and molecular alterations, we hope to better understand the disease process. Methods To investigate the effects of WDR45 dysfunction on mouse behaviors and DAergic neurons, we developed a mouse model in which WDR45 was conditionally knocked out in midbrain DAergic neurons (WDR45cKO). Through a longitudinal study, we assessed alterations in mouse behavior using open field, rotarod, Y-maze, and 3-chamber social approach tests. To examine the pathological changes in DAergic neuron soma and axons, we utilized a combination of immunofluorescence staining and transmission electron microscopy. Additionally, we performed proteomic analyses of the striatum to identify the molecules and processes involved in striatal pathology. Results Our study of WDR45cKO mice revealed a range of deficits, including impaired motor function, emotional instability, and memory loss, coinciding with the profound loss of midbrain DAergic neurons. Prior to neuronal loss, we observed massive axonal enlargements in both the dorsal and ventral striatum. These enlargements were characterized by the accumulation of extensively fragmented tubular endoplasmic reticulum (ER), a hallmark of axonal degeneration. Additionally, we found that WDR45cKO mice exhibited disrupted autophagic flux. Proteomic analysis of the striatum in these mice showed that many differentially expressed proteins (DEPs) were enriched in amino acid, lipid, and tricarboxylic acid metabolisms. Of note, we observed significant alterations in the expression of genes encoding DEPs that regulate phospholipids catabolic and biosynthetic processes, such as lysophosphatidylcholine acyltransferase 1, ethanolamine-phosphate phospho-lyase, and abhydrolase domain containing 4, N-acyl phospholipase B. These findings suggest a possible link between phospholipid metabolism and striatal axon degeneration. Conclusions In this study, we have uncovered the molecular mechanisms underlying the contribution of WDR45-deficiency to axonal degeneration, revealing intricate relationships between tubular ER dysfunction, phospholipid metabolism, BPAN and other neurodegenerative diseases. These findings significantly advance our understanding of the fundamental molecular mechanisms driving neurodegeneration and may provide a foundation for developing novel, mechanistically-based therapeutic interventions.
Collapse
Affiliation(s)
- Weidong Le
- The First Affiliated Hospital Of Dalian Medical University
| | - Panpan Wang
- First Affiliated Hospital of Dalian Medical University
| | | | - Jun Zhang
- First Affiliated Hospital of Dalian Medical University
| | - Huijia Yang
- First Affiliated Hospital of Dalian Medical University
| | - Yuting Yang
- First Affiliated Hospital of Dalian Medical University
| | - Kunhyok Kim
- First Affiliated Hospital of Dalian Medical University
| | - Song Li
- First Affiliated Hospital of Dalian Medical University
| | - Cong Liu
- Shanghai Institute of Organic Chemistry
| | | |
Collapse
|
3
|
The Diffusion Model of Intra-Golgi Transport Has Limited Power. Int J Mol Sci 2023; 24:ijms24021375. [PMID: 36674888 PMCID: PMC9861033 DOI: 10.3390/ijms24021375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
The Golgi complex (GC) is the main station along the cell biosecretory pathway. Until now, mechanisms of intra-Golgi transport (IGT) have remained unclear. Herein, we confirm that the goodness-of-fit of the regression lines describing the exit of a cargo from the Golgi zone (GZ) corresponds to an exponential decay. When the GC was empty before the re-initiation of the intra-Golgi transport, this parameter of the curves describing the kinetics of different cargoes (which are deleted in Golgi vesicles) with different diffusional mobilities within the GZ as well as their exit from the GZ was maximal for the piecewise nonlinear regression, wherein the first segment was horizontal, while the second segment was similar to the exponential decay. The kinetic curve describing cargo exit from the GC per se resembled a linear decay. The Monte-Carlo simulation revealed that such curves reflect the role of microtubule growth in cells with a central GC or the random hovering of ministacks in cells lacking a microtubule. The synchronization of cargo exit from the GC already filled with a cargo using the wave synchronization protocol did not reveal the equilibration of cargo within a Golgi stack, which would be expected from the diffusion model (DM) of IGT. Moreover, not all cisternae are connected to each other in mini-stacks that are transporting membrane proteins. Finally, the kinetics of post-Golgi carriers and the important role of SNAREs for IGT at different level of IGT also argue against the DM of IGT.
Collapse
|
4
|
Mangini M, D’Angelo R, Vinciguerra C, Payré C, Lambeau G, Balestrieri B, Charles JF, Mariggiò S. Multimodal regulation of the osteoclastogenesis process by secreted group IIA phospholipase A 2. Front Cell Dev Biol 2022; 10:966950. [PMID: 36105351 PMCID: PMC9467450 DOI: 10.3389/fcell.2022.966950] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/25/2022] [Indexed: 01/21/2023] Open
Abstract
Increasing evidence points to the involvement of group IIA secreted phospholipase A2 (sPLA2-IIA) in pathologies characterized by abnormal osteoclast bone-resorption activity. Here, the role of this moonlighting protein has been deepened in the osteoclastogenesis process driven by the RANKL cytokine in RAW264.7 macrophages and bone-marrow derived precursor cells from BALB/cJ mice. Inhibitors with distinct selectivity toward sPLA2-IIA activities and recombinant sPLA2-IIA (wild-type or catalytically inactive forms, full-length or partial protein sequences) were instrumental to dissect out sPLA2-IIA function, in conjunction with reduction of sPLA2-IIA expression using small-interfering-RNAs and precursor cells from Pla2g2a knock-out mice. The reported data indicate sPLA2-IIA participation in murine osteoclast maturation, control of syncytium formation and resorbing activity, by mechanisms that may be both catalytically dependent and independent. Of note, these studies provide a more complete understanding of the still enigmatic osteoclast multinucleation process, a crucial step for bone-resorbing activity, uncovering the role of sPLA2-IIA interaction with a still unidentified receptor to regulate osteoclast fusion through p38 SAPK activation. This could pave the way for the design of specific inhibitors of sPLA2-IIA binding to interacting partners implicated in osteoclast syncytium formation.
Collapse
Affiliation(s)
- Maria Mangini
- Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | - Rosa D’Angelo
- Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | - Caterina Vinciguerra
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Christine Payré
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, Valbonne Sophia Antipolis, France
| | - Gérard Lambeau
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, Valbonne Sophia Antipolis, France
| | - Barbara Balestrieri
- Jeff and Penny Vinik Center for Translational Immunology Research, Department of Medicine, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Julia F. Charles
- Departments of Orthopaedic Surgery and Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Stefania Mariggiò
- Institute of Protein Biochemistry, National Research Council, Naples, Italy,*Correspondence: Stefania Mariggiò,
| |
Collapse
|
5
|
Rui Q, Tan X, Liu F, Bao Y. An Update on the Key Factors Required for Plant Golgi Structure Maintenance. FRONTIERS IN PLANT SCIENCE 2022; 13:933283. [PMID: 35837464 PMCID: PMC9274083 DOI: 10.3389/fpls.2022.933283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Plant Golgi apparatus serves as the central station of the secretory pathway and is the site where protein modification and cell wall matrix polysaccharides synthesis occur. The polarized and stacked cisternal structure is a prerequisite for Golgi function. Our understanding of Golgi structure maintenance and trafficking are largely obtained from mammals and yeast, yet, plant Golgi has many different aspects. In this review, we summarize the key players in Golgi maintenance demonstrated by genetic studies in plants, which function in ER-Golgi, intra-Golgi and post-Golgi transport pathways. Among these, we emphasize on players in intra-Golgi trafficking.
Collapse
|
6
|
Steiner A, Hrovat-Schaale K, Prigione I, Yu CH, Laohamonthonkul P, Harapas CR, Low RRJ, De Nardo D, Dagley LF, Mlodzianoski MJ, Rogers KL, Zillinger T, Hartmann G, Gantier MP, Gattorno M, Geyer M, Volpi S, Davidson S, Masters SL. Deficiency in coatomer complex I causes aberrant activation of STING signalling. Nat Commun 2022; 13:2321. [PMID: 35484149 PMCID: PMC9051092 DOI: 10.1038/s41467-022-29946-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 04/05/2022] [Indexed: 12/15/2022] Open
Abstract
Coatomer complex I (COPI) mediates retrograde vesicular trafficking from Golgi to the endoplasmic reticulum (ER) and within Golgi compartments. Deficiency in subunit alpha causes COPA syndrome and is associated with type I IFN signalling, although the upstream innate immune sensor involved was unknown. Using in vitro models we find aberrant activation of the STING pathway due to deficient retrograde but probably not intra-Golgi transport. Further we find the upstream cytosolic DNA sensor cGAS as essentially required to drive type I IFN signalling. Genetic deletion of COPI subunits COPG1 or COPD similarly induces type I IFN activation in vitro, which suggests that inflammatory diseases associated with mutations in other COPI subunit genes may exist. Finally, we demonstrate that inflammation in COPA syndrome patient peripheral blood mononuclear cells and COPI-deficient cell lines is ameliorated by treatment with the small molecule STING inhibitor H-151, suggesting targeted inhibition of the cGAS/STING pathway as a promising therapeutic approach.
Collapse
Affiliation(s)
- Annemarie Steiner
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
- Institute of Structural Biology, University Hospital Bonn, 53127, Bonn, Germany
| | - Katja Hrovat-Schaale
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Ignazia Prigione
- Centre for Autoinflammatory Diseases and Primary Immunodeficiencies, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Chien-Hsiung Yu
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Pawat Laohamonthonkul
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Cassandra R Harapas
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Ronnie Ren Jie Low
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Dominic De Nardo
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3168, Australia
| | - Laura F Dagley
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
- Advanced Technology and Biology, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Michael J Mlodzianoski
- Center for Dynamic Imaging, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Kelly L Rogers
- Center for Dynamic Imaging, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Thomas Zillinger
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127, Bonn, Germany
- Institute of Immunology, Philipps-University Marburg, BMFZ, 35043, Marburg, Germany
| | - Gunther Hartmann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127, Bonn, Germany
- German Centre for Infection Research (DZIF), partner site Bonn-Cologne, 53127, Bonn, Germany
| | - Michael P Gantier
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, 3168, Australia
| | - Marco Gattorno
- Centre for Autoinflammatory Diseases and Primary Immunodeficiencies, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Matthias Geyer
- Institute of Structural Biology, University Hospital Bonn, 53127, Bonn, Germany
| | - Stefano Volpi
- Centre for Autoinflammatory Diseases and Primary Immunodeficiencies, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
- University of Genoa, 16126, Genoa, Italy
| | - Sophia Davidson
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Seth L Masters
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
7
|
Abstract
Constitutive vesicle trafficking is the default pathway used by all cells for movement of intracellular cargoes between subcellular compartments and in and out of the cell. Classically, constitutive trafficking was thought to be continuous and unregulated, in contrast to regulated secretion, wherein vesicles are stored intracellularly until undergoing synchronous membrane fusion following a Ca2+ signal. However, as shown in the literature reviewed here, many continuous trafficking steps can be up- or down-regulated by Ca2+, including several steps associated with human pathologies. Notably, we describe a series of Ca2+ pumps, channels, Ca2+-binding effector proteins, and their trafficking machinery targets that together regulate the flux of cargo in response to genetic alterations as well as baseline and agonist-dependent Ca2+ signals. Here, we review the most recent advances, organized by organellar location, that establish the importance of these components in trafficking steps. Ultimately, we conclude that Ca2+ regulates an expanding series of distinct mechanistic steps. Furthermore, the involvement of Ca2+ in trafficking is complex. For example, in some cases, the same Ca2+ effectors regulate surprisingly distinct trafficking steps, or even the same trafficking step with opposing influences, through binding to different target proteins.
