1
|
Kalimuddin S, Tham CYL, Chan YFZ, Hang SK, Kunasegaran K, Chia A, Chan CYY, Ng DHL, Sim JXY, Tan HC, Syenina A, Ngoh AQ, Hamis NZ, Chew V, Leong YS, Yee JX, Low JG, Chan KR, Ong EZ, Bertoletti A, Ooi EE. Vaccine-induced T cell responses control Orthoflavivirus challenge infection without neutralizing antibodies in humans. Nat Microbiol 2025; 10:374-387. [PMID: 39794472 PMCID: PMC11790491 DOI: 10.1038/s41564-024-01903-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 12/04/2024] [Indexed: 01/13/2025]
Abstract
T cells have been identified as correlates of protection in viral infections. However, the level of vaccine-induced T cells needed and the extent to which they alone can control acute viral infection in humans remain uncertain. Here we conducted a double-blind, randomized controlled trial involving vaccination and challenge in 33 adult human volunteers, using the live-attenuated yellow fever (YF17D) and chimeric Japanese encephalitis-YF17D (JE/YF17D) vaccines. Both Orthoflavivirus vaccines share T cell epitopes but have different neutralizing antibody epitopes. The primary objective was to assess the extent to which vaccine-induced T cell responses, independent of neutralizing antibodies, were able to reduce post-challenge viral RNAaemia levels. Secondary objectives included an assessment of surrogate measures of viral control, including post-challenge antibody titres and symptomatic outcomes. YF17D vaccinees had reduced levels of JE/YF17D challenge viraemia, compared with those without previous YF17D vaccination (mean log10(area under the curve genome copies per ml): 2.23 versus 3.22; P = 0.039). Concomitantly, YF17D vaccinees had lower post-JE/YF17D challenge antibody titres that reduced JE virus plaque number by 50%, or PRNT50 (mean log10(PRNT50 titre): 1.87 versus 2.5; P < 0.0001) and symptomatic rates (6% (n = 1/16) versus 53% (n = 9/17), P = 0.007). There were no unexpected safety events. Importantly, after challenge infection, several vaccinees had undetectable viraemia and no seroconversion, even in the absence of neutralizing antibodies. Indeed, high vaccine-induced T cell responses, specifically against the capsid protein, were associated with a level of viral control conventionally interpreted as sterilizing immunity. Our findings reveal the importance of T cells in controlling acute viral infection and suggests a potential correlate of protection against orthoflaviviral infections. ClinicalTrials.gov registration: NCT05568953 .
Collapse
Affiliation(s)
- Shirin Kalimuddin
- Department of Infectious Diseases, Singapore General Hospital, Singapore, Singapore.
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore.
| | - Christine Y L Tham
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
- Viral Research and Experimental Medicine Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Yvonne F Z Chan
- Department of Infectious Diseases, Singapore General Hospital, Singapore, Singapore
| | - Shou Kit Hang
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Kamini Kunasegaran
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Adeline Chia
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Candice Y Y Chan
- Department of Infectious Diseases, Singapore General Hospital, Singapore, Singapore
| | - Dorothy H L Ng
- Department of Infectious Diseases, Singapore General Hospital, Singapore, Singapore
| | - Jean X Y Sim
- Department of Infectious Diseases, Singapore General Hospital, Singapore, Singapore
- Department of Infection Prevention and Epidemiology, Singapore General Hospital, Singapore, Singapore
| | - Hwee-Cheng Tan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Ayesa Syenina
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
- Viral Research and Experimental Medicine Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - An Qi Ngoh
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
- Viral Research and Experimental Medicine Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Noor Zayanah Hamis
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
- Viral Research and Experimental Medicine Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Valerie Chew
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
- Viral Research and Experimental Medicine Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Yan Shan Leong
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
- Viral Research and Experimental Medicine Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Jia Xin Yee
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
- Viral Research and Experimental Medicine Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Jenny G Low
- Department of Infectious Diseases, Singapore General Hospital, Singapore, Singapore
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
- Viral Research and Experimental Medicine Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Kuan Rong Chan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Eugenia Z Ong
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
- Viral Research and Experimental Medicine Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Antonio Bertoletti
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
- Singapore Immunology Network, A*STAR Singapore, Singapore, Singapore
| | - Eng Eong Ooi
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore.
- Viral Research and Experimental Medicine Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore.
- Department of Translational Clinical Research, Singapore General Hospital, Singapore, Singapore.
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
2
|
Lee JY, Jang H, Kim S, Kang T, Park SG, Lee MY. Nanoplasmonic microarray-based solid-phase amplification for highly sensitive and multiplexed molecular diagnostics: application for detecting SARS-CoV-2. Mikrochim Acta 2024; 191:715. [PMID: 39472332 PMCID: PMC11522150 DOI: 10.1007/s00604-024-06723-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/21/2024] [Indexed: 11/02/2024]
Abstract
A novel approach is introduced using nanoplasmonic microarray-based solid-phase recombinase polymerase amplification (RPA) that offers high sensitivity and multiplexing capabilities for gene detection. Nanoplasmonic microarrays were developed through one-step immobilization of streptavidin/biotin primers and fine-tuning the amplicon size to achieve high plasmon-enhanced fluorescence (PEF) on the nanoplasmonic substrate, thereby improving sensitivity. The specificity and sensitivity of solid-phase RPA on nanoplasmonic microarrays was evaluated in detecting E, N, and RdRP genes of SARS-CoV-2. High specificity was achieved by minimizing primer-dimer formation and employing a stringent washing process and high sensitivity obtained with a limit of detection of four copies per reaction within 30 min. In clinical testing with nasopharyngeal swab samples (n = 30), the nanoplasmonic microarrays demonstrated a 100% consistency with the PCR results for detecting SARS-CoV-2, including differentiation of Omicron mutations BA.1 and BA.2. This approach overcomes the sensitivity issue of solid-phase amplification, as well as offers rapidity, high multiplexing capabilities, and simplified equipment by using isothermal reaction, making it a valuable tool for on-site molecular diagnostics.
Collapse
Affiliation(s)
- Ji Young Lee
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science (KIMS), 797, Changwon-Daero, Seongsan-Gu, Changwon-Si, Gyeongsangnam-Do, 51508, Republic of Korea
| | - Hyowon Jang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125, Gwahak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea
| | - Sunjoo Kim
- Department of Laboratory Medicine, Gyeongsang National University College of Medicine, 79 Gangnam-Ro, Jinju, Gyeongsangnam-Do, 52727, Republic of Korea
| | - Taejoon Kang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125, Gwahak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-Ro, Jangan-Gu, Suwon, Gyeonggi-Do, 16419, Republic of Korea
| | - Sung-Gyu Park
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science (KIMS), 797, Changwon-Daero, Seongsan-Gu, Changwon-Si, Gyeongsangnam-Do, 51508, Republic of Korea.
| | - Min-Young Lee
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science (KIMS), 797, Changwon-Daero, Seongsan-Gu, Changwon-Si, Gyeongsangnam-Do, 51508, Republic of Korea.
| |
Collapse
|
3
|
Zeng Q, Zhou M, Deng W, Gao Q, Li Z, Wu L, Liang D. Sensitive and visual detection of SARS-CoV-2 using RPA-Cas12a one-step assay with ssDNA-modified crRNA. Anal Chim Acta 2024; 1309:342693. [PMID: 38772660 DOI: 10.1016/j.aca.2024.342693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/03/2024] [Accepted: 05/04/2024] [Indexed: 05/23/2024]
Abstract
BACKGROUND CRISPR-Cas12a based one-step assays are widely used for nucleic acid detection, particularly for pathogen detection. However, the detection capability of the one-step assay is reduced because the Cas12a protein competes with the isothermal amplification enzymes for the target DNA and cleaves it. Therefore, the key to improving the sensitivity of the one-step assay is to address the imbalance between isothermal amplification and CRISPR detection. In previous study, we developed a Cas12a one-step assay using single-stranded DNA (ssDNA)-modified crRNA (mD-crRNA) and applied this method for the detection of pathogenic DNA. RESULTS Here, we utilized mD-crRNA to establish a sensitive one-step assay that enables the visual detection of SARS-CoV-2 under ultraviolet light, achieving a detection limit of 5 aM without cross-reactivity. The sensitivity of mD-crRNA in the one-step assay was 100-fold higher than that of wild-type crRNA. Mechanistic studies revealed that the addition of ssDNA at the 3' end of mD-crRNA attenuates the binding affinity between the Cas12a-mD-crRNA complex and the target DNA. Consequently, this reduction in binding affinity decreases the cis-cleavage activity of Cas12a, mitigating its cleavage of the target DNA in the one-step assay. As a result, there is an augmentation in the amplification and accumulation of target DNA, thereby enhancing detection sensitivity. In the clinical testing of 40 SARS-CoV-2 RNA samples, the concordance between the results of the one-step assay and known qPCR results was 97.5 %. SIGNIFICANCE The one-step assay using mD-crRNA proves to be highly sensitive and specificity and visually effective for the detection of SARS-CoV-2. Our study delves into the application of the mD-crRNA-mediated one-step assay in nucleic acid detection and its associated reaction mechanism. This holds great significance in addressing the inherent incompatibility issues between isothermal amplification and CRISPR detection.
Collapse
Affiliation(s)
- Qinlong Zeng
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, China
| | - Miaojin Zhou
- MOE Key Lab of Rare Pediatric Diseases, Department of Cell Biology and Genetics, School of Basic Medical Sciences, University of South China, Hengyang, 421200, China
| | - Weiheng Deng
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, China
| | - Qian Gao
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Zhuo Li
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, China.
| | - Lingqian Wu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, China.
| | - Desheng Liang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, China.
| |
Collapse
|
4
|
Castellar-Mendoza C, Calderón-Peláez MA, Castellanos JE, Velandia-Romero ML, Coronel-Ruiz C, Camacho-Ortega S, Bernal-Cepeda LJ, López-Ibarra L, Arturo JA, Delgado FG, Gutierrez-Barbosa H, Bohorquez-Avila S, Madroñero J, Corredor-Rozo ZL, Perdomo-Lara SJ, Fonseca-Benitez A, Calvo E. Development and Optimization of a Multiplex Real-Time RT-PCR to Detect SARS-CoV-2 in Human Samples. Int J Microbiol 2024; 2024:4894004. [PMID: 38500634 PMCID: PMC10948217 DOI: 10.1155/2024/4894004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 03/20/2024] Open
Abstract
PCR and its variants (RT-PCR and qRT-PCR) are valuable and innovative molecular techniques for studying nucleic acids. qPCR has proven to be highly sensitive, efficient, and reproducible, generating reliable results that are easy to analyze. During the COVID-19 pandemic, qPCR became the gold standard technique for detecting the SARS-CoV-2 virus that allowed to confirm the infection event, and those asymptomatic ones, and thus save millions of lives. In-house multiplex qPCR tests were developed worldwide to detect different viral targets and ensure results, follow the infections, and favor the containment of a pandemic. Here, we present the detailed fundamentals of the qPCR technique based on fluorogenic probes and processes to develop and optimize a successful multiplex RT-qPCR test for detecting SARS-CoV-2 that could be used to diagnose COVID-19 accurately.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lilia J. Bernal-Cepeda
- Virology Group, Universidad El Bosque, Bogotá 110121, Colombia
- Facultad de Odontología, Universidad Nacional de Colombia, Bogotá, Colombia
| | | | - Jhann A. Arturo
- Virology Group, Universidad El Bosque, Bogotá 110121, Colombia
- Inmugen Corporation, Bogotá, Colombia
| | | | | | - Sonia Bohorquez-Avila
- Virology Group, Universidad El Bosque, Bogotá 110121, Colombia
- Facultad de Odontología, Universidad Nacional de Colombia, Bogotá, Colombia
| | | | | | | | | | - Eliana Calvo
- Virology Group, Universidad El Bosque, Bogotá 110121, Colombia
| |
Collapse
|
5
|
Hoffmann M, Willruth LL, Dietrich A, Lee HK, Knabl L, Trummer N, Baumbach J, Furth PA, Hennighausen L, List M. Blood transcriptomics analysis offers insights into variant-specific immune response to SARS-CoV-2. Sci Rep 2024; 14:2808. [PMID: 38307916 PMCID: PMC10837437 DOI: 10.1038/s41598-024-53117-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/28/2024] [Indexed: 02/04/2024] Open
Abstract
Bulk RNA sequencing (RNA-seq) of blood is typically used for gene expression analysis in biomedical research but is still rarely used in clinical practice. In this study, we propose that RNA-seq should be considered a diagnostic tool, as it offers not only insights into aberrant gene expression and splicing but also delivers additional readouts on immune cell type composition as well as B-cell and T-cell receptor (BCR/TCR) repertoires. We demonstrate that RNA-seq offers insights into a patient's immune status via integrative analysis of RNA-seq data from patients infected with various SARS-CoV-2 variants (in total 196 samples with up to 200 million reads sequencing depth). We compare the results of computational cell-type deconvolution methods (e.g., MCP-counter, xCell, EPIC, quanTIseq) to complete blood count data, the current gold standard in clinical practice. We observe varying levels of lymphocyte depletion and significant differences in neutrophil levels between SARS-CoV-2 variants. Additionally, we identify B and T cell receptor (BCR/TCR) sequences using the tools MiXCR and TRUST4 to show that-combined with sequence alignments and BLASTp-they could be used to classify a patient's disease. Finally, we investigated the sequencing depth required for such analyses and concluded that 10 million reads per sample is sufficient. In conclusion, our study reveals that computational cell-type deconvolution and BCR/TCR methods using bulk RNA-seq analyses can supplement missing CBC data and offer insights into immune responses, disease severity, and pathogen-specific immunity, all achievable with a sequencing depth of 10 million reads per sample.
Collapse
Affiliation(s)
- Markus Hoffmann
- Data Science in Systems Biomedicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany.
- Institute for Advanced Study, Technical University of Munich, Lichtenbergstrasse 2 a, 85748, Garching, Germany.
- National Institute of Diabetes, Digestive, and Kidney Diseases, Bethesda, MD, 20892, USA.
| | - Lina-Liv Willruth
- Data Science in Systems Biomedicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Alexander Dietrich
- Data Science in Systems Biomedicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Hye Kyung Lee
- National Institute of Diabetes, Digestive, and Kidney Diseases, Bethesda, MD, 20892, USA
| | | | - Nico Trummer
- Data Science in Systems Biomedicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Jan Baumbach
- Chair of Computational Systems Biology, University of Hamburg, Hamburg, Germany
- Computational BioMedicine Lab, University of Southern Denmark, Odense, Denmark
| | - Priscilla A Furth
- Institute for Advanced Study, Technical University of Munich, Lichtenbergstrasse 2 a, 85748, Garching, Germany
- National Institute of Diabetes, Digestive, and Kidney Diseases, Bethesda, MD, 20892, USA
- Departments of Oncology & Medicine, Georgetown University, Washington, DC, USA
| | - Lothar Hennighausen
- Institute for Advanced Study, Technical University of Munich, Lichtenbergstrasse 2 a, 85748, Garching, Germany
- National Institute of Diabetes, Digestive, and Kidney Diseases, Bethesda, MD, 20892, USA
| | - Markus List
- Data Science in Systems Biomedicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany.
| |
Collapse
|
6
|
Cerda A, Rivera M, Armijo G, Ibarra-Henriquez C, Reyes J, Blázquez-Sánchez P, Avilés J, Arce A, Seguel A, Brown AJ, Vásquez Y, Cortez-San Martín M, Cubillos FA, García P, Ferres M, Ramírez-Sarmiento CA, Federici F, Gutiérrez RA. An Open One-Step RT-qPCR for SARS-CoV-2 detection. PLoS One 2024; 19:e0297081. [PMID: 38271448 PMCID: PMC10810446 DOI: 10.1371/journal.pone.0297081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
The COVID-19 pandemic has resulted in millions of deaths globally, and while several diagnostic systems were proposed, real-time reverse transcription polymerase chain reaction (RT-PCR) remains the gold standard. However, diagnostic reagents, including enzymes used in RT-PCR, are subject to centralized production models and intellectual property restrictions, which present a challenge for less developed countries. With the aim of generating a standardized One-Step open RT-qPCR protocol to detect SARS-CoV-2 RNA in clinical samples, we purified and tested recombinant enzymes and a non-proprietary buffer. The protocol utilized M-MLV RT and Taq DNA pol enzymes to perform a Taqman probe-based assay. Synthetic RNA samples were used to validate the One-Step RT-qPCR components, demonstrating sensitivity comparable to a commercial kit routinely employed in clinical settings for patient diagnosis. Further evaluation on 40 clinical samples (20 positive and 20 negative) confirmed its comparable diagnostic accuracy. This study represents a proof of concept for an open approach to developing diagnostic kits for viral infections and diseases, which could provide a cost-effective and accessible solution for less developed countries.
