1
|
de Souza EV, Dalberto PF, Miranda AC, Saghatelian A, Pinto AM, Basso LA, Machado P, Bizarro CV. Large-scale proteogenomics characterization of microproteins in Mycobacterium tuberculosis. Sci Rep 2024; 14:31186. [PMID: 39732784 DOI: 10.1038/s41598-024-82465-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 12/05/2024] [Indexed: 12/30/2024] Open
Abstract
Tuberculosis remains a burden to this day, due to the rise of multi and extensively drug-resistant bacterial strains. The genome of Mycobacterium tuberculosis (Mtb) strain H37Rv underwent an annotation process that excluded small Open Reading Frames (smORFs), which encode a class of peptides and small proteins collectively known as microproteins. As a result, there is an overlooked part of its proteome that is a rich source of potentially essential, druggable molecular targets. Here, we employed our recently developed proteogenomics pipeline to identify novel microproteins encoded by non-canonical smORFs in the genome of Mtb using hundreds of mass spectrometry experiments in a large-scale approach. We found protein evidence for hundreds of unannotated microproteins and identified smORFs essential for bacterial survival and involved in bacterial growth and virulence. Moreover, many smORFs are co-expressed and share operons with a myriad of biologically relevant genes and play a role in antibiotic response. Together, our data presents a resource of unknown genes that play a role in the success of Mtb as a widespread pathogen.
Collapse
Affiliation(s)
- Eduardo V de Souza
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF) and Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, 90619-900, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, 90619-900, Brazil
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Pedro F Dalberto
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF) and Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, 90619-900, Brazil
| | - Adriana C Miranda
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF) and Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, 90619-900, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, 90619-900, Brazil
| | - Alan Saghatelian
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Antonio M Pinto
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Luiz A Basso
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF) and Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, 90619-900, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, 90619-900, Brazil
| | - Pablo Machado
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF) and Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, 90619-900, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, 90619-900, Brazil
| | - Cristiano V Bizarro
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF) and Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, 90619-900, Brazil.
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, 90619-900, Brazil.
| |
Collapse
|
2
|
Lahry K, Datta M, Varshney U. Genetic analysis of translation initiation in bacteria: An initiator tRNA-centric view. Mol Microbiol 2024; 122:772-788. [PMID: 38410838 DOI: 10.1111/mmi.15243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/03/2024] [Accepted: 02/09/2024] [Indexed: 02/28/2024]
Abstract
Translation of messenger RNA (mRNA) in bacteria occurs in the steps of initiation, elongation, termination, and ribosome recycling. The initiation step comprises multiple stages and uses a special transfer RNA (tRNA) called initiator tRNA (i-tRNA), which is first aminoacylated and then formylated using methionine and N10-formyl-tetrahydrofolate (N10-fTHF), respectively. Both methionine and N10-fTHF are produced via one-carbon metabolism, linking translation initiation with active cellular metabolism. The fidelity of i-tRNA binding to the ribosomal peptidyl-site (P-site) is attributed to the structural features in its acceptor stem, and the highly conserved three consecutive G-C base pairs (3GC pairs) in the anticodon stem. The acceptor stem region is important in formylation of the amino acid attached to i-tRNA and in its initial binding to the P-site. And, the 3GC pairs are crucial in transiting the i-tRNA through various stages of initiation. We utilized the feature of 3GC pairs to investigate the nuanced layers of scrutiny that ensure fidelity of translation initiation through i-tRNA abundance and its interactions with the components of the translation apparatus. We discuss the importance of i-tRNA in the final stages of ribosome maturation, as also the roles of the Shine-Dalgarno sequence, ribosome heterogeneity, initiation factors, ribosome recycling factor, and coevolution of the translation apparatus in orchestrating a delicate balance between the fidelity of initiation and/or its leakiness to generate proteome plasticity in cells to confer growth fitness advantages in response to the dynamic nutritional states.
Collapse
Affiliation(s)
- Kuldeep Lahry
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Madhurima Datta
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| |
Collapse
|
3
|
Naeem FM, Gemler BT, McNutt ZA, Bundschuh R, Fredrick K. Analysis of programmed frameshifting during translation of prfB in Flavobacterium johnsoniae. RNA (NEW YORK, N.Y.) 2024; 30:136-148. [PMID: 37949662 PMCID: PMC10798248 DOI: 10.1261/rna.079721.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023]
Abstract
Ribosomes of Bacteroidia fail to recognize Shine-Dalgarno (SD) sequences due to sequestration of the 3' tail of the 16S rRNA on the 30S platform. Yet in these organisms, the prfB gene typically contains the programmed +1 frameshift site with its characteristic SD sequence. Here, we investigate prfB autoregulation in Flavobacterium johnsoniae, a member of the Bacteroidia. We find that the efficiency of prfB frameshifting in F. johnsoniae is low (∼7%) relative to that in Escherichia coli (∼50%). Mutation or truncation of bS21 in F. johnsoniae increases frameshifting substantially, suggesting that anti-SD (ASD) sequestration is responsible for the reduced efficiency. The frameshift site of certain Flavobacteriales, such as Winogradskyella psychrotolerans, has no SD. In F. johnsoniae, this W. psychrotolerans sequence supports frameshifting as well as the native sequence, and mutation of bS21 causes no enhancement. These data suggest that prfB frameshifting normally occurs without SD-ASD pairing, at least under optimal laboratory growth conditions. Chromosomal mutations that remove the frameshift or ablate the SD confer subtle growth defects in the presence of paraquat or streptomycin, respectively, indicating that both the autoregulatory mechanism and the SD element contribute to F. johnsoniae cell fitness. Analysis of prfB frameshift sites across 2686 representative bacteria shows loss of the SD sequence in many clades, with no obvious relationship to genome-wide SD usage. These data reveal unexpected variation in the mechanism of frameshifting and identify another group of organisms, the Verrucomicrobiales, that globally lack SD sequences.
Collapse
Affiliation(s)
- Fawwaz M Naeem
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Bryan T Gemler
- Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, Ohio 43210, USA
| | - Zakkary A McNutt
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Ralf Bundschuh
- Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, Ohio 43210, USA
- Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | - Kurt Fredrick
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
4
|
Estrada K, Garciarrubio A, Merino E. Unraveling the plasticity of translation initiation in prokaryotes: Beyond the invariant Shine-Dalgarno sequence. PLoS One 2024; 19:e0289914. [PMID: 38206950 PMCID: PMC10783764 DOI: 10.1371/journal.pone.0289914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/28/2023] [Indexed: 01/13/2024] Open
Abstract
Translation initiation in prokaryotes is mainly defined, although not exclusively, by the interaction between the anti-Shine-Dalgarno sequence (antiSD), located at the 3'-terminus of the 16S ribosomal RNA, and a complementary sequence, the ribosome binding site, or Shine-Dalgarno (SD), located upstream of the start codon in prokaryotic mRNAs. The antiSD has a conserved 5'-CCUCC-3' core, but inter-species variations have been found regarding the participation of flanking bases in binding. These variations have been described for certain bacteria and, to a lesser extent, for some archaea. To further analyze these variations, we conducted binding-energy prediction analyses on over 6,400 genomic sequences from both domains. We identified 15 groups of antiSD variants that could be associated with the organisms' phylogenetic origin. Additionally, our findings revealed that certain organisms exhibit variations in the core itself. Importantly, an unaltered core is not necessarily required for the interaction between the 3'-terminus of the rRNA and the region preceding the AUG of the mRNA. In our study, we classified organisms into four distinct categories: i) those possessing a conserved core and demonstrating binding; ii) those with a conserved core but lacking evidence of binding; iii) those exhibiting binding in the absence of a conserved core; and iv) those lacking both a conserved core and evidence of binding. Our results demonstrate the flexibility of organisms in evolving different sequences involved in translation initiation beyond the traditional Shine-Dalgarno sequence. These findings are discussed in terms of the evolution of translation initiation in prokaryotic organisms.
Collapse
Affiliation(s)
- Karel Estrada
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos (UAEM), Cuernavaca, Morelos, México
- Massive Sequencing and Bioinformatics Unit, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Alejandro Garciarrubio
- Department of Cell Engineering and Biocatalysis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Enrique Merino
- Department of Molecular Microbiology, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| |
Collapse
|
5
|
Ghosh A, Bharmal MHM, Ghaleb AM, Nandana V, Schrader JM. Initiator AUGs Are Discriminated from Elongator AUGs Predominantly through mRNA Accessibility in C. crescentus. J Bacteriol 2023; 205:e0042022. [PMID: 37092987 PMCID: PMC10210977 DOI: 10.1128/jb.00420-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 03/27/2023] [Indexed: 04/25/2023] Open
Abstract
The initiation of translation in bacteria is thought to occur upon base pairing between the Shine-Dalgarno (SD) site in the mRNA and the anti-SD site in the rRNA. However, in many bacterial species, such as Caulobacter crescentus, a minority of mRNAs have SD sites. To examine the functional importance of SD sites in C. crescentus, we analyzed the transcriptome and found that more SD sites exist in the coding sequence than in the preceding start codons. To examine the function of SD sites in initiation, we designed a series of mutants with altered ribosome accessibility and SD content in translation initiation regions (TIRs) and in elongator AUG regions (EARs). A lack of mRNA structure content is required for initiation in TIRs, and, when introduced into EARs, can stimulate initiation, thereby suggesting that low mRNA structure content is a major feature that is required for initiation. SD sites appear to stimulate initiation in TIRs, which generally lack structure content, but SD sites only stimulate initiation in EARs if RNA secondary structures are destabilized. Taken together, these results suggest that the difference in secondary structure between TIRs and EARs directs ribosomes to start codons where SD base pairing can tune the efficiency of initiation, but SDs in EARs do not stimulate initiation, as they are blocked by stable secondary structures. This highlights the importance of studying translation initiation mechanisms in diverse bacterial species. IMPORTANCE Start codon selection is an essential process that is thought to occur via the base pairing of the rRNA to the SD site in the mRNA. This model is based on studies in E. coli, yet whole-genome sequencing revealed that SD sites are absent at start codons in many species. By examining the transcriptome of C. crescentus, we found more SD-AUG pairs in the CDS of mRNAs than preceding start codons, yet these internal sites do not initiate. Instead, start codon regions have lower mRNA secondary structure content than do internal SD-AUG regions. Therefore, we find that start codon selection is not controlled by the presence of SD sites, which tune initiation efficiency, but by lower mRNA structure content surrounding the start codon.
Collapse
Affiliation(s)
- Aishwarya Ghosh
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | | | - Amar M. Ghaleb
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - Vidhyadhar Nandana
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - Jared M. Schrader
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
6
|
McNutt ZA, Roy B, Gemler BT, Shatoff EA, Moon KM, Foster L, Bundschuh R, Fredrick K. Ribosomes lacking bS21 gain function to regulate protein synthesis in Flavobacterium johnsoniae. Nucleic Acids Res 2023; 51:1927-1942. [PMID: 36727479 PMCID: PMC9976891 DOI: 10.1093/nar/gkad047] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 02/03/2023] Open
Abstract
Ribosomes of Bacteroidia (formerly Bacteroidetes) fail to recognize Shine-Dalgarno (SD) sequences even though they harbor the anti-SD (ASD) of 16S rRNA. Inhibition of SD-ASD pairing is due to sequestration of the 3' tail of 16S rRNA in a pocket formed by bS21, bS18, and bS6 on the 30S platform. Interestingly, in many Flavobacteriales, the gene encoding bS21, rpsU, contains an extended SD sequence. In this work, we present genetic and biochemical evidence that bS21 synthesis in Flavobacterium johnsoniae is autoregulated via a subpopulation of ribosomes that specifically lack bS21. Mutation or depletion of bS21 in the cell increases translation of reporters with strong SD sequences, such as rpsU'-gfp, but has no effect on other reporters. Purified ribosomes lacking bS21 (or its C-terminal region) exhibit higher rates of initiation on rpsU mRNA and lower rates of initiation on other (SD-less) mRNAs than control ribosomes. The mechanism of autoregulation depends on extensive pairing between mRNA and 16S rRNA, and exceptionally strong SD sequences, with predicted pairing free energies of < -13 kcal/mol, are characteristic of rpsU across the Bacteroidota. This work uncovers a clear example of specialized ribosomes in bacteria.
