1
|
Chan ER, Benchek P, Miller G, Brustoski K, Schaffer A, Truitt B, Tag J, Freebairn L, Lewis BA, Stein CM, Iyengar SK. Importance of copy number variants in childhood apraxia of speech and other speech sound disorders. Commun Biol 2024; 7:1273. [PMID: 39369109 PMCID: PMC11455877 DOI: 10.1038/s42003-024-06968-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 09/25/2024] [Indexed: 10/07/2024] Open
Abstract
Childhood apraxia of speech (CAS) is a severe and rare form of speech sound disorder (SSD). CAS is typically sporadic, but may segregate in families with broader speech and language deficits. We hypothesize that genetic changes may be involved in the etiology of CAS. We conduct whole-genome sequencing in 27 families with CAS, 101 individuals in all. We identify 17 genomic regions including 19 unique copy number variants (CNVs). Three variants are shared across families, but the rest are unique; three events are de novo. In four families, siblings with milder phenotypes co-inherited the same CNVs, demonstrating variable expressivity. We independently validate eight CNVs using microarray technology and find many of these CNVs are present in children with milder forms of SSD. Bioinformatic investigation reveal four CNVs with substantial functional consequences (cytobands 2q24.3, 6p12.3-6p12.2, 11q23.2-11q23.3, and 16p11.2). These discoveries show that CNVs are a heterogeneous, but prevalent, cause of CAS.
Collapse
Affiliation(s)
- E Ricky Chan
- Department of Population & Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Penelope Benchek
- Department of Population & Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Gabrielle Miller
- Department of Psychological Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Kim Brustoski
- Department of Population & Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Ashleigh Schaffer
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Barbara Truitt
- Department of Population & Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Jessica Tag
- Department of Psychological Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Lisa Freebairn
- Department of Psychological Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Barbara A Lewis
- Department of Psychological Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Catherine M Stein
- Department of Population & Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA.
| | - Sudha K Iyengar
- Department of Population & Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA.
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
2
|
Cheng PL, Wang H, Dombroski BA, Farrell JJ, Horng I, Chung T, Tosto G, Kunkle BW, Bush WS, Vardarajan B, Schellenberg GD, Lee WP. A Specialized Reference Panel with Structural Variants Integration for Improving Genotype Imputation in Alzheimer's Disease and Related Dementias (ADRD). MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.22.24310827. [PMID: 39108532 PMCID: PMC11302603 DOI: 10.1101/2024.07.22.24310827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
We developed an imputation panel for Alzheimer's disease (AD) and related dementias (ADRD) using whole-genome sequencing (WGS) data from the Alzheimer's Disease Sequencing Project (ADSP). Recognizing the significant associations between structural variants (SVs) and AD, and their underrepresentation in existing public reference panels, our panel uniquely integrates single nucleotide variants (SNVs), short insertions and deletions (indels), and SVs. This panel enhances the imputation of disease susceptibility, including rare AD-associated SNVs, indels, and SVs, onto genotype array data, offering a cost-effective alternative to whole-genome sequencing while significantly augmenting statistical power. Notably, we discovered 10 rare indels nominal significant related to AD that are absent in the TOPMed-r2 panel and identified three suggestive significant (p-value < 1E-05) AD-associated SVs in the genes EXOC3L2 and DMPK, were identified. These findings provide new insights into AD genetics and underscore the critical role of imputation panels in advancing our understanding of complex diseases like ADRD.
Collapse
Affiliation(s)
- Po-Liang Cheng
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hui Wang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Beth A Dombroski
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John J Farrell
- Biomedical Genetics, Department of Medicine, Boston University Medical School, Boston, MA, USA
| | - Iris Horng
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tingting Chung
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Giuseppe Tosto
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, NY 10032, USA
- Department of Neurology, College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital, NY 10032, USA
| | - Brian W Kunkle
- John P Hussman Institute for Human Genomics, Miami, FL, USA
- John T Macdonald Department of Human Genetics, Miami, FL, USA
| | - William S Bush
- Cleveland Institute for Computational Biology, Cleveland, OH, USA
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Badri Vardarajan
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, NY 10032, USA
- Department of Neurology, College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital, NY 10032, USA
| | - Gerard D Schellenberg
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wan-Ping Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
3
|
Azidane S, Gallego X, Durham L, Cáceres M, Guney E, Pérez-Cano L. Identification of novel driver risk genes in CNV loci associated with neurodevelopmental disorders. HGG ADVANCES 2024; 5:100316. [PMID: 38850022 PMCID: PMC11264174 DOI: 10.1016/j.xhgg.2024.100316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024] Open
Abstract
Copy-number variants (CNVs) are genome-wide structural variations involving the duplication or deletion of large nucleotide sequences. While these types of variations can be commonly found in humans, large and rare CNVs are known to contribute to the development of various neurodevelopmental disorders (NDDs), including autism spectrum disorder (ASD). Nevertheless, given that these NDD-risk CNVs cover broad regions of the genome, it is particularly challenging to pinpoint the critical gene(s) responsible for the manifestation of the phenotype. In this study, we performed a meta-analysis of CNV data from 11,614 affected individuals with NDDs and 4,031 control individuals from SFARI database to identify 41 NDD-risk CNV loci, including 24 novel regions. We also found evidence for dosage-sensitive genes within these regions being significantly enriched for known NDD-risk genes and pathways. In addition, a significant proportion of these genes was found to (1) converge in protein-protein interaction networks, (2) be among most expressed genes in the brain across all developmental stages, and (3) be hit by deletions that are significantly over-transmitted to individuals with ASD within multiplex ASD families from the iHART cohort. Finally, we conducted a burden analysis using 4,281 NDD cases from Decipher and iHART cohorts, and 2,504 neurotypical control individuals from 1000 Genomes and iHART, which resulted in the validation of the association of 162 dosage-sensitive genes driving risk for NDDs, including 22 novel NDD-risk genes. Importantly, most NDD-risk CNV loci entail multiple NDD-risk genes in agreement with a polygenic model associated with the majority of NDD cases.
Collapse
Affiliation(s)
- Sara Azidane
- STALICLA Discovery and Data Science Unit, World Trade Center, Moll de Barcelona, Edif Este, 08039 Barcelona, Spain; Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Xavier Gallego
- STALICLA Discovery and Data Science Unit, World Trade Center, Moll de Barcelona, Edif Este, 08039 Barcelona, Spain
| | - Lynn Durham
- STALICLA Discovery and Data Science Unit, World Trade Center, Moll de Barcelona, Edif Este, 08039 Barcelona, Spain
| | - Mario Cáceres
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; ICREA, 08010 Barcelona, Spain; Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Research Institute, Barcelona, Spain
| | - Emre Guney
- STALICLA Discovery and Data Science Unit, World Trade Center, Moll de Barcelona, Edif Este, 08039 Barcelona, Spain
| | - Laura Pérez-Cano
- STALICLA Discovery and Data Science Unit, World Trade Center, Moll de Barcelona, Edif Este, 08039 Barcelona, Spain.
| |
Collapse
|
4
|
Fichna JP, Chiliński M, Halder AK, Cięszczyk P, Plewczynski D, Żekanowski C, Janik P. Structural Variants and Implicated Processes Associated with Familial Tourette Syndrome. Int J Mol Sci 2024; 25:5758. [PMID: 38891944 PMCID: PMC11171586 DOI: 10.3390/ijms25115758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Gilles de la Tourette syndrome (GTS) is a neurodevelopmental psychiatric disorder with complex and elusive etiology with a significant role of genetic factors. The aim of this study was to identify structural variants that could be associated with familial GTS. The study group comprised 17 multiplex families with 80 patients. Structural variants were identified from whole-genome sequencing data and followed by co-segregation and bioinformatic analyses. The localization of these variants was used to select candidate genes and create gene sets, which were subsequently processed in gene ontology and pathway enrichment analysis. Seventy putative pathogenic variants shared among affected individuals within one family but not present in the control group were identified. Only four private or rare deletions were exonic in LDLRAD4, B2M, USH2A, and ZNF765 genes. Notably, the USH2A gene is involved in cochlear development and sensory perception of sound, a process that was associated previously with familial GTS. In addition, two rare variants and three not present in the control group were co-segregating with the disease in two families, and uncommon insertions in GOLM1 and DISC1 were co-segregating in three families each. Enrichment analysis showed that identified structural variants affected synaptic vesicle endocytosis, cell leading-edge organization, and signaling for neurite outgrowth. The results further support the involvement of the regulation of neurotransmission, neuronal migration, and sound-sensing in GTS.
Collapse
Affiliation(s)
- Jakub P. Fichna
- Department of Neurogenetics and Functional Genomics, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | - Mateusz Chiliński
- Laboratory of Bioinformatics and Computational Genomics, Faculty of Mathematics and Information Science, Warsaw University of Technology, 00-662 Warsaw, Poland or (M.C.); or (A.K.H.); or (D.P.)
- Laboratory of Functional and Structural Genomics, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Anup Kumar Halder
- Laboratory of Bioinformatics and Computational Genomics, Faculty of Mathematics and Information Science, Warsaw University of Technology, 00-662 Warsaw, Poland or (M.C.); or (A.K.H.); or (D.P.)
- Laboratory of Functional and Structural Genomics, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Paweł Cięszczyk
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, Górskiego 1 Street, 80-336 Gdansk, Poland;
| | - Dariusz Plewczynski
- Laboratory of Bioinformatics and Computational Genomics, Faculty of Mathematics and Information Science, Warsaw University of Technology, 00-662 Warsaw, Poland or (M.C.); or (A.K.H.); or (D.P.)
- Laboratory of Functional and Structural Genomics, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Cezary Żekanowski
- Department of Neurogenetics and Functional Genomics, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, Górskiego 1 Street, 80-336 Gdansk, Poland;
| | - Piotr Janik
- Department of Neurology, Medical University of Warsaw, 02-091 Warsaw, Poland;
| |
Collapse
|
5
|
Sefik E, Duan K, Li Y, Sholar B, Evans L, Pincus J, Ammar Z, Murphy MM, Klaiman C, Saulnier CA, Pulver SL, Goldman-Yassen AE, Guo Y, Walker EF, Li L, Mulle JG, Shultz S. Structural deviations of the posterior fossa and the cerebellum and their cognitive links in a neurodevelopmental deletion syndrome. Mol Psychiatry 2024:10.1038/s41380-024-02584-8. [PMID: 38744992 DOI: 10.1038/s41380-024-02584-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 05/16/2024]
Abstract
High-impact genetic variants associated with neurodevelopmental disorders provide biologically-defined entry points for mechanistic investigation. The 3q29 deletion (3q29Del) is one such variant, conferring a 40-100-fold increased risk for schizophrenia, as well as high risk for autism and intellectual disability. However, the mechanisms leading to neurodevelopmental disability remain largely unknown. Here, we report the first in vivo quantitative neuroimaging study in individuals with 3q29Del (N = 24) and neurotypical controls (N = 1608) using structural MRI. Given prior radiology reports of posterior fossa abnormalities in 3q29Del, we focused our investigation on the cerebellum and its tissue-types and lobules. Additionally, we compared the prevalence of cystic/cyst-like malformations of the posterior fossa between 3q29Del and controls and examined the association between neuroanatomical findings and quantitative traits to probe gene-brain-behavior relationships. 3q29Del participants had smaller cerebellar cortex volumes than controls, before and after correction for intracranial volume (ICV). An anterior-posterior gradient emerged in finer grained lobule-based and voxel-wise analyses. 3q29Del participants also had larger cerebellar white matter volumes than controls following ICV-correction and displayed elevated rates of posterior fossa arachnoid cysts and mega cisterna magna findings independent of cerebellar volume. Cerebellar white matter and subregional gray matter volumes were associated with visual-perception and visual-motor integration skills as well as IQ, while cystic/cyst-like malformations yielded no behavioral link. In summary, we find that abnormal development of cerebellar structures may represent neuroimaging-based biomarkers of cognitive and sensorimotor function in 3q29Del, adding to the growing evidence identifying cerebellar pathology as an intersection point between syndromic and idiopathic forms of neurodevelopmental disabilities.
Collapse
Affiliation(s)
- Esra Sefik
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Kuaikuai Duan
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | - Yiheng Li
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Brittney Sholar
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Marcus Autism Center, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA
| | - Lindsey Evans
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Marcus Autism Center, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA
| | - Jordan Pincus
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Marcus Autism Center, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA
| | - Zeena Ammar
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Marcus Autism Center, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA
| | - Melissa M Murphy
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Cheryl Klaiman
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Marcus Autism Center, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA
| | - Celine A Saulnier
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Neurodevelopmental Assessment & Consulting Services, Atlanta, GA, USA
| | - Stormi L Pulver
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Marcus Autism Center, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA
| | - Adam E Goldman-Yassen
- Department of Radiology, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Ying Guo
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Elaine F Walker
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Longchuan Li
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Marcus Autism Center, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA
| | - Jennifer G Mulle
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA.
| | - Sarah Shultz
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.
- Marcus Autism Center, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
6
|
Schleifer CH, O'Hora KP, Fung H, Xu J, Robinson TA, Wu AS, Kushan-Wells L, Lin A, Ching CRK, Bearden CE. Effects of gene dosage and development on subcortical nuclei volumes in individuals with 22q11.2 copy number variations. Neuropsychopharmacology 2024; 49:1024-1032. [PMID: 38431758 PMCID: PMC11039652 DOI: 10.1038/s41386-024-01832-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/16/2024] [Accepted: 02/12/2024] [Indexed: 03/05/2024]
Abstract
The 22q11.2 locus contains genes critical for brain development. Reciprocal Copy Number Variations (CNVs) at this locus impact risk for neurodevelopmental and psychiatric disorders. Both 22q11.2 deletions (22qDel) and duplications (22qDup) are associated with autism, but 22qDel uniquely elevates schizophrenia risk. Understanding brain phenotypes associated with these highly penetrant CNVs can provide insights into genetic pathways underlying neuropsychiatric disorders. Human neuroimaging and animal models indicate subcortical brain alterations in 22qDel, yet little is known about developmental differences across specific nuclei between reciprocal 22q11.2 CNV carriers and typically developing (TD) controls. We conducted a longitudinal MRI study in a total of 385 scans from 22qDel (n = 96, scans = 191, 53.1% female), 22qDup (n = 37, scans = 64, 45.9% female), and TD controls (n = 80, scans = 130, 51.2% female), across a wide age range (5.5-49.5 years). Volumes of the thalamus, hippocampus, amygdala, and anatomical subregions were estimated using FreeSurfer, and the linear effects of 22q11.2 gene dosage and non-linear effects of age were characterized with generalized additive mixed models (GAMMs). Positive gene dosage effects (volume increasing with copy number) were observed for total intracranial and whole hippocampus volumes, but not whole thalamus or amygdala volumes. Several amygdala subregions exhibited similar positive effects, with bi-directional effects found across thalamic nuclei. Distinct age-related trajectories were observed across the three groups. Notably, both 22qDel and 22qDup carriers exhibited flattened development of hippocampal CA2/3 subfields relative to TD controls. This study provides novel insights into the impact of 22q11.2 CNVs on subcortical brain structures and their developmental trajectories.