Collapse
Affiliation(s)
- Ariel Cerda
- ANID—Millennium Science Initiative Program—Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- FONDAP Center for Genome Regulation, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Maira Rivera
- ANID—Millennium Science Initiative Program—Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Grace Armijo
- ANID—Millennium Science Initiative Program—Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- FONDAP Center for Genome Regulation, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Catalina Ibarra-Henriquez
- ANID—Millennium Science Initiative Program—Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- FONDAP Center for Genome Regulation, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Javiera Reyes
- ANID—Millennium Science Initiative Program—Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Paula Blázquez-Sánchez
- ANID—Millennium Science Initiative Program—Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Javiera Avilés
- ANID—Millennium Science Initiative Program—Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Aníbal Arce
- ANID—Millennium Science Initiative Program—Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Aldo Seguel
- ANID—Millennium Science Initiative Program—Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Alexander J. Brown
- Department of Biomedical Research, National Jewish Health, Denver, CO, United States of America
- Department of Immunology & Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Yesseny Vásquez
- Escuela de Ciencias Médicas, Facultad de Medicina, Universidad de Santiago de Chile, USACH, Santiago, Chile
| | - Marcelo Cortez-San Martín
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Santiago, Chile
| | - Francisco A. Cubillos
- ANID—Millennium Science Initiative Program—Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Santiago, Chile
| | - Patricia García
- Departamento de Laboratorios Clínicos, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marcela Ferres
- Departamento de Laboratorios Clínicos, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - César A. Ramírez-Sarmiento
- ANID—Millennium Science Initiative Program—Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fernán Federici
- ANID—Millennium Science Initiative Program—Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- FONDAP Center for Genome Regulation, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo A. Gutiérrez
- ANID—Millennium Science Initiative Program—Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- FONDAP Center for Genome Regulation, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
7
|
Ding J, Xu X, Deng Y, Zheng X, Zhang T. Circulation of SARS-CoV-2 Omicron sub-lineages revealed by multiplex genotyping RT-qPCR assays for sewage surveillance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166300. [PMID: 37591390 DOI: 10.1016/j.scitotenv.2023.166300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/09/2023] [Accepted: 08/12/2023] [Indexed: 08/19/2023]
Abstract
Sewage surveillance has proven to be an essential complementary tool to clinical diagnosis in combating the COVID-19 pandemic by tracking the spread of the SARS-CoV-2 virus and evaluating infection levels in populations. With the striking spreading and continuous evolution of SARS-CoV-2 Omicron VOC that characterized with higher transmissibility and potential immune evasion, there is an urgent need for the rapid surveillance of this prevalent strain and its sub-lineages in sewage. In this study, based on three multiplex allele-specific (AS) RT-qPCR assays, we established a rapid and high-throughput detection workflow for the simultaneous discrimination of Omicron sub-lineages BA.2.2, BA.2.12.1, BA.4 and BA.5 (hereafter referred to as BA.4/BA.5) to track their community circulation in Hong Kong. All primer-probe sets in the multiplex assays could correctly discriminate and quantitate their target genotypes with high sensitivity and specificity, even when multiple variants co-existed in the sewage samples. Using the established multiplex assays, the trends of SARS-CoV-2 total viral load and variant dynamics in influent samples collected from 11 wastewater treatment plants (WWTPs) during June 2022 and September 2022, aligned with the clinical data, successfully unveiling the swift emergence and predominance of Omicron BA.4/BA.5 in Hong Kong. The study highlights the feasibility and applicability of multiplex RT-qPCR assays for monitoring epidemic trends and tracking variant displacement dynamics in sewage samples, providing a more rapid, high-throughput and cost-effective alternative to enhance the current sewage surveillance system.
Collapse
Affiliation(s)
- Jiahui Ding
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Xiaoqing Xu
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yu Deng
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Xiawan Zheng
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
8
|
Ishige T. Molecular biology of SARS-CoV-2 and techniques of diagnosis and surveillance. Adv Clin Chem 2023; 118:35-85. [PMID: 38280807 DOI: 10.1016/bs.acc.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2024]
Abstract
The World Health Organization (WHO) declared coronavirus disease 2019 (COVID-19), a disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a global pandemic in March 2020. Reverse transcription-polymerase chain reaction (RT-PCR) is the reference technique for molecular diagnosis of SARS-CoV-2 infection. The SARS-CoV-2 virus is constantly mutating, and more transmissible variants have emerged, making genomic surveillance a crucial tool for investigating virus transmission dynamics, detecting novel genetic variants, and assessing mutation impact. The S gene, which encodes the spike protein, is frequently mutated, and it plays an important role in transmissibility. Spike protein mutations affect infectivity and vaccine effectiveness. SARS-CoV-2 variants are tracked using whole genome sequencing (WGS) and S-gene analysis. WGS, Sanger sequencing, and many S-gene-targeted RT-PCR methods have been developed. WGS and Sanger sequencing are standard methods for detecting mutations and can be used to identify known and unknown mutations. Melting curve analysis, endpoint genotyping assay, and S-gene target failure are used in the RT-PCR-based method for the rapid detection of specific mutations in SARS-CoV-2 variants. Therefore, these assays are suitable for high-throughput screening. The combinatorial use of RT-PCR-based assays, Sanger sequencing, and WGS enables rapid and accurate tracking of SARS-CoV-2 variants. In this review, we described RT-PCR-based detection and surveillance techniques for SARS-CoV-2.
Collapse
Affiliation(s)
- Takayuki Ishige
- Division of Laboratory Medicine, Chiba University Hospital, Chiba, Japan.
| |
Collapse
|
9
|
Hoffmann M, Willruth LL, Dietrich A, Lee HK, Knabl L, Trummer N, Baumbach J, Furth PA, Hennighausen L, List M. Blood transcriptomics analysis offers insights into variant-specific immune response to SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.03.564190. [PMID: 38076885 PMCID: PMC10705570 DOI: 10.1101/2023.11.03.564190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Bulk RNA sequencing (RNA-seq) of blood is typically used for gene expression analysis in biomedical research but is still rarely used in clinical practice. In this study, we argue that RNA-seq should be considered a routine diagnostic tool, as it offers not only insights into aberrant gene expression and splicing but also delivers additional readouts on immune cell type composition as well as B-cell and T-cell receptor (BCR/TCR) repertoires. We demonstrate that RNA-seq offers vital insights into a patient's immune status via integrative analysis of RNA-seq data from patients infected with various SARS-CoV-2 variants (in total 240 samples with up to 200 million reads sequencing depth). We compare the results of computational cell-type deconvolution methods (e.g., MCP-counter, xCell, EPIC, quanTIseq) to complete blood count data, the current gold standard in clinical practice. We observe varying levels of lymphocyte depletion and significant differences in neutrophil levels between SARS-CoV-2 variants. Additionally, we identify B and T cell receptor (BCR/TCR) sequences using the tools MiXCR and TRUST4 to show that - combined with sequence alignments and pBLAST - they could be used to classify a patient's disease. Finally, we investigated the sequencing depth required for such analyses and concluded that 10 million reads per sample is sufficient. In conclusion, our study reveals that computational cell-type deconvolution and BCR/TCR methods using bulk RNA-seq analyses can supplement missing CBC data and offer insights into immune responses, disease severity, and pathogen-specific immunity, all achievable with a sequencing depth of 10 million reads per sample.
Collapse
Affiliation(s)
- Markus Hoffmann
- Big Data in BioMedicine Group, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Munich, Germany
- Institute for Advanced Study (Lichtenbergstrasse 2 a, D-85748 Garching, Germany), Technical University of Munich, Germany
- National Institute of Diabetes, Digestive, and Kidney Diseases, Bethesda, MD 20892, United States of America
| | - Lina-Liv Willruth
- Big Data in BioMedicine Group, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Alexander Dietrich
- Big Data in BioMedicine Group, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Hye Kyung Lee
- National Institute of Diabetes, Digestive, and Kidney Diseases, Bethesda, MD 20892, United States of America
| | | | - Nico Trummer
- Big Data in BioMedicine Group, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Jan Baumbach
- Chair of Computational Systems Biology, University of Hamburg, Hamburg, Germany
- Computational BioMedicine Lab, University of Southern Denmark, Odense, Denmark
| | - Priscilla A. Furth
- Institute for Advanced Study (Lichtenbergstrasse 2 a, D-85748 Garching, Germany), Technical University of Munich, Germany
- National Institute of Diabetes, Digestive, and Kidney Diseases, Bethesda, MD 20892, United States of America
- Departments of Oncology & Medicine, Georgetown University, Washington, DC, United States of America
| | - Lothar Hennighausen
- Institute for Advanced Study (Lichtenbergstrasse 2 a, D-85748 Garching, Germany), Technical University of Munich, Germany
- National Institute of Diabetes, Digestive, and Kidney Diseases, Bethesda, MD 20892, United States of America
| | - Markus List
- Big Data in BioMedicine Group, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Munich, Germany
| |
Collapse
|
10
|
Aloraij Y, Suaifan GARY, Shibl A, Al-Kattan K, Zourob MM. Development of Rapid Aptamer-Based Screening Assay for the Detection of Covid-19 Variants. ACS OMEGA 2023; 8:32877-32883. [PMID: 37720766 PMCID: PMC10500687 DOI: 10.1021/acsomega.3c04137] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/16/2023] [Indexed: 09/19/2023]
Abstract
The development of a colorimetric severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detection assay with the WHO published ASSURED criteria is reported, in which the biosensor should have the following characteristics of (i) being affordable for low-income communities, (ii) sensitive, (iii) specific, (iv) user-friendly to be used by non-skilled personnel, (v) rapid and robust, (vi) equipment-free, and (vii) delivered to the end-users as a simple and easy to use point-of-care tool. Early viral infection detection prevents virus spread and controls the epidemic. We herein report the development of a colorimetric assay in which SARS-COV-2 variants can be detected by colorimetric observation of color on the sensing cotton swab surface. Using the developed biosensor assay, it is possible to discriminate between the various SARS-CoV-2 variants with a LOD of 100 ng/mL within 4 min including sample preconcentration and incubation step. The results illustrated the development of a SARS-CoV-2 colorimetric biosensor that can be mass produced, with low-reagent cost, and can be read-out visually in the field by nonskilled personnel.
Collapse
Affiliation(s)
- Yumna
M. Aloraij
- Department
of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, AlTakhassusi
Rd, Riyadh 11533, Saudi Arabia
| | - Ghadeer A. R. Y. Suaifan
- Department
of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Atef Shibl
- College
of Medicine, Alfaisal University, Al Zahrawi Street, Al Maather, Al
Takhassusi Rd, Riyadh 11533, Saudi Arabia
| | - Khaled Al-Kattan
- College
of Medicine, Alfaisal University, Al Zahrawi Street, Al Maather, Al
Takhassusi Rd, Riyadh 11533, Saudi Arabia
| | - Mohammed M. Zourob
- Department
of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, AlTakhassusi
Rd, Riyadh 11533, Saudi Arabia
| |
Collapse
|
11
|
Vedelago C, Li J, Lowry K, Howard C, Wuethrich A, Trau M. A Multiplexed SERS Microassay for Accurate Detection of SARS-CoV-2 and Variants of Concern. ACS Sens 2023; 8:1648-1657. [PMID: 37026968 PMCID: PMC10081832 DOI: 10.1021/acssensors.2c02782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/29/2023] [Indexed: 04/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 variants play an important role in predicting patient outcome during postinfection, and with growing fears of COVID-19 reservoirs in domestic and wild animals, it is necessary to adapt detection systems for variant detection. However, variant-specific detection remains challenging. Surface-enhanced Raman scattering is a sensitive and multiplexing technique that allows the simultaneous detection of multiple targets for accurate identification. Here we propose the development of a multiplex SERS microassay to detect both the spike and nucleocapsid structural proteins of SARS-CoV-2. The designed SERS microassay integrates gold-silver hollow nanobox barcodes and electrohydrodynamically induced nanomixing which in combination enables highly specific and sensitive detection of SARS-CoV-2 and the S-protein epitopes to delineate between ancestral prevariant strains with the newer variants of concern, Delta and Omicron. The microassay allows detection from as low as 20 virus/μL and 50 pg/mL RBD protein and can clearly identify the virus among infected versus healthy nasopharyngeal swabs, with the potential to identify between variants. The detection of both S- and N-proteins of SARS-CoV-2 and the differentiation of variants on the SERS microassay can aid the early detection of COVID-19 to reduce transmission rates and lead into adequate treatments for those severely affected by the virus.
Collapse
Affiliation(s)
- Courtney Vedelago
- Centre for Personalised Nanomedicine, Australian
Institute for Bioengineering and Nanotechnology (AIBN), The University of
Queensland, Brisbane, QLD 4072, Australia
| | - Junrong Li
- Centre for Personalised Nanomedicine, Australian
Institute for Bioengineering and Nanotechnology (AIBN), The University of
Queensland, Brisbane, QLD 4072, Australia
| | - Kym Lowry
- The Queensland Paediatric Infectious Diseases (QIPD)
Sakzewski Research Group, Queensland Children’s
Hospital, Brisbane, QLD 4101, Australia
- University of Queensland Centre for
Clinical Research (UQCCR), Royal Brisbane and Women’s Hospital,
Brisbane, QLD 4029, Australia
| | - Christopher Howard
- Centre for Personalised Nanomedicine, Australian
Institute for Bioengineering and Nanotechnology (AIBN), The University of
Queensland, Brisbane, QLD 4072, Australia
| | - Alain Wuethrich
- Centre for Personalised Nanomedicine, Australian
Institute for Bioengineering and Nanotechnology (AIBN), The University of
Queensland, Brisbane, QLD 4072, Australia
| | - Matt Trau
- Centre for Personalised Nanomedicine, Australian
Institute for Bioengineering and Nanotechnology (AIBN), The University of
Queensland, Brisbane, QLD 4072, Australia
- School of Chemistry and Molecular Biosciences,
The University of Queensland, Brisbane, QLD 4072,
Australia
| |
Collapse
|
12
|
Sazed SA, Kibria MG, Zamil MF, Hossain MS, Khan JZ, Juthi RT, Hossain ME, Ahmed D, Noor Z, Haque R, Alam MS. Direct Nasal Swab for Rapid Test and Saliva as an Alternative Biological Sample for RT-PCR in COVID-19 Diagnosis. Microbiol Spectr 2022; 10:e0199822. [PMID: 36453913 PMCID: PMC9769842 DOI: 10.1128/spectrum.01998-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 11/07/2022] [Indexed: 12/05/2022] Open
Abstract
Accurate and early diagnoses are prerequisites for prompt treatment. For coronavirus disease 2019 (COVID-19), it is even more crucial. Currently, choice of methods include rapid diagnostic tests and reverse transcription polymerase chain reaction (RT-PCR) using samples mostly of respiratory origin and sometimes saliva. We evaluated two rapid diagnostic tests with three specimen types using viral transport medium (VTM) containing naso-oropharyngeal (NOP) swabs, direct nasal and direct nasopharyngeal (NP) samples from 428 prospective patients. We also performed RT-PCR for 428 NOP VTM and 316 saliva samples to compare results. The sensitivity of the SD Biosensor Standard Q COVID-19 antigen (Ag) test kit drastically raised from an average of 65.55% (NOP VTM) to 85.25% (direct nasal samples), while RT-PCR was the gold standard. For the CareStart kit, the sensitivity was almost similar for direct NP swabs; the average was 84.57%. The specificities were ≥95% for both SD Biosensor Standard Q and CareStart COVID-19 Ag tests in all platforms. The kits were also able to detect patients with different variants as well. Alternatively, RT-PCR results from saliva and NOP VTM samples showed high sensitivities of 96.45% and 95.48% with respect to each other as standard. The overall results demonstrated high performance of the rapid tests, indicating the suitability for regular surveillance at clinical facilities when using direct nasal or direct NP samples rather than NOP VTM. Additionally, the analysis also signifies not showed that RT-PCR of saliva can be used as an choice of method to RT-PCR of NOP VTM, providing an easier, non-invasive sample collection method. IMPORTANCE There are several methods for the diagnosis of coronavirus disease 2019 (COVID-19), and the choice of methods depends mostly on the resources and level of sensitivity required by the user and health care providers. Still, reverse transcription polymerase chain reaction (RT-PCR) has been chosen as the best method using direct naso-oropharyngeal swabs. There are also other methods of fast detection, such as rapid diagnostic tests (RDTs), which offer result within 15 to 20 min and have become quite popular for self-testing and in the clinical setting. The major drawback of the currently used RT-PCR method is compliance, as it may cause irritation, and patients often refuse to test in such a way. RDTs, although inexpensive, suffer from low sensitivity due to technical issues. In this article, we propose saliva as a noninvasive source for RT-PCR samples and evaluate various specimen types at different times after infection for the best possible output from COVID-19 rapid tests.