Collapse
Affiliation(s)
- John Sargeant
- Division of Biological Sciences & Center for Structural & Functional Neuroscience, University of Montana, 32 Campus Drive, Missoula, MT 59812, USA
| | - Jesse C Hay
- Division of Biological Sciences & Center for Structural & Functional Neuroscience, University of Montana, 32 Campus Drive, Missoula, MT 59812, USA
| |
Collapse
|
8
|
Lipid Droplets, Phospholipase A 2, Arachidonic Acid, and Atherosclerosis. Biomedicines 2021; 9:biomedicines9121891. [PMID: 34944707 PMCID: PMC8699036 DOI: 10.3390/biomedicines9121891] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/01/2021] [Accepted: 12/10/2021] [Indexed: 02/07/2023] Open
Abstract
Lipid droplets, classically regarded as static storage organelles, are currently considered as dynamic structures involved in key processes of lipid metabolism, cellular homeostasis and signaling. Studies on the inflammatory state of atherosclerotic plaques suggest that circulating monocytes interact with products released by endothelial cells and may acquire a foamy phenotype before crossing the endothelial barrier and differentiating into macrophages. One such compound released in significant amounts into the bloodstream is arachidonic acid, the common precursor of eicosanoids, and a potent inducer of neutral lipid synthesis and lipid droplet formation in circulating monocytes. Members of the family of phospholipase A2, which hydrolyze the fatty acid present at the sn-2 position of phospholipids, have recently emerged as key controllers of lipid droplet homeostasis, regulating their formation and the availability of fatty acids for lipid mediator production. In this paper we discuss recent findings related to lipid droplet dynamics in immune cells and the ways these organelles are involved in regulating arachidonic acid availability and metabolism in the context of atherosclerosis.
Collapse
|
9
|
Abstract
The Golgi complex plays a central role in protein secretion by regulating cargo sorting and trafficking. As these processes are of functional importance to cell polarity, motility, growth, and division, there is considerable interest in achieving a comprehensive understanding of Golgi complex biology. However, the unique stack structure of this organelle has been a major hurdle to our understanding of how proteins are secreted through the Golgi apparatus. Herein, we summarize available relevant research to gain an understanding of protein secretion via the Golgi complex. This includes the molecular mechanisms of intra-Golgi trafficking and cargo export in the trans-Golgi network. Moreover, we review recent insights on signaling pathways regulated by the Golgi complex and their physiological significance.
Collapse
Affiliation(s)
- Kunyou Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Sungeun Ju
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Nari Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Seung-Yeol Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| |
Collapse
|
10
|
Ward KE, Sengupta R, Ropa JP, Amiar S, Stahelin RV. The Cytosolic Phospholipase A 2α N-terminal C2 Domain Binds and Oligomerizes on Membranes with Positive Curvature. Biomolecules 2020; 10:biom10040647. [PMID: 32331436 PMCID: PMC7226022 DOI: 10.3390/biom10040647] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/16/2020] [Accepted: 04/19/2020] [Indexed: 01/04/2023] Open
Abstract
Group IV phospholipase A2α (cPLA2α) regulates the production of prostaglandins and leukotrienes via the formation of arachidonic acid from membrane phospholipids. The targeting and membrane binding of cPLA2α to the Golgi involves the N-terminal C2 domain, whereas the catalytic domain produces arachidonic acid. Although most studies of cPLA2α concern its catalytic activity, it is also linked to homeostatic processes involving the generation of vesicles that traffic material from the Golgi to the plasma membrane. Here we investigated how membrane curvature influences the homeostatic role of cPLA2α in vesicular trafficking. The cPLA2α C2 domain is known to induce changes in positive membrane curvature, a process which is dependent on cPLA2α membrane penetration. We showed that cPLA2α undergoes C2 domain-dependent oligomerization on membranes in vitro and in cells. We found that the association of the cPLA2α C2 domain with membranes is limited to membranes with positive curvature, and enhanced C2 domain oligomerization was observed on vesicles ~50 nm in diameter. We demonstrated that the cPLA2α C2 domain localizes to cholesterol enriched Golgi-derived vesicles independently of cPLA2α catalytic activity. Moreover, we demonstrate the C2 domain selectively localizes to lipid droplets whereas the full-length enzyme to a much lesser extent. Our results therefore provide novel insight into the molecular forces that mediate C2 domain-dependent membrane localization in vitro and in cells.
Collapse
Affiliation(s)
- Katherine E. Ward
- Department of Chemistry and Biochemistry, University of Notre Dame, South Bend, IN 46556, USA; (K.E.W.); (J.P.R.)
| | - Ranjan Sengupta
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47906, USA; (R.S.); (S.A.)
| | - James P. Ropa
- Department of Chemistry and Biochemistry, University of Notre Dame, South Bend, IN 46556, USA; (K.E.W.); (J.P.R.)
| | - Souad Amiar
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47906, USA; (R.S.); (S.A.)
| | - Robert V. Stahelin
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47906, USA; (R.S.); (S.A.)
- Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
- Correspondence: ; Tel.: +01-765-494-4152
| |
Collapse
|
11
|
Fernandes ACS, Soares DC, Neves RFC, Koeller CM, Heise N, Adade CM, Frases S, Meyer-Fernandes JR, Saraiva EM, Souto-Padrón T. Endocytosis and Exocytosis in Leishmania amazonensis Are Modulated by Bromoenol Lactone. Front Cell Infect Microbiol 2020; 10:39. [PMID: 32117812 PMCID: PMC7020749 DOI: 10.3389/fcimb.2020.00039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 01/21/2020] [Indexed: 12/15/2022] Open
Abstract
In the protozoan pathogen Leishmania, endocytosis, and exocytosis occur mainly in the small area of the flagellar pocket membrane, which makes this parasite an interesting model of strikingly polarized internalization and secretion. Moreover, little is known about vesicle recognition and fusion mechanisms, which are essential for both endo/exocytosis in this parasite. In other cell types, vesicle fusion events require the activity of phospholipase A2 (PLA2), including Ca2+-independent iPLA2 and soluble, Ca2+-dependent sPLA2. Here, we studied the role of bromoenol lactone (BEL) inhibition of endo/exocytosis in promastigotes of Leishmania amazonensis. PLA2 activities were assayed in intact parasites, in whole conditioned media, and in soluble and extracellular vesicles (EVs) conditioned media fractions. BEL did not affect the viability of promastigotes, but reduced the differentiation into metacyclic forms. Intact parasites and EVs had BEL-sensitive iPLA2 activity. BEL treatment reduced total EVs secretion, as evidenced by reduced total protein concentration, as well as its size distribution and vesicles in the flagellar pocket of treated parasites as observed by TEM. Membrane proteins, such as acid phosphatases and GP63, became concentrated in the cytoplasm, mainly in multivesicular tubules of the endocytic pathway. BEL also prevented the endocytosis of BSA, transferrin and ConA, with the accumulation of these markers in the flagellar pocket. These results suggested that the activity inhibited by BEL, which is one of the irreversible inhibitors of iPLA2, is required for both endocytosis and exocytosis in promastigotes of L. amazonensis.
Collapse
Affiliation(s)
- Anne C S Fernandes
- Centro de Ciências da Saúde, Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Deivid C Soares
- Centro de Ciências da Saúde, Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Roberta F C Neves
- Centro de Ciências da Saúde, Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carolina M Koeller
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Norton Heise
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Camila M Adade
- Centro de Ciências da Saúde, Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Susana Frases
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - José R Meyer-Fernandes
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil.,Centro de Ciências da Saúde, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Elvira M Saraiva
- Centro de Ciências da Saúde, Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thaïs Souto-Padrón
- Centro de Ciências da Saúde, Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Hirano Y, Gao YG, Stephenson DJ, Vu NT, Malinina L, Simanshu DK, Chalfant CE, Patel DJ, Brown RE. Structural basis of phosphatidylcholine recognition by the C2-domain of cytosolic phospholipase A 2α. eLife 2019; 8:e44760. [PMID: 31050338 PMCID: PMC6550875 DOI: 10.7554/elife.44760] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 05/03/2019] [Indexed: 01/19/2023] Open
Abstract
Ca2+-stimulated translocation of cytosolic phospholipase A2α (cPLA2α) to the Golgi induces arachidonic acid production, the rate-limiting step in pro-inflammatory eicosanoid synthesis. Structural insights into the cPLA2α preference for phosphatidylcholine (PC)-enriched membranes have remained elusive. Here, we report the structure of the cPLA2α C2-domain (at 2.2 Å resolution), which contains bound 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) and Ca2+ ions. Two Ca2+ are complexed at previously reported locations in the lipid-free C2-domain. One of these Ca2+ions, along with a third Ca2+, bridges the C2-domain to the DHPC phosphate group, which also interacts with Asn65. Tyr96 plays a key role in lipid headgroup recognition via cation-π interaction with the PC trimethylammonium group. Mutagenesis analyses confirm that Tyr96 and Asn65 function in PC binding selectivity by the C2-domain and in the regulation of cPLA2α activity. The DHPC-binding mode of the cPLA2α C2-domain, which differs from phosphatidylserine or phosphatidylinositol 4,5-bisphosphate binding by other C2-domains, expands and deepens knowledge of the lipid-binding mechanisms mediated by C2-domains.
