1
|
Li X, Bu F, Zhang M, Li Z, Zhang Y, Chen H, Xue W, Guo R, Qi J, Kim C, Kawabata S, Wang Y, Zhang Q, Li Y, Zhang Y. Enhancing nature's palette through the epigenetic breeding of flower color in chrysanthemum. THE NEW PHYTOLOGIST 2025; 245:2117-2132. [PMID: 39721988 DOI: 10.1111/nph.20347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 11/29/2024] [Indexed: 12/28/2024]
Abstract
Flower color is an important character of ornamental plants and one of the main target traits for variety innovation. We previously identified a CmMYB6 epigenetic allele that affects the flower color in chrysanthemum, and changes in flower color are caused by the DNA methylation level of this gene. However, it is still unknown which DNA methyltransferases are involved in modifying the DNA methylation levels of this gene. Here, we used dead Cas9 (dCas9) together with DNA methyltransferases that methylate cytosine residues in the CHH context to target the CmMYB6 promoter through transient and stable transformation methods. We found that CmDRM2a increased the DNA methylation level of the CmMYB6 promoter, the expression of CmMYB6 decreased and a lighter flower color resulted. By contrast, both CmDRM2b and CmCMT2 enhanced DNA methylation levels of the CmMYB6 promoter, the expression of CmMYB6 increased and a deeper flower color resulted. Furthermore, the regulatory mechanism of DNA methyltransferase in the formation of chrysanthemum flower color was investigated, pointing to a new strategy for silencing or activating CmMYB6 epiallele to regulate anthocyanin synthesis. This lays a solid foundation for regulating flower color in chrysanthemum through epigenetic breeding.
Collapse
Affiliation(s)
- Xueqi Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Fanqi Bu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Man Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Zhuozheng Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Yu Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Haowen Chen
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Wanjie Xue
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Ronghua Guo
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Jingze Qi
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Cholmin Kim
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Saneyuki Kawabata
- Institute for Sustainable Agroecosystem Services, Graduate School of Agriculture and Life Science, The University of Tokyo, Tokyo, 1880002, Japan
| | - Yu Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Qingzhu Zhang
- School of Ecology, Northeast Forestry University, Harbin, 150040, China
| | - Yuhua Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Yang Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| |
Collapse
|
2
|
Pan X, Liu Z, Feng L, Wang C, Liu C, Li A, Yao K, Liao W. The response of DNA methyltransferase and demethylase genes to abiotic stresses in tomato seedling. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109276. [PMID: 39520904 DOI: 10.1016/j.plaphy.2024.109276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
DNA methylation plays an important role in regulating plant growth, development and gene expression. However, less is known about the response of DNA methyltransferase and demethylase genes to various stresses. In this study, the effects of abiotic stresses on DNA methylation gene expression patterns in tomato seedlings were investigated. Results showed that most tomato DNA methyltransferase and demethylase genes contained stress-related elements. The expression of SlDML1 was significantly induced by cadmium (Cd) and sodium chloride (NaCl) stresses. SlDML2 was more sensitive and reached its maximum value under polyethylene (PEG) stress at 24 h. The expression of SlMET3L was repressed to varying degrees under Cd, NaCl and PEG stresses at 48 h. However, 5-aza-2'-deoxycytidine (5-azadC) treatment decreased the Cd and PEG stress tolerance by down-regulating the expression of DNA methyltransferase except for the SlMET3L, and up-regulating the expression levels of SlDML2, SlDML3 and SlDML4, cadmium transporters (SlHMA5, SlCAX3, and SlACC3) and osmoregulators (SlDREB, SlLEA and SlHSP70). Whereas 5-azadC treatment alleviated the salt stress through up-regulating DNA methyltransferase gene expression, and down-regulating the expression level of SlDML1, SlDML3, and SlDML4, SlHKT1, SlNHX1, and SlSOS1. Collectively, 5-azadC impaired Cd and PEG stress tolerance and enhanced salt stress tolerance by regulating the expression of methylation-related and stress-related genes in tomato seedlings. These results may provide useful information for further analysing function and evolution of DNA methylation methyltransferase and demethylase genes in tomato under stress conditions.
Collapse
Affiliation(s)
- Xuejuan Pan
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zesheng Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Li Feng
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Chunlei Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Chan Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Ailing Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Kangding Yao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
3
|
Zhang K, Feng X, Liu Y, Yang Y, Hao X, Li D, Wang X, Wang L. Integrative transcriptome and whole-genome bisulfite sequencing analyses of a temperature-sensitive albino tea plant cultivar. PHYSIOLOGIA PLANTARUM 2023; 175:e14064. [PMID: 38148243 DOI: 10.1111/ppl.14064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 12/28/2023]
Abstract
Green tea made from albino buds and leaves has a strong umami taste and aroma. The cultivar 'Zhonghuang 2' (ZH2, Camellia sinensis) is a natural mutant with young shoots that are yellow in spring and green or yellow-green in summer. However, the mechanism of leaf color change remains unclear. Here, we found that young shoots of ZH2 were yellow at low temperature (LT) and green at high temperature (HT), indicating that ZH2 is a temperature-sensitive cultivar. Transmission electron microscopy analysis showed that the grana in the chloroplasts of young shoots grown at LT were poorly stacked, which caused a lack of photoreactions and chlorophyll. RNA-seq results showed 1279 genes differentially expressed in the young shoots grown at LT compared with those at HT, including genes related to cytochrome synthesis, chloroplast development, photosynthesis, and DNA methylation. A whole-genome bisulfite sequencing assay revealed that the dynamics of DNA methylation levels in the CG, CHG, and CHH contexts decreased under LT, and the change was most obvious in the CHH context. Furthermore, 72 genes showed significant changes in both expression and DNA methylation levels, and most of them were related to cytochrome synthesis, chloroplast development, photosynthesis, transcription factors, and signaling pathways. These results demonstrate that DNA methylation is involved in the LT-regulated albino processes of ZH2. Changes in DNA methylation levels were associated with changes in gene expression levels, affecting the structure and function of chloroplasts, which may have a phenotypic impact on shoot and leaf color.
Collapse
Affiliation(s)
- Kexin Zhang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs of the People's Republic of China/National Center for Tea Improvement/Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Xia Feng
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs of the People's Republic of China/National Center for Tea Improvement/Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Ying Liu
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs of the People's Republic of China/National Center for Tea Improvement/Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Yajun Yang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs of the People's Republic of China/National Center for Tea Improvement/Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Xinyuan Hao
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs of the People's Republic of China/National Center for Tea Improvement/Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya, Hainan, China
| | - Dongliang Li
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya, Hainan, China
| | - Xinchao Wang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs of the People's Republic of China/National Center for Tea Improvement/Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya, Hainan, China
| | - Lu Wang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs of the People's Republic of China/National Center for Tea Improvement/Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya, Hainan, China
| |
Collapse
|
4
|
Wang Q, Qu Y, Yu Y, Mao X, Fu X. Genome-wide identification and comparative analysis of DNA methyltransferase and demethylase gene families in two ploidy Cyclocarya paliurus and their potential function in heterodichogamy. BMC Genomics 2023; 24:287. [PMID: 37248459 DOI: 10.1186/s12864-023-09383-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/16/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND DNA methylation is one of the most abundant epigenetic modifications, which plays important roles in flower development, sex differentiation, and regulation of flowering time. Its pattern is affected by cytosine-5 DNA methyltransferase (C5-MTase) and DNA demethylase (dMTase). At present, there are no reports on C5-MTase and dMTase genes in heterodichogamous Cyclocarya paliurus. RESULTS In this study, 6 CpC5-MTase and 3 CpdMTase genes were identified in diploid (2n = 2 × = 32) C. paliurus, while 20 CpC5-MTase and 13 CpdMTase genes were identified in autotetraploid (2n = 4 × = 64). 80% of identified genes maintained relatively fixed positions on chromosomes during polyploidization. In addition, we found that some DRM subfamily members didn't contain the UBA domain. The transcript abundance of CpC5-MTase and CpdMTase in male and female flowers of two morphs (protandry and protogyny) from diploidy was analyzed. Results showed that all genes were significantly up-regulated at the stage of floral bud break (S2), but significantly down-regulated at the stage of flower maturation (S4). At S2, some CpC5-MTase genes showed higher expression levels in PG-M than in PG-F, whereas some CpdMTase genes showed higher expression levels in PA-M than in PA-F. In addition, these genes were significantly associated with gibberellin synthesis-related genes (e.g. DELLA and GID1), suggesting that DNA methylation may play a role in the asynchronous floral development process through gibberellin signal. CONCLUSIONS These results broaden our understanding of the CpC5-MTase and CpdMTase genes in diploid and autotetraploid C. paliurus, and provide a novel insight into regulatory mechanisms of DNA methylation in heterodichogamy.
Collapse
Affiliation(s)
- Qian Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Yinquan Qu
- Fishery College, Zhejiang Ocean University, Zhoushan, 316022, Zhejiang, China
| | - Yanhao Yu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Xia Mao
- Jiangsu Vocational College of Agriculture and Forestry, Zhenjiang, 212400, Jiangsu, China
| | - Xiangxiang Fu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
5
|
The epigenetic regulatory mechanism of PIWI/piRNAs in human cancers. Mol Cancer 2023; 22:45. [PMID: 36882835 PMCID: PMC9990219 DOI: 10.1186/s12943-023-01749-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 02/16/2023] [Indexed: 03/09/2023] Open
Abstract
PIWI proteins have a strong correlation with PIWI-interacting RNAs (piRNAs), which are significant in development and reproduction of organisms. Recently, emerging evidences have indicated that apart from the reproductive function, PIWI/piRNAs with abnormal expression, also involve greatly in varieties of human cancers. Moreover, human PIWI proteins are usually expressed only in germ cells and hardly in somatic cells, so the abnormal expression of PIWI proteins in different types of cancer offer a promising opportunity for precision medicine. In this review, we discussed current researches about the biogenesis of piRNA, its epigenetic regulatory mechanisms in human cancers, such as N6-methyladenosine (m6A) methylation, histone modifications, DNA methylation and RNA interference, providing novel insights into the markers for clinical diagnosis, treatment and prognosis in human cancers.
Collapse
|
6
|
Akinmusola RY, Wilkins CA, Doughty J. DDM1-Mediated TE Silencing in Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:437. [PMID: 36771522 PMCID: PMC9919755 DOI: 10.3390/plants12030437] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
Epigenetic modifications are indispensable for regulating gene bodies and TE silencing. DECREASE IN DNA METHYLATION 1 (DDM1) is a chromatin remodeller involved in histone modifications and DNA methylation. Apart from maintaining the epigenome, DDM1 also maintains key plant traits such as flowering time and heterosis. The role of DDM1 in epigenetic regulation is best characterised in plants, especially arabidopsis, rice, maize and tomato. The epigenetic changes induced by DDM1 establish the stable inheritance of many plant traits for at least eight generations, yet DDM1 does not methylate protein-coding genes. The DDM1 TE silencing mechanism is distinct and has evolved independently of other silencing pathways. Unlike the RNA-directed DNA Methylation (RdDM) pathway, DDM1 does not depend on siRNAs to enforce the heterochromatic state of TEs. Here, we review DDM1 TE silencing activity in the RdDM and non-RdDM contexts. The DDM1 TE silencing machinery is strongly associated with the histone linker H1 and histone H2A.W. While the linker histone H1 excludes the RdDM factors from methylating the heterochromatin, the histone H2A.W variant prevents TE mobility. The DDM1-H2A.W strategy alone silences nearly all the mobile TEs in the arabidopsis genome. Thus, the DDM1-directed TE silencing essentially preserves heterochromatic features and abolishes mobile threats to genome stability.
Collapse
|
7
|
Bennett M, Hawk TE, Lopes-Caitar VS, Adams N, Rice JH, Hewezi T. Establishment and maintenance of DNA methylation in nematode feeding sites. FRONTIERS IN PLANT SCIENCE 2023; 13:1111623. [PMID: 36704169 PMCID: PMC9873351 DOI: 10.3389/fpls.2022.1111623] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 12/07/2022] [Indexed: 06/18/2023]
Abstract
A growing body of evidence indicates that epigenetic mechanisms, particularly DNA methylation, play key regulatory roles in plant-nematode interactions. Nevertheless, the transcriptional activity of key genes mediating DNA methylation and active demethylation in the nematode feeding sites remains largely unknown. Here, we profiled the promoter activity of 12 genes involved in maintenance and de novo establishment of DNA methylation and active demethylation in the syncytia and galls induced respectively by the cyst nematode Heterodera schachtii and the root-knot nematode Meloidogyne incognita in Arabidopsis roots. The promoter activity assays revealed that expression of the CG-context methyltransferases is restricted to feeding site formation and development stages. Chromomethylase1 (CMT1), CMT2, and CMT3 and Domains Rearranged Methyltransferase2 (DRM2) and DRM3, which mediate non-CG methylation, showed similar and distinct expression patterns in the syncytia and galls at various time points. Notably, the promoters of various DNA demethylases were more active in galls as compared with the syncytia, particularly during the early stage of infection. Mutants impaired in CG or CHH methylation similarly enhanced plant susceptibility to H. schachtii and M. incognita, whereas mutants impaired in CHG methylation reduced plant susceptibility only to M. incognita. Interestingly, hypermethylated mutants defective in active DNA demethylation exhibited contrasting responses to infection by H. schachtii and M. incognita, a finding most likely associated with differential regulation of defense-related genes in these mutants upon nematode infection. Our results point to methylation-dependent mechanisms regulating plant responses to infection by cyst and root-knot nematodes.