Collapse
Affiliation(s)
- Zakkary A McNutt
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Bappaditya Roy
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Bryan T Gemler
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Elan A Shatoff
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
| | - Kyung-Mee Moon
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, V3T1Z4, Canada
| | - Leonard J Foster
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, V3T1Z4, Canada
| | - Ralf Bundschuh
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, OH 43210, USA
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Kurt Fredrick
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
7
|
Horizontal Transfer of Bacteriocin Biosynthesis Genes Requires Metabolic Adaptation To Improve Compound Production and Cellular Fitness. Microbiol Spectr 2023; 11:e0317622. [PMID: 36472430 PMCID: PMC9927498 DOI: 10.1128/spectrum.03176-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Biosynthetic gene clusters (BGCs) encoding the production of bacteriocins are widespread among bacterial isolates and are important genetic determinants of competitive fitness within a given habitat. Staphylococci produce a tremendous diversity of compounds, and the corresponding BGCs are frequently associated with mobile genetic elements, suggesting gain and loss of biosynthetic capacity. Pharmaceutical biology has shown that compound production in heterologous hosts is often challenging, and many BGC recipients initially produce small amounts of compound or show reduced growth rates. To assess whether transfer of BGCs between closely related Staphylococcus aureus strains can be instantly effective or requires elaborate metabolic adaptation, we investigated the intraspecies transfer of a BGC encoding the ribosomally synthesized and posttranslationally modified peptide (RiPP) micrococcin P1 (MP1). We found that acquisition of the BGC by S. aureus RN4220 enabled immediate MP1 production but also imposed a metabolic burden, which was relieved after prolonged cultivation by adaptive mutation. We used a multiomics approach to study this phenomenon and found adaptive evolution to select for strains with increased activity of the tricarboxylic acid cycle (TCA), which enhanced metabolic fitness and levels of compound production. Metabolome analysis revealed increases of central metabolites, including citrate and α-ketoglutarate in the adapted strain, suggesting metabolic adaptation to overcome the BGC-associated growth defects. Our results indicate that BGC acquisition requires genetic and metabolic predispositions, allowing the integration of bacteriocin production into the cellular metabolism. Inappropriate metabolic characteristics of recipients can entail physiological burdens, negatively impacting the competitive fitness of recipients within natural bacterial communities. IMPORTANCE Human microbiomes are critically associated with human health and disease. Importantly, pathogenic bacteria can hide in human-associated communities and can cause disease when the composition of the community becomes unbalanced. Bacteriocin-producing commensals are able to displace pathogens from microbial communities, suggesting that their targeted introduction into human microbiomes might prevent pathogen colonization and infection. However, to develop probiotic approaches, strains are needed that produce high levels of bioactive compounds and retain cellular fitness within mixed bacterial communities. Our work offers insights into the metabolic burdens associated with the production of the bacteriocin micrococcin P1 and highlights evolutionary strategies that increase cellular fitness in the context of production. Metabolic adaptations are most likely broadly relevant for bacteriocin producers and need to be considered for the future development of effective microbiome editing strategies.
Collapse
|
8
|
Zrelovs N, Jansons J, Kazaka T, Kazaks A, Dislers A. Three Phages One Host: Isolation and Characterization of Pantoea agglomerans Phages from a Grasshopper Specimen. Int J Mol Sci 2023; 24:1820. [PMID: 36768143 PMCID: PMC9915841 DOI: 10.3390/ijms24031820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
The bacterial genus Pantoea comprises species found in a variety of different environmental sources. Pantoea spp. are often recovered from plant material and are capable of both benefitting the plants and acting like phytopathogens. Some species of Pantoea (including P. agglomerans) are considered opportunistic human pathogens capable of causing various infections in immunocompromised subjects. In this study, a strain of P. agglomerans (identified by 16S rRNA gene sequencing) was isolated from a dead specimen of an unidentified Latvian grasshopper species. The retrieved strain of P. agglomerans was then used as a host for the potential retrieval of phages from the same source material. After rounds of plaque purification and propagation, three high-titer lysates corresponding to putatively distinct phages were acquired. Transmission electron microscopy revealed that one of the phages was a myophage with an unusual morphology, while the two others were typical podophages. Whole-genome sequencing (WGS) was performed for each of these isolated phages. Genome de novo assembly and subsequent functional annotation confirmed that three different strictly lytic phages were isolated. Elaborate genomic characterization of the acquired phages was performed to elucidate their place within the so-far-uncovered phage diversity.
Collapse
Affiliation(s)
| | | | | | - Andris Kazaks
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, LV-1067 Riga, Latvia
| | - Andris Dislers
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, LV-1067 Riga, Latvia
| |
Collapse
|
9
|
Horng YT, Dewi Panjaitan NS, Chang HJ, Wei YH, Chien CC, Yang HC, Chang HY, Soo PC. A protein containing the DUF1471 domain regulates biofilm formation and capsule production in Klebsiella pneumoniae. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2022; 55:1246-1254. [PMID: 34924339 DOI: 10.1016/j.jmii.2021.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/08/2021] [Accepted: 11/20/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND/PURPOSE Biofilms formed by Klebsiella pneumoniae on medical devices increase infection risk. Fimbriae and capsule polysaccharides (CPSs) are important factors involved in biofilm formation. KP1_4563 in K. pneumoniae NTUH-K2044, a small protein containing the DUF1471 domain, was reported to inhibit type 3 fimbriae function. In this study, we aimed to determine whether the KP1_4563 homolog is conserved in each K. pneumoniae isolate and what role it has in Klebsiella biofilms. METHODS The genomes of K. pneumoniae NTUH-K2044, CG43, MGH78578, KPPR1 and STU1 were compared. The KP1_4563 homolog in K. pneumoniae STU1 was named orfX. Biofilms of wild-type and orfX mutant strains from K. pneumoniae STU1 and one clinical isolate, 83535, were quantified. Transcription levels of the type 3 fimbrial genes, mrkA and mrkH, were investigated by RT-qPCR. MrkA of the wild-type and orfX mutant were observed by Western blotting. The morphology of bacterial cells was observed by transmission electron microscopy (TEM). Bacterial CPSs were quantified. RESULTS The gene and upstream region of orfX were conserved among the five K. pneumoniae isolates. Deletion of orfX enhanced Klebsiella biofilm formation. However, the amount of mRNA from mrkA and mrkH and the level of MrkA protein were not different between the wild type and orfX mutant. In contrast, the amount of CPS in orfX mutants was increased, compared to their parental strains, STU1 and 83535. CONCLUSION The role of orfX is speculated to be conserved in most K. pneumoniae isolates. OrfX negatively controlled biofilm formation by reducing CPS, not type 3 fimbriae, production.
Collapse
Affiliation(s)
- Yu-Tze Horng
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien, Taiwan, R.O.C
| | - Novaria Sari Dewi Panjaitan
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien, Taiwan, R.O.C
| | - Hui-Ju Chang
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien, Taiwan, R.O.C
| | - Yu-Hong Wei
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan, Taiwan, R.O.C
| | - Chih-Ching Chien
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan, Taiwan, R.O.C
| | - Hung-Chi Yang
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University of Medical Technology, Hsinchu, Taiwan, R.O.C
| | - Heng-Yuan Chang
- School of Post-Baccalaureate Chinese Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan, R.O.C
| | - Po-Chi Soo
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien, Taiwan, R.O.C.
| |
Collapse
|
10
|
Morganella Phage Mecenats66 Utilizes an Evolutionarily Distinct Subtype of Headful Genome Packaging with a Preferred Packaging Initiation Site. Microorganisms 2022; 10:microorganisms10091799. [PMID: 36144401 PMCID: PMC9503643 DOI: 10.3390/microorganisms10091799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 12/03/2022] Open
Abstract
Both recognized species from the genus Morganella (M. morganii and M. psychrotolerans) are Gram-negative facultative anaerobic rod-shaped bacteria that have been documented as sometimes being implicated in human disease. Complete genomes of seven Morganella-infecting phages are publicly available today. Here, we report on the genomic characterization of an insect associated Morganella sp. phage, which we named Mecenats66, isolated from dead worker honeybees. Phage Mecenats66 was propagated, purified, and subjected to whole-genome sequencing with subsequent complete genome annotation. After the genome de novo assembly, it was noted that Mecenats66 might employ a headful packaging with a preferred packaging initiation site, although its terminase amino acid sequence did not fall within any of the currently recognized headful packaging subtype employing phage (that had their packaging strategy experimentally verified) with clusters on a terminase sequence phylogenetic tree. The in silico predicted packaging strategy was verified experimentally, validating the packaging initiation site and suggesting that Mecenats66 represents an evolutionarily distinct headful genome packaging with a preferred packaging initiation site strategy subtype. These findings can possibly be attributed to several of the phages already found within the public biological sequence repositories and could aid newly isolated phage packaging strategy predictions in the future.
Collapse
|
11
|
Korniienko N, Kharina A, Zrelovs N, Jindřichová B, Moravec T, Budzanivska I, Burketová L, Kalachova T. Isolation and Characterization of Two Lytic Phages Efficient Against Phytopathogenic Bacteria From Pseudomonas and Xanthomonas Genera. Front Microbiol 2022; 13:853593. [PMID: 35547140 PMCID: PMC9083414 DOI: 10.3389/fmicb.2022.853593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/24/2022] [Indexed: 01/06/2023] Open
Abstract
Pseudomonas syringae is a bacterial pathogen that causes yield losses in various economically important plant species. At the same time, P. syringae pv. tomato (Pst) is one of the best-studied bacterial phytopathogens and a popular model organism. In this study, we report on the isolation of two phages from the market-bought pepper fruit showing symptoms of bacterial speck. These Pseudomonas phages were named Eir4 and Eisa9 and characterized using traditional microbiological methods and whole-genome sequencing followed by various bioinformatics approaches. Both of the isolated phages were capable only of the lytic life cycle and were efficient against several pathovars from Pseudomonas and Xanthomonas genera. With the combination of transmission electron microscopy (TEM) virion morphology inspection and comparative genomics analyses, both of the phages were classified as members of the Autographiviridae family with different degrees of novelty within the known phage diversity. Eir4, but not Eisa9, phage application significantly decreased the propagation of Pst in the leaf tissues of Arabidopsis thaliana plants. The biological properties of Eir4 phage allow us to propose it as a potential biocontrol agent for use in the prevention of Pst-associated bacterioses and also as a model organism for the future research of mechanisms of phage-host interactions in different plant systems.
Collapse
Affiliation(s)
- Nataliia Korniienko
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
- Educational and Scientific Center (ESC) “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Alla Kharina
- Educational and Scientific Center (ESC) “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Nikita Zrelovs
- Latvian Biomedical Research and Study Centre, Rīga, Latvia
| | - Barbora Jindřichová
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Tomaš Moravec
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Iryna Budzanivska
- Educational and Scientific Center (ESC) “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Lenka Burketová
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Tetiana Kalachova
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
12
|
Zayed AA, Wainaina JM, Dominguez-Huerta G, Pelletier E, Guo J, Mohssen M, Tian F, Pratama AA, Bolduc B, Zablocki O, Cronin D, Solden L, Delage E, Alberti A, Aury JM, Carradec Q, da Silva C, Labadie K, Poulain J, Ruscheweyh HJ, Salazar G, Shatoff E, Coordinators TO, Bundschuh R, Fredrick K, Kubatko LS, Chaffron S, Culley AI, Sunagawa S, Kuhn JH, Wincker P, Sullivan MB. Cryptic and abundant marine viruses at the evolutionary origins of Earth's RNA virome. Science 2022; 376:156-162. [PMID: 35389782 PMCID: PMC10990476 DOI: 10.1126/science.abm5847] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Whereas DNA viruses are known to be abundant, diverse, and commonly key ecosystem players, RNA viruses are insufficiently studied outside disease settings. In this study, we analyzed ≈28 terabases of Global Ocean RNA sequences to expand Earth's RNA virus catalogs and their taxonomy, investigate their evolutionary origins, and assess their marine biogeography from pole to pole. Using new approaches to optimize discovery and classification, we identified RNA viruses that necessitate substantive revisions of taxonomy (doubling phyla and adding >50% new classes) and evolutionary understanding. "Species"-rank abundance determination revealed that viruses of the new phyla "Taraviricota," a missing link in early RNA virus evolution, and "Arctiviricota" are widespread and dominant in the oceans. These efforts provide foundational knowledge critical to integrating RNA viruses into ecological and epidemiological models.
