1
|
Tao Y, Li Z, Yuan J, Wu H, Shi H, Wu X, Huang F. Dried bear bile exerts its antidepressant effect by modulating adrenal FXR to reduce peripheral glucocorticoid levels. Brain Behav Immun Health 2024; 41:100856. [PMID: 39290473 PMCID: PMC11406335 DOI: 10.1016/j.bbih.2024.100856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/08/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024] Open
Abstract
Depression is a psychological disorder associated with prolonged stress, which involves abnormal activation of the hypothalamic-pituitary-adrenal (HPA) axis, leading to elevated levels of glucocorticoids (GC). Excessive GC can cause damage to the structure and function of the hippocampus, thereby triggering depressive symptoms. Studies suggest that the bile acid receptor farnesoid X receptor (FXR) may play a role in adrenal GC synthesis. This study aimed to explore the potential therapeutic effects of dried bear bile (DBB) on depression and its mechanism. We used the chronic unpredictable mild stress (CUMS) mouse model and FXR agonist GW4064 stimulated mice, as well as H295R human adrenal cortical carcinoma cells, employing behavioral tests, biochemical analysis, and gene expression analysis to assess the effects of DBB treatment on depressive behavior, serum corticosterone (CORT) levels, and adrenal FXR and steroid biosynthesis-related gene expression. The results showed that in both CUMS and GW4064-stimulated mice, DBB treatment significantly improved depressive-like behaviors and reversed serum CORT levels. Additionally, DBB suppressed the expression of steroidogenic regulatory genes in the adrenal glands of CUMS mice. In H295R cells, DBB treatment effectively reduced cortisol secretion induced by Forskolin, inhibited the expression of steroid biosynthesis-related genes, and suppressed cortisol production and HSD3B2 expression under conditions of FXR overexpression and FXR activation. Our findings suggest that DBB regulates adrenal FXR to modulate glucocorticoid synthesis and exerts antidepressant effects. DBB may serve as a potential therapeutic agent for depression by regulating GC levels and steroidogenesis pathway. Further research is underway to test the antidepressant effects of each DBB component to understand their specific contribution.
Collapse
Affiliation(s)
- Yanlin Tao
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zikang Li
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jinfeng Yuan
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hui Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hailian Shi
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaojun Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fei Huang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
2
|
Bröker-Lai J, Rego Terol J, Richter C, Mathar I, Wirth A, Kopf S, Moreno-Pérez A, Büttner M, Tan LL, Makke M, Poschet G, Hermann J, Tsvilovskyy V, Haberkorn U, Wartenberg P, Susperreguy S, Berlin M, Ottenheijm R, Philippaert K, Wu M, Wiedemann T, Herzig S, Belkacemi A, Levinson RT, Agarwal N, Camacho Londoño JE, Klebl B, Dinkel K, Zufall F, Nussbaumer P, Boehm U, Hell R, Nawroth P, Birnbaumer L, Leinders-Zufall T, Kuner R, Zorn M, Bruns D, Schwarz Y, Freichel M. TRPC5 controls the adrenaline-mediated counter regulation of hypoglycemia. EMBO J 2024:10.1038/s44318-024-00231-0. [PMID: 39375537 DOI: 10.1038/s44318-024-00231-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/10/2024] [Accepted: 08/12/2024] [Indexed: 10/09/2024] Open
Abstract
Hypoglycemia triggers autonomic and endocrine counter-regulatory responses to restore glucose homeostasis, a response that is impaired in patients with diabetes and its long-term complication hypoglycemia-associated autonomic failure (HAAF). We show that insulin-evoked hypoglycemia is severely aggravated in mice lacking the cation channel proteins TRPC1, TRPC4, TRPC5, and TRPC6, which cannot be explained by alterations in glucagon or glucocorticoid action. By using various TRPC compound knockout mouse lines, we pinpointed the failure in sympathetic counter-regulation to the lack of the TRPC5 channel subtype in adrenal chromaffin cells, which prevents proper adrenaline rise in blood plasma. Using electrophysiological analyses, we delineate a previously unknown signaling pathway in which stimulation of PAC1 or muscarinic receptors activates TRPC5 channels in a phospholipase-C-dependent manner to induce sustained adrenaline secretion as a crucial step in the sympathetic counter response to insulin-induced hypoglycemia. By comparing metabolites in the plasma, we identified reduced taurine levels after hypoglycemia induction as a commonality in TRPC5-deficient mice and HAAF patients.
Collapse
Affiliation(s)
- Jenny Bröker-Lai
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - José Rego Terol
- Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany
| | - Christin Richter
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Ilka Mathar
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Angela Wirth
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Stefan Kopf
- Klinik für Endokrinologie, Diabetologie, Stoffwechsel und Klinische Chemie, Heidelberg, Germany
- Institute for Diabetes and Cancer, Helmholtz Diabetes Center, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), 85764, Neuherberg, Germany
| | - Ana Moreno-Pérez
- Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany
| | - Michael Büttner
- Metabolomics Core Technology Platform, Centre for Organismal Studies Heidelberg (COS Heidelberg), Heidelberg, Germany
| | - Linette Liqi Tan
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Mazen Makke
- Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany
| | - Gernot Poschet
- Metabolomics Core Technology Platform, Centre for Organismal Studies Heidelberg (COS Heidelberg), Heidelberg, Germany
| | - Julia Hermann
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Volodymyr Tsvilovskyy
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Uwe Haberkorn
- Nuclear Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Philipp Wartenberg
- Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Sebastian Susperreguy
- Signal Transduction Laboratory, Institute of Biomedical Research (BIOMED UCA CONICET) Edificio San José, Piso 3 School of Biomedical Sciences, Pontifical Catholic University of Argentina, Buenos Aires, Argentina
| | - Michael Berlin
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Roger Ottenheijm
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Koenraad Philippaert
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Moya Wu
- Institute for Diabetes and Cancer, Helmholtz Diabetes Center, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), 85764, Neuherberg, Germany
| | - Tobias Wiedemann
- Institute for Diabetes and Cancer, Helmholtz Diabetes Center, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), 85764, Neuherberg, Germany
| | - Stephan Herzig
- Institute for Diabetes and Cancer, Helmholtz Diabetes Center, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), 85764, Neuherberg, Germany
| | - Anouar Belkacemi
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Rebecca T Levinson
- Department of General Internal Medicine and Psychosomatics, Heidelberg University Hospital, Heidelberg, Germany
| | - Nitin Agarwal
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Juan E Camacho Londoño
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Bert Klebl
- Lead Discovery Center GmbH, Dortmund, Germany
| | | | - Frank Zufall
- Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany
| | | | - Ulrich Boehm
- Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Rüdiger Hell
- Metabolomics Core Technology Platform, Centre for Organismal Studies Heidelberg (COS Heidelberg), Heidelberg, Germany
| | - Peter Nawroth
- Klinik für Endokrinologie, Diabetologie, Stoffwechsel und Klinische Chemie, Heidelberg, Germany
- Deutsches Zentrum für Diabetesforschung (DZD e.V), München-Neuherberg, Germany
| | - Lutz Birnbaumer
- Signal Transduction Laboratory, Institute of Biomedical Research (BIOMED UCA CONICET) Edificio San José, Piso 3 School of Biomedical Sciences, Pontifical Catholic University of Argentina, Buenos Aires, Argentina
| | - Trese Leinders-Zufall
- Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany
| | - Rohini Kuner
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Markus Zorn
- Klinik für Endokrinologie, Diabetologie, Stoffwechsel und Klinische Chemie, Heidelberg, Germany
| | - Dieter Bruns
- Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany
| | - Yvonne Schwarz
- Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany.
| | - Marc Freichel
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| |
Collapse
|
3
|
Rades M, Poschet G, Gegner H, Wilke T, Reichert J. Chronic effects of exposure to polyethylene microplastics may be mitigated at the expense of growth and photosynthesis in reef-building corals. MARINE POLLUTION BULLETIN 2024; 205:116631. [PMID: 38917503 DOI: 10.1016/j.marpolbul.2024.116631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024]
Abstract
The causes of the physiological effects of microplastic pollution, potentially harming reef-building corals, are unclear. Reasons might include increased energy demands for handling particles and immune reactions. This study is among the first assessing the effects of long-term microplastic exposure on coral physiology at realistic concentrations (200 polyethylene particles L-1). The coral species Acropora muricata, Pocillopora verrucosa, Porites lutea, and Heliopora coerulea were exposed to microplastics for 11 months, and energy reserves, metabolites, growth, and photosymbiont state were analyzed. Results showed an overall low impact on coral physiology, yet species-specific effects occurred. Specifically, H. coerulea exhibited reduced growth, P. lutea and A. muricata showed changes in photosynthetic efficiency, and A. muricata variations in taurine levels. These findings suggest that corals may possess compensatory mechanisms mitigating the effects of microplastics. However, realistic microplastic concentrations only occasionally affected corals. Yet, corals exposed to increasing pollution scenarios will likely experience more negative impacts.