Collapse
Affiliation(s)
- Charles H Schleifer
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA.
- David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| | - Kathleen P O'Hora
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Hoki Fung
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Jennifer Xu
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Taylor-Ann Robinson
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Angela S Wu
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Leila Kushan-Wells
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Amy Lin
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Christopher R K Ching
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Carrie E Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA.
- Department of Psychology, University of California, Los Angeles, CA, USA.
| |
Collapse
|
7
|
Kendall KM, Duffin D, Doherty J, Irving R, Procter A, Walters JTR. The translation of psychiatric genetic findings to the clinic. Schizophr Res 2024; 267:470-472. [PMID: 37919212 DOI: 10.1016/j.schres.2023.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/06/2023] [Accepted: 10/24/2023] [Indexed: 11/04/2023]
Abstract
Mental health and neurodevelopmental disorders are highly heritable and can affect morbidity and mortality. A large, growing body of evidence has implicated both common and rare variation in the risk of these disorders. Testing for rare variants, such as copy number variants, has been available in clinical practice for some time in the context of developmental disorders. However, until recently, individuals with mental health and neurodevelopmental disorders in the UK have not tended to access genetic counselling and testing. Here, we describe the development of the All Wales Psychiatric Genomics Service, a collaborative effort between psychiatric and clinical genetics services and the first of its kind in the UK. We provide an overview of the structure and function of the service, our referral criteria, a summary of the 40 referrals we have received to date and our future plans.
Collapse
Affiliation(s)
- Kimberley Marie Kendall
- Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, United Kingdom.
| | - Donna Duffin
- All Wales Medical Genomics Service, Heath Park, Cardiff CF14 4XW, United Kingdom.
| | - Joanne Doherty
- Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, United Kingdom.
| | - Rachel Irving
- All Wales Medical Genomics Service, Heath Park, Cardiff CF14 4XW, United Kingdom.
| | - Annie Procter
- All Wales Medical Genomics Service, Heath Park, Cardiff CF14 4XW, United Kingdom
| | - James Tynan Rhys Walters
- Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, United Kingdom.
| |
Collapse
|
8
|
Ng JK, Chen Y, Akinwe TM, Heins HB, Mehinovic E, Chang Y, Payne ZL, Manuel JG, Karchin R, Turner TN. Proteome-Wide Assessment of Clustering of Missense Variants in Neurodevelopmental Disorders Versus Cancer. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.02.24302238. [PMID: 38352539 PMCID: PMC10863034 DOI: 10.1101/2024.02.02.24302238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
Missense de novo variants (DNVs) and missense somatic variants contribute to neurodevelopmental disorders (NDDs) and cancer, respectively. Proteins with statistical enrichment based on analyses of these variants exhibit convergence in the differing NDD and cancer phenotypes. Herein, the question of why some of the same proteins are identified in both phenotypes is examined through investigation of clustering of missense variation at the protein level. Our hypothesis is that missense variation is present in different protein locations in the two phenotypes leading to the distinct phenotypic outcomes. We tested this hypothesis in 1D protein space using our software CLUMP. Furthermore, we newly developed 3D-CLUMP that uses 3D protein structures to spatially test clustering of missense variation for proteome-wide significance. We examined missense DNVs in 39,883 parent-child sequenced trios with NDDs and missense somatic variants from 10,543 sequenced tumors covering five TCGA cancer types and two COSMIC pan-cancer aggregates of tissue types. There were 57 proteins with proteome-wide significant missense variation clustering in NDDs when compared to cancers and 79 proteins with proteome-wide significant missense clustering in cancers compared to NDDs. While our main objective was to identify differences in patterns of missense variation, we also identified a novel NDD protein BLTP2. Overall, our study is innovative, provides new insights into differential missense variation in NDDs and cancer at the protein-level, and contributes necessary information toward building a framework for thinking about prognostic and therapeutic aspects of these proteins.
Collapse
Affiliation(s)
- Jeffrey K. Ng
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yilin Chen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Titilope M. Akinwe
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Molecular Genetics & Genomics Graduate Program, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hillary B. Heins
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Elvisa Mehinovic
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yoonhoo Chang
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Human & Statistical Genetics Graduate Program, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Zachary L. Payne
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Molecular Genetics & Genomics Graduate Program, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Juana G. Manuel
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rachel Karchin
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
- The Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Tychele N. Turner
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
9
|
Schleifer CH, O'Hora KP, Jalbrzikowski M, Bondy E, Kushan-Wells L, Lin A, Uddin LQ, Bearden CE. Longitudinal Development of Thalamocortical Functional Connectivity in 22q11.2 Deletion Syndrome. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:156-163. [PMID: 37709253 PMCID: PMC10956688 DOI: 10.1016/j.bpsc.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/15/2023] [Accepted: 09/04/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND The 22q11.2 deletion syndrome (22qDel) is a genetic copy number variant that strongly increases risk for schizophrenia and other neurodevelopmental disorders. Disrupted functional connectivity between the thalamus and the somatomotor/frontoparietal cortex has been implicated in cross-sectional studies of 22qDel, idiopathic schizophrenia, and youths at clinical high risk for psychosis. Here, we used a novel functional atlas approach to investigate longitudinal age-related changes in network-specific thalamocortical functional connectivity (TCC) in participants with 22qDel and typically developing (TD) control participants. METHODS TCC was calculated for 9 functional networks derived from resting-state functional magnetic resonance imaging scans collected from 65 participants with 22qDel (63.1% female) and 69 demographically matched TD control participants (49.3% female) ages 6 to 23 years. Analyses included 86 longitudinal follow-up scans. Nonlinear age trajectories were characterized with generalized additive mixed models. RESULTS In participants with 22qDel, TCC in the frontoparietal network increased until approximately age 13, while somatomotor TCC and cingulo-opercular TCC decreased from age 6 to 23. In contrast, no significant relationships between TCC and age were found in TD control participants. Somatomotor connectivity was significantly higher in participants with 22qDel than in TD control participants in childhood, but lower in late adolescence. Frontoparietal TCC showed the opposite pattern. CONCLUSIONS 22qDel is associated with aberrant development of functional network connectivity between the thalamus and cortex. Younger individuals with 22qDel have lower frontoparietal connectivity and higher somatomotor connectivity than control individuals, but this phenotype may normalize or partially reverse by early adulthood. Altered maturation of this circuitry may underlie elevated neuropsychiatric disease risk in this syndrome.
Collapse
Affiliation(s)
- Charles H Schleifer
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.
| | - Kathleen P O'Hora
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
| | - Maria Jalbrzikowski
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Elizabeth Bondy
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
| | - Leila Kushan-Wells
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
| | - Amy Lin
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
| | - Lucina Q Uddin
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California; Department of Psychology, University of California, Los Angeles, Los Angeles, California
| | - Carrie E Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California; Department of Psychology, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
10
|
Espinosa-Mojica AA, Varo Varo C. Determining the Linguistic Profile of Children With Rare Genetic Disorders. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2024; 67:170-186. [PMID: 38085694 DOI: 10.1044/2023_jslhr-23-00101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
PURPOSE Language studies on populations with rare genetic disorders are limited. Hence, there is little data on commonly found or expected developmental linguistic traits and cognitive mechanisms that may be impaired. Based on the hypothesis that there is a close connection between language and cognition and the relevance of specific genetic changes in the development of each, our goal was to provide linguistic data on relationships with other executive functioning mechanisms. METHOD This study assessed language skills, communicative behaviors, and executive functions in four children, aged 7-9 years, with rare genetic disorders, using standardized protocols and tests. RESULTS The findings revealed different levels of language impairment and executive functioning problems in each case. The overall executive function index performance for each of the four cases studied was clinically significantly high, indicating executive dysfunction. CONCLUSIONS The cases analyzed illustrate different types of atypical development that affect both language and other cognitive mechanisms and underscore the importance of executive skills and the various ways in which they are involved in diverse levels of language that might be affected to a greater or lesser degree in rare genetic disorders. In conclusion, we found that language dysfunction is a salient feature of the rare genetic disorders included in our study, although this is not necessarily true for all genetic disorders. Along with these conclusive results, we performed a qualitative analysis of the linguistic and cognitive components that enable functional communication in order to allow optimal interpretation of the data we have collected, laying the foundations for a more effective therapeutic approach.
Collapse
|
11
|
Moreno Campos V, Benítez-Burraco A. Communication deficits in a case of a deletion in 7q31.1-q31.33 encompassing FOXP2. CLINICAL LINGUISTICS & PHONETICS 2023; 37:1157-1170. [PMID: 35702019 DOI: 10.1080/02699206.2022.2085174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Copy number variants (CNVs) found in individuals with communication deficits provide a valuable window to the genetic causes of problems with language and, more generally, to the genetic foundation of the human-specific ability to learn and use languages. This paper reports on the language and communication problems of a patient with a microduplication in 22q11.23 and a microdeletion in 7q31.1-q1.33 encompassing FOXP2. The proband exhibits severe speech problems and moderate comprehension deficits, whereas her pragmatic abilities are a relative strength, as she uses gestures quite competently to compensate for her expressive issues. This profile is compatible with the deficiencies found in patients with similar CNVs, particularly with people bearing microdeletions in 7q31.1-q31.33.
Collapse
Affiliation(s)
| | - Antonio Benítez-Burraco
- Department of Spanish, Linguistics and Theory of Literature (Linguistics), University of Sevilla, Seville, Spain
| |
Collapse
|
12
|
Wright DC, Baluyot ML, Carmichael J, Darmanian A, Jose N, Ngo C, Heaps LS, Yendle A, Holman K, Ziso S, Khan F, Masi A, Silove N, Eapen V. Saliva DNA: An alternative biospecimen for single nucleotide polymorphism chromosomal microarray analysis in autism. Am J Med Genet A 2023; 191:2913-2920. [PMID: 37715344 DOI: 10.1002/ajmg.a.63400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/19/2023] [Accepted: 08/30/2023] [Indexed: 09/17/2023]
Abstract
Chromosomal microarray analysis (CMA) is typically performed for investigation of autism using blood DNA. However, blood collection poses significant challenges for autistic children with repetitive behaviors and sensory and communication issues, often necessitating physical restraint or sedation. Noninvasive saliva collection offers an alternative, however, no published studies to date have evaluated saliva DNA for CMA in autism. Furthermore, previous reports suggest that saliva is suboptimal for detecting copy number variation. We therefore aimed to evaluate saliva DNA for single nucleotide polymorphism (SNP) CMA in autistic children. Saliva DNA from 48 probands and parents (n = 133) was obtained with a mean concentration of 141.7 ng/μL. SNP CMA was successful in 131/133 (98.5%) patients from which we correlated the size and accuracy of a copy number variant(s) called between a proband and carrier parent, and for a subgroup (n = 17 probands) who had a previous CMA using blood sample. There were no discordant copy number variant results between the proband and carrier parent, or the subgroup, however, there was an acceptable mean size difference of 0.009 and 0.07 Mb, respectively. Our findings demonstrate that saliva DNA can be an alternative for SNP CMA in autism, which avoids blood collection with significant implications for clinical practice guidelines.
Collapse
Affiliation(s)
- Dale Cameron Wright
- Cytogenetics Department, Sydney Genome Diagnostics, Western Sydney Genetics Program, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
- Specialty of Genomic Medicine, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Maria Lourdes Baluyot
- Cytogenetics Department, Sydney Genome Diagnostics, Western Sydney Genetics Program, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Johanna Carmichael
- Cytogenetics Department, Sydney Genome Diagnostics, Western Sydney Genetics Program, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Artur Darmanian
- Cytogenetics Department, Sydney Genome Diagnostics, Western Sydney Genetics Program, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Ngaire Jose
- Cytogenetics Department, Sydney Genome Diagnostics, Western Sydney Genetics Program, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Con Ngo
- Cytogenetics Department, Sydney Genome Diagnostics, Western Sydney Genetics Program, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
- Specialty of Genomic Medicine, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Luke St Heaps
- Cytogenetics Department, Sydney Genome Diagnostics, Western Sydney Genetics Program, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
- Specialty of Genomic Medicine, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Amber Yendle
- Cytogenetics Department, Sydney Genome Diagnostics, Western Sydney Genetics Program, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Katherine Holman
- Cytogenetics Department, Sydney Genome Diagnostics, Western Sydney Genetics Program, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
- Specialty of Genomic Medicine, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Sylvia Ziso
- Cytogenetics Department, Sydney Genome Diagnostics, Western Sydney Genetics Program, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Feroza Khan
- Academic Unit of Infant Child & Adolescent Psychiatry Services (AUCS), South Western Sydney Local Health District, Ingham Institute, Liverpool, Australia
- Discipline of Psychiatry & Mental Health, School of Clinical Medicine, University of New South Wales, Randwick, New South Wales, Australia
| | - Anne Masi
- Academic Unit of Infant Child & Adolescent Psychiatry Services (AUCS), South Western Sydney Local Health District, Ingham Institute, Liverpool, Australia
| | - Natalie Silove
- Child Development Unit, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Valsa Eapen
- Academic Unit of Infant Child & Adolescent Psychiatry Services (AUCS), South Western Sydney Local Health District, Ingham Institute, Liverpool, Australia
- Discipline of Psychiatry & Mental Health, School of Clinical Medicine, University of New South Wales, Randwick, New South Wales, Australia
| |
Collapse
|
13
|
Schleifer CH, O’Hora KP, Fung H, Xu J, Robinson TA, Wu AS, Kushan-Wells L, Lin A, Ching CRK, Bearden CE. Effects of Gene Dosage and Development on Subcortical Nuclei Volumes in Individuals with 22q11.2 Copy Number Variations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.31.564553. [PMID: 37961662 PMCID: PMC10635019 DOI: 10.1101/2023.10.31.564553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The 22q11.2 locus contains genes critical for brain development. Reciprocal Copy Number Variations (CNVs) at this locus impact risk for neurodevelopmental and psychiatric disorders. Both 22q11.2 deletions (22qDel) and duplications (22qDup) are associated with autism, but 22qDel uniquely elevates schizophrenia risk. Understanding brain phenotypes associated with these highly penetrant CNVs can provide insights into genetic pathways underlying neuropsychiatric disorders. Human neuroimaging and animal models indicate subcortical brain alterations in 22qDel, yet little is known about developmental differences across specific nuclei between reciprocal 22q11.2 CNV carriers and typically developing (TD) controls. We conducted a longitudinal MRI study in 22qDel (n=96, 53.1% female), 22qDup (n=37, 45.9% female), and TD controls (n=80, 51.2% female), across a wide age range (5.5-49.5 years). Volumes of the thalamus, hippocampus, amygdala, and anatomical subregions were estimated using FreeSurfer, and the effect of 22q11.2 gene dosage was examined using linear mixed models. Age-related changes were characterized with general additive mixed models (GAMMs). Positive gene dosage effects (22qDel < TD < 22qDup) were observed for total intracranial and whole hippocampus volumes, but not whole thalamus or amygdala volumes. Several amygdala subregions exhibited similar positive effects, with bi-directional effects found across thalamic nuclei. Distinct age-related trajectories were observed across the three groups. Notably, both 22qDel and 22qDup carriers exhibited flattened development of hippocampal CA2/3 subfields relative to TD controls. This study provides novel insights into the impact of 22q11.2 CNVs on subcortical brain structures and their developmental trajectories.