Collapse
Affiliation(s)
- Ahmed A. Zayed
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
- EMERGE Biology Integration Institute, Ohio State University, Columbus, OH 43210, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
| | - James M. Wainaina
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
| | - Guillermo Dominguez-Huerta
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
- EMERGE Biology Integration Institute, Ohio State University, Columbus, OH 43210, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
| | - Eric Pelletier
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91000 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France
| | - Jiarong Guo
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
- EMERGE Biology Integration Institute, Ohio State University, Columbus, OH 43210, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
| | - Mohamed Mohssen
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
- The Interdisciplinary Biophysics Graduate Program, Ohio State University, Columbus, OH 43210, USA
| | - Funing Tian
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
| | - Akbar Adjie Pratama
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
- EMERGE Biology Integration Institute, Ohio State University, Columbus, OH 43210, USA
| | - Benjamin Bolduc
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
- EMERGE Biology Integration Institute, Ohio State University, Columbus, OH 43210, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
| | - Olivier Zablocki
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
- EMERGE Biology Integration Institute, Ohio State University, Columbus, OH 43210, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
| | - Dylan Cronin
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
- EMERGE Biology Integration Institute, Ohio State University, Columbus, OH 43210, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
| | - Lindsey Solden
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
| | - Erwan Delage
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France
- Nantes Université, CNRS UMR 6004, LS2N, F-44000 Nantes, France
| | - Adriana Alberti
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91000 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France
| | - Jean-Marc Aury
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91000 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France
| | - Quentin Carradec
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91000 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France
| | - Corinne da Silva
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91000 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France
| | - Karine Labadie
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91000 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France
| | - Julie Poulain
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91000 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France
| | - Hans-Joachim Ruscheweyh
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zurich, Zurich, Switzerland
| | - Guillem Salazar
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zurich, Zurich, Switzerland
| | - Elan Shatoff
- Department of Physics, Ohio State University, Columbus, OH 43210, USA
| | | | - Ralf Bundschuh
- The Interdisciplinary Biophysics Graduate Program, Ohio State University, Columbus, OH 43210, USA
- Department of Physics, Ohio State University, Columbus, OH 43210, USA
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH 43210, USA
- Division of Hematology, Department of Internal Medicine, Ohio State University, Columbus, OH 43210, USA
| | - Kurt Fredrick
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
| | - Laura S. Kubatko
- Department of Evolution, Ecology, and Organismal Biology, Ohio State University, Columbus, OH 43210, USA
- Department of Statistics, Ohio State University, Columbus, OH 43210, USA
| | - Samuel Chaffron
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France
- Nantes Université, CNRS UMR 6004, LS2N, F-44000 Nantes, France
| | - Alexander I. Culley
- Département de Biochimie, Microbiologie et Bio-informatique, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Shinichi Sunagawa
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zurich, Zurich, Switzerland
| | - Jens H. Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD 21702, USA
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91000 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France
| | - Matthew B. Sullivan
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
- EMERGE Biology Integration Institute, Ohio State University, Columbus, OH 43210, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
- The Interdisciplinary Biophysics Graduate Program, Ohio State University, Columbus, OH 43210, USA
- Department of Evolution, Ecology, and Organismal Biology, Ohio State University, Columbus, OH 43210, USA
- Department of Civil, Environmental, and Geodetic Engineering, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
13
|
Optimised Heterologous Expression and Functional Analysis of the Yersinia pestis F1-Capsular Antigen Regulator Caf1R. Int J Mol Sci 2021; 22:ijms22189805. [PMID: 34575967 PMCID: PMC8470410 DOI: 10.3390/ijms22189805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 12/14/2022] Open
Abstract
The bacterial pathogen, Yersinia pestis, has caused three historic pandemics and continues to cause small outbreaks worldwide. During infection, Y. pestis assembles a capsule-like protective coat of thin fibres of Caf1 subunits. This F1 capsular antigen has attracted much attention due to its clinical value in plague diagnostics and anti-plague vaccine development. Expression of F1 is tightly regulated by a transcriptional activator, Caf1R, of the AraC/XylS family, proteins notoriously prone to aggregation. Here, we have optimised the recombinant expression of soluble Caf1R. Expression from the native and synthetic codon-optimised caf1R cloned in three different expression plasmids was examined in a library of E. coli host strains. The functionality of His-tagged Caf1R was demonstrated in vivo, but insolubility was a problem with overproduction. High levels of soluble MBP-Caf1R were produced from codon optimised caf1R. Transcriptional-lacZ reporter fusions defined the PM promoter and Caf1R binding site responsible for transcription of the cafMA1 operon. Use of the identified Caf1R binding caf DNA sequence in an electrophoretic mobility shift assay (EMSA) confirmed correct folding and functionality of the Caf1R DNA-binding domain in recombinant MBP-Caf1R. Availability of functional recombinant Caf1R will be a valuable tool to elucidate control of expression of F1 and Caf1R-regulated pathophysiology of Y. pestis.
Collapse
|
14
|
Zrelovs N, Dislers A, Kazaks A. Genome Characterization of Nocturne116, Novel Lactococcus lactis-Infecting Phage Isolated from Moth. Microorganisms 2021; 9:1540. [PMID: 34361975 PMCID: PMC8306868 DOI: 10.3390/microorganisms9071540] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 12/04/2022] Open
Abstract
While looking for novel insect-associated phages, a unique siphophage, Nocturne116, was isolated from a deceased local moth specimen along with its host, which was identified by 16S rRNA gene sequencing as a strain of Lactococcus lactis. Next-generation sequencing and the subsequent genome annotation elaborated on herein revealed that the genome of Nocturne116 is a 25,554 bp long dsDNA molecule with 10 bp long 3' cos overhangs and a GC content of 37.99%, comprising 52 predicted open reading frames. The complete nucleotide sequence of phage Nocturne116 genome is dissimilar to any of the already sequenced phages, save for a distant link with Lactococcus phage Q54. Functions for only 15/52 of Nocturne116 gene products could be reliably predicted using contemporary comparative genomics approaches, while 22 of its gene products do not yet have any homologous entries in the public biological sequence repositories. Despite the public availability of nearly 350 elucidated Lactococcus phage complete genomes as of now, Nocturne116 firmly stands out as a sole representative of novel phage genus.
Collapse
Affiliation(s)
| | - Andris Dislers
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, LV-1067 Riga, Latvia;
| | - Andris Kazaks
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, LV-1067 Riga, Latvia;
| |
Collapse
|
15
|
Gawroński P, Enroth C, Kindgren P, Marquardt S, Karpiński S, Leister D, Jensen PE, Vinther J, Scharff LB. Light-Dependent Translation Change of Arabidopsis psbA Correlates with RNA Structure Alterations at the Translation Initiation Region. Cells 2021; 10:322. [PMID: 33557293 PMCID: PMC7914831 DOI: 10.3390/cells10020322] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 01/21/2023] Open
Abstract
mRNA secondary structure influences translation. Proteins that modulate the mRNA secondary structure around the translation initiation region may regulate translation in plastids. To test this hypothesis, we exposed Arabidopsis thaliana to high light, which induces translation of psbA mRNA encoding the D1 subunit of photosystem II. We assayed translation by ribosome profiling and applied two complementary methods to analyze in vivo RNA secondary structure: DMS-MaPseq and SHAPE-seq. We detected increased accessibility of the translation initiation region of psbA after high light treatment, likely contributing to the observed increase in translation by facilitating translation initiation. Furthermore, we identified the footprint of a putative regulatory protein in the 5' UTR of psbA at a position where occlusion of the nucleotide sequence would cause the structure of the translation initiation region to open up, thereby facilitating ribosome access. Moreover, we show that other plastid genes with weak Shine-Dalgarno sequences (SD) are likely to exhibit psbA-like regulation, while those with strong SDs do not. This supports the idea that changes in mRNA secondary structure might represent a general mechanism for translational regulation of psbA and other plastid genes.
Collapse
Affiliation(s)
- Piotr Gawroński
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland; (P.G.); (S.K.)
| | - Christel Enroth
- Department of Biology, Section for Computational and RNA Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 København N, Denmark; (C.E.); (J.V.)
| | - Peter Kindgren
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark; (P.K.); (S.M.)
| | - Sebastian Marquardt
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark; (P.K.); (S.M.)
| | - Stanisław Karpiński
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland; (P.G.); (S.K.)
| | - Dario Leister
- Plant Molecular Biology, Department Biology I, Ludwig-Maximilians-University Munich, Großhadernerstr. 2-4, 82152 Planegg-Martinsried, Germany;
| | - Poul Erik Jensen
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark;
| | - Jeppe Vinther
- Department of Biology, Section for Computational and RNA Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 København N, Denmark; (C.E.); (J.V.)
| | - Lars B. Scharff
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark; (P.K.); (S.M.)
| |
Collapse
|
16
|
Jha V, Roy B, Jahagirdar D, McNutt ZA, Shatoff EA, Boleratz BL, Watkins DE, Bundschuh R, Basu K, Ortega J, Fredrick K. Structural basis of sequestration of the anti-Shine-Dalgarno sequence in the Bacteroidetes ribosome. Nucleic Acids Res 2021; 49:547-567. [PMID: 33330920 PMCID: PMC7797042 DOI: 10.1093/nar/gkaa1195] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/18/2020] [Accepted: 11/24/2020] [Indexed: 11/25/2022] Open
Abstract
Genomic studies have indicated that certain bacterial lineages such as the Bacteroidetes lack Shine-Dalgarno (SD) sequences, and yet with few exceptions ribosomes of these organisms carry the canonical anti-SD (ASD) sequence. Here, we show that ribosomes purified from Flavobacterium johnsoniae, a representative of the Bacteroidetes, fail to recognize the SD sequence of mRNA in vitro. A cryo-electron microscopy structure of the complete 70S ribosome from F. johnsoniae at 2.8 Å resolution reveals that the ASD is sequestered by ribosomal proteins bS21, bS18 and bS6, explaining the basis of ASD inhibition. The structure also uncovers a novel ribosomal protein—bL38. Remarkably, in F. johnsoniae and many other Flavobacteriia, the gene encoding bS21 contains a strong SD, unlike virtually all other genes. A subset of Flavobacteriia have an alternative ASD, and in these organisms the fully complementary sequence lies upstream of the bS21 gene, indicative of natural covariation. In other Bacteroidetes classes, strong SDs are frequently found upstream of the genes for bS21 and/or bS18. We propose that these SDs are used as regulatory elements, enabling bS21 and bS18 to translationally control their own production.
Collapse
Affiliation(s)
- Vikash Jha
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada.,Centre for Structural Biology, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - Bappaditya Roy
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.,Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Dushyant Jahagirdar
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada.,Centre for Structural Biology, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - Zakkary A McNutt
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.,Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| | - Elan A Shatoff
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.,Department of Physics, The Ohio State University, Columbus, OH 43210, USA
| | - Bethany L Boleratz
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| | - Dean E Watkins
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Ralf Bundschuh
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.,Department of Physics, The Ohio State University, Columbus, OH 43210, USA.,Department of Chemistry & Biochemistry, Division of Hematology, The Ohio State University, Columbus, OH 43210, USA
| | - Kaustuv Basu
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada.,Centre for Structural Biology, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - Joaquin Ortega
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada.,Centre for Structural Biology, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - Kurt Fredrick
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.,Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.,Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
17
|
Wei Y, Xia X. Unique Shine-Dalgarno Sequences in Cyanobacteria and Chloroplasts Reveal Evolutionary Differences in Their Translation Initiation. Genome Biol Evol 2020; 11:3194-3206. [PMID: 31621842 PMCID: PMC6847405 DOI: 10.1093/gbe/evz227] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2019] [Indexed: 12/12/2022] Open
Abstract
Microorganisms require efficient translation to grow and replicate rapidly, and translation is often rate-limited by initiation. A prominent feature that facilitates translation initiation in bacteria is the Shine-Dalgarno (SD) sequence. However, there is much debate over its conservation in Cyanobacteria and in chloroplasts which presumably originated from endosymbiosis of ancient Cyanobacteria. Elucidating the utilization of SD sequences in Cyanobacteria and in chloroplasts is therefore important to understand whether 1) SD role in Cyanobacterial translation has been reduced prior to chloroplast endosymbiosis or 2) translation in Cyanobacteria and in plastid has been subjected to different evolutionary pressures. To test these alternatives, we employed genomic, proteomic, and transcriptomic data to trace differences in SD usage among Synechocystis species, Microcystis aeruginosa, cyanophages, Nicotiana tabacum chloroplast, and Arabidopsis thaliana chloroplast. We corrected their mis-annotated 16S rRNA 3' terminus using an RNA-Seq-based approach to determine their SD/anti-SD locational constraints using an improved measurement DtoStart. We found that cyanophages well-mimic Cyanobacteria in SD usage because both have been under the same selection pressure for SD-mediated initiation. Whereas chloroplasts lost this similarity because the need for SD-facilitated initiation has been reduced in plastids having much reduced genome size and different ribosomal proteins as a result of host-symbiont coevolution. Consequently, SD sequence significantly increases protein expression in Cyanobacteria but not in chloroplasts, and only Cyanobacterial genes compensate for a lack of SD sequence by having weaker secondary structures at the 5' UTR. Our results suggest different evolutionary pressures operate on translation initiation in Cyanobacteria and in chloroplast.