Collapse
Affiliation(s)
- Marvin Rades
- Department of Animal Ecology & Systematics, Justus Liebig University, Giessen, Germany.
| | - Gernot Poschet
- Metabolomics Core Technology Platform, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Hagen Gegner
- Metabolomics Core Technology Platform, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Thomas Wilke
- Department of Animal Ecology & Systematics, Justus Liebig University, Giessen, Germany
| | - Jessica Reichert
- Department of Animal Ecology & Systematics, Justus Liebig University, Giessen, Germany; Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, USA
| |
Collapse
|
4
|
Roisman-Geller N, Pisanty O, Weinberger A, Gajbhiye DS, Golan M, Gothilf Y. Combined Pituitary Hormone Deficiency in lhx4-Knockout Zebrafish. Int J Mol Sci 2024; 25:7332. [PMID: 39000439 PMCID: PMC11242037 DOI: 10.3390/ijms25137332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
LIM homeobox 4 (LHX4) is a transcription factor crucial for anterior pituitary (AP) development. Patients with LHX4 mutation suffer from combined pituitary hormone deficiency (CPHD), short statures, reproductive and metabolic disorders and lethality in some cases. Lhx4-knockout (KO) mice fail to develop a normal AP and die shortly after birth. Here, we characterize a zebrafish lhx4-KO model to further investigate the importance of LHX4 in pituitary gland development and regulation. At the embryonic and larval stages, these fish express lower levels of tshb mRNA compared with their wildtype siblings. In adult lhx4-KO fish, the expressions of pituitary hormone-encoding transcripts, including growth hormone (gh), thyroid stimulating hormone (tshb), proopiomelanocortin (pomca) and follicle stimulating hormone (fshb), are reduced, the pomca promoter-driven expression in corticotrophs is dampened and luteinizing hormone (lhb)-producing gonadotrophs are severely depleted. In contrast to Lhx4-KO mice, Lhx4-deficient fish survive to adulthood, but with a reduced body size. Importantly, lhx4-KO males reach sexual maturity and are reproductively competent, whereas the females remain infertile with undeveloped ovaries. These phenotypes, which are reminiscent of those observed in CPHD patients, along with the advantages of the zebrafish for developmental genetics research, make this lhx4-KO fish an ideal vertebrate model to study the outcomes of LHX4 mutation.
Collapse
Affiliation(s)
- Nicole Roisman-Geller
- School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel; (N.R.-G.); (O.P.); (A.W.)
| | - Odelia Pisanty
- School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel; (N.R.-G.); (O.P.); (A.W.)
| | - Alon Weinberger
- School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel; (N.R.-G.); (O.P.); (A.W.)
| | - Deodatta S. Gajbhiye
- Department of Poultry and Aquaculture, Institute of Animal Sciences, Agricultural Research Organization, Volcani Center, Rishon Letziyon 7505101, Israel; (D.S.G.); (M.G.)
| | - Matan Golan
- Department of Poultry and Aquaculture, Institute of Animal Sciences, Agricultural Research Organization, Volcani Center, Rishon Letziyon 7505101, Israel; (D.S.G.); (M.G.)
| | - Yoav Gothilf
- School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel; (N.R.-G.); (O.P.); (A.W.)
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv 6997801, Israel
| |
Collapse
|
5
|
Lee HB, Shams S, Dang Thi VH, Boyum GE, Modhurima R, Hall EM, Green IK, Cervantes EM, Miguez FE, Clark KJ. Key HPI axis receptors facilitate light adaptive behavior in larval zebrafish. Sci Rep 2024; 14:7759. [PMID: 38565594 PMCID: PMC10987622 DOI: 10.1038/s41598-024-57707-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 03/21/2024] [Indexed: 04/04/2024] Open
Abstract
The vertebrate stress response (SR) is mediated by the hypothalamic-pituitary-adrenal (HPA) axis and contributes to generating context appropriate physiological and behavioral changes. Although the HPA axis plays vital roles both in stressful and basal conditions, research has focused on the response under stress. To understand broader roles of the HPA axis in a changing environment, we characterized an adaptive behavior of larval zebrafish during ambient illumination changes. Genetic abrogation of glucocorticoid receptor (nr3c1) decreased basal locomotor activity in light and darkness. Some key HPI axis receptors (mc2r [ACTH receptor], nr3c1), but not nr3c2 (mineralocorticoid receptor), were required to adapt to light more efficiently but became dispensable when longer illumination was provided. Such light adaptation was more efficient in dimmer light. Our findings show that the HPI axis contributes to the SR, facilitating the phasic response and maintaining an adapted basal state, and that certain adaptations occur without HPI axis activity.
Collapse
Affiliation(s)
- Han B Lee
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Soaleha Shams
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Viet Ha Dang Thi
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Grace E Boyum
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Rodsy Modhurima
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Emma M Hall
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Izzabella K Green
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Karl J Clark
- Department of Neurology, Mayo Clinic, Rochester, MN, USA.
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA.
- Neuroscience, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, USA.
- Department of Animal Science, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
6
|
Pfeffer T, Krug SM, Kracke T, Schürfeld R, Colbatzky F, Kirschner P, Medert R, Freichel M, Schumacher D, Bartosova M, Zarogiannis SG, Muckenthaler MU, Altamura S, Pezer S, Volk N, Schwab C, Duensing S, Fleming T, Heidenreich E, Zschocke J, Hell R, Poschet G, Schmitt CP, Peters V. Knock-out of dipeptidase CN2 in human proximal tubular cells disrupts dipeptide and amino acid homeostasis and para- and transcellular solute transport. Acta Physiol (Oxf) 2024; 240:e14126. [PMID: 38517248 DOI: 10.1111/apha.14126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 03/23/2024]
Abstract
AIM Although of potential biomedical relevance, dipeptide metabolism has hardly been studied. We found the dipeptidase carnosinase-2 (CN2) to be abundant in human proximal tubules, which regulate water and solute homeostasis. We therefore hypothesized, that CN2 has a key metabolic role, impacting proximal tubular transport function. METHODS A knockout of the CN2 gene (CNDP2-KO) was generated in human proximal tubule cells and characterized by metabolomics, RNA-seq analysis, paracellular permeability analysis and ion transport. RESULTS CNDP2-KO in human proximal tubule cells resulted in the accumulation of cellular dipeptides, reduction of amino acids and imbalance of related metabolic pathways, and of energy supply. RNA-seq analyses indicated altered protein metabolism and ion transport. Detailed functional studies demonstrated lower CNDP2-KO cell viability and proliferation, and altered ion and macromolecule transport via trans- and paracellular pathways. Regulatory and transport protein abundance was disturbed, either as a consequence of the metabolic imbalance or the resulting functional disequilibrium. CONCLUSION CN2 function has a major impact on intracellular amino acid and dipeptide metabolism and is essential for key metabolic and regulatory functions of proximal tubular cells. These findings deserve in vivo analysis of the relevance of CN2 for nephron function and regulation of body homeostasis.
Collapse
Affiliation(s)
- Tilman Pfeffer
- Medical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, Heidelberg University, Heidelberg, Germany
- Tissue Bank of the German Center for Infection Research (DZIF), Partner Site Heidelberg, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Susanne M Krug
- Clinical Physiology/Nutritional Medicine, Charité-Universitätsmedizin Berlin, CBF, Berlin, Germany
| | - Tamara Kracke
- Medical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, Heidelberg University, Heidelberg, Germany
| | - Robin Schürfeld
- Medical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, Heidelberg University, Heidelberg, Germany
| | - Florian Colbatzky
- Medical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, Heidelberg University, Heidelberg, Germany
| | - Philip Kirschner
- Medical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, Heidelberg University, Heidelberg, Germany
| | - Rebekka Medert
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Marc Freichel
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Dagmar Schumacher
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Maria Bartosova
- Medical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, Heidelberg University, Heidelberg, Germany
| | - Sotiris G Zarogiannis
- Medical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, Heidelberg University, Heidelberg, Germany
| | - Martina U Muckenthaler
- Department of Pediatric Oncology, Hematology and Immunology and Hopp Children Cancer Center (KiTZ), University Hospital Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), EMBL and University of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Sandro Altamura
- Department of Pediatric Oncology, Hematology and Immunology and Hopp Children Cancer Center (KiTZ), University Hospital Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), EMBL and University of Heidelberg, Heidelberg, Germany
| | - Silvia Pezer
- Medical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, Heidelberg University, Heidelberg, Germany
| | - Nadine Volk
- Tissue Bank of the National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Constantin Schwab
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Stefan Duensing
- Department of Urology, University Hospital Heidelberg and National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany
| | - Thomas Fleming
- Internal Medicine I and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
| | - Elena Heidenreich
- Centre for Organismal Studies (COS), University of Heidelberg, Heidelberg, Germany
| | - Johannes Zschocke
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Rüdiger Hell
- Centre for Organismal Studies (COS), University of Heidelberg, Heidelberg, Germany
| | - Gernot Poschet
- Centre for Organismal Studies (COS), University of Heidelberg, Heidelberg, Germany
| | - Claus P Schmitt
- Medical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, Heidelberg University, Heidelberg, Germany
| | - Verena Peters
- Medical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
7
|
Riegel G, Orvain C, Recberlik S, Spaety ME, Poschet G, Venkatasamy A, Yamamoto M, Nomura S, Tsukamoto T, Masson M, Gross I, Le Lagadec R, Mellitzer G, Gaiddon C. The unfolded protein response-glutathione metabolism axis: A novel target of a cycloruthenated complexes bypassing tumor resistance mechanisms. Cancer Lett 2024; 585:216671. [PMID: 38290658 DOI: 10.1016/j.canlet.2024.216671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/22/2023] [Accepted: 01/20/2024] [Indexed: 02/01/2024]
Abstract
Platinum-based drugs remain the reference treatment for gastric cancer (GC). However, the frequency of resistance, due to mutations in TP53 or alterations in the energy and redox metabolisms, impairs the efficacy of current treatments, highlighting the need for alternative therapeutic options. Here, we show that a cycloruthenated compound targeting the redox metabolism, RDC11, induces higher cytotoxicity than oxaliplatin in GC cells and is more potent in reducing tumor growth in vivo. Detailed investigations into the mode of action of RDC11 indicated that it targets the glutathione (GSH) metabolism, which is an important drug resistance mechanism. We demonstrate that cycloruthenated complexes regulate the expression of enzymes of the transsulfuration pathway via the Unfolded Protein Response (UPR) and its effector ATF4. Furthermore, RDC11 induces the expression of SLC7A11 encoding for the cystine/glutamate antiporter xCT. These effects lead to a lower cellular GSH content and elevated oxygen reactive species production, causing the activation of a caspase-independent apoptosis. Altogether, this study provides the first evidence that cycloruthenated complexes target the GSH metabolism, neutralizing thereby a major resistance mechanism towards platinum-based chemotherapies and anticancer immune response.