Collapse
Affiliation(s)
- Charles H. Schleifer
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
- David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Kathleen P. O’Hora
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Hoki Fung
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Jennifer Xu
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Taylor-Ann Robinson
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Angela S. Wu
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Leila Kushan-Wells
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Amy Lin
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Christopher R. K. Ching
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Carrie E. Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
- Department of Psychology, University of California, Los Angeles, CA, USA
| |
Collapse
|
14
|
Mainieri F, La Bella S, Rinaldi M, Chiarelli F. Rare genetic forms of obesity in childhood and adolescence, a comprehensive review of their molecular mechanisms and diagnostic approach. Eur J Pediatr 2023; 182:4781-4793. [PMID: 37607976 DOI: 10.1007/s00431-023-05159-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/24/2023]
Abstract
Obesity represents a major health problem in the pediatric population with an increasing prevalence worldwide, associated with cardiovascular and metabolic disorders, and due to both genetic and environmental factors. Rare forms of obesity are mostly monogenic, and less frequently due to polygenic influence. Polygenic form of obesity is usually the common obesity with single gene variations exerting smaller impact on weight and is commonly non-syndromic.Non-syndromic monogenic obesity is associated with variants in single genes typically related to the hypothalamic leptin-melanocortin signalling pathway, which plays a key role in hunger and satiety regulation, thus body weight control. Patients with these genetic defects usually present with hyperphagia and early-onset severe obesity. Significant progress in genetic diagnostic testing has recently made for early identification of patients with genetic obesity, which guarantees prompt intervention in terms of therapeutic management of the disease. What is Known: • Obesity represents a major health problem among children and adolescents, with an increasing prevalence worldwide, associated with cardiovascular disease and metabolic abnormalities, and it can be due to both genetic and environmental factors. • Non-syndromic monogenic obesity is linked to modifications in single genes usually involved in the hypothalamic leptin-melanocortin signalling pathway, which plays a key role in hunger and satiety regulation. What is New: • The increasing understanding of rare forms of monogenic obesity has provided significant insights into the genetic causes of pediatric obesity, and our current knowledge of the various genes associated with childhood obesity is rapidly expanding. • A useful diagnostic algorithm for early identification of genetic obesity has been proposed, which can ensure a prompt intervention in terms of therapeutic management of the disease and an early prevention of the development of associated metabolic conditions.
Collapse
Affiliation(s)
| | | | - Marta Rinaldi
- Paediatric Department, Stoke Mandeville Hospital, Thames Valley Deanery, Oxford, UK
| | | |
Collapse
|
15
|
Fitneva SA, Corbett BA, Prasad AN. Psychosocial correlates of neurodevelopmental disabilities in 2- to 3-year-olds. Epilepsy Behav 2023; 146:109370. [PMID: 37556967 DOI: 10.1016/j.yebeh.2023.109370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/07/2023] [Accepted: 07/21/2023] [Indexed: 08/11/2023]
Abstract
RATIONALE Canada's National Longitudinal Study of Children and Youth survey data provide insights into chronic health conditions in children. Children with neurodevelopmental disabilities (NDD) are at increased risk for adverse behavioral outcomes. METHODS We examined data from 3 cycles of Canada's National Longitudinal Survey of Children and Youth for the presence of epilepsy (Epi), cerebral palsy (CP), and intellectual disability (ID) in 2- to 3-year-olds. We then examined the relationship of NDD to composite measures of behavior: hyperactivity-inattention (HI), prosocial behaviors (PS), emotional disorder-anxiety (EA), physical aggression oppositional behavior (AO), and separation anxiety (SA). RESULTS There were 15 children with Epi, 25 with CP and 28 with ID in a sample of 10,879, which represented a population of 756,848 2- to 3-year-old Canadian children. Comparison of mean scores of the NDD groups and controls (Welch's ANOVA), indicated statistically significant differences in HI, PS, EA, and SA at the p < 0.001 level. Post hoc analysis showed significant intergroup differences. Children with epilepsy did not differ from controls on any of the behavioral measures. However, in comparison to controls, children with intellectual disability had higher EA and SA scores and lower PS scores, and those with cerebral palsy had lower PS scores. CONCLUSIONS Children with NDD show differences in behavioral outcomes at a very early age when compared with controls. Screening for these behaviors and early intervention programs may help avoid longer term psychiatric comorbidity associated with these disabilities.
Collapse
Affiliation(s)
| | - Bradley A Corbett
- Richard Ivey School of Business, Western University, London, ON, Canada
| | - Asuri N Prasad
- Division of Pediatric Neurology, Dept. of Pediatrics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
| |
Collapse
|
16
|
Bonini KE, Thomas-Wilson A, Marathe PN, Sebastin M, Odgis JA, Biase MD, Kelly NR, Ramos MA, Insel BJ, Scarimbolo L, Rehman AU, Guha S, Okur V, Abhyankar A, Phadke S, Nava C, Gallagher KM, Elkhoury L, Edelmann L, Zinberg RE, Abul-Husn NS, Diaz GA, Greally JM, Suckiel SA, Horowitz CR, Kenny EE, Wasserstein M, Gelb BD, Jobanputra V. Identification of copy number variants with genome sequencing: Clinical experiences from the NYCKidSeq program. Clin Genet 2023; 104:210-225. [PMID: 37334874 PMCID: PMC10505482 DOI: 10.1111/cge.14365] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/28/2023] [Accepted: 05/15/2023] [Indexed: 06/21/2023]
Abstract
Copy number variations (CNVs) play a significant role in human disease. While chromosomal microarray has traditionally been the first-tier test for CNV detection, use of genome sequencing (GS) is increasing. We report the frequency of CNVs detected with GS in a diverse pediatric cohort from the NYCKidSeq program and highlight specific examples of its clinical impact. A total of 1052 children (0-21 years) with neurodevelopmental, cardiac, and/or immunodeficiency phenotypes received GS. Phenotype-driven analysis was used, resulting in 183 (17.4%) participants with a diagnostic result. CNVs accounted for 20.2% of participants with a diagnostic result (37/183) and ranged from 0.5 kb to 16 Mb. Of participants with a diagnostic result (n = 183) and phenotypes in more than one category, 5/17 (29.4%) were solved by a CNV finding, suggesting a high prevalence of diagnostic CNVs in participants with complex phenotypes. Thirteen participants with a diagnostic CNV (35.1%) had previously uninformative genetic testing, of which nine included a chromosomal microarray. This study demonstrates the benefits of GS for reliable detection of CNVs in a pediatric cohort with variable phenotypes.
Collapse
Affiliation(s)
- Katherine E. Bonini
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Priya N. Marathe
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Monisha Sebastin
- Department of Pediatrics, Division of Pediatric Genetic Medicine, Children’s Hospital at Montefiore/Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY
| | - Jacqueline A. Odgis
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Miranda Di Biase
- Department of Pediatrics, Division of Pediatric Genetic Medicine, Children’s Hospital at Montefiore/Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY
| | - Nicole R. Kelly
- Department of Pediatrics, Division of Pediatric Genetic Medicine, Children’s Hospital at Montefiore/Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY
| | - Michelle A. Ramos
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY
- Institute for Health Equity Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Beverly J. Insel
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Laura Scarimbolo
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Saurav Guha
- Molecular Diagnostics, New York Genome Center, New York, NY
| | - Volkan Okur
- Molecular Diagnostics, New York Genome Center, New York, NY
| | | | - Shruti Phadke
- Molecular Diagnostics, New York Genome Center, New York, NY
| | - Caroline Nava
- Molecular Diagnostics, New York Genome Center, New York, NY
| | - Katie M. Gallagher
- Department of Pediatrics, Division of Pediatric Genetic Medicine, Children’s Hospital at Montefiore/Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY
| | | | | | - Randi E. Zinberg
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Obstetrics, Gynecology and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Noura S. Abul-Husn
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - George A. Diaz
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY
| | - John M. Greally
- Department of Pediatrics, Division of Pediatric Genetic Medicine, Children’s Hospital at Montefiore/Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY
| | - Sabrina A. Suckiel
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Carol R. Horowitz
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY
- Institute for Health Equity Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Eimear E. Kenny
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Melissa Wasserstein
- Department of Pediatrics, Division of Pediatric Genetic Medicine, Children’s Hospital at Montefiore/Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY
| | - Bruce D. Gelb
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Vaidehi Jobanputra
- Molecular Diagnostics, New York Genome Center, New York, NY
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY
| |
Collapse
|
17
|
Abstract
Genetic forms of obesity contribute to ∼7% of severe obesity in children and adolescents. The exact global prevalence of monogenic and syndromic forms of obesity is not well established, most likely due to missed or delayed diagnosis. The challenge in determining the prevalence can be attributed to the lack of consensus on identifying and evaluating symptoms of genetic defects in a timely manner and hence a vastly undertested patient population. Further large-scale and long-term studies are needed to advance the understanding of this unique phenotype of obesity and effective treatment options."
Collapse
Affiliation(s)
| | - Sonali Malhotra
- MGH Weight Center, Massachusetts General Hospital and Harvard Medical School, 50 Staniford Street, Suite 430, Boston, MA 02114, USA; Rhythm Pharmaceuticals, 222 Berkeley Street, 12th Floor, Boston, MA 02116, USA.
| |
Collapse
|
18
|
Yu L, Ding H, Liu M, Liu L, Zhang Q, Lu J, Guo F, Zhang Y. A novel 1p13.2 deletion associates with neurodevelopmental disorders in a three-generation pedigree. BMC Med Genomics 2023; 16:114. [PMID: 37221554 DOI: 10.1186/s12920-023-01534-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/05/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND A multitude of studies have highlighted that copy number variants (CNVs) are associated with neurodevelopmental disorders (NDDs) characterized by a wide range of clinical characteristics. Benefiting from CNV calling from WES data, WES has emerged as a more powerful and cost-effective molecular diagnostic tool, which has been widely used for the diagnosis of genetic diseases, especially NDDs. To our knowledge, isolated deletions on chromosome 1p13.2 are rare. To date, only a few patients were reported with 1p13.2 deletions and most of them were sporadic. Besides, the correlation between 1p13.2 deletions and NDDs remained unclear. CASE PRESENTATION Here, we first reported five members in a three-generation Chinese family who presented with NDDs and carried a novel 1.41 Mb heterozygous 1p13.2 deletion with precise breakpoints. The diagnostic deletion contained 12 protein-coding genes and was observed to segregate with NDDs among the members of our reported family. Whether those genes contribute to the patient's phenotypes is still inconclusive. CONCLUSIONS We hypothesized that the NDD phenotype of our patients was caused by the diagnostic 1p13.2 deletion. However, further in-depth functional experiments are still needed to establish a 1p13.2 deletion-NDDs relationship. Our study might supplement the spectrum of 1p13.2 deletion-NDDs.
Collapse
Affiliation(s)
- Lihua Yu
- Medical Genetics Centre, Guangdong Women and Children Hospital, Guangzhou, Guangdong, China
| | - Hongke Ding
- Medical Genetics Centre, Guangdong Women and Children Hospital, Guangzhou, Guangdong, China
| | - Min Liu
- Prenatal diagnostic center, Huizhou No2 Maternal and Children's Healthcare Hospital, Huizhou, China
| | - Ling Liu
- Medical Genetics Centre, Guangdong Women and Children Hospital, Guangzhou, Guangdong, China
| | - Qi Zhang
- Medical Genetics Centre, Guangdong Women and Children Hospital, Guangzhou, Guangdong, China
| | - Jian Lu
- Medical Genetics Centre, Guangdong Women and Children Hospital, Guangzhou, Guangdong, China
| | - Fangfang Guo
- Medical Genetics Centre, Guangdong Women and Children Hospital, Guangzhou, Guangdong, China
| | - Yan Zhang
- Medical Genetics Centre, Guangdong Women and Children Hospital, Guangzhou, Guangdong, China.
| |
Collapse
|
19
|
Abstract
Schizophrenia is a neurodevelopmental disorder with genetic and environmental factors involved in its aetiology. Genetic liability contributing to the development of schizophrenia is a subject of extensive research activity, as reliable data regarding its aetiology would enable the improvement of its therapy and the development of new methods of treatment. A multitude of studies in this field focus on genetic variants, such as copy number variations (CNVs) or single-nucleotide variants (SNVs). Certain genetic disorders caused by CNVs including 22q11.2 microdeletion syndrome, Burnside-Butler syndrome (15q11.2 BP1-BP2 microdeletion) or 1q21.1 microduplication/microdeletion syndrome are associated with a higher risk of developing schizophrenia. In this article, we provide a unifying framework linking these CNVs and their associated genetic disorders with schizophrenia and its various neural and behavioural abnormalities.