Collapse
Affiliation(s)
- Yulong Wei
- Department of Biology, University of Ottawa, Ontario, Canada
| | - Xuhua Xia
- Department of Biology, University of Ottawa, Ontario, Canada.,Ottawa Institute of Systems Biology, University of Ottawa, Ontario, Canada
| |
Collapse
|
18
|
Gawroński P, Pałac A, Scharff LB. Secondary Structure of Chloroplast mRNAs In Vivo and In Vitro. PLANTS (BASEL, SWITZERLAND) 2020; 9:E323. [PMID: 32143324 PMCID: PMC7154907 DOI: 10.3390/plants9030323] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/25/2020] [Accepted: 02/28/2020] [Indexed: 01/09/2023]
Abstract
mRNA secondary structure can influence gene expression, e.g., by influencing translation initiation. The probing of in vivo mRNA secondary structures is therefore necessary to understand what determines the efficiency and regulation of gene expression. Here, in vivo mRNA secondary structure was analyzed using dimethyl sulfate (DMS)-MaPseq and compared to in vitro-folded RNA. We used an approach to analyze specific, full-length transcripts. To test this approach, we chose low, medium, and high abundant mRNAs. We included both monocistronic and multicistronic transcripts. Because of the slightly alkaline pH of the chloroplast stroma, we could probe all four nucleotides with DMS. The structural information gained was evaluated using the known structure of the plastid 16S rRNA. This demonstrated that the results obtained for adenosines and cytidines were more reliable than for guanosines and uridines. The majority of mRNAs analyzed were less structured in vivo than in vitro. The in vivo secondary structure of the translation initiation region of most tested genes appears to be optimized for high translation efficiency.
Collapse
Affiliation(s)
- Piotr Gawroński
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Aleksandra Pałac
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Lars B. Scharff
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, 1871 Frederiksberg C, Denmark
| |
Collapse
|
19
|
Weiner I, Shahar N, Marco P, Yacoby I, Tuller T. Solving the Riddle of the Evolution of Shine-Dalgarno Based Translation in Chloroplasts. Mol Biol Evol 2019; 36:2854-2860. [DOI: 10.1093/molbev/msz210] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
AbstractChloroplasts originated from an ancient cyanobacterium and still harbor a bacterial-like genome. However, the centrality of Shine–Dalgarno ribosome binding, which predominantly regulates proteobacterial translation initiation, is significantly decreased in chloroplasts. As plastid ribosomal RNA anti-Shine–Dalgarno elements are similar to their bacterial counterparts, these sites alone cannot explain this decline. By computational simulation we show that upstream point mutations modulate the local structure of ribosomal RNA in chloroplasts, creating significantly tighter structures around the anti-Shine–Dalgarno locus, which in-turn reduce the probability of ribosome binding. To validate our model, we expressed two reporter genes (mCherry, hydrogenase) harboring a Shine–Dalgarno motif in the Chlamydomonas reinhardtii chloroplast. Coexpressing them with a 16S ribosomal RNA, modified according to our model, significantly enhances mCherry and hydrogenase expression compared with coexpression with an endogenous 16S gene.
Collapse
Affiliation(s)
- Iddo Weiner
- Department of Biomedical Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel
| | - Noam Shahar
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel
| | - Pini Marco
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel
| | - Iftach Yacoby
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel
| | - Tamir Tuller
- Department of Biomedical Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
20
|
Translational coupling via termination-reinitiation in archaea and bacteria. Nat Commun 2019; 10:4006. [PMID: 31488843 PMCID: PMC6728339 DOI: 10.1038/s41467-019-11999-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 08/12/2019] [Indexed: 11/18/2022] Open
Abstract
The genomes of many prokaryotes contain substantial fractions of gene pairs with overlapping stop and start codons (ATGA or TGATG). A potential benefit of overlapping gene pairs is translational coupling. In 720 genomes of archaea and bacteria representing all major phyla, we identify substantial, albeit highly variable, fractions of co-directed overlapping gene pairs. Various patterns are observed for the utilization of the SD motif for de novo initiation at upstream genes versus reinitiation at overlapping gene pairs. We experimentally test the predicted coupling in 9 gene pairs from the archaeon Haloferax volcanii and 5 gene pairs from the bacterium Escherichia coli. In 13 of 14 cases, translation of both genes is strictly coupled. Mutational analysis of SD motifs located upstream of the downstream genes indicate that the contribution of the SD to translational coupling widely varies from gene to gene. The nearly universal, abundant occurrence of overlapping gene pairs suggests that tight translational coupling is widespread in archaea and bacteria. Archaea and bacteria often have gene pairs with overlapping stop and start codons, suggesting translational coupling. Here, Huber et al. analyse overlapping gene pairs from 720 genomes, and validate translational coupling via termination-reinitiation for 14 gene pairs in Haloferax volcanii and Escherichia coli.
Collapse
|
21
|
Caballero M, Wegrzyn J. gFACs: Gene Filtering, Analysis, and Conversion to Unify Genome Annotations Across Alignment and Gene Prediction Frameworks. GENOMICS, PROTEOMICS & BIOINFORMATICS 2019; 17:305-310. [PMID: 31437583 PMCID: PMC6818179 DOI: 10.1016/j.gpb.2019.04.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 03/21/2019] [Accepted: 04/29/2019] [Indexed: 11/26/2022]
Abstract
Published genomes frequently contain erroneous gene models that represent issues associated with identification of open reading frames, start sites, splice sites, and related structural features. The source of these inconsistencies is often traced back to integration across text file formats designed to describe long read alignments and predicted gene structures. In addition, the majority of gene prediction frameworks do not provide robust downstream filtering to remove problematic gene annotations, nor do they represent these annotations in a format consistent with current file standards. These frameworks also lack consideration for functional attributes, such as the presence or absence of protein domains that can be used for gene model validation. To provide oversight to the increasing number of published genome annotations, we present a software package, the Gene Filtering, Analysis, and Conversion (gFACs), to filter, analyze, and convert predicted gene models and alignments. The software operates across a wide range of alignment, analysis, and gene prediction files with a flexible framework for defining gene models with reliable structural and functional attributes. gFACs supports common downstream applications, including genome browsers, and generates extensive details on the filtering process, including distributions that can be visualized to further assess the proposed gene space. gFACs is freely available and implemented in Perl with support from BioPerl libraries at https://gitlab.com/PlantGenomicsLab/gFACs.
Collapse
Affiliation(s)
- Madison Caballero
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA.
| | - Jill Wegrzyn
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
22
|
Barik S. How universal is the transcription regulatory moonlighting role of fructose 1,6-bisphosphate aldolase? J Theor Biol 2019; 464:112-114. [DOI: 10.1016/j.jtbi.2018.12.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/25/2018] [Accepted: 12/27/2018] [Indexed: 11/29/2022]
|
23
|
RNA-Seq-Based Analysis Reveals Heterogeneity in Mature 16S rRNA 3' Termini and Extended Anti-Shine-Dalgarno Motifs in Bacterial Species. G3-GENES GENOMES GENETICS 2018; 8:3973-3979. [PMID: 30355764 PMCID: PMC6288834 DOI: 10.1534/g3.118.200729] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We present an RNA-Seq based approach to map 3′ end sequences of mature 16S rRNA (3′ TAIL) in bacteria with single-base specificity. Our results show that 3′ TAILs are heterogeneous among species; they contain the core CCUCC anti-Shine-Dalgarno motif, but vary in downstream lengths. Importantly, our findings rectify the mis-annotated 16S rRNAs in 11 out of 13 bacterial species studied herein (covering Cyanobacteria, Deinococcus-Thermus, Firmicutes, Proteobacteria, Tenericutes, and Spirochaetes). Furthermore, our results show that species-specific 3′ TAIL boundaries are retained due to their high complementarity with preferred Shine-Dalgarno sequences, suggesting that 3′ TAIL bases downstream of the canonical CCUCC motif play a more important role in translation initiation than previously reported.
Collapse
|
24
|
Nakamura M, Aihara J, Hoshida H, Akada R. Identification and Mutational Analysis of Escherichia coli Sorbitol-Enhanced Glucose-Repressed srlA Promoter Expressed in LB Medium by Using Homologous Recombination and One-Round PCR Products. Mol Biotechnol 2018; 60:912-923. [PMID: 30269209 DOI: 10.1007/s12033-018-0123-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Escherichia coli has been used for recombinant protein production for many years. However, no native E. coli promoters have been found for constitutive expression in LB medium. To obtain high-expression E. coli promoters active in LB medium, we inserted various promoter regions upstream of eEmRFP that encodes a red fluorescent protein. Among the selected promoters, only colonies of srlA promoter transformants turned red on LB plate. srlA is a gene that regulates sorbitol utilization. The addition of sorbitol enhanced eEmRFP expression but glucose and other sugars repressed, indicating that srlAp is a sorbitol-enhanced glucose-repressed promoter. To analyze the srlAp sequence, a novel site-directed mutagenesis method was developed. Since we demonstrated that homologous recombination in E. coli could occur between 12-bp sequences, 12-bp overlapping sequences were attached to the set of primers that were designed to produce a full-length plasmid, denoted "one-round PCR product." Using this method, we identified that the srlA promoter region was 100 bp. Further, the sequence adjacent to the start codon was found to be essential for high expression, suggesting that the traditionally used restriction enzyme sites for cloning in the promoter region have hindered expression. The srlA-driven expression system and DNA manipulation with one-round PCR products are useful tools in E. coli genetic engineering.
Collapse
Affiliation(s)
- Mikiko Nakamura
- Department of Applied Chemistry, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Ube, 755-8611, Japan. .,Yamaguchi University Biomedical Engineering Center, Ube, 753-8611, Japan.
| | - Junya Aihara
- Department of Applied Chemistry, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Ube, 755-8611, Japan
| | - Hisashi Hoshida
- Department of Applied Chemistry, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Ube, 755-8611, Japan.,Yamaguchi University Biomedical Engineering Center, Ube, 753-8611, Japan.,Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi, 753-8511, Japan
| | - Rinji Akada
- Department of Applied Chemistry, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Ube, 755-8611, Japan. .,Yamaguchi University Biomedical Engineering Center, Ube, 753-8611, Japan. .,Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi, 753-8511, Japan.
| |
Collapse
|
25
|
Abrahams L, Hurst LD. Adenine Enrichment at the Fourth CDS Residue in Bacterial Genes Is Consistent with Error Proofing for +1 Frameshifts. Mol Biol Evol 2018; 34:3064-3080. [PMID: 28961919 PMCID: PMC5850271 DOI: 10.1093/molbev/msx223] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Beyond selection for optimal protein functioning, coding sequences (CDSs) are under selection at the RNA and DNA levels. Here, we identify a possible signature of “dual-coding,” namely extensive adenine (A) enrichment at bacterial CDS fourth sites. In 99.07% of studied bacterial genomes, fourth site A use is greater than expected given genomic A-starting codon use. Arguing for nucleotide level selection, A-starting serine and arginine second codons are heavily utilized when compared with their non-A starting synonyms. Several models have the ability to explain some of this trend. In part, A-enrichment likely reduces 5′ mRNA stability, promoting translation initiation. However T/U, which may also reduce stability, is avoided. Further, +1 frameshifts on the initiating ATG encode a stop codon (TGA) provided A is the fourth residue, acting either as a frameshift “catch and destroy” or a frameshift stop and adjust mechanism and hence implicated in translation initiation. Consistent with both, genomes lacking TGA stop codons exhibit weaker fourth site A-enrichment. Sequences lacking a Shine–Dalgarno sequence and those without upstream leader genes, that may be more error prone during initiation, have greater utilization of A, again suggesting a role in initiation. The frameshift correction model is consistent with the notion that many genomic features are error-mitigation factors and provides the first evidence for site-specific out of frame stop codon selection. We conjecture that the NTG universal start codon may have evolved as a consequence of TGA being a stop codon and the ability of NTGA to rapidly terminate or adjust a ribosome.