Collapse
|
8
|
Valero-Rubira I, Castillo AM, Burrell MÁ, Vallés MP. Microspore embryogenesis induction by mannitol and TSA results in a complex regulation of epigenetic dynamics and gene expression in bread wheat. FRONTIERS IN PLANT SCIENCE 2023; 13:1058421. [PMID: 36699843 PMCID: PMC9868772 DOI: 10.3389/fpls.2022.1058421] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Reprogramming of microspores development towards embryogenesis mediated by stress treatment constitutes the basis of doubled haploid production. Recently, compounds that alter histone post-translational modifications (PTMs) have been reported to enhance microspore embryogenesis (ME), by altering histones acetylation or methylation. However, epigenetic mechanisms underlying ME induction efficiency are poorly understood. In this study, the epigenetic dynamics and the expression of genes associated with histone PTMs and ME induction were studied in two bread wheat cultivars with different ME response. Microspores isolated at 0, 3 and 5 days, treated with 0.7M mannitol (MAN) and 0.7M mannitol plus 0.4µM trichostatin A (TSA), which induced ME more efficiently, were analyzed. An additional control of gametophytic development was included. Microspores epigenetic state at the onset of ME induction was distinctive between cultivars by the ratio of H3 variants and their acetylated forms, the localization and percentage of labeled microspores with H3K9ac, H4K5ac, H4K16ac, H3K9me2 and H3K27me3, and the expression of genes related to pollen development. These results indicated that microspores of the high responding cultivar could be at a less advanced stage in pollen development. MAN and TSA resulted in a hyperacetylation of H3.2, with a greater effect of TSA. Histone PTMs were differentially affected by both treatments, with acetylation being most concerned. The effect of TSA was observed in the H4K5ac localization pattern at 3dT in the mid-low responding cultivar. Three gene networks linked to ME response were identified. TaHDT1, TaHAG2, TaYAO, TaNFD6-A, TabZIPF1 and TaAGO802-B, associated with pollen development, were down-regulated. TaHDA15, TaHAG3, TaHAM, TaYUC11D, Ta-2B-LBD16 TaMS1 and TaDRM3 constituted a network implicated in morphological changes by auxin signaling and cell wall modification up-regulated at 3dT. The last network included TaHDA18, TaHAC1, TaHAC4, TaABI5, TaATG18fD, TaSDG1a-7A and was related to ABA and ethylene hormone signaling pathways, DNA methylation and autophagy processes, reaching the highest expression at 5dT. The results indicated that TSA mainly modified the regulation of genes related to pollen and auxin signaling. This study represents a breakthrough in identifying the epigenetic dynamics and the molecular mechanisms governing ME induction efficiency, with relevance to recalcitrant wheat genotypes and other crops.
Collapse
Affiliation(s)
- Isabel Valero-Rubira
- Departamento de Genética y Producción Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (EEAD-CSIC), Zaragoza, Spain
| | - Ana María Castillo
- Departamento de Genética y Producción Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (EEAD-CSIC), Zaragoza, Spain
| | - María Ángela Burrell
- Departamento de Patología, Anatomía y Fisiología, Facultad de Ciencias, Universidad de Navarra, Pamplona, Spain
| | - Maria Pilar Vallés
- Departamento de Genética y Producción Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (EEAD-CSIC), Zaragoza, Spain
| |
Collapse
|
9
|
Xiang R, Ahmad B, Liang C, Shi X, Yang L, Du G, Wang L. Systematic genome-wide and expression analysis of RNA-directed DNA methylation pathway genes in grapes predicts their involvement in multiple biological processes. FRONTIERS IN PLANT SCIENCE 2022; 13:1089392. [PMID: 36570893 PMCID: PMC9780290 DOI: 10.3389/fpls.2022.1089392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
RNA-directed DNA methylation (RdDM) is an important epigenetic pathway in plants and mediates transcriptional silencing by siRNAs. Different gene families have role in the regulation of the RdDM pathway and there is a lack of information about these gene families in the grapes (Vitis vinifera L.). Here, we mentioned the genome-wide identification, bioinformatics analysis, evolutionary history, and expression profiling of VvRdDM pathway genes against various stresses, hormonal treatments as well as in different organs. Sixty VvRdDM genes belonging to fourteen different families were identified. All the genes were unevenly distributed and chromosome 4 contained the highest number of genes (7). Most of the genes showed similar exon-intron and motif distribution patterns within the same subfamilies. Out of 14 families, only members of 4 families underwent duplication events during the evolutionary process and 50% of members of the AGO family are the result of duplication events. Based on Ka/Ks ratio all duplicated gene pairs have a negative mode of selection. VvRdDM pathway genes showed differential spatiotemporal expression patterns against different hormone and stress treatments. Further, with multiple transcriptome analysis, some VvRdDM genes showed a broad spectrum of high expression in different organs at various stages, and VvRdDM genes also displayed different expression in seeded and seedless cultivars during different phases of seed development. This proposed that VvRdDM genes may play multiple roles in grape growth and development, especially in seed development. qRT-PCR analysis of selected genes further verified the critical roles of RdDM genes in multiple biological processes, especially in seed development/ovule abortion i.e., VvIDN2a, VvDRD1a, VvRDR1a, and VvRDR6. Our study provides detailed information about VvRdDM genes in perspective of gene structure and evolution, as well as expression pattern against different stress, hormones and in different plants parts. It provides new candidate gene resources for further functional characterization and molecular breeding of grapes.
Collapse
Affiliation(s)
- Rui Xiang
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Bilal Ahmad
- College of Horticulture, Hebei Agricultural University, Baoding, China
- Department of Horticulture, Muhammad Nawaz Sharif (MNS)-University of Agriculture Multan, Multan, Pakistan
| | - Chen Liang
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Xiaoxin Shi
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Lili Yang
- Shijiazhuang Fruit Research Institute, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, China
| | - Guoqiang Du
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Li Wang
- College of Horticulture, Hebei Agricultural University, Baoding, China
| |
Collapse
|
10
|
Zhang Z, Zeng W, Zhang W, Li J, Kong D, Zhang L, Wang R, Peng F, Kong Z, Ke Y, Zhang H, Kim C, Zhang H, Botella JR, Zhu JK, Miki D. Insights into the molecular mechanisms of CRISPR/Cas9-mediated gene targeting at multiple loci in Arabidopsis. PLANT PHYSIOLOGY 2022; 190:2203-2216. [PMID: 36106983 PMCID: PMC9706422 DOI: 10.1093/plphys/kiac431] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Homologous recombination-mediated gene targeting (GT) enables precise sequence knockin or sequence replacement, and thus is a powerful tool for heritable precision genome engineering. We recently established a clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeats-associated protein 9 (CRISPR/Cas9)-mediated approach for heritable GT in Arabidopsis (Arabidopsis thaliana), but its broad utility was not tested, and the underlying molecular mechanism was unclear. Here, we achieved precise GT at 14 out of 27 tested endogenous target loci using the sequential transformation approach and obtained vector-free GT plants by backcrossing. Thus, the sequential transformation GT method provides a broadly applicable technology for precise genome manipulation. We show that our approach generates heritable GT in the egg cell or early embryo of T1 Arabidopsis plants. Analysis of imprecise GT events suggested that single-stranded transfer DNA (T-DNA)/VirD2 complexes produced during the Agrobacterium (Agrobacterium tumefaciens) transformation process may serve as the donor templates for homologous recombination-mediated repair in the GT process. This study provides new insights into the molecular mechanisms of CRISPR/Cas9-mediated GT in Arabidopsis.
Collapse
Affiliation(s)
- Zhengjing Zhang
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wenjie Zeng
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenxin Zhang
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Li
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dali Kong
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Zhang
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Wang
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangnan Peng
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhe Kong
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongping Ke
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heng Zhang
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chanhong Kim
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Huiming Zhang
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jose Ramón Botella
- School of Agriculture and Food Sciences, University of Queensland, Brisbane 4072, Australia
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Institute of Advanced Biotechnology and School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
- Center for Advanced Bioindustry Technologies, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Daisuke Miki
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
11
|
Structure and Mechanism of Plant DNA Methyltransferases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:137-157. [PMID: 36350509 PMCID: PMC10112988 DOI: 10.1007/978-3-031-11454-0_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
DNA methylation is an important epigenetic mark conserved in eukaryotes from fungi to animals and plants, where it plays a crucial role in regulating gene expression and transposon silencing. Once the methylation mark is established by de novo DNA methyltransferases, specific regulatory mechanisms are required to maintain the methylation state during chromatin replication, both during meiosis and mitosis. Plant DNA methylation is found in three contexts; CG, CHG, and CHH (H = A, T, C), which are established and maintained by a unique set of DNA methyltransferases and are regulated by plant-specific pathways. DNA methylation in plants is often associated with other epigenetic modifications, such as noncoding RNA and histone modifications. This chapter focuses on the structure, function, and regulatory mechanism of plant DNA methyltransferases and their crosstalk with other epigenetic pathways.
Collapse
|
12
|
Galanti D, Ramos-Cruz D, Nunn A, Rodríguez-Arévalo I, Scheepens JF, Becker C, Bossdorf O. Genetic and environmental drivers of large-scale epigenetic variation in Thlaspi arvense. PLoS Genet 2022; 18:e1010452. [PMID: 36223399 PMCID: PMC9591053 DOI: 10.1371/journal.pgen.1010452] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 10/24/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022] Open
Abstract
Natural plant populations often harbour substantial heritable variation in DNA methylation. However, a thorough understanding of the genetic and environmental drivers of this epigenetic variation requires large-scale and high-resolution data, which currently exist only for a few model species. Here, we studied 207 lines of the annual weed Thlaspi arvense (field pennycress), collected across a large latitudinal gradient in Europe and propagated in a common environment. By screening for variation in DNA sequence and DNA methylation using whole-genome (bisulfite) sequencing, we found significant epigenetic population structure across Europe. Average levels of DNA methylation were strongly context-dependent, with highest DNA methylation in CG context, particularly in transposable elements and in intergenic regions. Residual DNA methylation variation within all contexts was associated with genetic variants, which often co-localized with annotated methylation machinery genes but also with new candidates. Variation in DNA methylation was also significantly associated with climate of origin, with methylation levels being lower in colder regions and in more variable climates. Finally, we used variance decomposition to assess genetic versus environmental associations with differentially methylated regions (DMRs). We found that while genetic variation was generally the strongest predictor of DMRs, the strength of environmental associations increased from CG to CHG and CHH, with climate-of-origin as the strongest predictor in about one third of the CHH DMRs. In summary, our data show that natural epigenetic variation in Thlaspi arvense is significantly associated with both DNA sequence and environment of origin, and that the relative importance of the two factors strongly depends on the sequence context of DNA methylation. T. arvense is an emerging biofuel and winter cover crop; our results may hence be relevant for breeding efforts and agricultural practices in the context of rapidly changing environmental conditions.
Collapse
Affiliation(s)
- Dario Galanti
- Plant Evolutionary Ecology, Institute of Evolution and Ecology, University of Tübingen, Tübingen, Germany
| | - Daniela Ramos-Cruz
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
- LMU Biocenter, Faculty of Biology, Ludwig Maximilians University Munich, 82152 Martinsried, Germany
| | - Adam Nunn
- ecSeq Bioinformatics GmbH, Leipzig, Germany
- Institute for Computer Science, University of Leipzig, Leipzig, Germany
| | - Isaac Rodríguez-Arévalo
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
- LMU Biocenter, Faculty of Biology, Ludwig Maximilians University Munich, 82152 Martinsried, Germany
| | - J. F. Scheepens
- Plant Evolutionary Ecology, Institute for Ecology, Evolution and Diversity, Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Claude Becker
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
- LMU Biocenter, Faculty of Biology, Ludwig Maximilians University Munich, 82152 Martinsried, Germany
| | - Oliver Bossdorf
- Plant Evolutionary Ecology, Institute of Evolution and Ecology, University of Tübingen, Tübingen, Germany
- * E-mail:
| |
Collapse
|
13
|
Pecrix Y, Sallet E, Moreau S, Bouchez O, Carrere S, Gouzy J, Jardinaud MF, Gamas P. DNA demethylation and hypermethylation are both required for late nodule development in Medicago. NATURE PLANTS 2022; 8:741-749. [PMID: 35817824 DOI: 10.1038/s41477-022-01188-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Plant epigenetic regulations are involved in transposable element silencing, developmental processes and responses to the environment1-7. They often involve modifications of DNA methylation, particularly through the DEMETER (DME) demethylase family and RNA-dependent DNA methylation (RdDM)8. Root nodules host rhizobia that can fix atmospheric nitrogen for the plant's benefit in nitrogen-poor soils. The development of indeterminate nodules, as in Medicago truncatula, involves successive waves of gene activation9-12, control of which raises interesting questions. Using laser capture microdissection (LCM) coupled to RNA-sequencing (SYMbiMICS data11), we previously identified 4,309 genes (termed NDD) activated in the nodule differentiation and nitrogen fixation zones, 36% of which belong to co-regulated genomic regions dubbed symbiotic islands13. We found MtDME to be upregulated in the differentiation zone and required for nodule development, and we identified 474 differentially methylated regions hypomethylated in the nodule by analysing ~2% of the genome4. Here, we coupled LCM and whole-genome bisulfite sequencing for a comprehensive view of DNA methylation, integrated with gene expression at the tissue level. Furthermore, using CRISPR-Cas9 mutagenesis of MtDRM2, we showed the importance of RdDM for CHH hypermethylation and nodule development. We thus proposed a model of DNA methylation dynamics during nodule development.