Collapse
|
20
|
A Systematic Review of the Human Accelerated Regions in Schizophrenia and Related Disorders: Where the Evolutionary and Neurodevelopmental Hypotheses Converge. Int J Mol Sci 2023; 24:ijms24043597. [PMID: 36835010 PMCID: PMC9962562 DOI: 10.3390/ijms24043597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
Schizophrenia is a psychiatric disorder that results from genetic and environmental factors interacting and disrupting neurodevelopmental trajectories. Human Accelerated Regions (HARs) are evolutionarily conserved genomic regions that have accumulated human-specific sequence changes. Thus, studies on the impact of HARs in the context of neurodevelopment, as well as with respect to adult brain phenotypes, have increased considerably in the last few years. Through a systematic approach, we aim to offer a comprehensive review of HARs' role in terms of human brain development, configuration, and cognitive abilities, as well as whether HARs modulate the susceptibility to neurodevelopmental psychiatric disorders such as schizophrenia. First, the evidence in this review highlights HARs' molecular functions in the context of the neurodevelopmental regulatory genetic machinery. Second, brain phenotypic analyses indicate that HAR genes' expression spatially correlates with the regions that suffered human-specific cortical expansion, as well as with the regional interactions for synergistic information processing. Lastly, studies based on candidate HAR genes and the global "HARome" variability describe the involvement of these regions in the genetic background of schizophrenia, but also in other neurodevelopmental psychiatric disorders. Overall, the data considered in this review emphasise the crucial role of HARs in human-specific neurodevelopment processes and encourage future research on this evolutionary marker for a better understanding of the genetic basis of schizophrenia and other neurodevelopmental-related psychiatric disorders. Accordingly, HARs emerge as interesting genomic regions that require further study in order to bridge the neurodevelopmental and evolutionary hypotheses in schizophrenia and other related disorders and phenotypes.
Collapse
|
21
|
Kisaretova P, Tsybko A, Bondar N, Reshetnikov V. Molecular Abnormalities in BTBR Mice and Their Relevance to Schizophrenia and Autism Spectrum Disorders: An Overview of Transcriptomic and Proteomic Studies. Biomedicines 2023; 11:289. [PMID: 36830826 PMCID: PMC9953015 DOI: 10.3390/biomedicines11020289] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
Animal models of psychopathologies are of exceptional interest for neurobiologists because these models allow us to clarify molecular mechanisms underlying the pathologies. One such model is the inbred BTBR strain of mice, which is characterized by behavioral, neuroanatomical, and physiological hallmarks of schizophrenia (SCZ) and autism spectrum disorders (ASDs). Despite the active use of BTBR mice as a model object, the understanding of the molecular features of this strain that cause the observed behavioral phenotype remains insufficient. Here, we analyzed recently published data from independent transcriptomic and proteomic studies on hippocampal and corticostriatal samples from BTBR mice to search for the most consistent aberrations in gene or protein expression. Next, we compared reproducible molecular signatures of BTBR mice with data on postmortem samples from ASD and SCZ patients. Taken together, these data helped us to elucidate brain-region-specific molecular abnormalities in BTBR mice as well as their relevance to the anomalies seen in ASDs or SCZ in humans.
Collapse
Affiliation(s)
- Polina Kisaretova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Akad. Lavrentyeva 10, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Pirogova Street 2, Novosibirsk 630090, Russia
| | - Anton Tsybko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Akad. Lavrentyeva 10, Novosibirsk 630090, Russia
| | - Natalia Bondar
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Akad. Lavrentyeva 10, Novosibirsk 630090, Russia
| | - Vasiliy Reshetnikov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Akad. Lavrentyeva 10, Novosibirsk 630090, Russia
- Department of Biotechnology, Sirius University of Science and Technology, 1 Olympic Avenue, Sochi 354340, Russia
| |
Collapse
|
22
|
Key role of Rho GTPases in motor disorders associated with neurodevelopmental pathologies. Mol Psychiatry 2023; 28:118-126. [PMID: 35918397 DOI: 10.1038/s41380-022-01702-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 06/24/2022] [Accepted: 07/02/2022] [Indexed: 01/07/2023]
Abstract
Growing evidence suggests that Rho GTPases and molecules involved in their signaling pathways play a major role in the development of the central nervous system (CNS). Whole exome sequencing (WES) and de novo examination of mutations, including SNP (Single Nucleotide Polymorphism) in genes coding for the molecules of their signaling cascade, has allowed the recent discovery of dominant autosomic mutations and duplication or deletion of candidates in the field of neurodevelopmental diseases (NDD). Epidemiological studies show that the co-occurrence of several of these neurological pathologies may indeed be the rule. The regulators of Rho GTPases have often been considered for cognitive diseases such as intellectual disability (ID) and autism. But, in a remarkable way, mild to severe motor symptoms are now reported in autism and other cognitive NDD. Although a more abundant litterature reports the involvement of Rho GTPases and signaling partners in cognitive development, molecular investigations on their roles in central nervous system (CNS) development or degenerative CNS pathologies also reveal their role in embryonic and perinatal motor wiring through axon guidance and later in synaptic plasticity. Thus, Rho family small GTPases have been revealed to play a key role in brain functions including learning and memory but their precise role in motor development and associated symptoms in NDD has been poorly scoped so far, despite increasing clinical data highlighting the links between cognition and motor development. Indeed, early impairements in fine or gross motor performance is often an associated feature of NDDs, which then impact social communication, cognition, emotion, and behavior. We review here recent insights derived from clinical developmental neurobiology in the field of Rho GTPases and NDD (autism spectrum related disorder (ASD), ID, schizophrenia, hypotonia, spastic paraplegia, bipolar disorder and dyslexia), with a specific focus on genetic alterations affecting Rho GTPases that are involved in motor circuit development.
Collapse
|
23
|
Peter B. A case with cardiac, skeletal, speech, and motor traits narrows the subtelomeric 19p13.3 microdeletion region to 46 kb. Am J Med Genet A 2023; 191:120-129. [PMID: 36271830 DOI: 10.1002/ajmg.a.62998] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/22/2022] [Accepted: 10/07/2022] [Indexed: 12/14/2022]
Abstract
Subtelomeric 19p13.3 deletions have been associated with diverse anatomical and developmental phenotypes. A recent study of eight patients with subtelomeric interstitial 19p13.3 microdeletions at 0.3-1.4 Mb (hg 19) showed associations with growth restrictions, skeletal deformities, craniofacial anomalies, congenital heart defects, renal malformations, hernias, immune system deficits, fine and gross motor delays, speech delays, and developmental and learning delays. The authors defined two small regions of overlap containing four and 11 genes, respectively, with potential haploinsufficiency. Here, we present a new case with a de novo 184 kb deletion containing eight genes, three of which fall into the second previously identified small region of overlap, reducing the shared region to 46 kb. Phenotypic traits include most of the core findings in the previously reported cases but not growth restrictions, craniofacial anomalies, renal malformation, and learning disability. A closer look at the speech and motor delays reveals apraxic speech and discoordination in the fine and gross motor domain, consistent with cerebellar involvement across motor systems. Findings are consistent with a role of AZU1 in the observed immune deficiencies and PTBP1 in the observed skeletal, abdominal, speech, language, motor, and sensory traits. This case thus contributes to a more nuanced understanding of the subtelomeric 19p13.3 deletion region.
Collapse
Affiliation(s)
- Beate Peter
- College of Health Solutions, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
24
|
Shilton CA, Kahler A, Roach JM, Raudsepp T, de Mestre AM. Lethal variants of equine pregnancy: is it the placenta or foetus leading the conceptus in the wrong direction? Reprod Fertil Dev 2022; 35:51-69. [PMID: 36592981 DOI: 10.1071/rd22239] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Embryonic and foetal loss remain one of the greatest challenges in equine reproductive health with 5-10% of established day 15 pregnancies and a further 5-10% of day 70 pregnancies failing to produce a viable foal. The underlying reason for these losses is variable but ultimately most cases will be attributed to pathologies of the environment of the developing embryo and later foetus, or a defect intrinsic to the embryo itself that leads to lethality at any stage of gestation right up to birth. Historically, much research has focused on the maternal endometrium, endocrine and immune responses in pregnancy and pregnancy loss, as well as infectious agents such as pathogens, and until recently very little was known about the both small and large genetic variants associated with reduced foetal viability in the horse. In this review, we first introduce key aspects of equine placental and foetal development. We then discuss incidence, risk factors and causes of pregnancy loss, with the latter focusing on genetic variants described to date that can impact equine foetal viability.
Collapse
Affiliation(s)
- Charlotte A Shilton
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, Hawkshead Lane, Herts, AL9 7TA, UK
| | - Anne Kahler
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, Hawkshead Lane, Herts, AL9 7TA, UK
| | - Jessica M Roach
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, Hawkshead Lane, Herts, AL9 7TA, UK
| | - Terje Raudsepp
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843-4458, USA
| | - Amanda M de Mestre
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, Hawkshead Lane, Herts, AL9 7TA, UK
| |
Collapse
|
25
|
Duński E, Pękowska A. Keeping the balance: Trade-offs between human brain evolution, autism, and schizophrenia. Front Genet 2022; 13:1009390. [DOI: 10.3389/fgene.2022.1009390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/12/2022] [Indexed: 11/22/2022] Open
Abstract
The unique qualities of the human brain are a product of a complex evolutionary process. Evolution, famously described by François Jacob as a “tinkerer,” builds upon existing genetic elements by modifying and repurposing them for new functions. Genetic changes in DNA may lead to the emergence of new genes or cause altered gene expression patterns. Both gene and regulatory element mutations may lead to new functions. Yet, this process may lead to side-effects. An evolutionary trade-off occurs when an otherwise beneficial change, which is important for evolutionary success and is under strong positive selection, concurrently results in a detrimental change in another trait. Pleiotropy occurs when a gene affects multiple traits. Antagonistic pleiotropy is a phenomenon whereby a genetic variant leads to an increase in fitness at one life-stage or in a specific environment, but simultaneously decreases fitness in another respect. Therefore, it is conceivable that the molecular underpinnings of evolution of highly complex traits, including brain size or cognitive ability, under certain conditions could result in deleterious effects, which would increase the susceptibility to psychiatric or neurodevelopmental diseases. Here, we discuss possible trade-offs and antagonistic pleiotropies between evolutionary change in a gene sequence, dosage or activity and the susceptibility of individuals to autism spectrum disorders and schizophrenia. We present current knowledge about genes and alterations in gene regulatory landscapes, which have likely played a role in establishing human-specific traits and have been implicated in those diseases.
Collapse
|
26
|
Doust C, Fontanillas P, Eising E, Gordon SD, Wang Z, Alagöz G, Molz B, Pourcain BS, Francks C, Marioni RE, Zhao J, Paracchini S, Talcott JB, Monaco AP, Stein JF, Gruen JR, Olson RK, Willcutt EG, DeFries JC, Pennington BF, Smith SD, Wright MJ, Martin NG, Auton A, Bates TC, Fisher SE, Luciano M. Discovery of 42 genome-wide significant loci associated with dyslexia. Nat Genet 2022; 54:1621-1629. [PMID: 36266505 PMCID: PMC9649434 DOI: 10.1038/s41588-022-01192-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 08/23/2022] [Indexed: 12/11/2022]
Abstract
Reading and writing are crucial life skills but roughly one in ten children are affected by dyslexia, which can persist into adulthood. Family studies of dyslexia suggest heritability up to 70%, yet few convincing genetic markers have been found. Here we performed a genome-wide association study of 51,800 adults self-reporting a dyslexia diagnosis and 1,087,070 controls and identified 42 independent genome-wide significant loci: 15 in genes linked to cognitive ability/educational attainment, and 27 new and potentially more specific to dyslexia. We validated 23 loci (13 new) in independent cohorts of Chinese and European ancestry. Genetic etiology of dyslexia was similar between sexes, and genetic covariance with many traits was found, including ambidexterity, but not neuroanatomical measures of language-related circuitry. Dyslexia polygenic scores explained up to 6% of variance in reading traits, and might in future contribute to earlier identification and remediation of dyslexia.
Collapse
Affiliation(s)
- Catherine Doust
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | | | - Else Eising
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | - Scott D Gordon
- Genetic Epidemiology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Zhengjun Wang
- School of Psychology, Shaanxi Normal University and Shaanxi Key Research Center of Child Mental and Behavioral Health, Xi'an, China
| | - Gökberk Alagöz
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | - Barbara Molz
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | | | | | - Beate St Pourcain
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Clyde Francks
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Riccardo E Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Jingjing Zhao
- School of Psychology, Shaanxi Normal University and Shaanxi Key Research Center of Child Mental and Behavioral Health, Xi'an, China
| | | | - Joel B Talcott
- Institute of Health and Neurodevelopment, Aston University, Birmingham, UK
| | | | - John F Stein
- Department of Physiology, Anatomy and Genetics, Oxford University, Oxford, UK
| | - Jeffrey R Gruen
- Departments of Pediatrics and Genetics, Yale Medical School, New Haven, CT, USA
| | - Richard K Olson
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO, USA
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, USA
| | - Erik G Willcutt
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO, USA
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, USA
| | - John C DeFries
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO, USA
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, USA
| | | | - Shelley D Smith
- Department of Neurological Sciences, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Margaret J Wright
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Nicholas G Martin
- Genetic Epidemiology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | | | - Timothy C Bates
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Michelle Luciano
- Department of Psychology, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
27
|
Jalbrzikowski M, Lin A, Vajdi A, Grigoryan V, Kushan L, Ching CRK, Schleifer C, Hayes RA, Chu SA, Sugar CA, Forsyth JK, Bearden CE. Longitudinal trajectories of cortical development in 22q11.2 copy number variants and typically developing controls. Mol Psychiatry 2022; 27:4181-4190. [PMID: 35896619 PMCID: PMC9718681 DOI: 10.1038/s41380-022-01681-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 06/15/2022] [Accepted: 06/27/2022] [Indexed: 02/07/2023]
Abstract
Probing naturally-occurring, reciprocal genomic copy number variations (CNVs) may help us understand mechanisms that underlie deviations from typical brain development. Cross-sectional studies have identified prominent reductions in cortical surface area (SA) and increased cortical thickness (CT) in 22q11.2 deletion carriers (22qDel), with the opposite pattern in duplication carriers (22qDup), but the longitudinal trajectories of these anomalies-and their relationship to clinical symptomatology-are unknown. Here, we examined neuroanatomic changes within a longitudinal cohort of 261 22q11.2 CNV carriers and demographically-matched typically developing (TD) controls (84 22qDel, 34 22qDup, and 143 TD; mean age 18.35, ±10.67 years; 50.47% female). A total of 431 magnetic resonance imaging scans (164 22qDel, 59 22qDup, and 208 TD control scans; mean interscan interval = 20.27 months) were examined. Longitudinal FreeSurfer analysis pipelines were used to parcellate the cortex and calculate average CT and SA for each region. First, general additive mixed models (GAMMs) were used to identify regions with between-group differences in developmental trajectories. Secondly, we investigated whether these trajectories were associated with clinical outcomes. Developmental trajectories of CT were more protracted in 22qDel relative to TD and 22qDup. 22qDup failed to show normative age-related SA decreases. 22qDel individuals with psychosis spectrum symptoms showed two distinct periods of altered CT trajectories relative to 22qDel without psychotic symptoms. In contrast, 22q11.2 CNV carriers with autism spectrum diagnoses showed early alterations in SA trajectories. Collectively, these results provide new insights into altered neurodevelopment in 22q11.2 CNV carriers, which may shed light on neural mechanisms underlying distinct clinical outcomes.
