1
|
Kuznetsov AV. Effects of Time-Dependent Adenosine Triphosphate Consumption Caused by Neuron Firing on Adenosine Triphosphate Concentrations in Synaptic Boutons Containing and Lacking a Stationary Mitochondrion. J Biomech Eng 2024; 146:111002. [PMID: 38888293 DOI: 10.1115/1.4065743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Abstract
The precise mechanism behind the supply of adenosine triphosphate (ATP) to approximately half of the presynaptic release sites in axons that lack a stationary mitochondrion is not fully understood. This paper presents a mathematical model designed to simulate the transient ATP concentration in presynaptic en passant boutons. The model is utilized to investigate how the ATP concentration responds to increased ATP demand during neuronal firing in boutons with a stationary mitochondrion and those without one. The analysis suggests that neuron firing may cause oscillations in the ATP concentrations, with peak-to-peak amplitudes ranging from 0.06% to 5% of their average values. However, this does not deplete boutons lacking a mitochondrion of ATP; for physiologically relevant values of model parameters, their concentration remains approximately 3.75 times higher than the minimum concentration required for synaptic activity. The variance in average ATP concentrations between boutons containing a stationary mitochondrion and those lacking one ranges from 0.3% to 0.8%, contingent on the distance between the boutons. The model indicates that diffusion-driven ATP transport is rapid enough to adequately supply ATP molecules to boutons lacking a stationary mitochondrion.
Collapse
Affiliation(s)
- Andrey V Kuznetsov
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695-7910
| |
Collapse
|
2
|
Shichkova P, Coggan JS, Markram H, Keller D. Brain Metabolism in Health and Neurodegeneration: The Interplay Among Neurons and Astrocytes. Cells 2024; 13:1714. [PMID: 39451233 PMCID: PMC11506225 DOI: 10.3390/cells13201714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/31/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
The regulation of energy in the brain has garnered substantial attention in recent years due to its significant implications in various disorders and aging. The brain's energy metabolism is a dynamic and tightly regulated network that balances energy demand and supply by engaging complementary molecular pathways. The crosstalk among these pathways enables the system to switch its preferred fuel source based on substrate availability, activity levels, and cell state-related factors such as redox balance. Brain energy production relies on multi-cellular cooperation and is continuously supplied by fuel from the blood due to limited internal energy stores. Astrocytes, which interface with neurons and blood vessels, play a crucial role in coordinating the brain's metabolic activity, and their dysfunction can have detrimental effects on brain health. This review characterizes the major energy substrates (glucose, lactate, glycogen, ketones and lipids) in astrocyte metabolism and their role in brain health, focusing on recent developments in the field.
Collapse
Affiliation(s)
- Polina Shichkova
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, 1202 Geneva, Switzerland
| | - Jay S. Coggan
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, 1202 Geneva, Switzerland
| | - Henry Markram
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, 1202 Geneva, Switzerland
- Laboratory of Neural Microcircuitry, Brain Mind Institute, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Daniel Keller
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, 1202 Geneva, Switzerland
| |
Collapse
|
3
|
Zhang Y, Tong L, Ma L, Ye H, Zeng S, Zhang S, Ding Y, Wang W, Bao T. Progress in The Research of Lactate Metabolism Disruption And Astrocyte-Neuron Lactate Shuttle Impairment in Schizophrenia: A Comprehensive Review. Adv Biol (Weinh) 2024; 8:e2300409. [PMID: 38596839 DOI: 10.1002/adbi.202300409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/09/2023] [Indexed: 04/11/2024]
Abstract
Schizophrenia (SCZ) is a complex neuropsychiatric disorder widely recognized for its impaired bioenergy utilization. The astrocyte-neuron lactate shuttle (ANLS) plays a critical role in brain energy supply. Recent studies have revealed abnormal lactate metabolism in SCZ, which is associated with mitochondrial dysfunction, tissue hypoxia, gastric acid retention, oxidative stress, neuroinflammation, abnormal brain iron metabolism, cerebral white matter hypermetabolic activity, and genetic susceptibility. Furthermore, astrocytes, neurons, and glutamate abnormalities are prevalent in SCZ with abnormal lactate metabolism, which are essential components for maintaining ANLS in the brain. Therefore, an in-depth study of the pathophysiological mechanisms of ANLS in SCZ with abnormal lactate metabolism will contribute to a better understanding of the pathogenesis of SCZ and provide new ideas and approaches for the diagnosis and treatment of SCZ.
Collapse
Affiliation(s)
- Yingying Zhang
- Mental Health Centre of Kunming Medical University, Kunming, Yunnan, 650225, P. R. China
| | - Liang Tong
- Mental Health Centre of Kunming Medical University, Kunming, Yunnan, 650225, P. R. China
| | - Li Ma
- Mental Health Centre of Kunming Medical University, Kunming, Yunnan, 650225, P. R. China
| | - Hong Ye
- Mental Health Centre of Kunming Medical University, Kunming, Yunnan, 650225, P. R. China
| | - Shue Zeng
- Mental Health Centre of Kunming Medical University, Kunming, Yunnan, 650225, P. R. China
| | - Shaochuan Zhang
- Mental Health Centre of Kunming Medical University, Kunming, Yunnan, 650225, P. R. China
| | - Yu Ding
- The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650101, P. R. China
| | - Weiwei Wang
- The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650101, P. R. China
| | - Tianhao Bao
- Mental Health Centre of Kunming Medical University, Kunming, Yunnan, 650225, P. R. China
| |
Collapse
|
4
|
Leva F, Verardo C, Palestri P, Selmi L. From Finite Element Simulations to Equivalent Circuit Models of Extracellular Neuronal Recording Systems Based on Planar and Mushroom Electrodes. IEEE Trans Biomed Eng 2024; 71:1115-1126. [PMID: 37878426 DOI: 10.1109/tbme.2023.3327617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
OBJECTIVE define a new methodology to build multi-compartment lumped-elements equivalent circuit models for neuron/electrode systems. METHODS the equivalent circuit topology is derived by careful scrutiny of accurate and validated multiphysics finite-elements method (FEM) simulations that couple ion transport in the intra- and extracellular fluids, activation of the neuron membrane ion channels, and signal acquisition by the electronic readout. RESULTS robust and accurate circuit models are systematically derived, suited to represent the dynamics of the sensed extracellular signals over a wide range of geometrical/physical parameters (neuron and electrode sizes, electrolytic cleft thicknesses, readout input impedance, non-uniform ion channel distributions). FEM simulations point out phenomena that escape an accurate description by equivalent circuits; notably: steric effects in the thin electrolytic cleft and the impact of extracellular ion transport on the reversal potentials of the Hodgkin-Huxley neuron model. CONCLUSION our multi-compartment equivalent circuits match accurately the FEM simulations. They unveil the existence of an optimum number of compartments for accurate circuit simulation. FEM simulations suggest that while steric effects are in most instances negligible, the extracellular ion transport affects the reversal potentials and consequently the recorded signal if the electrolytic cleft becomes thinner than approximately 100 nm. SIGNIFICANCE the proposed methodology and circuit models improve upon the existing area and point contact models. The coupling between the extracellular concentrations and reversal potential highlighted by FEM simulations emerges as a challenge for future developments in lumped-element modeling of the neuron/sensor interface.
Collapse
|
5
|
Soltanzadeh M, Blanchard S, Soucy JP, Benali H. Lactate's behavioral switch in the brain: An in-silico model. J Theor Biol 2023; 575:111648. [PMID: 37865309 DOI: 10.1016/j.jtbi.2023.111648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/26/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
Emerging evidence emphasizes lactate's involvement in both physiological processes (energy metabolism, memory, etc.) and disease (traumatic brain injury, epilepsy, etc.). Furthermore, the usefulness of mathematical modeling in deciphering underlying dynamics of the brain to investigate lactate roles and mechanisms of action has been well established. Here, we analyze a novel mathematical model of brain lactate exchanges between four compartments: neurons, astrocytes, capillaries, and extracellular space. A system of four ordinary differential equations is proposed to explain interactions between these compartments. We first optimize and analyze the model's parameters under normal, resting state conditions, and then use it to simulate changes linked to elevated arterial lactate. Our results show that even though increased arterial lactate results in increased uptake by astrocytes and release to the extracellular space, it cannot strongly recover the initial drop in neuronal lactate concentration. Also, we show that the direction of lactate transport between the compartments is influenced by the maximum astrocyte production rate and the transport rate between astrocytes and extracellular space.
Collapse
Affiliation(s)
- Milad Soltanzadeh
- PERFORM Centre, Concordia University, Montreal, Canada; Electrical and Computer Engineering Department, Concordia University, Montreal, Canada.
| | - Solenna Blanchard
- University of Rennes, INSERM, LTSI-UMR 1099, F-35000, Rennes, France
| | - Jean-Paul Soucy
- PERFORM Centre, Concordia University, Montreal, Canada; Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada.
| | - Habib Benali
- PERFORM Centre, Concordia University, Montreal, Canada; Electrical and Computer Engineering Department, Concordia University, Montreal, Canada.
| |
Collapse
|
6
|
Brazhe A, Verisokin A, Verveyko D, Postnov D. Astrocytes: new evidence, new models, new roles. Biophys Rev 2023; 15:1303-1333. [PMID: 37975000 PMCID: PMC10643736 DOI: 10.1007/s12551-023-01145-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/08/2023] [Indexed: 11/19/2023] Open
Abstract
Astrocytes have been in the limelight of active research for about 3 decades now. Over this period, ideas about their function and role in the nervous system have evolved from simple assistance in energy supply and homeostasis maintenance to a complex informational and metabolic hub that integrates data on local neuronal activity, sensory and arousal context, and orchestrates many crucial processes in the brain. Rapid progress in experimental techniques and data analysis produces a growing body of data, which can be used as a foundation for formulation of new hypotheses, building new refined mathematical models, and ultimately should lead to a new level of understanding of the contribution of astrocytes to the cognitive tasks performed by the brain. Here, we highlight recent progress in astrocyte research, which we believe expands our understanding of how low-level signaling at a cellular level builds up to processes at the level of the whole brain and animal behavior. We start our review with revisiting data on the role of noradrenaline-mediated astrocytic signaling in locomotion, arousal, sensory integration, memory, and sleep. We then briefly review astrocyte contribution to the regulation of cerebral blood flow regulation, which is followed by a discussion of biophysical mechanisms underlying astrocyte effects on different brain processes. The experimental section is closed by an overview of recent experimental techniques available for modulation and visualization of astrocyte dynamics. We then evaluate how the new data can be potentially incorporated into the new mathematical models or where and how it already has been done. Finally, we discuss an interesting prospect that astrocytes may be key players in important processes such as the switching between sleep and wakefulness and the removal of toxic metabolites from the brain milieu.
Collapse
Affiliation(s)
- Alexey Brazhe
- Department of Biophysics, Biological Faculty, Lomonosov Moscow State University, Leninskie Gory, 1/24, Moscow, 119234 Russia
- Department of Molecular Neurobiology, Institute of Bioorganic Chemistry RAS, GSP-7, Miklukho-Maklay Str., 16/10, Moscow, 117997 Russia
| | - Andrey Verisokin
- Department of Theoretical Physics, Kursk State University, Radishcheva st., 33, Kursk, 305000 Russia
| | - Darya Verveyko
- Department of Theoretical Physics, Kursk State University, Radishcheva st., 33, Kursk, 305000 Russia
| | - Dmitry Postnov
- Department of Optics and Biophotonics, Saratov State University, Astrakhanskaya st., 83, Saratov, 410012 Russia
| |
Collapse
|
7
|
Farina S, Voorsluijs V, Fixemer S, Bouvier DS, Claus S, Ellisman MH, Bordas SPA, Skupin A. Mechanistic multiscale modelling of energy metabolism in human astrocytes reveals the impact of morphology changes in Alzheimer's Disease. PLoS Comput Biol 2023; 19:e1011464. [PMID: 37729344 PMCID: PMC10545114 DOI: 10.1371/journal.pcbi.1011464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 10/02/2023] [Accepted: 08/25/2023] [Indexed: 09/22/2023] Open
Abstract
Astrocytes with their specialised morphology are essential for brain homeostasis as metabolic mediators between blood vessels and neurons. In neurodegenerative diseases such as Alzheimer's disease (AD), astrocytes adopt reactive profiles with molecular and morphological changes that could lead to the impairment of their metabolic support and impact disease progression. However, the underlying mechanisms of how the metabolic function of human astrocytes is impaired by their morphological changes in AD are still elusive. To address this challenge, we developed and applied a metabolic multiscale modelling approach integrating the dynamics of metabolic energy pathways and physiological astrocyte morphologies acquired in human AD and age-matched control brain samples. The results demonstrate that the complex cell shape and intracellular organisation of energetic pathways determine the metabolic profile and support capacity of astrocytes in health and AD conditions. Thus, our mechanistic approach indicates the importance of spatial orchestration in metabolism and allows for the identification of protective mechanisms against disease-associated metabolic impairments.