Collapse
Affiliation(s)
- Saiful Arefeen Sazed
- International Centre for Diarrhoeal Disease Research Bangladesh (icddr,b), Mohakhali, Bangladesh
| | - Mohammad Golam Kibria
- International Centre for Diarrhoeal Disease Research Bangladesh (icddr,b), Mohakhali, Bangladesh
| | - Md Fahad Zamil
- International Centre for Diarrhoeal Disease Research Bangladesh (icddr,b), Mohakhali, Bangladesh
| | - Mohammad Sharif Hossain
- International Centre for Diarrhoeal Disease Research Bangladesh (icddr,b), Mohakhali, Bangladesh
| | - Jeba Zaman Khan
- International Centre for Diarrhoeal Disease Research Bangladesh (icddr,b), Mohakhali, Bangladesh
| | - Rifat Tasnim Juthi
- International Centre for Diarrhoeal Disease Research Bangladesh (icddr,b), Mohakhali, Bangladesh
| | - Mohammad Enayet Hossain
- International Centre for Diarrhoeal Disease Research Bangladesh (icddr,b), Mohakhali, Bangladesh
| | - Dilruba Ahmed
- International Centre for Diarrhoeal Disease Research Bangladesh (icddr,b), Mohakhali, Bangladesh
| | - Zannatun Noor
- International Centre for Diarrhoeal Disease Research Bangladesh (icddr,b), Mohakhali, Bangladesh
| | - Rashidul Haque
- International Centre for Diarrhoeal Disease Research Bangladesh (icddr,b), Mohakhali, Bangladesh
| | - Mohammad Shafiul Alam
- International Centre for Diarrhoeal Disease Research Bangladesh (icddr,b), Mohakhali, Bangladesh
| |
Collapse
|
13
|
Butler KS, Carson BD, Podlevsky JD, Mayes CM, Rowland JM, Campbell D, Ricken JB, Wudiri G, Timlin JA. Singleplex, multiplex and pooled sample real-time RT-PCR assays for detection of SARS-CoV-2 in an occupational medicine setting. Sci Rep 2022; 12:17733. [PMID: 36273023 PMCID: PMC9587995 DOI: 10.1038/s41598-022-22106-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 10/10/2022] [Indexed: 01/18/2023] Open
Abstract
For workplaces which cannot operate as telework or remotely, there is a critical need for routine occupational SARS-CoV-2 diagnostic testing. Although diagnostic tests including the CDC 2019-Novel Coronavirus (2019-nCoV) Real-Time RT-PCR Diagnostic Panel (CDC Diagnostic Panel) (EUA200001) were made available early in the pandemic, resource scarcity and high demand for reagents and equipment necessitated priority of symptomatic patients. There is a clearly defined need for flexible testing methodologies and strategies with rapid turnaround of results for (1) symptomatic, (2) asymptomatic with high-risk exposures and (3) asymptomatic populations without preexisting conditions for routine screening to address the needs of an on-site work force. We developed a distinct SARS-CoV-2 diagnostic assay based on the original CDC Diagnostic Panel (EUA200001), yet, with minimum overlap for currently employed reagents to eliminate direct competition for limited resources. As the pandemic progressed with testing loads increasing, we modified the assay to include 5-sample pooling and amplicon target multiplexing. Analytical sensitivity of the pooled and multiplexed assays was rigorously tested with contrived positive samples in realistic patient backgrounds. Assay performance was determined with clinical samples previously assessed with an FDA authorized assay. Throughout the pandemic we successfully tested symptomatic, known contact and travelers within our occupational population with a ~ 24-48-h turnaround time to limit the spread of COVID-19 in the workplace. Our singleplex assay had a detection limit of 31.25 copies per reaction. The three-color multiplexed assay maintained similar sensitivity to the singleplex assay, while tripling the throughput. The pooling assay further increased the throughput to five-fold the singleplex assay, albeit with a subtle loss of sensitivity. We subsequently developed a hybrid 'multiplex-pooled' strategy to testing to address the need for both rapid analysis of samples from personnel at high risk of COVID infection and routine screening. Herein, our SARS-CoV-2 assays specifically address the needs of occupational healthcare for both rapid analysis of personnel at high-risk of infection and routine screening that is essential for controlling COVID-19 disease transmission. In addition to SARS-CoV-2 and COVID-19, this work demonstrates successful flexible assays developments and deployments with implications for emerging highly transmissible diseases and future pandemics.
Collapse
Affiliation(s)
- Kimberly S Butler
- Molecular and Microbiology Department, Sandia National Laboratories, Albuquerque, NM, 87123, USA
| | - Bryan D Carson
- Molecular and Microbiology Department, Sandia National Laboratories, Albuquerque, NM, 87123, USA
| | - Joshua D Podlevsky
- Molecular and Microbiology Department, Sandia National Laboratories, Albuquerque, NM, 87123, USA
| | - Cathryn M Mayes
- WMD Threats and Aerosol Science, Sandia National Laboratories, Albuquerque, NM, 87123, USA
| | - Jessica M Rowland
- Global Chemical and Biological Security, Sandia National Laboratories, Albuquerque, NM, 87123, USA
| | - DeAnna Campbell
- Biological and Chemical Sensors Department, Sandia National Laboratories, Albuquerque, NM, 87123, USA
| | - J Bryce Ricken
- Molecular and Microbiology Department, Sandia National Laboratories, Albuquerque, NM, 87123, USA
| | - George Wudiri
- Cooperative Nuclear Counterproliferation, Sandia National Laboratories, Albuquerque, NM, 87123, USA
| | - Jerilyn A Timlin
- Molecular and Microbiology Department, Sandia National Laboratories, Albuquerque, NM, 87123, USA.
- Computational Biology and Biophysics Department, Sandia National Laboratories, Albuquerque, NM, 87123, USA.
| |
Collapse
|
14
|
Alhamid G, Tombuloglu H, Rabaan AA, Al-Suhaimi E. SARS-CoV-2 detection methods: A comprehensive review. Saudi J Biol Sci 2022; 29:103465. [PMID: 36186678 PMCID: PMC9512523 DOI: 10.1016/j.sjbs.2022.103465] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 08/28/2022] [Accepted: 09/21/2022] [Indexed: 11/26/2022] Open
Abstract
The ongoing novel COVID-19 has remained the center of attention, since its declaration as a pandemic in March 2020, due to its rapid and uncontrollable worldwide spread. Diagnostic tests are the first line of defense against the transmission of this infectious disease among individuals, with reverse-transcription quantitative polymerase chain reaction (RT-qPCR) being the approved gold standard for showing high sensitivity and specificity in detecting SARS-CoV-2. However, alternative tests are being invested due to the global demand for facilities, reagents, and healthcare workers needed for rapid population-based testing. Also, the rapid evolution of the viral genome and the emergence of new variants necessitates updating the existing methods. Scientists are aiming to improve tests to be affordable, simple, fast, and at the same time accurate, and efficient, as well as friendly user testing. The current diagnostic methods are either molecular-based that detect nucleic acids abundance, like RT-qPCR and reverse-transcription loop-mediated isothermal amplification (RT-LAMP); or immunologically based that detect the presence of antigens or antibodies in patients’ specimens, like enzyme-linked immunosorbent assay (ELISA), lateral flow assay (LFA), chemiluminescent immunoassay (CLIA), and neutralization assay. In addition to these strategies, sensor-based or CRISPR applications are promising tools for the rapid detection of SARS-CoV-2. This review summarizes the most recent updates on the SARS-CoV-2 detection methods with their limitations. It will guide researchers, epidemiologists, and clinicians in identifying a more rapid, reliable, and sensitive method of diagnosing SARS-CoV-2 including the most recent variant of concern Omicron.
Collapse
Affiliation(s)
- Galyah Alhamid
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia.,Biotechnology Master Program, Imam Abdulrahman bin Faisal University, Saudi Arabia
| | - Huseyin Tombuloglu
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia
| | - Ebtesam Al-Suhaimi
- Department of Biology, College of Science and Institute of Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, 31441, Dammam, Saudi Arabia
| |
Collapse
|
15
|
Shim JE, Kim YJ, Choe JH, Lee TG, You EA. Single-Nanoparticle-Based Digital SERS Sensing Platform for the Accurate Quantitative Detection of SARS-CoV-2. ACS APPLIED MATERIALS & INTERFACES 2022; 14:38459-38470. [PMID: 35951983 PMCID: PMC9396967 DOI: 10.1021/acsami.2c07497] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
To prevent the ongoing spread of the highly infectious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), accurate and early detection based on a rapid, ultrasensitive, and highly reliable sensing method is crucially important. Here, we present a bumpy core-shell surface-enhanced Raman spectroscopy (SERS) nanoprobe-based sensing platform with single-nanoparticle (SNP)-based digital SERS analysis. The tailorable bumpy core-shell SERS nanoprobe with an internal self-assembled monolayer of 4-nitrobenzenethiol Raman reporters, synthesized using HEPES biological buffer, generates a strong, uniform, and reproducible SERS signal with an SNP-level sensitive and narrowly distributed enhancement factor (2.1 × 108 to 2.2 × 109). We also propose an SNP-based digital SERS analysis method that provides direct visualization of SNP detection at ultralow concentrations and reliable quantification over a wide range of concentrations. The bumpy core-shell SERS nanoprobe-based sensing platform with SNP-based digital SERS analysis achieves the ultrasensitive and quantitative detection of the SARS-CoV-2 spike protein with a limit of detection of 7.1 × 10-16 M over a wide dynamic range from 3.7 × 10-15 to 3.7 × 10-8 M, far outperforming the conventional enzyme-linked immunosorbent assay method for the target protein. Furthermore, it can detect mutated spike proteins from the SARS-CoV-2 variants, representing the key mutations of Alpha, Beta, Gamma, Delta, and Omicron variants. Therefore, this sensing platform can be effectively and efficiently used for the accurate and early detection of SARS-CoV-2 and be adapted for the ultrasensitive and reliable detection of other highly infectious diseases.
Collapse
Affiliation(s)
- Jae-Eul Shim
- Nanobiosensor
Team, Korea Research Institute of Standards
and Science, Daejeon 34113, Republic of Korea
| | - Young Jun Kim
- Nanobiosensor
Team, Korea Research Institute of Standards
and Science, Daejeon 34113, Republic of Korea
| | - Jong-Ho Choe
- Department
of Physics, Korea University, Seoul 02841, Republic of Korea
| | - Tae Geol Lee
- Nanobiosensor
Team, Korea Research Institute of Standards
and Science, Daejeon 34113, Republic of Korea
| | - Eun-Ah You
- Nanobiosensor
Team, Korea Research Institute of Standards
and Science, Daejeon 34113, Republic of Korea
| |
Collapse
|
16
|
Pelegri‐Martinez E, Guruceaga X, Martin‐Souto L, Abad‐Diaz‐de‐Cerio A, Rementeria A, Dominguez A, Gallego M, Martinez O, Arana‐Arri E, Aranzamendi M, Ramirez‐Garcia A. Flexible multiplex
PCR
to detect
SARS‐CoV
‐2, coronavirus
OC43
and influenza A virus in nasopharyngeal swab samples. J Appl Microbiol 2022; 133:3534-3545. [PMID: 35988051 PMCID: PMC9537992 DOI: 10.1111/jam.15788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Eduardo Pelegri‐Martinez
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology University of the Basque Country (UPV/EHU) Barrio Sarriena s/n,48940 Leioa Spain
| | - Xabier Guruceaga
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology University of the Basque Country (UPV/EHU) Barrio Sarriena s/n,48940 Leioa Spain
| | - Leire Martin‐Souto
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology University of the Basque Country (UPV/EHU) Barrio Sarriena s/n,48940 Leioa Spain
| | - Ana Abad‐Diaz‐de‐Cerio
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology University of the Basque Country (UPV/EHU) Barrio Sarriena s/n,48940 Leioa Spain
| | - Aitor Rementeria
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology University of the Basque Country (UPV/EHU) Barrio Sarriena s/n,48940 Leioa Spain
| | - Alazne Dominguez
- Biocruces Bizkaia Health Research Institute Hospital Universitario Cruces Bilbao Spain
| | - Mikel Gallego
- Biocruces Bizkaia Health Research Institute Hospital Universitario Cruces Bilbao Spain
| | - Oscar Martinez
- Biocruces Bizkaia Health Research Institute Hospital Universitario Cruces Bilbao Spain
| | - Eunate Arana‐Arri
- Biocruces Bizkaia Health Research Institute Hospital Universitario Cruces Bilbao Spain
| | - Maitane Aranzamendi
- Biocruces Bizkaia Health Research Institute Hospital Universitario Cruces Bilbao Spain
| | - Andoni Ramirez‐Garcia
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology University of the Basque Country (UPV/EHU) Barrio Sarriena s/n,48940 Leioa Spain
| |
Collapse
|
17
|
Direct PCR with the CDC 2019 SARS-CoV-2 assay: optimization for limited-resource settings. Sci Rep 2022; 12:11756. [PMID: 35817781 PMCID: PMC9272867 DOI: 10.1038/s41598-022-15356-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 06/15/2022] [Indexed: 12/03/2022] Open
Abstract
PCR-based diagnostics generally require nucleic acid extraction from patient specimens prior to amplification. As highlighted early in the COVID-19 pandemic, extraction steps may be difficult to scale during times of massive demand and limited reagent supply. Forgoing an extraction step, we previously reported that the N1 primer/probe-set of the widespread CDC COVID-19 assay maintains high categorical sensitivity (95%) and specificity (100%) with direct inoculation of viral transport media (VTM) into qRT-PCR reactions. In contrast, the N2 set demonstrated a prominent Ct delay and low sensitivity (33%) without extraction. In the current study, we have improved the performance of this modified CDC assay (in particular the N2 set) by incorporating N1/N2/RNase P multiplexing and dissecting the effects of annealing temperature, VTM interference, and inoculum volume. The latter two factors exerted a more prominent effect on the performance of N2 than N1, although these effects were largely overcome through elevated annealing temperature. This unextracted/multiplex protocol was evaluated with 41 SARS-CoV-2 positive and 43 negative clinical samples, demonstrating a categorical sensitivity of 92.7% and specificity of 100% versus the unmodified CDC methodology. Overall, this work offers a generalizable strategy to maximize testing capabilities for COVID-19 or other emerging pathogens when resources are constrained.
Collapse
|
18
|
Malekshahi A, Khanizadeh S, Fallahi S, Talei G, Birjandi M, Hajizadeh F. Diagnostic power of one-step and two-step RT-qPCR methods to SARS‑CoV‑2 detection. BMC Infect Dis 2022; 22:505. [PMID: 35641907 PMCID: PMC9152310 DOI: 10.1186/s12879-022-07478-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/20/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Coronavirus-2019 (COVID-2019) is a novel coronavirus known as Acute Respiratory Syndrome (SARS-CoV-2). The premier standard test for SARS-CoV-2 diagnosis is a one-step RT-qPCR method, which requires specific probes and reagents. Therefore, detection on a large scale is expensive and cannot be very accurate. METHODS A cost-effective technique based on SYBR green was evaluated in the current study. The specific primers for S and N genes were designed, then performed the cross-reactivity test with other coronavirus and respiratory viruses positive samples. Moreover, the analytical sensitivity test was carried out with 8 dilutions (1:10). Lastly, the SARS-CoV-2 clinical samples (n = 210) were tested by these two methods, and receiver operating characteristic (ROC) analysis was performed to investigate the incremental diagnostic value of each gene in the study methods. RESULTS The two-step method detected up to 6th dilutions of the SARS-CoV-2 samples and did not show any amplification of the positive samples of other respiratory viruses. ROC analysis revealed a diagnostic ability of the two-step method for SARS-CoV-2 with an area under the ROC curve of ≥ 0.7 (P ˂ 0.05) and relatively high sensitivity and specificity. The combination of N and S genes increased the sensitivity up to 88%, specificity up to 86%, and area under the ROC curve up to 0.85 (95% confidence interval (95% CI) 0.72 to 0.93, P = 0.0461). CONCLUSION Our findings indicated that the two-step method has comparable sensitivity and specificity to the one-step method. Therefore, this method can be considered a potential diagnostic method for diagnosing and monitoring COVID-19 patients. It suggests that when the one-step RT-qPCR method is not available, the two-step RT-qPCR can be used to identify SARS-CoV-2.
Collapse
Affiliation(s)
- Asra Malekshahi
- Department of Virology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Sayyad Khanizadeh
- Department of Virology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran. .,Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.
| | - Shirzad Fallahi
- Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.,Department of Parasitology and Mycology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Gholamreza Talei
- Department of Virology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mehdi Birjandi
- Department of Biostatistics and Epidemiology, School of Health and Nutrition, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Faezeh Hajizadeh
- Department of Virology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
19
|
Correa IA, de Souza Rodrigues T, Queiroz A, de França Nascimento L, Wolff T, Akamine RN, Kuriyama SN, da Costa LJ, Fidalgo-Neto AA. Boosting SARS-CoV-2 detection combining pooling and multiplex strategies. Sci Rep 2022; 12:8684. [PMID: 35606418 PMCID: PMC9126939 DOI: 10.1038/s41598-022-12747-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/28/2022] [Indexed: 11/09/2022] Open
Abstract
RT-qPCR is the gold standard technique available for SARS-CoV-2 detection. However, the long test run time and costs associated with this type of molecular testing are a challenge in a pandemic scenario. Due to high testing demand, especially for monitoring highly vaccinated populations facing the emergence of new SARS-CoV-2 variants, strategies that allow the increase in testing capacity and cost savings are needed. We evaluated a RT-qPCR pooling strategy either as a simplex and multiplex assay, as well as performed in-silico statistical modeling analysis validated with specimen samples obtained from a mass testing program of Industry Federation of the State of Rio de Janeiro (Brazil). Although the sensitivity reduction in samples pooled with 32 individuals in a simplex assay was observed, the high-test sensitivity was maintained even when 16 and 8 samples were pooled. This data was validated with the results obtained in our mass testing program with a cost saving of 51.5% already considering the expenditures with pool sampling that were analyzed individually. We also demonstrated that the pooling approach using 4 or 8 samples tested with a triplex combination in RT-qPCR is feasible to be applied without sensitivity loss, mainly combining Nucleocapsid (N) and Envelope (E) gene targets. Our data shows that the combination of pooling in a RT-qPCR multiplex assay could strongly contribute to mass testing programs with high-cost savings and low-reagent consumption while maintaining test sensitivity. In addition, the test capacity is predicted to be considerably increased which is fundamental for the control of the virus spread in the actual pandemic scenario.