Collapse
Affiliation(s)
- Gilles Riegel
- University of Strasbourg, INSERM UMR_S 1113, "Streinth" Laboratory, Strasbourg, France
| | - Christophe Orvain
- University of Strasbourg, INSERM UMR_S 1113, "Streinth" Laboratory, Strasbourg, France; INSERM, UMR 1260, CRBS, Regenerative Nanomedicine, "HERIIT" Laboratory, University of Strasbourg, Strasbourg, France
| | - Sevda Recberlik
- University of Strasbourg, INSERM UMR_S 1113, "Streinth" Laboratory, Strasbourg, France; INSERM, UMR 1260, CRBS, Regenerative Nanomedicine, "HERIIT" Laboratory, University of Strasbourg, Strasbourg, France
| | - Marie-Elodie Spaety
- University of Strasbourg, INSERM UMR_S 1113, "Streinth" Laboratory, Strasbourg, France
| | - Gernot Poschet
- Centre for Organismal Studies (COS), University of Heidelberg, Heidelberg, Germany
| | - Aina Venkatasamy
- University of Strasbourg, INSERM UMR_S 1113, "Streinth" Laboratory, Strasbourg, France; IHU-Strasbourg, Institute of Image-Guided Surgery, Strasbourg, France
| | - Masami Yamamoto
- Department of Laboratory of Physiological Pathology, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Sachiyo Nomura
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tetsyua Tsukamoto
- Department of Diagnostic Pathology, Graduate School of Medicine, Fujita Health University, Toyoake, Japan
| | - Murielle Masson
- University of Strasbourg, INSERM UMR_S 1113, "Streinth" Laboratory, Strasbourg, France; University of Strasbourg, CNRS BSC-UMR 7242, Ecole Supérieure de Biotechnologie, Illkirch, France
| | - Isabelle Gross
- University of Strasbourg, INSERM UMR_S 1113, "SMART" Laboratory, Strasbourg, France; INSERM, UMR 1260, CRBS, Regenerative Nanomedicine, "HERIIT" Laboratory, University of Strasbourg, Strasbourg, France
| | - Ronan Le Lagadec
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, 04510, Ciudad de México, Mexico
| | - Georg Mellitzer
- University of Strasbourg, INSERM UMR_S 1113, "Streinth" Laboratory, Strasbourg, France; INSERM, UMR 1260, CRBS, Regenerative Nanomedicine, "HERIIT" Laboratory, University of Strasbourg, Strasbourg, France.
| | - Christian Gaiddon
- University of Strasbourg, INSERM UMR_S 1113, "Streinth" Laboratory, Strasbourg, France.
| |
Collapse
|
8
|
Weisshaar N, Ma S, Ming Y, Madi A, Mieg A, Hering M, Zettl F, Mohr K, Ten Bosch N, Stichling D, Buettner M, Poschet G, Klinke G, Schulz M, Kunze-Rohrbach N, Kerber C, Klein IM, Wu J, Wang X, Cui G. The malate shuttle detoxifies ammonia in exhausted T cells by producing 2-ketoglutarate. Nat Immunol 2023; 24:1921-1932. [PMID: 37813964 PMCID: PMC10602850 DOI: 10.1038/s41590-023-01636-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 09/06/2023] [Indexed: 10/11/2023]
Abstract
The malate shuttle is traditionally understood to maintain NAD+/NADH balance between the cytosol and mitochondria. Whether the malate shuttle has additional functions is unclear. Here we show that chronic viral infections induce CD8+ T cell expression of GOT1, a central enzyme in the malate shuttle. Got1 deficiency decreased the NAD+/NADH ratio and limited antiviral CD8+ T cell responses to chronic infection; however, increasing the NAD+/NADH ratio did not restore T cell responses. Got1 deficiency reduced the production of the ammonia scavenger 2-ketoglutarate (2-KG) from glutaminolysis and led to a toxic accumulation of ammonia in CD8+ T cells. Supplementation with 2-KG assimilated and detoxified ammonia in Got1-deficient T cells and restored antiviral responses. These data indicate that the major function of the malate shuttle in CD8+ T cells is not to maintain the NAD+/NADH balance but rather to detoxify ammonia and enable sustainable ammonia-neutral glutamine catabolism in CD8+ T cells during chronic infection.
Collapse
Affiliation(s)
- Nina Weisshaar
- T Cell Metabolism Group (D192), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Sicong Ma
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China
| | - Yanan Ming
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China
| | - Alaa Madi
- T Cell Metabolism Group (D192), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Alessa Mieg
- T Cell Metabolism Group (D192), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Marvin Hering
- T Cell Metabolism Group (D192), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Ferdinand Zettl
- T Cell Metabolism Group (D192), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Kerstin Mohr
- T Cell Metabolism Group (D192), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nora Ten Bosch
- T Cell Metabolism Group (D192), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Helmholtz Institute for Translational Oncology (HI-TRON)-A Helmholtz Institute of the DKFZ, Mainz, Germany
| | - Diana Stichling
- T Cell Metabolism Group (D192), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Buettner
- Metabolomics Core Technology Platform, Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Gernot Poschet
- Metabolomics Core Technology Platform, Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Glynis Klinke
- Metabolomics Core Technology Platform, Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Michael Schulz
- Metabolomics Core Technology Platform, Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Nina Kunze-Rohrbach
- Metabolomics Core Technology Platform, Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Carolin Kerber
- Tissue Bank of the German Center for Infection Research (DZIF), Partner Site Heidelberg, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Isabel Madeleine Klein
- Tissue Bank of the German Center for Infection Research (DZIF), Partner Site Heidelberg, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jingxia Wu
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China.
| | - Xi Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China.
| | - Guoliang Cui
- T Cell Metabolism Group (D192), German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany.
- Helmholtz Institute for Translational Oncology (HI-TRON)-A Helmholtz Institute of the DKFZ, Mainz, Germany.
| |
Collapse
|
9
|
Lee H, Shams S, Dang Thi VH, Boyum G, Modhurima R, Hall E, Green I, Cervantes E, Miguez F, Clark K. The canonical HPA axis facilitates and maintains light adaptive behavior. RESEARCH SQUARE 2023:rs.3.rs-3240080. [PMID: 37720015 PMCID: PMC10503838 DOI: 10.21203/rs.3.rs-3240080/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
The vertebrate stress response (SR) is mediated by the hypothalamic-pituitary-adrenal (HPA) axis and contributes to generating context appropriate physiological and behavioral changes. Although the HPA axis plays vital roles both in stressful and basal conditions, research has focused on the response under stress. To understand broader roles of the HPA axis in a changing environment, we characterized an adaptive behavior of larval zebrafish during ambient illumination changes. The glucocorticoid receptor (nr3c1) was necessary to maintain basal locomotor activity in light and darkness. The HPA axis was required to adapt to light more efficiently but became dispensable when longer illumination was provided. Light adaptation was more efficient in dimmer light and did not require the mineralocorticoid receptor (nr3c2). Our findings show that the HPA axis contributes to the SR at various stages, facilitating the phasic response and maintaining an adapted basal state, and that certain adaptations occur without HPA axis activity.