Collapse
Affiliation(s)
- Y Pecrix
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
- CIRAD, UMR PVBMT, Saint-Pierre, La Réunion, France
| | - E Sallet
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - S Moreau
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - O Bouchez
- INRAE, US1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, France
| | - S Carrere
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - J Gouzy
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - M-F Jardinaud
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - P Gamas
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France.
| |
Collapse
|
14
|
Read A, Weiss T, Crisp PA, Liang Z, Noshay J, Menard CC, Wang C, Song M, Hirsch CN, Springer NM, Zhang F. Genome-wide loss of CHH methylation with limited transcriptome changes in Setaria viridis DOMAINS REARRANGED METHYLTRANSFERASE (DRM) mutants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:103-116. [PMID: 35436373 PMCID: PMC9541237 DOI: 10.1111/tpj.15781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/12/2022] [Indexed: 05/17/2023]
Abstract
The DOMAINS REARRANGED METHYLTRANSFERASEs (DRMs) are crucial for RNA-directed DNA methylation (RdDM) in plant species. Setaria viridis is a model monocot species with a relatively compact genome that has limited transposable element (TE) content. CRISPR-based genome editing approaches were used to create loss-of-function alleles for the two putative functional DRM genes in S. viridis to probe the role of RdDM. Double mutant (drm1ab) plants exhibit some morphological abnormalities but are fully viable. Whole-genome methylation profiling provided evidence for the widespread loss of methylation in CHH sequence contexts, particularly in regions with high CHH methylation in wild-type plants. Evidence was also found for the locus-specific loss of CG and CHG methylation, even in some regions that lack CHH methylation. Transcriptome profiling identified genes with altered expression in the drm1ab mutants. However, the majority of genes with high levels of CHH methylation directly surrounding the transcription start site or in nearby promoter regions in wild-type plants do not have altered expression in the drm1ab mutant, even when this methylation is lost, suggesting limited regulation of gene expression by RdDM. Detailed analysis of the expression of TEs identified several transposons that are transcriptionally activated in drm1ab mutants. These transposons are likely to require active RdDM for the maintenance of transcriptional repression.
Collapse
Affiliation(s)
- Andrew Read
- Department of Plant and Microbial BiologyUniversity of MinnesotaSaint PaulMinnesota55108USA
| | - Trevor Weiss
- Department of Plant and Microbial BiologyUniversity of MinnesotaSaint PaulMinnesota55108USA
- Center for Precision Plant GenomicsUniversity of MinnesotaSaint PaulMinnesota55108USA
| | - Peter A. Crisp
- Department of Plant and Microbial BiologyUniversity of MinnesotaSaint PaulMinnesota55108USA
- School of Agriculture and Food SciencesThe University of QueenslandBrisbaneQueensland4072Australia
| | - Zhikai Liang
- Department of Plant and Microbial BiologyUniversity of MinnesotaSaint PaulMinnesota55108USA
| | - Jaclyn Noshay
- Department of Plant and Microbial BiologyUniversity of MinnesotaSaint PaulMinnesota55108USA
| | - Claire C. Menard
- Department of Agronomy and Plant GeneticsUniversity of MinnesotaSaint PaulMinnesota55108USA
| | - Chunfang Wang
- Department of Plant and Microbial BiologyUniversity of MinnesotaSaint PaulMinnesota55108USA
- Center for Precision Plant GenomicsUniversity of MinnesotaSaint PaulMinnesota55108USA
| | - Meredith Song
- Department of Genetics, Cell Biology and DevelopmentUniversity of MinnesotaMinneapolisMinnesota55108USA
| | - Candice N. Hirsch
- Department of Agronomy and Plant GeneticsUniversity of MinnesotaSaint PaulMinnesota55108USA
| | - Nathan M. Springer
- Department of Plant and Microbial BiologyUniversity of MinnesotaSaint PaulMinnesota55108USA
- Center for Precision Plant GenomicsUniversity of MinnesotaSaint PaulMinnesota55108USA
| | - Feng Zhang
- Department of Plant and Microbial BiologyUniversity of MinnesotaSaint PaulMinnesota55108USA
- Center for Precision Plant GenomicsUniversity of MinnesotaSaint PaulMinnesota55108USA
| |
Collapse
|
15
|
Viviani A, Spada M, Giordani T, Fambrini M, Pugliesi C. Origin of the genome editing systems: application for crop improvement. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01142-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Decoding the sorghum methylome: understanding epigenetic contributions to agronomic traits. Biochem Soc Trans 2022; 50:583-596. [PMID: 35212360 PMCID: PMC9022969 DOI: 10.1042/bst20210908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/01/2022] [Accepted: 02/14/2022] [Indexed: 12/18/2022]
Abstract
DNA methylation is a chromatin modification that plays an essential role in regulating gene expression and genome stability and it is typically associated with gene silencing and heterochromatin. Owing to its heritability, alterations in the patterns of DNA methylation have the potential to provide for epigenetic inheritance of traits. Contemporary epigenomic technologies provide information beyond sequence variation and could supply alternative sources of trait variation for improvement in crops such as sorghum. Yet, compared with other species such as maize and rice, the sorghum DNA methylome is far less well understood. The distribution of CG, CHG, and CHH methylation in the genome is different compared with other species. CG and CHG methylation levels peak around centromeric segments in the sorghum genome and are far more depleted in the gene dense chromosome arms. The genes regulating DNA methylation in sorghum are also yet to be functionally characterised; better understanding of their identity and functional analysis of DNA methylation machinery mutants in diverse genotypes will be important to better characterise the sorghum methylome. Here, we catalogue homologous genes encoding methylation regulatory enzymes in sorghum based on genes in Arabidopsis, maize, and rice. Discovering variation in the methylome may uncover epialleles that provide extra information to explain trait variation and has the potential to be applied in epigenome-wide association studies or genomic prediction. DNA methylation can also improve genome annotations and discover regulatory elements underlying traits. Thus, improving our knowledge of the sorghum methylome can enhance our understanding of the molecular basis of traits and may be useful to improve sorghum performance.
Collapse
|
17
|
Multi-omics data integration reveals link between epigenetic modifications and gene expression in sugar beet (Beta vulgaris subsp. vulgaris) in response to cold. BMC Genomics 2022; 23:144. [PMID: 35176993 PMCID: PMC8855596 DOI: 10.1186/s12864-022-08312-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/13/2022] [Indexed: 12/19/2022] Open
Abstract
Background DNA methylation is thought to influence the expression of genes, especially in response to changing environmental conditions and developmental changes. Sugar beet (Beta vulgaris ssp. vulgaris), and other biennial or perennial plants are inevitably exposed to fluctuating temperatures throughout their lifecycle and might even require such stimulus to acquire floral competence. Therefore, plants such as beets, need to fine-tune their epigenetic makeup to ensure phenotypic plasticity towards changing environmental conditions while at the same time steering essential developmental processes. Different crop species may show opposing reactions towards the same abiotic stress, or, vice versa, identical species may respond differently depending on the specific kind of stress. Results In this study, we investigated common effects of cold treatment on genome-wide DNA methylation and gene expression of two Beta vulgaris accessions via multi-omics data analysis. Cold exposure resulted in a pronounced reduction of DNA methylation levels, which particularly affected methylation in CHH context (and to a lesser extent CHG) and was accompanied by transcriptional downregulation of the chromomethyltransferase CMT2 and strong upregulation of several genes mediating active DNA demethylation. Conclusion Integration of methylomic and transcriptomic data revealed that, rather than methylation having directly influenced expression, epigenetic modifications correlated with changes in expression of known players involved in DNA (de)methylation. In particular, cold triggered upregulation of genes putatively contributing to DNA demethylation via the ROS1 pathway. Our observations suggest that these transcriptional responses precede the cold-induced global DNA-hypomethylation in non-CpG, preparing beets for additional transcriptional alterations necessary for adapting to upcoming environmental changes. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08312-2.
Collapse
|
18
|
Viviani A, Ventimiglia M, Fambrini M, Vangelisti A, Mascagni F, Pugliesi C, Usai G. Impact of transposable elements on the evolution of complex living systems and their epigenetic control. Biosystems 2021; 210:104566. [PMID: 34718084 DOI: 10.1016/j.biosystems.2021.104566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 10/20/2022]
Abstract
Transposable elements (TEs) contribute to genomic innovations, as well as genome instability, across a wide variety of species. Popular designations such as 'selfish DNA' and 'junk DNA,' common in the 1980s, may be either inaccurate or misleading, while a more enlightened view of the TE-host relationship covers a range from parasitism to mutualism. Both plant and animal hosts have evolved epigenetic mechanisms to reduce the impact of TEs, both by directly silencing them and by reducing their ability to transpose in the genome. However, TEs have also been co-opted by both plant and animal genomes to perform a variety of physiological functions, ranging from TE-derived proteins acting directly in normal biological functions to innovations in transcription factor activity and also influencing gene expression. Their presence, in fact, can affect a range of features at genome, phenotype, and population levels. The impact TEs have had on evolution is multifaceted, and many aspects still remain unexplored. In this review, the epigenetic control of TEs is contextualized according to the evolution of complex living systems.
Collapse
Affiliation(s)
- Ambra Viviani
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124, Pisa, Italy
| | - Maria Ventimiglia
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124, Pisa, Italy
| | - Marco Fambrini
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124, Pisa, Italy
| | - Alberto Vangelisti
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124, Pisa, Italy
| | - Flavia Mascagni
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124, Pisa, Italy
| | - Claudio Pugliesi
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124, Pisa, Italy.
| | - Gabriele Usai
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124, Pisa, Italy
| |
Collapse
|
19
|
Sigman MJ, Panda K, Kirchner R, McLain LL, Payne H, Peasari JR, Husbands AY, Slotkin RK, McCue AD. An siRNA-guided ARGONAUTE protein directs RNA polymerase V to initiate DNA methylation. NATURE PLANTS 2021; 7:1461-1474. [PMID: 34750500 PMCID: PMC8592841 DOI: 10.1038/s41477-021-01008-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 09/09/2021] [Indexed: 05/03/2023]
Abstract
In mammals and plants, cytosine DNA methylation is essential for the epigenetic repression of transposable elements and foreign DNA. In plants, DNA methylation is guided by small interfering RNAs (siRNAs) in a self-reinforcing cycle termed RNA-directed DNA methylation (RdDM). RdDM requires the specialized RNA polymerase V (Pol V), and the key unanswered question is how Pol V is first recruited to new target sites without pre-existing DNA methylation. We find that Pol V follows and is dependent on the recruitment of an AGO4-clade ARGONAUTE protein, and any siRNA can guide the ARGONAUTE protein to the new target locus independent of pre-existing DNA methylation. These findings reject long-standing models of RdDM initiation and instead demonstrate that siRNA-guided ARGONAUTE targeting is necessary, sufficient and first to target Pol V recruitment and trigger the cycle of RdDM at a transcribed target locus, thereby establishing epigenetic silencing.
Collapse
Affiliation(s)
- Meredith J Sigman
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - Kaushik Panda
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - Rachel Kirchner
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
- Medical Scientist Training Program, University of Wisconsin, Madison, WI, USA
| | | | - Hayden Payne
- Donald Danforth Plant Science Center, St. Louis, MO, USA
- Graduate Program in the School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| | - John Reddy Peasari
- Donald Danforth Plant Science Center, St. Louis, MO, USA
- Bioinformatics and Computational Biology Program, Saint Louis University, St. Louis, MO, USA
| | - Aman Y Husbands
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - R Keith Slotkin
- Donald Danforth Plant Science Center, St. Louis, MO, USA.
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA.
| | - Andrea D McCue
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| |
Collapse
|
20
|
Fei Y, Pyott DE, Molnar A. Temperature modulates virus-induced transcriptional gene silencing via secondary small RNAs. THE NEW PHYTOLOGIST 2021; 232:356-371. [PMID: 34185326 DOI: 10.1111/nph.17586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/17/2021] [Indexed: 05/08/2023]
Abstract
Virus-induced gene silencing (VIGS) can be harnessed to sequence-specifically degrade host transcripts and induce heritable epigenetic modifications referred to as virus-induced post-transcriptional gene silencing (ViPTGS) and virus-induced transcriptional gene silencing (ViTGS), respectively. Both ViPTGS and ViTGS enable manipulation of endogenous gene expression without the need for transgenesis. Although VIGS has been widely used in many plant species, it is not always uniform or highly efficient. The efficiency of VIGS is affected by developmental, physiological and environmental factors. Here, we use recombinant Tobacco rattle viruses (TRV) to study the effect of temperature on ViPTGS and ViTGS using GFP as a reporter gene of silencing in N. benthamiana 16c plants. We found that unlike ViPTGS, ViTGS was impaired at high temperature. Using a novel mismatch-small interfering RNA (siRNA) tool, which precisely distinguishes virus-derived (primary) from target-generated (secondary) siRNAs, we demonstrated that the lack of secondary siRNA production/amplification was responsible for inefficient ViTGS at 29°C. Moreover, inefficient ViTGS at 29°C inhibited the transmission of epigenetic gene silencing to the subsequent generations. Our finding contributes to understanding the impact of environmental conditions on primary and secondary siRNA production and may pave the way to design/optimize ViTGS for transgene-free crop improvement.