Collapse
Affiliation(s)
- Isadora Alonso Correa
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-617, Brazil
- Instituto Senai de Inovação em Química Verde, Rua Moraes e Silva, 53-9, Maracanã, Rio de Janeiro, RJ, 20271-030, Brazil
| | - Tamires de Souza Rodrigues
- Centro de Inovação SESI em Saúde Ocupacional, Rio de Janeiro, 20271-030, Brazil
- Centro de Pesquisa Leopoldo Américo Miguez de Mello (CENPES)-Petrobrás, Rio de Janeiro, 21941-915, Brazil
| | - Alex Queiroz
- Centro de Inovação SESI em Saúde Ocupacional, Rio de Janeiro, 20271-030, Brazil
- Centro de Pesquisa Leopoldo Américo Miguez de Mello (CENPES)-Petrobrás, Rio de Janeiro, 21941-915, Brazil
| | - Leon de França Nascimento
- Centro de Inovação SESI em Saúde Ocupacional, Rio de Janeiro, 20271-030, Brazil
- Centro de Pesquisa Leopoldo Américo Miguez de Mello (CENPES)-Petrobrás, Rio de Janeiro, 21941-915, Brazil
| | - Thiago Wolff
- Centro de Inovação SESI em Saúde Ocupacional, Rio de Janeiro, 20271-030, Brazil
- Centro de Pesquisa Leopoldo Américo Miguez de Mello (CENPES)-Petrobrás, Rio de Janeiro, 21941-915, Brazil
| | - Rubens Nobumoto Akamine
- Laboratório de Genética e Imunologia das Infecções Virais, Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Bloco I, Lab.I-SS 048, Cidade Universitária, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Sergio Noboru Kuriyama
- Centro de Inovação SESI em Saúde Ocupacional, Rio de Janeiro, 20271-030, Brazil
- Centro de Pesquisa Leopoldo Américo Miguez de Mello (CENPES)-Petrobrás, Rio de Janeiro, 21941-915, Brazil
| | - Luciana Jesus da Costa
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-617, Brazil.
- Instituto Senai de Inovação em Química Verde, Rua Moraes e Silva, 53-9, Maracanã, Rio de Janeiro, RJ, 20271-030, Brazil.
| | - Antonio Augusto Fidalgo-Neto
- Centro de Inovação SESI em Saúde Ocupacional, Rio de Janeiro, 20271-030, Brazil.
- Centro de Pesquisa Leopoldo Américo Miguez de Mello (CENPES)-Petrobrás, Rio de Janeiro, 21941-915, Brazil.
| |
Collapse
|
20
|
Bhosle SM, Tran JP, Yu S, Geiger J, Jackson JD, Crozier I, Crane A, Wada J, Warren TK, Kuhn JH, Worwa G. Duplex One-Step RT-qPCR Assays for Simultaneous Detection of Genomic and Subgenomic RNAs of SARS-CoV-2 Variants. Viruses 2022; 14:1066. [PMID: 35632807 PMCID: PMC9143037 DOI: 10.3390/v14051066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/11/2022] [Accepted: 05/11/2022] [Indexed: 12/04/2022] Open
Abstract
A hallmark of severe acute respiratory syndrome virus (SARS-CoV-2) replication is the discontinuous transcription of open reading frames (ORFs) encoding structural virus proteins. Real-time reverse transcription PCR (RT-qPCR) assays in previous publications used either single or multiplex assays for SARS-CoV-2 genomic RNA detection and a singleplex approach for subgenomic RNA detection. Although multiplex approaches often target multiple genomic RNA segments, an assay that concurrently detects genomic and subgenomic targets has been lacking. To bridge this gap, we developed two duplex one-step RT-qPCR assays that detect SARS-CoV-2 genomic ORF1a and either subgenomic spike or subgenomic ORF3a RNAs. All primers and probes for our assays were designed to bind to variants of SARS-CoV-2. In this study, our assays successfully detected SARS-CoV-2 Washington strain and delta variant isolates at various time points during the course of live virus infection in vitro. The ability to quantify subgenomic SARS-CoV-2 RNA is important, as it may indicate the presence of active replication, particularly in samples collected longitudinally. Furthermore, specific detection of genomic and subgenomic RNAs simultaneously in a single reaction increases assay efficiency, potentially leading to expedited lucidity about viral replication and pathogenesis of any variant of SARS-CoV-2.
Collapse
Affiliation(s)
- Sushma M. Bhosle
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA; (S.M.B.); (J.P.T.); (S.Y.); (J.G.); (J.D.J.); (A.C.); (J.W.); (T.K.W.)
| | - Julie P. Tran
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA; (S.M.B.); (J.P.T.); (S.Y.); (J.G.); (J.D.J.); (A.C.); (J.W.); (T.K.W.)
| | - Shuiqing Yu
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA; (S.M.B.); (J.P.T.); (S.Y.); (J.G.); (J.D.J.); (A.C.); (J.W.); (T.K.W.)
| | - Jillian Geiger
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA; (S.M.B.); (J.P.T.); (S.Y.); (J.G.); (J.D.J.); (A.C.); (J.W.); (T.K.W.)
| | - Jennifer D. Jackson
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA; (S.M.B.); (J.P.T.); (S.Y.); (J.G.); (J.D.J.); (A.C.); (J.W.); (T.K.W.)
| | - Ian Crozier
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA;
| | - Anya Crane
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA; (S.M.B.); (J.P.T.); (S.Y.); (J.G.); (J.D.J.); (A.C.); (J.W.); (T.K.W.)
| | - Jiro Wada
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA; (S.M.B.); (J.P.T.); (S.Y.); (J.G.); (J.D.J.); (A.C.); (J.W.); (T.K.W.)
| | - Travis K. Warren
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA; (S.M.B.); (J.P.T.); (S.Y.); (J.G.); (J.D.J.); (A.C.); (J.W.); (T.K.W.)
| | - Jens H. Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA; (S.M.B.); (J.P.T.); (S.Y.); (J.G.); (J.D.J.); (A.C.); (J.W.); (T.K.W.)
| | - Gabriella Worwa
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA; (S.M.B.); (J.P.T.); (S.Y.); (J.G.); (J.D.J.); (A.C.); (J.W.); (T.K.W.)
| |
Collapse
|
21
|
Comparative Evaluation of Six SARS-CoV-2 Real-Time RT-PCR Diagnostic Approaches Shows Substantial Genomic Variant–Dependent Intra- and Inter-Test Variability, Poor Interchangeability of Cycle Threshold and Complementary Turn-Around Times. Pathogens 2022; 11:pathogens11040462. [PMID: 35456137 PMCID: PMC9029830 DOI: 10.3390/pathogens11040462] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/30/2022] [Accepted: 04/10/2022] [Indexed: 12/23/2022] Open
Abstract
Several professional societies advise against using real-time Reverse-Transcription PCR (rtRT-PCR) cycle threshold (Ct) values to guide clinical decisions. We comparatively assessed the variability of Ct values generated by six diagnostic approaches by testing serial dilutions of well-characterized isolates of 10 clinically most relevant SARS-CoV-2 genomic variants: Alpha, Beta, Gamma, Delta, Eta, Iota, Omicron, A.27, B.1.258.17, and B.1 with D614G mutation. Comparison of three fully automated rtRT-PCR analyzers and a reference manual rtRT-PCR assay using RNA isolated with three different nucleic acid isolation instruments showed substantial inter-variant intra-test and intra-variant inter-test variability. Ct value differences were dependent on both the rtRT-PCR platform and SARS-CoV-2 genomic variant. Differences ranging from 2.0 to 8.4 Ct values were observed when testing equal concentrations of different SARS-CoV-2 variants. Results confirm that Ct values are an unreliable surrogate for viral load and should not be used as a proxy of infectivity and transmissibility, especially when different rtRT-PCR assays are used in parallel and multiple SARS-CoV-2 variants are circulating. A detailed turn-around time (TAT) comparative assessment showed substantially different TATs, but parallel use of different diagnostic approaches was beneficial and complementary, allowing release of results for more than 81% of non-priority samples within 8 h after admission.
Collapse
|
22
|
Luo Z, Ye C, Xiao H, Yin J, Liang Y, Ruan Z, Luo D, Gao D, Tan Q, Li Y, Zhang Q, Liu W, Wu J. Optimization of loop-mediated isothermal amplification (LAMP) assay for robust visualization in SARS-CoV-2 and emerging variants diagnosis. Chem Eng Sci 2022; 251:117430. [PMID: 35043022 PMCID: PMC8757654 DOI: 10.1016/j.ces.2022.117430] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/28/2021] [Accepted: 01/07/2022] [Indexed: 11/24/2022]
Abstract
Loop-mediated isothermal amplification (LAMP) is widely used in detection of pathogenic microorganisms including SARS-CoV-2. However, the performance of LAMP assay needs further exploration in the emerging SARS-CoV-2 variants test. Here, we design serials of primers and select an optimal set for LAMP-based on SARS-CoV-2 N gene for a robust and visual assay in SARS-CoV-2 diagnosis. The limit of detectable template reaches 10 copies of N gene per 25 μL reaction at isothermal 58℃ within 40 min. Importantly, the primers for LAMP assay locate at 12 to 213 nt of N gene, a highly conservative region, which serves as a compatible test in emerging SARS-CoV-2 variants. Comparison to a commercial qPCR assay, this LAMP assay exerts the high viability in diagnosis of 41 clinical samples. Our study optimizes an advantageous LAMP assay for colorimetric detection of SARS-CoV-2 and emerging variants, which is hopeful to be a promising test in COVID-19 surveillance.
Collapse
Key Words
- COVID-19, coronavirus disease 2019
- CRISPR, clustered regularly interspaced short palindromic repeats
- Coronavirus disease 2019 (COVID-19) pandemic
- Ct, threshold cycle
- Emerging SARS-CoV-2 variants
- IVD, in-vitro diagnosis
- LAMP, Loop-mediated isothermal amplification
- Loop-mediated isothermal amplification (LAMP)
- NGS, next-generation sequencing
- POC, point-of-care
- RT-qPCR, real-time reverse transcriptase quantitative polymerase chain reaction
- SARS-CoV-2, severe acute respiratory syndrome coronavirus 2
- Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) diagnosis
- VOC, variants of concern
Collapse
Affiliation(s)
- Zhen Luo
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China.,Foshan Institute of Medical Microbiology, Foshan 528315, China
| | - Chunhong Ye
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China
| | - Heng Xiao
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China.,Foshan Institute of Medical Microbiology, Foshan 528315, China
| | - Jialing Yin
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China
| | - Yicong Liang
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China
| | - Zhihui Ruan
- Foshan Institute of Medical Microbiology, Foshan 528315, China
| | - Danju Luo
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Daolong Gao
- Guangdong Longfan Biological Science and Technology Company, Shunde District, Foshan 528315, China
| | - Qiuping Tan
- Guangdong Longfan Biological Science and Technology Company, Shunde District, Foshan 528315, China
| | - Yongkui Li
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China.,Foshan Institute of Medical Microbiology, Foshan 528315, China
| | - Qiwei Zhang
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China.,Foshan Institute of Medical Microbiology, Foshan 528315, China
| | - Weiyong Liu
- Tongji Hospital of Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jianguo Wu
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China.,Foshan Institute of Medical Microbiology, Foshan 528315, China.,Guangdong Longfan Biological Science and Technology Company, Shunde District, Foshan 528315, China
| |
Collapse
|
23
|
Vindeirinho JM, Pinho E, Azevedo NF, Almeida C. SARS-CoV-2 Diagnostics Based on Nucleic Acids Amplification: From Fundamental Concepts to Applications and Beyond. Front Cell Infect Microbiol 2022; 12:799678. [PMID: 35402302 PMCID: PMC8984495 DOI: 10.3389/fcimb.2022.799678] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
COVID-19 pandemic ignited the development of countless molecular methods for the diagnosis of SARS-CoV-2 based either on nucleic acid, or protein analysis, with the first establishing as the most used for routine diagnosis. The methods trusted for day to day analysis of nucleic acids rely on amplification, in order to enable specific SARS-CoV-2 RNA detection. This review aims to compile the state-of-the-art in the field of nucleic acid amplification tests (NAATs) used for SARS-CoV-2 detection, either at the clinic level, or at the Point-Of-Care (POC), thus focusing on isothermal and non-isothermal amplification-based diagnostics, while looking carefully at the concerning virology aspects, steps and instruments a test can involve. Following a theme contextualization in introduction, topics about fundamental knowledge on underlying virology aspects, collection and processing of clinical samples pave the way for a detailed assessment of the amplification and detection technologies. In order to address such themes, nucleic acid amplification methods, the different types of molecular reactions used for DNA detection, as well as the instruments requested for executing such routes of analysis are discussed in the subsequent sections. The benchmark of paradigmatic commercial tests further contributes toward discussion, building on technical aspects addressed in the previous sections and other additional information supplied in that part. The last lines are reserved for looking ahead to the future of NAATs and its importance in tackling this pandemic and other identical upcoming challenges.
Collapse
Affiliation(s)
- João M. Vindeirinho
- National Institute for Agrarian and Veterinarian Research (INIAV, I.P), Vairão, Portugal
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Faculty of Engineering, University of Porto, Porto, Portugal
- Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto, Porto, Portugal
| | - Eva Pinho
- National Institute for Agrarian and Veterinarian Research (INIAV, I.P), Vairão, Portugal
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Faculty of Engineering, University of Porto, Porto, Portugal
- Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto, Porto, Portugal
| | - Nuno F. Azevedo
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Faculty of Engineering, University of Porto, Porto, Portugal
- Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto, Porto, Portugal
| | - Carina Almeida
- National Institute for Agrarian and Veterinarian Research (INIAV, I.P), Vairão, Portugal
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Faculty of Engineering, University of Porto, Porto, Portugal
- Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto, Porto, Portugal
- Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
| |
Collapse
|
24
|
He Y, Xie T, Tu Q, Tong Y. Importance of sample input volume for accurate SARS-CoV-2 qPCR testing. Anal Chim Acta 2022; 1199:339585. [PMID: 35227385 PMCID: PMC8820412 DOI: 10.1016/j.aca.2022.339585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/30/2022] [Accepted: 02/05/2022] [Indexed: 11/26/2022]
Abstract
Nucleic acid testing is the most widely used detection method for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the coronavirus disease 2019 (COVID-19) pandemic. Currently, a number of COVID-19 real-time quantitative reverse transcription PCR (qPCR) kits with high sensitivity and specificity are available for SARS-CoV-2 testing. However, these qPCR assays are not always reliable in detecting low viral load samples (Ct-value ≥ 35), resulting in inconclusive or false-negative results. Here, we used a Poisson distribution to illustrate the inconsistent performance of qPCR tests in detecting low viral load samples. From this, we concluded that the false-negative outcomes resulted from the random occurrences of sampling zero target molecules in a single test, and the probability to sample zero target molecules in one test decreased significantly with increasing purified RNA or initial sample input volume. At a given RNA concentration of 0.5 copy/μL, the probability of sampling zero RNA molecules decreased from 36.79% to close to 0.67% after increasing the RNA input volume from 2 to 10 μL. A SARS-CoV-2 qPCR assay with an LOD of 300 copies/mL was used to validate the improved consistency of the qPCR tests. We found that the false-negative qPCR results of clinical COVID-19 samples with a Ct ≥ 35 decreased by 50% after increasing the input of purified RNA from 2 to 10 μL. The consistency, accuracy, and robustness of nucleic acid testing for SARS-CoV-2 samples with low viral loads can be improved by increasing the sample input volume.