Collapse
Affiliation(s)
- Maria Jalbrzikowski
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Amy Lin
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
- Neuroscience Interdepartmental Program, University of California, Los Angeles, CA, USA
| | - Ariana Vajdi
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Vardui Grigoryan
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Leila Kushan
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Christopher R K Ching
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Charles Schleifer
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
- Neuroscience Interdepartmental Program, University of California, Los Angeles, CA, USA
| | - Rebecca A Hayes
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Stephanie A Chu
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
- Neuroscience Interdepartmental Program, University of California, Los Angeles, CA, USA
| | - Catherine A Sugar
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
- Department of Biostatistics, University of California, Los Angeles, CA, USA
| | - Jennifer K Forsyth
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
- Department of Psychology, University of Washington, Seattle, WA, USA
| | - Carrie E Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA.
- Neuroscience Interdepartmental Program, University of California, Los Angeles, CA, USA.
- Department of Psychology, University of California, Los Angeles, CA, USA.
| |
Collapse
|
28
|
Fair SR, Schwind W, Julian DL, Biel A, Guo G, Rutherford R, Ramadesikan S, Westfall J, Miller KE, Kararoudi MN, Hickey SE, Mosher TM, McBride KL, Neinast R, Fitch J, Lee DA, White P, Wilson RK, Bedrosian TA, Koboldt DC, Hester ME. Cerebral organoids containing an AUTS2 missense variant model microcephaly. Brain 2022; 146:387-404. [PMID: 35802027 PMCID: PMC9825673 DOI: 10.1093/brain/awac244] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 05/22/2022] [Accepted: 06/22/2022] [Indexed: 01/12/2023] Open
Abstract
Variants in the AUTS2 gene are associated with a broad spectrum of neurological conditions characterized by intellectual disability, microcephaly, and congenital brain malformations. Here, we use a human cerebral organoid model to investigate the pathophysiology of a heterozygous de novo missense AUTS2 variant identified in a patient with multiple neurological impairments including primary microcephaly and profound intellectual disability. Proband cerebral organoids exhibit reduced growth, deficits in neural progenitor cell (NPC) proliferation and disrupted NPC polarity within ventricular zone-like regions compared to control cerebral organoids. We used CRISPR-Cas9-mediated gene editing to correct this variant and demonstrate rescue of impaired organoid growth and NPC proliferative deficits. Single-cell RNA sequencing revealed a marked reduction of G1/S transition gene expression and alterations in WNT-β-catenin signalling within proband NPCs, uncovering a novel role for AUTS2 in NPCs during human cortical development. Collectively, these results underscore the value of cerebral organoids to investigate molecular mechanisms underlying AUTS2 syndrome.
Collapse
Affiliation(s)
- Summer R Fair
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Wesley Schwind
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Dominic L Julian
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Alecia Biel
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Gongbo Guo
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Ryan Rutherford
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Swetha Ramadesikan
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Jesse Westfall
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Katherine E Miller
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Meisam Naeimi Kararoudi
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Scott E Hickey
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA,Division of Genetic and Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Theresa Mihalic Mosher
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Kim L McBride
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA,Division of Genetic and Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA,Center for Cardiovascular Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Reid Neinast
- Center for Cardiovascular Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - James Fitch
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Dean A Lee
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Peter White
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Richard K Wilson
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Tracy A Bedrosian
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Daniel C Koboldt
- Correspondence may also be addressed to: Daniel C. Koboldt, MS E-mail:
| | - Mark E Hester
- Correspondence to: Mark E. Hester, PhD 575 Children’s Crossroad Columbus OH 43205-2716, USA E-mail:
| |
Collapse
|
29
|
Gibitova EA, Dobrynin PV, Pomerantseva EA, Musatova EV, Kostareva A, Evsyukov I, Rychkov SY, Zhukova OV, Naumova OY, Grigorenko EL. A Study of the Genomic Variations Associated with Autistic Spectrum Disorders in a Russian Cohort of Patients Using Whole-Exome Sequencing. Genes (Basel) 2022; 13:genes13050920. [PMID: 35627305 PMCID: PMC9141003 DOI: 10.3390/genes13050920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/30/2022] [Accepted: 05/16/2022] [Indexed: 12/10/2022] Open
Abstract
This study provides new data on the whole-exome sequencing of a cohort of children with autistic spectrum disorders (ASD) from an underexplored Russian population. Using both a cross-sectional approach involving a control cohort of the same ancestry and an annotation-based approach involving relevant public databases, we explored exonic single nucleotide variants and copy-number variation potentially involved in the manifestation of ASD. The study results reveal new potential ASD candidate-variants found in the studied Russian cohort and show a high prevalence of common ASD-associated genomic variants, especially those in the genes known to be associated with the manifestation of intellectual disabilities. Our screening of an ASD cohort from a previously understudied population allowed us to flag at least a few novel genes (IGLJ2, FAM21A, OR11H12, HIP1, PRAMEF10, and ZNF717) regarding their potential involvement in ASD.
Collapse
Affiliation(s)
- Ekaterina A. Gibitova
- Computer Technologies Laboratory, University of Information Technologies, Mechanics and Optics, Saint Petersburg 197101, Russia; (E.A.G.); (P.V.D.); (I.E.)
| | - Pavel V. Dobrynin
- Computer Technologies Laboratory, University of Information Technologies, Mechanics and Optics, Saint Petersburg 197101, Russia; (E.A.G.); (P.V.D.); (I.E.)
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Human Genetics Laboratory, Vavilov Institute of General Genetics RAS, Moscow 119991, Russia; (S.Y.R.); (O.V.Z.)
| | - Ekaterina A. Pomerantseva
- The ‘Genetico’ Center for Genetics and Reproductive Medicine, Moscow 119333, Russia; (E.A.P.); (E.V.M.)
| | - Elizaveta V. Musatova
- The ‘Genetico’ Center for Genetics and Reproductive Medicine, Moscow 119333, Russia; (E.A.P.); (E.V.M.)
| | - Anna Kostareva
- Almazov National Medical Research Centre, Saint Petersburg 197341, Russia;
- Department of Women’s and Children’s Health, Karolinska Institute, Stockholm 17177, Sweden
| | - Igor Evsyukov
- Computer Technologies Laboratory, University of Information Technologies, Mechanics and Optics, Saint Petersburg 197101, Russia; (E.A.G.); (P.V.D.); (I.E.)
| | - Sergey Y. Rychkov
- Human Genetics Laboratory, Vavilov Institute of General Genetics RAS, Moscow 119991, Russia; (S.Y.R.); (O.V.Z.)
| | - Olga V. Zhukova
- Human Genetics Laboratory, Vavilov Institute of General Genetics RAS, Moscow 119991, Russia; (S.Y.R.); (O.V.Z.)
| | - Oxana Y. Naumova
- Human Genetics Laboratory, Vavilov Institute of General Genetics RAS, Moscow 119991, Russia; (S.Y.R.); (O.V.Z.)
- Department of Psychology, University of Houston, Houston, TX 77204, USA
- Department of Psychology, Saint-Petersburg State University, Saint Petersburg 199034, Russia
- Correspondence: (O.Y.N.); (E.L.G.)
| | - Elena L. Grigorenko
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Psychology, University of Houston, Houston, TX 77204, USA
- Department of Psychology, Saint-Petersburg State University, Saint Petersburg 199034, Russia
- Center of Cognitive Research, Sirius University of Science and Technology, Sochi 354340, Russia
- Correspondence: (O.Y.N.); (E.L.G.)
| |
Collapse
|
30
|
Zhu Y, Gomez JA, Laufer BI, Mordaunt CE, Mouat JS, Soto DC, Dennis MY, Benke KS, Bakulski KM, Dou J, Marathe R, Jianu JM, Williams LA, Gutierrez Fugón OJ, Walker CK, Ozonoff S, Daniels J, Grosvenor LP, Volk HE, Feinberg JI, Fallin MD, Hertz-Picciotto I, Schmidt RJ, Yasui DH, LaSalle JM. Placental methylome reveals a 22q13.33 brain regulatory gene locus associated with autism. Genome Biol 2022; 23:46. [PMID: 35168652 PMCID: PMC8848662 DOI: 10.1186/s13059-022-02613-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/16/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) involves complex genetics interacting with the perinatal environment, complicating the discovery of common genetic risk. The epigenetic layer of DNA methylation shows dynamic developmental changes and molecular memory of in utero experiences, particularly in placenta, a fetal tissue discarded at birth. However, current array-based methods to identify novel ASD risk genes lack coverage of the most structurally and epigenetically variable regions of the human genome. RESULTS We use whole genome bisulfite sequencing in placenta samples from prospective ASD studies to discover a previously uncharacterized ASD risk gene, LOC105373085, renamed NHIP. Out of 134 differentially methylated regions associated with ASD in placental samples, a cluster at 22q13.33 corresponds to a 118-kb hypomethylated block that replicates in two additional cohorts. Within this locus, NHIP is functionally characterized as a nuclear peptide-encoding transcript with high expression in brain, and increased expression following neuronal differentiation or hypoxia, but decreased expression in ASD placenta and brain. NHIP overexpression increases cellular proliferation and alters expression of genes regulating synapses and neurogenesis, overlapping significantly with known ASD risk genes and NHIP-associated genes in ASD brain. A common structural variant disrupting the proximity of NHIP to a fetal brain enhancer is associated with NHIP expression and methylation levels and ASD risk, demonstrating a common genetic influence. CONCLUSIONS Together, these results identify and initially characterize a novel environmentally responsive ASD risk gene relevant to brain development in a hitherto under-characterized region of the human genome.
Collapse
Affiliation(s)
- Yihui Zhu
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
| | - J Antonio Gomez
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
| | - Benjamin I Laufer
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
| | - Charles E Mordaunt
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
| | - Julia S Mouat
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
| | - Daniela C Soto
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA, USA
| | - Megan Y Dennis
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA, USA
| | - Kelly S Benke
- Department of Public Health Sciences, University of California, Davis, CA, USA
| | - Kelly M Bakulski
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - John Dou
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Ria Marathe
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
| | - Julia M Jianu
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
| | - Logan A Williams
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
| | - Orangel J Gutierrez Fugón
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
| | - Cheryl K Walker
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
- Department of Obstetrics and Gynecology, University of California, Davis, CA, USA
| | - Sally Ozonoff
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
- Department of Psychiatry and Behavioral Sciences, Davis, CA, USA
| | - Jason Daniels
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Luke P Grosvenor
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Heather E Volk
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
- Wendy Klag Center for Autism and Developmental Disabilities, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Jason I Feinberg
- Wendy Klag Center for Autism and Developmental Disabilities, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - M Daniele Fallin
- Wendy Klag Center for Autism and Developmental Disabilities, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Irva Hertz-Picciotto
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
- Department of Public Health Sciences, University of California, Davis, CA, USA
| | - Rebecca J Schmidt
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
- Department of Public Health Sciences, University of California, Davis, CA, USA
| | - Dag H Yasui
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA.
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA.
- Genome Center, University of California, Davis, CA, USA.