Collapse
Affiliation(s)
- Yue Fei
- Institute of Molecular Plant Sciences, University of Edinburgh, Max Born Crescent, Edinburgh, EH9 3BF, UK
| | - Douglas E Pyott
- Institute of Molecular Plant Sciences, University of Edinburgh, Max Born Crescent, Edinburgh, EH9 3BF, UK
| | - Attila Molnar
- Institute of Molecular Plant Sciences, University of Edinburgh, Max Born Crescent, Edinburgh, EH9 3BF, UK
| |
Collapse
|
21
|
Hu D, Yu Y, Wang C, Long Y, Liu Y, Feng L, Lu D, Liu B, Jia J, Xia R, Du J, Zhong X, Gong L, Wang K, Zhai J. Multiplex CRISPR-Cas9 editing of DNA methyltransferases in rice uncovers a class of non-CG methylation specific for GC-rich regions. THE PLANT CELL 2021; 33:2950-2964. [PMID: 34117872 PMCID: PMC8462809 DOI: 10.1093/plcell/koab162] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/04/2021] [Indexed: 05/28/2023]
Abstract
DNA methylation in the non-CG context is widespread in the plant kingdom and abundant in mammalian tissues such as the brain and pluripotent cells. Non-CG methylation in Arabidopsis thaliana is coordinately regulated by DOMAINS REARRANGED METHYLTRANSFERASE (DRM) and CHROMOMETHYLASE (CMT) proteins but has yet to be systematically studied in major crops due to difficulties in obtaining genetic materials. Here, utilizing the highly efficient multiplex CRISPR-Cas9 genome-editing system, we created single- and multiple-knockout mutants for all the nine DNA methyltransferases in rice (Oryza sativa) and profiled their whole-genome methylation status at single-nucleotide resolution. Surprisingly, the simultaneous loss of DRM2, CHROMOMETHYLASE3 (CMT2), and CMT3 functions, which completely erases all non-CG methylation in Arabidopsis, only partially reduced it in rice. The regions that remained heavily methylated in non-CG contexts in the rice Os-dcc (Osdrm2/cmt2/cmt3a) triple mutant had high GC contents. Furthermore, the residual non-CG methylation in the Os-dcc mutant was eliminated in the Os-ddccc (Osdrm2/drm3/cmt2/cmt3a/cmt3b) quintuple mutant but retained in the Os-ddcc (Osdrm2/drm3/cmt2/cmt3a) quadruple mutant, demonstrating that OsCMT3b maintains non-CG methylation in the absence of other major methyltransferases. Our results showed that OsCMT3b is subfunctionalized to accommodate a distinct cluster of non-CG-methylated sites at highly GC-rich regions in the rice genome.
Collapse
Affiliation(s)
- Daoheng Hu
- School of Life Sciences & Institute of Plant and Food Science & Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Yiming Yu
- School of Life Sciences & Institute of Plant and Food Science & Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Chun Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Yanping Long
- School of Life Sciences & Institute of Plant and Food Science & Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yue Liu
- School of Life Sciences & Institute of Plant and Food Science & Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Li Feng
- School of Life Sciences & Institute of Plant and Food Science & Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Dongdong Lu
- School of Life Sciences & Institute of Plant and Food Science & Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Bo Liu
- School of Life Sciences & Institute of Plant and Food Science & Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jinbu Jia
- School of Life Sciences & Institute of Plant and Food Science & Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Rui Xia
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jiamu Du
- School of Life Sciences & Institute of Plant and Food Science & Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xuehua Zhong
- Laboratory of Genetics & Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Kejian Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Jixian Zhai
- School of Life Sciences & Institute of Plant and Food Science & Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
22
|
Bennett M, Cleaves K, Hewezi T. Expression Patterns of DNA Methylation and Demethylation Genes during Plant Development and in Response to Phytohormones. Int J Mol Sci 2021; 22:ijms22189681. [PMID: 34575855 PMCID: PMC8470644 DOI: 10.3390/ijms22189681] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 01/02/2023] Open
Abstract
DNA methylation and demethylation precisely and effectively modulate gene expression during plant growth and development and in response to stress. However, expression profiles of genes involved in DNA methylation and demethylation during plant development and their responses to phytohormone treatments remain largely unknown. We characterized the spatiotemporal expression patterns of genes involved in de novo methylation, methyl maintenance, and active demethylation in roots, shoots, and reproductive organs using β-glucuronidase (GUS) reporter lines. Promoters of DNA demethylases were generally more highly active at the mature root tissues, whereas the promoters of genes involved in DNA methylation were more highly active at fast-growing root tissues. The promoter activity also implies that methylation status in shoot apex, leaf primordia, floral organs, and developing embryos is under tight equilibrium through the activity of genes involved in DNA methylation and demethylation. The promoter activity of DNA methylation and demethylation-related genes in response to various phytohormone treatments revealed that phytohormones can alter DNA methylation status in specific and redundant ways. Overall, our results illustrate that DNA methylation and demethylation pathways act synergistically and antagonistically in various tissues and in response to phytohormone treatments and point to the existence of hormone-linked methylome regulation mechanisms that may contribute to tissue differentiation and development.
Collapse
|
23
|
Liu R, Long Q, Zou X, Wang Y, Pei Y. DNA methylation occurring in Cre-expressing cells inhibits loxP recombination and silences loxP-sandwiched genes. THE NEW PHYTOLOGIST 2021; 231:210-224. [PMID: 33742463 DOI: 10.1111/nph.17353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
The low DNA recombination efficiency of site-specific recombinase systems in plants limits their application; however, the underlying mechanism is unknown. We evaluate the gene deletion performance of four recombinase systems (Cre/loxP, Flp/FRT, KD/KDRT and B3/B3RT) in tobacco where the recombinases are under the control of germline-specific promoters. We find that the expression of these recombinases results mostly in gene silencing rather than gene deletion. Using the Cre/loxP system as a model, we reveal that the region flanked by loxP sites (floxed) is hypermethylated, which prevents floxed genes from deletion while silencing the expression of the genes. We further show CG methylation alone in the recombinase binding element of the loxP site is unable to impede gene deletion; instead, CHH methylation in the crossover region is required to inhibit loxP recombination. Our study illustrates the important role of recombinase-induced DNA methylation in the inhibition of site-specific DNA recombination and uncovers the mechanism underlying recombinase-associated gene silence in plants.
Collapse
Affiliation(s)
- Ruochen Liu
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops; Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, China
| | - Qin Long
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops; Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, China
| | - Xiuping Zou
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops; Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, China
| | - You Wang
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops; Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, China
| | - Yan Pei
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops; Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, China
| |
Collapse
|
24
|
Chen J, Liu J, Jiang J, Qian S, Song J, Kabara R, Delo I, Serino G, Liu F, Hua Z, Zhong X. F-box protein CFK1 interacts with and degrades de novo DNA methyltransferase in Arabidopsis. THE NEW PHYTOLOGIST 2021; 229:3303-3317. [PMID: 33216996 PMCID: PMC7902366 DOI: 10.1111/nph.17103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/16/2020] [Indexed: 05/07/2023]
Abstract
DNA methylation plays crucial roles in cellular development and stress responses through gene regulation and genome stability control. Precise regulation of DOMAINS REARRANGED METHYLTRANSFERASE 2 (DRM2), the de novo Arabidopsis DNA methyltransferase, is crucial to maintain DNA methylation homeostasis to ensure genome integrity. Compared with the extensive studies on DRM2 targeting mechanisms, little information is known regarding the quality control of DRM2 itself. Here, we conducted yeast two-hybrid screen assay and identified an E3 ligase, COP9 INTERACTING F-BOX KELCH 1 (CFK1), as a novel DRM2-interacting partner and targets DRM2 for degradation via the ubiquitin-26S proteasome pathway in Arabidopsis thaliana. We also performed whole genome bisulfite sequencing (BS-seq) to determine the biological significance of CFK1-mediated DRM2 degradation. Loss-of-function CFK1 leads to increased DRM2 protein abundance and overexpression of CFK1 showed reduced DRM2 protein levels. Consistently, CFK1 overexpression induces genome-wide CHH hypomethylation and transcriptional de-repression at specific DRM2 target loci. This study uncovered a distinct mechanism regulating de novo DNA methyltransferase by CFK1 to control DNA methylation level.
Collapse
Affiliation(s)
- Jiani Chen
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53715, USA
| | - Jie Liu
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53715, USA
| | - Jianjun Jiang
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu 210014, China
| | - Shuiming Qian
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53715, USA
| | - Jingwen Song
- Department of Environmental and Plant Biology & Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, Athens, OH 45701, USA
| | - Rachel Kabara
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Isabel Delo
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Giovanna Serino
- Department of Biology and Biotechnology, Sapienza Università di Roma, 00185 Rome, Italy
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu 210014, China
| | - Zhihua Hua
- Department of Environmental and Plant Biology & Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, Athens, OH 45701, USA
| | - Xuehua Zhong
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53715, USA
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
25
|
Konečná K, Sováková PP, Anteková K, Fajkus J, Fojtová M. Distinct Responses of Arabidopsis Telomeres and Transposable Elements to Zebularine Exposure. Int J Mol Sci 2021; 22:ijms22010468. [PMID: 33466545 PMCID: PMC7796508 DOI: 10.3390/ijms22010468] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/21/2020] [Accepted: 12/28/2020] [Indexed: 12/17/2022] Open
Abstract
Involvement of epigenetic mechanisms in the regulation of telomeres and transposable elements (TEs), genomic regions with the protective and potentially detrimental function, respectively, has been frequently studied. Here, we analyzed telomere lengths in Arabidopsis thaliana plants of Columbia, Landsberg erecta and Wassilevskija ecotypes exposed repeatedly to the hypomethylation drug zebularine during germination. Shorter telomeres were detected in plants growing from seedlings germinated in the presence of zebularine with a progression in telomeric phenotype across generations, relatively high inter-individual variability, and diverse responses among ecotypes. Interestingly, the extent of telomere shortening in zebularine Columbia and Wassilevskija plants corresponded to the transcriptional activation of TEs, suggesting a correlated response of these genomic elements to the zebularine treatment. Changes in lengths of telomeres and levels of TE transcripts in leaves were not always correlated with a hypomethylation of cytosines located in these regions, indicating a cytosine methylation-independent level of their regulation. These observations, including differences among ecotypes together with distinct dynamics of the reversal of the disruption of telomere homeostasis and TEs transcriptional activation, reflect a complex involvement of epigenetic processes in the regulation of crucial genomic regions. Our results further demonstrate the ability of plant cells to cope with these changes without a critical loss of the genome stability.
Collapse
Affiliation(s)
- Klára Konečná
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute for Technology (CEITEC), Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic; (K.K.); (P.P.S.); (K.A.); (J.F.)
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137 Brno, Czech Republic
| | - Pavla Polanská Sováková
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute for Technology (CEITEC), Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic; (K.K.); (P.P.S.); (K.A.); (J.F.)
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137 Brno, Czech Republic
| | - Karin Anteková
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute for Technology (CEITEC), Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic; (K.K.); (P.P.S.); (K.A.); (J.F.)
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137 Brno, Czech Republic
| | - Jiří Fajkus
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute for Technology (CEITEC), Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic; (K.K.); (P.P.S.); (K.A.); (J.F.)
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137 Brno, Czech Republic
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, CZ-61265 Brno, Czech Republic
| | - Miloslava Fojtová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute for Technology (CEITEC), Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic; (K.K.); (P.P.S.); (K.A.); (J.F.)
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137 Brno, Czech Republic
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, CZ-61265 Brno, Czech Republic
- Correspondence: ; Tel.: +420-54949-8063
| |
Collapse
|
26
|
Zhang S, Wu XQ, Xie HT, Zhao SS, Wu JG. Multifaceted roles of RNA polymerase IV in plant growth and development. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5725-5732. [PMID: 32969476 PMCID: PMC7541909 DOI: 10.1093/jxb/eraa346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We discuss the latest findings on RNA polymerase IV (Pol IV) in plant growth and development, providing new insights and expanding on new ideas for further, more in-depth research on Pol IV.
Collapse
Affiliation(s)
- Shuai Zhang
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Province Key Laboratory of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiao-Qing Wu
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Province Key Laboratory of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hui-Ting Xie
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Province Key Laboratory of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shan-Shan Zhao
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Province Key Laboratory of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jian-Guo Wu
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Province Key Laboratory of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
27
|
Zhang Y, He X, Zhao H, Xu W, Deng H, Wang H, Wang S, Su D, Zheng Z, Yang B, Grierson D, Wu J, Liu M. Genome-Wide Identification of DNA Methylases and Demethylases in Kiwifruit ( Actinidia chinensis). FRONTIERS IN PLANT SCIENCE 2020; 11:514993. [PMID: 33013956 PMCID: PMC7509440 DOI: 10.3389/fpls.2020.514993] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
DNA methylation plays an important role in a wide range of developmental and physiological processes in plants. It is primarily catalyzed and regulated by cytosine-5 DNA methyltransferases (C5-MTases) and a group of DNA glycosylases that act as demethylases. To date, no genome-scale analysis of the two kiwifruit (Actinidia chinensis) families has been undertaken. In our study, nine C5-MTases and seven DNA demethylase genes were identified in the kiwifruit genome. Through selective evolution analysis, we found that there were gene duplications in C5-MTases and demethylases, which may have arisen during three genome doubling events followed by selection during evolution of kiwifruit. Expression analysis of DNA methylases (C5-MTases) and demethylases identified changes in transcripts of DNA methylation and demethylation genes during both vegetative and reproductive development. Moreover, we found that some members of the two methylase/demethylase families may also be involved in fruit ripening and the regulation of softening. Our results help to better understand the complex roles of methylation/demethylation in plants and provide a foundation for analyzing the role of DNA methylation modification in kiwifruit growth, development and ripening.