Collapse
|
25
|
Rocha SM, Fagre AC, Latham AS, Cummings JE, Aboellail TA, Reigan P, Aldaz DA, McDermott CP, Popichak KA, Kading RC, Schountz T, Theise ND, Slayden RA, Tjalkens RB. A Novel Glucocorticoid and Androgen Receptor Modulator Reduces Viral Entry and Innate Immune Inflammatory Responses in the Syrian Hamster Model of SARS-CoV-2 Infection. Front Immunol 2022; 13:811430. [PMID: 35250984 PMCID: PMC8889105 DOI: 10.3389/fimmu.2022.811430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/25/2022] [Indexed: 12/15/2022] Open
Abstract
Despite significant research efforts, treatment options for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remain limited. This is due in part to a lack of therapeutics that increase host defense to the virus. Replication of SARS-CoV-2 in lung tissue is associated with marked infiltration of macrophages and activation of innate immune inflammatory responses that amplify tissue injury. Antagonists of the androgen (AR) and glucocorticoid (GR) receptors have shown efficacy in models of COVID-19 and in clinical studies because the cell surface proteins required for viral entry, angiotensin converting enzyme 2 (ACE2) and the transmembrane protease, serine 2 (TMPRSS2), are transcriptionally regulated by these receptors. We postulated that the GR and AR modulator, PT150, would reduce infectivity of SARS-CoV-2 and prevent inflammatory lung injury in the Syrian golden hamster model of COVID-19 by down-regulating expression of critical genes regulated through these receptors. Animals were infected intranasally with 2.5 × 104 TCID50/ml equivalents of SARS-CoV-2 (strain 2019-nCoV/USA-WA1/2020) and PT150 was administered by oral gavage at 30 and 100 mg/Kg/day for a total of 7 days. Animals were examined at 3, 5 and 7 days post-infection (DPI) for lung histopathology, viral load and production of proteins regulating the progression of SARS-CoV-2 infection. Results indicated that oral administration of PT150 caused a dose-dependent decrease in replication of SARS-CoV-2 in lung, as well as in expression of ACE2 and TMPRSS2. Lung hypercellularity and infiltration of macrophages and CD4+ T-cells were dramatically decreased in PT150-treated animals, as was tissue damage and expression of IL-6. Molecular docking studies suggest that PT150 binds to the co-activator interface of the ligand-binding domain of both AR and GR, thereby acting as an allosteric modulator and transcriptional repressor of these receptors. Phylogenetic analysis of AR and GR revealed a high degree of sequence identity maintained across multiple species, including humans, suggesting that the mechanism of action and therapeutic efficacy observed in Syrian hamsters would likely be predictive of positive outcomes in patients. PT150 is therefore a strong candidate for further clinical development for the treatment of COVID-19 across variants of SARS-CoV-2.
Collapse
Affiliation(s)
- Savannah M. Rocha
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States
| | - Anna C. Fagre
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Amanda S. Latham
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States
| | - Jason E. Cummings
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Tawfik A. Aboellail
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Philip Reigan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Denver, CO, United States
| | - Devin A. Aldaz
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Casey P. McDermott
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States
| | - Katriana A. Popichak
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Rebekah C. Kading
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Tony Schountz
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Neil D. Theise
- Depatment of Pathology, New York University (NYU)-Grossman School of Medicine, New York, NY, United States
| | - Richard A. Slayden
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Ronald B. Tjalkens
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
26
|
Suh IB, Lim J, Kim HS, Rhim G, Kim H, Kim H, Lee SM, Park HS, Song HJ, Hong M, Shin GS, Kim MJ. Development and Evaluation of AccuPower COVID-19 Multiplex Real-Time RT-PCR Kit and AccuPower SARS-CoV-2 Multiplex Real-Time RT-PCR Kit for SARS-CoV-2 Detection in Sputum, NPS/OPS, Saliva and Pooled Samples. PLoS One 2022; 17:e0263341. [PMID: 35143538 PMCID: PMC8830688 DOI: 10.1371/journal.pone.0263341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 01/17/2022] [Indexed: 11/19/2022] Open
Abstract
Rapid and accurate detection of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is essential for the successful control of the current global COVID-19 pandemic. The real-time reverse transcription polymerase chain reaction (Real-time RT-PCR) is the most widely used detection technique. This research describes the development of two novel multiplex real-time RT-PCR kits, AccuPower® COVID-19 Multiplex Real-Time RT-PCR Kit (NCVM) specifically designed for use with the ExiStation™48 system (comprised of ExiPrep™48 Dx and Exicycler™96 by BIONEER, Korea) for sample RNA extraction and PCR detection, and AccuPower® SARS-CoV-2 Multiplex Real-Time RT-PCR Kit (SCVM) designed to be compatible with manufacturers' on-market PCR instruments. The limit of detection (LoD) of NCVM was 120 copies/mL and the LoD of the SCVM was 2 copies/μL for both the Pan-sarbecovirus gene and the SARS-CoV-2 gene. The AccuPower® kits demonstrated high precision with no cross reactivity to other respiratory-related microorganisms. The clinical performance of AccuPower® kits was evaluated using the following clinical samples: sputum and nasopharyngeal/oropharyngeal swab (NPS/OPS) samples. Overall agreement of the AccuPower® kits with a Food and Drug Administration (FDA) approved emergency use authorized commercial kit (STANDARD™ M nCoV Real-Time Detection kit, SD BIOSENSOR, Korea) was above 95% (Cohen's kappa coefficient ≥ 0.95), with a sensitivity of over 95%. The NPS/OPS specimen pooling experiment was conducted to verify the usability of AccuPower® kits on pooled samples and the results showed greater than 90% agreement with individual NPS/OPS samples. The clinical performance of AccuPower® kits with saliva samples was also compared with NPS/OPS samples and demonstrated over 95% agreement (Cohen's kappa coefficient > 0.95). This study shows the BIONEER NCVM and SCVM assays are comparable with the current standard confirmation assay and are suitable for effective clinical management and control of SARS-CoV-2.
Collapse
Affiliation(s)
- In Bum Suh
- Department of Laboratory Medicine, College of Medicine, Kangwon National University, Chuncheon, Korea
| | - Jaegyun Lim
- Department of Laboratory Medicine, Myongji Hospital, Hanyang University College of Medicine, Goyang, Korea
| | - Hyo Seon Kim
- Research Administration Team, Institute of Clinical Medicine, Myongji Hospital, Hanyang University College of Medicine, Goyang, Korea
| | - Guil Rhim
- Department of General Affairs, Korean Association of Otorhinolaryngologists, Seoul, Korea
| | - Heebum Kim
- Department of Laboratory Medicine, College of Medicine, Kangwon National University, Chuncheon, Korea
| | - Hana Kim
- Department of Laboratory Medicine, College of Medicine, Kangwon National University, Chuncheon, Korea
| | - Sae-Mi Lee
- Department of Laboratory Medicine, College of Medicine, Kangwon National University, Chuncheon, Korea
| | - Hyun-sang Park
- Department of Laboratory Medicine, College of Medicine, Kangwon National University, Chuncheon, Korea
| | - Hyun Ju Song
- Department of Laboratory Medicine, College of Medicine, Kangwon National University, Chuncheon, Korea
| | - MyungKook Hong
- Department of Laboratory Medicine, College of Medicine, Kangwon National University, Chuncheon, Korea
| | - Gyung Sook Shin
- Department of Laboratory Medicine, College of Medicine, Kangwon National University, Chuncheon, Korea
| | - Moon Jung Kim
- Department of Laboratory Medicine, Myongji Hospital, Hanyang University College of Medicine, Goyang, Korea
| |
Collapse
|
27
|
Zhuang W, Camacho L, Silva CS, Thomson M, Snyder K. A robust biostatistical method leverages informative but uncertainly determined qPCR data for biomarker detection, early diagnosis, and treatment. PLoS One 2022; 17:e0263070. [PMID: 35100319 PMCID: PMC8803186 DOI: 10.1371/journal.pone.0263070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 01/11/2022] [Indexed: 11/19/2022] Open
Abstract
As a common medium-throughput technique, qPCR (quantitative real-time polymerase chain reaction) is widely used to measure levels of nucleic acids. In addition to accurate and complete data, experimenters have unavoidably observed some incomplete and uncertainly determined qPCR data because of intrinsically low overall amounts of biological materials, such as nucleic acids present in biofluids. When there are samples with uncertainly determined qPCR data, some investigators apply the statistical complete-case method by excluding the subset of samples with uncertainly determined data from analysis (CO), while others simply choose not to analyze (CNA) these datasets altogether. To include as many observations as possible in analysis for interesting differential changes between groups, some investigators set incomplete observations equal to the maximum quality qPCR cycle (MC), such as 32 and 40. Although straightforward, these methods may decrease the sample size, skew the data distribution, and compromise statistical power and research reproducibility across replicate qPCR studies. To overcome the shortcomings of the existing, commonly-used qPCR data analysis methods and to join the efforts in advancing statistical analysis in rigorous preclinical research, we propose a robust nonparametric statistical cycle-to-threshold method (CTOT) to analyze incomplete qPCR data for two-group comparisons. CTOT incorporates important characteristics of qPCR data and time-to-event statistical methodology, resulting in a novel analytical method for qPCR data that is built around good quality data from all subjects, certainly determined or not. Considering the benchmark full data (BFD), we compared the abilities of CTOT, CO, MC, and CNA statistical methods to detect interesting differential changes between groups with informative but uncertainly determined qPCR data. Our simulations and applications show that CTOT improves the power of detecting and confirming differential changes in many situations over the three commonly used methods without excess type I errors. The robust nonparametric statistical method of CTOT helps leverage qPCR technology and increase the power to detect differential changes that may assist decision making with respect to biomarker detection and early diagnosis, with the goal of improving the management of patient healthcare.
Collapse
Affiliation(s)
- Wei Zhuang
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, United States of America
| | - Luísa Camacho
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, United States of America
| | - Camila S. Silva
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, United States of America
| | - Michael Thomson
- Office of New Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Kevin Snyder
- Office of New Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
| |
Collapse
|
28
|
Maniego J, Pesko B, Hincks P, Taylor P, Stewart G, Proudman C, Scarth J, Ryder E. Direct sequence confirmation of qPCR products for gene doping assay validation in horses. Drug Test Anal 2022; 14:1017-1025. [PMID: 34994083 DOI: 10.1002/dta.3219] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/15/2021] [Accepted: 12/22/2021] [Indexed: 11/11/2022]
Abstract
The misuse of gene therapy by the introduction of transgenes via plasmid or viral vectors as a doping agent is an increasing concern in human and animal sports, not only in consideration to fair competition but also potential detrimental effects to welfare. Doping events can be detected by PCR amplification of a transgene-specific region of DNA. The quantitative nature of real time qPCR makes it particularly suited to confirmatory investigations where precise limits of detection can be calculated. To fully validate a qPCR experiment, it is highly desirable to confirm the identity of the amplicon. Although post-PCR techniques such as melt curve and fragment size analysis can provide strong evidence that the amplicon is as expected, sequence identity confirmation may be beneficial as part of regulatory proceedings. We present here our investigation into two alternative processes for the direct assessment of qPCR products for five genes using next-generation sequencing: ligation of sequence-ready adapters to qPCR products, and qPCR assays performed with primers tailed with Illumina flow cell binding sites. To fully test the robustness of the techniques at concentrations required for gene doping detection, we also calculated a putative limit of detection for the assays. Both ligated adapters and tailed primers were successful in producing sequence data for the qPCR products without further amplification. Ligated adapters are preferred, however, as they do not require re-optimisation of existing qPCR assays.
Collapse
Affiliation(s)
- Jillian Maniego
- Sport and Specialised Analytical Services, LGC, Newmarket Road, Fordham, Cambridgeshire, UK
| | - Bogusia Pesko
- Sport and Specialised Analytical Services, LGC, Newmarket Road, Fordham, Cambridgeshire, UK
| | - Pamela Hincks
- Sport and Specialised Analytical Services, LGC, Newmarket Road, Fordham, Cambridgeshire, UK
| | - Polly Taylor
- Sport and Specialised Analytical Services, LGC, Newmarket Road, Fordham, Cambridgeshire, UK
| | - Graham Stewart
- School of Biosciences and Medicine, University of Surrey, Guildford, Surrey
| | | | - James Scarth
- Sport and Specialised Analytical Services, LGC, Newmarket Road, Fordham, Cambridgeshire, UK
| | - Edward Ryder
- Sport and Specialised Analytical Services, LGC, Newmarket Road, Fordham, Cambridgeshire, UK
| |
Collapse
|
29
|
Costa MM, Martin H, Estellon B, Dupé FX, Saby F, Benoit N, Tissot-Dupont H, Million M, Pradines B, Granjeaud S, Almeras L. Exploratory Study on Application of MALDI-TOF-MS to Detect SARS-CoV-2 Infection in Human Saliva. J Clin Med 2022; 11:295. [PMID: 35053990 PMCID: PMC8781148 DOI: 10.3390/jcm11020295] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/16/2021] [Accepted: 12/31/2021] [Indexed: 12/24/2022] Open
Abstract
SARS-CoV-2 has caused a large outbreak since its emergence in December 2019. COVID-19 diagnosis became a priority so as to isolate and treat infected individuals in order to break the contamination chain. Currently, the reference test for COVID-19 diagnosis is the molecular detection (RT-qPCR) of the virus from nasopharyngeal swab (NPS) samples. Although this sensitive and specific test remains the gold standard, it has several limitations, such as the invasive collection method, the relative high cost and the duration of the test. Moreover, the material shortage to perform tests due to the discrepancy between the high demand for tests and the production capacities puts additional constraints on RT-qPCR. Here, we propose a PCR-free method for diagnosing SARS-CoV-2 based on matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) profiling and machine learning (ML) models from salivary samples. Kinetic saliva samples were collected at enrollment and ten and thirty days later (D0, D10 and D30), to assess the classification performance of the ML models compared to the molecular tests performed on NPS specimens. Spectra were generated using an optimized protocol of saliva collection and successive quality control steps were developed to ensure the reliability of spectra. A total of 360 averaged spectra were included in the study. At D0, the comparison of MS spectra from SARS-CoV-2 positive patients (n = 105) with healthy healthcare controls (n = 51) revealed nine peaks that significantly distinguished the two groups. Among the five ML models tested, support vector machine with linear kernel (SVM-LK) provided the best performance on the training dataset (accuracy = 85.2%, sensitivity = 85.1%, specificity = 85.3%, F1-Score = 85.1%). The application of the SVM-LK model on independent datasets confirmed its performances with 88.9% and 80.8% of correct classification for samples collected at D0 and D30, respectively. Conversely, at D10, the proportion of correct classification had fallen to 64.3%. The analysis of saliva samples by MALDI-TOF MS and ML appears as an interesting supplementary tool for COVID-19 diagnosis, despite the mitigated results obtained for convalescent patients (D10).
Collapse
Affiliation(s)
- Monique Melo Costa
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 91220 Marseille, France; (M.M.C.); (H.M.); (F.S.); (N.B.); (B.P.)
- Aix-Marseille University, IRD, SSA, AP-HM, VITROME, 13005 Marseille, France
- IHU Méditerranée Infection, 13005 Marseille, France; (H.T.-D.); (M.M.)
| | - Hugo Martin
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 91220 Marseille, France; (M.M.C.); (H.M.); (F.S.); (N.B.); (B.P.)
- Aix-Marseille University, IRD, SSA, AP-HM, VITROME, 13005 Marseille, France
- IHU Méditerranée Infection, 13005 Marseille, France; (H.T.-D.); (M.M.)
| | - Bertrand Estellon
- Laboratoire d’Informatique et Systèmes, Aix-Marseille University, CNRS, University de Toulon, 13013 Marseille, France; (B.E.); (F.-X.D.)
| | - François-Xavier Dupé
- Laboratoire d’Informatique et Systèmes, Aix-Marseille University, CNRS, University de Toulon, 13013 Marseille, France; (B.E.); (F.-X.D.)
| | - Florian Saby
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 91220 Marseille, France; (M.M.C.); (H.M.); (F.S.); (N.B.); (B.P.)
- Aix-Marseille University, IRD, SSA, AP-HM, VITROME, 13005 Marseille, France
- IHU Méditerranée Infection, 13005 Marseille, France; (H.T.-D.); (M.M.)
| | - Nicolas Benoit
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 91220 Marseille, France; (M.M.C.); (H.M.); (F.S.); (N.B.); (B.P.)
- Aix-Marseille University, IRD, SSA, AP-HM, VITROME, 13005 Marseille, France
- IHU Méditerranée Infection, 13005 Marseille, France; (H.T.-D.); (M.M.)
- Centre National de Référence du Paludisme, 13005 Marseille, France
| | - Hervé Tissot-Dupont
- IHU Méditerranée Infection, 13005 Marseille, France; (H.T.-D.); (M.M.)
- Aix-Marseille University, IRD, AP-HM, MEPHI, 13005 Marseille, France
| | - Matthieu Million
- IHU Méditerranée Infection, 13005 Marseille, France; (H.T.-D.); (M.M.)
- Aix-Marseille University, IRD, AP-HM, MEPHI, 13005 Marseille, France
| | - Bruno Pradines
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 91220 Marseille, France; (M.M.C.); (H.M.); (F.S.); (N.B.); (B.P.)
- Aix-Marseille University, IRD, SSA, AP-HM, VITROME, 13005 Marseille, France
- IHU Méditerranée Infection, 13005 Marseille, France; (H.T.-D.); (M.M.)