Collapse
Affiliation(s)
- Yoshinori Hirano
- Structural Biology ProgramMemorial Sloan-Kettering Cancer CenterNew YorkUnited States
- Graduate School of Biological SciencesNara Institute of Science and Technology (NAIST)TakayamaJapan
| | - Yong-Guang Gao
- Hormel InstituteUniversity of MinnesotaAustinUnited States
| | - Daniel J Stephenson
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University Medical CenterRichmondUnited States
- Department of Cell Biology, Microbiology and Molecular BiologyUniversity of South FloridaTampaUnited States
| | - Ngoc T Vu
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University Medical CenterRichmondUnited States
| | - Lucy Malinina
- Hormel InstituteUniversity of MinnesotaAustinUnited States
| | - Dhirendra K Simanshu
- Structural Biology ProgramMemorial Sloan-Kettering Cancer CenterNew YorkUnited States
| | - Charles E Chalfant
- Department of Cell Biology, Microbiology and Molecular BiologyUniversity of South FloridaTampaUnited States
- Research ServiceJames A. Haley Veterans HospitalTampaUnited States
- The Moffitt Cancer CenterTampaUnited States
| | - Dinshaw J Patel
- Structural Biology ProgramMemorial Sloan-Kettering Cancer CenterNew YorkUnited States
| | | |
Collapse
|
13
|
Cellular Protein Kinase D Modulators Play a Role during Multiple Steps of Herpes Simplex Virus 1 Egress. J Virol 2018; 92:JVI.01486-18. [PMID: 30232182 DOI: 10.1128/jvi.01486-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 09/14/2018] [Indexed: 12/12/2022] Open
Abstract
The assembly of new herpes simplex virus 1 (HSV-1) particles takes place in the nucleus. These particles then travel across the two nuclear membranes and acquire a final envelope from a cellular compartment. The contribution of the cell to the release of the virus is, however, little known. We previously demonstrated, using a synchronized infection, that the host protein kinase D and diacylglycerol, a lipid that recruits the kinase to the trans-Golgi network (TGN), promote the release of the virus from that compartment. Given the role this cellular protein plays in the herpes simplex virus 1 life cycle and the many molecules that modulate its activity, we aimed to determine to what extent this virus utilizes the protein kinase D pathway during a nonsynchronized infection. Several molecular protein kinase D (PKD) regulators were targeted by RNA interference and viral production monitored. Surprisingly, many of these modulators negatively impacted the extracellular release of the virus. Overexpression studies, the use of pharmacological reagents, and assays to monitor intracellular lipids implicated in the biology of PKD suggested that these effects were oddly independent of total intracellular diacylglycerol levels. Instead, mapping of the viral intermediates by electron microscopy suggested that some of these modulators could regulate distinct steps along the viral egress pathway, notably nuclear egress. Altogether, this suggests a more complex contribution of PKD to HSV-1 egress than originally anticipated and new research avenues to explore.IMPORTANCE Viruses are obligatory parasites that highjack numerous cellular functions. This is certainly true when it comes to transporting viral particles within the cell. Herpesviruses share the unique property of traveling through the two nuclear membranes by subsequent budding and fusion and acquiring their final envelope from a cellular organelle. Albeit disputed, the overall evidence from many laboratories points to the trans-Golgi network (TGN) as the source of that membrane. Moreover, past findings revealed that the host protein kinase D (PKD) plays an important role at that stage, which is significant given the known implication of that protein in vesicular transport. The present findings suggest that the PKD machinery not only affects the late stages of herpes simplex virus I egress but also modulates earlier steps, such as nuclear egress. This opens up new means to control these viruses.
Collapse
|
14
|
Boncompain G, Weigel AV. Transport and sorting in the Golgi complex: multiple mechanisms sort diverse cargo. Curr Opin Cell Biol 2018; 50:94-101. [DOI: 10.1016/j.ceb.2018.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 02/28/2018] [Accepted: 03/05/2018] [Indexed: 01/22/2023]
|
15
|
Kee AJ, Bryce NS, Yang L, Polishchuk E, Schevzov G, Weigert R, Polishchuk R, Gunning PW, Hardeman EC. ER/Golgi trafficking is facilitated by unbranched actin filaments containing Tpm4.2. Cytoskeleton (Hoboken) 2017; 74:379-389. [PMID: 28834398 DOI: 10.1002/cm.21405] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 07/31/2017] [Accepted: 08/16/2017] [Indexed: 01/14/2023]
Abstract
We have identified novel actin filaments defined by tropomyosin Tpm4.2 at the ER. EM analysis of mouse embryo fibroblasts (MEFs) isolated from mice expressing a mutant Tpm4.2 (Tpm4Plt53/Plt53 ), incapable of incorporating into actin filaments, revealed swollen ER structures compared with wild-type (WT) MEFs (Tpm4+/+ ). ER-to-Golgi, but not Golgi-to-ER trafficking was altered in the Tpm4Plt53/Plt53 MEFs following the transfection of the temperature sensitive ER-associated ts045-VSVg construct. Exogenous Tpm4.2 was able to rescue the ER-to-Golgi trafficking defect in the Tpm4Plt53/Plt53 cells. The treatment of WT MEFs with the myosin II inhibitor, blebbistatin, blocked the Tpm4.2-dependent ER-to-Golgi trafficking. The lack of an effect on ER-to-Golgi trafficking following treatment of MEFs with CK666 indicates that branched Arp2/3-containing actin filaments are not involved in anterograde vesicle trafficking. We propose that unbranched, Tpm4.2-containing filaments have an important role in maintaining ER/Golgi structure and that these structures, in conjunction with myosin II motors, mediate ER-to-Golgi trafficking.
Collapse
Affiliation(s)
- Anthony J Kee
- School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Nicole S Bryce
- School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Lingyan Yang
- School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Elena Polishchuk
- Telethon Institute of Genetics and Medicine, Naples 80131, Italy
| | - Galina Schevzov
- School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Roberto Weigert
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892
| | - Roman Polishchuk
- Telethon Institute of Genetics and Medicine, Naples 80131, Italy
| | - Peter W Gunning
- School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Edna C Hardeman
- School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| |
Collapse
|
16
|
Nishita M, Park SY, Nishio T, Kamizaki K, Wang Z, Tamada K, Takumi T, Hashimoto R, Otani H, Pazour GJ, Hsu VW, Minami Y. Ror2 signaling regulates Golgi structure and transport through IFT20 for tumor invasiveness. Sci Rep 2017; 7:1. [PMID: 28127051 PMCID: PMC5428335 DOI: 10.1038/s41598-016-0028-x] [Citation(s) in RCA: 8499] [Impact Index Per Article: 1062.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 11/11/2016] [Indexed: 02/06/2023] Open
Abstract
Signaling through the Ror2 receptor tyrosine kinase promotes invadopodia formation for tumor invasion. Here, we identify intraflagellar transport 20 (IFT20) as a new target of this signaling in tumors that lack primary cilia, and find that IFT20 mediates the ability of Ror2 signaling to induce the invasiveness of these tumors. We also find that IFT20 regulates the nucleation of Golgi-derived microtubules by affecting the GM130-AKAP450 complex, which promotes Golgi ribbon formation in achieving polarized secretion for cell migration and invasion. Furthermore, IFT20 promotes the efficiency of transport through the Golgi complex. These findings shed new insights into how Ror2 signaling promotes tumor invasiveness, and also advance the understanding of how Golgi structure and transport can be regulated.
Collapse
Affiliation(s)
- Michiru Nishita
- Division of Cell Physiology, Department of Physiology and Cell Biology, Kobe University, Graduate School of Medicine, Kobe, 650-0017, Japan.
| | - Seung-Yeol Park
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, and Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Tadashi Nishio
- Division of Cell Physiology, Department of Physiology and Cell Biology, Kobe University, Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Koki Kamizaki
- Division of Cell Physiology, Department of Physiology and Cell Biology, Kobe University, Graduate School of Medicine, Kobe, 650-0017, Japan
| | - ZhiChao Wang
- Division of Cell Physiology, Department of Physiology and Cell Biology, Kobe University, Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Kota Tamada
- RIKEN Brain Science Institute, Wako, 351-0198, Japan
| | - Toru Takumi
- RIKEN Brain Science Institute, Wako, 351-0198, Japan
| | - Ryuju Hashimoto
- Department of Developmental Biology, Faculty of Medicine, Shimane University, Izumo, 690-8504, Japan
| | - Hiroki Otani
- Department of Developmental Biology, Faculty of Medicine, Shimane University, Izumo, 690-8504, Japan
| | - Gregory J Pazour
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Victor W Hsu
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, and Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Yasuhiro Minami
- Division of Cell Physiology, Department of Physiology and Cell Biology, Kobe University, Graduate School of Medicine, Kobe, 650-0017, Japan.
| |
Collapse
|
17
|
Pagliuso A, Valente C, Giordano LL, Filograna A, Li G, Circolo D, Turacchio G, Marzullo VM, Mandrich L, Zhukovsky MA, Formiggini F, Polishchuk RS, Corda D, Luini A. Golgi membrane fission requires the CtBP1-S/BARS-induced activation of lysophosphatidic acid acyltransferase δ. Nat Commun 2016; 7:12148. [PMID: 27401954 PMCID: PMC4945875 DOI: 10.1038/ncomms12148] [Citation(s) in RCA: 214] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 06/03/2016] [Indexed: 11/25/2022] Open
Abstract
Membrane fission is an essential cellular process by which continuous membranes split into separate parts. We have previously identified CtBP1-S/BARS (BARS) as a key component of a protein complex that is required for fission of several endomembranes, including basolateral post-Golgi transport carriers. Assembly of this complex occurs at the Golgi apparatus, where BARS binds to the phosphoinositide kinase PI4KIIIβ through a 14-3-3γ dimer, as well as to ARF and the PKD and PAK kinases. We now report that, when incorporated into this complex, BARS binds to and activates a trans-Golgi lysophosphatidic acid (LPA) acyltransferase type δ (LPAATδ) that converts LPA into phosphatidic acid (PA); and that this reaction is essential for fission of the carriers. LPA and PA have unique biophysical properties, and their interconversion might facilitate the fission process either directly or indirectly (via recruitment of proteins that bind to PA, including BARS itself).