Collapse
Affiliation(s)
- Yaoxin Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xiaoqing He
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Haochen Zhao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Wencai Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Heng Deng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Huan Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Shuyue Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Dan Su
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Zhenlei Zheng
- Sichuan Dexin Guoyuan Biological Technology Co., Ltd., Wenchuan, China
| | - Bin Yang
- Sichuan Dexin Guoyuan Biological Technology Co., Ltd., Wenchuan, China
| | - Don Grierson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughbotrough, United Kingdom
| | - Jun Wu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Mingchun Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
28
|
Yan X, Ma L, Pang H, Wang P, Liu L, Cheng Y, Cheng J, Guo Y, Li Q. METHIONINE SYNTHASE1 Is Involved in Chromatin Silencing by Maintaining DNA and Histone Methylation. PLANT PHYSIOLOGY 2019; 181:249-261. [PMID: 31331996 PMCID: PMC6716260 DOI: 10.1104/pp.19.00528] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/08/2019] [Indexed: 05/20/2023]
Abstract
DNA methylation and histone modification are important epigenetic marks that coregulate gene expression and genome stability. To identify factors involved in chromatin silencing, we carried out a forward genetic screen for mutants that release the silenced Pro-35S:LUCIFERASE (35SP-LUC) in Arabidopsis (Arabidopsis thaliana). We identified an epigenetic regulator, METHIONINE SYNTHASE1 (ATMS1), which catalyzes the synthesis of methionine (Met) in the one-carbon metabolism pathway. The ATMS1 mutation releases the silenced 35SP-LUC and the majority of endogenous genes and transposons. The effect of ATMS1 on chromatin silencing is related to decreased levels of DNA methylation (CG, CHG, and CHH) and histone-3 lysine-9 dimethylation. The ATMS1 mutation caused a significant decrease in the ratio of S-adenosylmethionine to S-adenosylhomocysteine. Exogenous application of Met rescued the phenotype of atms1-1 ATMS1 plays a predominant role in DNA and histone methylations among the three Met synthetase homologs. These results suggest that ATMS1 is required for DNA and histone methylations through its function in the one-carbon metabolism pathway, indicating the complex interplay between metabolism and epigenetic regulation.
Collapse
Affiliation(s)
- Xiaojing Yan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Liang Ma
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hongying Pang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Ping Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lei Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yanxia Cheng
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Jinkui Cheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yan Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Quanzi Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| |
Collapse
|
29
|
Pei L, Zhang L, Li J, Shen C, Qiu P, Tu L, Zhang X, Wang M. Tracing the origin and evolution history of methylation-related genes in plants. BMC PLANT BIOLOGY 2019; 19:307. [PMID: 31299897 PMCID: PMC6624907 DOI: 10.1186/s12870-019-1923-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 07/03/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND DNA methylation is a crucial epigenetic modification, which is involved in many biological processes, including gene expression regulation, embryonic development, cell differentiation and genomic imprinting etc. And it also involves many key regulatory genes in eukaryotes. By tracing the evolutionary history of methylation-related genes, we can understand the origin and expansion time of these genes, which helps to understand the evolutionary history of plants, and we can also understand the changes of DNA methylation patterns in different species. However, most studies on the evolution of methylation-related genes failed to be carried out for the whole DNA methylation pathway. RESULTS In this study, we conducted a comprehensive identification of 33 methylation-related genes in 77 species, and investigated gene origin and evolution throughout the plant kingdom. We found that the origin of genes responsible for methylation maintenance and demethylation evolved early, while most de novo methylation-related genes appeared late. The methylation-related genes were expanded by whole genome duplication and tandem replication, but were also accompanied by a large number of gene absence events in different species. The gene length and intron length varied a lot in different species, but exon structure and functional domains were relatively conserved. The phylogenetic relationships of methylation-related genes were traced to reveal the evolution history of DNA methylation in different species. The expression patterns of methylation-related genes have changed during the evolution of species, and the expression patterns of these genes in different species can be clustered into four categories. CONCLUSIONS The study describes a global characterization of DNA methylation-related genes in the plant kingdom. The similarities and differences in origin time, gene structure and phylogenetic relationship of these genes lead us to understand the evolutionary conservation and dynamics of DNA methylation in plants.
Collapse
Affiliation(s)
- Liuling Pei
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Lin Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Jianying Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Chao Shen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Ping Qiu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Lili Tu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Maojun Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| |
Collapse
|
30
|
He D, Xia B, Zhou Q, Wang L, Huang X. Rare earth elements regulate the endocytosis and DNA methylation in root cells of Arabidopsis thaliana. CHEMOSPHERE 2019; 227:522-532. [PMID: 31004819 DOI: 10.1016/j.chemosphere.2019.04.076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/30/2019] [Accepted: 04/10/2019] [Indexed: 06/09/2023]
Abstract
With increasing application of rare earth elements (REEs), the resulting environmental safety has attracted extensive attention. When REEs act on plant leaves, REEs can initiate endocytosis in leaf cells, causing more REEs enter plant cells and then severe damage to plants. But when REEs directly act on plant roots, whether and how REEs affect the endocytosis in root cells remain unknown. Here, we characterized effects of lanthanum [La(III)], a REE with high accumulation in environment, on the endocytosis in root cells of Arabidopsis thaliana, and revealed effect mechanism from the perspective of DNA methylation. We found that La(III) enhanced the endocytosis in root cells and the extent of enhancement depended on the dose and time of La(III) exposure: 160 μM > 80 μM >30 μM (12 h); 80 μM > 30 μM >160 μM (24 h); 24 h > 12 h. La(III)-enhanced endocytosis in root cells resulted from DNA methylation, which was closely related to the expression level of genes encoding DNA methylases/demethylases: CMT3, DRM2 and DNMT2 for 12 h, MET1, CMT1, CMT2, CMT3, DRM2, DNMT2, ROS1, DME, DML2, DML5a, and DML5b for 24 h. Conversely, enhanced endocytosis also promoted the expression level of genes encoding DNA methylases/demethylases. Our findings provide references for understanding the mechanisms by which REEs impact plants.
Collapse
Affiliation(s)
- Ding He
- State Key Laboratory of Food Science and Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Binxin Xia
- State Key Laboratory of Food Science and Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Qing Zhou
- State Key Laboratory of Food Science and Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Lihong Wang
- State Key Laboratory of Food Science and Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China.
| | - Xiaohua Huang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
31
|
Grob S, Grossniklaus U. Invasive DNA elements modify the nuclear architecture of their insertion site by KNOT-linked silencing in Arabidopsis thaliana. Genome Biol 2019; 20:120. [PMID: 31186073 PMCID: PMC6560877 DOI: 10.1186/s13059-019-1722-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 05/22/2019] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The three-dimensional (3D) organization of chromosomes is linked to epigenetic regulation and transcriptional activity. However, only few functional features of 3D chromatin architecture have been described to date. The KNOT is a 3D chromatin structure in Arabidopsis, comprising 10 interacting genomic regions termed KNOT ENGAGED ELEMENTs (KEEs). KEEs are enriched in transposable elements and associated small RNAs, suggesting a function in transposon biology. RESULTS Here, we report the KNOT's involvement in regulating invasive DNA elements. Transgenes can specifically interact with the KNOT, leading to perturbations of 3D nuclear organization, which correlates with the transgene's expression: high KNOT interaction frequencies are associated with transgene silencing. KNOT-linked silencing (KLS) cannot readily be connected to canonical silencing mechanisms, such as RNA-directed DNA methylation and post-transcriptional gene silencing, as both cytosine methylation and small RNA abundance do not correlate with KLS. Furthermore, KLS exhibits paramutation-like behavior, as silenced transgenes can lead to the silencing of active transgenes in trans. CONCLUSION Transgene silencing can be connected to a specific feature of Arabidopsis 3D nuclear organization, namely the KNOT. KLS likely acts either independent of or prior to canonical silencing mechanisms, such that its characterization not only contributes to our understanding of chromosome folding but also provides valuable insights into how genomes are defended against invasive DNA elements.
Collapse
Affiliation(s)
- Stefan Grob
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland.
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland.
| |
Collapse
|
32
|
Kuźnicki D, Meller B, Arasimowicz-Jelonek M, Braszewska-Zalewska A, Drozda A, Floryszak-Wieczorek J. BABA-Induced DNA Methylome Adjustment to Intergenerational Defense Priming in Potato to Phytophthora infestans. FRONTIERS IN PLANT SCIENCE 2019; 10:650. [PMID: 31214209 PMCID: PMC6554679 DOI: 10.3389/fpls.2019.00650] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 04/30/2019] [Indexed: 05/21/2023]
Abstract
We provide evidence that alterations in DNA methylation patterns contribute to the regulation of stress-responsive gene expression for an intergenerational resistance of β-aminobutyric acid (BABA)-primed potato to Phytophthora infestans. Plants exposed to BABA rapidly modified their methylation capacity toward genome-wide DNA hypermethylation. De novo induced DNA methylation (5-mC) correlated with the up-regulation of Chromomethylase 3 (CMT3), Domains rearranged methyltransferase 2 (DRM2), and Repressor of silencing 1 (ROS1) genes in potato. BABA transiently activated DNA hypermethylation in the promoter region of the R3a resistance gene triggering its downregulation in the absence of the oomycete pathogen. However, in the successive stages of priming, an excessive DNA methylation state changed into demethylation with the active involvement of potato DNA glycosylases. Interestingly, the 5-mC-mediated changes were transmitted into the next generation in the form of intergenerational stress memory. Descendants of the primed potato, which derived from tubers or seeds carrying the less methylated R3a promoter, showed a higher transcription of R3a that associated with an augmented intergenerational resistance to virulent P. infestans when compared to the inoculated progeny of unprimed plants. Furthermore, our study revealed that enhanced transcription of some SA-dependent genes (NPR1, StWRKY1, and PR1) was not directly linked with DNA methylation changes in the promoter region of these genes, but was a consequence of methylation-dependent alterations in the transcriptional network.
Collapse
Affiliation(s)
- Daniel Kuźnicki
- Department of Plant Physiology, Poznań University of Life Sciences, Poznań, Poland
| | - Barbara Meller
- Department of Plant Physiology, Poznań University of Life Sciences, Poznań, Poland
| | | | - Agnieszka Braszewska-Zalewska
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, The University of Silesia in Katowice, Katowice, Poland
| | - Andżelika Drozda
- Department of Plant Physiology, Poznań University of Life Sciences, Poznań, Poland
| | - Jolanta Floryszak-Wieczorek
- Department of Plant Physiology, Poznań University of Life Sciences, Poznań, Poland
- *Correspondence: Jolanta Floryszak-Wieczorek,
| |
Collapse
|
33
|
Wang P, Shi S, Ma J, Song H, Zhang Y, Gao C, Zhao C, Zhao S, Hou L, Lopez-Baltazar J, Fan S, Xia H, Wang X. Global Methylome and gene expression analysis during early Peanut pod development. BMC PLANT BIOLOGY 2018; 18:352. [PMID: 30545288 PMCID: PMC6293580 DOI: 10.1186/s12870-018-1546-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 11/20/2018] [Indexed: 05/21/2023]
Abstract
BACKGROUND Early peanut pod development is an important process of peanut reproductive development. Modes of DNA methylation during early peanut pod development are still unclear, possibly because its allotetraploid genome may cause difficulty for the methylome analysis. RESULTS To investigate the functions of the dynamic DNA methylation during the early development of the peanut pod, global methylome and gene expression analyses were carried out by Illumina high throughput sequencing. A novel mapping strategy of reads was developed and used for methylome and gene expression analysis. Differentially methylated genes, such as nodulin, cell number regulator-like protein, and senescence-associated genes, were identified during the early developmental stages of the peanut pod. The expression levels of gibberellin-related genes changed during this period of pod development. From the stage one (S1) gynophore to the stage two (S2) gynophore, the expression levels of two key methyltransferase genes, DRM2 and MET1, were up-regulated, which may lead to global DNA methylation changes between these two stages. The differentially methylated and expressed genes identified in the S1, S2, and stage 3 (S3) gynophore are involved in different biological processes such as stem cell fate determination, response to red, blue, and UV light, post-embryonic morphogenesis, and auxin biosynthesis. The expression levels of many genes were co-related by their DNA methylation levels. In addition, our results showed that the abundance of some 24-nucleotide siRNAs and miRNAs were positively associated with DNA methylation levels of their target loci in peanut pods. CONCLUSION A novel mapping strategy of reads was described and verified in this study. Our results suggest that the methylated modes of the S1, S2, and S3 gynophore are different. The methylation changes that were identified during early peanut pod development provide useful information for understanding the roles of epigenetic regulation in peanut pod development.