Collapse
|
10
|
Eachus H, Oberski L, Paveley J, Bacila I, Ashton JP, Esposito U, Seifuddin F, Pirooznia M, Elhaik E, Placzek M, Krone NP, Cunliffe VT. Glucocorticoid receptor regulates protein chaperone, circadian clock and affective disorder genes in the zebrafish brain. Dis Model Mech 2023; 16:dmm050141. [PMID: 37525888 PMCID: PMC10565112 DOI: 10.1242/dmm.050141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023] Open
Abstract
Glucocorticoid resistance is commonly observed in depression, and has been linked to reduced expression and/or function of the glucocorticoid receptor (NR3C1 in human, hereafter referred to as GR). Previous studies have shown that GR-mutant zebrafish exhibit behavioural abnormalities that are indicative of an affective disorder, suggesting that GR plays a role in brain function. We compared the brain methylomes and brain transcriptomes of adult wild-type and GR-mutant zebrafish, and identified 249 differentially methylated regions (DMRs) that are regulated by GR. These include a cluster of CpG sites within the first intron of fkbp5, the gene encoding the glucocorticoid-inducible heat shock protein co-chaperone Fkbp5. RNA-sequencing analysis revealed that genes associated with chaperone-mediated protein folding, the regulation of circadian rhythm and the regulation of metabolism are particularly sensitive to loss of GR function. In addition, we identified subsets of genes exhibiting GR-regulated transcription that are known to regulate behaviour, and are linked to unipolar depression and anxiety. Taken together, our results identify key biological processes and novel molecular mechanisms through which the GR is likely to mediate responses to stress in the adult zebrafish brain, and they provide further support for the zebrafish GR mutant as a model for the study of affective disorders.
Collapse
Affiliation(s)
- Helen Eachus
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Lara Oberski
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Jack Paveley
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Irina Bacila
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - John-Paul Ashton
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Umberto Esposito
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Fayaz Seifuddin
- Bioinformatics and Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Building 12, 12 South Drive, Bethesda, MD 20892, USA
| | - Mehdi Pirooznia
- Bioinformatics and Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Building 12, 12 South Drive, Bethesda, MD 20892, USA
| | - Eran Elhaik
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Marysia Placzek
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Nils P. Krone
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Vincent T. Cunliffe
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
11
|
Pfeffer T, Wetzel C, Kirschner P, Bartosova M, Poth T, Schwab C, Poschet G, Zemva J, Bulkescher R, Damgov I, Thiel C, Garbade SF, Klingbeil K, Peters V, Schmitt CP. Carnosinase-1 Knock-Out Reduces Kidney Fibrosis in Type-1 Diabetic Mice on High Fat Diet. Antioxidants (Basel) 2023; 12:1270. [PMID: 37372000 DOI: 10.3390/antiox12061270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/09/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023] Open
Abstract
Carnosine and anserine supplementation markedLy reduce diabetic nephropathy in rodents. The mode of nephroprotective action of both dipeptides in diabetes, via local protection or improved systemic glucose homeostasis, is uncertain. Global carnosinase-1 knockout mice (Cndp1-KO) and wild-type littermates (WT) on a normal diet (ND) and high fat diet (HFD) (n = 10/group), with streptozocin (STZ)-induced type-1 diabetes (n = 21-23/group), were studied for 32 weeks. Independent of diet, Cndp1-KO mice had 2- to 10-fold higher kidney anserine and carnosine concentrations than WT mice, but otherwise a similar kidney metabolome; heart, liver, muscle and serum anserine and carnosine concentrations were not different. Diabetic Cndp1-KO mice did not differ from diabetic WT mice in energy intake, body weight gain, blood glucose, HbA1c, insulin and glucose tolerance with both diets, whereas the diabetes-related increase in kidney advanced glycation end-product and 4-hydroxynonenal concentrations was prevented in the KO mice. Tubular protein accumulation was lower in diabetic ND and HFD Cndp1-KO mice, interstitial inflammation and fibrosis were lower in diabetic HFD Cndp1-KO mice compared to diabetic WT mice. Fatalities occurred later in diabetic ND Cndp1-KO mice versus WT littermates. Independent of systemic glucose homeostasis, increased kidney anserine and carnosine concentrations reduce local glycation and oxidative stress in type-1 diabetic mice, and mitigate interstitial nephropathy in type-1 diabetic mice on HFD.
Collapse
Affiliation(s)
- Tilman Pfeffer
- Centre for Paediatric and Adolescent Medicine, University of Heidelberg, 69120 Heidelberg, Germany
- Tissue Bank of the German Center for Infection Research (DZIF), Partner Site Heidelberg, Institute of Pathology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Charlotte Wetzel
- Centre for Paediatric and Adolescent Medicine, University of Heidelberg, 69120 Heidelberg, Germany
| | - Philip Kirschner
- Centre for Paediatric and Adolescent Medicine, University of Heidelberg, 69120 Heidelberg, Germany
| | - Maria Bartosova
- Centre for Paediatric and Adolescent Medicine, University of Heidelberg, 69120 Heidelberg, Germany
| | - Tanja Poth
- Center for Model System and Comparative Pathology (CMCP), Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Constantin Schwab
- Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Gernot Poschet
- Centre for Organismal Studies (COS), Metabolomics Core Technology Platform, University of Heidelberg, 69120 Heidelberg, Germany
| | - Johanna Zemva
- Internal Medicine I and Clinical Chemistry, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Ruben Bulkescher
- Internal Medicine I and Clinical Chemistry, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Ivan Damgov
- Institute of Medical Biometry and Informatics, University of Heidelberg, 69120 Heidelberg, Germany
| | - Christian Thiel
- Centre for Paediatric and Adolescent Medicine, University of Heidelberg, 69120 Heidelberg, Germany
| | - Sven F Garbade
- Centre for Paediatric and Adolescent Medicine, University of Heidelberg, 69120 Heidelberg, Germany
| | - Kristina Klingbeil
- Centre for Paediatric and Adolescent Medicine, University of Heidelberg, 69120 Heidelberg, Germany
| | - Verena Peters
- Centre for Paediatric and Adolescent Medicine, University of Heidelberg, 69120 Heidelberg, Germany
| | - Claus Peter Schmitt
- Centre for Paediatric and Adolescent Medicine, University of Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
12
|
Zhou F, Aroua N, Liu Y, Rohde C, Cheng J, Wirth AK, Fijalkowska D, Göllner S, Lotze M, Yun H, Yu X, Pabst C, Sauer T, Oellerich T, Serve H, Röllig C, Bornhäuser M, Thiede C, Baldus C, Frye M, Raffel S, Krijgsveld J, Jeremias I, Beckmann R, Trumpp A, Müller-Tidow C. A Dynamic rRNA Ribomethylome Drives Stemness in Acute Myeloid Leukemia. Cancer Discov 2023; 13:332-347. [PMID: 36259929 PMCID: PMC9900322 DOI: 10.1158/2159-8290.cd-22-0210] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 09/12/2022] [Accepted: 10/14/2022] [Indexed: 02/07/2023]
Abstract
The development and regulation of malignant self-renewal remain unresolved issues. Here, we provide biochemical, genetic, and functional evidence that dynamics in ribosomal RNA (rRNA) 2'-O-methylation regulate leukemia stem cell (LSC) activity in vivo. A comprehensive analysis of the rRNA 2'-O-methylation landscape of 94 patients with acute myeloid leukemia (AML) revealed dynamic 2'-O-methylation specifically at exterior sites of ribosomes. The rRNA 2'-O-methylation pattern is closely associated with AML development stage and LSC gene expression signature. Forced expression of the 2'-O-methyltransferase fibrillarin (FBL) induced an AML stem cell phenotype and enabled engraftment of non-LSC leukemia cells in NSG mice. Enhanced 2'-O-methylation redirected the ribosome translation program toward amino acid transporter mRNAs enriched in optimal codons and subsequently increased intracellular amino acid levels. Methylation at the single site 18S-guanosine 1447 was instrumental for LSC activity. Collectively, our work demonstrates that dynamic 2'-O-methylation at specific sites on rRNAs shifts translational preferences and controls AML LSC self-renewal. SIGNIFICANCE We establish the complete rRNA 2'-O-methylation landscape in human AML. Plasticity of rRNA 2'-O-methylation shifts protein translation toward an LSC phenotype. This dynamic process constitutes a novel concept of how cancers reprogram cell fate and function. This article is highlighted in the In This Issue feature, p. 247.