- Centre National de Référence du Paludisme, 13005 Marseille, France
| | - Samuel Granjeaud
- CRCM Integrative Bioinformatics Platform, Centre de Recherche en Cancérologie de Marseille, INSERM, U1068, Institut Paoli-Calmettes, CNRS, UMR7258, Aix-Marseille Université UM 105, 13009 Marseille, France;
| | - Lionel Almeras
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 91220 Marseille, France; (M.M.C.); (H.M.); (F.S.); (N.B.); (B.P.)
- Aix-Marseille University, IRD, SSA, AP-HM, VITROME, 13005 Marseille, France
- IHU Méditerranée Infection, 13005 Marseille, France; (H.T.-D.); (M.M.)
| |
Collapse
|
30
|
Durand M, Thibault P, Lévesque S, Brault A, Carignan A, Valiquette L, Martin P, Labbé S. Detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its first variants in fourplex real-time quantitative reverse transcription-PCR assays. MICROBIAL CELL (GRAZ, AUSTRIA) 2022; 9:1-20. [PMID: 35083313 PMCID: PMC8717086 DOI: 10.15698/mic2022.01.767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 11/23/2022]
Abstract
The early diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections is required to identify and isolate contagious patients to prevent further transmission of SARS-CoV-2. In this study, we present a multitarget real-time TaqMan reverse transcription PCR (rRT-PCR) assay for the quantitative detection of SARS-CoV-2 and some of its circulating variants harboring mutations that give the virus a selective advantage. Seven different primer-probe sets that included probes containing locked nucleic acid (LNA) nucleotides were designed to amplify specific wild-type and mutant sequences in Orf1ab, Envelope (E), Spike (S), and Nucleocapsid (N) genes. Furthermore, a newly developed primer-probe set targeted human β2-microglobulin (B2M) as a highly sensitive internal control for RT efficacy. All singleplex and fourplex assays detected ≤ 14 copies/reaction of quantified synthetic RNA transcripts, with a linear amplification range of nine logarithmic orders. Primer-probe sets for detection of SARS-CoV-2 exhibited no false-positive amplifications with other common respiratory pathogens, including human coronaviruses NL63, 229E, OC43, and HKU-1. Fourplex assays were evaluated using 160 clinical samples positive for SARS-CoV-2. Results showed that SARS-CoV-2 viral RNA was detected in all samples, including viral strains harboring mutations in the Spike coding sequence that became dominant in the pandemic. Given the emergence of SARS-CoV-2 variants and their rapid spread in some populations, fourplex rRT-PCR assay containing four primer-probe sets represents a reliable approach to allow quicker detection of circulating relevant variants in a single reaction.
Collapse
Affiliation(s)
- Mathieu Durand
- Plateforme RNomique et de Génomique Fonctionnelle, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Philippe Thibault
- Plateforme RNomique et de Génomique Fonctionnelle, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Simon Lévesque
- Département de Microbiologie et d'Infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Laboratoire de Microbiologie, Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Estrie, Centre Hospitalier Universitaire de Sherbrooke (CHUS), Sherbrooke, QC, Canada
| | - Ariane Brault
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Alex Carignan
- Département de Microbiologie et d'Infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Louis Valiquette
- Département de Microbiologie et d'Infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Philippe Martin
- Département de Microbiologie et d'Infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Simon Labbé
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
31
|
Alpert T, Vogels CBF, Breban MI, Petrone ME, Wyllie AL, Grubaugh ND, Fauver JR. Sequencing SARS-CoV-2 genomes from saliva. Virus Evol 2022; 8:veab098. [PMID: 35542310 PMCID: PMC9074962 DOI: 10.1093/ve/veab098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/27/2021] [Accepted: 12/31/2021] [Indexed: 11/13/2022] Open
Abstract
Genomic sequencing is crucial to understanding the epidemiology and evolution of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Often, genomic studies rely on remnant diagnostic material, typically nasopharyngeal (NP) swabs, as input into whole-genome SARS-CoV-2 next-generation sequencing pipelines. Saliva has proven to be a safe and stable specimen for the detection of SARS-CoV-2 RNA via traditional diagnostic assays; however, saliva is not commonly used for SARS-CoV-2 sequencing. Using the ARTIC Network amplicon-generation approach with sequencing on the Oxford Nanopore MinION, we demonstrate that sequencing SARS-CoV-2 from saliva produces genomes comparable to those from NP swabs, and that RNA extraction is necessary to generate complete genomes from saliva. In this study, we show that saliva is a useful specimen type for genomic studies of SARS-CoV-2.
Collapse
Affiliation(s)
- Tara Alpert
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, 60 College St, New Haven, CT 06510, USA
| | - Chantal B F Vogels
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, 60 College St, New Haven, CT 06510, USA
| | - Mallery I Breban
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, 60 College St, New Haven, CT 06510, USA
| | | | - Anne L Wyllie
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, 60 College St, New Haven, CT 06510, USA
| | - Nathan D Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, 60 College St, New Haven, CT 06510, USA
- Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect St., New Haven, CT 06511, USA
| | - Joseph R Fauver
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, 60 College St, New Haven, CT 06510, USA
| |
Collapse
|
32
|
Alathari MJA, Al Mashhadany Y, Mokhtar MHH, Burham N, Bin Zan MSD, A Bakar AA, Arsad N. Human Body Performance with COVID-19 Affectation According to Virus Specification Based on Biosensor Techniques. SENSORS (BASEL, SWITZERLAND) 2021; 21:8362. [PMID: 34960456 PMCID: PMC8704003 DOI: 10.3390/s21248362] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022]
Abstract
Life was once normal before the first announcement of COVID-19's first case in Wuhan, China, and what was slowly spreading became an overnight worldwide pandemic. Ever since the virus spread at the end of 2019, it has been morphing and rapidly adapting to human nature changes which cause difficult conundrums in the efforts of fighting it. Thus, researchers were steered to investigate the virus in order to contain the outbreak considering its novelty and there being no known cure. In contribution to that, this paper extensively reviewed, compared, and analyzed two main points; SARS-CoV-2 virus transmission in humans and detection methods of COVID-19 in the human body. SARS-CoV-2 human exchange transmission methods reviewed four modes of transmission which are Respiratory Transmission, Fecal-Oral Transmission, Ocular transmission, and Vertical Transmission. The latter point particularly sheds light on the latest discoveries and advancements in the aim of COVID-19 diagnosis and detection of SARS-CoV-2 virus associated with this disease in the human body. The methods in this review paper were classified into two categories which are RNA-based detection including RT-PCR, LAMP, CRISPR, and NGS and secondly, biosensors detection including, electrochemical biosensors, electronic biosensors, piezoelectric biosensors, and optical biosensors.
Collapse
Affiliation(s)
- Mohammed Jawad Ahmed Alathari
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia; (M.J.A.A.); (M.H.H.M.); (N.B.); (M.S.D.B.Z.); (A.A.A.B.)
| | - Yousif Al Mashhadany
- Department of Electrical Engineering, College of Engineering, University of Anbar, Anbar 00964, Iraq;
| | - Mohd Hadri Hafiz Mokhtar
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia; (M.J.A.A.); (M.H.H.M.); (N.B.); (M.S.D.B.Z.); (A.A.A.B.)
| | - Norhafizah Burham
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia; (M.J.A.A.); (M.H.H.M.); (N.B.); (M.S.D.B.Z.); (A.A.A.B.)
- School of Electrical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam 40450, Malaysia
| | - Mohd Saiful Dzulkefly Bin Zan
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia; (M.J.A.A.); (M.H.H.M.); (N.B.); (M.S.D.B.Z.); (A.A.A.B.)
| | - Ahmad Ashrif A Bakar
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia; (M.J.A.A.); (M.H.H.M.); (N.B.); (M.S.D.B.Z.); (A.A.A.B.)
| | - Norhana Arsad
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia; (M.J.A.A.); (M.H.H.M.); (N.B.); (M.S.D.B.Z.); (A.A.A.B.)
| |
Collapse
|
33
|
Clinical Evaluation of a New Antigen-Based COVID-19 Rapid Diagnostic Test from Symptomatic Patients. Diagnostics (Basel) 2021; 11:diagnostics11122300. [PMID: 34943537 PMCID: PMC8699944 DOI: 10.3390/diagnostics11122300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 12/23/2022] Open
Abstract
Accurate diagnosis at the right moment is the prerequisite for treatment of any disease. Failure to correctly diagnose a disease can result in highly detrimental effects, unmistakably a crucial factor during the COVID-19 pandemic. RT-PCR is the gold standard for COVID-19 detection while there are other test procedures available, such as LAMP, X-Ray, and ELISA. However, these tests are expensive, require sophisticated equipment and a highly trained workforce, and multiple hours or even days are often required to obtain the test results. A rapid and cheap detection system can thus render a solution to the screening system on a larger scale and be added as an aid to the current detection processes. Recently, some rapid antigen-based COVID-19 tests devices have been developed and commercialized. In this study, we evaluated the clinical performance of a new rapid detection device (OnSite® COVID-19 Ag Rapid Test by CTK Biotech Inc., Poway, CA, USA) on COVID-19 symptomatic patients (n = 380). The overall sensitivity and specificity were 91.0% (95% CI: 84.8–95.3%) and 99.2% (95% CI: 97.1–99.9), against gold standard RT-PCR. The kit was capable of detecting patients even after 06 days of onset of symptoms and the sensitivity can be maximized to 98% in samples with an average RT-PCR Ct ≤ 26.48, demonstrating a high potential of the kit for clinical diagnosis of symptomatic patients in healthcare facilities.
Collapse
|
34
|
Navarro A, Gómez L, Sanseverino I, Niegowska M, Roka E, Pedraccini R, Vargha M, Lettieri T. SARS-CoV-2 detection in wastewater using multiplex quantitative PCR. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:148890. [PMID: 34298359 PMCID: PMC8278834 DOI: 10.1016/j.scitotenv.2021.148890] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 05/03/2023]
Abstract
A multiplex reverse transcription quantitative PCR (RT-qPCR)-based method was designed for the simultaneous detection of different SARS-CoV-2 genes. In this study, we used three target genes encoding for the nucleocapsid 1 and 3 (N1, N3), and the spike (S) proteins, all commonly used in the detection of SARS-CoV-2 in human and environmental samples. The performance of the multiplex assay, compared to the single assay was assessed for the standard calibration curve, required for absolute quantification, and then, for the real environmental samples to detect SARS-CoV-2. For this latter, four environmental samples were collected at a local wastewater treatment plant (WWTP). The results showed that the cycle threshold (Ct) values of the multiplex were comparable to the values obtained by the singleplex PCR. The amplification of the three target genes indicated the presence of SARS-CoV-2 in the four water samples with an increasing trend in February and these results were confirmed in the multiplex approach, showing the robustness of this method and its applicability for the relative abundance analysis among the samples. Overall, both the laboratory and field work results demonstrated that the multiplex PCR assay developed in this study could provide a method for SARS-CoV-2 detection as robust as the single qPCR, but faster and cost-effective, reducing by three times the number of reactions, and consequently the handling time and reagents.
Collapse
Affiliation(s)
- Anna Navarro
- European Commission Joint Research Centre, Via E. Fermi 2749, 21027 Ispra, VA, Italy
| | - Livia Gómez
- European Commission Joint Research Centre, Via E. Fermi 2749, 21027 Ispra, VA, Italy
| | - Isabella Sanseverino
- European Commission Joint Research Centre, Via E. Fermi 2749, 21027 Ispra, VA, Italy
| | - Magdalena Niegowska
- European Commission Joint Research Centre, Via E. Fermi 2749, 21027 Ispra, VA, Italy
| | - Eszter Roka
- Department of Public Health Laboratory, National Public Health Centre, Albert Flórián út 2-6, 1097 Budapest, Hungary
| | | | - Marta Vargha
- Department of Public Health Laboratory, National Public Health Centre, Albert Flórián út 2-6, 1097 Budapest, Hungary
| | - Teresa Lettieri
- European Commission Joint Research Centre, Via E. Fermi 2749, 21027 Ispra, VA, Italy.
| |
Collapse
|
35
|
Stahl EC, Gopez AR, Tsuchida CA, Fan VB, Moehle EA, Witkowsky LB, Hamilton JR, Lin-Shiao E, McElroy M, McDevitt SL, Ciling A, Tsui CK, Pestal K, Gildea HK, Keller A, Sylvain IA, Williams C, Hirsh A, Ehrenberg AJ, Kantor R, Metzger M, Nelson KL, Urnov FD, Ringeisen BR, Giannikopoulos P, Doudna JA. LuNER: Multiplexed SARS-CoV-2 detection in clinical swab and wastewater samples. PLoS One 2021; 16:e0258263. [PMID: 34758033 PMCID: PMC8580221 DOI: 10.1371/journal.pone.0258263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 09/22/2021] [Indexed: 01/03/2023] Open
Abstract
Clinical and surveillance testing for the SARS-CoV-2 virus relies overwhelmingly on RT-qPCR-based diagnostics, yet several popular assays require 2-3 separate reactions or rely on detection of a single viral target, which adds significant time, cost, and risk of false-negative results. Furthermore, multiplexed RT-qPCR tests that detect at least two SARS-CoV-2 genes in a single reaction are typically not affordable for large scale clinical surveillance or adaptable to multiple PCR machines and plate layouts. We developed a RT-qPCR assay using the Luna Probe Universal One-Step RT-qPCR master mix with publicly available primers and probes to detect SARS-CoV-2 N gene, E gene, and human RNase P (LuNER) to address these shortcomings and meet the testing demands of a university campus and the local community. This cost-effective test is compatible with BioRad or Applied Biosystems qPCR machines, in 96 and 384-well formats, with or without sample pooling, and has a detection sensitivity suitable for both clinical reporting and wastewater surveillance efforts.
Collapse
Affiliation(s)
- Elizabeth C. Stahl
- University of California, Berkeley, Berkeley, CA, United States of America
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, United States of America
| | - Allan R. Gopez
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, United States of America
| | - Connor A. Tsuchida
- University of California, Berkeley, Berkeley, CA, United States of America
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, United States of America
| | - Vinson B. Fan
- University of California, Berkeley, Berkeley, CA, United States of America
| | - Erica A. Moehle
- University of California, Berkeley, Berkeley, CA, United States of America
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, United States of America
| | - Lea B. Witkowsky
- University of California, Berkeley, Berkeley, CA, United States of America
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, United States of America
| | - Jennifer R. Hamilton
- University of California, Berkeley, Berkeley, CA, United States of America
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, United States of America
| | - Enrique Lin-Shiao
- University of California, Berkeley, Berkeley, CA, United States of America
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, United States of America
| | - Matthew McElroy
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, United States of America
| | - Shana L. McDevitt
- University of California, Berkeley, Berkeley, CA, United States of America
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, United States of America
| | - Alison Ciling
- University of California, Berkeley, Berkeley, CA, United States of America
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, United States of America
| | - C. Kimberly Tsui
- University of California, Berkeley, Berkeley, CA, United States of America
| | - Kathleen Pestal
- University of California, Berkeley, Berkeley, CA, United States of America
| | - Holly K. Gildea
- University of California, Berkeley, Berkeley, CA, United States of America
| | - Amanda Keller
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, United States of America
| | - Iman A. Sylvain
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, United States of America
| | - Clara Williams
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, United States of America
| | - Ariana Hirsh
- University of California, Berkeley, Berkeley, CA, United States of America
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, United States of America
| | | | - Rose Kantor
- University of California, Berkeley, Berkeley, CA, United States of America
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, United States of America
| | - Matthew Metzger
- University of California, Berkeley, Berkeley, CA, United States of America
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, United States of America
| | - Kara L. Nelson
- University of California, Berkeley, Berkeley, CA, United States of America
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, United States of America
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, United States of America
| | - Fyodor D. Urnov
- University of California, Berkeley, Berkeley, CA, United States of America
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, United States of America
| | - Bradley R. Ringeisen
- University of California, Berkeley, Berkeley, CA, United States of America
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, United States of America
| | - Petros Giannikopoulos
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, United States of America
| | - Jennifer A. Doudna
- University of California, Berkeley, Berkeley, CA, United States of America
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, United States of America
- Howard Hughes Medical Institute, University of California, Berkeley, CA, United States of America
| | | |
Collapse
|
36
|
Li Z, Chen X, Huang Z, Zhou J, Liu R, Lv Y. Multiplex Nucleic Acid Assay of SARS-CoV-2 via a Lanthanide Nanoparticle-Tagging Strategy. Anal Chem 2021; 93:12714-12722. [PMID: 34494424 PMCID: PMC8442555 DOI: 10.1021/acs.analchem.1c02657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Indexed: 01/28/2023]
Abstract
Early diagnosis, early isolation, and early treatment are efficient solutions to control the COVID-19 pandemic. To achieve the accurate early diagnosis of SARS-CoV-2, a multiplex detection strategy is required for the cross-validation to solve the problem of "false negative" of the existing gold standard assay. Here, we present a multicomponent nucleic acid assay platform for SARS-CoV-2 detection based on lanthanide nanoparticle (LnNP)-tagging strategy. For targeting SARS-CoV-2's RNA fragments ORF1ab gene, RdRp gene, and E gene, three LnNP probes can be used simultaneously to identify three sites in one sample through elemental mass spectrometry detection with limits of detection of 1.2, 1.3, and 1.3 fmol, respectively. With the multisite cross-validation, we envision that this multiplex and sensitive detection platform may provide an effective strategy for SARS-CoV-2 fast screening with a high accuracy.