Collapse
Affiliation(s)
- Sofia Farina
- Department of Engineering, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Valérie Voorsluijs
- LCSB-Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Department of Physics and Material Science, University of Luxembourg, Luxembourg, Luxembourg
| | - Sonja Fixemer
- LCSB-Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Luxembourg Center of Neuropathology (LCNP), Dudelange, Luxembourg
| | - David S. Bouvier
- LCSB-Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Luxembourg Center of Neuropathology (LCNP), Dudelange, Luxembourg
- Laboratoire national de santé (LNS), National Center of Pathology (NCP), Dudelange, Luxembourg
| | | | - Mark H. Ellisman
- Department of Neurosciences, University of California San Diego, California, United States of America
| | | | - Alexander Skupin
- LCSB-Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Department of Physics and Material Science, University of Luxembourg, Luxembourg, Luxembourg
- Department of Neurosciences, University of California San Diego, California, United States of America
| |
Collapse
|
8
|
Hagan B, Mujumdar R, Sahoo JP, Das A, Dutta A. Technical feasibility of multimodal imaging in neonatal hypoxic-ischemic encephalopathy from an ovine model to a human case series. Front Pediatr 2023; 11:1072663. [PMID: 37425273 PMCID: PMC10323750 DOI: 10.3389/fped.2023.1072663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 06/02/2023] [Indexed: 07/11/2023] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) secondary to perinatal asphyxia occurs when the brain does not receive enough oxygen and blood. A surrogate marker for "intact survival" is necessary for the successful management of HIE. The severity of HIE can be classified based on clinical presentation, including the presence of seizures, using a clinical classification scale called Sarnat staging; however, Sarnat staging is subjective, and the score changes over time. Furthermore, seizures are difficult to detect clinically and are associated with a poor prognosis. Therefore, a tool for continuous monitoring on the cot side is necessary, for example, an electroencephalogram (EEG) that noninvasively measures the electrical activity of the brain from the scalp. Then, multimodal brain imaging, when combined with functional near-infrared spectroscopy (fNIRS), can capture the neurovascular coupling (NVC) status. In this study, we first tested the feasibility of a low-cost EEG-fNIRS imaging system to differentiate between normal, hypoxic, and ictal states in a perinatal ovine hypoxia model. Here, the objective was to evaluate a portable cot-side device and perform autoregressive with extra input (ARX) modeling to capture the perinatal ovine brain states during a simulated HIE injury. So, ARX parameters were tested with a linear classifier using a single differential channel EEG, with varying states of tissue oxygenation detected using fNIRS, to label simulated HIE states in the ovine model. Then, we showed the technical feasibility of the low-cost EEG-fNIRS device and ARX modeling with support vector machine classification for a human HIE case series with and without sepsis. The classifier trained with the ovine hypoxia data labeled ten severe HIE human cases (with and without sepsis) as the "hypoxia" group and the four moderate HIE human cases as the "control" group. Furthermore, we showed the feasibility of experimental modal analysis (EMA) based on the ARX model to investigate the NVC dynamics using EEG-fNIRS joint-imaging data that differentiated six severe HIE human cases without sepsis from four severe HIE human cases with sepsis. In conclusion, our study showed the technical feasibility of EEG-fNIRS imaging, ARX modeling of NVC for HIE classification, and EMA that may provide a biomarker of sepsis effects on the NVC in HIE.
Collapse
Affiliation(s)
- Brian Hagan
- School of Engineering, University of Lincoln, Lincoln, United Kingdom
| | - Radhika Mujumdar
- School of Engineering, University of Lincoln, Lincoln, United Kingdom
| | - Jagdish P. Sahoo
- Department of Neonatology, IMS & SUM Hospital, Bhubaneswar, India
| | - Abhijit Das
- Department of Neurology, The Lancashire Teaching Hospitals NHS Foundation Trust, Preston, United Kingdom
| | - Anirban Dutta
- School of Engineering, University of Lincoln, Lincoln, United Kingdom
| |
Collapse
|
9
|
Joshi SN, Joshi AN, Joshi ND. Interplay between biochemical processes and network properties generates neuronal up and down states at the tripartite synapse. Phys Rev E 2023; 107:024415. [PMID: 36932559 DOI: 10.1103/physreve.107.024415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 01/03/2023] [Indexed: 06/18/2023]
Abstract
Neuronal up and down states have long been known to exist both in vitro and in vivo. A variety of functions and mechanisms have been proposed for their generation, but there has not been a clear connection between the functions and mechanisms. We explore the potential contribution of cellular-level biochemistry to the network-level mechanisms thought to underlie the generation of up and down states. We develop a neurochemical model of a single tripartite synapse, assumed to be within a network of similar tripartite synapses, to investigate possible function-mechanism links for the appearance of up and down states. We characterize the behavior of our model in different regions of parameter space and show that resource limitation at the tripartite synapse affects its ability to faithfully transmit input signals, leading to extinction-down states. Recovery of resources allows for "reignition" into up states. The tripartite synapse exhibits distinctive "regimes" of operation depending on whether ATP, neurotransmitter (glutamate), both, or neither, is limiting. Our model qualitatively matches the behavior of six disparate experimental systems, including both in vitro and in vivo models, without changing any model parameters except those related to the experimental conditions. We also explore the effects of varying different critical parameters within the model. Here we show that availability of energy, represented by ATP, and glutamate for neurotransmission at the cellular level are intimately related, and are capable of promoting state transitions at the network level as ignition and extinction phenomena. Our model is complementary to existing models of neuronal up and down states in that it focuses on cellular-level dynamics while still retaining essential network-level processes. Our model predicts the existence of a "final common pathway" of behavior at the tripartite synapse arising from scarcity of resources and may explain use dependence in the phenomenon of "local sleep." Ultimately, sleeplike behavior may be a fundamental property of networks of tripartite synapses.
Collapse
Affiliation(s)
- Shubhada N Joshi
- National Center for Adaptive Neurotechnologies (NCAN), David Axelrod Institute, Wadsworth Center, New York State Department of Health, 120 New Scotland Ave., Albany, New York 12208, USA
| | - Aditya N Joshi
- Stanford University School of Medicine, 300 Pasteur Dr., Stanford, California 94305, USA
| | - Narendra D Joshi
- General Electric Global Research, 1 Research Circle, Niskayuna, New York 12309, USA
| |
Collapse
|
10
|
Arora Y, Dutta A. Perspective: Disentangling the effects of tES on neurovascular unit. Front Neurol 2023; 13:1038700. [PMID: 36698881 PMCID: PMC9868757 DOI: 10.3389/fneur.2022.1038700] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/28/2022] [Indexed: 01/11/2023] Open
Abstract
Transcranial electrical stimulation (tES) can modulate the neurovascular unit, including the perivascular space morphology, but the mechanisms are unclear. In this perspective article, we used an open-source "rsHRF toolbox" and an open-source functional magnetic resonance imaging (fMRI) transcranial direct current stimulation (tDCS) data set to show the effects of tDCS on the temporal profile of the haemodynamic response function (HRF). We investigated the effects of tDCS in the gray matter and at three regions of interest in the gray matter, namely, the anodal electrode (FC5), cathodal electrode (FP2), and an independent site remote from the electrodes (PZ). A "canonical HRF" with time and dispersion derivatives and a finite impulse response (FIR) model with three parameters captured the effects of anodal tDCS on the temporal profile of the HRF. The FIR model showed tDCS onset effects on the temporal profile of HRF for verum and sham tDCS conditions that were different from the no tDCS condition, which questions the validity of the sham tDCS (placebo). Here, we postulated that the effects of tDCS onset on the temporal profile of HRF are subserved by the effects on neurovascular coupling. We provide our perspective based on previous work on tES effects on the neurovascular unit, including mechanistic grey-box modeling of the effects of tES on the vasculature that can facilitate model predictive control (MPC). Future studies need to investigate grey-box modeling of online effects of tES on the neurovascular unit, including perivascular space, neurometabolic coupling, and neurovascular coupling, that can facilitate MPC of the tES dose-response to address the momentary ("state") and phenotypic ("trait") factors.
Collapse
Affiliation(s)
- Yashika Arora
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurugram, India
| | - Anirban Dutta
- School of Engineering, University of Lincoln, Lincoln, United Kingdom
| |
Collapse
|
11
|
Dembitskaya Y, Piette C, Perez S, Berry H, Magistretti PJ, Venance L. Lactate supply overtakes glucose when neural computational and cognitive loads scale up. Proc Natl Acad Sci U S A 2022; 119:e2212004119. [PMID: 36375086 PMCID: PMC9704697 DOI: 10.1073/pnas.2212004119] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/10/2022] [Indexed: 07/23/2023] Open
Abstract
Neural computational power is determined by neuroenergetics, but how and which energy substrates are allocated to various forms of memory engram is unclear. To solve this question, we asked whether neuronal fueling by glucose or lactate scales differently upon increasing neural computation and cognitive loads. Here, using electrophysiology, two-photon imaging, cognitive tasks, and mathematical modeling, we show that both glucose and lactate are involved in engram formation, with lactate supporting long-term synaptic plasticity evoked by high-stimulation load activity patterns and high attentional load in cognitive tasks and glucose being sufficient for less demanding neural computation and learning tasks. Indeed, we show that lactate is mandatory for demanding neural computation, such as theta-burst stimulation, while glucose is sufficient for lighter forms of activity-dependent long-term potentiation (LTP), such as spike timing-dependent plasticity (STDP). We find that subtle variations of spike number or frequency in STDP are sufficient to shift the on-demand fueling from glucose to lactate. Finally, we demonstrate that lactate is necessary for a cognitive task requiring high attentional load, such as the object-in-place task, and for the corresponding in vivo hippocampal LTP expression but is not needed for a less demanding task, such as a simple novel object recognition. Overall, these results demonstrate that glucose and lactate metabolism are differentially engaged in neuronal fueling depending on the complexity of the activity-dependent plasticity and behavior.
Collapse
Affiliation(s)
- Yulia Dembitskaya
- Dynamics and Pathophysiology of Neuronal Networks Team, Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Charlotte Piette
- Dynamics and Pathophysiology of Neuronal Networks Team, Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Sylvie Perez
- Dynamics and Pathophysiology of Neuronal Networks Team, Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Hugues Berry
- AIStroSight Lab, INRIA, Hospices Civils de Lyon, Université Claude Bernard Lyon 1, 69603 Villeurbanne, France
- University of Lyon, LIRIS UMR5205, 69622 Villeurbanne, France
| | - Pierre J. Magistretti
- Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
- Brain Mind Institute, EPFL, 1015 Lausanne, Switzerland
| | - Laurent Venance
- Dynamics and Pathophysiology of Neuronal Networks Team, Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, 75005 Paris, France
| |
Collapse
|
12
|
Arora Y, Dutta A. Human-in-the-Loop Optimization of Transcranial Electrical Stimulation at the Point of Care: A Computational Perspective. Brain Sci 2022; 12:1294. [PMID: 36291228 PMCID: PMC9599464 DOI: 10.3390/brainsci12101294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/05/2022] [Accepted: 09/18/2022] [Indexed: 11/17/2022] Open
Abstract
Individual differences in the responsiveness of the brain to transcranial electrical stimulation (tES) are increasingly demonstrated by the large variability in the effects of tES. Anatomically detailed computational brain models have been developed to address this variability; however, static brain models are not “realistic” in accounting for the dynamic state of the brain. Therefore, human-in-the-loop optimization at the point of care is proposed in this perspective article based on systems analysis of the neurovascular effects of tES. First, modal analysis was conducted using a physiologically detailed neurovascular model that found stable modes in the 0 Hz to 0.05 Hz range for the pathway for vessel response through the smooth muscle cells, measured with functional near-infrared spectroscopy (fNIRS). During tES, the transient sensations can have arousal effects on the hemodynamics, so we present a healthy case series for black-box modeling of fNIRS−pupillometry of short-duration tDCS effects. The block exogeneity test rejected the claim that tDCS is not a one-step Granger cause of the fNIRS total hemoglobin changes (HbT) and pupil dilation changes (p < 0.05). Moreover, grey-box modeling using fNIRS of the tDCS effects in chronic stroke showed the HbT response to be significantly different (paired-samples t-test, p < 0.05) between the ipsilesional and contralesional hemispheres for primary motor cortex tDCS and cerebellar tDCS, which was subserved by the smooth muscle cells. Here, our opinion is that various physiological pathways subserving the effects of tES can lead to state−trait variability, which can be challenging for clinical translation. Therefore, we conducted a case study on human-in-the-loop optimization using our reduced-dimensions model and a stochastic, derivative-free covariance matrix adaptation evolution strategy. We conclude from our computational analysis that human-in-the-loop optimization of the effects of tES at the point of care merits investigation in future studies for reducing inter-subject and intra-subject variability in neuromodulation.
Collapse
Affiliation(s)
- Yashika Arora
- Neuroimaging and Neurospectroscopy Lab, National Brain Research Centre, Gurgaon 122052, India
| | - Anirban Dutta
- Neuroengineering and Informatics for Rehabilitation and Simulation-Based Learning (NIRSlearn), University of Lincoln, Lincoln LN6 7TS, UK
| |
Collapse
|
13
|
Abstract
The energy cost of information processing is thought to be chiefly neuronal, with a minor fraction attributed to glial cells. However, there is compelling evidence that astrocytes capture synaptic K+ using their Na+/K+ ATPase, and not solely through Kir4.1 channels as was once thought. When this active buffering is taken into account, the cost of astrocytes rises by >200%. Gram-per-gram, astrocytes turn out to be as expensive as neurons. This conclusion is supported by 3D reconstruction of the neuropil showing similar mitochondrial densities in neurons and astrocytes, by cell-specific transcriptomics and proteomics, and by the rates of the tricarboxylic acid cycle. Possible consequences for reactive astrogliosis and brain disease are discussed.