Collapse
Affiliation(s)
- Alessandro Pagliuso
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, Pozzuoli 80078, Italy
| | - Carmen Valente
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Lucia Laura Giordano
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Angela Filograna
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Guiling Li
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Diego Circolo
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Gabriele Turacchio
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Vincenzo Manuel Marzullo
- IRCCS SDN Istituto di Ricerca Diagnostica e Nucleare, Via Emanuele Gianturco 113, 80143 Naples, Italy
| | - Luigi Mandrich
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Mikhail A. Zhukovsky
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Fabio Formiggini
- Italian Institute of Technology, Centre for Advanced Biomaterials for Health Care at CRIB, Largo Barsanti e Matteucci 53, Naples 80125, Italy
| | - Roman S. Polishchuk
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, Pozzuoli 80078, Italy
| | - Daniela Corda
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Alberto Luini
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
- IRCCS SDN Istituto di Ricerca Diagnostica e Nucleare, Via Emanuele Gianturco 113, 80143 Naples, Italy
| |
Collapse
|
18
|
Mkhikian H, Mortales CL, Zhou RW, Khachikyan K, Wu G, Haslam SM, Kavarian P, Dell A, Demetriou M. Golgi self-correction generates bioequivalent glycans to preserve cellular homeostasis. eLife 2016; 5. [PMID: 27269286 PMCID: PMC4940165 DOI: 10.7554/elife.14814] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 06/07/2016] [Indexed: 11/30/2022] Open
Abstract
Essential biological systems employ self-correcting mechanisms to maintain cellular homeostasis. Mammalian cell function is dynamically regulated by the interaction of cell surface galectins with branched N-glycans. Here we report that N-glycan branching deficiency triggers the Golgi to generate bioequivalent N-glycans that preserve galectin-glycoprotein interactions and cellular homeostasis. Galectins bind N-acetyllactosamine (LacNAc) units within N-glycans initiated from UDP-GlcNAc by the medial-Golgi branching enzymes as well as the trans-Golgi poly-LacNAc extension enzyme β1,3-N-acetylglucosaminyltransferase (B3GNT). Marginally reducing LacNAc content by limiting N-glycans to three branches results in T-cell hyperactivity and autoimmunity; yet further restricting branching does not produce a more hyperactive state. Rather, new poly-LacNAc extension by B3GNT maintains galectin binding and immune homeostasis. Poly-LacNAc extension is triggered by redistribution of unused UDP-GlcNAc from the medial to trans-Golgi via inter-cisternal tubules. These data demonstrate the functional equivalency of structurally dissimilar N-glycans and suggest a self-correcting feature of the Golgi that sustains cellular homeostasis. DOI:http://dx.doi.org/10.7554/eLife.14814.001 Most proteins that are released from cells are modified with sugar molecules that allow the proteins to carry out their role properly. These modifications are called glycans, and are made from sugar subunits joined into chains or branched structures. Investigating how the structure of glycans is linked to their role is complicated by the fact that many different glycans exist, made up of different sugars and arranged into different structures. Enzymes located in cell compartments known as the endoplasmic reticulum and the Golgi help to build the glycans. For example, the MGAT family of enzymes found in the Golgi generates branched glycans made up of sugar subunits called N-acetyllactosamine (LacNAc). These glycans form part of a molecular mesh on the surface of cells that controls how certain proteins embedded in the cell membrane behave. This is particularly important in immune cells: reducing the number of branches in the glycans weakens the mesh and causes the cells and their membrane proteins to behave inappropriately. Mkhikian et al. have studied mice that lack specific MGAT enzymes, and so produce LacNAc glycans with drastically fewer branches than normal. Immune cells in these mice had glycans on their surface formed of LacNAc arranged in chains, rather than in short branched structures. These chains turned out to be biologically equivalent to branched LacNAc glycans, containing the same sugar subunits and allowing the immune cells to behave as normal. This suggests that the composition of glycans, rather than their structure, primarily determines their role. Mkhikian et al. also found that the organization of the enzymes inside the Golgi is likely to be responsible for producing these equivalent glycans. A glycan is built up as it passes through the Golgi, with the branching enzymes located earlier in the Golgi than the extending enzymes. Therefore, if the branching enzymes fail to add LacNAc subunits to the glycan, the extending enzymes can step in later to add the missing components. Overall, the results presented by Mkhikian et al. indicate that the large number of structurally diverse glycans may be reduced to a much smaller number of glycans with similar roles, based on subunit composition. This will simplify future studies on LacNAc glycans, and further work could focus on defining which other glycan structures share similar roles. DOI:http://dx.doi.org/10.7554/eLife.14814.002
Collapse
Affiliation(s)
- Haik Mkhikian
- Department of Microbiology and Molecular Genetics, University of California, Irvine, United States
| | - Christie-Lynn Mortales
- Department of Microbiology and Molecular Genetics, University of California, Irvine, United States
| | - Raymond W Zhou
- Department of Neurology and Institute for Immunology, University of California, Irvine, United States
| | - Khachik Khachikyan
- Department of Microbiology and Molecular Genetics, University of California, Irvine, United States
| | - Gang Wu
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Stuart M Haslam
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Patil Kavarian
- Department of Microbiology and Molecular Genetics, University of California, Irvine, United States
| | - Anne Dell
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Michael Demetriou
- Department of Microbiology and Molecular Genetics, University of California, Irvine, United States.,Department of Neurology and Institute for Immunology, University of California, Irvine, United States
| |
Collapse
|
19
|
Klokk TI, Kavaliauskiene S, Sandvig K. Cross-linking of glycosphingolipids at the plasma membrane: consequences for intracellular signaling and traffic. Cell Mol Life Sci 2016; 73:1301-16. [PMID: 26407609 PMCID: PMC11108300 DOI: 10.1007/s00018-015-2049-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 09/16/2015] [Accepted: 09/17/2015] [Indexed: 12/11/2022]
Abstract
Glycosphingolipids (GSLs) are predominantly found in the outer leaflet of the plasma membrane, where they play a role in important processes such as cell adhesion, migration and signaling. However, by which mechanisms GSLs regulate these processes remains elusive. In this study, we therefore took advantage of the fact that some GSLs also serve as receptors for certain protein toxins, which rely on receptor binding for internalization and intoxication. Here, we demonstrate that Shiga and cholera toxins, which both possess multivalent GSL-binding capacity, induce dissociation of the cytosolic cPLA2α-AnxA1 complex in HeLa and HMEC-1 cells. The dissociation is mediated through an increase in cytosolic calcium levels and activation of the tyrosine kinase Syk. Ricin, a protein toxin that does not cross-link surface molecules, has no effect on the same complex. Importantly, we find that antibody-mediated cross-linking of Gb3 and GM1, the GSL receptors for Shiga and cholera toxin, respectively, also induces dissociation. These data demonstrate that cross-linking of GSLs at the plasma membrane mediates the intracellular signaling events resulting in dissociation of the complex. After dissociation, cPLA2α and AnxA1 are translocated to intracellular membranes where they are known to function in regulating membrane transport processes. In conclusion, we have characterized a novel mechanism for cell surface-induced initiation of intracellular signaling and transport events.
Collapse
Affiliation(s)
- Tove Irene Klokk
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0379, Oslo, Norway.
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, 0316, Oslo, Norway.
| | - Simona Kavaliauskiene
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0379, Oslo, Norway
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, 0316, Oslo, Norway
- Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| | - Kirsten Sandvig
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0379, Oslo, Norway
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, 0316, Oslo, Norway
- Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| |
Collapse
|
20
|
Abstract
The Golgi complex is the Grand Central Station of intracellular membrane trafficking in the secretory and endocytic pathways. Anterograde and retrograde export of cargo from the Golgi complex involves a complex interplay between the formation of coated vesicles and membrane tubules, although much less is known about tubule-mediated trafficking. Recent advances using in vitro assays have identified several cytoplasmic phospholipase A2 (PLA2) enzymes that are required for the biogenesis of membrane tubules and their roles in the functional organization of the Golgi complex. In this chapter we describe methods for the cell-free reconstitution of PLA2-dependent Golgi membrane tubule formation. These methods should facilitate the identification of other proteins that regulate this process.
Collapse
|
21
|
Methods for analyzing the role of phospholipase A₂ enzymes in endosome membrane tubule formation. Methods Cell Biol 2015. [PMID: 26360034 DOI: 10.1016/bs.mcb.2015.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Cargo export from mammalian endosomal compartments often involves membrane tubules, into which soluble and membrane-bound cargos are segregated for subsequent intracellular transport. These membrane tubules are highly dynamic and their formation is mediated by a variety of endosome-associated proteins. However, little is known about how these membrane tubules are temporally or spatially regulated, so other tubule-associated proteins are likely to be discovered and analyzed. Therefore, methods to examine the biogenesis and regulation of endosome membrane tubules will prove to be valuable for cell biologists. In this chapter, we describe methods for studying this process using both cell-free, in vitro reconstitution assays, and in vivo image analysis tools.
Collapse
|
22
|
Park SY, Yang JS, Schmider AB, Soberman RJ, Hsu VW. Coordinated regulation of bidirectional COPI transport at the Golgi by CDC42. Nature 2015; 521:529-32. [PMID: 25945738 PMCID: PMC4449304 DOI: 10.1038/nature14457] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 04/10/2015] [Indexed: 01/15/2023]
Abstract
The Golgi complex plays a central role in the intracellular sorting of secretory proteins 1,2. Anterograde transport through the Golgi has been explained by the movement of Golgi cisternae, known as cisternal maturation 3–5. Because this explanation is now appreciated to be incomplete 6, interest has developed in understanding tubules that connect the Golgi cisternae 7–9. Here, we find that the Coat Protein I (COPI) complex sorts anterograde cargoes into these tubules. Moreover, the small GTPase cdc42 regulates bidirectional Golgi transport by targeting the dual functions of COPI in cargo sorting and carrier formation. Cdc42 also directly imparts membrane curvature in promoting COPI tubule formation. Our findings further reveal that COPI tubular transport complements cisternal maturation in explaining how anterograde Golgi transport is achieved, and that bidirectional COPI transport is modulated by environmental cues through cdc42.
Collapse
Affiliation(s)
- Seung-Yeol Park
- 1] Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA [2] Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Jia-Shu Yang
- 1] Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA [2] Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Angela B Schmider
- 1] Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA [2] Nephrology Division and Department of Medicine, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA
| | - Roy J Soberman
- 1] Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA [2] Nephrology Division and Department of Medicine, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA [3] Molecular Imaging Core, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA
| | - Victor W Hsu
- 1] Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA [2] Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
23
|
Guijas C, Rodríguez JP, Rubio JM, Balboa MA, Balsinde J. Phospholipase A2 regulation of lipid droplet formation. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1841:1661-71. [PMID: 25450448 DOI: 10.1016/j.bbalip.2014.10.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/02/2014] [Accepted: 10/14/2014] [Indexed: 02/07/2023]
Abstract
The classical regard of lipid droplets as mere static energy-storage organelles has evolved dramatically. Nowadays these organelles are known to participate in key processes of cell homeostasis, and their abnormal regulation is linked to several disorders including metabolic diseases (diabetes, obesity, atherosclerosis or hepatic steatosis), inflammatory responses in leukocytes, cancer development and neurodegenerative diseases. Hence, the importance of unraveling the cell mechanisms controlling lipid droplet biosynthesis, homeostasis and degradation seems evident Phospholipase A2s, a family of enzymes whose common feature is to hydrolyze the fatty acid present at the sn-2 position of phospholipids, play pivotal roles in cell signaling and inflammation. These enzymes have recently emerged as key regulators of lipid droplet homeostasis, regulating their formation at different levels. This review summarizes recent results on the roles that various phospholipase A2 forms play in the regulation of lipid droplet biogenesis under different conditions. These roles expand the already wide range of functions that these enzymes play in cell physiology and pathophysiology.
Collapse
|
24
|
Leslie CC. Cytosolic phospholipase A₂: physiological function and role in disease. J Lipid Res 2015; 56:1386-402. [PMID: 25838312 DOI: 10.1194/jlr.r057588] [Citation(s) in RCA: 280] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Indexed: 02/06/2023] Open
Abstract
The group IV phospholipase A2 (PLA2) family is comprised of six intracellular enzymes (GIVA, -B, -C, -D, -E, and -F) commonly referred to as cytosolic PLA2 (cPLA2)α, -β, -γ, -δ, -ε, and -ζ. They contain a Ser-Asp catalytic dyad and all except cPLA2γ have a C2 domain, but differences in their catalytic activities and subcellular localization suggest unique regulation and function. With the exception of cPLA2α, the focus of this review, little is known about the in vivo function of group IV enzymes. cPLA2α catalyzes the hydrolysis of phospholipids to arachidonic acid and lysophospholipids that are precursors of numerous bioactive lipids. The regulation of cPLA2α is complex, involving transcriptional and posttranslational processes, particularly increases in calcium and phosphorylation. cPLA2α is a highly conserved widely expressed enzyme that promotes lipid mediator production in human and rodent cells from a variety of tissues. The diverse bioactive lipids produced as a result of cPLA2α activation regulate normal physiological processes and disease pathogenesis in many organ systems, as shown using cPLA2α KO mice. However, humans recently identified with cPLA2α deficiency exhibit more pronounced effects on health than observed in mice lacking cPLA2α, indicating that much remains to be learned about this interesting enzyme.