Collapse
Affiliation(s)
- Fengbiao Zhou
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
- Molecular Medicine Partnership Unit EMBL-UKHD, Heidelberg, Germany
- Corresponding Authors: Carsten Müller-Tidow, Department of Internal Medicine V, Heidelberg University Hospital, 69120 Heidelberg, Germany. Phone: 4906-2215-68000; E-mail: ; Fengbiao Zhou, Department of Internal Medicine V, Heidelberg University Hospital, 69120 Heidelberg, Germany. Phone: 4906-221-563-7487; E-mail: ; and Andreas Trumpp, Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany. Phone: 4906-2214-23901; E-mail:
| | - Nesrine Aroua
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute of Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
| | - Yi Liu
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
- Molecular Medicine Partnership Unit EMBL-UKHD, Heidelberg, Germany
| | - Christian Rohde
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
- Molecular Medicine Partnership Unit EMBL-UKHD, Heidelberg, Germany
| | - Jingdong Cheng
- Gene Center, Department of Biochemistry, University of Munich, Munich, Germany
| | - Anna-Katharina Wirth
- Research Unit Apoptosis in Hematopoietic Stem Cells (AHS), Helmholtz Center Munich, German Center for Environmental Health, Munich, Germany
| | - Daria Fijalkowska
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefanie Göllner
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Michelle Lotze
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Haiyang Yun
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Xiaobing Yu
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Caroline Pabst
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Tim Sauer
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas Oellerich
- Department of Medicine II, Hematology/Oncology, Goethe University, Frankfurt Am Main, Germany
| | - Hubert Serve
- Department of Medicine II, Hematology/Oncology, Goethe University, Frankfurt Am Main, Germany
| | - Christoph Röllig
- Medical Department 1, University Hospital Dresden, Dresden, Germany
| | | | - Christian Thiede
- Medical Department 1, University Hospital Dresden, Dresden, Germany
| | - Claudia Baldus
- Department of Medicine II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Michaela Frye
- Division of Mechanisms Regulating Gene Expression, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Simon Raffel
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Jeroen Krijgsveld
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Irmela Jeremias
- Research Unit Apoptosis in Hematopoietic Stem Cells (AHS), Helmholtz Center Munich, German Center for Environmental Health, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Roland Beckmann
- Gene Center, Department of Biochemistry, University of Munich, Munich, Germany
| | - Andreas Trumpp
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute of Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- National Center for Tumor Diseases, NCT Heidelberg, Heidelberg, Germany
- Corresponding Authors: Carsten Müller-Tidow, Department of Internal Medicine V, Heidelberg University Hospital, 69120 Heidelberg, Germany. Phone: 4906-2215-68000; E-mail: ; Fengbiao Zhou, Department of Internal Medicine V, Heidelberg University Hospital, 69120 Heidelberg, Germany. Phone: 4906-221-563-7487; E-mail: ; and Andreas Trumpp, Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany. Phone: 4906-2214-23901; E-mail:
| | - Carsten Müller-Tidow
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
- Molecular Medicine Partnership Unit EMBL-UKHD, Heidelberg, Germany
- National Center for Tumor Diseases, NCT Heidelberg, Heidelberg, Germany
- Corresponding Authors: Carsten Müller-Tidow, Department of Internal Medicine V, Heidelberg University Hospital, 69120 Heidelberg, Germany. Phone: 4906-2215-68000; E-mail: ; Fengbiao Zhou, Department of Internal Medicine V, Heidelberg University Hospital, 69120 Heidelberg, Germany. Phone: 4906-221-563-7487; E-mail: ; and Andreas Trumpp, Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany. Phone: 4906-2214-23901; E-mail:
| |
Collapse
|
13
|
Cell Type-Specific Metabolic Response to Amino Acid Starvation Dictates the Role of Sestrin2 in Regulation of mTORC1. Cells 2022; 11:cells11233863. [PMID: 36497120 PMCID: PMC9736985 DOI: 10.3390/cells11233863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Targeting cancer metabolism has become one of the strategies for a rational anti-tumor therapy. However, cellular plasticity, driven by a major regulator of cellular growth and metabolism, mTORC1, often leads toward treatment resistance. Sestrin2, a stress-inducible protein, has been described as an mTORC1 inhibitor upon various types of stress signals. Immune assays and online measurements of cellular bioenergetics were employed to investigate the nature of Sestrin2 regulation, and finally, by silencing the SESN2 gene, to identify the role of induced Sestrin2 upon a single amino acid deprivation in cancer cells of various origins. Our data suggest that a complex interplay of either oxidative, energetic, nutritional stress, or in combination, play a role in Sestrin2 regulation upon single amino acid deprivation. Therefore, cellular metabolic background and sequential metabolic response dictate Sestrin2 expression in the absence of an amino acid. While deprivations of essential amino acids uniformly induce Sestrin2 levels, non-essential amino acids regulate Sestrin2 differently, drawing a characteristic Sestrin2 expression fingerprint, which could serve as a first indication of the underlying cellular vulnerability. Finally, we show that canonical GCN2-ATF4-mediated Sestrin2 induction leads to mTORC1 inhibition only in amino acid auxotroph cells, where the amino acid cannot be replenished by metabolic reprogramming.
Collapse
|
14
|
A Novel Model Using AAV9-Cre to Knockout Adult Leydig Cell Gene Expression Reveals a Physiological Role of Glucocorticoid Receptor Signalling in Leydig Cell Function. Int J Mol Sci 2022; 23:ijms232315015. [PMID: 36499341 PMCID: PMC9737203 DOI: 10.3390/ijms232315015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/05/2022] Open
Abstract
Glucocorticoids are steroids involved in key physiological processes such as development, metabolism, inflammatory and stress responses and are mostly used exogenously as medications to treat various inflammation-based conditions. They act via the glucocorticoid receptor (GR) expressed in most cells. Exogenous glucocorticoids can negatively impact the function of the Leydig cells in the testis, leading to decreased androgen production. However, endogenous glucocorticoids are produced by the adrenal and within the testis, but whether their action on GR in Leydig cells regulates steroidogenesis is unknown. This study aimed to define the role of endogenous GR signalling in adult Leydig cells. We developed and compared two models; an inducible Cre transgene driven by expression of the Cyp17a1 steroidogenic gene (Cyp17-iCre) that depletes GR during development and a viral vector-driven Cre (AAV9-Cre) to deplete GR in adulthood. The delivery of AAV9-Cre ablated GR in adult mouse Leydig cells depleted Leydig cell GR more efficiently than the Cyp17-iCre model. Importantly, adult depletion of GR in Leydig cells caused reduced expression of luteinising hormone receptor (Lhcgr) and of steroidogenic enzymes required for normal androgen production. These findings reveal that Leydig cell GR signalling plays a physiological role in the testis and highlight that a normal balance of glucocorticoid activity in the testis is important for steroidogenesis.
Collapse
|
15
|
Bitencourt MR, Batista RL, Biscotto I, Carvalho LR. Central adrenal insufficiency: who, when, and how? From the evidence to the controversies - an exploratory review. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2022; 66:541-550. [PMID: 35758836 PMCID: PMC10697652 DOI: 10.20945/2359-3997000000493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/28/2022] [Indexed: 06/15/2023]
Abstract
Central adrenal insufficiency (CAI) is a life-threatening disorder. This occurs when ACTH production is insufficient, leading to low cortisol levels. Since corticosteroids are crucial to many metabolic responses under organic stress and inflammatory conditions, CAI recognition and prompt treatment are vital. However, the diagnosis of CAI is challenging. This is not only because its clinical presentation is usually oligosymptomatic, but also because the CAI laboratory investigation presents many pitfalls. Thus, the clarification of when to use each test could be helpful in many contexts. The CAI challenge is also involved in treatment: Several formulations of synthetic steroids exist, followed by the lack of a biomarker for glucocorticoid replacement. This review aims to access all available literature to synthesize important topics about who should investigate CAI, when it should be suspected, and how CAI must be treated.
Collapse
Affiliation(s)
- Mariana Rechia Bitencourt
- Unidade de Endocrinologia do Desenvolvimento, Disciplina de Endocrinologia, Departamento de Clínica Médica, Hospital das Clínicas, Faculdade de Medicina, Universidade São Paulo, São Paulo, SP, Brasil,
| | - Rafael Loch Batista
- Unidade de Endocrinologia do Desenvolvimento, Disciplina de Endocrinologia, Departamento de Clínica Médica, Hospital das Clínicas, Faculdade de Medicina, Universidade São Paulo, São Paulo, SP, Brasil
- Instituto do Câncer do Estado de São Paulo, São Paulo, SP, Brasil
| | - Isabela Biscotto
- Faculdade de Ciências Médicas e da Saúde de Juiz de Fora (Suprema), Juiz de Fora, MG, Brasil
| | - Luciani R Carvalho
- Unidade de Endocrinologia do Desenvolvimento, Disciplina de Endocrinologia, Departamento de Clínica Médica, Hospital das Clínicas, Faculdade de Medicina, Universidade São Paulo, São Paulo, SP, Brasil,
| |
Collapse
|
16
|
Dixon LE, Pasquariello M, Badgami R, Levin KA, Poschet G, Ng PQ, Orford S, Chayut N, Adamski NM, Brinton J, Simmonds J, Steuernagel B, Searle IR, Uauy C, Boden SA. MicroRNA-resistant alleles of HOMEOBOX DOMAIN-2 modify inflorescence branching and increase grain protein content of wheat. SCIENCE ADVANCES 2022; 8:eabn5907. [PMID: 35544571 PMCID: PMC9094671 DOI: 10.1126/sciadv.abn5907] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/25/2022] [Indexed: 05/26/2023]
Abstract
Plant and inflorescence architecture determine the yield potential of crops. Breeders have harnessed natural diversity for inflorescence architecture to improve yields, and induced genetic variation could provide further gains. Wheat is a vital source of protein and calories; however, little is known about the genes that regulate the development of its inflorescence. Here, we report the identification of semidominant alleles for a class III homeodomain-leucine zipper transcription factor, HOMEOBOX DOMAIN-2 (HB-2), on wheat A and D subgenomes, which generate more flower-bearing spikelets and enhance grain protein content. These alleles increase HB-2 expression by disrupting a microRNA 165/166 complementary site with conserved roles in plants; higher HB-2 expression is associated with modified leaf and vascular development and increased amino acid supply to the inflorescence during grain development. These findings enhance our understanding of genes that control wheat inflorescence development and introduce an approach to improve the nutritional quality of grain.