Collapse
Affiliation(s)
- L F Barros
- Centro de Estudios Científicos - CECs, Valdivia, Chile
| |
Collapse
|
14
|
Coggan JS, Keller D, Markram H, Schürmann F, Magistretti PJ. Representing Stimulus Information in an Energy Metabolism Pathway. J Theor Biol 2022; 540:111090. [PMID: 35271865 DOI: 10.1016/j.jtbi.2022.111090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 02/21/2022] [Accepted: 03/01/2022] [Indexed: 10/18/2022]
Abstract
We explored a computational model of astrocytic energy metabolism and demonstrated the theoretical plausibility that this type of pathway might be capable of coding information about stimuli in addition to its known functions in cellular energy and carbon budgets. Simulation results indicate that glycogenolytic glycolysis triggered by activation of adrenergic receptors can capture the intensity and duration features of a neuromodulator waveform and can respond in a dose-dependent manner, including non-linear state changes that are analogous to action potentials. We show how this metabolic pathway can translate information about external stimuli to production profiles of energy-carrying molecules such as lactate with a precision beyond simple signal transduction or non-linear amplification. The results suggest the operation of a metabolic state-machine from the spatially discontiguous yet interdependent metabolite elements. Such metabolic pathways might be well-positioned to code an additional level of salient information about a cell's environmental demands to impact its function. Our hypothesis has implications for the computational power and energy efficiency of the brain.
Collapse
Affiliation(s)
- Jay S Coggan
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, CH-1202, Switzerland.
| | - Daniel Keller
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, CH-1202, Switzerland
| | - Henry Markram
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, CH-1202, Switzerland
| | - Felix Schürmann
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, CH-1202, Switzerland
| | - Pierre J Magistretti
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| |
Collapse
|
15
|
Modeling the effect of cerebral capillary blood flow on neuronal firing. J Theor Biol 2022; 537:111018. [DOI: 10.1016/j.jtbi.2022.111018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 11/19/2021] [Accepted: 01/05/2022] [Indexed: 11/18/2022]
|
16
|
Kozma R, Baars BJ, Geld N. Evolutionary Advantages of Stimulus-Driven EEG Phase Transitions in the Upper Cortical Layers. Front Syst Neurosci 2021; 15:784404. [PMID: 34955771 PMCID: PMC8692947 DOI: 10.3389/fnsys.2021.784404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/03/2021] [Indexed: 11/13/2022] Open
Abstract
Spatio-temporal brain activity monitored by EEG recordings in humans and other mammals has identified beta/gamma oscillations (20-80 Hz), which are self-organized into spatio-temporal structures recurring at theta/alpha rates (4-12 Hz). These structures have statistically significant correlations with sensory stimuli and reinforcement contingencies perceived by the subject. The repeated collapse of self-organized structures at theta/alpha rates generates laterally propagating phase gradients (phase cones), ignited at some specific location of the cortical sheet. Phase cones have been interpreted as neural signatures of transient perceptual experiences according to the cinematic theory of brain dynamics. The rapid expansion of essentially isotropic phase cones is consistent with the propagation of perceptual broadcasts postulated by Global Workspace Theory (GWT). What is the evolutionary advantage of brains operating with repeatedly collapsing dynamics? This question is answered using thermodynamic concepts. According to neuropercolation theory, waking brains are described as non-equilibrium thermodynamic systems operating at the edge of criticality, undergoing repeated phase transitions. This work analyzes the role of long-range axonal connections and metabolic processes in the regulation of critical brain dynamics. Historically, the near 10 Hz domain has been associated with conscious sensory integration, cortical "ignitions" linked to conscious visual perception, and conscious experiences. We can therefore combine a very large body of experimental evidence and theory, including graph theory, neuropercolation, and GWT. This cortical operating style may optimize a tradeoff between rapid adaptation to novelty vs. stable and widespread self-organization, therefore resulting in significant Darwinian benefits.
Collapse
Affiliation(s)
- Robert Kozma
- Center for Large-Scale Intelligent Optimization and Networks, Department of Mathematics, University of Memphis, Memphis, TN, United States
| | - Bernard J. Baars
- Center for the Future Mind, Florida Atlantic University, Boca Raton, FL, United States
- Society for MindBrain Sciences, San Diego, CA, United States
| | | |
Collapse
|
17
|
Shichkova P, Coggan JS, Markram H, Keller D. A Standardized Brain Molecular Atlas: A Resource for Systems Modeling and Simulation. Front Mol Neurosci 2021; 14:604559. [PMID: 34858137 PMCID: PMC8631404 DOI: 10.3389/fnmol.2021.604559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
Accurate molecular concentrations are essential for reliable analyses of biochemical networks and the creation of predictive models for molecular and systems biology, yet protein and metabolite concentrations used in such models are often poorly constrained or irreproducible. Challenges of using data from different sources include conflicts in nomenclature and units, as well as discrepancies in experimental procedures, data processing and implementation of the model. To obtain a consistent estimate of protein and metabolite levels, we integrated and normalized data from a large variety of sources to calculate Adjusted Molecular Concentrations. We found a high degree of reproducibility and consistency of many molecular species across brain regions and cell types, consistent with tight homeostatic regulation. We demonstrated the value of this normalization with differential protein expression analyses related to neurodegenerative diseases, brain regions and cell types. We also used the results in proof-of-concept simulations of brain energy metabolism. The standardized Brain Molecular Atlas overcomes the obstacles of missing or inconsistent data to support systems biology research and is provided as a resource for biomolecular modeling.
Collapse
Affiliation(s)
- Polina Shichkova
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Jay S Coggan
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Henry Markram
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland.,Laboratory of Neural Microcircuitry, Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Daniel Keller
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| |
Collapse
|
18
|
Mahan VL. Effects of lactate and carbon monoxide interactions on neuroprotection and neuropreservation. Med Gas Res 2021; 11:158-173. [PMID: 34213499 PMCID: PMC8374456 DOI: 10.4103/2045-9912.318862] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/21/2020] [Accepted: 10/23/2020] [Indexed: 11/04/2022] Open
Abstract
Lactate, historically considered a waste product of anerobic metabolism, is a metabolite in whole-body metabolism needed for normal central nervous system (CNS) functions and a potent signaling molecule and hormone in the CNS. Neuronal activity signals normally induce its formation primarily in astrocytes and production is dependent on anerobic and aerobic metabolisms. Functions are dependent on normal dynamic, expansive, and evolving CNS functions. Levels can change under normal physiologic conditions and with CNS pathology. A readily combusted fuel that is sshuttled throughout the body, lactate is used as an energy source and is needed for CNS hemostasis, plasticity, memory, and excitability. Diffusion beyond the neuron active zone impacts activity of neurons and astrocytes in other areas of the brain. Barriergenesis, function of the blood-brain barrier, and buffering between oxidative metabolism and glycolysis and brain metabolism are affected by lactate. Important to neuroprotection, presence or absence is associated with L-lactate and heme oxygenase/carbon monoxide (a gasotransmitter) neuroprotective systems. Effects of carbon monoxide on L-lactate affect neuroprotection - interactions of the gasotransmitter with L-lactate are important to CNS stability, which will be reviewed in this article.
Collapse
Affiliation(s)
- Vicki L. Mahan
- Department of Surgery and Pediatrics, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
19
|
Logette E, Lorin C, Favreau C, Oshurko E, Coggan JS, Casalegno F, Sy MF, Monney C, Bertschy M, Delattre E, Fonta PA, Krepl J, Schmidt S, Keller D, Kerrien S, Scantamburlo E, Kaufmann AK, Markram H. A Machine-Generated View of the Role of Blood Glucose Levels in the Severity of COVID-19. Front Public Health 2021; 9:695139. [PMID: 34395368 PMCID: PMC8356061 DOI: 10.3389/fpubh.2021.695139] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/30/2021] [Indexed: 01/08/2023] Open
Abstract
SARS-CoV-2 started spreading toward the end of 2019 causing COVID-19, a disease that reached pandemic proportions among the human population within months. The reasons for the spectrum of differences in the severity of the disease across the population, and in particular why the disease affects more severely the aging population and those with specific preconditions are unclear. We developed machine learning models to mine 240,000 scientific articles openly accessible in the CORD-19 database, and constructed knowledge graphs to synthesize the extracted information and navigate the collective knowledge in an attempt to search for a potential common underlying reason for disease severity. The machine-driven framework we developed repeatedly pointed to elevated blood glucose as a key facilitator in the progression of COVID-19. Indeed, when we systematically retraced the steps of the SARS-CoV-2 infection, we found evidence linking elevated glucose to each major step of the life-cycle of the virus, progression of the disease, and presentation of symptoms. Specifically, elevations of glucose provide ideal conditions for the virus to evade and weaken the first level of the immune defense system in the lungs, gain access to deep alveolar cells, bind to the ACE2 receptor and enter the pulmonary cells, accelerate replication of the virus within cells increasing cell death and inducing an pulmonary inflammatory response, which overwhelms an already weakened innate immune system to trigger an avalanche of systemic infections, inflammation and cell damage, a cytokine storm and thrombotic events. We tested the feasibility of the hypothesis by manually reviewing the literature referenced by the machine-generated synthesis, reconstructing atomistically the virus at the surface of the pulmonary airways, and performing quantitative computational modeling of the effects of glucose levels on the infection process. We conclude that elevation in glucose levels can facilitate the progression of the disease through multiple mechanisms and can explain much of the differences in disease severity seen across the population. The study provides diagnostic considerations, new areas of research and potential treatments, and cautions on treatment strategies and critical care conditions that induce elevations in blood glucose levels.
Collapse
Affiliation(s)
- Emmanuelle Logette
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Geneva, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Henry Markram
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Geneva, Switzerland
| |
Collapse
|
20
|
Jaras I, Harada T, Orchard ME, Maldonado PE, Vergara RC. Extending the integrate-and-fire model to account for metabolic dependencies. Eur J Neurosci 2021; 54:5249-5260. [PMID: 34109698 DOI: 10.1111/ejn.15326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 05/06/2021] [Accepted: 05/23/2021] [Indexed: 12/24/2022]
Abstract
It is widely accepted that the brain, like any other physical system, is subjected to physical constraints that restrict its operation. The brain's metabolic demands are particularly critical for proper neuronal function, but the impact of these constraints continues to remain poorly understood. Detailed single-neuron models are recently integrating metabolic constraints, but these models' computational resources make it challenging to explore the dynamics of extended neural networks, which are governed by such constraints. Thus, there is a need for a simplified neuron model that incorporates metabolic activity and allows us to explore the dynamics of neural networks. This work introduces an energy-dependent leaky integrate-and-fire (EDLIF) neuronal model extension to account for the effects of metabolic constraints on the single-neuron behavior. This simple, energy-dependent model could describe the relationship between the average firing rate and the Adenosine triphosphate (ATP) cost as well as replicate a neuron's behavior under a clinical setting such as amyotrophic lateral sclerosis (ALS). Additionally, EDLIF model showed better performance in predicting real spike trains - in the sense of spike coincidence measure - than the classical leaky integrate-and-fire (LIF) model. The simplicity of the energy-dependent model presented here makes it computationally efficient and, thus, suitable for studying the dynamics of large neural networks.
Collapse
Affiliation(s)
- Ismael Jaras
- Department of Electrical Engineering, Faculty of Mathematical and Physical Sciences, University of Chile, Santiago, Chile.,Neurosystems Laboratory, Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Taiki Harada
- Tokyo Medical and Dental University, Tokyo, Japan
| | - Marcos E Orchard
- Department of Electrical Engineering, Faculty of Mathematical and Physical Sciences, University of Chile, Santiago, Chile
| | - Pedro E Maldonado
- Neurosystems Laboratory, Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Rodrigo C Vergara
- Kinesiology Department, Facultad de Artes y Educación Física, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile
| |
Collapse
|
21
|
Kalia M, Meijer HGE, van Gils SA, van Putten MJAM, Rose CR. Ion dynamics at the energy-deprived tripartite synapse. PLoS Comput Biol 2021; 17:e1009019. [PMID: 34143772 PMCID: PMC8244923 DOI: 10.1371/journal.pcbi.1009019] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 06/30/2021] [Accepted: 04/28/2021] [Indexed: 01/09/2023] Open
Abstract
The anatomical and functional organization of neurons and astrocytes at 'tripartite synapses' is essential for reliable neurotransmission, which critically depends on ATP. In low energy conditions, synaptic transmission fails, accompanied by a breakdown of ion gradients, changes in membrane potentials and cell swelling. The resulting cellular damage and cell death are causal to the often devastating consequences of an ischemic stroke. The severity of ischemic damage depends on the age and the brain region in which a stroke occurs, but the reasons for this differential vulnerability are far from understood. In the present study, we address this question by developing a comprehensive biophysical model of a glutamatergic synapse to identify key determinants of synaptic failure during energy deprivation. Our model is based on fundamental biophysical principles, includes dynamics of the most relevant ions, i.e., Na+, K+, Ca2+, Cl- and glutamate, and is calibrated with experimental data. It confirms the critical role of the Na+/K+-ATPase in maintaining ion gradients, membrane potentials and cell volumes. Our simulations demonstrate that the system exhibits two stable states, one physiological and one pathological. During energy deprivation, the physiological state may disappear, forcing a transit to the pathological state, which can be reverted when blocking voltage-gated Na+ and K+ channels. Our model predicts that the transition to the pathological state is favoured if the extracellular space fraction is small. A reduction in the extracellular space volume fraction, as, e.g. observed with ageing, will thus promote the brain's susceptibility to ischemic damage. Our work provides new insights into the brain's ability to recover from energy deprivation, with translational relevance for diagnosis and treatment of ischemic strokes.