Collapse
Affiliation(s)
- Pengfei Wang
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100 People’s Republic of China
- Shandong Academy of Grape, Jinan, 250100 People’s Republic of China
| | - Suhua Shi
- Life Science College of Shandong Normal University, Jinan, 250014 People’s Republic of China
| | - Junjie Ma
- Life Science College of Shandong University, Jinan, 250100 People’s Republic of China
| | - Hui Song
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100 People’s Republic of China
| | - Ye Zhang
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100 People’s Republic of China
| | - Chao Gao
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100 People’s Republic of China
| | - Chuanzhi Zhao
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100 People’s Republic of China
- Life Science College of Shandong Normal University, Jinan, 250014 People’s Republic of China
| | - Shuzhen Zhao
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100 People’s Republic of China
- Life Science College of Shandong Normal University, Jinan, 250014 People’s Republic of China
| | - Lei Hou
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100 People’s Republic of China
| | | | - Shoujin Fan
- Life Science College of Shandong Normal University, Jinan, 250014 People’s Republic of China
| | - Han Xia
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100 People’s Republic of China
- Life Science College of Shandong Normal University, Jinan, 250014 People’s Republic of China
| | - Xingjun Wang
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100 People’s Republic of China
- Life Science College of Shandong Normal University, Jinan, 250014 People’s Republic of China
- Life Science College of Shandong University, Jinan, 250100 People’s Republic of China
| |
Collapse
|
34
|
Li J, Li C, Lu S. Identification and characterization of the cytosine-5 DNA methyltransferase gene family in Salvia miltiorrhiza. PeerJ 2018. [PMID: 29527415 PMCID: PMC5842782 DOI: 10.7717/peerj.4461] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Cytosine DNA methylation is highly conserved epigenetic modification involved in a wide range of biological processes in eukaryotes. It was established and maintained by cytosine-5 DNA methyltransferases (C5-MTases) in plants. Through genome-wide identification, eight putative SmC5-MTase genes were identified from the genome of Salvia miltiorrhiza, a well-known traditional Chinese medicine material and an emerging model medicinal plant. Based on conserved domains and phylogenetic analysis, eight SmC5-MTase genes were divided into four subfamilies, including MET, CMT, DRM and DNMT2. Genome-wide comparative analysis of the C5-MTase gene family in S. miltiorrhiza and Arabidopsis thaliana, including gene structure, sequence features, sequence alignment and conserved motifs, was carried out. The results showed conservation and divergence of the members of each subfamily in plants. The length of SmC5-MTase open reading frames ranges widely from 1,152 (SmDNMT2) to 5,034 bp (SmMET1). The intron number of SmC5-MTases varies between 7 (SmDRM1) and 20 (SmCMT1 and SmCMT2b). These features were similar to their counterparts from Arabidopsis. Sequence alignment and conserved motif analysis showed the existence of highly conserved and subfamily-specific motifs in the C5-MTases analyzed. Differential transcript abundance was detected for SmC5-MTases, implying genome-wide variance of DNA methylation in different organs and tissues. Transcriptome-wide analysis showed that the transcript levels of all SmC5-MTase genes was slightly changed under yeast extract and methyl jasmonate treatments. Six SmC5-MTases, including SmMET1, SmCMT1, SmCMT2a, SmCMT2b, SmCMT3 and SmDRM1, were salicylic acid-responsive, suggesting the involvement of SmC5-MTases in salicylic acid-dependent immunity. These results provide useful information for demonstrating the role of DNA methylation in bioactive compound biosynthesis and Dao-di herb formation in medicinal plants.
Collapse
Affiliation(s)
- Jiang Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Caili Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shanfa Lu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
35
|
Li Y, Ding X, Wang X, He T, Zhang H, Yang L, Wang T, Chen L, Gai J, Yang S. Genome-wide comparative analysis of DNA methylation between soybean cytoplasmic male-sterile line NJCMS5A and its maintainer NJCMS5B. BMC Genomics 2017; 18:596. [PMID: 28806912 PMCID: PMC5557475 DOI: 10.1186/s12864-017-3962-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 07/25/2017] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND DNA methylation is an important epigenetic modification. It can regulate the expression of many key genes without changing the primary structure of the genomic DNA, and plays a vital role in the growth and development of the organism. The genome-wide DNA methylation profile of the cytoplasmic male sterile (CMS) line in soybean has not been reported so far. RESULTS In this study, genome-wide comparative analysis of DNA methylation between soybean CMS line NJCMS5A and its maintainer NJCMS5B was conducted by whole-genome bisulfite sequencing. The results showed 3527 differentially methylated regions (DMRs) and 485 differentially methylated genes (DMGs), including 353 high-credible methylated genes, 56 methylated genes coding unknown protein and 76 novel methylated genes with no known function were identified. Among them, 25 DMRs were further validated that the genome-wide DNA methylation data were reliable through bisulfite treatment, and 9 DMRs were confirmed the relationship between DNA methylation and gene expression by qRT-PCR. Finally, 8 key DMGs possibly associated with soybean CMS were identified. CONCLUSIONS Genome-wide DNA methylation profile of the soybean CMS line NJCMS5A and its maintainer NJCMS5B was obtained for the first time. Several specific DMGs which participated in pollen and flower development were further identified to be probably associated with soybean CMS. This study will contribute to further understanding of the molecular mechanism behind soybean CMS.
Collapse
Affiliation(s)
- Yanwei Li
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Xianlong Ding
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Xuan Wang
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Tingting He
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Hao Zhang
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Longshu Yang
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Tanliu Wang
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Linfeng Chen
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Junyi Gai
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Shouping Yang
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
36
|
Dou L, Jia X, Wei H, Fan S, Wang H, Guo Y, Duan S, Pang C, Yu S. Global analysis of DNA methylation in young (J1) and senescent (J2) Gossypium hirsutum L. cotyledons by MeDIP-Seq. PLoS One 2017; 12:e0179141. [PMID: 28715427 PMCID: PMC5513416 DOI: 10.1371/journal.pone.0179141] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 05/24/2017] [Indexed: 11/18/2022] Open
Abstract
DNA methylation is an important epigenetic modification regulating gene expression, genomic imprinting, transposon silencing and chromatin structure in plants and plays an important role in leaf senescence. However, the DNA methylation pattern during Gossypium hirsutum L. cotyledon senescence is poorly understood. In this study, global DNA methylation patterns were compared between two cotyledon development stages, young (J1) and senescence (J2), using methylated DNA immunoprecipitation (MeDIP-Seq). Methylated cytosine occurred mostly in repeat elements, especially LTR/Gypsy in both J1 and J2. When comparing J1 against J2, there were 1222 down-methylated genes and 623 up-methylated genes. Methylated genes were significantly enriched in carbohydrate metabolism, biosynthesis of other secondary metabolites and amino acid metabolism pathways. The global DNA methylation level decreased from J1 to J2, especially in gene promoters, transcriptional termination regions and regions around CpG islands. We further investigated the expression patterns of 9 DNA methyltransferase-associated genes and 2 DNA demethyltransferase-associated genes from young to senescent cotyledons, which were down-regulated during cotyledon development. In this paper, we first reported that senescent cotton cotyledons exhibited lower DNA methylation levels, primarily due to decreased DNA methyltransferase activity and which also play important role in regulating secondary metabolite process.
Collapse
Affiliation(s)
- Lingling Dou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan, P. R. China
- Weinan Institute of Agricultural Sciences, Weinan, Shaanxi, P. R. China
| | - Xiaoyun Jia
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan, P. R. China
| | - Hengling Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan, P. R. China
| | - Shuli Fan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan, P. R. China
| | - Hantao Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan, P. R. China
| | - Yaning Guo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan, P. R. China
| | - Shan Duan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan, P. R. China
| | - Chaoyou Pang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan, P. R. China
- * E-mail: (CP); (SY)
| | - Shuxun Yu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan, P. R. China
- * E-mail: (CP); (SY)
| |
Collapse
|
37
|
Du J. Structure and Mechanism of Plant DNA Methyltransferases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 945:173-192. [PMID: 27826839 DOI: 10.1007/978-3-319-43624-1_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
DNA methylation is an important epigenetic mark that functions in eukaryotes from fungi to animals and plants, where it plays a crucial role in the regulation of epigenetic silencing. Once the methylation mark is established by the de novo DNA methyltransferase (MTase), it requires specific regulatory mechanisms to maintain the methylation state during chromatin replication, both during meiosis and mitosis. Plants have distinct DNA methylation patterns that are both established and maintained by unique DNA MTases and are regulated by plant-specific pathways. This chapter focuses on the exceptional structural and functional features of plant DNA MTases that provide insights into these regulatory mechanisms.
Collapse
Affiliation(s)
- Jiamu Du
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 201602, China.
| |
Collapse
|
38
|
Ashapkin VV, Kutueva LI, Vanyushin BF. Plant DNA Methyltransferase Genes: Multiplicity, Expression, Methylation Patterns. BIOCHEMISTRY (MOSCOW) 2017; 81:141-51. [PMID: 27260394 DOI: 10.1134/s0006297916020085] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Expression and methylation patterns of genes encoding DNA methyltransferases and their functionally related proteins were studied in organs of Arabidopsis thaliana plants. Genes coding for the major maintenance-type DNA methyltransferases, MET1 and CMT3, and the major de novo-type DNA methyltransferase, DRM2, are actively expressed in all organs. Similar constitutively active expression was observed for genes encoding their functionally related proteins, a histone H3K9 methyltransferase KYP and a catalytically non-active protein DRM3. Expression of the MET1 and CMT3 genes is significantly lower in developing endosperm compared with embryo. Vice versa, expression of the MET2a, MET2b, MET3, and CMT2 genes in endosperm is much more active compared with embryo. A special maintenance DNA methylation system seems to operate in endosperm. The DNMT2 and N6AMT genes encoding putative methyltransferases are constitutively expressed at low levels. CMT1 and DRM1 genes are expressed rather weakly in all investigated organs. Most of the studied genes have methylation patterns conforming to the "body-methylated gene" prototype. A peculiar feature of the MET family genes is methylation at all three possible site types (CG, CHG, and CHH). The most weakly expressed among genes of their respective families, CMT1 and DRM1, are practically unmethylated. The MET3 and N6AMT genes have unusual methylation patterns, promoter region, and most of the gene body devoid of any methylation, and the 3'-end proximal part of the gene body is highly methylated.
Collapse
Affiliation(s)
- V V Ashapkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | | | | |
Collapse
|
39
|
Pandey G, Sharma N, Sahu PP, Prasad M. Chromatin-Based Epigenetic Regulation of Plant Abiotic Stress Response. Curr Genomics 2016; 17:490-498. [PMID: 28217005 PMCID: PMC5282600 DOI: 10.2174/1389202917666160520103914] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 12/10/2015] [Accepted: 12/13/2015] [Indexed: 12/15/2022] Open
Abstract
Plants are continuously exposed to various abiotic and biotic factors limiting their growth and reproduction. In response, they need various sophisticated ways to adapt to adverse environmental conditions without compromising their proper development, reproductive success and eventually survival. This requires an intricate network to regulate gene expression at transcriptional and post-transcriptional levels, including epigenetic switches. Changes in chromatin modifications such as DNA and histone methylation have been observed in plants upon exposure to several abiotic stresses. In the present review, we highlight the changes of DNA methylation in diverse plants in response to several abiotic stresses such as salinity, drought, cold and heat. We also discuss the progresses made in understanding how these DNA methylation changes might contribute to the abiotic stress tolerance.
Collapse
Affiliation(s)
- Garima Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Namisha Sharma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Pranav Pankaj Sahu
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India,Address correspondence to this author at the National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India; Tel: 91-11-26735160; Fax: 91-11-26741658; 26741146;, E-mails: ,
| |
Collapse
|
40
|
Accurate Chromosome Segregation at First Meiotic Division Requires AGO4, a Protein Involved in RNA-Dependent DNA Methylation in Arabidopsis thaliana. Genetics 2016; 204:543-553. [PMID: 27466226 DOI: 10.1534/genetics.116.189217] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 07/25/2016] [Indexed: 11/18/2022] Open
Abstract
The RNA-directed DNA methylation (RdDM) pathway is important for the transcriptional repression of transposable elements and for heterochromatin formation. Small RNAs are key players in this process by regulating both DNA and histone methylation. Taking into account that methylation underlies gene silencing and that there are genes with meiosis-specific expression profiles, we have wondered whether genes involved in RdDM could play a role during this specialized cell division. To address this issue, we have characterized meiosis progression in pollen mother cells from Arabidopsis thaliana mutant plants defective for several proteins related to RdDM. The most relevant results were obtained for ago4-1 In this mutant, meiocytes display a slight reduction in chiasma frequency, alterations in chromatin conformation around centromeric regions, lagging chromosomes at anaphase I, and defects in spindle organization. These abnormalities lead to the formation of polyads instead of tetrads at the end of meiosis, and might be responsible for the fertility defects observed in this mutant. Findings reported here highlight an involvement of AGO4 during meiosis by ensuring accurate chromosome segregation at anaphase I.