Collapse
Affiliation(s)
- Laura E. Dixon
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Marianna Pasquariello
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Roshani Badgami
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Kara A. Levin
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA 5064, Australia
| | - Gernot Poschet
- Centre of Organismal Studies (COS), University of Heidelberg, Heidelberg 69120, Germany
| | - Pei Qin Ng
- School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Simon Orford
- Germplasm Resources Unit, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Noam Chayut
- Germplasm Resources Unit, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Nikolai M. Adamski
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Jemima Brinton
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - James Simmonds
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Burkhard Steuernagel
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Iain R. Searle
- School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Cristobal Uauy
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Scott A. Boden
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA 5064, Australia
| |
Collapse
|
17
|
Dekens MPS, Fontinha BM, Gallach M, Pflügler S, Tessmar‐Raible K. Melanopsin elevates locomotor activity during the wake state of the diurnal zebrafish. EMBO Rep 2022; 23:e51528. [PMID: 35233929 PMCID: PMC9066073 DOI: 10.15252/embr.202051528] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 01/24/2022] [Accepted: 02/04/2022] [Indexed: 11/28/2022] Open
Abstract
Mammalian and fish pineals play a key role in adapting behaviour to the ambient light conditions through the release of melatonin. In mice, light inhibits nocturnal locomotor activity via the non‐visual photoreceptor Melanopsin. In contrast to the extensively studied function of Melanopsin in the indirect regulation of the rodent pineal, its role in the intrinsically photosensitive zebrafish pineal has not been elucidated. Therefore, it is not evident if the light signalling mechanism is conserved between distant vertebrates, and how Melanopsin could affect diurnal behaviour. A double knockout of melanopsins (opn4.1‐opn4xb) was generated in the diurnal zebrafish, which manifests attenuated locomotor activity during the wake state. Transcriptome sequencing gave insight into pathways downstream of Melanopsin, implying that sustained repression of the melatonin pathway is required to elevate locomotor activity during the diurnal wake state. Moreover, we show that light induces locomotor activity during the diurnal wake state in an intensity‐dependent manner. These observations suggest a common Melanopsin‐driven mechanism between zebrafish and mammals, while the diurnal and nocturnal chronotypes are inversely regulated downstream of melatonin.
Collapse
Affiliation(s)
- Marcus P S Dekens
- Max Perutz Laboratory Centre for Molecular Biology University of Vienna and Medical University of Vienna Vienna Austria
| | - Bruno M Fontinha
- Max Perutz Laboratory Centre for Molecular Biology University of Vienna and Medical University of Vienna Vienna Austria
| | - Miguel Gallach
- Max Perutz Laboratory Centre for Molecular Biology University of Vienna and Medical University of Vienna Vienna Austria
- Max Perutz Laboratory Centre for Integrative Bioinformatics University of Vienna and Medical University of Vienna Vienna Austria
| | - Sandra Pflügler
- Max Perutz Laboratory Centre for Molecular Biology University of Vienna and Medical University of Vienna Vienna Austria
| | - Kristin Tessmar‐Raible
- Max Perutz Laboratory Centre for Molecular Biology University of Vienna and Medical University of Vienna Vienna Austria
- Research Platform “Marine Rhythms of Life” University of Vienna Vienna Austria
| |
Collapse
|
18
|
Wiggenhauser LM, Metzger L, Bennewitz K, Soleymani S, Boger M, Tabler CT, Hausser I, Sticht C, Wohlfart P, Volk N, Heidenreich E, Buettner M, Hammes HP, Kroll J. pdx1 Knockout Leads to a Diabetic Nephropathy- Like Phenotype in Zebrafish and Identifies Phosphatidylethanolamine as Metabolite Promoting Early Diabetic Kidney Damage. Diabetes 2022; 71:1073-1080. [PMID: 35100334 DOI: 10.2337/db21-0645] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 01/21/2022] [Indexed: 11/13/2022]
Abstract
The pdx1-/- zebrafish mutant was recently established as a novel animal model of diabetic retinopathy. In this study, we investigate whether knockout of pdx1 also leads to diabetic kidney disease (DKD). pdx1-/- larvae exhibit several signs of early DKD, such as glomerular hypertrophy, impairments in the filtration barrier corresponding to microalbuminuria, and glomerular basement membrane (GBM) thickening. Adult pdx1-/- mutants show progressive GBM thickening in comparison with the larval state. Heterozygous pdx1 knockout also leads to glomerular hypertrophy as initial establishment of DKD similar to the pdx1-/- larvae. RNA sequencing of adult pdx1+/- kidneys uncovered regulations in multiple expected diabetic pathways related to podocyte disruption and hinting at early vascular dysregulation without obvious morphological alterations. Metabolome analysis and pharmacological intervention experiments revealed the contribution of phosphatidylethanolamine in the early establishment of kidney damage. In conclusion, this study identified the pdx1 mutant as a novel model for the study of DKD, showing signs of the early disease progression already in the larval stage and several selective features of later DKD in adult mutants.
Collapse
Affiliation(s)
- Lucas M Wiggenhauser
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Lena Metzger
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Katrin Bennewitz
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Silas Soleymani
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Mike Boger
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christoph T Tabler
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ingrid Hausser
- Electron Microscopy Lab, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Carsten Sticht
- Next-Generation Sequencing Core Facility, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Paulus Wohlfart
- Diabetes R&D, Insulin Biology Cluster, Sanofi Deutschland GmbH, Frankfurt, Germany
| | - Nadine Volk
- Tissue Bank of the National Center for Tumor Diseases, Heidelberg, Germany
| | - Elena Heidenreich
- Metabolomics Core Technology Platform, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Michael Buettner
- Metabolomics Core Technology Platform, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Hans-Peter Hammes
- Fifth Medical Department, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jens Kroll
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
19
|
OLIVEIRA CSD, ANDRADE JKS, RAJAN M, NARAIN N. Influence of the phytochemical profile on the peel, seed and pulp of margarida, breda and geada varieties of avocado (Persea Americana Mill) associated with their antioxidant potential. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.25822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Gans IM, Coffman JA. Glucocorticoid-Mediated Developmental Programming of Vertebrate Stress Responsivity. Front Physiol 2021; 12:812195. [PMID: 34992551 PMCID: PMC8724051 DOI: 10.3389/fphys.2021.812195] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 11/22/2021] [Indexed: 01/03/2023] Open
Abstract
Glucocorticoids, vertebrate steroid hormones produced by cells of the adrenal cortex or interrenal tissue, function dynamically to maintain homeostasis under constantly changing and occasionally stressful environmental conditions. They do so by binding and thereby activating nuclear receptor transcription factors, the Glucocorticoid and Mineralocorticoid Receptors (MR and GR, respectively). The GR, by virtue of its lower affinity for endogenous glucocorticoids (cortisol or corticosterone), is primarily responsible for transducing the dynamic signals conveyed by circadian and ultradian glucocorticoid oscillations as well as transient pulses produced in response to acute stress. These dynamics are important determinants of stress responsivity, and at the systemic level are produced by feedforward and feedback signaling along the hypothalamus-pituitary-adrenal/interrenal axis. Within receiving cells, GR signaling dynamics are controlled by the GR target gene and negative feedback regulator fkpb5. Chronic stress can alter signaling dynamics via imperfect physiological adaptation that changes systemic and/or cellular set points, resulting in chronically elevated cortisol levels and increased allostatic load, which undermines health and promotes development of disease. When this occurs during early development it can "program" the responsivity of the stress system, with persistent effects on allostatic load and disease susceptibility. An important question concerns the glucocorticoid-responsive gene regulatory network that contributes to such programming. Recent studies show that klf9, a ubiquitously expressed GR target gene that encodes a Krüppel-like transcription factor important for metabolic plasticity and neuronal differentiation, is a feedforward regulator of GR signaling impacting cellular glucocorticoid responsivity, suggesting that it may be a critical node in that regulatory network.
Collapse
Affiliation(s)
- Ian M. Gans
- MDI Biological Laboratory, Salisbury Cove, ME, United States
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, United States
| | - James A. Coffman
- MDI Biological Laboratory, Salisbury Cove, ME, United States
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, United States
| |
Collapse
|
21
|
Soergel H, Loosli F, Muhle-Goll C. Strain-Specific Liver Metabolite Profiles in Medaka. Metabolites 2021; 11:metabo11110744. [PMID: 34822402 PMCID: PMC8617739 DOI: 10.3390/metabo11110744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/21/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
The relationship between genetic variation and phenotypic traits is often poorly understood since specific genotypes do not always easily translate into associated phenotypes, especially for complex disorders. The genetic background has been shown to affect metabolic pathways and thus contribute to variations in the metabolome. Here, we tested the suitability of NMR metabolomics for comparative analysis of fish lines as a first step towards phenotype-genotype association studies. The Japanese rice fish, medaka (Oryzias latipes), is a widely used genetic vertebrate model with several isogenic inbred laboratory strains. We used liver extracts of medaka iCab and HO5 strains as a paradigm to test the feasibility of distinguishing the metabolome of two different inbred strains. Fifteen metabolites could be detected in uni- and multivariate analyses that showed strain-specific levels. Differences could be assigned to specific metabolic pathways. Our results show that NMR spectroscopy is a suitable method to detect variance of the metabolome caused by subtle genetic differences. Thus, it has the potential to address genotype–phenotype associations in medaka, providing an additional level of phenotypic analysis.