Collapse
Affiliation(s)
- Manu Kalia
- Applied Analysis, Department of Applied Mathematics, University of Twente, Enschede, The Netherlands
- * E-mail:
| | - Hil G. E. Meijer
- Applied Analysis, Department of Applied Mathematics, University of Twente, Enschede, The Netherlands
| | - Stephan A. van Gils
- Applied Analysis, Department of Applied Mathematics, University of Twente, Enschede, The Netherlands
| | | | - Christine R. Rose
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
22
|
Bingul D, Kalra K, Murata EM, Belser A, Dash MB. Persistent changes in extracellular lactate dynamics following synaptic potentiation. Neurobiol Learn Mem 2020; 175:107314. [PMID: 32961277 PMCID: PMC7655607 DOI: 10.1016/j.nlm.2020.107314] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/27/2020] [Accepted: 09/14/2020] [Indexed: 12/19/2022]
Abstract
A diverse array of neurometabolic coupling mechanisms exist within the brain to ensure that sufficient metabolite availability is present to meet both acute and chronic energetic demands. Excitatory synaptic activity, which produces the majority of the brain's energetic demands, triggers a rapid metabolic response including a characteristic shift towards aerobic glycolysis. Herein, astrocytically derived lactate appears to serve as an important metabolite to meet the extensive metabolic needs of activated neurons. Despite a wealth of literature characterizing lactate's role in mediating these acute metabolic needs, the extent to which lactate supports chronic energetic demands of neurons remains unclear. We hypothesized that synaptic potentiation, a ubiquitous brain phenomenon that can produce chronic alterations in synaptic activity, could necessitate persistent alterations in brain energetics. In freely-behaving rats, we induced long-term potentiation (LTP) of synapses within the dentate gyrus through high-frequency electrical stimulation (HFS) of the medial perforant pathway. Before, during, and after LTP induction, we continuously recorded extracellular lactate concentrations within the dentate gyrus to assess how changes in synaptic strength alter local glycolytic activity. Synaptic potentiation 1) altered the acute response of extracellular lactate to transient neuronal activation as evident by a larger initial dip and subsequent overshoot and 2) chronically increased local lactate availability. Although synapses were potentiated immediately following HFS, observed changes in lactate dynamics were only evident beginning ~24 h later. Once observed, however, both synaptic potentiation and altered lactate dynamics persisted for the duration of the experiment (~72 h). Persistent alterations in synaptic strength, therefore, appear to be associated with metabolic plasticity in the form of persistent augmentation of glycolytic activity.
Collapse
Affiliation(s)
- D Bingul
- Program in Neuroscience, Middlebury College, Middlebury, VT 05753, United States
| | - K Kalra
- Program in Neuroscience, Middlebury College, Middlebury, VT 05753, United States
| | - E M Murata
- Program in Neuroscience, Middlebury College, Middlebury, VT 05753, United States
| | - A Belser
- Program in Neuroscience, Middlebury College, Middlebury, VT 05753, United States
| | - M B Dash
- Program in Neuroscience, Middlebury College, Middlebury, VT 05753, United States; Department of Psychology, Middlebury College, Middlebury, VT 05753, United States.
| |
Collapse
|
23
|
Hogan MK, Hamilton GF, Horner PJ. Neural Stimulation and Molecular Mechanisms of Plasticity and Regeneration: A Review. Front Cell Neurosci 2020; 14:271. [PMID: 33173465 PMCID: PMC7591397 DOI: 10.3389/fncel.2020.00271] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/31/2020] [Indexed: 12/23/2022] Open
Abstract
Neural stimulation modulates the depolarization of neurons, thereby triggering activity-associated mechanisms of neuronal plasticity. Activity-associated mechanisms in turn play a major role in post-mitotic structure and function of adult neurons. Our understanding of the interactions between neuronal behavior, patterns of neural activity, and the surrounding environment is evolving at a rapid pace. Brain derived neurotrophic factor is a critical mediator of activity-associated plasticity, while multiple immediate early genes mediate plasticity of neurons following bouts of neural activity. New research has uncovered genetic mechanisms that govern the expression of DNA following changes in neural activity patterns, including RNAPII pause-release and activity-associated double stranded breaks. Discovery of novel mechanisms governing activity-associated plasticity of neurons hints at a layered and complex molecular control of neuronal response to depolarization. Importantly, patterns of depolarization in neurons are shown to be important mediators of genetic expression patterns and molecular responses. More research is needed to fully uncover the molecular response of different types of neurons-to-activity patterns; however, known responses might be leveraged to facilitate recovery after neural damage. Physical rehabilitation through passive or active exercise modulates neurotrophic factor expression in the brain and spinal cord and can initiate cortical plasticity commensurate with functional recovery. Rehabilitation likely relies on activity-associated mechanisms; however, it may be limited in its application. Electrical and magnetic stimulation direct specific activity patterns not accessible through passive or active exercise and work synergistically to improve standing, walking, and forelimb use after injury. Here, we review emerging concepts in the molecular mechanisms of activity-derived plasticity in order to highlight opportunities that could add value to therapeutic protocols for promoting recovery of function after trauma, disease, or age-related functional decline.
Collapse
Affiliation(s)
- Matthew K Hogan
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, United States
| | - Gillian F Hamilton
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, United States
| | - Philip J Horner
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
24
|
Abdellah M, Guerrero NR, Lapere S, Coggan JS, Keller D, Coste B, Dagar S, Courcol JD, Markram H, Schürmann F. Interactive visualization and analysis of morphological skeletons of brain vasculature networks with VessMorphoVis. Bioinformatics 2020; 36:i534-i541. [PMID: 32657395 PMCID: PMC7355309 DOI: 10.1093/bioinformatics/btaa461] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
MOTIVATION Accurate morphological models of brain vasculature are key to modeling and simulating cerebral blood flow in realistic vascular networks. This in silico approach is fundamental to revealing the principles of neurovascular coupling. Validating those vascular morphologies entails performing certain visual analysis tasks that cannot be accomplished with generic visualization frameworks. This limitation has a substantial impact on the accuracy of the vascular models employed in the simulation. RESULTS We present VessMorphoVis, an integrated suite of toolboxes for interactive visualization and analysis of vast brain vascular networks represented by morphological graphs segmented originally from imaging or microscopy stacks. Our workflow leverages the outstanding potentials of Blender, aiming to establish an integrated, extensible and domain-specific framework capable of interactive visualization, analysis, repair, high-fidelity meshing and high-quality rendering of vascular morphologies. Based on the initial feedback of the users, we anticipate that our framework will be an essential component in vascular modeling and simulation in the future, filling a gap that is at present largely unfulfilled. AVAILABILITY AND IMPLEMENTATION VessMorphoVis is freely available under the GNU public license on Github at https://github.com/BlueBrain/VessMorphoVis. The morphology analysis, visualization, meshing and rendering modules are implemented as an add-on for Blender 2.8 based on its Python API (application programming interface). The add-on functionality is made available to users through an intuitive graphical user interface, as well as through exhaustive configuration files calling the API via a feature-rich command line interface running Blender in background mode. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Marwan Abdellah
- Blue Brain Project (BBP), École Polytechnique Fédérale de Lausanne (EPFL), Campus Biotech, 1202 Geneva, Switzerland
| | - Nadir Román Guerrero
- Blue Brain Project (BBP), École Polytechnique Fédérale de Lausanne (EPFL), Campus Biotech, 1202 Geneva, Switzerland
| | - Samuel Lapere
- Blue Brain Project (BBP), École Polytechnique Fédérale de Lausanne (EPFL), Campus Biotech, 1202 Geneva, Switzerland
| | - Jay S Coggan
- Blue Brain Project (BBP), École Polytechnique Fédérale de Lausanne (EPFL), Campus Biotech, 1202 Geneva, Switzerland
| | - Daniel Keller
- Blue Brain Project (BBP), École Polytechnique Fédérale de Lausanne (EPFL), Campus Biotech, 1202 Geneva, Switzerland
| | - Benoit Coste
- Blue Brain Project (BBP), École Polytechnique Fédérale de Lausanne (EPFL), Campus Biotech, 1202 Geneva, Switzerland
| | - Snigdha Dagar
- Blue Brain Project (BBP), École Polytechnique Fédérale de Lausanne (EPFL), Campus Biotech, 1202 Geneva, Switzerland
| | - Jean-Denis Courcol
- Blue Brain Project (BBP), École Polytechnique Fédérale de Lausanne (EPFL), Campus Biotech, 1202 Geneva, Switzerland
| | - Henry Markram
- Blue Brain Project (BBP), École Polytechnique Fédérale de Lausanne (EPFL), Campus Biotech, 1202 Geneva, Switzerland
| | - Felix Schürmann
- Blue Brain Project (BBP), École Polytechnique Fédérale de Lausanne (EPFL), Campus Biotech, 1202 Geneva, Switzerland
| |
Collapse
|
25
|
Komaki Y, Debacker C, Djemai B, Ciobanu L, Tsurugizawa T, Bihan DL. Differential effects of aquaporin-4 channel inhibition on BOLD fMRI and diffusion fMRI responses in mouse visual cortex. PLoS One 2020; 15:e0228759. [PMID: 32437449 PMCID: PMC7241787 DOI: 10.1371/journal.pone.0228759] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/07/2020] [Indexed: 12/13/2022] Open
Abstract
The contribution of astrocytes to the BOLD fMRI and DfMRI responses in visual cortex of mice following visual stimulation was investigated using TGN-020, an aquaporin 4 (AQP4) channel blocker, acting as an astrocyte function perturbator. Under TGN-020 injection the amplitude of the BOLD fMRI response became significantly higher. In contrast no significant changes in the DfMRI responses and the electrophysiological responses were observed. Those results further confirm the implications of astrocytes in the neurovascular coupling mechanism underlying BOLD fMRI, but not in the DfMRI responses which remained unsensitive to astrocyte function perturbation.
Collapse
Affiliation(s)
- Yuji Komaki
- NeuroSpin/Joliot, CEA-Saclay Center, Gif-sur-Yvette, France
| | | | - Boucif Djemai
- NeuroSpin/Joliot, CEA-Saclay Center, Gif-sur-Yvette, France
| | - Luisa Ciobanu
- NeuroSpin/Joliot, CEA-Saclay Center, Gif-sur-Yvette, France
| | | | - Denis Le Bihan
- NeuroSpin/Joliot, CEA-Saclay Center, Gif-sur-Yvette, France
- * E-mail:
| |
Collapse
|
26
|
Coggan JS, Keller D, Markram H, Schürmann F, Magistretti PJ. Excitation states of metabolic networks predict dose-response fingerprinting and ligand pulse phase signalling. J Theor Biol 2020; 487:110123. [PMID: 31866398 DOI: 10.1016/j.jtbi.2019.110123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/08/2019] [Accepted: 12/16/2019] [Indexed: 12/30/2022]
Abstract
With a computational model of energy metabolism in an astrocyte, we show how a system of enzymes in a cascade can act as a functional unit of interdependent reactions, rather than merely a series of independent reactions. These systems may exist in multiple states, depending on the level of stimulation, and the effects of substrates at any point will depend on those states. Response trajectories of metabolites downstream from cAMP-stimulated glycogenolysis exhibit a host of non-linear dynamical response characteristics including hysteresis and response envelopes. Dose-dependent phase transitions predict a novel intracellular signalling mechanism and suggest a theoretical framework that could be relevant to single cell information processing, drug discovery or synthetic biology. Ligands may produce unique dose-response fingerprints depending on the state of the system, allowing selective output tuning. We conclude with the observation that state- and dose-dependent phase transitions, what we dub "ligand pulses" (LPs), may carry information and resemble action potentials (APs) generated from excitatory postsynaptic potentials. In our model, the relevant information from a cAMP-dependent glycolytic cascade in astrocytes could reflect the level of neuromodulatory input that signals an energy demand threshold. We propose that both APs and LPs represent specialized cases of molecular phase signalling with a common evolutionary root.