Collapse
Affiliation(s)
- Christina C Leslie
- Department of Pediatrics, National Jewish Health, Denver, CO 80206; and Departments of Pathology and Pharmacology, University of Colorado Denver, Aurora, CO 80045
| |
Collapse
|
25
|
Ohshima N, Kudo T, Yamashita Y, Mariggiò S, Araki M, Honda A, Nagano T, Isaji C, Kato N, Corda D, Izumi T, Yanaka N. New members of the mammalian glycerophosphodiester phosphodiesterase family: GDE4 and GDE7 produce lysophosphatidic acid by lysophospholipase D activity. J Biol Chem 2014; 290:4260-71. [PMID: 25528375 DOI: 10.1074/jbc.m114.614537] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The known mammalian glycerophosphodiester phosphodiesterases (GP-PDEs) hydrolyze glycerophosphodiesters. In this study, two novel members of the mammalian GP-PDE family, GDE4 and GDE7, were isolated, and the molecular basis of mammalian GP-PDEs was further explored. The GDE4 and GDE7 sequences are highly homologous and evolutionarily close. GDE4 is expressed in intestinal epithelial cells, spermatids, and macrophages, whereas GDE7 is particularly expressed in gastro-esophageal epithelial cells. Unlike other mammalian GP-PDEs, GDE4 and GDE7 cannot hydrolyze either glycerophosphoinositol or glycerophosphocholine. Unexpectedly, both GDE4 and GDE7 show a lysophospholipase D activity toward lysophosphatidylcholine (lyso-PC). We purified the recombinant GDE4 and GDE7 proteins and show that these enzymes can hydrolyze lyso-PC to produce lysophosphatidic acid (LPA). Further characterization of purified recombinant GDE4 showed that it can also convert lyso-platelet-activating factor (1-O-alkyl-sn-glycero-3-phosphocholine; lyso-PAF) to alkyl-LPA. These data contribute to our current understanding of mammalian GP-PDEs and of their physiological roles via the control of lyso-PC and lyso-PAF metabolism in gastrointestinal epithelial cells and macrophages.
Collapse
Affiliation(s)
- Noriyasu Ohshima
- From the Department of Biochemistry, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Takahiro Kudo
- the Department of Molecular and Applied Bioscience, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima City 739-8511, Japan, and
| | - Yosuke Yamashita
- the Department of Molecular and Applied Bioscience, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima City 739-8511, Japan, and
| | - Stefania Mariggiò
- the Institute of Protein Biochemistry, National Research Council, 80131 Naples, Italy
| | - Mari Araki
- From the Department of Biochemistry, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Ayako Honda
- the Department of Molecular and Applied Bioscience, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima City 739-8511, Japan, and
| | - Tomomi Nagano
- the Department of Molecular and Applied Bioscience, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima City 739-8511, Japan, and
| | - Chiaki Isaji
- From the Department of Biochemistry, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Norihisa Kato
- the Department of Molecular and Applied Bioscience, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima City 739-8511, Japan, and
| | - Daniela Corda
- the Institute of Protein Biochemistry, National Research Council, 80131 Naples, Italy
| | - Takashi Izumi
- From the Department of Biochemistry, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Noriyuki Yanaka
- the Department of Molecular and Applied Bioscience, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima City 739-8511, Japan, and
| |
Collapse
|
26
|
Abstract
Proteins synthesised at the endoplasmic reticulum (ER) have to undergo a number of consecutive and coordinated steps to reach the Golgi complex. To understand the dynamic complexity of ER-to-Golgi transport at the structural and molecular level, light microscopy approaches are fundamental tools that allow in vivo observations of protein dynamics and interactions of fluorescent proteins in living cells. Imaging protein and organelle dynamics close to the ultra-structural level became possible by combining light microscopy with electron microscopy analyses or super-resolution light microscopy methods. Besides, increasing evidence suggests that the early secretory pathway is tightly connected to other cellular processes, such as signal transduction, and quantitative information at the systems level is fundamental to achieve a comprehensive molecular understanding of these connections. High-throughput microscopy in fixed and living cells in combination with systematic perturbation of gene expression by, e.g. RNA interference, will open new avenues to gain such an understanding of the early secretory pathway at the systems level. In this Commentary, we first outline examples that revealed the dynamic organisation of ER-to-Golgi transport in living cells. Next, we discuss the use of advanced imaging methods in studying ER-to-Golgi transport and, finally, delineate the efforts in understanding ER-to-Golgi transport at the systems level.
Collapse
Affiliation(s)
- Fatima Verissimo
- European Molecular Biology Laboratory, Cell Biology and Cell Biophysics Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | | |
Collapse
|
27
|
Beznoussenko GV, Parashuraman S, Rizzo R, Polishchuk R, Martella O, Di Giandomenico D, Fusella A, Spaar A, Sallese M, Capestrano MG, Pavelka M, Vos MR, Rikers YGM, Helms V, Mironov AA, Luini A. Transport of soluble proteins through the Golgi occurs by diffusion via continuities across cisternae. eLife 2014; 3:e02009. [PMID: 24867214 PMCID: PMC4070021 DOI: 10.7554/elife.02009] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 05/25/2014] [Indexed: 12/18/2022] Open
Abstract
The mechanism of transport through the Golgi complex is not completely understood, insofar as no single transport mechanism appears to account for all of the observations. Here, we compare the transport of soluble secretory proteins (albumin and α1-antitrypsin) with that of supramolecular cargoes (e.g., procollagen) that are proposed to traverse the Golgi by compartment progression-maturation. We show that these soluble proteins traverse the Golgi much faster than procollagen while moving through the same stack. Moreover, we present kinetic and morphological observations that indicate that albumin transport occurs by diffusion via intercisternal continuities. These data provide evidence for a transport mechanism that applies to a major class of secretory proteins and indicate the co-existence of multiple intra-Golgi trafficking modes.
Collapse
Affiliation(s)
- Galina V Beznoussenko
- Fondazione IFOM, Istituto FIRC di Oncologia Molecolare (IFOM-IEO Campus), Milan, Italy
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro, Italy
| | - Seetharaman Parashuraman
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro, Italy
- Institute of Protein Biochemistry, Consiglio Nazionale Delle Ricerche (CNR-IBP), Naples, Italy
| | - Riccardo Rizzo
- Institute of Protein Biochemistry, Consiglio Nazionale Delle Ricerche (CNR-IBP), Naples, Italy
| | - Roman Polishchuk
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro, Italy
- Telethon Institute for Genetics and Medicine (TIGEM), Naples, Italy
| | - Oliviano Martella
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro, Italy
| | - Daniele Di Giandomenico
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro, Italy
| | - Aurora Fusella
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro, Italy
| | - Alexander Spaar
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro, Italy
| | - Michele Sallese
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro, Italy
| | - Maria Grazia Capestrano
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro, Italy
| | - Margit Pavelka
- Department of Cell Biology and Ultrastructure Research, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | | | | | - Volkhard Helms
- Center for Bioinformatics, Saarland University, Saarbruecken, Germany
| | - Alexandre A Mironov
- Fondazione IFOM, Istituto FIRC di Oncologia Molecolare (IFOM-IEO Campus), Milan, Italy
| | - Alberto Luini
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro, Italy
- Institute of Protein Biochemistry, Consiglio Nazionale Delle Ricerche (CNR-IBP), Naples, Italy
- Telethon Institute for Genetics and Medicine (TIGEM), Naples, Italy
| |
Collapse
|
28
|
Papanikou E, Glick BS. Golgi compartmentation and identity. Curr Opin Cell Biol 2014; 29:74-81. [PMID: 24840895 DOI: 10.1016/j.ceb.2014.04.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 04/07/2014] [Accepted: 04/24/2014] [Indexed: 10/25/2022]
Abstract
Recent work supports the idea that cisternae of the Golgi apparatus can be assigned to three classes, which correspond to discrete stages of cisternal maturation. Each stage has a unique pattern of membrane traffic. At the first stage, cisternae form in association with the ER at multifunctional membrane assembly stations. At the second stage, cisternae synthesize carbohydrates while exchanging material via COPI vesicles. At the third stage, cisternae of the trans-Golgi network segregate into domains and produce transport carriers with the aid of specific lipids and the actin cytoskeleton. These processes are coordinated by cascades of Rab and Arf/Arl GTPases.
Collapse
Affiliation(s)
- Effrosyni Papanikou
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, IL 60637, United States
| | - Benjamin S Glick
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, IL 60637, United States.
| |
Collapse
|
29
|
Rocha S, De Keersmaecker H, Hutchison JA, Vanhoorelbeke K, Martens JA, Hofkens J, Uji-i H. Membrane remodeling processes induced by phospholipase action. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:4743-4751. [PMID: 24694028 DOI: 10.1021/la500121f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Important cellular events such as division require drastic changes in the shape of the membrane. These remodeling processes can be triggered by the binding of specific proteins or by changes in membrane composition and are linked to phospholipid metabolism for which dedicated enzymes, named phospholipases, are responsible. Here wide-field fluorescence microscopy is used to visualize shape changes induced by the action of phospholipase A1 on dye-labeled supported membranes of POPC (1-palmitoyl-2-oleoly-sn-glycero-3-phosphocholine). Time-lapse imaging demonstrates that layers either shrink and disappear or fold and collapse into vesicles. These vesicles can undergo further transformations such as budding, tubulation, and pearling within 5 min of formation. Using dye-labeled phospholipases, we can monitor the presence of the enzyme at specific positions on the membrane as the shape transformations occur. Furthermore, incorporating the products of hydrolysis into POPC membranes is shown to induce transformations similar to those observed for enzyme action. The results suggest that phospholipase-mediated hydrolysis plays an important role in membrane transformations by altering the membrane composition, and a model is proposed for membrane curvature based on the presence and shape of hydrolysis products.