Collapse
Affiliation(s)
- Ziyan Li
- Analytical
& Testing Center, Sichuan University, Chengdu 610064, Sichuan, China
| | - Xue Chen
- Key
Laboratory of Green Chemistry & Technology, Ministry of Education,
College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, China
| | - Zili Huang
- Key
Laboratory of Green Chemistry & Technology, Ministry of Education,
College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, China
| | - Jing Zhou
- Analytical
& Testing Center, Sichuan University, Chengdu 610064, Sichuan, China
| | - Rui Liu
- Key
Laboratory of Green Chemistry & Technology, Ministry of Education,
College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, China
| | - Yi Lv
- Analytical
& Testing Center, Sichuan University, Chengdu 610064, Sichuan, China
| |
Collapse
|
37
|
Comparison of SARS-CoV-2 Detection by Rapid Antigen and by Three Commercial RT-qPCR Tests: A Study from Martin University Hospital in Slovakia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18137037. [PMID: 34280974 PMCID: PMC8295881 DOI: 10.3390/ijerph18137037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/10/2021] [Accepted: 06/24/2021] [Indexed: 12/24/2022]
Abstract
The global pandemic of coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is having a tremendous impact on the global economy, health care systems and the lives of almost all people in the world. The Central European country of Slovakia reached one of the highest daily mortality rates per 100,000 inhabitants in the first 3 months of 2021, despite implementing strong prophylactic measures, lockdowns and repeated nationwide antigen testing. The present study reports a comparison of the performance of the Standard Q COVID-19 antigen test (SD Biosensor) with three commercial RT-qPCR kits (vDetect COVID-19-MultiplexDX, gb SARS-CoV-2 Multiplex-GENERI BIOTECH Ltd. and Genvinset COVID-19 [E]-BDR Diagnostics) in the detection of infected individuals among employees of the Martin University Hospital in Slovakia. Health care providers, such as doctors and nurses, are classified as “critical infrastructure”, and there is no doubt about the huge impact that incorrect results could have on patients. Out of 1231 samples, 14 were evaluated as positive for SARS-CoV-2 antigen presence, and all of them were confirmed by RT-qPCR kit 1 and kit 2. As another 26 samples had a signal in the E gene, these 40 samples were re-isolated and subsequently re-analysed using the three kits, which detected the virus in 22, 23 and 12 cases, respectively. The results point to a divergence not only between antigen and RT-qPCR tests, but also within the “gold standard” RT-qPCR testing. Performance analysis of the diagnostic antigen test showed the positive predictive value (PPV) to be 100% and negative predictive value (NPV) to be 98.10%, indicating that 1.90% of individuals with a negative result were, in fact, positive. If these data are extrapolated to the national level, where the mean daily number of antigen tests was 250,000 in April 2021, it points to over 4700 people per day being misinterpreted and posing a risk of virus shedding. While mean Ct values of the samples that were both antigen and RT-qPCR positive were about 20 (kit 1: 20.47 and 20.16 for Sarbeco E and RdRP, kit 2: 19.37 and 19.99 for Sarbeco E and RdRP and kit 3: 17.47 for ORF1b/RdRP), mean Ct values of the samples that were antigen-negative but RT-qPCR-positive were about 30 (kit 1: 30.67 and 30.00 for Sarbeco E and RdRP, kit 2: 29.86 and 31.01 for Sarbeco E and RdRP and kit 3: 27.47 for ORF1b/RdRP). It confirms the advantage of antigen test in detecting the most infectious individuals with a higher viral load. However, the reporting of Ct values is still a matter of ongoing debates and should not be conducted without normalisation to standardised controls of known concentration.
Collapse
|
38
|
Alpert T, Vogels CB, Breban MI, Petrone ME, Wyllie AL, Grubaugh ND, Fauver JR. Sequencing SARS-CoV-2 Genomes from Saliva. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.06.21.21259289. [PMID: 34230934 PMCID: PMC8259911 DOI: 10.1101/2021.06.21.21259289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Genomic sequencing is crucial to understanding the epidemiology and evolution of SARS-CoV-2. Often, genomic studies rely on remnant diagnostic material, typically nasopharyngeal swabs, as input into whole genome SARS-CoV-2 next-generation sequencing pipelines. Saliva has proven to be a safe and stable specimen for the detection of SARS-CoV-2 RNA via traditional diagnostic assays, however saliva is not commonly used for SARS-CoV-2 sequencing. Using the ARTIC Network amplicon-generation approach with sequencing on the Oxford Nanopore MinION, we demonstrate that sequencing SARS-CoV-2 from saliva produces genomes comparable to those from nasopharyngeal swabs, and that RNA extraction is necessary to generate complete genomes from saliva. In this study, we show that saliva is a useful specimen type for genomic studies of SARS-CoV-2.
Collapse
Affiliation(s)
- Tara Alpert
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Chantal B.F. Vogels
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Mallery I. Breban
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Mary E. Petrone
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | | | - Anne L. Wyllie
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Nathan D. Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06510, USA
| | - Joseph R. Fauver
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| |
Collapse
|
39
|
Klein J, Brito A, Trubin P, Lu P, Wong P, Alpert T, Pena-Hernandez M, Haynes W, Kamath K, Liu F, Vogels C, Fauver J, Lucas C, Oh JE, Mao T, Silva J, Wyllie A, Muenker MC, Casanovas-Massana A, Moore A, Petrone M, Kalinich C, Cruz CD, Farhadian S, Ring A, Shon J, Ko A, Grubaugh N, Goldman-Israelow B, Iwasaki A, Azar M. Longitudinal immune profiling of a SARS-CoV-2 reinfection in a solid organ transplant recipient. RESEARCH SQUARE 2021:rs.3.rs-405958. [PMID: 34013255 PMCID: PMC8132249 DOI: 10.21203/rs.3.rs-405958/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The underlying immunologic deficiencies enabling SARS-CoV-2 reinfections are currently unknown. Here we describe a renal-transplant recipient who developed recurrent, symptomatic SARS-CoV-2 infection 7 months after primary infection. To elucidate the immunological mechanisms responsible for reinfection, we performed longitudinal profiling of cellular and humoral responses during both primary and recurrent SARS-CoV-2 infection. We found that the patient responded to the primary infection with transient, poor-quality adaptive immune responses that was further compromised by intervening treatment for acute rejection of the renal allograft prior to reinfection. Importantly, we identified the development of neutralizing antibodies and humoral memory responses prior to SARS-CoV-2 reinfection. However, these neutralizing antibodies failed to confer protection against reinfection, suggesting that additional factors are required for efficient prevention of SARS-CoV-2 reinfection. Further, we found no evidence supporting viral evasion of primary adaptive immune responses, suggesting that susceptibility to reinfection may be determined by host factors rather than pathogen adaptation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Ji Eun Oh
- Korea Advanced Institute of Science and Technology
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Vogels CBF, Breban MI, Ott IM, Alpert T, Petrone ME, Watkins AE, Kalinich CC, Earnest R, Rothman JE, Goes de Jesus J, Morales Claro I, Magalhães Ferreira G, Crispim MAE, Singh L, Tegally H, Anyaneji UJ, Hodcroft EB, Mason CE, Khullar G, Metti J, Dudley JT, MacKay MJ, Nash M, Wang J, Liu C, Hui P, Murphy S, Neal C, Laszlo E, Landry ML, Muyombwe A, Downing R, Razeq J, de Oliveira T, Faria NR, Sabino EC, Neher RA, Fauver JR, Grubaugh ND. Multiplex qPCR discriminates variants of concern to enhance global surveillance of SARS-CoV-2. PLoS Biol 2021; 19:e3001236. [PMID: 33961632 PMCID: PMC8133773 DOI: 10.1371/journal.pbio.3001236] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/19/2021] [Accepted: 04/16/2021] [Indexed: 12/25/2022] Open
Abstract
With the emergence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variants that may increase transmissibility and/or cause escape from immune responses, there is an urgent need for the targeted surveillance of circulating lineages. It was found that the B.1.1.7 (also 501Y.V1) variant, first detected in the United Kingdom, could be serendipitously detected by the Thermo Fisher TaqPath COVID-19 PCR assay because a key deletion in these viruses, spike Δ69-70, would cause a "spike gene target failure" (SGTF) result. However, a SGTF result is not definitive for B.1.1.7, and this assay cannot detect other variants of concern (VOC) that lack spike Δ69-70, such as B.1.351 (also 501Y.V2), detected in South Africa, and P.1 (also 501Y.V3), recently detected in Brazil. We identified a deletion in the ORF1a gene (ORF1a Δ3675-3677) in all 3 variants, which has not yet been widely detected in other SARS-CoV-2 lineages. Using ORF1a Δ3675-3677 as the primary target and spike Δ69-70 to differentiate, we designed and validated an open-source PCR assay to detect SARS-CoV-2 VOC. Our assay can be rapidly deployed in laboratories around the world to enhance surveillance for the local emergence and spread of B.1.1.7, B.1.351, and P.1.
Collapse
Affiliation(s)
- Chantal B. F. Vogels
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Mallery I. Breban
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Isabel M. Ott
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Tara Alpert
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Mary E. Petrone
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Anne E. Watkins
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Chaney C. Kalinich
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Rebecca Earnest
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Jessica E. Rothman
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Jaqueline Goes de Jesus
- Departamento de Molestias Infecciosas e Parasitarias and Instituto de Medicina Tropical da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Ingra Morales Claro
- Departamento de Molestias Infecciosas e Parasitarias and Instituto de Medicina Tropical da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Giulia Magalhães Ferreira
- Departamento de Molestias Infecciosas e Parasitarias and Instituto de Medicina Tropical da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Laboratório de Virologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Myuki A. E. Crispim
- Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas, Manaus, Brazil
| | | | - Lavanya Singh
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Houriiyah Tegally
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Ugochukwu J. Anyaneji
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | | | - Emma B. Hodcroft
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | | | - Gaurav Khullar
- Tempus Labs, Chicago, Illinois, United States of America
| | - Jessica Metti
- Tempus Labs, Chicago, Illinois, United States of America
| | - Joel T. Dudley
- Tempus Labs, Chicago, Illinois, United States of America
| | | | - Megan Nash
- Tempus Labs, Chicago, Illinois, United States of America
| | - Jianhui Wang
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Chen Liu
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Pei Hui
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Steven Murphy
- Murphy Medical Associates, Greenwich, Connecticut, United States of America
| | - Caleb Neal
- Murphy Medical Associates, Greenwich, Connecticut, United States of America
| | - Eva Laszlo
- Murphy Medical Associates, Greenwich, Connecticut, United States of America
| | - Marie L. Landry
- Departments of Laboratory Medicine and Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Anthony Muyombwe
- Connecticut State Department of Public Health, Rocky Hill, Connecticut, United States of America
| | - Randy Downing
- Connecticut State Department of Public Health, Rocky Hill, Connecticut, United States of America
| | - Jafar Razeq
- Connecticut State Department of Public Health, Rocky Hill, Connecticut, United States of America
| | - Tulio de Oliveira
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Nuno R. Faria
- Departamento de Molestias Infecciosas e Parasitarias and Instituto de Medicina Tropical da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- MRC Centre for Global Infectious Disease Analysis, J-IDEA, Imperial College London, London, United Kingdom
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Ester C. Sabino
- Departamento de Molestias Infecciosas e Parasitarias and Instituto de Medicina Tropical da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Richard A. Neher
- Biozentrum, University of Basel, Basel, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Joseph R. Fauver
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Nathan D. Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
| |
Collapse
|
41
|
Tombuloglu H, Sabit H, Al-Suhaimi E, Al Jindan R, Alkharsah KR. Development of multiplex real-time RT-PCR assay for the detection of SARS-CoV-2. PLoS One 2021; 16:e0250942. [PMID: 33914804 PMCID: PMC8084238 DOI: 10.1371/journal.pone.0250942] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 04/16/2021] [Indexed: 12/21/2022] Open
Abstract
The outbreak of the new human coronavirus SARS-CoV-2 (also known as 2019-nCoV) continues to increase globally. The real-time reverse transcription polymerase chain reaction (rRT-PCR) is the most used technique in virus detection. However, possible false-negative and false-positive results produce misleading consequences, making it necessary to improve existing methods. Here, we developed a multiplex rRT-PCR diagnostic method, which targets two viral genes (RdRP and E) and one human gene (RP) simultaneously. The reaction was tested by using pseudoviral RNA and human target mRNA sequences as a template. Also, the protocol was validated by using 14 clinical SARS-CoV-2 positive samples. The results are in good agreement with the CDC authorized Cepheid`s Xpert® Xpress SARS-CoV-2 diagnostic system (100%). Unlike single gene targeting strategies, the current method provides the amplification of two viral regions in the same PCR reaction. Therefore, an accurate SARS-CoV-2 diagnostic assay was provided, which allows testing of 91 samples in 96-well plates in per run. Thanks to this strategy, fast, reliable, and easy-to-use rRT-PCR method is obtained to diagnose SARS-CoV-2.
Collapse
Affiliation(s)
- Huseyin Tombuloglu
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Hussein Sabit
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Ebtesam Al-Suhaimi
- Department of Biology, College of Science and Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Reem Al Jindan
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Khaled R. Alkharsah
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
42
|
Knyazev S, Chhugani K, Sarwal V, Ayyala R, Singh H, Karthikeyan S, Deshpande D, Comarova Z, Lu A, Porozov Y, Wu A, Abedalthagafi MS, Nagaraj SH, Smith AL, Skums P, Ladner J, Lam TTY, Wu NC, Zelikovsky A, Knight R, Crandall KA, Mangul S. Unlocking capacities of viral genomics for the COVID-19 pandemic response. ARXIV 2021:arXiv:2104.14005v3. [PMID: 33948451 PMCID: PMC8095210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Revised: 06/04/2021] [Indexed: 12/25/2022]
Abstract
More than any other infectious disease epidemic, the COVID-19 pandemic has been characterized by the generation of large volumes of viral genomic data at an incredible pace due to recent advances in high-throughput sequencing technologies, the rapid global spread of SARS-CoV-2, and its persistent threat to public health. However, distinguishing the most epidemiologically relevant information encoded in these vast amounts of data requires substantial effort across the research and public health communities. Studies of SARS-CoV-2 genomes have been critical in tracking the spread of variants and understanding its epidemic dynamics, and may prove crucial for controlling future epidemics and alleviating significant public health burdens. Together, genomic data and bioinformatics methods enable broad-scale investigations of the spread of SARS-CoV-2 at the local, national, and global scales and allow researchers the ability to efficiently track the emergence of novel variants, reconstruct epidemic dynamics, and provide important insights into drug and vaccine development and disease control. Here, we discuss the tremendous opportunities that genomics offers to unlock the effective use of SARS-CoV-2 genomic data for efficient public health surveillance and guiding timely responses to COVID-19.
Collapse
Affiliation(s)
- Sergey Knyazev
- Department of Computer Science, College of Art and Science, Georgia State University, 1 Park Place, Room 618, Atlanta, GA 30303, USA
| | - Karishma Chhugani
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Room 713. Los Angeles, CA 90089, USA
| | - Varuni Sarwal
- Department of Computer Science, University of California Los Angeles, 580 Portola Plaza, Los Angeles, CA 90095, USA
| | - Ram Ayyala
- Department of Neuroscience, College of Life Sciences, University of California Los Angeles, 580 Portola Plaza, Los Angeles, CA 90095, USA
| | - Harman Singh
- Department of Electrical Engineering, Indian Institute of Technology, Hauz Khas, New Delhi, 110016, India
| | - Smruthi Karthikeyan
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Dhrithi Deshpande
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Room 713. Los Angeles, CA 90089, USA
| | - Zoia Comarova
- Paradigm Environmental, 3911 Old Lee Highway, Fairfax, VA 22030
| | - Angela Lu
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Room 713. Los Angeles, CA 90089-9121, USA
| | - Yuri Porozov
- World-Class Research Center "Digital biodesign and personalized healthcare", I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Department of Computational Biology, Sirius University of Science and Technology, Sochi, Russia
| | - Aiping Wu
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
- Suzhou Institute of Systems Medicine, Suzhou, 215123, China
| | - Malak S Abedalthagafi
- Genomics Research Department, Saudi Human Genome Project, King Fahad Medical City and King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Shivashankar H Nagaraj
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Translational Research Institute, Brisbane, Australia
| | - Adam L Smith
- Astani Department of Civil and Environmental Engineering, University of Southern California, 3620 South Vermont Avenue, Los Angeles, CA 90089
| | - Pavel Skums
- Department of Computer Science, College of Art and Science, Georgia State University, 1 Park Place, Floor 6, Atlanta, GA 30303, USA
| | - Jason Ladner
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011
| | - Tommy Tsan-Yuk Lam
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong
| | - Nicholas C Wu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Alex Zelikovsky
- Department of Computer Science, College of Art and Science, Georgia State University, 1 Park Place, Floor 6, Atlanta, GA 30303, USA
- The Laboratory of Bioinformatics, I.M. Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Rob Knight
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- Department of Computer Science & Engineering, University of California, San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA
| | - Keith A Crandall
- Computational Biology Institute and Department of Biostatistics & Bioinformatics, Milken Institute School of Public Health, George Washington University, Washington, DC 20052
| | - Serghei Mangul
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, 1540 Alcazar Street, Los Angeles, CA 90033, USA
| |
Collapse
|
43
|
Lu X, Sakthivel SK, Wang L, Lynch B, Dollard SM. Enhanced throughput of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) real-time RT-PCR panel by assay multiplexing and specimen pooling. J Virol Methods 2021; 293:114149. [PMID: 33839185 PMCID: PMC8028606 DOI: 10.1016/j.jviromet.2021.114149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/25/2021] [Accepted: 04/06/2021] [Indexed: 11/19/2022]
Abstract
A multiplex real-time reverse transcriptase-polymerase chain reaction (rRT-PCR) assay for detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was developed based on the same primer and probe sequences of an existing U.S. CDC Emergency Use authorized test panel, targeting SARS-CoV-2 N1, N2 and human RNase P genes in singleplex. Both singleplex and multiplex assays demonstrated linear dynamic ranges of 8 orders of magnitude and analytical limits of detection of 5 RNA transcript copies/reaction. Both assays showed 100 % agreement with 364 previously characterized clinical specimens (146 positive and 218 negative) for detection of SARS-CoV-2 RNA. To further increase testing throughput, 40 positive and 20 negative four-specimen pools were tested by the multiplex assay and showed 97.75 % and 100 % congruence with individual specimen tests, respectively. rRT-PCR assay multiplexing and sample pooling, individually or in combination, can substantially increase throughput of SARS-CoV-2 testing.