Collapse
Affiliation(s)
- Jay S Coggan
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Geneva CH-1202, Switzerland.
| | - Daniel Keller
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Geneva CH-1202, Switzerland.
| | - Henry Markram
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Geneva CH-1202, Switzerland.
| | - Felix Schürmann
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Geneva CH-1202, Switzerland.
| | - Pierre J Magistretti
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia.
| |
Collapse
|
27
|
Patsatzis DG, Tingas EA, Goussis DA, Sarathy SM. Computational singular perturbation analysis of brain lactate metabolism. PLoS One 2019; 14:e0226094. [PMID: 31846455 PMCID: PMC6917278 DOI: 10.1371/journal.pone.0226094] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 11/19/2019] [Indexed: 01/09/2023] Open
Abstract
Lactate in the brain is considered an important fuel and signalling molecule for neuronal activity, especially during neuronal activation. Whether lactate is shuttled from astrocytes to neurons or from neurons to astrocytes leads to the contradictory Astrocyte to Neuron Lactate Shuttle (ANLS) or Neuron to Astrocyte Lactate Shuttle (NALS) hypotheses, both of which are supported by extensive, but indirect, experimental evidence. This work explores the conditions favouring development of ANLS or NALS phenomenon on the basis of a model that can simulate both by employing the two parameter sets proposed by Simpson et al. (J Cereb. Blood Flow Metab., 27:1766, 2007) and Mangia et al. (J of Neurochemistry, 109:55, 2009). As most mathematical models governing brain metabolism processes, this model is multi-scale in character due to the wide range of time scales characterizing its dynamics. Therefore, we utilize the Computational Singular Perturbation (CSP) algorithm, which has been used extensively in multi-scale systems of reactive flows and biological systems, to identify components of the system that (i) generate the characteristic time scale and the fast/slow dynamics, (ii) participate to the expressions that approximate the surfaces of equilibria that develop in phase space and (iii) control the evolution of the process within the established surfaces of equilibria. It is shown that a decisive factor on whether the ANLS or NALS configuration will develop during neuronal activation is whether the lactate transport between astrocytes and interstitium contributes to the fast dynamics or not. When it does, lactate is mainly generated in astrocytes and the ANLS hypothesis is realised, while when it doesn't, lactate is mainly generated in neurons and the NALS hypothesis is realised. This scenario was tested in exercise conditions.
Collapse
Affiliation(s)
- Dimitris G. Patsatzis
- King Abdullah University of Science and Technology (KAUST), Clean Combustion Research Center (CCRC), Thuwal, Saudi Arabia
- Department of Mechanics, School of Applied Mathematics and Physical Sciences, National Technical University of Athens (NTUA), Athens, Greece
| | - Efstathios-Al. Tingas
- King Abdullah University of Science and Technology (KAUST), Clean Combustion Research Center (CCRC), Thuwal, Saudi Arabia
- Perth College, University of the Highlands and Islands, Crieff Rd, Perth PH1 2NX, United Kingdom
| | - Dimitris A. Goussis
- Department of Mechanical Engineering, Khalifa University of Science, Technology and Research (KUSTAR), Abu Dhabi, United Arab Emirates
| | - S. Mani Sarathy
- King Abdullah University of Science and Technology (KAUST), Clean Combustion Research Center (CCRC), Thuwal, Saudi Arabia
| |
Collapse
|
28
|
Gorantla VR, Bond V, Dorsey J, Tedesco S, Kaur T, Simpson M, Pemminati S, Millis RM. qEEG Measures of Attentional and Memory Network Functions in Medical Students: Novel Targets for Pharmacopuncture to Improve Cognition and Academic Performance. J Pharmacopuncture 2019; 22:166-170. [PMID: 31673447 PMCID: PMC6820472 DOI: 10.3831/kpi.2019.22.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 01/28/2019] [Accepted: 09/03/2019] [Indexed: 11/09/2022] Open
Abstract
Objectives Attentional and memory functions are important aspects of neural plasticity that, theoretically, should be amenable to pharmacopuncture treatments. A previous study from our laboratory suggested that quantitative electroencephalographic (qEEG) measurements of theta/beta ratio (TBR), an index of attentional control, may be indicative of academic performance in a first-semester medical school course. The present study expands our prior report by extracting and analyzing data on frontal theta and beta asymmetries. We test the hypothesis that the amount of frontal theta and beta asymmetries (fTA, fBA), are correlated with TBR and academic performance, thereby providing novel targets for pharmacopuncture treatments to improve cognitive performance. Methods Ten healthy male volunteers were subjected to 5–10 min of qEEG measurements under eyes-closed conditions. The qEEG measurements were performed 3 days before each of first two block examinations in anatomy-physiology, separated by five weeks. Amplitudes of the theta and beta waveforms, expressed in μV, were used to compute TBR, fTA and fBA. Significance of changes in theta and beta EEG wave amplitude was assessed by ANOVA with post-hoc t-testing. Correlations between TBR, fTA, fBA and the raw examination scores were evaluated by Pearson’s product-moment coefficients and linear regression analysis. Results fTA and fBA were found to be negatively correlated with TBR (P<0.03, P<0.05, respectively) and were positively correlated with the second examination score (P<0.03, P=0.1, respectively). Conclusion Smaller fTA and fBA were associated with lower academic performance in the second of two first-semester medical school anatomy-physiology block examination. Future studies should determine whether these qEEG metrics are useful for monitoring changes associated with the brain’s cognitive adaptations to academic challenges, for predicting academic performance and for targeting phamacopuncture treatments to improve cognitive performance.
Collapse
Affiliation(s)
- Vasavi R Gorantla
- Department of Behavioural Sciences and Neuroscience, AUA College of Medicine, Antigua and Barbuda
| | - Vernon Bond
- Department of Recreation, Human Performance & Leisure Studies and Exercise Science & Human Nutrition Laboratory, Howard University Cancer Centre, Washington, DC 20060, United States of America
| | - James Dorsey
- Department of Recreation, Human Performance & Leisure Studies and Exercise Science & Human Nutrition Laboratory, Howard University Cancer Centre, Washington, DC 20060, United States of America
| | | | | | | | - Sudhakar Pemminati
- Department of Medical Pharmacology, AUA College of Medicine, Antigua and Barbuda
| | - Richard M Millis
- Department of Behavioural Sciences and Neuroscience, AUA College of Medicine, Antigua and Barbuda
| |
Collapse
|
29
|
Capo Rangel G, Prezioso J, Gerardo-Giorda L, Somersalo E, Calvetti D. Brain energetics plays a key role in the coordination of electrophysiology, metabolism and hemodynamics: Evidence from an integrated computational model. J Theor Biol 2019; 478:26-39. [DOI: 10.1016/j.jtbi.2019.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 06/01/2019] [Accepted: 06/04/2019] [Indexed: 10/26/2022]
|
30
|
Kumbhar P, Hines M, Fouriaux J, Ovcharenko A, King J, Delalondre F, Schürmann F. CoreNEURON : An Optimized Compute Engine for the NEURON Simulator. Front Neuroinform 2019; 13:63. [PMID: 31616273 PMCID: PMC6763692 DOI: 10.3389/fninf.2019.00063] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 09/04/2019] [Indexed: 12/01/2022] Open
Abstract
The NEURON simulator has been developed over the past three decades and is widely used by neuroscientists to model the electrical activity of neuronal networks. Large network simulation projects using NEURON have supercomputer allocations that individually measure in the millions of core hours. Supercomputer centers are transitioning to next generation architectures and the work accomplished per core hour for these simulations could be improved by an order of magnitude if NEURON was able to better utilize those new hardware capabilities. In order to adapt NEURON to evolving computer architectures, the compute engine of the NEURON simulator has been extracted and has been optimized as a library called CoreNEURON. This paper presents the design, implementation, and optimizations of CoreNEURON. We describe how CoreNEURON can be used as a library with NEURON and then compare performance of different network models on multiple architectures including IBM BlueGene/Q, Intel Skylake, Intel MIC and NVIDIA GPU. We show how CoreNEURON can simulate existing NEURON network models with 4-7x less memory usage and 2-7x less execution time while maintaining binary result compatibility with NEURON.
Collapse
Affiliation(s)
- Pramod Kumbhar
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Michael Hines
- Department of Neuroscience, Yale University, New Haven, CT, United States
| | - Jeremy Fouriaux
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Aleksandr Ovcharenko
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - James King
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Fabien Delalondre
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Felix Schürmann
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| |
Collapse
|
31
|
Energy-efficient information transfer at thalamocortical synapses. PLoS Comput Biol 2019; 15:e1007226. [PMID: 31381555 PMCID: PMC6695202 DOI: 10.1371/journal.pcbi.1007226] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 08/15/2019] [Accepted: 06/28/2019] [Indexed: 12/04/2022] Open
Abstract
We have previously shown that the physiological size of postsynaptic currents maximises energy efficiency rather than information transfer across the retinothalamic relay synapse. Here, we investigate information transmission and postsynaptic energy use at the next synapse along the visual pathway: from relay neurons in the thalamus to spiny stellate cells in layer 4 of the primary visual cortex (L4SS). Using both multicompartment Hodgkin-Huxley-type simulations and electrophysiological recordings in rodent brain slices, we find that increasing or decreasing the postsynaptic conductance of the set of thalamocortical inputs to one L4SS cell decreases the energy efficiency of information transmission from a single thalamocortical input. This result is obtained in the presence of random background input to the L4SS cell from excitatory and inhibitory corticocortical connections, which were simulated (both excitatory and inhibitory) or injected experimentally using dynamic-clamp (excitatory only). Thus, energy efficiency is not a unique property of strong relay synapses: even at the relatively weak thalamocortical synapse, each of which contributes minimally to the output firing of the L4SS cell, evolutionarily-selected postsynaptic properties appear to maximise the information transmitted per energy used. Compared to other organs, the brain consumes a vast amount of energy for its size. Most of this energy is used to power the electrical and chemical processes that support neural computation. As the energy supply to the brain is limited, it follows that this computation should be energetically efficient. Previously, we showed that this is indeed the case for transmission of information between cells at synapses. Synapses transferring information from the retina to the brain do not maximise information transmission—some information is lost and does not reach the visual cortex. Instead, these synapses maximise the information transmitted per energy used. Here, we demonstrate that this principle of energetic efficiency also holds at the next synapse in the visual pathway, the thalamocortical synapse. This synapse is weaker and competes with hundreds of other inputs to influence the output firing of the next cell. Using detailed simulations of cortical neurons, and electrophysiological recordings in rodent brain slices, we found that this relatively weak synapse also does not maximise information transmission. Instead, it maximises the amount of information transmitted per energy used. This suggests that energy efficiency at synapses could be a common design principle in the brain.
Collapse
|
32
|
Perrillat-Mercerot A, Bourmeyster N, Guillevin C, Miranville A, Guillevin R. Mathematical Modeling of Substrates Fluxes and Tumor Growth in the Brain. Acta Biotheor 2019; 67:149-175. [PMID: 30868396 DOI: 10.1007/s10441-019-09343-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 03/09/2019] [Indexed: 01/25/2023]
Abstract
The aim of this article is to show how a tumor can modify energy substrates fluxes in the brain to support its own growth. To address this question we use a modeling approach to explain brain nutrient kinetics. In particular we set up a system of 17 equations for oxygen, lactate, glucose concentrations and cells number in the brain. We prove the existence and uniqueness of nonnegative solutions and give bounds on the solutions. We also provide numerical simulations.
Collapse
|
33
|
Fan X, Markram H. A Brief History of Simulation Neuroscience. Front Neuroinform 2019; 13:32. [PMID: 31133838 PMCID: PMC6513977 DOI: 10.3389/fninf.2019.00032] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/12/2019] [Indexed: 12/19/2022] Open
Abstract
Our knowledge of the brain has evolved over millennia in philosophical, experimental and theoretical phases. We suggest that the next phase is simulation neuroscience. The main drivers of simulation neuroscience are big data generated at multiple levels of brain organization and the need to integrate these data to trace the causal chain of interactions within and across all these levels. Simulation neuroscience is currently the only methodology for systematically approaching the multiscale brain. In this review, we attempt to reconstruct the deep historical paths leading to simulation neuroscience, from the first observations of the nerve cell to modern efforts to digitally reconstruct and simulate the brain. Neuroscience began with the identification of the neuron as the fundamental unit of brain structure and function and has evolved towards understanding the role of each cell type in the brain, how brain cells are connected to each other, and how the seemingly infinite networks they form give rise to the vast diversity of brain functions. Neuronal mapping is evolving from subjective descriptions of cell types towards objective classes, subclasses and types. Connectivity mapping is evolving from loose topographic maps between brain regions towards dense anatomical and physiological maps of connections between individual genetically distinct neurons. Functional mapping is evolving from psychological and behavioral stereotypes towards a map of behaviors emerging from structural and functional connectomes. We show how industrialization of neuroscience and the resulting large disconnected datasets are generating demand for integrative neuroscience, how the scale of neuronal and connectivity maps is driving digital atlasing and digital reconstruction to piece together the multiple levels of brain organization, and how the complexity of the interactions between molecules, neurons, microcircuits and brain regions is driving brain simulation to understand the interactions in the multiscale brain.
Collapse
Affiliation(s)
- Xue Fan
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | | |
Collapse
|
34
|
Calì C, Tauffenberger A, Magistretti P. The Strategic Location of Glycogen and Lactate: From Body Energy Reserve to Brain Plasticity. Front Cell Neurosci 2019; 13:82. [PMID: 30894801 PMCID: PMC6415680 DOI: 10.3389/fncel.2019.00082] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 02/18/2019] [Indexed: 01/08/2023] Open
Abstract
Brain energy metabolism has been the object of intense research in recent years. Pioneering work has identified the different cell types involved in energy production and use. Recent evidence has demonstrated a key role of L-Lactate in brain energy metabolism, producing a paradigm-shift in our understanding of the neuronal energy metabolism. At the center of this shift, is the identification of a central role of astrocytes in neuroenergetics. Thanks to their morphological characteristics, they are poised to take up glucose from the circulation and deliver energy substrates to neurons. Astrocyte neuron lactate shuttle (ANLS) model, has shown that the main energy substrate that astrocytes deliver to neurons is L-Lactate, to sustain neuronal oxidative metabolism. L-Lactate can also be produced from glycogen, the storage form of glucose, which is exclusively localized in astrocytes. Inhibition of glycogen metabolism and the ensuing inhibition of L-Lactate production leads to cognitive dysfunction. Experimental evidence indicates that the role of lactate in cognitive function relates not only to its role as a metabolic substrate for neurons but also as a signaling molecule for synaptic plasticity. Interestingly, a similar metabolic uncoupling appears to exist in peripheral tissues plasma, whereby glucose provides L-Lactate as the substrate for cellular oxidative metabolism. In this perspective article, we review the known information on the distribution of glycogen and lactate within brain cells, and how this distribution relates to the energy regime of glial vs. neuronal cells.