Collapse
Affiliation(s)
- Susana Rocha
- Molecular Imaging and Photonics, Faculty of Science and ‡Centre for Surface Chemistry and Catalysis, Faculty of Bioscience Engineering, KU Leuven , Belgium
| | | | | | | | | | | | | |
Collapse
|
30
|
Capestrano M, Mariggio S, Perinetti G, Egorova AV, Iacobacci S, Santoro M, Di Pentima A, Iurisci C, Egorov MV, Di Tullio G, Buccione R, Luini A, Polishchuk RS. Cytosolic phospholipase A₂ε drives recycling through the clathrin-independent endocytic route. J Cell Sci 2014; 127:977-93. [PMID: 24413173 DOI: 10.1242/jcs.136598] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Previous studies have demonstrated that membrane tubule-mediated transport events in biosynthetic and endocytic routes require phospholipase A2 (PLA2) activity. Here, we show that cytosolic phospholipase A2ε (cPLA2ε, also known as PLA2G4E) is targeted to the membrane compartments of the clathrin-independent endocytic route through a C-terminal stretch of positively charged amino acids, which allows the enzyme to interact with phosphoinositide lipids [especially PI(4,5)P2] that are enriched in clathrin-independent endosomes. Ablation of cPLA2ε suppressed the formation of tubular elements that carry internalized clathrin-independent cargoes, such as MHC-I, CD147 and CD55, back to the cell surface and, therefore, caused their intracellular retention. The ability of cPLA2ε to support recycling through tubule formation relies on the catalytic activity of the enzyme, because the inactive cPLA2ε(S420A) mutant was not able to recover either tubule growth or transport from clathrin-independent endosomes. Taken together, our findings indicate that cPLA2ε is a new important regulator of trafficking processes within the clathrin-independent endocytic and recycling route. The affinity of cPLA2ε for this pathway supports a new hypothesis that different PLA2 enzymes use selective targeting mechanisms to regulate tubule formation locally during specific trafficking steps in the secretory and/or endocytic systems.
Collapse
|
31
|
Abstract
Heterotrimeric G proteins transduce the ligand binding of transmembrane G protein coupled receptors into a variety of intracellular signaling pathways. Recently, heterotrimeric Gβγ subunit signaling at the Golgi complex has been shown to regulate the formation of vesicular transport carriers that deliver cargo from the Golgi to the plasma membrane. In addition to vesicles, membrane tubules have also been shown to mediate export from the Golgi complex, which requires the activity of cytoplasmic phospholipase A2 (PLA2) enzyme activity. Through the use of an in vitro reconstitution assay with isolated Golgi complexes, we provide evidence that Gβ1γ2 signaling also stimulates Golgi membrane tubule formation. In addition, we show that an inhibitor of Gβγ activation of PLA2 enzymes inhibits in vitro Golgi membrane tubule formation. Additionally, purified Gβγ protein stimulates membrane tubules in the presence of low (sub-threshold) cytosol concentrations. Importantly, this Gβγ stimulation of Golgi membrane tubule formation was inhibited by treatment with the PLA2 antagonist ONO-RS-082. These studies indicate that Gβ1γ2 signaling activates PLA2 enzymes required for Golgi membrane tubule formation, thus establishing a new layer of regulation for this process.
Collapse
Affiliation(s)
- Marie E Bechler
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - William J Brown
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
32
|
Gil-de-Gómez L, Astudillo AM, Guijas C, Magrioti V, Kokotos G, Balboa MA, Balsinde J. Cytosolic group IVA and calcium-independent group VIA phospholipase A2s act on distinct phospholipid pools in zymosan-stimulated mouse peritoneal macrophages. THE JOURNAL OF IMMUNOLOGY 2013; 192:752-62. [PMID: 24337743 DOI: 10.4049/jimmunol.1302267] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Phospholipase A2s generate lipid mediators that constitute an important component of the integrated response of macrophages to stimuli of the innate immune response. Because these cells contain multiple phospholipase A2 forms, the challenge is to elucidate the roles that each of these forms plays in regulating normal cellular processes and in disease pathogenesis. A major issue is to precisely determine the phospholipid substrates that these enzymes use for generating lipid mediators. There is compelling evidence that group IVA cytosolic phospholipase A2 (cPLA2α) targets arachidonic acid-containing phospholipids but the role of the other cytosolic enzyme present in macrophages, the Ca(2+)-independent group VIA phospholipase A2 (iPLA2β) has not been clearly defined. We applied mass spectrometry-based lipid profiling to study the substrate specificities of these two enzymes during inflammatory activation of macrophages with zymosan. Using selective inhibitors, we find that, contrary to cPLA2α, iPLA2β spares arachidonate-containing phospholipids and hydrolyzes only those that do not contain arachidonate. Analyses of the lysophospholipids generated during activation reveal that one of the major species produced, palmitoyl-glycerophosphocholine, is generated by iPLA2β, with minimal or no involvement of cPLA2α. The other major species produced, stearoyl-glycerophosphocholine, is generated primarily by cPLA2α. Collectively, these findings suggest that cPLA2α and iPLA2β act on different phospholipids during zymosan stimulation of macrophages and that iPLA2β shows a hitherto unrecognized preference for choline phospholipids containing palmitic acid at the sn-1 position that could be exploited for the design of selective inhibitors of this enzyme with therapeutic potential.
Collapse
Affiliation(s)
- Luis Gil-de-Gómez
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, 47003 Valladolid, Spain
| | | | | | | | | | | | | |
Collapse
|
33
|
He S, Ni D, Ma B, Lee JH, Zhang T, Ghozalli I, Pirooz SD, Zhao Z, Bharatham N, Li B, Oh S, Lee WH, Takahashi Y, Wang HG, Minassian A, Feng P, Deretic V, Pepperkok R, Tagaya M, Yoon HS, Liang C. PtdIns(3)P-bound UVRAG coordinates Golgi-ER retrograde and Atg9 transport by differential interactions with the ER tether and the beclin 1 complex. Nat Cell Biol 2013; 15:1206-1219. [PMID: 24056303 PMCID: PMC3805255 DOI: 10.1038/ncb2848] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 08/21/2013] [Indexed: 12/14/2022]
Abstract
Endoplasmic reticulum (ER)-Golgi membrane transport and autophagy are intersecting trafficking pathways that are tightly regulated and crucial for homeostasis, development and disease. Here, we identify UVRAG, a beclin-1-binding autophagic factor, as a phosphatidylinositol-3-phosphate (PtdIns(3)P)-binding protein that depends on PtdIns(3)P for its ER localization. We further show that UVRAG interacts with RINT-1, and acts as an integral component of the RINT-1-containing ER tethering complex, which couples phosphoinositide metabolism to COPI-vesicle tethering. Displacement or knockdown of UVRAG profoundly disrupted COPI cargo transfer to the ER and Golgi integrity. Intriguingly, autophagy caused the dissociation of UVRAG from the ER tether, which in turn worked in concert with the Bif-1-beclin-1-PI(3)KC3 complex to mobilize Atg9 translocation for autophagosome formation. These findings identify a regulatory mechanism that coordinates Golgi-ER retrograde and autophagy-related vesicular trafficking events through physical and functional interactions between UVRAG, phosphoinositide and their regulatory factors, thereby ensuring spatiotemporal fidelity of membrane trafficking and maintenance of organelle homeostasis.
Collapse
Affiliation(s)
- Shanshan He
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA
| | - Duojiao Ni
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA
| | - Binyun Ma
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA
| | - Joo-Hyung Lee
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA
| | - Tian Zhang
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA
| | - Irene Ghozalli
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA
| | - Sara Dolatshahi Pirooz
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA
| | - Zhen Zhao
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA
| | - Nagakumar Bharatham
- Division of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Baihong Li
- Division of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Soohwan Oh
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA
| | - Wen-Hwa Lee
- Department of Biological Chemistry, University of California, Irvine, Irvine, California 92697
| | - Yoshinori Takahashi
- Department of Pharmacology and Penn State Hershey Cancer Institute; The Pennsylvania State University College of Medicine; Hershey, PA USA
| | - Hong-Gang Wang
- Department of Pharmacology and Penn State Hershey Cancer Institute; The Pennsylvania State University College of Medicine; Hershey, PA USA
| | - Arlet Minassian
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA
| | - Pinghui Feng
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA
| | - Vojo Deretic
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131
| | - Rainer Pepperkok
- European Molecular Biology Laboratory, Heidelberg, Cell Biology/Cell Biophysics Unit, Meyerhofstr. 1, D-69117 Heidelberg Germany
| | - Mitsuo Tagaya
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0393, Japan
| | - Ho Sup Yoon
- Division of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University, Singapore 637551
- Department of Genetic Engineering, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do, 446-701, Republic of Korea
| | - Chengyu Liang
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
34
|
D’Angelo G, Uemura T, Chuang CC, Polishchuk E, Santoro M, Ohvo-Rekilä H, Sato T, Di Tullio G, Varriale A, D’Auria S, Daniele T, Capuani F, Johannes L, Mattjus P, Monti M, Pucci P, Williams RL, Burke JE, Platt FM, Harada A, De Matteis MA. Vesicular and non-vesicular transport feed distinct glycosylation pathways in the Golgi. Nature 2013; 501:116-20. [DOI: 10.1038/nature12423] [Citation(s) in RCA: 289] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 06/25/2013] [Indexed: 11/09/2022]
|
35
|
Martínez-Alonso E, Tomás M, Martínez-Menárguez JA. Golgi tubules: their structure, formation and role in intra-Golgi transport. Histochem Cell Biol 2013; 140:327-39. [PMID: 23812035 DOI: 10.1007/s00418-013-1114-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2013] [Indexed: 11/28/2022]
Abstract
Tubules are common Golgi elements that can form extensive networks associated with the cis-, lateral and trans-Golgi sides, but despite this, they have almost been forgotten for decades. The molecular mechanisms involved in their formation, elongation and fission are only just beginning to be understood. However, the role of these membranes is not well understood. In the present review, we analyze the mechanisms that induce Golgi tubulation or, conversely, disrupt tubules in order to throw some lights on the nature of these elements. The putative role of these elements in the framework of current models for intra-Golgi transport is also discussed.
Collapse
Affiliation(s)
- Emma Martínez-Alonso
- Department of Cell Biology and Histology, Medical School, University of Murcia, 30100 Murcia, Spain
| | | | | |
Collapse
|
36
|
Lagace TA, Ridgway ND. The role of phospholipids in the biological activity and structure of the endoplasmic reticulum. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2499-510. [PMID: 23711956 DOI: 10.1016/j.bbamcr.2013.05.018] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 05/09/2013] [Accepted: 05/15/2013] [Indexed: 01/22/2023]
Abstract
The endoplasmic reticulum (ER) is an interconnected network of tubular and planar membranes that supports the synthesis and export of proteins, carbohydrates and lipids. Phospholipids, in particular phosphatidylcholine (PC), are synthesized in the ER where they have essential functions including provision of membranes required for protein synthesis and export, cholesterol homeostasis, and triacylglycerol storage and secretion. Coordination of these biological processes is essential, as highlighted by findings that link phospholipid metabolism in the ER with perturbations in lipid storage/secretion and stress responses, ultimately contributing to obesity/diabetes, atherosclerosis and neurological disorders. Phospholipid synthesis is not uniformly distributed in the ER but is localized at membrane interfaces or contact zones with other organelles, and in dynamic, proliferating ER membranes. The topology of phospholipid synthesis is an important consideration when establishing the etiology of diseases that arise from ER dysfunction. This review will highlight our current understanding of the contribution of phospholipid synthesis to proper ER function, and how alterations contribute to aberrant stress responses and disease. This article is part of a Special Issue entitled: Functional and structural diversity of endoplasmic reticulum.