Collapse
Affiliation(s)
- Hannah Soergel
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany;
| | - Felix Loosli
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Correspondence: (F.L.); (C.M.-G.); Tel.: +49-72160828743 (F.L.); +49-72160829357 (C.M.-G.)
| | - Claudia Muhle-Goll
- Institute for Biological Interfaces 4 (IBG 4), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Correspondence: (F.L.); (C.M.-G.); Tel.: +49-72160828743 (F.L.); +49-72160829357 (C.M.-G.)
| |
Collapse
|
22
|
Gans IM, Grendler J, Babich R, Jayasundara N, Coffman JA. Glucocorticoid-Responsive Transcription Factor Krüppel-Like Factor 9 Regulates fkbp5 and Metabolism. Front Cell Dev Biol 2021; 9:727037. [PMID: 34692682 PMCID: PMC8526736 DOI: 10.3389/fcell.2021.727037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/15/2021] [Indexed: 12/30/2022] Open
Abstract
Krüppel-like factor 9 (Klf9) is a feedforward regulator of glucocorticoid receptor (GR) signaling. Here we show that in zebrafish klf9 is expressed with GR-dependent oscillatory dynamics in synchrony with fkbp5, a GR target that encodes a negative feedback regulator of GR signaling. We found that fkbp5 transcript levels are elevated in klf9 -/- mutants and that Klf9 associates with chromatin at the fkbp5 promoter, which becomes hyperacetylated in klf9 -/ - mutants, suggesting that the GR regulates fkbp5 via an incoherent feedforward loop with klf9. As both the GR and Fkbp5 are known to regulate metabolism, we asked how loss of Klf9 affects metabolic rate and gene expression. We found that klf9 -/- mutants have a decreased oxygen consumption rate (OCR) and upregulate glycolytic genes, the promoter regions of which are enriched for potential Klf9 binding motifs. Our results suggest that Klf9 functions downstream of the GR to regulate cellular glucocorticoid responsivity and metabolic homeostasis.
Collapse
Affiliation(s)
- Ian M. Gans
- MDI Biological Laboratory, Bar Harbor, ME, United States
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, United States
| | | | - Remy Babich
- The School of Marine Sciences, University of Maine, Orono, ME, United States
| | - Nishad Jayasundara
- Nicholas School of the Environment, Duke University, Durham, NC, United States
| | - James A. Coffman
- MDI Biological Laboratory, Bar Harbor, ME, United States
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, United States
| |
Collapse
|
23
|
Bacila I, Cunliffe VT, Krone NP. Interrenal development and function in zebrafish. Mol Cell Endocrinol 2021; 535:111372. [PMID: 34175410 DOI: 10.1016/j.mce.2021.111372] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/09/2021] [Accepted: 06/21/2021] [Indexed: 10/21/2022]
Abstract
In this article we aim to provide an overview of the zebrafish interrenal development and function, as well as a review of its contribution to basic and translational research. A search of the PubMed database identified 41 relevant papers published over the last 20 years. Based on the common themes identified, we discuss the organogenesis of the interrenal gland and its functional development and we review what is known about the genes involved in zebrafish steroidogenesis. We also outline the consequences of specific defects in steroid biosynthesis, as revealed by evidence from genetically engineered zebrafish models, including cyp11a2, cyp21a2, hsd3b1, cyp11c1 and fdx1b deficiency. Finally, we summarise the impact of different chemicals and environmental factors on steroidogenesis. Our review highlights the utility of zebrafish as a research model for exploring important areas of basic science and human disease, especially in the current context of rapid technological progress in the field of Molecular Biology.
Collapse
Affiliation(s)
- Irina Bacila
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom; The Bateson Centre, Firth Court, Western Bank, Sheffield, S10 2TN, United Kingdom
| | - Vincent T Cunliffe
- The Bateson Centre, Firth Court, Western Bank, Sheffield, S10 2TN, United Kingdom; Department of Biomedical Science, Firth Court, Western Bank, Sheffield, S10 2TN, United Kingdom
| | - Nils P Krone
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom; The Bateson Centre, Firth Court, Western Bank, Sheffield, S10 2TN, United Kingdom; Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
24
|
Heidenreich E, Pfeffer T, Kracke T, Mechtel N, Nawroth P, Hoffmann GF, Schmitt CP, Hell R, Poschet G, Peters V. A Novel UPLC-MS/MS Method Identifies Organ-Specific Dipeptide Profiles. Int J Mol Sci 2021; 22:9979. [PMID: 34576148 PMCID: PMC8465603 DOI: 10.3390/ijms22189979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Amino acids have a central role in cell metabolism, and intracellular changes contribute to the pathogenesis of various diseases, while the role and specific organ distribution of dipeptides is largely unknown. METHOD We established a sensitive, rapid and reliable UPLC-MS/MS method for quantification of 36 dipeptides. Dipeptide patterns were analyzed in brown and white adipose tissues, brain, eye, heart, kidney, liver, lung, muscle, sciatic nerve, pancreas, spleen and thymus, serum and urine of C57BL/6N wildtype mice and related to the corresponding amino acid profiles. RESULTS A total of 30 out of the 36 investigated dipeptides were detected with organ-specific distribution patterns. Carnosine and anserine were most abundant in all organs, with the highest concentrations in muscles. In liver, Asp-Gln and Ala-Gln concentrations were high, in the spleen and thymus, Glu-Ser and Gly-Asp. In serum, dipeptide concentrations were several magnitudes lower than in organ tissues. In all organs, dipeptides with C-terminal proline (Gly-Pro and Leu-Pro) were present at higher concentrations than dipeptides with N-terminal proline (Pro-Gly and Pro-Leu). Organ-specific amino acid profiles were related to the dipeptide profile with several amino acid concentrations being related to the isomeric form of the dipeptides. Aspartate, histidine, proline and serine tissue concentrations correlated with dipeptide concentrations, when the amino acids were present at the C- but not at the N-terminus. CONCLUSION Our multi-dipeptide quantification approach demonstrates organ-specific dipeptide distribution. This method allows us to understand more about the dipeptide metabolism in disease or in healthy state.
Collapse
Affiliation(s)
- Elena Heidenreich
- Centre for Organismal Studies (COS), Metabolomics Core Technology Platform, Heidelberg University, 69120 Heidelberg, Germany; (E.H.); (N.M.); (R.H.)
| | - Tilman Pfeffer
- Centre for Paediatric and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany; (T.P.); (T.K.); (G.F.H.); (C.P.S.)
| | - Tamara Kracke
- Centre for Paediatric and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany; (T.P.); (T.K.); (G.F.H.); (C.P.S.)
| | - Nils Mechtel
- Centre for Organismal Studies (COS), Metabolomics Core Technology Platform, Heidelberg University, 69120 Heidelberg, Germany; (E.H.); (N.M.); (R.H.)
| | - Peter Nawroth
- Department of Internal Medicine I and Clinical Chemistry, University Hospital of Heidelberg, 69120 Heidelberg, Germany;
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
- Institute for Diabetes and Cancer (IDC) Helmholtz Center Munich, 85764 Neuherberg, Germany
- Joint Heidelberg-Institute for Diabetes and Cancer (IDC) Translational Diabetes Program, 85764 Neuherberg, Germany
| | - Georg F Hoffmann
- Centre for Paediatric and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany; (T.P.); (T.K.); (G.F.H.); (C.P.S.)
| | - Claus Peter Schmitt
- Centre for Paediatric and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany; (T.P.); (T.K.); (G.F.H.); (C.P.S.)
| | - Rüdiger Hell
- Centre for Organismal Studies (COS), Metabolomics Core Technology Platform, Heidelberg University, 69120 Heidelberg, Germany; (E.H.); (N.M.); (R.H.)
| | - Gernot Poschet
- Centre for Organismal Studies (COS), Metabolomics Core Technology Platform, Heidelberg University, 69120 Heidelberg, Germany; (E.H.); (N.M.); (R.H.)
| | - Verena Peters
- Centre for Paediatric and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany; (T.P.); (T.K.); (G.F.H.); (C.P.S.)
| |
Collapse
|
25
|
Sorge S, Theelke J, Yildirim K, Hertenstein H, McMullen E, Müller S, Altbürger C, Schirmeier S, Lohmann I. ATF4-Induced Warburg Metabolism Drives Over-Proliferation in Drosophila. Cell Rep 2021; 31:107659. [PMID: 32433968 DOI: 10.1016/j.celrep.2020.107659] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 01/30/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022] Open
Abstract
The mitochondrial electron transport chain (ETC) enables essential metabolic reactions; nonetheless, the cellular responses to defects in mitochondria and the modulation of signaling pathway outputs are not understood. We show that Notch signaling and ETC attenuation via knockdown of COX7a induces massive over-proliferation. The tumor-like growth is caused by a transcriptional response through the eIF2α-kinase PERK and ATF4, which activates the expression of metabolic enzymes, nutrient transporters, and mitochondrial chaperones. We find this stress adaptation to be beneficial for progenitor cell fitness, as it renders cells sensitive to proliferation induced by the Notch signaling pathway. Intriguingly, over-proliferation is not caused by transcriptional cooperation of Notch and ATF4, but it is mediated in part by pH changes resulting from the Warburg metabolism induced by ETC attenuation. Our results suggest that ETC function is monitored by the PERK-ATF4 pathway, which can be hijacked by growth-promoting signaling pathways, leading to oncogenic pathway activity.