Collapse
Affiliation(s)
- Corrado Calì
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Arnaud Tauffenberger
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Pierre Magistretti
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
35
|
Baeza-Lehnert F, Saab AS, Gutiérrez R, Larenas V, Díaz E, Horn M, Vargas M, Hösli L, Stobart J, Hirrlinger J, Weber B, Barros LF. Non-Canonical Control of Neuronal Energy Status by the Na + Pump. Cell Metab 2019; 29:668-680.e4. [PMID: 30527744 DOI: 10.1016/j.cmet.2018.11.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 08/01/2018] [Accepted: 11/12/2018] [Indexed: 12/31/2022]
Abstract
Neurons have limited intracellular energy stores but experience acute and unpredictable increases in energy demand. To better understand how these cells repeatedly transit from a resting to active state without undergoing metabolic stress, we monitored their early metabolic response to neurotransmission using ion-sensitive probes and FRET sensors in vitro and in vivo. A short theta burst triggered immediate Na+ entry, followed by a delayed stimulation of the Na+/K+ ATPase pump. Unexpectedly, cytosolic ATP and ADP levels were unperturbed across a wide range of physiological workloads, revealing strict flux coupling between the Na+ pump and mitochondria. Metabolic flux measurements revealed a "priming" phase of mitochondrial energization by pyruvate, whereas glucose consumption coincided with delayed Na+ pump stimulation. Experiments revealed that the Na+ pump plays a permissive role for mitochondrial ATP production and glycolysis. We conclude that neuronal energy homeostasis is not mediated by adenine nucleotides or by Ca2+, but by a mechanism commanded by the Na+ pump.
Collapse
Affiliation(s)
- Felipe Baeza-Lehnert
- Centro de Estudios Científicos (CECs), Casilla 1469, 5110466 Valdivia, Chile; Universidad Austral de Chile, Valdivia, Chile
| | - Aiman S Saab
- Institute of Pharmacology and Toxicology, University and ETH Zurich, Switzerland; Neuroscience Center Zurich, Zurich, Switzerland
| | - Robin Gutiérrez
- Centro de Estudios Científicos (CECs), Casilla 1469, 5110466 Valdivia, Chile; Universidad Austral de Chile, Valdivia, Chile
| | - Valeria Larenas
- Centro de Estudios Científicos (CECs), Casilla 1469, 5110466 Valdivia, Chile
| | - Esteban Díaz
- Centro de Estudios Científicos (CECs), Casilla 1469, 5110466 Valdivia, Chile; Universidad Austral de Chile, Valdivia, Chile
| | - Melanie Horn
- Centro de Estudios Científicos (CECs), Casilla 1469, 5110466 Valdivia, Chile
| | - Miriam Vargas
- Centro de Estudios Científicos (CECs), Casilla 1469, 5110466 Valdivia, Chile; Universidad Austral de Chile, Valdivia, Chile
| | - Ladina Hösli
- Institute of Pharmacology and Toxicology, University and ETH Zurich, Switzerland; Neuroscience Center Zurich, Zurich, Switzerland
| | - Jillian Stobart
- Institute of Pharmacology and Toxicology, University and ETH Zurich, Switzerland; Neuroscience Center Zurich, Zurich, Switzerland
| | - Johannes Hirrlinger
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany; Department of Neurogenetics, Max-Planck-Institute for Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
| | - Bruno Weber
- Institute of Pharmacology and Toxicology, University and ETH Zurich, Switzerland; Neuroscience Center Zurich, Zurich, Switzerland
| | - L Felipe Barros
- Centro de Estudios Científicos (CECs), Casilla 1469, 5110466 Valdivia, Chile.
| |
Collapse
|
36
|
Pivotal role of carnosine in the modulation of brain cells activity: Multimodal mechanism of action and therapeutic potential in neurodegenerative disorders. Prog Neurobiol 2018; 175:35-53. [PMID: 30593839 DOI: 10.1016/j.pneurobio.2018.12.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/13/2018] [Accepted: 12/23/2018] [Indexed: 12/24/2022]
Abstract
Carnosine (β-alanyl-l-histidine), a dipeptide, is an endogenous antioxidant widely distributed in excitable tissues like muscles and the brain. Although discovered more than a hundred years ago and having been extensively studied in the periphery, the role of carnosine in the brain remains mysterious. Carnosinemia, a rare metabolic disorder with increased levels of carnosine in urine and low levels or absence of carnosinase in the blood, is associated with severe neurological symptoms in humans. This review deals with the role of carnosine in the brain in both physiological and pathological conditions, with a focus on preclinical evidence suggesting a high therapeutic potential of carnosine in neurodegenerative disorders. We review carnosine and carnosinemia's discoveries and the extensive research on the role and benefits of carnosine in the periphery. We then turn to carnosine's biochemistry and distribution in the brain. Using an array of recent observations as a foundation, we draw a parallel with the role of carnosine in muscles and speculate on the role of carnosine in promoting the metabolic support of neurons by glial cells. Finally, carnosine has been shown to exert a multimodal activity including inhibition of protein cross-linking and aggregation of amyloid-β and related proteins, free radical generation, nitric oxide detoxification, and an anti-inflammatory activity. It could thus play an important role in the prevention and treatment of neurodegenerative diseases such as Alzheimer's disease. We discuss the potential of carnosine in this context and speculate on new preclinical research directions.
Collapse
|
37
|
Singh M, Denny H, Smith C, Granados J, Renden R. Presynaptic loss of dynamin-related protein 1 impairs synaptic vesicle release and recycling at the mouse calyx of Held. J Physiol 2018; 596:6263-6287. [PMID: 30285293 DOI: 10.1113/jp276424] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 09/24/2018] [Indexed: 12/20/2022] Open
Abstract
KEY POINTS This study characterizes the mechanisms underlying defects in synaptic transmission when dynamin-related protein 1 (DRP1) is genetically eliminated. Viral-mediated knockout of DRP1 from the presynaptic terminal at the mouse calyx of Held increased initial release probability, reduced the size of the synaptic vesicle recycling pool and impaired synaptic vesicle recycling. Transmission defects could be partially restored by increasing the intracellular calcium buffering capacity with EGTA-AM, implying close coupling of Ca2+ channels to synaptic vesicles was compromised. Acute restoration of ATP to physiological levels in the presynaptic terminal did not reverse the synaptic defects. Loss of DRP1 impairs mitochondrial morphology in the presynaptic terminal, which in turn seems to arrest synaptic maturation. ABSTRACT Impaired mitochondrial biogenesis and function is implicated in many neurodegenerative diseases, and likely affects synaptic neurotransmission prior to cellular loss. Dynamin-related protein 1 (DRP1) is essential for mitochondrial fission and is disrupted in neurodegenerative disease. In this study, we used the mouse calyx of Held synapse as a model to investigate the impact of presynaptic DRP1 loss on synaptic vesicle (SV) recycling and sustained neurotransmission. In vivo viral expression of Cre recombinase in ventral cochlear neurons of floxed-DRP1 mice generated a presynaptic-specific DRP1 knockout (DRP1-preKO), where the innervated postsynaptic cell was unperturbed. Confocal reconstruction of the calyx terminal suggested SV clusters and mitochondrial content were disrupted, and presynaptic terminal volume was decreased. Using postsynaptic voltage-clamp recordings, we found that DRP1-preKO synapses had larger evoked responses at low frequency stimulation. DRP1-preKO synapses also had profoundly altered short-term plasticity, due to defects in SV recycling. Readily releasable pool size, estimated with high-frequency trains, was dramatically reduced in DRP1-preKO synapses, suggesting an important role for DRP1 in maintenance of release-competent SVs at the presynaptic terminal. Presynaptic Ca2+ accumulation in the terminal was also enhanced in DRP1-preKO synapses. Synaptic transmission defects could be partially rescued with EGTA-AM, indicating close coupling of Ca2+ channels to SV distance normally found in mature terminals may be compromised by DRP1-preKO. Using paired recordings of the presynaptic and postsynaptic compartments, recycling defects could not be reversed by acute dialysis of ATP into the calyx terminals. Taken together, our results implicate a requirement for mitochondrial fission to coordinate postnatal synapse maturation.
Collapse
Affiliation(s)
- Mahendra Singh
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV, 89557, USA
| | - Henry Denny
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV, 89557, USA
| | - Christina Smith
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV, 89557, USA
| | - Jorge Granados
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV, 89557, USA
| | - Robert Renden
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV, 89557, USA
| |
Collapse
|
38
|
Bydder M, Zaaraoui W, Ridley B, Soubrier M, Bertinetti M, Confort-Gouny S, Schad L, Guye M, Ranjeva JP. Dynamic 23Na MRI - A non-invasive window on neuroglial-vascular mechanisms underlying brain function. Neuroimage 2018; 184:771-780. [PMID: 30292814 DOI: 10.1016/j.neuroimage.2018.09.071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 09/21/2018] [Accepted: 09/25/2018] [Indexed: 11/17/2022] Open
Abstract
A novel magnetic resonance imaging (MRI) acquisition and reconstruction method for obtaining a series of dynamic sodium 23Na-MRI acquisitions was designed to non-invasively assess the signal variations of brain sodium during a hand motor task in 14 healthy human volunteers on an ultra high field (7T) MR scanner. Regions undergoing activation and deactivation were identified with reference to conventional task-related BOLD functional MRI (fMRI). Activation observed in the left central regions, the supplementary motor areas and the left cerebellum induced an increase in the sodium signal observed at ultra short echo time and a decrease in the 23Na signal observed at long echo time. Based on a simple model of two distinct sodium pools (namely, restricted and mobile sodium), the ultra short echo time measures the totality of sodium whereas the long echo time is mainly sensitive to mobile sodium. This activation pattern is consistent with previously described processes related to an influx of Na+ into the intracellular compartments and a moderate increase in the cerebral blood volume (CBV). In contrast, deactivation observed in the right central regions ipsilateral to the movement, the precuneus and the left cerebellum induced a slight decrease in sodium signal at ultra short echo time and an increase of sodium signal at longer echo times. This inhibitory pattern is compatible with a slight decrease in CBV and an efflux of intracellular Na+ to the extracellular compartments that may reflect neural dendritic spine and astrocytic shrinkage, and an increase of sodium in the extracellular fraction. In conclusion, cerebral dynamic 23Na MRI experiments can provide access to the ionic transients following a functional task occurring within the neuro-glial-vascular ensemble. This has the potential to open up a novel non-invasive window on the mechanisms underlying brain function.
Collapse
Affiliation(s)
- Mark Bydder
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France; APHM, University Hospital Timone, CEMEREM, Marseille, France
| | - Wafaa Zaaraoui
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France; APHM, University Hospital Timone, CEMEREM, Marseille, France
| | - Ben Ridley
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France; APHM, University Hospital Timone, CEMEREM, Marseille, France
| | - Manon Soubrier
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France; APHM, University Hospital Timone, CEMEREM, Marseille, France
| | - Marie Bertinetti
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France; APHM, University Hospital Timone, CEMEREM, Marseille, France
| | - Sylviane Confort-Gouny
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France; APHM, University Hospital Timone, CEMEREM, Marseille, France
| | - Lothar Schad
- Computer Assisted Clinical Medicine, Centre for Biomedicine and Medical Technology Mannheim, Heidelberg University, Mannheim, Germany
| | - Maxime Guye
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France; APHM, University Hospital Timone, CEMEREM, Marseille, France
| | - Jean-Philippe Ranjeva
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France; APHM, University Hospital Timone, CEMEREM, Marseille, France.
| |
Collapse
|
39
|
Coggan JS, Calì C, Keller D, Agus M, Boges D, Abdellah M, Kare K, Lehväslaiho H, Eilemann S, Jolivet RB, Hadwiger M, Markram H, Schürmann F, Magistretti PJ. A Process for Digitizing and Simulating Biologically Realistic Oligocellular Networks Demonstrated for the Neuro-Glio-Vascular Ensemble. Front Neurosci 2018; 12:664. [PMID: 30319342 PMCID: PMC6171468 DOI: 10.3389/fnins.2018.00664] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/04/2018] [Indexed: 01/01/2023] Open
Abstract
One will not understand the brain without an integrated exploration of structure and function, these attributes being two sides of the same coin: together they form the currency of biological computation. Accordingly, biologically realistic models require the re-creation of the architecture of the cellular components in which biochemical reactions are contained. We describe here a process of reconstructing a functional oligocellular assembly that is responsible for energy supply management in the brain and creating a computational model of the associated biochemical and biophysical processes. The reactions that underwrite thought are both constrained by and take advantage of brain morphologies pertaining to neurons, astrocytes and the blood vessels that deliver oxygen, glucose and other nutrients. Each component of this neuro-glio-vasculature ensemble (NGV) carries-out delegated tasks, as the dynamics of this system provide for each cell-type its own energy requirements while including mechanisms that allow cooperative energy transfers. Our process for recreating the ultrastructure of cellular components and modeling the reactions that describe energy flow uses an amalgam of state-of the-art techniques, including digital reconstructions of electron micrographs, advanced data analysis tools, computational simulations and in silico visualization software. While we demonstrate this process with the NGV, it is equally well adapted to any cellular system for integrating multimodal cellular data in a coherent framework.