Collapse
Affiliation(s)
- Liam Abrahams
- Department of Biology and Biochemistry, The Milner Centre for Evolution, University of Bath, Bath, United Kingdom
| | - Laurence D Hurst
- Department of Biology and Biochemistry, The Milner Centre for Evolution, University of Bath, Bath, United Kingdom
| |
Collapse
|
26
|
Gawroński P, Jensen PE, Karpiński S, Leister D, Scharff LB. Pausing of Chloroplast Ribosomes Is Induced by Multiple Features and Is Linked to the Assembly of Photosynthetic Complexes. PLANT PHYSIOLOGY 2018; 176:2557-2569. [PMID: 29298822 PMCID: PMC5841727 DOI: 10.1104/pp.17.01564] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/02/2018] [Indexed: 05/11/2023]
Abstract
Many mRNAs contain pause sites that briefly interrupt the progress of translation. Specific features that induce ribosome pausing have been described; however, their individual contributions to pause-site formation, and the overall biological significance of ribosome pausing, remain largely unclear. We have taken advantage of the compact genome of chloroplasts to carry out a plastid genome-wide survey of pause sites, as a basis for studying the impact of pausing on posttranslational processes. Based on ribosomal profiling of Arabidopsis (Arabidopsis thaliana) chloroplast mRNAs, we demonstrate that a combination of factors-mRNA secondary structure, internal Shine-Dalgarno sequences, and positively charged amino acids in the nascent peptide chain-explains 95% of the major pause sites on plastid mRNAs, whereas codon usage has little impact. The distribution of the pause sites is nonrandom and conforms to distinct patterns in the vicinity of sequences coding for transmembrane domains, which depend on their orientation within the membrane as well as being next to sequences coding for cofactor binding sites. We found strong indications that the mechanisms causing ribosomal pausing and at least some of the ribosomes pause sites are conserved between distantly related plant species. In addition, the positions of features that cause pausing are well conserved in photoautotrophic plants, but less so in their nonphotosynthetic, parasitic relatives, implying that the synthesis and assembly of photosynthetic multiprotein complexes requires localized ribosome pausing.
Collapse
Affiliation(s)
- Piotr Gawroński
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| | - Poul Erik Jensen
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Stanisław Karpiński
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
- Plant Breeding and Acclimatization Institute, National Research Institute, Radzików, 05-870 Błonie, Poland
| | - Dario Leister
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
- Plant Molecular Biology, Department Biology I, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Lars B Scharff
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
| |
Collapse
|
27
|
Wei Y, Silke JR, Xia X. Elucidating the 16S rRNA 3' boundaries and defining optimal SD/aSD pairing in Escherichia coli and Bacillus subtilis using RNA-Seq data. Sci Rep 2017; 7:17639. [PMID: 29247194 PMCID: PMC5732282 DOI: 10.1038/s41598-017-17918-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 12/04/2017] [Indexed: 11/09/2022] Open
Abstract
Bacterial translation initiation is influenced by base pairing between the Shine-Dalgarno (SD) sequence in the 5' UTR of mRNA and the anti-SD (aSD) sequence at the free 3' end of the 16S rRNA (3' TAIL) due to: 1) the SD/aSD sequence binding location and 2) SD/aSD binding affinity. In order to understand what makes an SD/aSD interaction optimal, we must define: 1) terminus of the 3' TAIL and 2) extent of the core aSD sequence within the 3' TAIL. Our approach to characterize these components in Escherichia coli and Bacillus subtilis involves 1) mapping the 3' boundary of the mature 16S rRNA using high-throughput RNA sequencing (RNA-Seq), and 2) identifying the segment within the 3' TAIL that is strongly preferred in SD/aSD pairing. Using RNA-Seq data, we resolve previous discrepancies in the reported 3' TAIL in B. subtilis and recovered the established 3' TAIL in E. coli. Furthermore, we extend previous studies to suggest that both highly and lowly expressed genes favor SD sequences with intermediate binding affinity, but this trend is exclusive to SD sequences that complement the core aSD sequences defined herein.
Collapse
Affiliation(s)
- Yulong Wei
- Department of Biology, University of Ottawa, 30 Marie Curie, P.O. Box 450, Station A, Ottawa, Ontario, Canada
| | - Jordan R Silke
- Department of Biology, University of Ottawa, 30 Marie Curie, P.O. Box 450, Station A, Ottawa, Ontario, Canada
| | - Xuhua Xia
- Department of Biology, University of Ottawa, 30 Marie Curie, P.O. Box 450, Station A, Ottawa, Ontario, Canada. .,Ottawa Institute of Systems Biology, Ottawa, Ontario, K1H 8M5, Canada.
| |
Collapse
|
28
|
Hockenberry AJ, Stern AJ, Amaral LAN, Jewett MC. Diversity of Translation Initiation Mechanisms across Bacterial Species Is Driven by Environmental Conditions and Growth Demands. Mol Biol Evol 2017; 35:582-592. [PMID: 29220489 PMCID: PMC5850609 DOI: 10.1093/molbev/msx310] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The Shine-Dalgarno (SD) sequence motif is frequently found upstream of protein coding genes and is thought to be the dominant mechanism of translation initiation used by bacteria. Experimental studies have shown that the SD sequence facilitates start codon recognition and enhances translation initiation by directly interacting with the highly conserved anti-SD sequence on the 30S ribosomal subunit. However, the proportion of SD-led genes within a genome varies across species and the factors governing this variation in translation initiation mechanisms remain largely unknown. Here, we conduct a phylogenetically informed analysis and find that species capable of rapid growth contain a higher proportion of SD-led genes throughout their genomes. We show that SD sequence utilization covaries with a suite of genomic features that are important for efficient translation initiation and elongation. In addition to these endogenous genomic factors, we further show that exogenous environmental factors may influence the evolution of translation initiation mechanisms by finding that thermophilic species contain significantly more SD-led genes than mesophiles. Our results demonstrate that variation in translation initiation mechanisms across bacterial species is predictable and is a consequence of differential life-history strategies related to maximum growth rate and environmental-specific constraints.
Collapse
Affiliation(s)
- Adam J Hockenberry
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
- Interdisciplinary Program in Biological Sciences, Northwestern University, Evanston, IL, USA
| | - Aaron J Stern
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
| | - Luís A N Amaral
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
- Northwestern Institute for Complex Systems, Northwestern University, Evanston, IL, USA
- Department of Physics and Astronomy, Northwestern University, Evanston, IL, USA
- Corresponding authors: E-mails: ;
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
- Northwestern Institute for Complex Systems, Northwestern University, Evanston, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Evanston, IL, USA
- Corresponding authors: E-mails: ;
| |
Collapse
|
29
|
Scharff LB, Ehrnthaler M, Janowski M, Childs LH, Hasse C, Gremmels J, Ruf S, Zoschke R, Bock R. Shine-Dalgarno Sequences Play an Essential Role in the Translation of Plastid mRNAs in Tobacco. THE PLANT CELL 2017; 29:3085-3101. [PMID: 29133466 PMCID: PMC5757275 DOI: 10.1105/tpc.17.00524] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 10/27/2017] [Accepted: 11/08/2017] [Indexed: 05/23/2023]
Abstract
In prokaryotic systems, the translation initiation of many, though not all, mRNAs depends on interaction between a sequence element upstream of the start codon (the Shine-Dalgarno sequence [SD]) and a complementary sequence in the 3' end of the 16S rRNA (anti-Shine-Dalgarno sequence [aSD]). Although many chloroplast mRNAs harbor putative SDs in their 5' untranslated regions and the aSD displays strong conservation, the functional relevance of SD-aSD interactions in plastid translation is unclear. Here, by generating transplastomic tobacco (Nicotiana tabacum) mutants with point mutations in the aSD coupled with genome-wide analysis of translation by ribosome profiling, we provide a global picture of SD-dependent translation in plastids. We observed a pronounced correlation between weakened predicted SD-aSD interactions and reduced translation efficiency. However, multiple lines of evidence suggest that the strength of the SD-aSD interaction is not the only determinant of the translational output of many plastid mRNAs. Finally, the translation efficiency of mRNAs with strong secondary structures around the start codon is more dependent on the SD-aSD interaction than weakly structured mRNAs. Thus, our data reveal the importance of the aSD in plastid translation initiation, uncover chloroplast genes whose translation is influenced by SD-aSD interactions, and provide insights into determinants of translation efficiency in plastids.
Collapse
Affiliation(s)
- Lars B Scharff
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| | - Miriam Ehrnthaler
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| | - Marcin Janowski
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| | - Liam H Childs
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| | - Claudia Hasse
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| | - Jürgen Gremmels
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| | - Stephanie Ruf
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| | - Reimo Zoschke
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
30
|
Hockenberry AJ, Pah AR, Jewett MC, Amaral LAN. Leveraging genome-wide datasets to quantify the functional role of the anti-Shine-Dalgarno sequence in regulating translation efficiency. Open Biol 2017; 7:rsob.160239. [PMID: 28100663 PMCID: PMC5303271 DOI: 10.1098/rsob.160239] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 12/15/2016] [Indexed: 11/18/2022] Open
Abstract
Studies dating back to the 1970s established that sequence complementarity between the anti-Shine–Dalgarno (aSD) sequence on prokaryotic ribosomes and the 5′ untranslated region of mRNAs helps to facilitate translation initiation. The optimal location of aSD sequence binding relative to the start codon, the full extents of the aSD sequence and the functional form of the relationship between aSD sequence complementarity and translation efficiency have not been fully resolved. Here, we investigate these relationships by leveraging the sequence diversity of endogenous genes and recently available genome-wide estimates of translation efficiency. We show that—after accounting for predicted mRNA structure—aSD sequence complementarity increases the translation of endogenous mRNAs by roughly 50%. Further, we observe that this relationship is nonlinear, with translation efficiency maximized for mRNAs with intermediate levels of aSD sequence complementarity. The mechanistic insights that we observe are highly robust: we find nearly identical results in multiple datasets spanning three distantly related bacteria. Further, we verify our main conclusions by re-analysing a controlled experimental dataset.
Collapse
Affiliation(s)
- Adam J Hockenberry
- Interdisciplinary Program in Biological Sciences, Northwestern University, Evanston, IL 60208, USA.,Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Adam R Pah
- Northwestern Institute on Complex Systems, Northwestern University, Evanston, IL 60208, USA.,Kellogg School of Management, Northwestern University, Evanston, IL 60208, USA
| | - Michael C Jewett
- Interdisciplinary Program in Biological Sciences, Northwestern University, Evanston, IL 60208, USA .,Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA.,Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
| | - Luís A N Amaral
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA .,Northwestern Institute on Complex Systems, Northwestern University, Evanston, IL 60208, USA.,Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
31
|
Nakagawa S, Niimura Y, Gojobori T. Comparative genomic analysis of translation initiation mechanisms for genes lacking the Shine-Dalgarno sequence in prokaryotes. Nucleic Acids Res 2017; 45:3922-3931. [PMID: 28334743 PMCID: PMC5397173 DOI: 10.1093/nar/gkx124] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 02/11/2017] [Indexed: 02/01/2023] Open
Abstract
In prokaryotes, translation initiation is believed to occur through an interaction between the 3΄ tail of a 16S rRNA and a corresponding Shine–Dalgarno (SD) sequence in the 5΄ untranslated region (UTR) of an mRNA. However, some genes lack SD sequences (non-SD genes), and the fraction of non-SD genes in a genome varies depending on the prokaryotic species. To elucidate non-SD translation initiation mechanisms in prokaryotes from an evolutionary perspective, we statistically examined the nucleotide frequencies around the initiation codons in non-SD genes from 260 prokaryotes (235 bacteria and 25 archaea). We identified distinct nucleotide frequency biases upstream of the initiation codon in bacteria and archaea, likely because of the presence of leaderless mRNAs lacking a 5΄ UTR. Moreover, we observed overall similarities in the nucleotide patterns between upstream and downstream regions of the initiation codon in all examined phyla. Symmetric nucleotide frequency biases might facilitate translation initiation by preventing the formation of secondary structures around the initiation codon. These features are more prominent in species’ genomes that harbor large fractions of non-SD sequences, suggesting that a reduced stability around the initiation codon is important for efficient translation initiation in prokaryotes.