Collapse
Affiliation(s)
- Xiaoyan Lu
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Senthilkumar K Sakthivel
- Eagle Global Scientific, Contracting Agency to the Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Lijuan Wang
- Synergy America, Inc., Contracting Agency to the Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Brian Lynch
- Eagle Global Scientific, Contracting Agency to the Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Sheila M Dollard
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
44
|
Noor FA, Safain KS, Hossain MW, Arafath K, Mannoor K, Kabir M. Development and performance evaluation of the first in-house multiplex rRT-PCR assay in Bangladesh for highly sensitive detection of SARS-CoV-2. J Virol Methods 2021; 293:114147. [PMID: 33812943 PMCID: PMC8015390 DOI: 10.1016/j.jviromet.2021.114147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/27/2021] [Accepted: 03/30/2021] [Indexed: 12/20/2022]
Abstract
Background The emergence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic is posing a great threat to global health and economy. Due to the lack of broad diagnostic setup, consistent reagent supply lines, and access to laboratory instruments and equipment, it is undoubtedly an enormous burden for developing countries to face the crisis. Objectives To develop a cost-effective, reliable and sensitive multiplex assay for SARS-CoV-2 screening which would expand the testing capacities of a developing and low-income country like Bangladesh. Study design Initially a singleplex and then a multiplex real-time reverse-transcriptase PCR assays were developed targeting 2 nucleocapsid genes of SARS-CoV-2, and the human RNase P gene as an internal control using laboratory-made mastermixes. Three sets of primer- probes were designed for each of the target genes and one set was optimized for the final reaction set-up. Limit of detection, cross-reactivity and reproducibility were checked in order to assess the sensitivity and specificity of the assays, and validation was done using clinical specimens. Results Clinical evaluation of the new assays using 240 nasopharyngeal swabs showed 100 % sensitivity, specificity, and accuracy in detecting SARS-CoV-2 infection in human. Equal efficiency and concordant results were observed between the singleplex and multiplex approaches. Notably, the kit was able to detect SARS-CoV-2 RNA at very low concentration upto 5 copies/reaction. Conclusion This is the first locally developed multiplex rRT-PCR kit in Bangladesh providing rapid and low-cost screening of COVID-19 which would be valuable for infection prevention and clinical management in the perspective of Bangladesh.
Collapse
Affiliation(s)
- Farjana Akther Noor
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh; Department of Biochemistry & Molecular Biology, Tejgaon College, Tejgaon, Dhaka, 1215, Bangladesh
| | - Kazi Sarjana Safain
- Molecular Division, OMC Healthcare (Pvt.) Ltd, Rupnagar, Dhaka, 1216, Bangladesh
| | - Md Walid Hossain
- Molecular Division, OMC Healthcare (Pvt.) Ltd, Rupnagar, Dhaka, 1216, Bangladesh
| | - Khalid Arafath
- Molecular Division, OMC Healthcare (Pvt.) Ltd, Rupnagar, Dhaka, 1216, Bangladesh
| | - Kaiissar Mannoor
- Infectious Diseases Laboratory, Institute for Developing Science and Health Initiatives, Mohakhali, Dhaka, 1212, Bangladesh
| | - Mazbahul Kabir
- Molecular Division, OMC Healthcare (Pvt.) Ltd, Rupnagar, Dhaka, 1216, Bangladesh.
| |
Collapse
|
45
|
Hemani G, Thomas AC, Walker JG, Trickey A, Nixon E, Ellis D, Kwiatkowska R, Relton C, Danon L, Christensen H, Brooks-Pollock E. Modelling pooling strategies for SARS-CoV-2 testing in a university setting. Wellcome Open Res 2021. [DOI: 10.12688/wellcomeopenres.16639.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Background: Pre-symptomatic and asymptomatic transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are important elements in the coronavirus disease 2019 (COVID-19) pandemic, and there remains a reliance on testing to manage the spread of the disease. In the UK, many universities opened for blended learning for the 2020-2021 academic year, with a mixture of face to face and online teaching. Methods: In this study we present a simulation framework to evaluate the effectiveness of different mass testing strategies within a university setting, across a range of transmission scenarios. Results: The sensitivity of 5x pooled RT-qPCR tests appears to be higher than testing using the lateral flow device with relatively little loss compared to single RT-qPCR tests, and is improved by pooling by social cluster. The range of strategies that we evaluated give comparable results for estimating prevalence. Conclusions: Pooling tests by known social structures, such as student households can substantially improve the cost effectiveness of RT-qPCR tests. We also note that routine recording of quantitative RT-qPCR results would facilitate future modelling studies.
Collapse
|
46
|
Vogels CB, Breban MI, Alpert T, Petrone ME, Watkins AE, Ott IM, de Jesus JG, Claro IM, Ferreira GM, Crispim MA, Singh L, Tegally H, Anyaneji UJ, Hodcroft EB, Mason CE, Khullar G, Metti J, Dudley JT, MacKay MJ, Nash M, Wang J, Liu C, Hui P, Murphy S, Neal C, Laszlo E, Landry ML, Muyombwe A, Downing R, Razeq J, de Oliveira T, Faria NR, Sabino EC, Neher RA, Fauver JR, Grubaugh ND. PCR assay to enhance global surveillance for SARS-CoV-2 variants of concern. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.01.28.21250486. [PMID: 33758901 PMCID: PMC7987060 DOI: 10.1101/2021.01.28.21250486] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
With the emergence of SARS-CoV-2 variants that may increase transmissibility and/or cause escape from immune responses 1-3 , there is an urgent need for the targeted surveillance of circulating lineages. It was found that the B.1.1.7 (also 501Y.V1) variant first detected in the UK 4,5 could be serendipitously detected by the ThermoFisher TaqPath COVID-19 PCR assay because a key deletion in these viruses, spike Δ69-70, would cause a "spike gene target failure" (SGTF) result. However, a SGTF result is not definitive for B.1.1.7, and this assay cannot detect other variants of concern that lack spike Δ69-70, such as B.1.351 (also 501Y.V2) detected in South Africa 6 and P.1 (also 501Y.V3) recently detected in Brazil 7 . We identified a deletion in the ORF1a gene (ORF1a Δ3675-3677) in all three variants, which has not yet been widely detected in other SARS-CoV-2 lineages. Using ORF1a Δ3675-3677 as the primary target and spike Δ69-70 to differentiate, we designed and validated an open source PCR assay to detect SARS-CoV-2 variants of concern 8 . Our assay can be rapidly deployed in laboratories around the world to enhance surveillance for the local emergence spread of B.1.1.7, B.1.351, and P.1.
Collapse
Affiliation(s)
- Chantal B.F. Vogels
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Mallery I. Breban
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Tara Alpert
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Mary E. Petrone
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Anne E. Watkins
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Isabel M. Ott
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Jaqueline Goes de Jesus
- Departamento de Molestias Infecciosas e Parasitarias and Instituto de Medicina Tropical da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP 05403–000, Brazil
| | - Ingra Morales Claro
- Departamento de Molestias Infecciosas e Parasitarias and Instituto de Medicina Tropical da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP 05403–000, Brazil
| | - Giulia Magalhães Ferreira
- Departamento de Molestias Infecciosas e Parasitarias and Instituto de Medicina Tropical da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP 05403–000, Brazil
- Laboratório de Virologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Myuki A.E. Crispim
- Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas, Manaus, Brazil
| | | | - Lavanya Singh
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Houriiyah Tegally
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Ugochukwu J. Anyaneji
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | | | - Emma B. Hodcroft
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | | | | | | | | | | | | | - Jianhui Wang
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Chen Liu
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Pei Hui
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | - Caleb Neal
- Murphy Medical Associates, Greenwich, CT 06614, USA
| | - Eva Laszlo
- Murphy Medical Associates, Greenwich, CT 06614, USA
| | - Marie L. Landry
- Departments of Laboratory Medicine and Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Anthony Muyombwe
- Connecticut State Department of Public Health, Rocky Hill, CT 06067, USA
| | - Randy Downing
- Connecticut State Department of Public Health, Rocky Hill, CT 06067, USA
| | - Jafar Razeq
- Connecticut State Department of Public Health, Rocky Hill, CT 06067, USA
| | - Tulio de Oliveira
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Nuno R. Faria
- Departamento de Molestias Infecciosas e Parasitarias and Instituto de Medicina Tropical da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP 05403–000, Brazil
- MRC Centre for Global Infectious Disease Analysis, J-IDEA, Imperial College London, London, UK
- Department of Zoology, University of Oxford, Oxford, UK
| | - Ester C. Sabino
- Departamento de Molestias Infecciosas e Parasitarias and Instituto de Medicina Tropical da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP 05403–000, Brazil
| | - Richard A. Neher
- Biozentrum, University of Basel, 4056 Basel, Switzerland
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Joseph R. Fauver
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Nathan D. Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06510, USA
| |
Collapse
|
47
|
Peters J, Alhasan S, Vogels CBF, Grubaugh ND, Farhadian S, Longbrake EE. MOG-associated encephalitis following SARS-COV-2 infection. Mult Scler Relat Disord 2021; 50:102857. [PMID: 33647592 PMCID: PMC7900751 DOI: 10.1016/j.msard.2021.102857] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/14/2021] [Accepted: 02/20/2021] [Indexed: 12/01/2022]
Abstract
A variety of neurologic manifestations of COVID-19 infections have been reported. Here, we present a case of steroid-responsive MOG-antibody associated encephalitis, characterized by cognitive decline, headaches, fever, unilateral FLAIR-hyperintensities, and leptomeningeal enhancement, that occurred in the setting of recent COVID-19 infection.
Collapse
Affiliation(s)
- John Peters
- Department of Neurology, Yale University School of Medicine, 333 Cedar St. New Haven, CT, 06510, USA.
| | - Saleh Alhasan
- Department of Neurology, Yale University School of Medicine, 333 Cedar St. New Haven, CT, 06510, USA
| | - Chantal B F Vogels
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, 60 College St, New Haven, CT, 06510, USA
| | - Nathan D Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, 60 College St, New Haven, CT, 06510, USA
| | - Shelli Farhadian
- Department of Neurology, Yale University School of Medicine, 333 Cedar St. New Haven, CT, 06510, USA; Department of Medicine, Section of Infectious Disease, Yale University School of Medicine, 333 Cedar St, New Haven, CT, 06510, USA
| | - Erin E Longbrake
- Department of Neurology, Yale University School of Medicine, 333 Cedar St. New Haven, CT, 06510, USA
| |
Collapse
|
48
|
Stahl EC, Tsuchida CA, Hamilton JR, Lin-Shiao E, McDevitt SL, Moehle EA, Witkowsky LB, Tsui CK, Pestal K, Gildea HK, McElroy M, Keller A, Sylvain I, Williams C, Hirsh A, Ciling A, Ehrenberg AJ, Urnov FD, Ringeisen BR, Giannikopoulos P, Doudna JA. IGI-LuNER: single-well multiplexed RT-qPCR test for SARS-CoV-2. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.12.10.20247338. [PMID: 33330883 PMCID: PMC7743092 DOI: 10.1101/2020.12.10.20247338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Commonly used RT-qPCR-based SARS-CoV-2 diagnostics require 2-3 separate reactions or rely on detection of a single viral target, adding time and cost or risk of false-negative results. Currently, no test combines detection of widely used SARS-CoV-2 E- and N-gene targets and a sample control in a single, multiplexed reaction. We developed the IGI-LuNER RT-qPCR assay using the Luna Probe Universal One-Step RT-qPCR master mix with publicly available primers and probes to detect SARS-CoV-2 N gene, E gene, and human RNase P (NER). This combined, cost-effective test can be performed in 384-well plates with detection sensitivity suitable for clinical reporting, and will aid in future sample pooling efforts, thus improving throughput of SARS-CoV-2 detection.
Collapse
Affiliation(s)
- Elizabeth C Stahl
- University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
| | - Connor A Tsuchida
- University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
| | - Jennifer R Hamilton
- University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
| | - Enrique Lin-Shiao
- University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
| | - Shana L McDevitt
- University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
| | - Erica A Moehle
- University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
| | - Lea B Witkowsky
- University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
| | | | | | | | - Matthew McElroy
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
| | - Amanda Keller
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
| | - Iman Sylvain
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
| | - Clara Williams
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
| | - Ariana Hirsh
- University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
| | - Alison Ciling
- University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
| | | | - Fyodor D Urnov
- University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
| | - Bradley R Ringeisen
- University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
| | | | - Jennifer A Doudna
- University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| |
Collapse
|
49
|
Pereira-Gómez M, Fajardo Á, Echeverría N, López-Tort F, Perbolianachis P, Costábile A, Aldunate F, Moreno P, Moratorio G. Evaluation of SYBR Green real time PCR for detecting SARS-CoV-2 from clinical samples. J Virol Methods 2020; 289:114035. [PMID: 33285190 PMCID: PMC7831559 DOI: 10.1016/j.jviromet.2020.114035] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/06/2020] [Accepted: 12/02/2020] [Indexed: 12/14/2022]
Abstract
The pandemic caused by SARS-CoV-2 has triggered an extraordinary collapse of healthcare systems and hundred thousand of deaths worldwide. Following the declaration of the outbreak as a Public Health Emergency of International Concern by the World Health Organization (WHO) on January 30th, 2020, it has become imperative to develop diagnostic tools to reliably detect the virus in infected patients. Several methods based on real time reverse transcription polymerase chain reaction (RT-qPCR) for the detection of SARS-CoV-2 genomic RNA have been developed. In addition, these methods have been recommended by the WHO for laboratory diagnosis. Since most of these protocols are based on the use of fluorogenic probes and one-step reagents (cDNA synthesis followed by PCR amplification in the same tube), these techniques can be difficult to perform given the limited supply of reagents in low- and middle-income countries. In order to develop an inexpensive SARS-CoV-2 detection protocol using available resources we evaluated the SYBR Green based detection of SARS-CoV-2 to establish a suitable assay. To do so, we adapted one of the WHO recommended TaqMan-based one-step real time PCR protocols (from the University of Hong Kong) to SYBR Green. Our results indicate that SYBR-Green detection of ORF1b-nsp14 target represents a reliable cost-effective alternative to increase the testing capacity.
Collapse
Affiliation(s)
- Marianoel Pereira-Gómez
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay; Laboratorio de Evolución Experimental de Virus, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Álvaro Fajardo
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay; Laboratorio de Evolución Experimental de Virus, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Natalia Echeverría
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay; Laboratorio de Evolución Experimental de Virus, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Fernando López-Tort
- Laboratorio de Virología Molecular, Sede Salto, Centro Universitario Regional Litoral Norte, Universidad de la República, Salto, Uruguay
| | - Paula Perbolianachis
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay; Laboratorio de Evolución Experimental de Virus, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Alicia Costábile
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay; Laboratorio de Evolución Experimental de Virus, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Fabián Aldunate
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay; Laboratorio de Evolución Experimental de Virus, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Pilar Moreno
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay; Laboratorio de Evolución Experimental de Virus, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Gonzalo Moratorio
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay; Laboratorio de Evolución Experimental de Virus, Institut Pasteur de Montevideo, Montevideo, Uruguay.
| |
Collapse
|