Collapse
Affiliation(s)
- Thomas A Lagace
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada.
| | | |
Collapse
|
37
|
Gutiérrez-Martínez E, Fernández-Ulibarri I, Lázaro-Diéguez F, Johannes L, Pyne S, Sarri E, Egea G. Lipid phosphate phosphatase 3 participates in transport carrier formation and protein trafficking in the early secretory pathway. J Cell Sci 2013; 126:2641-55. [PMID: 23591818 DOI: 10.1242/jcs.117705] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The inhibition of phosphatidic acid phosphatase (PAP) activity by propanolol indicates that diacylglycerol (DAG) is required for the formation of transport carriers at the Golgi and for retrograde trafficking to the ER. Here we report that the PAP2 family member lipid phosphate phosphatase 3 (LPP3, also known as PAP2b) localizes in compartments of the secretory pathway from ER export sites to the Golgi complex. The depletion of human LPP3: (i) reduces the number of tubules generated from the ER-Golgi intermediate compartment and the Golgi, with those formed from the Golgi being longer in LPP3-silenced cells than in control cells; (ii) impairs the Rab6-dependent retrograde transport of Shiga toxin subunit B from the Golgi to the ER, but not the anterograde transport of VSV-G or ssDsRed; and (iii) induces a high accumulation of Golgi-associated membrane buds. LPP3 depletion also reduces levels of de novo synthesized DAG and the Golgi-associated DAG contents. Remarkably, overexpression of a catalytically inactive form of LPP3 mimics the effects of LPP3 knockdown on Rab6-dependent retrograde transport. We conclude that LPP3 participates in the formation of retrograde transport carriers at the ER-Golgi interface, where it transitorily cycles, and during its route to the plasma membrane.
Collapse
Affiliation(s)
- Enric Gutiérrez-Martínez
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
The Golgi complex is considered the central station of the secretory pathway where cargo proteins and lipids are properly modified, classified, packed into specific carriers and delivered to their final destinations. Early electron microscope studies showed the extraordinary structural complexity of this organelle. However, despite the large volume of incoming and outgoing traffic, it is able to maintain its architecture, although it is also flexible enough to adapt to the functional status of the cell. Many components of the molecular machinery involved in membrane traffic and other Golgi functions have been identified. However, some basic aspects of Golgi functioning remain unsolved. For instance, how cargo moves through the stack remains controversial and two classical models have been proposed: vesicular transport and cisternal maturation. Since neither of these models explains all the experimental data, a combination of these models as well as new models have been proposed. In this context, the specific role of the cisternae, vesicles and tubules needs to be clarified. In this review, we summarize our current knowledge of the Golgi organization and function, focusing on the mechanisms of intra-Golgi transport.
Collapse
|
39
|
Martínez-Alonso E, Tomás M, Martínez-Menárguez JA. Morpho-functional architecture of the Golgi complex of neuroendocrine cells. Front Endocrinol (Lausanne) 2013; 4:41. [PMID: 23543640 PMCID: PMC3610015 DOI: 10.3389/fendo.2013.00041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 03/14/2013] [Indexed: 12/22/2022] Open
Abstract
In neuroendocrine cells, prohormones move from the endoplasmic reticulum to the Golgi complex (GC), where they are sorted and packed into secretory granules. The GC is considered the central station of the secretory pathway of proteins and lipids en route to their final destination. In most mammalian cells, it is formed by several stacks of cisternae connected by tubules, forming a continuous ribbon. This organelle shows an extraordinary structural and functional complexity, which is exacerbated by the fact that its architecture is cell type specific and also tuned by the functional status of the cell. It is, indeed, one the most beautiful cellular organelles and, for that reason, perhaps the most extensively photographed by electron microscopists. In recent decades, an exhaustive dissection of the molecular machinery involved in membrane traffic and other Golgi functions has been carried out. Concomitantly, detailed morphological studies have been performed, including 3D analysis by electron tomography, and the precise location of key proteins has been identified by immunoelectron microscopy. Despite all this effort, some basic aspects of Golgi functioning remain unsolved. For instance, the mode of intra-Golgi transport is not known, and two opposing theories (vesicular transport and cisternal maturation models) have polarized the field for many years. Neither of these theories explains all the experimental data so that new theories and combinations thereof have recently been proposed. Moreover, the specific role of the small vesicles and tubules which surround the stacks needs to be clarified. In this review, we summarize our current knowledge of the Golgi architecture in relation with its function and the mechanisms of intra-Golgi transport. Within the same framework, the characteristics of the GC of neuroendocrine cells are analyzed.
Collapse
Affiliation(s)
- Emma Martínez-Alonso
- Department of Cell Biology and Histology, Medical School, University of MurciaMurcia, Spain
| | - Mónica Tomás
- Department of Human Anatomy and Embryology, Medical School, Valencia UniversityValencia, Spain
| | - José A. Martínez-Menárguez
- Department of Cell Biology and Histology, Medical School, University of MurciaMurcia, Spain
- *Correspondence: José A. Martínez-Menárguez, Department of Cell Biology and Histology, Medical School, University of Murcia, 30100 Murcia, Spain. e-mail:
| |
Collapse
|
40
|
Bechler ME, Brown WJ. PAFAH Ib phospholipase A2 subunits have distinct roles in maintaining Golgi structure and function. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:595-601. [PMID: 23262398 DOI: 10.1016/j.bbalip.2012.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 12/06/2012] [Accepted: 12/07/2012] [Indexed: 12/27/2022]
Abstract
Recent studies showed that the phospholipase subunits of Platelet Activating Factor Acetylhydrolase (PAFAH) Ib, α1 and α2 partially localize to the Golgi complex and regulate its structure and function. Using siRNA knockdown of individual subunits, we find that α1 and α2 perform overlapping and unique roles in regulating Golgi morphology, assembly, and secretory cargo trafficking. Knockdown of either α1 or α2 reduced secretion of soluble proteins, but neither single knockdown reduced secretion to the same degree as knockdown of both. Knockdown of α1 or α2 inhibited reassembly of an intact Golgi complex to the same extent as knockdown of both. Transport of VSV-G was slowed but at different steps in the secretory pathway: reduction of α1 slowed trans Golgi network to plasma membrane transport, whereas α2 loss reduced endoplasmic reticulum to Golgi trafficking. Similarly, knockdown of either subunit alone disrupted the Golgi complex but with markedly different morphologies. Finally, knockdown of α1, or double knockdown of α1 and α2, resulted in a significant redistribution of kinase dead protein kinase D from the Golgi to the plasma membrane, whereas loss of α2 alone had no such effect. These studies reveal an unexpected complexity in the regulation of Golgi structure and function by PAFAH Ib. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism.
Collapse
Affiliation(s)
- Marie E Bechler
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
41
|
Morrison K, Witte K, Mayers JR, Schuh AL, Audhya A. Roles of acidic phospholipids and nucleotides in regulating membrane binding and activity of a calcium-independent phospholipase A2 isoform. J Biol Chem 2012; 287:38824-34. [PMID: 23007400 DOI: 10.1074/jbc.m112.391508] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Phospholipase A(2) activity plays key roles in generating lipid second messengers and regulates membrane topology through the generation of asymmetric lysophospholipids. In particular, the Group VIA phospholipase A(2) (GVIA-iPLA(2)) subfamily of enzymes functions independently of calcium within the cytoplasm of cells and has been implicated in numerous cellular processes, including proliferation, apoptosis, and membrane transport steps. However, mechanisms underlying the spatial and temporal regulation of these enzymes have remained mostly unexplored. Here, we examine the subset of Caenorhabditis elegans lipases that harbor a consensus motif common to members of the GVIA-iPLA(2) subfamily. Based on sequence homology, we identify IPLA-1 as the closest C. elegans homolog of human GVIA-iPLA(2) enzymes and use a combination of liposome interaction studies to demonstrate a role for acidic phospholipids in regulating GVIA-iPLA(2) function. Our studies indicate that IPLA-1 binds directly to multiple acidic phospholipids, including phosphatidylserine, phosphatidylglycerol, cardiolipin, phosphatidic acid, and phosphorylated derivatives of phosphatidylinositol. Moreover, the presence of these acidic lipids dramatically elevates the specific activity of IPLA-1 in vitro. We also found that the addition of ATP and ADP promote oligomerization of IPLA-1, which probably underlies the stimulatory effect of nucleotides on its activity. We propose that membrane composition and the presence of nucleotides play key roles in recruiting and modulating GVIA-iPLA(2) activity in cells.
Collapse
Affiliation(s)
- Kylee Morrison
- Department of Biomolecular Chemistry, University of Wisconsin-Madison Medical School, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
42
|
Ward KE, Ropa JP, Adu-Gyamfi E, Stahelin RV. C2 domain membrane penetration by group IVA cytosolic phospholipase A₂ induces membrane curvature changes. J Lipid Res 2012; 53:2656-66. [PMID: 22991194 DOI: 10.1194/jlr.m030718] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Group IVA cytosolic phospholipase A(2) (cPLA(2)α) is an 85 kDa enzyme that regulates the release of arachidonic acid (AA) from the sn-2 position of membrane phospholipids. It is well established that cPLA(2)α binds zwitterionic lipids such as phosphatidylcholine in a Ca(2+)-dependent manner through its N-terminal C2 domain, which regulates its translocation to cellular membranes. In addition to its role in AA synthesis, it has been shown that cPLA(2)α promotes tubulation and vesiculation of the Golgi and regulates trafficking of endosomes. Additionally, the isolated C2 domain of cPLA(2)α is able to reconstitute Fc receptor-mediated phagocytosis, suggesting that C2 domain membrane binding is sufficient for phagosome formation. These reported activities of cPLA(2)α and its C2 domain require changes in membrane structure, but the ability of the C2 domain to promote changes in membrane shape has not been reported. Here we demonstrate that the C2 domain of cPLA(2)α is able to induce membrane curvature changes to lipid vesicles, giant unilamellar vesicles, and membrane sheets. Biophysical assays combined with mutagenesis of C2 domain residues involved in membrane penetration demonstrate that membrane insertion by the C2 domain is required for membrane deformation, suggesting that C2 domain-induced membrane structural changes may be an important step in signaling pathways mediated by cPLA(2)α.
Collapse
Affiliation(s)
- Katherine E Ward
- Department of Chemistry and Biochemistry, University of Notre Dame, South Bend, IN 46556, USA
| | | | | | | |
Collapse
|
43
|
Annexin A1 and A2: roles in retrograde trafficking of Shiga toxin. PLoS One 2012; 7:e40429. [PMID: 22792315 PMCID: PMC3391278 DOI: 10.1371/journal.pone.0040429] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 06/06/2012] [Indexed: 01/05/2023] Open
Abstract
Annexins constitute a family of calcium and membrane binding proteins. As annexin A1 and A2 have previously been linked to various membrane trafficking events, we initiated this study to investigate the role of these annexins in the uptake and intracellular transport of the bacterial Shiga toxin (Stx) and the plant toxin ricin. Once endocytosed, both toxins are retrogradely transported from endosomes to the Golgi apparatus and the endoplasmic reticulum before being targeted to the cytosol where they inhibit protein synthesis. This study was performed to obtain new information both about toxin transport and the function of annexin A1 and annexin A2. Our data show that depletion of annexin A1 or A2 alters the retrograde transport of Stx but not ricin, without affecting toxin binding or internalization. Knockdown of annexin A1 increases Golgi transport of Stx, whereas knockdown of annexin A2 slightly decreases the same transport step. Interestingly, annexin A1 was found in proximity to cytoplasmic phospholipase A2 (cPLA2), and the basal as well as the increased Golgi transport of Stx upon annexin A1 knockdown is dependent on cPLA2 activity. In conclusion, annexin A1 and A2 have different roles in Stx transport to the trans-Golgi network. The most prominent role is played by annexin A1 which normally works as a negative regulator of retrograde transport from the endosomes to the Golgi network, most likely by complex formation and inhibition of cPLA2.