Collapse
Affiliation(s)
- So Nakagawa
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara 259-1193, Japan.,Micro/Nano Technology Center, Tokai University, Hiratsuka 259-1292, Japan
| | - Yoshihito Niimura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Takashi Gojobori
- King Abdullah University of Science and Technology, Computational Bioscience Research Center, Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
32
|
Neuhaus K, Landstorfer R, Simon S, Schober S, Wright PR, Smith C, Backofen R, Wecko R, Keim DA, Scherer S. Differentiation of ncRNAs from small mRNAs in Escherichia coli O157:H7 EDL933 (EHEC) by combined RNAseq and RIBOseq - ryhB encodes the regulatory RNA RyhB and a peptide, RyhP. BMC Genomics 2017; 18:216. [PMID: 28245801 PMCID: PMC5331693 DOI: 10.1186/s12864-017-3586-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 02/13/2017] [Indexed: 12/14/2022] Open
Abstract
Background While NGS allows rapid global detection of transcripts, it remains difficult to distinguish ncRNAs from short mRNAs. To detect potentially translated RNAs, we developed an improved protocol for bacterial ribosomal footprinting (RIBOseq). This allowed distinguishing ncRNA from mRNA in EHEC. A high ratio of ribosomal footprints per transcript (ribosomal coverage value, RCV) is expected to indicate a translated RNA, while a low RCV should point to a non-translated RNA. Results Based on their low RCV, 150 novel non-translated EHEC transcripts were identified as putative ncRNAs, representing both antisense and intergenic transcripts, 74 of which had expressed homologs in E. coli MG1655. Bioinformatics analysis predicted statistically significant target regulons for 15 of the intergenic transcripts; experimental analysis revealed 4-fold or higher differential expression of 46 novel ncRNA in different growth media. Out of 329 annotated EHEC ncRNAs, 52 showed an RCV similar to protein-coding genes, of those, 16 had RIBOseq patterns matching annotated genes in other enterobacteriaceae, and 11 seem to possess a Shine-Dalgarno sequence, suggesting that such ncRNAs may encode small proteins instead of being solely non-coding. To support that the RIBOseq signals are reflecting translation, we tested the ribosomal-footprint covered ORF of ryhB and found a phenotype for the encoded peptide in iron-limiting condition. Conclusion Determination of the RCV is a useful approach for a rapid first-step differentiation between bacterial ncRNAs and small mRNAs. Further, many known ncRNAs may encode proteins as well. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3586-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Klaus Neuhaus
- Lehrstuhl für Mikrobielle Ökologie, Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, D-85354, Freising, Germany. .,Core Facility Microbiome/NGS, ZIEL Institute for Food & Health, Weihenstephaner Berg 3, D-85354, Freising, Germany.
| | - Richard Landstorfer
- Lehrstuhl für Mikrobielle Ökologie, Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, D-85354, Freising, Germany
| | - Svenja Simon
- Informatik und Informationswissenschaft, Universität Konstanz, D-78457, Konstanz, Germany
| | - Steffen Schober
- Institut für Nachrichtentechnik, Universität Ulm, Albert-Einstein-Allee 43, D-89081, Ulm, Germany
| | - Patrick R Wright
- Bioinformatics Group, Department of Computer Science and BIOSS Centre for Biological Signaling Studies, Cluster of Excellence, University of Freiburg, D-79110, Freiburg, Germany
| | - Cameron Smith
- Bioinformatics Group, Department of Computer Science and BIOSS Centre for Biological Signaling Studies, Cluster of Excellence, University of Freiburg, D-79110, Freiburg, Germany
| | - Rolf Backofen
- Bioinformatics Group, Department of Computer Science and BIOSS Centre for Biological Signaling Studies, Cluster of Excellence, University of Freiburg, D-79110, Freiburg, Germany
| | - Romy Wecko
- Lehrstuhl für Mikrobielle Ökologie, Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, D-85354, Freising, Germany
| | - Daniel A Keim
- Informatik und Informationswissenschaft, Universität Konstanz, D-78457, Konstanz, Germany
| | - Siegfried Scherer
- Lehrstuhl für Mikrobielle Ökologie, Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, D-85354, Freising, Germany
| |
Collapse
|
33
|
RNA Structural Determinants of Optimal Codons Revealed by MAGE-Seq. Cell Syst 2016; 3:563-571.e6. [PMID: 28009265 DOI: 10.1016/j.cels.2016.11.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 05/25/2016] [Accepted: 11/08/2016] [Indexed: 01/30/2023]
Abstract
Synonymous codon choices at the beginning of genes optimize 5' RNA structures for enhanced translation initiation, but less is known about mechanisms that drive codon optimization downstream within the gene. To understand what determines codon choices across a gene, we generated 12,726 in situ codon mutants in the Escherichia coli essential gene infA and measured their fitness by combining multiplex automated genome engineering mutagenesis with amplicon deep sequencing (MAGE-seq). Correlating predicted 5' RNA structure with fitness revealed that codons even far from the start of the gene are deleterious if they disrupt the native 5' RNA conformation. These long-range structural interactions generate context-dependent rules that constrain codon choices beyond intrinsic codon preferences. Genome-wide RNA folding predictions confirm that natural codon choices far from the start codon are optimized in part to prevent disruption of native structures near the 5' UTR. Our results shed light on natural codon distributions and should improve engineering of gene expression for synthetic biology applications.
Collapse
|
34
|
Depletion of Shine-Dalgarno Sequences Within Bacterial Coding Regions Is Expression Dependent. G3-GENES GENOMES GENETICS 2016; 6:3467-3474. [PMID: 27605518 PMCID: PMC5100845 DOI: 10.1534/g3.116.032227] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Efficient and accurate protein synthesis is crucial for organismal survival in competitive environments. Translation efficiency (the number of proteins translated from a single mRNA in a given time period) is the combined result of differential translation initiation, elongation, and termination rates. Previous research identified the Shine-Dalgarno (SD) sequence as a modulator of translation initiation in bacterial genes, while codon usage biases are frequently implicated as a primary determinant of elongation rate variation. Recent studies have suggested that SD sequences within coding sequences may negatively affect translation elongation speed, but this claim remains controversial. Here, we present a metric to quantify the prevalence of SD sequences in coding regions. We analyze hundreds of bacterial genomes and find that the coding sequences of highly expressed genes systematically contain fewer SD sequences than expected, yielding a robust correlation between the normalized occurrence of SD sites and protein abundances across a range of bacterial taxa. We further show that depletion of SD sequences within ribosomal protein genes is correlated with organismal growth rates, supporting the hypothesis of strong selection against the presence of these sequences in coding regions and suggesting their association with translation efficiency in bacteria.
Collapse
|
35
|
Toogood HS, Tait S, Jervis A, Ní Cheallaigh A, Humphreys L, Takano E, Gardiner JM, Scrutton NS. Natural Product Biosynthesis in Escherichia coli: Mentha Monoterpenoids. Methods Enzymol 2016; 575:247-70. [PMID: 27417932 DOI: 10.1016/bs.mie.2016.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The era of synthetic biology heralds in a new, more "green" approach to fine chemical and pharmaceutical drug production. It takes the knowledge of natural metabolic pathways and builds new routes to chemicals, enables nonnatural chemical production, and/or allows the rapid production of chemicals in alternative, highly performing organisms. This route is particularly useful in the production of monoterpenoids in microorganisms, which are naturally sourced from plant essential oils. Successful pathways are constructed by taking into consideration factors such as gene selection, regulatory elements, host selection and optimization, and metabolic considerations of the host organism. Seamless pathway construction techniques enable a "plug-and-play" switching of genes and regulatory parts to optimize the metabolic functioning in vivo. Ultimately, synthetic biology approaches to microbial monoterpenoid production may revolutionize "natural" compound formation.
Collapse
Affiliation(s)
- H S Toogood
- Manchester Institute of Biotechnology, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - S Tait
- Manchester Institute of Biotechnology, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - A Jervis
- Manchester Institute of Biotechnology, SYNBIOCHEM, University of Manchester, Manchester, United Kingdom
| | - A Ní Cheallaigh
- School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| | - L Humphreys
- GlaxoSmithKline, Medicines Research Centre, Stevenage, United Kingdom
| | - E Takano
- Manchester Institute of Biotechnology, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - J M Gardiner
- School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| | - N S Scrutton
- Manchester Institute of Biotechnology, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
36
|
Omotajo D, Tate T, Cho H, Choudhary M. Distribution and diversity of ribosome binding sites in prokaryotic genomes. BMC Genomics 2015; 16:604. [PMID: 26268350 PMCID: PMC4535381 DOI: 10.1186/s12864-015-1808-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 08/03/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Prokaryotic translation initiation involves the proper docking, anchoring, and accommodation of mRNA to the 30S ribosomal subunit. Three initiation factors (IF1, IF2, and IF3) and some ribosomal proteins mediate the assembly and activation of the translation initiation complex. Although the interaction between Shine-Dalgarno (SD) sequence and its complementary sequence in the 16S rRNA is important in initiation, some genes lacking an SD ribosome binding site (RBS) are still well expressed. The objective of this study is to examine the pattern of distribution and diversity of RBS in fully sequenced bacterial genomes. The following three hypotheses were tested: SD motifs are prevalent in bacterial genomes; all previously identified SD motifs are uniformly distributed across prokaryotes; and genes with specific cluster of orthologous gene (COG) functions differ in their use of SD motifs. RESULTS Data for 2,458 bacterial genomes, previously generated by Prodigal (PROkaryotic DYnamic programming Gene-finding ALgorithm) and currently available at the National Center for Biotechnology Information (NCBI), were analyzed. Of the total genes examined, ~77.0% use an SD RBS, while ~23.0% have no RBS. Majority of the genes with the most common SD motifs are distributed in a manner that is representative of their abundance for each COG functional category, while motifs 13 (5'-GGA-3'/5'-GAG-3'/5'-AGG-3') and 27 (5'-AGGAGG-3') appear to be predominantly used by genes for information storage and processing, and translation and ribosome biogenesis, respectively. CONCLUSION These findings suggest that an SD sequence is not obligatory for translation initiation; instead, other signals, such as the RBS spacer, may have an overarching influence on translation of mRNAs. Subsequent analyses of the 5' secondary structure of these mRNAs may provide further insight into the translation initiation mechanism.
Collapse
Affiliation(s)
- Damilola Omotajo
- Department of Biological Sciences, Sam Houston State University, Huntsville, TX, 77341, USA
| | - Travis Tate
- Department of Biological Sciences, Sam Houston State University, Huntsville, TX, 77341, USA
| | - Hyuk Cho
- Department of Computer Science, Sam Houston State University, Huntsville, TX, 77341, USA
| | - Madhusudan Choudhary
- Department of Biological Sciences, Sam Houston State University, Huntsville, TX, 77341, USA.
| |
Collapse
|
37
|
Schrader JM, Zhou B, Li GW, Lasker K, Childers WS, Williams B, Long T, Crosson S, McAdams HH, Weissman JS, Shapiro L. The coding and noncoding architecture of the Caulobacter crescentus genome. PLoS Genet 2014; 10:e1004463. [PMID: 25078267 PMCID: PMC4117421 DOI: 10.1371/journal.pgen.1004463] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 05/13/2014] [Indexed: 11/24/2022] Open
Abstract
Caulobacter crescentus undergoes an asymmetric cell division controlled by a genetic circuit that cycles in space and time. We provide a universal strategy for defining the coding potential of bacterial genomes by applying ribosome profiling, RNA-seq, global 5′-RACE, and liquid chromatography coupled with tandem mass spectrometry (LC-MS) data to the 4-megabase C. crescentus genome. We mapped transcript units at single base-pair resolution using RNA-seq together with global 5′-RACE. Additionally, using ribosome profiling and LC-MS, we mapped translation start sites and coding regions with near complete coverage. We found most start codons lacked corresponding Shine-Dalgarno sites although ribosomes were observed to pause at internal Shine-Dalgarno sites within the coding DNA sequence (CDS). These data suggest a more prevalent use of the Shine-Dalgarno sequence for ribosome pausing rather than translation initiation in C. crescentus. Overall 19% of the transcribed and translated genomic elements were newly identified or significantly improved by this approach, providing a valuable genomic resource to elucidate the complete C. crescentus genetic circuitry that controls asymmetric cell division. Caulobacter crescentus is a model system for studying asymmetric cell division, a fundamental process that, through differential gene expression in the two daughter cells, enables the generation of cells with different fates. To explore how the genome directs and maintains asymmetry upon cell division, we performed a coordinated analysis of multiple genomic and proteomic datasets to identify the RNA and protein coding features in the C. crescentus genome. Our integrated analysis identifies many new genetic regulatory elements, adding significant regulatory complexity to the C. crescentus genome. Surprisingly, 75.4% of protein coding genes lack a canonical translation initiation sequence motif (the Shine-Dalgarno site) which hybridizes to the 3′ end of the ribosomal RNA allowing translation initiation. We find Shine-Dalgarno sites primarily inside of genes where they cause translating ribosomes to pause, possibly allowing nascent proteins to correctly fold. With our detailed map of genomic transcription and translation elements, a systems view of the genetic network that controls asymmetric cell division is within reach.