Collapse
|
41
|
Tan F, Zhou C, Zhou Q, Zhou S, Yang W, Zhao Y, Li G, Zhou DX. Analysis of Chromatin Regulators Reveals Specific Features of Rice DNA Methylation Pathways. PLANT PHYSIOLOGY 2016; 171:2041-54. [PMID: 27208249 PMCID: PMC4936571 DOI: 10.1104/pp.16.00393] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 05/11/2016] [Indexed: 05/18/2023]
Abstract
Plant DNA methylation that occurs at CG, CHG, and CHH sites (H = A, C, or T) is a hallmark of the repression of repetitive sequences and transposable elements (TEs). The rice (Oryza sativa) genome contains about 40% repetitive sequence and TEs and displays specific patterns of genome-wide DNA methylation. The mechanism responsible for the specific methylation patterns is unclear. Here, we analyzed the function of OsDDM1 (Deficient in DNA Methylation 1) and OsDRM2 (Deficient in DNA Methylation 1) in genome-wide DNA methylation, TE repression, small RNA accumulation, and gene expression. We show that OsDDM1 is essential for high levels of methylation at CHG and, to a lesser extent, CG sites in heterochromatic regions and also is required for CHH methylation that mainly locates in the genic regions of the genome. In addition to a large member of TEs, loss of OsDDM1 leads to hypomethylation and up-regulation of many protein-coding genes, producing very severe growth phenotypes at the initial generation. Importantly, we show that OsDRM2 mutation results in a nearly complete loss of CHH methylation and derepression of mainly small TE-associated genes and that OsDDM1 is involved in facilitating OsDRM2-mediated CHH methylation. Thus, the function of OsDDM1 and OsDRM2 defines distinct DNA methylation pathways in the bulk of DNA methylation of the genome, which is possibly related to the dispersed heterochromatin across chromosomes in rice and suggests that DNA methylation mechanisms may vary among different plant species.
Collapse
Affiliation(s)
- Feng Tan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China (F.T., C.Z., Q.Z., S.Z., W.Y., Y.Z., G.L., D.-X.Z.); andInstitute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Saclay, Université Paris-sud 11, 91405 Orsay, France (D.-X.Z.)
| | - Chao Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China (F.T., C.Z., Q.Z., S.Z., W.Y., Y.Z., G.L., D.-X.Z.); andInstitute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Saclay, Université Paris-sud 11, 91405 Orsay, France (D.-X.Z.)
| | - Qiangwei Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China (F.T., C.Z., Q.Z., S.Z., W.Y., Y.Z., G.L., D.-X.Z.); andInstitute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Saclay, Université Paris-sud 11, 91405 Orsay, France (D.-X.Z.)
| | - Shaoli Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China (F.T., C.Z., Q.Z., S.Z., W.Y., Y.Z., G.L., D.-X.Z.); andInstitute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Saclay, Université Paris-sud 11, 91405 Orsay, France (D.-X.Z.)
| | - Wenjing Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China (F.T., C.Z., Q.Z., S.Z., W.Y., Y.Z., G.L., D.-X.Z.); andInstitute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Saclay, Université Paris-sud 11, 91405 Orsay, France (D.-X.Z.)
| | - Yu Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China (F.T., C.Z., Q.Z., S.Z., W.Y., Y.Z., G.L., D.-X.Z.); andInstitute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Saclay, Université Paris-sud 11, 91405 Orsay, France (D.-X.Z.)
| | - Guoliang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China (F.T., C.Z., Q.Z., S.Z., W.Y., Y.Z., G.L., D.-X.Z.); andInstitute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Saclay, Université Paris-sud 11, 91405 Orsay, France (D.-X.Z.)
| | - Dao-Xiu Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China (F.T., C.Z., Q.Z., S.Z., W.Y., Y.Z., G.L., D.-X.Z.); andInstitute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Saclay, Université Paris-sud 11, 91405 Orsay, France (D.-X.Z.)
| |
Collapse
|
42
|
Zhong X. Comparative epigenomics: a powerful tool to understand the evolution of DNA methylation. THE NEW PHYTOLOGIST 2016; 210:76-80. [PMID: 26137858 DOI: 10.1111/nph.13540] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 05/31/2015] [Indexed: 05/06/2023]
Abstract
Understanding how developmental and functional complexity of organisms evolves is a longstanding challenge in biology. Genetic mutation has long been thought to be the cause of biological complexity. However, increasing evidence indicates that epigenetic variation provides a parallel path for the evolution of biological complexity. Cytosine DNA methylation, the addition of a chemical mark on DNA, is a conserved and essential gene regulatory mechanism. Recent studies have greatly advanced our understanding of the DNA methylation landscapes and key regulatory components across many species. In this review, I summarize recent advances in understanding DNA methylation from an evolutionary perspective. Using comparative approaches, I highlight the conservation and divergence of DNA methylation patterns and regulatory machinery in plants and other eukaryotic organisms.
Collapse
Affiliation(s)
- Xuehua Zhong
- Laboratory of Genetics & Wisconsin Institute for Discovery, University of Wisconsin - Madison, Madison, WI, 53705, USA
| |
Collapse
|
43
|
Wang P, Gao C, Bian X, Zhao S, Zhao C, Xia H, Song H, Hou L, Wan S, Wang X. Genome-Wide Identification and Comparative Analysis of Cytosine-5 DNA Methyltransferase and Demethylase Families in Wild and Cultivated Peanut. FRONTIERS IN PLANT SCIENCE 2016; 7:7. [PMID: 26870046 PMCID: PMC4737905 DOI: 10.3389/fpls.2016.00007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 01/06/2016] [Indexed: 05/04/2023]
Abstract
DNA methylation plays important roles in genome protection, regulation of gene expression and is associated with plants development. Plant DNA methylation pattern was mediated by cytosine-5 DNA methyltransferase and demethylase. Although the genomes of AA and BB wild peanuts have been fully sequenced, these two gene families have not been studied. In this study we report the identification and analysis of putative cytosine-5 DNA methyltransferases (C5-MTases) and demethylases in AA and BB wild peanuts. Cytosine-5 DNA methyltransferases in AA and BB wild peanuts could be classified in MET, CMT, and DRM2 groups based on their domain organization. This result was supported by the gene and protein structural characteristics and phylogenetic analysis. We found that some wild peanut DRM2 members didn't contain UBA domain which was different from other plants such as Arabidopsis, maize and soybean. Five DNA demethylase encoding genes were found in AA genome and five in BB genome. The selective pressure analysis showed that wild peanut C5-MTase genes mainly underwent purifying selection but many positive selection sites can be detected. Conversely, DNA demethylase genes mainly underwent positive selection during evolution. Additionally, the expression dynamic of cytosine-5 DNA methyltransferase and demethylase genes in different cultivated peanut tissues were analyzed. Expression result showed that cold, heat or PEG stress could influence the expression level of C5-MTase and DNA demethylase genes in cultivated peanut. These results are useful for better understanding the complexity of these two gene families, and will facilitate epigenetic studies in peanut in the future.
Collapse
|
44
|
Zhou M, Law JA. RNA Pol IV and V in gene silencing: Rebel polymerases evolving away from Pol II's rules. CURRENT OPINION IN PLANT BIOLOGY 2015; 27:154-64. [PMID: 26344361 PMCID: PMC4618083 DOI: 10.1016/j.pbi.2015.07.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 07/15/2015] [Accepted: 07/19/2015] [Indexed: 05/19/2023]
Abstract
Noncoding RNAs regulate gene expression at both the transcriptional and post-transcriptional levels, and play critical roles in development, imprinting and the maintenance of genome integrity in eukaryotic organisms [1,2,3]. Therefore, it is important to understand how the production of such RNAs are controlled. In addition to the three canonical DNA dependent RNA polymerases (Pol) Pol I, II and III, two non-redundant plant-specific RNA polymerases, Pol IV and Pol V, have been identified and shown to generate noncoding RNAs that are required for transcriptional gene silencing via the RNA-directed DNA methylation (RdDM) pathway. Thus, somewhat paradoxically, transcription is required for gene silencing. This paradox extends beyond plants, as silencing pathways in yeast, fungi, flies, worms, and mammals also require transcriptional machinery [4,5]. As plants have evolved specialized RNA polymerases to carry out gene silencing in a manner that is separate from the essential roles of Pol II, their characterization offers unique insights into how RNA polymerases facilitate gene silencing. In this review, we focus on the mechanisms of Pol IV and Pol V function, including their compositions, their transcripts, and their modes of recruitment to chromatin.
Collapse
Affiliation(s)
- Ming Zhou
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Julie A Law
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
45
|
Li F, Xu X, Huang C, Gu Z, Cao L, Hu T, Ding M, Li Z, Zhou X. The AC5 protein encoded by Mungbean yellow mosaic India virus is a pathogenicity determinant that suppresses RNA silencing-based antiviral defenses. THE NEW PHYTOLOGIST 2015; 208:555-69. [PMID: 26010321 DOI: 10.1111/nph.13473] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 04/16/2015] [Indexed: 06/04/2023]
Abstract
It is generally accepted that begomoviruses in the family Geminiviridae encode four proteins (from AC1/C1 to AC4/C4) using the complementary-sense DNA as template. Although AC5/C5 coding sequences are increasingly annotated in databases for many begomoviruses, the evolutionary relationships and functions of this putative protein in viral infection are obscure. Here, we demonstrate several important functions of the AC5 protein of a bipartite begomovirus, Mungbean yellow mosaic India virus (MYMIV). Mutational analyses and transgenic expression showed that AC5 plays a critical role in MYMIV infection. Ectopic expression of AC5 from a Potato virus X (PVX) vector resulted in severe mosaic symptoms followed by a hypersensitive-like response in Nicotiana benthamiana. Furthermore, MYMIV AC5 effectively suppressed post-transcriptional gene silencing induced by single-stranded but not double-stranded RNA. AC5 was also able to reverse transcriptional gene silencing of a green fluorescent protein transgene by reducing methylation of promoter sequences, probably through repressing expression of a CHH cytosine methyltransferase (DOMAINS REARRANGED METHYLTRANSFERASE2) in N. benthamiana. Our results demonstrate that MYMIV AC5 is a pathogenicity determinant and a potent RNA silencing suppressor that employs novel mechanisms to suppress antiviral defenses, and suggest that the AC5 function may be conserved among many begomoviruses.
Collapse
Affiliation(s)
- Fangfang Li
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiongbiao Xu
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Changjun Huang
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Zhouhang Gu
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Linge Cao
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Tao Hu
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Ming Ding
- Institute of Plant Protection, Yunnan Provincial Academy of Agricultural Sciences, Kunming, Yunnan, 650205, China
| | - Zhenghe Li
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Xueping Zhou
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| |
Collapse
|
46
|
Zermiani M, Begheldo M, Nonis A, Palme K, Mizzi L, Morandini P, Nonis A, Ruperti B. Identification of the Arabidopsis RAM/MOR signalling network: adding new regulatory players in plant stem cell maintenance and cell polarization. ANNALS OF BOTANY 2015; 116:69-89. [PMID: 26078466 PMCID: PMC4479753 DOI: 10.1093/aob/mcv066] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 03/02/2015] [Accepted: 04/13/2015] [Indexed: 05/30/2023]
Abstract
BACKGROUND AND AIMS The RAM/MOR signalling network of eukaryotes is a conserved regulatory module involved in co-ordination of stem cell maintenance, cell differentiation and polarity establishment. To date, no such signalling network has been identified in plants. METHODS Genes encoding the bona fide core components of the RAM/MOR pathway were identified in Arabidopsis thaliana (arabidopsis) by sequence similarity searches conducted with the known components from other species. The transcriptional network(s) of the arabidopsis RAM/MOR signalling pathway were identified by running in-depth in silico analyses for genes co-regulated with the core components. In situ hybridization was used to confirm tissue-specific expression of selected RAM/MOR genes. KEY RESULTS Co-expression data suggested that the arabidopsis RAM/MOR pathway may include genes involved in floral transition, by co-operating with chromatin remodelling and mRNA processing/post-transcriptional gene silencing factors, and genes involved in the regulation of pollen tube polar growth. The RAM/MOR pathway may act upstream of the ROP1 machinery, affecting pollen tube polar growth, based on the co-expression of its components with ROP-GEFs. In silico tissue-specific co-expression data and in situ hybridization experiments suggest that different components of the arabidopsis RAM/MOR are expressed in the shoot apical meristem and inflorescence meristem and may be involved in the fine-tuning of stem cell maintenance and cell differentiation. CONCLUSIONS The arabidopsis RAM/MOR pathway may be part of the signalling cascade that converges in pollen tube polarized growth and in fine-tuning stem cell maintenance, differentiation and organ polarity.