Collapse
Affiliation(s)
- Jay S Coggan
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Corrado Calì
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Daniel Keller
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Marco Agus
- Visual Computing Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.,CRS4, Center of Research and Advanced Studies in Sardinia, Visual Computing, Pula, Italy
| | - Daniya Boges
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Marwan Abdellah
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Kalpana Kare
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Heikki Lehväslaiho
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.,CSC - IT Center for Science, Espoo, Finland
| | - Stefan Eilemann
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Renaud Blaise Jolivet
- Département de Physique Nucléaire et Corpusculaire, University of Geneva, Geneva, Switzerland.,The European Organization for Nuclear Research, Geneva, Switzerland
| | - Markus Hadwiger
- Visual Computing Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Henry Markram
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Felix Schürmann
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Pierre J Magistretti
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
40
|
Coggan JS, Keller D, Calì C, Lehväslaiho H, Markram H, Schürmann F, Magistretti PJ. Norepinephrine stimulates glycogenolysis in astrocytes to fuel neurons with lactate. PLoS Comput Biol 2018; 14:e1006392. [PMID: 30161133 PMCID: PMC6160207 DOI: 10.1371/journal.pcbi.1006392] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 09/27/2018] [Accepted: 07/24/2018] [Indexed: 12/20/2022] Open
Abstract
The mechanism of rapid energy supply to the brain, especially to accommodate the heightened metabolic activity of excited states, is not well-understood. We explored the role of glycogen as a fuel source for neuromodulation using the noradrenergic stimulation of glia in a computational model of the neural-glial-vasculature ensemble (NGV). The detection of norepinephrine (NE) by the astrocyte and the coupled cAMP signal are rapid and largely insensitive to the distance of the locus coeruleus projection release sites from the glia, implying a diminished impact for volume transmission in high affinity receptor transduction systems. Glucosyl-conjugated units liberated from glial glycogen by NE-elicited cAMP second messenger transduction winds sequentially through the glycolytic cascade, generating robust increases in NADH and ATP before pyruvate is finally transformed into lactate. This astrocytic lactate is rapidly exported by monocarboxylate transporters to the associated neuron, demonstrating that the astrocyte-to-neuron lactate shuttle activated by glycogenolysis is a likely fuel source for neuromodulation and enhanced neural activity. Altogether, the energy supply for both astrocytes and neurons can be supplied rapidly by glycogenolysis upon neuromodulatory stimulus. Although efficient compared to computers, the human brain utilizes energy at 10-fold the rate of other organs by mass. How the brain is supplied with sufficient on-demand energy to support its activity in the absence of neuronal storage capacity remains unknown. Neurons are not capable of meeting their own energy requirements, instead energy supply in the brain is managed by an oligocellular cartel composed of neurons, glia and the local vasculature (NGV), wherein glia can provide the ergogenic metabolite lactate to the neuron in a process called the astrocyte-to-neuron shuttle (ANLS). The only means of energy storage in the brain is glycogen, a polymerized form of glucose that is localized largely to astrocytes, but its exact role and conditions of use are not clear. In this computational model we show that neuromodulatory stimulation by norepinephrine induces astrocytes to recover glucosyl subunits from glycogen for use in a glycolytic process that favors the production of lactate. The ATP and NADH produced support metabolism in the astrocyte while the lactate is exported to feed the neuron. Thus, rapid energy demands by both neurons and glia in a stimulated brain can be met by glycogen mobilization.
Collapse
Affiliation(s)
- Jay S. Coggan
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- * E-mail: (JSC); (PJM)
| | - Daniel Keller
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Corrado Calì
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Heikki Lehväslaiho
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Henry Markram
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Felix Schürmann
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Pierre J. Magistretti
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
- * E-mail: (JSC); (PJM)
| |
Collapse
|
41
|
Osipova ED, Semyachkina-Glushkovskaya OV, Morgun AV, Pisareva NV, Malinovskaya NA, Boitsova EB, Pozhilenkova EA, Belova OA, Salmin VV, Taranushenko TE, Noda M, Salmina AB. Gliotransmitters and cytokines in the control of blood-brain barrier permeability. Rev Neurosci 2018; 29:567-591. [DOI: 10.1515/revneuro-2017-0092] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 11/26/2017] [Indexed: 11/15/2022]
Abstract
AbstractThe contribution of astrocytes and microglia to the regulation of neuroplasticity or neurovascular unit (NVU) is based on the coordinated secretion of gliotransmitters and cytokines and the release and uptake of metabolites. Blood-brain barrier (BBB) integrity and angiogenesis are influenced by perivascular cells contacting with the abluminal side of brain microvessel endothelial cells (pericytes, astrocytes) or by immune cells existing (microglia) or invading the NVU (macrophages) under pathologic conditions. The release of gliotransmitters or cytokines by activated astroglial and microglial cells is provided by distinct mechanisms, affects intercellular communication, and results in the establishment of microenvironment controlling BBB permeability and neuroinflammation. Glial glutamate transporters and connexin and pannexin hemichannels working in the tight functional coupling with the purinergic system serve as promising molecular targets for manipulating the intercellular communications that control BBB permeability in brain pathologies associated with excessive angiogenesis, cerebrovascular remodeling, and BBB-mediated neuroinflammation. Substantial progress in deciphering the molecular mechanisms underlying the (patho)physiology of perivascular glia provides promising approaches to novel clinically relevant therapies for brain disorders. The present review summarizes the current understandings on the secretory machinery expressed in glial cells (glutamate transporters, connexin and pannexin hemichannels, exocytosis mechanisms, membrane-derived microvesicles, and inflammasomes) and the role of secreted gliotransmitters and cytokines in the regulation of NVU and BBB permeability in (patho)physiologic conditions.
Collapse
|
42
|
Barros LF, Bolaños JP, Bonvento G, Bouzier-Sore AK, Brown A, Hirrlinger J, Kasparov S, Kirchhoff F, Murphy AN, Pellerin L, Robinson MB, Weber B. Current technical approaches to brain energy metabolism. Glia 2018; 66:1138-1159. [PMID: 29110344 PMCID: PMC5903992 DOI: 10.1002/glia.23248] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/14/2017] [Accepted: 10/04/2017] [Indexed: 12/19/2022]
Abstract
Neuroscience is a technology-driven discipline and brain energy metabolism is no exception. Once satisfied with mapping metabolic pathways at organ level, we are now looking to learn what it is exactly that metabolic enzymes and transporters do and when, where do they reside, how are they regulated, and how do they relate to the specific functions of neurons, glial cells, and their subcellular domains and organelles, in different areas of the brain. Moreover, we aim to quantify the fluxes of metabolites within and between cells. Energy metabolism is not just a necessity for proper cell function and viability but plays specific roles in higher brain functions such as memory processing and behavior, whose mechanisms need to be understood at all hierarchical levels, from isolated proteins to whole subjects, in both health and disease. To this aim, the field takes advantage of diverse disciplines including anatomy, histology, physiology, biochemistry, bioenergetics, cellular biology, molecular biology, developmental biology, neurology, and mathematical modeling. This article presents a well-referenced synopsis of the technical side of brain energy metabolism research. Detail and jargon are avoided whenever possible and emphasis is given to comparative strengths, limitations, and weaknesses, information that is often not available in regular articles.
Collapse
Affiliation(s)
- L Felipe Barros
- Centro de Estudios Científicos (CECs), Valdivia, 5110466, Chile
| | - Juan P Bolaños
- Instituto de Biologia Funcional y Genomica-CSIC, Universidad de Salamanca, CIBERFES, Salamanca, 37007, Spain
| | - Gilles Bonvento
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Département de la Recherche Fondamentale (DRF), Institut de Biologie François Jacob, Molecular Imaging Research Center (MIRCen), CNRS UMR 9199, Université Paris-Sud, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Anne-Karine Bouzier-Sore
- Centre de Résonance Magnétique des Systèmes Biologiques UMR 5536, CNRS-Université Bordeaux 146 rue Léo-Saignat, Bordeaux, France
| | - Angus Brown
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Johannes Hirrlinger
- Carl Ludwig Institute of Physiology, University of Leipzig, Liebigstr. 27, D-04103, Leipzig, Germany
- Department of Neurogenetics, Max-Planck-Institute for Experimental Medicine, Hermann-Rein-Str. 3, Göttingen, D-37075, Germany
| | - Sergey Kasparov
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, BS8 1TD, United Kingdom
- Baltic Federal University, Kalinigrad, Russian Federation
| | - Frank Kirchhoff
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine, University of Saarland, Building 48, Homburg, 66421, Germany
| | - Anne N Murphy
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, 92093
| | - Luc Pellerin
- Département de Physiologie, 7 rue du Bugnon, Lausanne, CH1005, Switzerland
| | - Michael B Robinson
- Department of Pediatrics, and Department of Systems Pharmacology and Translational Therapeutics, Children's Hospital of Philadelphia Research Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Bruno Weber
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, Zurich, Switzerland
| |
Collapse
|
43
|
Lucas SJ, Michel CB, Marra V, Smalley JL, Hennig MH, Graham BP, Forsythe ID. Glucose and lactate as metabolic constraints on presynaptic transmission at an excitatory synapse. J Physiol 2018; 596:1699-1721. [PMID: 29430661 PMCID: PMC5924824 DOI: 10.1113/jp275107] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 02/02/2018] [Indexed: 12/13/2022] Open
Abstract
KEY POINTS Synapses have high energy demands which increase during intense activity. We show that presynaptic terminals can utilise extracellular glucose or lactate to generate energy to maintain synaptic transmission. Reducing energy substrates induces a metabolic stress: presynaptic ATP depletion impaired synaptic transmission through a reduction in the number of functional synaptic vesicle release sites and a slowing of vesicle pool replenishment, without a consistent change in release probability. Metabolic function is compromised in many pathological conditions (e.g. stroke, traumatic brain injury and neurodegeneration). Knowledge of how synaptic transmission is constrained by metabolic stress, especially during intense brain activity, will provide insights to improve cognition following pathological insults. ABSTRACT The synapse has high energy demands, which increase during intense activity. Presynaptic ATP production depends on substrate availability and usage will increase during activity, which in turn could influence transmitter release and information transmission. We investigated transmitter release at the mouse calyx of Held synapse using glucose or lactate (10, 1 or 0 mm) as the extracellular substrates while inducing metabolic stress. High-frequency stimulation (HFS) and recovery paradigms evoked trains of EPSCs monitored under voltage-clamp. Whilst postsynaptic intracellular ATP was stabilised by diffusion from the patch pipette, depletion of glucose increased EPSC depression during HFS and impaired subsequent recovery. Computational modelling of these data demonstrated a reduction in the number of functional release sites and slowed vesicle pool replenishment during metabolic stress, with little change in release probability. Directly depleting presynaptic terminal ATP impaired transmitter release in an analogous manner to glucose depletion. In the absence of glucose, presynaptic terminal metabolism could utilise lactate from the aCSF and this was blocked by inhibition of monocarboxylate transporters (MCTs). MCT inhibitors significantly suppressed transmission in low glucose, implying that lactate is a presynaptic substrate. Additionally, block of glycogenolysis accelerated synaptic transmission failure in the absence of extracellular glucose, consistent with supplemental supply of lactate by local astrocytes. We conclude that both glucose and lactate support presynaptic metabolism and that limited availability, exacerbated by high-intensity firing, constrains presynaptic ATP, impeding transmission through a reduction in functional presynaptic release sites as vesicle recycling slows when ATP levels are low.