Collapse
Affiliation(s)
- Jared M. Schrader
- Department of Developmental Biology, Stanford University, Stanford, California, United States of America
| | - Bo Zhou
- Department of Developmental Biology, Stanford University, Stanford, California, United States of America
| | - Gene-Wei Li
- Department of Cellular and Molecular Pharmacology, California Institute of Quantitative Biology, Center for RNA Systems Biology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, California, United States of America
| | - Keren Lasker
- Department of Developmental Biology, Stanford University, Stanford, California, United States of America
| | - W. Seth Childers
- Department of Developmental Biology, Stanford University, Stanford, California, United States of America
| | - Brandon Williams
- Department of Developmental Biology, Stanford University, Stanford, California, United States of America
| | - Tao Long
- Department of Developmental Biology, Stanford University, Stanford, California, United States of America
| | - Sean Crosson
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, United States of America
| | - Harley H. McAdams
- Department of Developmental Biology, Stanford University, Stanford, California, United States of America
| | - Jonathan S. Weissman
- Department of Cellular and Molecular Pharmacology, California Institute of Quantitative Biology, Center for RNA Systems Biology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, California, United States of America
| | - Lucy Shapiro
- Department of Developmental Biology, Stanford University, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
38
|
Larson MH, Mooney RA, Peters JM, Windgassen T, Nayak D, Gross CA, Block SM, Greenleaf WJ, Landick R, Weissman JS. A pause sequence enriched at translation start sites drives transcription dynamics in vivo. Science 2014; 344:1042-7. [PMID: 24789973 DOI: 10.1126/science.1251871] [Citation(s) in RCA: 248] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Transcription by RNA polymerase (RNAP) is interrupted by pauses that play diverse regulatory roles. Although individual pauses have been studied in vitro, the determinants of pauses in vivo and their distribution throughout the bacterial genome remain unknown. Using nascent transcript sequencing, we identified a 16-nucleotide consensus pause sequence in Escherichia coli that accounts for known regulatory pause sites as well as ~20,000 new in vivo pause sites. In vitro single-molecule and ensemble analyses demonstrate that these pauses result from RNAP-nucleic acid interactions that inhibit next-nucleotide addition. The consensus sequence also leads to pausing by RNAPs from diverse lineages and is enriched at translation start sites in both E. coli and Bacillus subtilis. Our results thus reveal a conserved mechanism unifying known and newly identified pause events.
Collapse
Affiliation(s)
- Matthew H Larson
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, California Institute for Quantitative Biosciences, Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Rachel A Mooney
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Jason M Peters
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Tricia Windgassen
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Dhananjaya Nayak
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Carol A Gross
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Steven M Block
- Department of Biological Sciences, Stanford University, Stanford, CA 94025, USA. Department of Applied Physics; Stanford University, Stanford, CA 94025, USA
| | | | - Robert Landick
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA. Department of Bacteriology, University of Wisconsin, Madison, WI 53706, USA.
| | - Jonathan S Weissman
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, California Institute for Quantitative Biosciences, Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
39
|
Kulkarni PR, Jia T, Kuehne SA, Kerkering TM, Morris ER, Searle MS, Heeb S, Rao J, Kulkarni RV. A sequence-based approach for prediction of CsrA/RsmA targets in bacteria with experimental validation in Pseudomonas aeruginosa. Nucleic Acids Res 2014; 42:6811-25. [PMID: 24782516 PMCID: PMC4066749 DOI: 10.1093/nar/gku309] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
CsrA/RsmA homologs are an extensive family of ribonucleic acid (RNA)-binding proteins that function as global post-transcriptional regulators controlling important cellular processes such as secondary metabolism, motility, biofilm formation and the production and secretion of virulence factors in diverse bacterial species. While direct messenger RNA binding by CsrA/RsmA has been studied in detail for some genes, it is anticipated that there are numerous additional, as yet undiscovered, direct targets that mediate its global regulation. To assist in the discovery of these targets, we propose a sequence-based approach to predict genes directly regulated by these regulators. In this work, we develop a computer code (CSRA_TARGET) implementing this approach, which leads to predictions for several novel targets in Escherichia coli and Pseudomonas aeruginosa. The predicted targets in other bacteria, specifically Salmonella enterica serovar Typhimurium, Pectobacterium carotovorum and Legionella pneumophila, also include global regulators that control virulence in these pathogens, unraveling intricate indirect regulatory roles for CsrA/RsmA. We have experimentally validated four predicted RsmA targets in P. aeruginosa. The sequence-based approach developed in this work can thus lead to several testable predictions for direct targets of CsrA homologs, thereby complementing and accelerating efforts to unravel global regulation by this important family of proteins.
Collapse
Affiliation(s)
- Prajna R Kulkarni
- Department of Physics, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Tao Jia
- Social Cognitive Networks Academic Research Center, and Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Sarah A Kuehne
- School of Life Sciences, Centre for Biomolecular Sciences, University Park, University of Nottingham, Nottingham NG7 2RD, UK
| | - Thomas M Kerkering
- Section of Infectious Diseases, Carilion Clinic/Virginia Tech Carilion School of Medicine/Jefferson College of Health Sciences, Roanoke, VA 24013, USA
| | - Elizabeth R Morris
- School of Chemistry, Centre for Biomolecular Sciences, University Park, University of Nottingham, Nottingham NG7 2RD, UK
| | - Mark S Searle
- School of Chemistry, Centre for Biomolecular Sciences, University Park, University of Nottingham, Nottingham NG7 2RD, UK
| | - Stephan Heeb
- School of Life Sciences, Centre for Biomolecular Sciences, University Park, University of Nottingham, Nottingham NG7 2RD, UK
| | - Jayasimha Rao
- Section of Infectious Diseases, Carilion Clinic/Virginia Tech Carilion School of Medicine/Jefferson College of Health Sciences, Roanoke, VA 24013, USA
| | - Rahul V Kulkarni
- Department of Physics, University of Massachusetts Boston, Boston, MA 02125, USA
| |
Collapse
|
40
|
Lim K, Kobayashi I, Nakai K. Alterations in rRNA-mRNA interaction during plastid evolution. Mol Biol Evol 2014; 31:1728-40. [PMID: 24710516 DOI: 10.1093/molbev/msu120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Translation initiation depends on the recognition of mRNA by a ribosome. For this to occur, prokaryotes primarily use the Shine-Dalgarno (SD) interaction, where the 3'-tail of small subunit rRNA (core motif: 3'CCUCC) forms base pairs with a complementary signal sequence in the 5'-untranslated region of mRNA. Here, we examined what happened to SD interactions during the evolution of a cyanobacterial endosymbiont into modern plastids (including chloroplasts). Our analysis of available complete plastid genome sequences revealed that the majority of plastids retained SD interactions but with varying levels of usage. Parallel losses of SD interactions took place in plastids of Chlorophyta, Euglenophyta, and Chromerida/Apicomplexa lineages, presumably related to their extensive reductive evolution. Interestingly, we discovered that the classical SD interaction (3'CCUCC/5'GGAGG [rRNA/mRNA]) was replaced by an altered SD interaction (3'CCCU/5'GGGA or 3'CUUCC/5'GAAGG) through coordinated changes in the sequences of the core rRNA motif and its paired mRNA signal. These changes in plastids of Chlorophyta and Euglenophyta proceeded through intermediate stages that allowed both the classical and altered SD interactions. This coevolution between the rRNA motif and the mRNA signal demonstrates unexpected plasticity in the translation initiation machinery.
Collapse
Affiliation(s)
- Kyungtaek Lim
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Minato-ku, Tokyo, JapanThe Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Ichizo Kobayashi
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Minato-ku, Tokyo, JapanThe Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Kenta Nakai
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Minato-ku, Tokyo, JapanThe Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| |
Collapse
|
41
|
Schlüter JP, Reinkensmeier J, Barnett MJ, Lang C, Krol E, Giegerich R, Long SR, Becker A. Global mapping of transcription start sites and promoter motifs in the symbiotic α-proteobacterium Sinorhizobium meliloti 1021. BMC Genomics 2013; 14:156. [PMID: 23497287 PMCID: PMC3616915 DOI: 10.1186/1471-2164-14-156] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 02/12/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sinorhizobium meliloti is a soil-dwelling α-proteobacterium that possesses a large, tripartite genome and engages in a nitrogen fixing symbiosis with its plant hosts. Although much is known about this important model organism, global characterization of genetic regulatory circuits has been hampered by a lack of information about transcription and promoters. RESULTS Using an RNAseq approach and RNA populations representing 16 different growth and stress conditions, we comprehensively mapped S. meliloti transcription start sites (TSS). Our work identified 17,001 TSS that we grouped into six categories based on the genomic context of their transcripts: mRNA (4,430 TSS assigned to 2,657 protein-coding genes), leaderless mRNAs (171), putative mRNAs (425), internal sense transcripts (7,650), antisense RNA (3,720), and trans-encoded sRNAs (605). We used this TSS information to identify transcription factor binding sites and putative promoter sequences recognized by seven of the 15 known S. meliloti σ factors σ70, σ54, σH1, σH2, σE1, σE2, and σE9). Altogether, we predicted 2,770 new promoter sequences, including 1,302 located upstream of protein coding genes and 722 located upstream of antisense RNA or trans-encoded sRNA genes. To validate promoter predictions for targets of the general stress response σ factor, RpoE2 (σE2), we identified rpoE2-dependent genes using microarrays and confirmed TSS for a subset of these by 5' RACE mapping. CONCLUSIONS By identifying TSS and promoters on a global scale, our work provides a firm foundation for the continued study of S. meliloti gene expression with relation to gene organization, σ factors and other transcription factors, and regulatory RNAs.
Collapse
Affiliation(s)
- Jan-Philip Schlüter
- Institute of Biology III, Faculty of Biology, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Klassen JL, Currie CR. ORFcor: identifying and accommodating ORF prediction inconsistencies for phylogenetic analysis. PLoS One 2013; 8:e58387. [PMID: 23484025 PMCID: PMC3590147 DOI: 10.1371/journal.pone.0058387] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 02/04/2013] [Indexed: 12/26/2022] Open
Abstract
The high-throughput annotation of open reading frames (ORFs) required by modern genome sequencing projects necessitates computational protocols that sometimes annotate orthologous ORFs inconsistently. Such inconsistencies hinder comparative analyses by non-uniformly extending or truncating 5′ and/or 3′ sequence ends, causing ORFs that are in fact identical to artificially diverge. Whereas strategies exist to correct such inconsistencies during whole-genome annotation, equivalent software designed to correct subsets of these data without genome reannotation is lacking. We therefore developed ORFcor, which corrects annotation inconsistencies using consensus start and stop positions derived from sets of closely related orthologs. ORFcor corrects inconsistent ORF annotations in diverse test datasets with specificities and sensitivities approaching 100% when sufficiently related orthologs (e.g., from the same taxonomic family) are available for comparison. The ORFcor package is implemented in Perl, multithreaded to handle large datasets, includes related scripts to facilitate high-throughput phylogenomic analyses, and is freely available at www.currielab.wisc.edu/downloads.html.
Collapse
Affiliation(s)
- Jonathan L Klassen
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| | | |
Collapse
|
43
|
Jäger D, Pernitzsch SR, Richter AS, Backofen R, Sharma CM, Schmitz RA. An archaeal sRNA targeting cis- and trans-encoded mRNAs via two distinct domains. Nucleic Acids Res 2012; 40:10964-79. [PMID: 22965121 PMCID: PMC3510493 DOI: 10.1093/nar/gks847] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We report on the characterization and target analysis of the small (s)RNA162 in the methanoarchaeon Methanosarcina mazei. Using a combination of genetic approaches, transcriptome analysis and computational predictions, the bicistronic MM2441-MM2440 mRNA encoding the transcription factor MM2441 and a protein of unknown function was identified as a potential target of this sRNA, which due to processing accumulates as three stabile 5′ fragments in late exponential growth. Mobility shift assays using various mutants verified that the non-structured single-stranded linker region of sRNA162 (SLR) base-pairs with the MM2440-MM2441 mRNA internally, thereby masking the predicted ribosome binding site of MM2441. This most likely leads to translational repression of the second cistron resulting in dis-coordinated operon expression. Analysis of mutant RNAs in vivo confirmed that the SLR of sRNA162 is crucial for target interactions. Furthermore, our results indicate that sRNA162-controlled MM2441 is involved in regulating the metabolic switch between the carbon sources methanol and methylamine. Moreover, biochemical studies demonstrated that the 5′ end of sRNA162 targets the 5′-untranslated region of the cis-encoded MM2442 mRNA. Overall, this first study of archaeal sRNA/mRNA-target interactions unraveled that sRNA162 acts as an antisense (as)RNA on cis- and trans-encoded mRNAs via two distinct domains, indicating that cis-encoded asRNAs can have larger target regulons than previously anticipated.