Collapse
|
44
|
Corda D, Barretta ML, Cervigni RI, Colanzi A. Golgi complex fragmentation in G2/M transition: An organelle-based cell-cycle checkpoint. IUBMB Life 2012; 64:661-70. [PMID: 22730233 DOI: 10.1002/iub.1054] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 04/29/2012] [Indexed: 11/06/2022]
Abstract
In mammalian cells, the Golgi complex is organized into a continuous membranous system known as the Golgi ribbon, which is formed by individual Golgi stacks that are laterally connected by tubular bridges. During mitosis, the Golgi ribbon undergoes extensive fragmentation through a multistage process that is required for its correct partitioning into the daughter cells. Importantly, inhibition of this Golgi disassembly results in cell-cycle arrest at the G2 stage, suggesting that accurate inheritance of the Golgi complex is monitored by a "Golgi mitotic checkpoint." Here, we discuss the mechanisms and regulation of the Golgi ribbon breakdown and briefly comment on how Golgi partitioning may inhibit G2/M transition.
Collapse
Affiliation(s)
- Daniela Corda
- Institute of Protein Biochemistry, National Research Council (CNR), Via Pietro Castellino 111, Naples, Italy.
| | | | | | | |
Collapse
|
45
|
Modular organization of the mammalian Golgi apparatus. Curr Opin Cell Biol 2012; 24:467-74. [PMID: 22726585 DOI: 10.1016/j.ceb.2012.05.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 05/29/2012] [Indexed: 02/07/2023]
Abstract
The Golgi apparatus is essential for post-translational modifications and sorting of proteins in the secretory pathway. In addition, it further performs a broad range of specialized functions. This functional diversity is achieved by combining basic morphological modules of cisternae into higher ordered structures. Linking cisternae into stacks that are further connected through tubules into a continuous Golgi ribbon greatly increases its efficiency and expands its repertoire of functions. During cell division, the different modules of the Golgi are inherited by different mechanisms to maintain its functional and morphological composition.
Collapse
|
46
|
Giannotta M, Ruggiero C, Grossi M, Cancino J, Capitani M, Pulvirenti T, Consoli GML, Geraci C, Fanelli F, Luini A, Sallese M. The KDEL receptor couples to Gαq/11 to activate Src kinases and regulate transport through the Golgi. EMBO J 2012; 31:2869-81. [PMID: 22580821 DOI: 10.1038/emboj.2012.134] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 04/17/2012] [Indexed: 11/09/2022] Open
Abstract
Membrane trafficking involves large fluxes of cargo and membrane across separate compartments. These fluxes must be regulated by control systems to maintain homoeostasis. While control systems for other key functions such as protein folding or the cell cycle are well known, the mechanisms that control secretory transport are poorly understood. We have previously described a signalling circuit operating at the Golgi complex that regulates intra-Golgi trafficking and is initiated by the KDEL receptor (KDEL-R), a protein previously known to mediate protein recycling from the Golgi to the endoplasmic reticulum (ER). Here, we investigated the KDEL-R signalling mechanism. We show that the KDEL-R is predicted to fold like a G-protein-coupled receptor (GPCR), and that it binds and activates the heterotrimeric signalling G-protein Gα(q/11) which, in turn, regulates transport through the Golgi complex. These findings reveal an unexpected GPCR-like mode of action of the KDEL-R and shed light on a core molecular control mechanism of intra-Golgi traffic.
Collapse
Affiliation(s)
- Monica Giannotta
- Unit of Genomic Approaches to Membrane Traffic, Department of Cellular and Translational Pharmacology, Consorzio Mario Negri Sud, Santa Maria Imbaro (CH), Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Regulation of the Golgi complex by phospholipid remodeling enzymes. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:1078-88. [PMID: 22562055 DOI: 10.1016/j.bbalip.2012.04.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 03/15/2012] [Accepted: 04/13/2012] [Indexed: 11/23/2022]
Abstract
The mammalian Golgi complex is a highly dynamic organelle consisting of stacks of flattened cisternae with associated coated vesicles and membrane tubules that contribute to cargo import and export, intra-cisternal trafficking, and overall Golgi architecture. At the morphological level, all of these structures are continuously remodeled to carry out these trafficking functions. Recent advances have shown that continual phospholipid remodeling by phospholipase A (PLA) and lysophospholipid acyltransferase (LPAT) enzymes, which deacylate and reacylate Golgi phospholipids, respectively, contributes to this morphological remodeling. Here we review the identification and characterization of four cytoplasmic PLA enzymes and one integral membrane LPAT that participate in the dynamic functional organization of the Golgi complex, and how some of these enzymes are integrated to determine the relative abundance of COPI vesicle and membrane tubule formation. This article is part of a Special Issue entitled Lipids and Vesicular Transport.
Collapse
|
48
|
Cai B, Caplan S, Naslavsky N. cPLA2α and EHD1 interact and regulate the vesiculation of cholesterol-rich, GPI-anchored, protein-containing endosomes. Mol Biol Cell 2012; 23:1874-88. [PMID: 22456504 PMCID: PMC3350552 DOI: 10.1091/mbc.e11-10-0881] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
cPLA2 hydrolyzes phospholipids and regulates membrane curvature and/or tubulation. Despite disparate roles for cPLA2 at the Golgi and early endosomes, its function in the regulation of membranes containing GPI-anchored proteins is not known. A role for cPLA2α and EHD1 is identified in the vesiculation of cholesterol-rich, GPI-AP–containing membranes. The lipid modifier phospholipase A2 catalyzes the hydrolysis of phospholipids to inverted-cone–shaped lysophospholipids that contribute to membrane curvature and/or tubulation. Conflicting findings exist regarding the function of cytosolic phospholipase A2 (cPLA2) and its role in membrane regulation at the Golgi and early endosomes. However, no studies addressed the role of cPLA2 in the regulation of cholesterol-rich membranes that contain glycosylphosphatidylinositol-anchored proteins (GPI-APs). Our studies support a role for cPLA2α in the vesiculation of GPI-AP–containing membranes, using endogenous CD59 as a model for GPI-APs. On cPLA2α depletion, CD59-containing endosomes became hypertubular. Moreover, accumulation of lysophospholipids induced by a lysophospholipid acyltransferase inhibitor extensively vesiculated CD59-containing endosomes. However, overexpression of cPLA2α did not increase the endosomal vesiculation, implying a requirement for additional factors. Indeed, depletion of the “pinchase” EHD1, a C-terminal Eps15 homology domain (EHD) ATPase, also induced hypertubulation of CD59-containing endosomes. Furthermore, EHD1 and cPLA2α demonstrated in situ proximity (<40 nm) and interacted in vivo. The results presented here provide evidence that the lipid modifier cPLA2α and EHD1 are involved in the vesiculation of CD59-containing endosomes. We speculate that cPLA2α induces membrane curvature and allows EHD1, possibly in the context of a complex, to sever the curved membranes into vesicles.
Collapse
Affiliation(s)
- Bishuang Cai
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | | |
Collapse
|
49
|
Zizza P, Iurisci C, Bonazzi M, Cossart P, Leslie CC, Corda D, Mariggiò S. Phospholipase A2IVα regulates phagocytosis independent of its enzymatic activity. J Biol Chem 2012; 287:16849-59. [PMID: 22393044 DOI: 10.1074/jbc.m111.309419] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Group IVα phospholipase A(2) (PLA(2)IVα) is a lipolytic enzyme that catalyzes the hydrolysis of membrane phospholipids to generate precursors of potent inflammatory lipid mediators. Here, the role of PLA(2)IVα in Fc receptor (FcR)-mediated phagocytosis was investigated, demonstrating that PLA(2)IVα is selectively activated upon FcR-mediated phagocytosis in macrophages and that it rapidly translocates to the site of the nascent phagosome. Moreover, pharmacological inhibition of PLA(2)IVα by pyrrophenone reduces particle internalization by up to 50%. In parallel, fibroblasts from PLA(2)IVα knock-out mice overexpressing FcγRIIA and able to internalize IgG-opsonized beads show 50% lower phagocytosis, compared with wild-type cells, and transfection of PLA(2)IVα fully recovers this impaired function. Interestingly, transfection of the catalytically inactive deleted PLA(2)IVα mutant (PLA(2)IVα(1-525)) and point mutant (PLA(2)IVα-S228C) also promotes recovery of this impaired function. Finally, transfection of the PLA(2)IVα C2 domain (which is directly involved in PLA(2)IVα membrane binding), but not of PLA(2)IVα-D43N (which cannot bind to membranes), rescues FcR-mediated phagocytosis. These data unveil a new mechanism of action for PLA(2)IVα, which demonstrates that the membrane binding, and not the enzymatic activity, is required for PLA(2)IVα modulation of FcR-mediated phagocytosis.
Collapse
Affiliation(s)
- Pasquale Zizza
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
50
|
Micaroni M. Calcium around the Golgi apparatus: implications for intracellular membrane trafficking. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:439-60. [PMID: 22453953 DOI: 10.1007/978-94-007-2888-2_18] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
As with other complex cellular functions, intracellular membrane transport involves the coordinated engagement of a series of organelles and machineries; in the last couple of decades more importance has been given to the role of calcium (Ca(2+)) in the regulation of membrane trafficking, which is directly involved in coordinating the endoplasmic reticulum-to-Golgi-to-plasma membrane delivery of cargo. Consequently, the Golgi apparatus (GA) is now considered not just the place proteins mature in as they move to their final destination(s), but it is increasingly viewed as an intracellular Ca(2+) store. In the last few years the mechanisms regulating the homeostasis of Ca(2+) in the GA and its role in membrane trafficking have begun to be elucidated. Here, these recent discoveries that shed light on the role Ca(2+) plays as of trigger of different steps during membrane trafficking has been reviewed. This includes recruitment of proteins and SNARE cofactors to the Golgi membranes, which are both fundamental for the membrane remodeling and the regulation of fusion/fission events occurring during the passage of cargo across the GA. I conclude by focusing attention on Ca(2+) homeostasis dysfunctions in the GA and their related pathological implications.
Collapse
Affiliation(s)
- Massimo Micaroni
- Division of Molecular Cell Biology, Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, 4072 Brisbane, St. Lucia, QLD, Australia.
| |
Collapse
|