Collapse
Affiliation(s)
- Monica Zermiani
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università, 16, 35020 Legnaro (PD), Italy, University Centre of Statistics for Biomedical Sciences, Università Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milan, Italy, Institute of Biology II/Molecular Plant Physiology, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany, Centre for Biological Systems Analysis, Albert-Ludwigs-University of Freiburg, Habsburgerstrasse 49, D-79104 Freiburg, Germany, Freiburg Institute for Advanced Sciences (FRIAS), Albert-Ludwigs-University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany, BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany, Department of BioSciences, University of Milan, Via Celoria 26, 20133 Milan, Italy and CNR Biophysics Institute (Milan Section), Via Celoria 26, 20133 Milan, Italy
| | - Maura Begheldo
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università, 16, 35020 Legnaro (PD), Italy, University Centre of Statistics for Biomedical Sciences, Università Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milan, Italy, Institute of Biology II/Molecular Plant Physiology, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany, Centre for Biological Systems Analysis, Albert-Ludwigs-University of Freiburg, Habsburgerstrasse 49, D-79104 Freiburg, Germany, Freiburg Institute for Advanced Sciences (FRIAS), Albert-Ludwigs-University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany, BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany, Department of BioSciences, University of Milan, Via Celoria 26, 20133 Milan, Italy and CNR Biophysics Institute (Milan Section), Via Celoria 26, 20133 Milan, Italy
| | - Alessandro Nonis
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università, 16, 35020 Legnaro (PD), Italy, University Centre of Statistics for Biomedical Sciences, Università Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milan, Italy, Institute of Biology II/Molecular Plant Physiology, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany, Centre for Biological Systems Analysis, Albert-Ludwigs-University of Freiburg, Habsburgerstrasse 49, D-79104 Freiburg, Germany, Freiburg Institute for Advanced Sciences (FRIAS), Albert-Ludwigs-University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany, BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany, Department of BioSciences, University of Milan, Via Celoria 26, 20133 Milan, Italy and CNR Biophysics Institute (Milan Section), Via Celoria 26, 20133 Milan, Italy
| | - Klaus Palme
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università, 16, 35020 Legnaro (PD), Italy, University Centre of Statistics for Biomedical Sciences, Università Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milan, Italy, Institute of Biology II/Molecular Plant Physiology, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany, Centre for Biological Systems Analysis, Albert-Ludwigs-University of Freiburg, Habsburgerstrasse 49, D-79104 Freiburg, Germany, Freiburg Institute for Advanced Sciences (FRIAS), Albert-Ludwigs-University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany, BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany, Department of BioSciences, University of Milan, Via Celoria 26, 20133 Milan, Italy and CNR Biophysics Institute (Milan Section), Via Celoria 26, 20133 Milan, Italy Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università, 16, 35020 Legnaro (PD), Italy, University Centre of Statistics for Biomedical Sciences, Università Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milan, Italy, Institute of Biology II/Molecular Plant Physiology, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany, Centre for Biological Systems Analysis, Albert-Ludwigs-University of Freiburg, Habsburgerstrasse 49, D-79104 Freiburg, Germany, Freiburg Institute for Advanced Sciences (FRIAS), Albert-Ludwigs-University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany, BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany, Department of BioSciences, University of Milan, Via Celoria 26, 20133 Milan, Italy and CNR Biophysics Institute (Milan Section), Via Celoria 26, 2
| | - Luca Mizzi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università, 16, 35020 Legnaro (PD), Italy, University Centre of Statistics for Biomedical Sciences, Università Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milan, Italy, Institute of Biology II/Molecular Plant Physiology, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany, Centre for Biological Systems Analysis, Albert-Ludwigs-University of Freiburg, Habsburgerstrasse 49, D-79104 Freiburg, Germany, Freiburg Institute for Advanced Sciences (FRIAS), Albert-Ludwigs-University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany, BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany, Department of BioSciences, University of Milan, Via Celoria 26, 20133 Milan, Italy and CNR Biophysics Institute (Milan Section), Via Celoria 26, 20133 Milan, Italy
| | - Piero Morandini
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università, 16, 35020 Legnaro (PD), Italy, University Centre of Statistics for Biomedical Sciences, Università Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milan, Italy, Institute of Biology II/Molecular Plant Physiology, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany, Centre for Biological Systems Analysis, Albert-Ludwigs-University of Freiburg, Habsburgerstrasse 49, D-79104 Freiburg, Germany, Freiburg Institute for Advanced Sciences (FRIAS), Albert-Ludwigs-University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany, BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany, Department of BioSciences, University of Milan, Via Celoria 26, 20133 Milan, Italy and CNR Biophysics Institute (Milan Section), Via Celoria 26, 20133 Milan, Italy
| | - Alberto Nonis
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università, 16, 35020 Legnaro (PD), Italy, University Centre of Statistics for Biomedical Sciences, Università Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milan, Italy, Institute of Biology II/Molecular Plant Physiology, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany, Centre for Biological Systems Analysis, Albert-Ludwigs-University of Freiburg, Habsburgerstrasse 49, D-79104 Freiburg, Germany, Freiburg Institute for Advanced Sciences (FRIAS), Albert-Ludwigs-University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany, BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany, Department of BioSciences, University of Milan, Via Celoria 26, 20133 Milan, Italy and CNR Biophysics Institute (Milan Section), Via Celoria 26, 20133 Milan, Italy
| | - Benedetto Ruperti
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università, 16, 35020 Legnaro (PD), Italy, University Centre of Statistics for Biomedical Sciences, Università Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milan, Italy, Institute of Biology II/Molecular Plant Physiology, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany, Centre for Biological Systems Analysis, Albert-Ludwigs-University of Freiburg, Habsburgerstrasse 49, D-79104 Freiburg, Germany, Freiburg Institute for Advanced Sciences (FRIAS), Albert-Ludwigs-University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany, BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany, Department of BioSciences, University of Milan, Via Celoria 26, 20133 Milan, Italy and CNR Biophysics Institute (Milan Section), Via Celoria 26, 20133 Milan, Italy
| |
Collapse
|
47
|
Lin YT, Wei HM, Lu HY, Lee YI, Fu SF. Developmental- and Tissue-Specific Expression of NbCMT3-2 Encoding a Chromomethylase in Nicotiana benthamiana. PLANT & CELL PHYSIOLOGY 2015; 56:1124-43. [PMID: 25745030 DOI: 10.1093/pcp/pcv036] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 02/23/2015] [Indexed: 05/11/2023]
Abstract
The chromomethylase (CMT) protein family is unique to plants and controls non-CpG methylation. Here, we investigated the developmental expression of CMT3-2 in Nicotiana benthamiana (NbCMT3-2) and its significance by analyzing plants with silenced NbCMT3-2 and leaf tissues transiently expressing the N-terminal polypeptide. Alignment of the NbCMT3-2 amino acid sequence with that of other plant CMT3s showed a specific N-terminal extension required for nuclear localization. Transient expression of the N-terminal polypeptide in N. benthamiana resulted in chlorotic lesions. NbCMT3-2 was expressed mainly in proliferating tissues such as the shoot apex and developing leaves. We generated transgenic N. benthamiana harboring a fusion reporter construct linking the NbCMT3-2 promoter region and the β-glucuronidase (GUS) reporter (pNbCMT3-2::GUS) to analyze the tissue-specific expression of NbCMT3-2. NbCMT3-2 was expressed in the shoot and root apical meristem and leaf primordia in young seedlings and highly expressed in developing leaves and ovary as well as lateral buds in mature plants. Virus-induced gene silencing used to knock down the expression of NbCMT3 or NbCMT3-2 or both led to partial loss of genomic DNA methylation. Plants with suppressed NbCMT3 expression grew and developed normally, whereas leaves with NbCMT3-2 knockdown showed mild curling as compared with controls. Silencing NbCMT3/3-2 severely interfered with leaf development and directly or indirectly affected the expression of genes involved in jasmonate homeostasis. The differential roles of NbCMT3 and NbCMT3-2 were investigated and compared. We reveal the expression patterns of NbCMT3-2 in proliferating tissues. NbCMT3-2 may play an essential role in leaf development by modulating jasmonate pathways.
Collapse
Affiliation(s)
- Yu-Ting Lin
- Department of Biology, National Changhua University of Education, No. 1, Jin-De Road, Changhua, 500, Taiwan
| | - Huei-Mei Wei
- Department of Biology, National Changhua University of Education, No. 1, Jin-De Road, Changhua, 500, Taiwan
| | - Hsueh-Yu Lu
- Department of Biology, National Changhua University of Education, No. 1, Jin-De Road, Changhua, 500, Taiwan
| | - Yung-I Lee
- Botany Department, National Museum of Natural Science, No. 1, Guancian Road, Taichung 404, Taiwan
| | - Shih-Feng Fu
- Department of Biology, National Changhua University of Education, No. 1, Jin-De Road, Changhua, 500, Taiwan
| |
Collapse
|
48
|
Ito T, Tarutani Y, To TK, Kassam M, Duvernois-Berthet E, Cortijo S, Takashima K, Saze H, Toyoda A, Fujiyama A, Colot V, Kakutani T. Genome-wide negative feedback drives transgenerational DNA methylation dynamics in Arabidopsis. PLoS Genet 2015; 11:e1005154. [PMID: 25902052 PMCID: PMC4406451 DOI: 10.1371/journal.pgen.1005154] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 03/18/2015] [Indexed: 12/12/2022] Open
Abstract
Epigenetic variations of phenotypes, especially those associated with DNA methylation, are often inherited over multiple generations in plants. The active and inactive chromatin states are heritable and can be maintained or even be amplified by positive feedback in a transgenerational manner. However, mechanisms controlling the transgenerational DNA methylation dynamics are largely unknown. As an approach to understand the transgenerational dynamics, we examined long-term effect of impaired DNA methylation in Arabidopsis mutants of the chromatin remodeler gene DDM1 (Decrease in DNA Methylation 1) through whole genome DNA methylation sequencing. The ddm1 mutation induces a drastic decrease in DNA methylation of transposable elements (TEs) and repeats in the initial generation, while also inducing ectopic DNA methylation at hundreds of loci. Unexpectedly, this ectopic methylation can only be seen after repeated self-pollination. The ectopic cytosine methylation is found primarily in the non-CG context and starts from 3’ regions within transcription units and spreads upstream. Remarkably, when chromosomes with reduced DNA methylation were introduced from a ddm1 mutant into a DDM1 wild-type background, the ddm1-derived chromosomes also induced analogous de novo accumulation of DNA methylation in trans. These results lead us to propose a model to explain the transgenerational DNA methylation redistribution by genome-wide negative feedback. The global negative feedback, together with local positive feedback, would ensure robust and balanced differentiation of chromatin states within the genome. DNA methylation is important for controlling activity of transposable elements and genes. An intriguing feature of DNA methylation in plants is that its pattern can be inherited over multiple generations at high fidelity in a Mendelian manner. However, mechanisms controlling the trans-generational DNA methylation dynamics are largely unknown. Arabidopsis mutants of a chromatin remodeler gene DDM1 (Decrease in DNA Methylation 1) show drastic reduction of DNA methylation in transposons and repeats, and also show progressive changes in developmental phenotypes during propagation through self-pollination. We now show using whole genome DNA methylation sequencing that upon repeated selfing, the ddm1 mutation induces an ectopic accumulation of DNA methylation at hundreds of loci. Remarkably, even in the wild type background, the analogous de novo increase of DNA methylation can be induced in trans by chromosomes with reduced DNA methylation. Collectively, our findings support a model to explain the transgenerational DNA methylation redistribution by genome-wide negative feedback, which should be important for balanced differentiation of DNA methylation states within the genome.
Collapse
Affiliation(s)
- Tasuku Ito
- Department of Integrated Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
- * E-mail: (TI); (TK)
| | - Yoshiaki Tarutani
- Department of Integrated Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
- Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Yata, Shizuoka, Japan
| | - Taiko Kim To
- Department of Integrated Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Mohamed Kassam
- Ecole Normale Supérieure, Institut de Biologie (IBENS), Centre National de la Recherche Scientifique (CNRS) UMR8197, Institut National de la Santé et de la Recherche Médicale (INSERM) U1024, Paris, France
| | - Evelyne Duvernois-Berthet
- Ecole Normale Supérieure, Institut de Biologie (IBENS), Centre National de la Recherche Scientifique (CNRS) UMR8197, Institut National de la Santé et de la Recherche Médicale (INSERM) U1024, Paris, France
| | - Sandra Cortijo
- Ecole Normale Supérieure, Institut de Biologie (IBENS), Centre National de la Recherche Scientifique (CNRS) UMR8197, Institut National de la Santé et de la Recherche Médicale (INSERM) U1024, Paris, France
| | - Kazuya Takashima
- Department of Integrated Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Hidetoshi Saze
- Okinawa Institute of Science and Technology, Onna-son, Okinawa, Japan
| | - Atsushi Toyoda
- Center for Information Biology, National Institute of Genetics, Yata, Shizuoka, Japan
| | - Asao Fujiyama
- Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Yata, Shizuoka, Japan
- Center for Information Biology, National Institute of Genetics, Yata, Shizuoka, Japan
| | - Vincent Colot
- Ecole Normale Supérieure, Institut de Biologie (IBENS), Centre National de la Recherche Scientifique (CNRS) UMR8197, Institut National de la Santé et de la Recherche Médicale (INSERM) U1024, Paris, France
| | - Tetsuji Kakutani
- Department of Integrated Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
- Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Yata, Shizuoka, Japan
- * E-mail: (TI); (TK)
| |
Collapse
|
49
|
Domains rearranged methyltransferase3 controls DNA methylation and regulates RNA polymerase V transcript abundance in Arabidopsis. Proc Natl Acad Sci U S A 2015; 112:911-6. [PMID: 25561521 DOI: 10.1073/pnas.1423603112] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
DNA methylation is a mechanism of epigenetic gene regulation and genome defense conserved in many eukaryotic organisms. In Arabidopsis, the DNA methyltransferase domains rearranged methylase 2 (DRM2) controls RNA-directed DNA methylation in a pathway that also involves the plant-specific RNA Polymerase V (Pol V). Additionally, the Arabidopsis genome encodes an evolutionarily conserved but catalytically inactive DNA methyltransferase, DRM3. Here, we show that DRM3 has moderate effects on global DNA methylation and small RNA abundance and that DRM3 physically interacts with Pol V. In Arabidopsis drm3 mutants, we observe a lower level of Pol V-dependent noncoding RNA transcripts even though Pol V chromatin occupancy is increased at many sites in the genome. These findings suggest that DRM3 acts to promote Pol V transcriptional elongation or assist in the stabilization of Pol V transcripts. This work sheds further light on the mechanism by which long noncoding RNAs facilitate RNA-directed DNA methylation.
Collapse
|
50
|
Salicylic Acid Signaling in Plant Innate Immunity. PLANT HORMONE SIGNALING SYSTEMS IN PLANT INNATE IMMUNITY 2015. [DOI: 10.1007/978-94-017-9285-1_2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|