Collapse
Affiliation(s)
- Dominik Jäger
- Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | | | | | | | | | | |
Collapse
|
44
|
Staphylococcal phage 2638A endolysin is lytic for Staphylococcus aureus and harbors an inter-lytic-domain secondary translational start site. Appl Microbiol Biotechnol 2012; 97:3449-56. [PMID: 22777279 DOI: 10.1007/s00253-012-4252-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 06/13/2012] [Accepted: 06/14/2012] [Indexed: 10/28/2022]
Abstract
Staphylococcus aureus is a notorious pathogen highly successful at developing resistance to virtually all antibiotics to which it is exposed. Staphylococcal phage 2638A endolysin is a peptidoglycan hydrolase that is lytic for S. aureus when exposed externally, making it a new candidate antimicrobial. It shares a common protein organization with more than 40 other reported staphylococcal peptidoglycan hydrolases. There is an N-terminal M23 peptidase domain, a mid-protein amidase 2 domain (N-acetylmuramoyl-L-alanine amidase), and a C-terminal SH3b cell wall-binding domain. It is the first phage endolysin reported with a secondary translational start site in the inter-lytic-domain region between the peptidase and amidase domains. Deletion analysis indicates that the amidase domain confers most of the lytic activity and requires the full SH3b domain for maximal activity. Although it is common for one domain to demonstrate a dominant activity over the other, the 2638A endolysin is the first in this class of proteins to have a high-activity amidase domain (dominant over the N-terminal peptidase domain). The high activity amidase domain is an important finding in the quest for high-activity staphylolytic domains targeting novel peptidoglycan bonds.
Collapse
|
45
|
Abstract
Ribosomal RNA (rRNA) genes, essential to all forms of life, have been viewed as highly conserved and evolutionarily stable, partly because very little is known about their natural variations. Here, we explored large-scale variations of rRNA genes through bioinformatic analyses of available complete bacterial genomic sequences with an emphasis on formation mechanisms and biological significance. Interestingly, we found bacterial genomes in which no 16S rRNA genes harbor the conserved core of the anti–Shine-Dalgarno sequence (5′-CCTCC-3′). This loss was accompanied by elimination of Shine-Dalgarno–like sequences upstream of their protein-coding genes. Those genomes belong to 1 or 2 of the following categories: primary symbionts, hemotropic Mycoplasma, and Flavobacteria. We also found many rearranged rRNA genes and reconstructed their history. Conjecturing the underlying mechanisms, such as inversion, partial duplication, transposon insertion, deletion, and substitution, we were able to infer their biological significance, such as co-orientation of rRNA transcription and chromosomal replication, lateral transfer of rRNA gene segments, and spread of rRNA genes with an apparent structural defect through gene conversion. These results open the way to understanding dynamic evolutionary changes of rRNA genes and the translational machinery.
Collapse
Affiliation(s)
- Kyungtaek Lim
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Minato-ku, Tokyo, Japan
| | | | | |
Collapse
|
46
|
Paramasivam N, Linke D. ClubSub-P: Cluster-Based Subcellular Localization Prediction for Gram-Negative Bacteria and Archaea. Front Microbiol 2011; 2:218. [PMID: 22073040 PMCID: PMC3210502 DOI: 10.3389/fmicb.2011.00218] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 10/12/2011] [Indexed: 12/17/2022] Open
Abstract
The subcellular localization (SCL) of proteins provides important clues to their function in a cell. In our efforts to predict useful vaccine targets against Gram-negative bacteria, we noticed that misannotated start codons frequently lead to wrongly assigned SCLs. This and other problems in SCL prediction, such as the relatively high false-positive and false-negative rates of some tools, can be avoided by applying multiple prediction tools to groups of homologous proteins. Here we present ClubSub-P, an online database that combines existing SCL prediction tools into a consensus pipeline from more than 600 proteomes of fully sequenced microorganisms. On top of the consensus prediction at the level of single sequences, the tool uses clusters of homologous proteins from Gram-negative bacteria and from Archaea to eliminate false-positive and false-negative predictions. ClubSub-P can assign the SCL of proteins from Gram-negative bacteria and Archaea with high precision. The database is searchable, and can easily be expanded using either new bacterial genomes or new prediction tools as they become available. This will further improve the performance of the SCL prediction, as well as the detection of misannotated start codons and other annotation errors. ClubSub-P is available online at http://toolkit.tuebingen.mpg.de/clubsubp/
Collapse
Affiliation(s)
- Nagarajan Paramasivam
- Department I Protein Evolution, Max Planck Institute for Developmental Biology Tübingen, Germany
| | | |
Collapse
|
47
|
Scharff LB, Childs L, Walther D, Bock R. Local absence of secondary structure permits translation of mRNAs that lack ribosome-binding sites. PLoS Genet 2011; 7:e1002155. [PMID: 21731509 PMCID: PMC3121790 DOI: 10.1371/journal.pgen.1002155] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 05/05/2011] [Indexed: 02/05/2023] Open
Abstract
The initiation of translation is a fundamental and highly regulated process in gene expression. Translation initiation in prokaryotic systems usually requires interaction between the ribosome and an mRNA sequence upstream of the initiation codon, the so-called ribosome-binding site (Shine-Dalgarno sequence). However, a large number of genes do not possess Shine-Dalgarno sequences, and it is unknown how start codon recognition occurs in these mRNAs. We have performed genome-wide searches in various groups of prokaryotes in order to identify sequence elements and/or RNA secondary structural motifs that could mediate translation initiation in mRNAs lacking Shine-Dalgarno sequences. We find that mRNAs without a Shine-Dalgarno sequence are generally less structured in their translation initiation region and show a minimum of mRNA folding at the start codon. Using reporter gene constructs in bacteria, we also provide experimental support for local RNA unfoldedness determining start codon recognition in Shine-Dalgarno–independent translation. Consistent with this, we show that AUG start codons reside in single-stranded regions, whereas internal AUG codons are usually in structured regions of the mRNA. Taken together, our bioinformatics analyses and experimental data suggest that local absence of RNA secondary structure is necessary and sufficient to initiate Shine-Dalgarno–independent translation. Thus, our results provide a plausible mechanism for how the correct translation initiation site is recognized in the absence of a ribosome-binding site. Protein biosynthesis (translation) is a highly regulated process in gene expression. In all organisms, initiation of translation depends on molecular recognition of the messenger RNA by ribosomes. In prokaryotes (bacteria, mitochondria, and chloroplasts), this recognition is mediated by a specific sequence motif in the 5′ untranslated region of the mRNA, called “ribosome-binding site” or “Shine-Dalgarno sequence.” However, many messenger RNAs lack Shine-Dalgarno sequences, and it is currently unknown how the correct translation initiation site is recognized in these mRNAs. Here, we provide insights into the mechanism of translation initiation in the absence of a ribosome-binding site. We have performed genome-wide searches for Shine-Dalgarno–independent translation in bacterial and organellar genomes and report that a large fraction of transcripts is translated in a Shine-Dalgarno–independent manner in all prokaryotic systems. We find that Shine-Dalgarno–independent translation initiation is strongly correlated with the presence of a local minimum in RNA secondary structure around the translational start codon. The significance of RNA unfoldedness as the key determinant of start codon recognition in Shine-Dalgarno–independent translation initiation was confirmed experimentally by employing reporter gene fusions in the bacterium Escherichia coli. In conclusion, our work suggests an intriguing mechanism for translation initiation on mRNAs that lack a ribosome-binding site.
Collapse
Affiliation(s)
- Lars B Scharff
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | | | | | | |
Collapse
|
48
|
Chen Y, Indurthi DC, Jones SW, Papoutsakis ET. Small RNAs in the genus Clostridium. mBio 2011; 2:e00340-10. [PMID: 21264064 PMCID: PMC3025663 DOI: 10.1128/mbio.00340-10] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 01/03/2011] [Indexed: 11/20/2022] Open
Abstract
The genus Clostridium includes major human pathogens and species important to cellulose degradation, the carbon cycle, and biotechnology. Small RNAs (sRNAs) are emerging as crucial regulatory molecules in all organisms, but they have not been investigated in clostridia. Research on sRNAs in clostridia is hindered by the absence of a systematic method to identify sRNA candidates, thus delegating clostridial sRNA research to a hit-and-miss process. Thus, we wanted to develop a method to identify potential sRNAs in the Clostridium genus to open up the field of sRNA research in clostridia. Using comparative genomics analyses combined with predictions of rho-independent terminators and promoters, we predicted sRNAs in 21 clostridial genomes: Clostridium acetobutylicum, C. beijerinckii, C. botulinum (eight strains), C. cellulolyticum, C. difficile, C. kluyveri (two strains), C. novyi, C. perfringens (three strains), C. phytofermentans, C. tetani, and C. thermocellum. Although more than one-third of predicted sRNAs have Shine-Dalgarno (SD) sequences, only one-sixth have a start codon downstream of SD sequences; thus, most of the predicted sRNAs are noncoding RNAs. Quantitative reverse transcription-PCR (Q-RT-PCR) and Northern analysis were employed to test the presence of a randomly chosen set of sRNAs in C. acetobutylicum and several C. botulinum strains, leading to the confirmation of a large fraction of the tested sRNAs. We identified a conserved, novel sRNA which, together with the downstream gene coding for an ATP-binding cassette (ABC) transporter gene, responds to the antibiotic clindamycin. The number of predicted sRNAs correlated with the physiological function of the species (high for pathogens, low for cellulolytic, and intermediate for solventogenic), but not with 16S rRNA-based phylogeny.
Collapse
Affiliation(s)
- Yili Chen
- Delaware Biotechnology Institute, Molecular Biotechnology Laboratory, University of Delaware, Newark, Delaware, USA
- Department of Chemical Engineering, Colburn Laboratory, University of Delaware, Newark, Delaware, USA; and
| | - Dinesh C. Indurthi
- Delaware Biotechnology Institute, Molecular Biotechnology Laboratory, University of Delaware, Newark, Delaware, USA
- Department of Chemical Engineering, Colburn Laboratory, University of Delaware, Newark, Delaware, USA; and
| | - Shawn W. Jones
- Delaware Biotechnology Institute, Molecular Biotechnology Laboratory, University of Delaware, Newark, Delaware, USA
- Department of Chemical Engineering, Colburn Laboratory, University of Delaware, Newark, Delaware, USA; and
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
| | - Eleftherios T. Papoutsakis
- Delaware Biotechnology Institute, Molecular Biotechnology Laboratory, University of Delaware, Newark, Delaware, USA
- Department of Chemical Engineering, Colburn Laboratory, University of Delaware, Newark, Delaware, USA; and
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
49
|
Krug K, Nahnsen S, Macek B. Mass spectrometry at the interface of proteomics and genomics. MOLECULAR BIOSYSTEMS 2010; 7:284-91. [PMID: 20967315 DOI: 10.1039/c0mb00168f] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
With the onset of modern DNA sequencing technologies, genomics is experiencing a revolution in terms of quantity and quality of sequencing data. Rapidly growing numbers of sequenced genomes and metagenomes present a tremendous challenge for bioinformatics tools that predict protein-coding regions. Experimental evidence of expressed genomic regions, both at the RNA and protein level, is becoming invaluable for genome annotation and training of gene prediction algorithms. Evidence of gene expression at the protein level using mass spectrometry-based proteomics is increasingly used in refinement of raw genome sequencing data. In a typical "proteogenomics" experiment, the whole proteome of an organism is extracted, digested into peptides and measured by a mass spectrometer. The peptide fragmentation spectra are identified by searching against a six-frame translation of the raw genomic assembly, thus enabling the identification of hitherto unpredicted protein-coding genomic regions. Application of mass spectrometry to genome annotation presents a range of challenges to the standard workflows in proteomics, especially in terms of proteome coverage and database search strategies. Here we provide an overview of the field and argue that the latest mass spectrometry technologies that enable high mass accuracy at high acquisition rates will prove to be especially well suited for proteogenomics applications.
Collapse
Affiliation(s)
- Karsten Krug
- Proteome Center Tuebingen, Interdepartmental Institute for Cell Biology, University of Tuebingen, Auf der Morgenstelle 15, 72076 Tuebingen, Germany
| | | | | |
Collapse
|
50
|
Abstract
The advances of next-generation sequencing technology have facilitated metagenomics research that attempts to determine directly the whole collection of genetic material within an environmental sample (i.e. the metagenome). Identification of genes directly from short reads has become an important yet challenging problem in annotating metagenomes, since the assembly of metagenomes is often not available. Gene predictors developed for whole genomes (e.g. Glimmer) and recently developed for metagenomic sequences (e.g. MetaGene) show a significant decrease in performance as the sequencing error rates increase, or as reads get shorter. We have developed a novel gene prediction method FragGeneScan, which combines sequencing error models and codon usages in a hidden Markov model to improve the prediction of protein-coding region in short reads. The performance of FragGeneScan was comparable to Glimmer and MetaGene for complete genomes. But for short reads, FragGeneScan consistently outperformed MetaGene (accuracy improved ∼62% for reads of 400 bases with 1% sequencing errors, and ∼18% for short reads of 100 bases that are error free). When applied to metagenomes, FragGeneScan recovered substantially more genes than MetaGene predicted (>90% of the genes identified by homology search), and many novel genes with no homologs in current protein sequence database.
Collapse
Affiliation(s)
- Mina Rho
- School of Informatics and Computing, Indiana University, Bloomington, IN 47408, USA
| | | | | |
Collapse
|