Collapse
Affiliation(s)
- Sarah J. Lucas
- Department of Neuroscience, Psychology & BehaviourUniversity of LeicesterLeicesterLE1 9HNUK
| | - Christophe B. Michel
- Computing Science & Mathematics, Faculty of Natural SciencesUniversity of StirlingStirlingFK9 4LAUK
| | - Vincenzo Marra
- Department of Neuroscience, Psychology & BehaviourUniversity of LeicesterLeicesterLE1 9HNUK
| | - Joshua L. Smalley
- Department of Neuroscience, Psychology & BehaviourUniversity of LeicesterLeicesterLE1 9HNUK
| | - Matthias H. Hennig
- Institute for Adaptive and Neural Computation, School of InformaticsUniversity of EdinburghEdinburghEH8 9ABUK
| | - Bruce P. Graham
- Computing Science & Mathematics, Faculty of Natural SciencesUniversity of StirlingStirlingFK9 4LAUK
| | - Ian D. Forsythe
- Department of Neuroscience, Psychology & BehaviourUniversity of LeicesterLeicesterLE1 9HNUK
| |
Collapse
|
44
|
Calvetti D, Capo Rangel G, Gerardo Giorda L, Somersalo E. A computational model integrating brain electrophysiology and metabolism highlights the key role of extracellular potassium and oxygen. J Theor Biol 2018. [PMID: 29530764 DOI: 10.1016/j.jtbi.2018.02.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The human brain is a small organ which uses a disproportionate amount of the total metabolic energy production in the body. While it is well understood that the most significant energy sink is the maintenance of the neuronal membrane potential during the brain signaling activity, the role of astrocytes in the energy balance continues to be the topic of a lot of research. A key function of astrocytes, besides clearing glutamate from the synaptic clefts, is the potassium clearing after neuronal activation. Extracellular potassium plays a significant role in triggering neuronal firing, and elevated concentration of potassium may lead to abnormal firing patterns, e.g., seizures, thus emphasizing the importance of the glial K+ buffering role. The predictive mathematical model proposed in this paper elucidates the role of glial potassium clearing in brain energy metabolism, integrating a detailed model of the ion dynamics which regulates neuronal firing with a four compartment metabolic model. Because of the very different characteristic time scales of electrophysiology and metabolism, care must be taken when coupling the two models to ensure that the predictions, e.g., neuronal firing frequencies and the oxygen-glucose index (OGI) of the brain during activation and rest, are in agreement with empirical observations. The temporal multi-scale nature of the problem requires the design of new computational tools to ensure a stable and accurate numerical treatment. The model predictions for different protocols, including combinations of elevated activation and ischemic episodes, are in good agreement with experimental observations reported in the literature.
Collapse
Affiliation(s)
- D Calvetti
- Department of Mathematics, Applied Mathematics and Statistics, Case Western Reserve University, USA
| | | | | | - E Somersalo
- Department of Mathematics, Applied Mathematics and Statistics, Case Western Reserve University, USA; Basque Center for Applied Mathematics, Spain.
| |
Collapse
|
45
|
Tang BL. Brain activity-induced neuronal glucose uptake/glycolysis: Is the lactate shuttle not required? Brain Res Bull 2017; 137:225-228. [PMID: 29273209 DOI: 10.1016/j.brainresbull.2017.12.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/09/2017] [Accepted: 12/15/2017] [Indexed: 01/12/2023]
Abstract
The astrocyte-neuron lactate shuttle (ANLS) hypothesis posits that during neuronal activation, astrocytic glycolysis consumes glucose and generates lactate, with the latter then imported by neurons as a preferred fuel. The hypothesis has been controversial, with multiple theoretical postulates for and against, and with empirical evidence that were either supportive or otherwise. Recent findings using direct in vivo imaging of lactate and glucose uptake as well as associated metabolic changes in neurons have now placed important constraints on the hypothesis. Here, I review these recent findings and discuss their implications on neuronal energetics.
Collapse
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore,.
| |
Collapse
|
46
|
Sintsov M, Suchkov D, Khazipov R, Minlebaev M. Developmental Changes in Sensory-Evoked Optical Intrinsic Signals in the Rat Barrel Cortex. Front Cell Neurosci 2017; 11:392. [PMID: 29311827 PMCID: PMC5733043 DOI: 10.3389/fncel.2017.00392] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/27/2017] [Indexed: 12/17/2022] Open
Abstract
Optical Intrinsic Signal imaging (OISi) is a powerful technique for optical brain studies. OIS mainly reflects the hemodynamic response (HR) and metabolism, but it may also involve changes in tissue light scattering (LS) caused by transient cellular swelling in the active tissue. Here, we explored the developmental features of sensory-evoked OIS in the rat barrel cortex during the first 3 months after birth. Multispectral OISi revealed that two temporally distinct components contribute to the neonatal OIS: an early phase of LS followed by a late phase of HR. The contribution of LS to the early response was also evidenced by an increase in light transmission through the active barrel. The early OIS phase correlated in time and amplitude with the sensory-evoked electrophysiological response. Application of the Modified Beer-Lambert Law (MBLL) to the OIS data revealed that HR during the early phase involved only a slight decrease in blood oxygenation without any change in blood volume. In contrast, HR during the late phase manifested an adult-like increase in blood volume and oxygenation. During development, the peak time of the delayed HR progressively shortened with age, nearly reaching the stimulus onset and overlapping with the early LS phase by the fourth postnatal week. Thus, LS contributes to the sensory-evoked OIS in the barrel cortex of rats at all ages, and it dominates the early OIS phase in neonatal rats due to delayed HR. Our results are also consistent with the delayed blood oxygen level dependent (BOLD) signal in human preterm infants.
Collapse
Affiliation(s)
- Mikhail Sintsov
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
| | - Dmitrii Suchkov
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
| | - Rustem Khazipov
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia.,INMED-INSERM U901, Aix-Marseille University, Marseille, France
| | - Marat Minlebaev
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia.,INMED-INSERM U901, Aix-Marseille University, Marseille, France
| |
Collapse
|
47
|
Huang YT, Chang YL, Chen CC, Lai PY, Chan CK. Positive feedback and synchronized bursts in neuronal cultures. PLoS One 2017; 12:e0187276. [PMID: 29091966 PMCID: PMC5665536 DOI: 10.1371/journal.pone.0187276] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 10/17/2017] [Indexed: 01/05/2023] Open
Abstract
Synchronized bursts (SBs) with complex structures are common in neuronal cultures. Although the phenomenon of SBs has been discovered for a long time, its origin is still unclear. Here, we investigate the properties of these SBs in cultures grown on a multi-electrode array. We find that structures of these SBs are related to the different developmental stages of the cultures and these structures can be modified by changing the magnesium concentration in the culture medium; indicating that synaptic mechanism is involved in the generation of SBs. A model based on short term synaptic plasticity (STSP), recurrent connections and astrocytic recycling of neurotransmitters has been developed successfully to understand the observed structures of SBs in experiments. A phase diagram obtained from this model shows that networks exhibiting SBs are in a complex oscillatory state due to large enough positive feedback provided by synaptic facilitation and recurrent connections. In this model, while STSP controls the fast oscillations (∼ 100 ms) within a SB, the astrocytic recycling determines the slow time scale (∼10 s) of inter-burst intervals. Our study suggests that glia-neuron interactions can be important in the understanding of the complex dynamics of neuronal networks.
Collapse
Affiliation(s)
- Yu-Ting Huang
- Dept. of Physics and Center for Complex Systems, National Central University, Chungli, Taiwan 320, ROC
- Institute of Physics, Academia Sinica, Nankang, Taipei, Taiwan 115, ROC
| | - Yu-Lin Chang
- Institute of Physics, Academia Sinica, Nankang, Taipei, Taiwan 115, ROC
| | - Chun-Chung Chen
- Institute of Physics, Academia Sinica, Nankang, Taipei, Taiwan 115, ROC
| | - Pik-Yin Lai
- Dept. of Physics and Center for Complex Systems, National Central University, Chungli, Taiwan 320, ROC
- * E-mail: (PYL); (CKC)
| | - C. K. Chan
- Dept. of Physics and Center for Complex Systems, National Central University, Chungli, Taiwan 320, ROC
- Institute of Physics, Academia Sinica, Nankang, Taipei, Taiwan 115, ROC
- * E-mail: (PYL); (CKC)
| |
Collapse
|
48
|
Burroni J, Taylor P, Corey C, Vachnadze T, Siegelmann HT. Energetic Constraints Produce Self-sustained Oscillatory Dynamics in Neuronal Networks. Front Neurosci 2017; 11:80. [PMID: 28289370 PMCID: PMC5326782 DOI: 10.3389/fnins.2017.00080] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 02/03/2017] [Indexed: 12/27/2022] Open
Abstract
Overview: We model energy constraints in a network of spiking neurons, while exploring general questions of resource limitation on network function abstractly. Background: Metabolic states like dietary ketosis or hypoglycemia have a large impact on brain function and disease outcomes. Glia provide metabolic support for neurons, among other functions. Yet, in computational models of glia-neuron cooperation, there have been no previous attempts to explore the effects of direct realistic energy costs on network activity in spiking neurons. Currently, biologically realistic spiking neural networks assume that membrane potential is the main driving factor for neural spiking, and do not take into consideration energetic costs. Methods: We define local energy pools to constrain a neuron model, termed Spiking Neuron Energy Pool (SNEP), which explicitly incorporates energy limitations. Each neuron requires energy to spike, and resources in the pool regenerate over time. Our simulation displays an easy-to-use GUI, which can be run locally in a web browser, and is freely available. Results: Energy dependence drastically changes behavior of these neural networks, causing emergent oscillations similar to those in networks of biological neurons. We analyze the system via Lotka-Volterra equations, producing several observations: (1) energy can drive self-sustained oscillations, (2) the energetic cost of spiking modulates the degree and type of oscillations, (3) harmonics emerge with frequencies determined by energy parameters, and (4) varying energetic costs have non-linear effects on energy consumption and firing rates. Conclusions: Models of neuron function which attempt biological realism may benefit from including energy constraints. Further, we assert that observed oscillatory effects of energy limitations exist in networks of many kinds, and that these findings generalize to abstract graphs and technological applications.
Collapse
Affiliation(s)
- Javier Burroni
- Biologically Inspired Neural and Dynamical Systems Laboratory, College of Information and Computer Sciences, University of Massachusetts Amherst, MA, USA
| | - P Taylor
- Biologically Inspired Neural and Dynamical Systems Laboratory, College of Information and Computer Sciences, University of MassachusettsAmherst, MA, USA; Neuroscience and Behavior Program, University of MassachusettsAmherst, MA, USA
| | - Cassian Corey
- Biologically Inspired Neural and Dynamical Systems Laboratory, College of Information and Computer Sciences, University of Massachusetts Amherst, MA, USA
| | - Tengiz Vachnadze
- Biologically Inspired Neural and Dynamical Systems Laboratory, College of Information and Computer Sciences, University of Massachusetts Amherst, MA, USA
| | - Hava T Siegelmann
- Biologically Inspired Neural and Dynamical Systems Laboratory, College of Information and Computer Sciences, University of MassachusettsAmherst, MA, USA; Neuroscience and Behavior Program, University of MassachusettsAmherst, MA, USA
| |
Collapse
|
49
|
Mason S. Lactate Shuttles in Neuroenergetics-Homeostasis, Allostasis and Beyond. Front Neurosci 2017; 11:43. [PMID: 28210209 PMCID: PMC5288365 DOI: 10.3389/fnins.2017.00043] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/20/2017] [Indexed: 12/19/2022] Open
Abstract
Understanding brain energy metabolism—neuroenergetics—is becoming increasingly important as it can be identified repeatedly as the source of neurological perturbations. Within the scientific community we are seeing a shift in paradigms from the traditional neurocentric view to that of a more dynamic, integrated one where astrocytes are no longer considered as being just supportive, and activated microglia have a profound influence. Lactate is emerging as the “good guy,” contrasting its classical “bad guy” position in the now superseded medical literature. This review begins with the evolution of the concept of “lactate shuttles”; goes on to the recent shift in ideas regarding normal neuroenergetics (homeostasis)—specifically, the astrocyte–neuron lactate shuttle; and progresses to covering the metabolic implications whereby homeostasis is lost—a state of allostasis, and the function of microglia. The role of lactate, as a substrate and shuttle, is reviewed in light of allostatic stress, and beyond—in an acute state of allostatic stress in terms of physical brain trauma, and reflected upon with respect to persistent stress as allostatic overload—neurodegenerative diseases. Finally, the recently proposed astrocyte–microglia lactate shuttle is discussed in terms of chronic neuroinflammatory infectious diseases, using tuberculous meningitis as an example. The novelty extended by this review is that the directionality of lactate, as shuttles in the brain, in neuropathophysiological states is emerging as crucial in neuroenergetics.
Collapse
Affiliation(s)
- Shayne Mason
- Centre for Human Metabolomics, North-West University Potchefstroom, South Africa
| |
Collapse
|
50
|
Mathias EJ, Plank MJ, David T. A model of neurovascular coupling and the BOLD response: PART I. Comput Methods Biomech Biomed Engin 2016; 20:508-518. [PMID: 27832709 DOI: 10.1080/10255842.2016.1255732] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The mechanisms with which neurons communicate with the vasculature to increase blood flow, termed neurovascular coupling is still unclear primarily due to the complex interactions between many parameters and the difficulty in accessing, monitoring and measuring them in the highly heterogeneous brain. Hence a solid theoretical framework based on existing experimental knowledge is necessary to study the relation between neural activity, the associated vasoactive factors released and their effects on the vasculature. Such a framework should also be related to experimental data so that it can be validated against repetitive experiments and generate verifiable hypothesis. We have developed a mathematical model which describes a signaling mechanism of neurovascular coupling with a model of pyramidal neuron and its corresponding fMRI BOLD response. In the first part of two papers we describe the integration of the neurovascular coupling unit extended to include a complex neuron model, which includes the important Na/K ATPase pump, with a model that provides a BOLD signal taking its input from the cerebral blood flow and the metabolic rate of oxygen consumption. We show that this produces a viable signal in terms of initial dip, positive and negative BOLD signals.
Collapse
Affiliation(s)
- E J Mathias
- a UC HPC , University of Canterbury , Christchurch , New Zealand
| | - M J Plank
- b School of Mathematics and Statistics , University of Canterbury , Christchurch , New Zealand
| | - T David
- a UC HPC , University of Canterbury , Christchurch , New Zealand
| |
Collapse
|