- MIND Institute, School of Medicine, University of California, Davis, CA, USA.
| |
Collapse
|
31
|
Kunová N, Havalová H, Ondrovičová G, Stojkovičová B, Bauer JA, Bauerová-Hlinková V, Pevala V, Kutejová E. Mitochondrial Processing Peptidases-Structure, Function and the Role in Human Diseases. Int J Mol Sci 2022; 23:1297. [PMID: 35163221 PMCID: PMC8835746 DOI: 10.3390/ijms23031297] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial proteins are encoded by both nuclear and mitochondrial DNA. While some of the essential subunits of the oxidative phosphorylation (OXPHOS) complexes responsible for cellular ATP production are synthesized directly in the mitochondria, most mitochondrial proteins are first translated in the cytosol and then imported into the organelle using a sophisticated transport system. These proteins are directed mainly by targeting presequences at their N-termini. These presequences need to be cleaved to allow the proper folding and assembly of the pre-proteins into functional protein complexes. In the mitochondria, the presequences are removed by several processing peptidases, including the mitochondrial processing peptidase (MPP), the inner membrane processing peptidase (IMP), the inter-membrane processing peptidase (MIP), and the mitochondrial rhomboid protease (Pcp1/PARL). Their proper functioning is essential for mitochondrial homeostasis as the disruption of any of them is lethal in yeast and severely impacts the lifespan and survival in humans. In this review, we focus on characterizing the structure, function, and substrate specificities of mitochondrial processing peptidases, as well as the connection of their malfunctions to severe human diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Eva Kutejová
- Department of Biochemistry and Protein Structure, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská Cesta 21, 845 51 Bratislava, Slovakia; (H.H.); (G.O.); (B.S.); (J.A.B.); (V.B.-H.); (V.P.)
| |
Collapse
|
32
|
AUTS2 Gene: Keys to Understanding the Pathogenesis of Neurodevelopmental Disorders. Cells 2021; 11:cells11010011. [PMID: 35011572 PMCID: PMC8750789 DOI: 10.3390/cells11010011] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/08/2021] [Accepted: 12/18/2021] [Indexed: 01/01/2023] Open
Abstract
Neurodevelopmental disorders (NDDs), including autism spectrum disorders (ASD) and intellectual disability (ID), are a large group of neuropsychiatric illnesses that occur during early brain development, resulting in a broad spectrum of syndromes affecting cognition, sociability, and sensory and motor functions. Despite progress in the discovery of various genetic risk factors thanks to the development of novel genomics technologies, the precise pathological mechanisms underlying the onset of NDDs remain elusive owing to the profound genetic and phenotypic heterogeneity of these conditions. Autism susceptibility candidate 2 (AUTS2) has emerged as a crucial gene associated with a wide range of neuropsychological disorders, such as ASD, ID, schizophrenia, and epilepsy. AUTS2 has been shown to be involved in multiple neurodevelopmental processes; in cell nuclei, it acts as a key transcriptional regulator in neurodevelopment, whereas in the cytoplasm, it participates in cerebral corticogenesis, including neuronal migration and neuritogenesis, through the control of cytoskeletal rearrangements. Postnatally, AUTS2 regulates the number of excitatory synapses to maintain the balance between excitation and inhibition in neural circuits. In this review, we summarize the knowledge regarding AUTS2, including its molecular and cellular functions in neurodevelopment, its genetics, and its role in behaviors.
Collapse
|
33
|
Maus Esfahani N, Catchpoole D, Khan J, Kennedy PJ. MCKAT: a multi-dimensional copy number variant kernel association test. BMC Bioinformatics 2021; 22:588. [PMID: 34895138 PMCID: PMC8666084 DOI: 10.1186/s12859-021-04494-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 11/25/2021] [Indexed: 11/25/2022] Open
Abstract
Background Copy number variants (CNVs) are the gain or loss of DNA segments in the genome. Studies have shown that CNVs are linked to various disorders, including autism, intellectual disability, and schizophrenia. Consequently, the interest in studying a possible association of CNVs to specific disease traits is growing. However, due to the specific multi-dimensional characteristics of the CNVs, methods for testing the association between CNVs and the disease-related traits are still underdeveloped. We propose a novel multi-dimensional CNV kernel association test (MCKAT) in this paper. We aim to find significant associations between CNVs and disease-related traits using kernel-based methods. Results We address the multi-dimensionality in CNV characteristics. We first design a single pair CNV kernel, which contains three sub-kernels to summarize the similarity between two CNVs considering all CNV characteristics. Then, aggregate single pair CNV kernel to the whole chromosome CNV kernel, which summarizes the similarity between CNVs in two or more chromosomes. Finally, the association between the CNVs and disease-related traits is evaluated by comparing the similarity in the trait with kernel-based similarity using a score test in a random effect model. We apply MCKAT on genome-wide CNV datasets to examine the association between CNVs and disease-related traits, which demonstrates the potential usefulness the proposed method has for the CNV association tests. We compare the performance of MCKAT with CKAT, a uni-dimensional kernel method. Based on the results, MCKAT indicates stronger evidence, smaller p-value, in detecting significant associations between CNVs and disease-related traits in both rare and common CNV datasets. Conclusion A multi-dimensional copy number variant kernel association test can detect statistically significant associated CNV regions with any disease-related trait. MCKAT can provide biologists with CNV hot spots at the cytogenetic band level that CNVs on them may have a significant association with disease-related traits. Using MCKAT, biologists can narrow their investigation from the whole genome, including many genes and CNVs, to more specific cytogenetic bands that MCKAT identifies. Furthermore, MCKAT can help biologists detect significantly associated CNVs with disease-related traits across a patient group instead of examining each subject’s CNVs case by case.
Collapse
Affiliation(s)
- Nastaran Maus Esfahani
- Australian Artificial Intelligence Institute, University of Technology Sydney, Sydney, Australia.
| | - Daniel Catchpoole
- Australian Artificial Intelligence Institute, University of Technology Sydney, Sydney, Australia.,The Tumour Bank, The Children's Hospital at Westmead, Sydney, Australia
| | - Javed Khan
- Center for Cancer Research, National Cancer Institute, Bethesda, USA
| | - Paul J Kennedy
- Australian Artificial Intelligence Institute, University of Technology Sydney, Sydney, Australia
| |
Collapse
|
34
|
SMCKAT, a Sequential Multi-Dimensional CNV Kernel-Based Association Test. Life (Basel) 2021; 11:life11121302. [PMID: 34947833 PMCID: PMC8709152 DOI: 10.3390/life11121302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/27/2021] [Accepted: 11/23/2021] [Indexed: 11/17/2022] Open
Abstract
Copy number variants (CNVs) are the most common form of structural genetic variation, reflecting the gain or loss of DNA segments compared with a reference genome. Studies have identified CNV association with different diseases. However, the association between the sequential order of CNVs and disease-related traits has not been studied, to our knowledge, and it is still unclear that CNVs function individually or whether they work in coordination with other CNVs to manifest a disease or trait. Consequently, we propose the first such method to test the association between the sequential order of CNVs and diseases. Our sequential multi-dimensional CNV kernel-based association test (SMCKAT) consists of three parts: (1) a single CNV group kernel measuring the similarity between two groups of CNVs; (2) a whole genome group kernel that aggregates several single group kernels to summarize the similarity between CNV groups in a single chromosome or the whole genome; and (3) an association test between the CNV sequential order and disease-related traits using a random effect model. We evaluate SMCKAT on CNV data sets exhibiting rare or common CNVs, demonstrating that it can detect specific biologically relevant chromosomal regions supported by the biomedical literature. We compare the performance of SMCKAT with MCKAT, a multi-dimensional kernel association test. Based on the results, SMCKAT can detect more specific chromosomal regions compared with MCKAT that not only have CNV characteristics, but the CNV order on them are significantly associated with the disease-related trait.
Collapse
|
35
|
Pauli S, Berger H, Ufartes R, Borchers A. Comparing a Novel Malformation Syndrome Caused by Pathogenic Variants in FBRSL1 to AUTS2 Syndrome. Front Cell Dev Biol 2021; 9:779009. [PMID: 34805182 PMCID: PMC8602103 DOI: 10.3389/fcell.2021.779009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/22/2021] [Indexed: 11/13/2022] Open
Abstract
Truncating variants in specific exons of Fibrosin-like protein 1 (FBRSL1) were recently reported to cause a novel malformation and intellectual disability syndrome. The clinical spectrum includes microcephaly, facial dysmorphism, cleft palate, skin creases, skeletal anomalies and contractures, postnatal growth retardation, global developmental delay as well as respiratory problems, hearing impairment and heart defects. The function of FBRSL1 is largely unknown, but pathogenic variants in the FBRSL1 paralog Autism Susceptibility Candidate 2 (AUTS2) are causative for an intellectual disability syndrome with microcephaly (AUTS2 syndrome). Some patients with AUTS2 syndrome also show additional symptoms like heart defects and contractures overlapping with the phenotype presented by patients with FBRSL1 mutations. For AUTS2, a dual function, depending on different isoforms, was described and suggested for FBRSL1. Both, nuclear FBRSL1 and AUTS2 are components of the Polycomb subcomplexes PRC1.3 and PRC1.5. These complexes have essential roles in developmental processes, cellular differentiation and proliferation by regulating gene expression via histone modification. In addition, cytoplasmic AUTS2 controls neural development, neuronal migration and neurite extension by regulating the cytoskeleton. Here, we review recent data on FBRSL1 in respect to previously published data on AUTS2 to gain further insights into its molecular function, its role in development as well as its impact on human genetics.
Collapse
Affiliation(s)
- Silke Pauli
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Hanna Berger
- Faculty of Biology, Molecular Embryology, Philipps‐University Marburg, Marburg, Germany
| | - Roser Ufartes
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Annette Borchers
- Faculty of Biology, Molecular Embryology, Philipps‐University Marburg, Marburg, Germany
| |
Collapse
|
36
|
Kaiser VB, Talmane L, Kumar Y, Semple F, MacLennan M, FitzPatrick DR, Taylor MS, Semple CA. Mutational bias in spermatogonia impacts the anatomy of regulatory sites in the human genome. Genome Res 2021; 31:1994-2007. [PMID: 34417209 PMCID: PMC8559717 DOI: 10.1101/gr.275407.121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 08/19/2021] [Indexed: 12/03/2022]
Abstract
Mutation in the germline is the ultimate source of genetic variation, but little is known about the influence of germline chromatin structure on mutational processes. Using ATAC-seq, we profile the open chromatin landscape of human spermatogonia, the most proliferative cell type of the germline, identifying transcription factor binding sites (TFBSs) and PRDM9 binding sites, a subset of which will initiate meiotic recombination. We observe an increase in rare structural variant (SV) breakpoints at PRDM9-bound sites, implicating meiotic recombination in the generation of structural variation. Many germline TFBSs, such as NRF1, are also associated with increased rates of SV breakpoints, apparently independent of recombination. Singleton short insertions (≥5 bp) are highly enriched at TFBSs, particularly at sites bound by testis active TFs, and their rates correlate with those of structural variant breakpoints. Short insertions often duplicate the TFBS motif, leading to clustering of motif sites near regulatory regions in this male-driven evolutionary process. Increased mutation loads at germline TFBSs disproportionately affect neural enhancers with activity in spermatogonia, potentially altering neurodevelopmental regulatory architecture. Local chromatin structure in spermatogonia is thus pervasive in shaping both evolution and disease.
Collapse
Affiliation(s)
- Vera B Kaiser
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| | - Lana Talmane
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| | - Yatendra Kumar
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| | - Fiona Semple
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| | - Marie MacLennan
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| | - David R FitzPatrick
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| | - Martin S Taylor
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| | - Colin A Semple
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| |
Collapse
|
37
|
Malhotra S, Sivasubramanian R, Srivastava G. Evaluation and Management of Early Onset Genetic Obesity in Childhood. J Pediatr Genet 2021; 10:194-204. [PMID: 34504723 DOI: 10.1055/s-0041-1731035] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/16/2021] [Indexed: 01/10/2023]
Abstract
One in five children and adolescents in the United States are diagnosed with obesity and nearly 6% of them are being classified under the severe obesity category. With over 7% of severe obesity being attributed to genetic disorders, in this review we aim to focus on monogenic and syndromic obesity: its etiology, wide spectrum of clinical presentation, criticalness of early identification, and limited management options. Advanced genetic testing methods including microarray and whole genome sequencing are imperative to identify the spectrum of mutations and develop targeted treatment strategies including personalized multidisciplinary care, use of investigational drugs, and explore surgical options in this unique subset of severe pediatric obesity.
Collapse
Affiliation(s)
- Sonali Malhotra
- Department of Pediatric Endocrinology, Massachusetts General Hospital for Children, Harvard Medical School, Boston, Massachusetts, United States
| | - Ramya Sivasubramanian
- Division of Pediatric Nephrology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States
| | - Gitanjali Srivastava
- Department of Medicine; Department of Pediatrics; Department of Surgery; Division of Endocrinology, Diabetes & Metabolism, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| |
Collapse
|
38
|
Martin J, Asjadi K, Hubbard L, Kendall K, Pardiñas AF, Jermy B, Lewis CM, Baune BT, Boomsma DI, Hamilton SP, Lucae S, Magnusson PK, Martin NG, McIntosh AM, Mehta D, Mors O, Mullins N, Penninx BWJH, Preisig M, Rietschel M, Jones I, Walters JTR, Rice F, Thapar A, O’Donovan M. Examining sex differences in neurodevelopmental and psychiatric genetic risk in anxiety and depression. PLoS One 2021; 16:e0248254. [PMID: 34473692 PMCID: PMC8412369 DOI: 10.1371/journal.pone.0248254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/21/2021] [Indexed: 12/27/2022] Open
Abstract
Anxiety and depression are common mental health disorders and have a higher prevalence in females. They are modestly heritable, share genetic liability with other psychiatric disorders, and are highly heterogeneous. There is evidence that genetic liability to neurodevelopmental disorders, such as attention deficit hyperactivity disorder (ADHD) is associated with anxiety and depression, particularly in females. We investigated sex differences in family history for neurodevelopmental and psychiatric disorders and neurodevelopmental genetic risk burden (indexed by ADHD polygenic risk scores (PRS) and rare copy number variants; CNVs) in individuals with anxiety and depression, also taking into account age at onset. We used two complementary datasets: 1) participants with a self-reported diagnosis of anxiety or depression (N = 4,178, 65.5% female; mean age = 41.5 years; N = 1,315 with genetic data) from the National Centre for Mental Health (NCMH) cohort and 2) a clinical sample of 13,273 (67.6% female; mean age = 45.2 years) patients with major depressive disorder (MDD) from the Psychiatric Genomics Consortium (PGC). We tested for sex differences in family history of psychiatric problems and presence of rare CNVs (neurodevelopmental and >500kb loci) in NCMH only and for sex differences in ADHD PRS in both datasets. In the NCMH cohort, females were more likely to report family history of neurodevelopmental and psychiatric disorders, but there were no robust sex differences in ADHD PRS or presence of rare CNVs. There was weak evidence of higher ADHD PRS in females compared to males in the PGC MDD sample, particularly in those with an early onset of MDD. These results do not provide strong evidence of sex differences in neurodevelopmental genetic risk burden in adults with anxiety and depression. This indicates that sex may not be a major index of neurodevelopmental genetic heterogeneity, that is captured by ADHD PRS and rare CNV burden, in adults with anxiety and depression.
Collapse
Affiliation(s)
- Joanna Martin
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
| | - Kimiya Asjadi
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
| | - Leon Hubbard
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
| | - Kimberley Kendall
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
| | - Antonio F. Pardiñas
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
| | - Bradley Jermy
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Cathryn M. Lewis
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Bernhard T. Baune
- Department of Psychiatry, University of Münster, Münster, Nordrhein-Westfalen, Germany
- Department of Psychiatry, Melbourne Medical School, University of Melbourne, Melbourne, Australia
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - Dorret I. Boomsma
- Dept. of Biological Psychology & EMGO+ Institute for Health and Care Research, Vrije Universiteit Amsterdam, Amsterdam, Netherland
| | - Steven P. Hamilton
- Psychiatry, Kaiser Permanente Northern California, San Francisco, California, United States of America
| | | | - Patrik K. Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Nicholas G. Martin
- Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Andrew M. McIntosh
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Divya Mehta
- Centre for Genomics and Personalised Health, Faculty of Health, Queensland University of Technology (QUT), Kelvin Grove, Queensland, Australia
| | - Ole Mors
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Psychosis Research Unit, Aarhus University Hospital, Risskov, Aarhus, Denmark
| | - Niamh Mullins
- Social, Genetic and Developmental Psychiatry Centre, King’s College London, London, United Kingdom
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Brenda W. J. H. Penninx
- Department of Psychiatry, Vrije Universiteit Medical Center and GGZ inGeest, Amsterdam, Netherland
| | - Martin Preisig
- Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Baden-Württemberg, Germany
| | - Ian Jones
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
- National Centre for Mental Health, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
| | - James T. R. Walters
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
- National Centre for Mental Health, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
| | - Frances Rice
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
| | - Anita Thapar
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
- National Centre for Mental Health, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
| | - Michael O’Donovan
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
- National Centre for Mental Health, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
| | | |
Collapse
|
39
|
Sanchez-Jimeno C, Blanco-Kelly F, López-Grondona F, Losada-Del Pozo R, Moreno B, Rodrigo-Moreno M, Martinez-Cayuelas E, Riveiro-Alvarez R, Fenollar-Cortés M, Ayuso C, Rodríguez de Alba M, Lorda-Sanchez I, Almoguera B. Attention Deficit Hyperactivity and Autism Spectrum Disorders as the Core Symptoms of AUTS2 Syndrome: Description of Five New Patients and Update of the Frequency of Manifestations and Genotype-Phenotype Correlation. Genes (Basel) 2021; 12:genes12091360. [PMID: 34573342 PMCID: PMC8471078 DOI: 10.3390/genes12091360] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/23/2021] [Accepted: 08/27/2021] [Indexed: 12/14/2022] Open
Abstract
Haploinsufficiency of AUTS2 has been associated with a syndromic form of neurodevelopmental delay characterized by intellectual disability, autistic features, and microcephaly, also known as AUTS2 syndrome. While the phenotype associated with large deletions and duplications of AUTS2 is well established, clinical features of patients harboring AUTS2 sequence variants have not been extensively described. In this study, we describe the phenotype of five new patients with AUTS2 pathogenic variants, three of them harboring loss-of-function sequence variants. The phenotype of the patients was characterized by attention deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) or autistic features and mild global developmental delay (GDD) or intellectual disability (ID), all in 4/5 patients (80%), a frequency higher than previously reported for ADHD and autistic features. Microcephaly and short stature were found in 60% of the patients; and feeding difficulties, generalized hypotonia, and ptosis, were each found in 40%. We also provide the aggregated frequency of the 32 items included in the AUTS2 syndrome severity score (ASSS) in patients currently reported in the literature. The main characteristics of the syndrome are GDD/ID in 98% of patients, microcephaly in 65%, feeding difficulties in 62%, ADHD or hyperactivity in 54%, and autistic traits in 52%. Finally, using the location of 31 variants from the literature together with variants from the five patients, we found significantly higher ASSS values in patients with pathogenic variants affecting the 3′ end of the gene, confirming the genotype-phenotype correlation initially described.
Collapse
Affiliation(s)
- Carolina Sanchez-Jimeno
- Department of Genetics and Genomics, IIS–Fundación Jiménez Díaz University Hospital, 28040 Madrid, Spain; (C.S.-J.); (F.B.-K.); (F.L.-G.); (R.R.-A.); (C.A.); (M.R.d.A.); (I.L.-S.)
- Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, 28040 Madrid, Spain
| | - Fiona Blanco-Kelly
- Department of Genetics and Genomics, IIS–Fundación Jiménez Díaz University Hospital, 28040 Madrid, Spain; (C.S.-J.); (F.B.-K.); (F.L.-G.); (R.R.-A.); (C.A.); (M.R.d.A.); (I.L.-S.)
- Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, 28040 Madrid, Spain
| | - Fermina López-Grondona
- Department of Genetics and Genomics, IIS–Fundación Jiménez Díaz University Hospital, 28040 Madrid, Spain; (C.S.-J.); (F.B.-K.); (F.L.-G.); (R.R.-A.); (C.A.); (M.R.d.A.); (I.L.-S.)
- Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, 28040 Madrid, Spain
| | - Rebeca Losada-Del Pozo
- Department of Pediatrics, IIS–Fundación Jiménez Díaz University Hospital, 28040 Madrid, Spain; (R.L.-D.P.); (B.M.); (M.R.-M.); (E.M.-C.)
| | - Beatriz Moreno
- Department of Pediatrics, IIS–Fundación Jiménez Díaz University Hospital, 28040 Madrid, Spain; (R.L.-D.P.); (B.M.); (M.R.-M.); (E.M.-C.)
| | - María Rodrigo-Moreno
- Department of Pediatrics, IIS–Fundación Jiménez Díaz University Hospital, 28040 Madrid, Spain; (R.L.-D.P.); (B.M.); (M.R.-M.); (E.M.-C.)
| | - Elena Martinez-Cayuelas
- Department of Pediatrics, IIS–Fundación Jiménez Díaz University Hospital, 28040 Madrid, Spain; (R.L.-D.P.); (B.M.); (M.R.-M.); (E.M.-C.)
| | - Rosa Riveiro-Alvarez
- Department of Genetics and Genomics, IIS–Fundación Jiménez Díaz University Hospital, 28040 Madrid, Spain; (C.S.-J.); (F.B.-K.); (F.L.-G.); (R.R.-A.); (C.A.); (M.R.d.A.); (I.L.-S.)
- Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, 28040 Madrid, Spain
| | - María Fenollar-Cortés
- Clinical Genetics Unit, Department of Clinical Analysis, Clínico San Carlos University Hospital, 28040 Madrid, Spain;
- IIS-Clínico San Carlos University Hospital (IsISSC), 28040 Madrid, Spain
| | - Carmen Ayuso
- Department of Genetics and Genomics, IIS–Fundación Jiménez Díaz University Hospital, 28040 Madrid, Spain; (C.S.-J.); (F.B.-K.); (F.L.-G.); (R.R.-A.); (C.A.); (M.R.d.A.); (I.L.-S.)
- Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, 28040 Madrid, Spain
| | - Marta Rodríguez de Alba
- Department of Genetics and Genomics, IIS–Fundación Jiménez Díaz University Hospital, 28040 Madrid, Spain; (C.S.-J.); (F.B.-K.); (F.L.-G.); (R.R.-A.); (C.A.); (M.R.d.A.); (I.L.-S.)
- Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, 28040 Madrid, Spain
| | - Isabel Lorda-Sanchez
- Department of Genetics and Genomics, IIS–Fundación Jiménez Díaz University Hospital, 28040 Madrid, Spain; (C.S.-J.); (F.B.-K.); (F.L.-G.); (R.R.-A.); (C.A.); (M.R.d.A.); (I.L.-S.)
- Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, 28040 Madrid, Spain
| | - Berta Almoguera
- Department of Genetics and Genomics, IIS–Fundación Jiménez Díaz University Hospital, 28040 Madrid, Spain; (C.S.-J.); (F.B.-K.); (F.L.-G.); (R.R.-A.); (C.A.); (M.R.d.A.); (I.L.-S.)
- Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, 28040 Madrid, Spain
- Correspondence:
| |
Collapse
|
40
|
Huq AJ, Sexton A, Lacaze P, Masters CL, Storey E, Velakoulis D, James PA, Winship IM. Genetic testing in dementia-A medical genetics perspective. Int J Geriatr Psychiatry 2021; 36:1158-1170. [PMID: 33779003 DOI: 10.1002/gps.5535] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/15/2021] [Accepted: 02/26/2021] [Indexed: 01/11/2023]
Abstract
OBJECTIVE When a genetic cause is suspected in a person with dementia, it creates unique diagnostic and management challenges to the treating clinician. Many clinicians may be unaware of the practicalities surrounding genetic testing for their patients, such as when to test and what tests to use and how to counsel patients and their families. This review was conducted to provide guidance to clinicians caring for patients with dementia regarding clinically relevant genetics. METHODS We searched PubMed for studies that involved genetics of dementia up to March 2020. Patient file reviews were also conducted to create composite cases. RESULTS In addition to families where a strong Mendelian pattern of family history is seen, people with younger age of onset, especially before the age of 65 years were found to be at an increased risk of harbouring a genetic cause for their dementia. This review discusses some of the most common genetic syndromes, including Alzheimer disease, frontotemporal dementia, vascular dementia, Parkinson disease dementia/dementia with Lewy bodies and some rarer types of genetic dementias, along with illustrative clinical case studies. This is followed by a brief review of the current genetic technologies and a discussion on the unique genetic counselling issues in dementia. CONCLUSIONS Inclusion of genetic testing in the diagnostic pathway in some patients with dementia could potentially reduce the time taken to diagnose the cause of their dementia. Although a definite advantage as an addition to the diagnostic repository, genetic testing has many pros and cons which need to be carefully considered first.
Collapse
Affiliation(s)
- Aamira J Huq
- Department of Genomic Medicine, The Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Medicine, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Adrienne Sexton
- Department of Genomic Medicine, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Paul Lacaze
- Department of Genomic Medicine, The Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, The Alfred Centre, Melbourne, Victoria, Australia
| | - Colin L Masters
- Neurosciences, The Florey Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Elsdon Storey
- Department of Genomic Medicine, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Dennis Velakoulis
- Department of Neuropsychiatry, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Paul A James
- Department of Genomic Medicine, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Ingrid M Winship
- Department of Genomic Medicine, The Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Medicine, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
41
|
Contextualizing genetic risk score for disease screening and rare variant discovery. Nat Commun 2021; 12:4418. [PMID: 34285202 PMCID: PMC8292385 DOI: 10.1038/s41467-021-24387-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 06/07/2021] [Indexed: 11/08/2022] Open
Abstract
Studies of the genetic basis of complex traits have demonstrated a substantial role for common, small-effect variant polygenic burden (PB) as well as large-effect variants (LEV, primarily rare). We identify sufficient conditions in which GWAS-derived PB may be used for well-powered rare pathogenic variant discovery or as a sample prioritization tool for whole-genome or exome sequencing. Through extensive simulations of genetic architectures and generative models of disease liability with parameters informed by empirical data, we quantify the power to detect, among cases, a lower PB in LEV carriers than in non-carriers. Furthermore, we uncover clinically useful conditions wherein the risk derived from the PB is comparable to the LEV-derived risk. The resulting summary-statistics-based methodology (with publicly available software, PB-LEV-SCAN) makes predictions on PB-based LEV screening for 36 complex traits, which we confirm in several disease datasets with available LEV information in the UK Biobank, with important implications on clinical decision-making.
Collapse
|
42
|
Erotomania and phenotypic continuum in a family frameshift variant of AUTS2: a case report and review. BMC Psychiatry 2021; 21:360. [PMID: 34273950 PMCID: PMC8285776 DOI: 10.1186/s12888-021-03342-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/25/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Pathogenic variants of the AUTS2 (Autism Susceptibility candidate 2) gene predispose to intellectual disability, autism spectrum disorder, attention deficit hyperactivity disorder, facial dysmorphism and short stature. This phenotype is therefore associated with neurocognitive disturbances and social cognition, indicating potential functional maladjustment in the affected subjects, and a potentially significant impact on quality of life. Although many isolated cases have been reported in the literature, to date no families have been described. This case reports on a family (three generations) with a frameshift variant in the AUTS2 gene. CASE PRESENTATION The proband is 13 years old with short stature, dysmorphic features, moderate intellectual disability and autism spectrum disorder. His mother is 49 years old and also has short stature and similar dysmorphic features. She does not have autism disorder but presents an erotomaniac delusion. Her cognitive performance is heterogeneous. The two aunts are also of short stature. The 50-year-old aunt has isolated social cognition disorders. The 45-year-old aunt has severe cognitive impairment and autism spectrum disorder. The molecular analysis of the three sisters and the proband shows the same AUTS2 heterozygous duplication leading to a frame shift expected to produce a premature stop codon, p.(Met593Tyrfs*85). Previously reported isolated cases revealed phenotypic and cognitive impairment variability. In this case report, these variabilities are present within the same family, presenting the same variant. CONCLUSIONS The possibility of a phenotypic spectrum within the same family highlights the need for joint psychiatry and genetics research.
Collapse
|
43
|
Martinelli A, Rice ML, Talcott JB, Diaz R, Smith S, Raza MH, Snowling MJ, Hulme C, Stein J, Hayiou-Thomas ME, Hawi Z, Kent L, Pitt SJ, Newbury DF, Paracchini S. A rare missense variant in the ATP2C2 gene is associated with language impairment and related measures. Hum Mol Genet 2021; 30:1160-1171. [PMID: 33864365 PMCID: PMC8188402 DOI: 10.1093/hmg/ddab111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 01/02/2023] Open
Abstract
At least 5% of children present unexpected difficulties in expressing and understanding spoken language. This condition is highly heritable and often co-occurs with other neurodevelopmental disorders such as dyslexia and ADHD. Through an exome sequencing analysis, we identified a rare missense variant (chr16:84405221, GRCh38.p12) in the ATP2C2 gene. ATP2C2 was implicated in language disorders by linkage and association studies, and exactly the same variant was reported previously in a different exome sequencing study for language impairment (LI). We followed up this finding by genotyping the mutation in cohorts selected for LI and comorbid disorders. We found that the variant had a higher frequency in LI cases (1.8%, N = 360) compared with cohorts selected for dyslexia (0.8%, N = 520) and ADHD (0.7%, N = 150), which presented frequencies comparable to reference databases (0.9%, N = 24 046 gnomAD controls). Additionally, we observed that carriers of the rare variant identified from a general population cohort (N = 42, ALSPAC cohort) presented, as a group, lower scores on a range of reading and language-related measures compared to controls (N = 1825; minimum P = 0.002 for non-word reading). ATP2C2 encodes for an ATPase (SPCA2) that transports calcium and manganese ions into the Golgi lumen. Our functional characterization suggested that the rare variant influences the ATPase activity of SPCA2. Thus, our results further support the role of ATP2C2 locus in language-related phenotypes and pinpoint the possible effects of a specific rare variant at molecular level.
Collapse
Affiliation(s)
| | - Mabel L Rice
- Child Language Doctoral Program, University of Kansas, Lawrence, KS, USA
| | - Joel B Talcott
- Aston Brain Centre, School of Life and Health Sciences, Aston University, Birmingham, UK
| | - Rebeca Diaz
- School of Medicine, University of St Andrews, St Andrews, UK
| | - Shelley Smith
- Department of Neurological Sciences, University of Nebraska Medical Center, Lincoln, NE, USA
| | | | - Margaret J Snowling
- Department of Experimental Psychology and St John's College, University of Oxford, Oxford, UK
| | - Charles Hulme
- Department of Education, University of Oxford, Oxford, UK
| | - John Stein
- Department of Physiology, University of Oxford, Oxford, UK
| | | | - Ziarih Hawi
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, VIC, Australia
| | - Lindsey Kent
- School of Medicine, University of St Andrews, St Andrews, UK
| | - Samantha J Pitt
- School of Medicine, University of St Andrews, St Andrews, UK
| | - Dianne F Newbury
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | | |
Collapse
|
44
|
Mosley TJ, Johnston HR, Cutler DJ, Zwick ME, Mulle JG. Sex-specific recombination patterns predict parent of origin for recurrent genomic disorders. BMC Med Genomics 2021; 14:154. [PMID: 34107974 PMCID: PMC8190997 DOI: 10.1186/s12920-021-00999-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 06/02/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Structural rearrangements of the genome, which generally occur during meiosis and result in large-scale (> 1 kb) copy number variants (CNV; deletions or duplications ≥ 1 kb), underlie genomic disorders. Recurrent pathogenic CNVs harbor similar breakpoints in multiple unrelated individuals and are primarily formed via non-allelic homologous recombination (NAHR). Several pathogenic NAHR-mediated recurrent CNV loci demonstrate biases for parental origin of de novo CNVs. However, the mechanism underlying these biases is not well understood. METHODS We performed a systematic, comprehensive literature search to curate parent of origin data for multiple pathogenic CNV loci. Using a regression framework, we assessed the relationship between parental CNV origin and the male to female recombination rate ratio. RESULTS We demonstrate significant association between sex-specific differences in meiotic recombination and parental origin biases at these loci (p = 1.07 × 10-14). CONCLUSIONS Our results suggest that parental origin of CNVs is largely influenced by sex-specific recombination rates and highlight the need to consider these differences when investigating mechanisms that cause structural variation.
Collapse
Affiliation(s)
- Trenell J Mosley
- Graduate Program in Genetics and Molecular Biology, Laney Graduate School, Emory University, 201 Dowman Drive, Atlanta, GA, 30322, USA
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Whitehead Building Suite 300, Atlanta, GA, 30322, USA
| | - H Richard Johnston
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Whitehead Building Suite 300, Atlanta, GA, 30322, USA
- Emory Integrated Computational Core, Emory University, 101 Woodruff Circle, Atlanta, GA, 30322, USA
| | - David J Cutler
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Whitehead Building Suite 300, Atlanta, GA, 30322, USA
| | - Michael E Zwick
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Whitehead Building Suite 300, Atlanta, GA, 30322, USA
- Department of Pediatrics, Emory University School of Medicine, 2015 Uppergate Drive, Atlanta, GA, 30322, USA
| | - Jennifer G Mulle
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Whitehead Building Suite 300, Atlanta, GA, 30322, USA.
- Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Road NE, Atlanta, GA, 30322, USA.
| |
Collapse
|
45
|
Mortillo M, Mulle JG. A cross-comparison of cognitive ability across 8 genomic disorders. Curr Opin Genet Dev 2021; 68:106-116. [PMID: 34082144 DOI: 10.1016/j.gde.2021.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/01/2021] [Accepted: 04/08/2021] [Indexed: 12/23/2022]
Abstract
Genomic disorders result from rearrangement of the human genome. Most genomic disorders are caused by copy number variants (CNV), deletions or duplications of several hundred kilobases. Many CNV loci are associated with autism, schizophrenia, and most commonly, intellectual disability (ID). However, there is little comparison of cognitive ability measures across these CNV disorders. This study aims to understand whether existing data can be leveraged for a cross-comparison of cognitive ability among multiple CNV. We found there is a lack of harmonization among assessment instruments and little standardization for reporting summary data across studies. Despite these limitations, we identified a differential impact of CNV loci on cognitive ability. Our data suggest that future cross-comparisons of CNV disorders will reveal meaningful differences across the phenotypic spectrum, especially if standardized phenotypic assessment is achieved.
Collapse
Affiliation(s)
- Michael Mortillo
- Department of Human Genetics, Emory University, Atlanta, GA, United States
| | - Jennifer G Mulle
- Department of Human Genetics, Emory University, Atlanta, GA, United States.
| |
Collapse
|
46
|
Newbury DF, Simpson NH, Thompson PA, Bishop DVM. Stage 2 Registered Report: Variation in neurodevelopmental outcomes in children with sex chromosome trisomies: testing the double hit hypothesis. Wellcome Open Res 2021; 3:85. [PMID: 30271887 PMCID: PMC6134338 DOI: 10.12688/wellcomeopenres.14677.4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2021] [Indexed: 12/15/2022] Open
Abstract
Background: The presence of an extra sex chromosome is associated with an increased rate of neurodevelopmental difficulties involving language. The 'double hit' hypothesis proposes that the adverse impact of the extra sex chromosome is amplified when genes that are expressed from the sex chromosomes interact with autosomal variants that usually have only mild effects. We predicted that the impact of an additional sex chromosome on neurodevelopment would depend on common autosomal variants involved in synaptic functions. Methods: We analysed data from 130 children with sex chromosome trisomies (SCTs: 42 girls with trisomy X, 43 boys with Klinefelter syndrome, and 45 boys with XYY). Two comparison groups were formed from 370 children from a twin study. Three indicators of phenotype were: (i) Standard score on a test of nonword repetition; (ii). A language factor score derived from a test battery; (iii) A general scale of neurodevelopmental challenges based on all available information. Preselected regions of two genes, CNTNAP2 and NRXN1, were tested for association with neurodevelopmental outcomes using Generalised Structural Component Analysis. Results: There was wide phenotypic variation in the SCT group, as well as overall impairment on all three phenotypic measures. There was no association of phenotype with CNTNAP2 or NRXN1 variants in either the SCT group or the comparison groups. Supplementary analyses found no indication of any impact of trisomy type on the results, and exploratory analyses of individual SNPs confirmed the lack of association. Conclusions: We cannot rule out that a double hit may be implicated in the phenotypic variability in children with SCTs, but our analysis does not find any support for the idea that common variants in CNTNAP2 or NRXN1 are associated with the severity of language and neurodevelopmental impairments that often accompany an extra X or Y chromosome. Stage 1 report: http://dx.doi.org/10.12688/wellcomeopenres.13828.2.
Collapse
Affiliation(s)
- Dianne F. Newbury
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Nuala H. Simpson
- Department of Experimental Psychology, University of Oxford, Oxford, OX2 6GG, UK
| | - Paul A. Thompson
- Department of Experimental Psychology, University of Oxford, Oxford, OX2 6GG, UK
| | - Dorothy V. M. Bishop
- Department of Experimental Psychology, University of Oxford, Oxford, OX2 6GG, UK
| |
Collapse
|
47
|
Radke DW, Sul JH, Balick DJ, Akle S, Green RC, Sunyaev SR. Purifying selection on noncoding deletions of human regulatory loci detected using their cellular pleiotropy. Genome Res 2021; 31:935-946. [PMID: 33963077 PMCID: PMC8168579 DOI: 10.1101/gr.275263.121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/16/2021] [Indexed: 12/20/2022]
Abstract
Genomic deletions provide a powerful loss-of-function model in noncoding regions to assess the role of purifying selection on genetic variation. Regulatory element function is characterized by nonuniform tissue and cell type activity, necessarily linking the study of fitness consequences from regulatory variants to their corresponding cellular activity. We generated a callset of deletions from genomes in the Alzheimer's Disease Neuroimaging Initiative (ADNI) and used deletions from The 1000 Genomes Project Consortium (1000GP) in order to examine whether purifying selection preserves noncoding sites of chromatin accessibility marked by DNase I hypersensitivity (DHS), histone modification (enhancer, transcribed, Polycomb-repressed, heterochromatin), and chromatin loop anchors. To examine this in a cellular activity-aware manner, we developed a statistical method, pleiotropy ratio score (PlyRS), which calculates a correlation-adjusted count of "cellular pleiotropy" for each noncoding base pair by analyzing shared regulatory annotations across tissues and cell types. By comparing real deletion PlyRS values to simulations in a length-matched framework and by using genomic covariates in analyses, we found that purifying selection acts to preserve both DHS and enhancer noncoding sites. However, we did not find evidence of purifying selection for noncoding transcribed, Polycomb-repressed, or heterochromatin sites beyond that of the noncoding background. Additionally, we found evidence that purifying selection is acting on chromatin loop integrity by preserving colocalized CTCF binding sites. At regions of DHS, enhancer, and CTCF within chromatin loop anchors, we found evidence that both sites of activity specific to a particular tissue or cell type and sites of cellularly pleiotropic activity are preserved by selection.
Collapse
Affiliation(s)
- David W Radke
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
| | - Jae Hoon Sul
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, California 90095, USA
| | - Daniel J Balick
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
| | - Sebastian Akle
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
| | - Robert C Green
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
- Ariadne Labs, Boston, Massachusetts 02115, USA
| | - Shamil R Sunyaev
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
48
|
Yoon J, Mao Y. Dissecting Molecular Genetic Mechanisms of 1q21.1 CNV in Neuropsychiatric Disorders. Int J Mol Sci 2021; 22:5811. [PMID: 34071723 PMCID: PMC8197994 DOI: 10.3390/ijms22115811] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 11/17/2022] Open
Abstract
Pathogenic copy number variations (CNVs) contribute to the etiology of neurodevelopmental/neuropsychiatric disorders (NDs). Increased CNV burden has been found to be critically involved in NDs compared with controls in clinical studies. The 1q21.1 CNVs, rare and large chromosomal microduplications and microdeletions, are detected in many patients with NDs. Phenotypes of duplication and deletion appear at the two ends of the spectrum. Microdeletions are predominant in individuals with schizophrenia (SCZ) and microcephaly, whereas microduplications are predominant in individuals with autism spectrum disorder (ASD) and macrocephaly. However, its complexity hinders the discovery of molecular pathways and phenotypic networks. In this review, we summarize the recent genome-wide association studies (GWASs) that have identified candidate genes positively correlated with 1q21.1 CNVs, which are likely to contribute to abnormal phenotypes in carriers. We discuss the clinical data implicated in the 1q21.1 genetic structure that is strongly associated with neurodevelopmental dysfunctions like cognitive impairment and reduced synaptic plasticity. We further present variations reported in the phenotypic severity, genomic penetrance and inheritance.
Collapse
Affiliation(s)
| | - Yingwei Mao
- Department of Biology, Eberly College of Science, Pennsylvania State University, University Park, PA 16802, USA;
| |
Collapse
|
49
|
The Polygenic Nature and Complex Genetic Architecture of Specific Learning Disorder. Brain Sci 2021; 11:brainsci11050631. [PMID: 34068951 PMCID: PMC8156942 DOI: 10.3390/brainsci11050631] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/16/2022] Open
Abstract
Specific Learning Disorder (SLD) is a multifactorial, neurodevelopmental disorder which may involve persistent difficulties in reading (dyslexia), written expression and/or mathematics. Dyslexia is characterized by difficulties with speed and accuracy of word reading, deficient decoding abilities, and poor spelling. Several studies from different, but complementary, scientific disciplines have investigated possible causal/risk factors for SLD. Biological, neurological, hereditary, cognitive, linguistic-phonological, developmental and environmental factors have been incriminated. Despite worldwide agreement that SLD is highly heritable, its exact biological basis remains elusive. We herein present: (a) an update of studies that have shaped our current knowledge on the disorder’s genetic architecture; (b) a discussion on whether this genetic architecture is ‘unique’ to SLD or, alternatively, whether there is an underlying common genetic background with other neurodevelopmental disorders; and, (c) a brief discussion on whether we are at a position of generating meaningful correlations between genetic findings and anatomical data from neuroimaging studies or specific molecular/cellular pathways. We conclude with open research questions that could drive future research directions.
Collapse
|
50
|
Del Gobbo GF, Yuan V, Robinson WP. Confined placental mosaicism involving multiple de novo copy number variants associated with fetal growth restriction: A case report. Am J Med Genet A 2021; 185:1908-1912. [PMID: 33750025 PMCID: PMC8251599 DOI: 10.1002/ajmg.a.62183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/01/2021] [Accepted: 03/06/2021] [Indexed: 12/28/2022]
Abstract
The presence of multiple large (>1 Mb) copy number variants (CNVs) in non‐malignant tissue is rare in human genetics. We present a liveborn male with a birth weight below the first percentile associated with placental mosaicism involving eight 2.4–3.9 Mb de novo duplications. We found that the duplications likely co‐localized to the same cells, were mosaic in the placenta, and impacted maternal and paternal chromosomes. In addition, 27.4 Mb and 240 genes were duplicated in affected cells, including candidate placental genes KISS1 and REN. We ruled out involvement of homologous recombination‐based mechanisms or an altered epigenome in generating the CNVs. This case highlights the diversity of genetic abnormalities in the human placenta and the gaps in our knowledge of how such errors arise.
Collapse
Affiliation(s)
- Giulia F Del Gobbo
- BC Children's Hospital Research Institute, Vancouver, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Victor Yuan
- BC Children's Hospital Research Institute, Vancouver, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Wendy P Robinson
- BC Children's Hospital Research Institute, Vancouver, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| |
Collapse
|