Collapse
Affiliation(s)
- Sebastian Sorge
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Jonas Theelke
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Kerem Yildirim
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Helen Hertenstein
- Institute of Neuro- and Behavioral Biology, University of Münster, 48149 Münster, Germany
| | - Ellen McMullen
- Institute of Neuro- and Behavioral Biology, University of Münster, 48149 Münster, Germany
| | - Stephan Müller
- Institute of Neuro- and Behavioral Biology, University of Münster, 48149 Münster, Germany
| | | | - Stefanie Schirmeier
- Institute of Neuro- and Behavioral Biology, University of Münster, 48149 Münster, Germany
| | - Ingrid Lohmann
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, 69120 Heidelberg, Germany.
| |
Collapse
|
26
|
Shankar A, Williams CT. The darkness and the light: diurnal rodent models for seasonal affective disorder. Dis Model Mech 2021; 14:dmm047217. [PMID: 33735098 PMCID: PMC7859703 DOI: 10.1242/dmm.047217] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The development of animal models is a critical step for exploring the underlying pathophysiological mechanisms of major affective disorders and for evaluating potential therapeutic approaches. Although most neuropsychiatric research is performed on nocturnal rodents, differences in how diurnal and nocturnal animals respond to changing photoperiods, combined with a possible link between circadian rhythm disruption and affective disorders, has led to a call for the development of diurnal animal models. The need for diurnal models is most clear for seasonal affective disorder (SAD), a widespread recurrent depressive disorder that is linked to exposure to short photoperiods. Here, we briefly review what is known regarding the etiology of SAD and then examine progress in developing appropriate diurnal rodent models. Although circadian disruption is often invoked as a key contributor to SAD, a mechanistic understanding of how misalignment between endogenous circadian physiology and daily environmental rhythms affects mood is lacking. Diurnal rodents show promise as models of SAD, as changes in affective-like behaviors are induced in response to short photoperiods or dim-light conditions, and symptoms can be ameliorated by brief exposure to intervals of bright light coincident with activity onset. One exciting avenue of research involves the orexinergic system, which regulates functions that are disturbed in SAD, including sleep cycles, the reward system, feeding behavior, monoaminergic neurotransmission and hippocampal neurogenesis. However, although diurnal models make intuitive sense for the study of SAD and are more likely to mimic circadian disruption, their utility is currently hampered by a lack of genomic resources needed for the molecular interrogation of potential mechanisms.
Collapse
Affiliation(s)
- Anusha Shankar
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Cory T Williams
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| |
Collapse
|
27
|
Weger BD, Gobet C, David FPA, Atger F, Martin E, Phillips NE, Charpagne A, Weger M, Naef F, Gachon F. Systematic analysis of differential rhythmic liver gene expression mediated by the circadian clock and feeding rhythms. Proc Natl Acad Sci U S A 2021; 118:e2015803118. [PMID: 33452134 PMCID: PMC7826335 DOI: 10.1073/pnas.2015803118] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The circadian clock and feeding rhythms are both important regulators of rhythmic gene expression in the liver. To further dissect the respective contributions of feeding and the clock, we analyzed differential rhythmicity of liver tissue samples across several conditions. We developed a statistical method tailored to compare rhythmic liver messenger RNA (mRNA) expression in mouse knockout models of multiple clock genes, as well as PARbZip output transcription factors (Hlf/Dbp/Tef). Mice were exposed to ad libitum or night-restricted feeding under regular light-dark cycles. During ad libitum feeding, genetic ablation of the core clock attenuated rhythmic-feeding patterns, which could be restored by the night-restricted feeding regimen. High-amplitude mRNA expression rhythms in wild-type livers were driven by the circadian clock, but rhythmic feeding also contributed to rhythmic gene expression, albeit with significantly lower amplitudes. We observed that Bmal1 and Cry1/2 knockouts differed in their residual rhythmic gene expression. Differences in mean expression levels between wild types and knockouts correlated with rhythmic gene expression in wild type. Surprisingly, in PARbZip knockout mice, the mean expression levels of PARbZip targets were more strongly impacted than their rhythms, potentially due to the rhythmic activity of the D-box-repressor NFIL3. Genes that lost rhythmicity in PARbZip knockouts were identified to be indirect targets. Our findings provide insights into the diurnal transcriptome in mouse liver as we identified the differential contributions of several core clock regulators. In addition, we gained more insights on the specific effects of the feeding-fasting cycle.
Collapse
Affiliation(s)
- Benjamin D Weger
- Société des Produits Nestlé, Nestlé Research, CH-1015 Lausanne, Switzerland
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia QLD-4072, Australia
| | - Cédric Gobet
- Société des Produits Nestlé, Nestlé Research, CH-1015 Lausanne, Switzerland
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Fabrice P A David
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- Gene Expression Core Facility, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- BioInformatics Competence Center, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Florian Atger
- Société des Produits Nestlé, Nestlé Research, CH-1015 Lausanne, Switzerland
- Department of Pharmacology and Toxicology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Eva Martin
- Société des Produits Nestlé, Nestlé Research, CH-1015 Lausanne, Switzerland
| | - Nicholas E Phillips
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Aline Charpagne
- Société des Produits Nestlé, Nestlé Research, CH-1015 Lausanne, Switzerland
| | - Meltem Weger
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia QLD-4072, Australia
| | - Felix Naef
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland;
| | - Frédéric Gachon
- Société des Produits Nestlé, Nestlé Research, CH-1015 Lausanne, Switzerland;
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia QLD-4072, Australia
| |
Collapse
|
28
|
Exploiting the metabolic dependencies of the broad amino acid transporter SLC6A14. Oncotarget 2020; 11:4490-4503. [PMID: 33400734 PMCID: PMC7721610 DOI: 10.18632/oncotarget.27758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023] Open
Abstract
Tumor cells typically enhance their metabolic capacity to sustain their higher rate of growth and proliferation. One way to elevate the nutrient intake into cancer cells is to increase the expression of genes encoding amino acid transporters, which may represent targetable vulnerabilities. Here, we study the regulation and function of the broad amino acid transporter SLC6A14 in combination with metabolic stress, providing insights into an uncharacterized aspect of the transporter activity. We analyze the pattern of transcriptional changes in a panel of breast cancer cell lines upon metabolic stress and found that SLC6A14 expression levels are increased in the absence of methionine. Methionine deprivation, which can be achieved via modulation of dietary methionine intake in tumor cells, in turn leads to a heightened activation of the AMP-activated kinase (AMPK) in SLC6A14-deficient cells. While SLC6A14 genetic deficiency does not have a major impact on cell proliferation, combined depletion of AMPK and SLC6A14 leads to an increase in apoptosis upon methionine starvation, suggesting that combined targeting of SLC6A14 and AMPK can be exploited as a therapeutic approach to starve tumor cells.
Collapse
|
29
|
Breus O, Dickmeis T. Genetically encoded thiol redox-sensors in the zebrafish model: lessons for embryonic development and regeneration. Biol Chem 2020; 402:363-378. [PMID: 33021959 DOI: 10.1515/hsz-2020-0269] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022]
Abstract
Important roles for reactive oxygen species (ROS) and redox signaling in embryonic development and regenerative processes are increasingly recognized. However, it is difficult to obtain information on spatiotemporal dynamics of ROS production and signaling in vivo. The zebrafish is an excellent model for in vivo bioimaging and possesses a remarkable regenerative capacity upon tissue injury. Here, we review data obtained in this model system with genetically encoded redox-sensors targeting H2O2 and glutathione redox potential. We describe how such observations have prompted insight into regulation and downstream effects of redox alterations during tissue differentiation, morphogenesis and regeneration. We also discuss the properties of the different sensors and their consequences for the interpretation of in vivo imaging results. Finally, we highlight open questions and additional research fields that may benefit from further application of such sensor systems in zebrafish models of development, regeneration and disease.
Collapse
Affiliation(s)
- Oksana Breus
- Institute of Biological and Chemical Systems - Biological Information Processing, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344Eggenstein-Leopoldshafen, Germany
| | - Thomas Dickmeis
- Institute of Biological and Chemical Systems - Biological Information Processing, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
30
|
Weger M, Weger BD, Schink A, Takamiya M, Stegmaier J, Gobet C, Parisi A, Kobitski AY, Mertes J, Krone N, Strähle U, Nienhaus GU, Mikut R, Gachon F, Gut P, Dickmeis T. MondoA regulates gene expression in cholesterol biosynthesis-associated pathways required for zebrafish epiboly. eLife 2020; 9:e57068. [PMID: 32969791 PMCID: PMC7515633 DOI: 10.7554/elife.57068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 08/18/2020] [Indexed: 12/18/2022] Open
Abstract
The glucose-sensing Mondo pathway regulates expression of metabolic genes in mammals. Here, we characterized its function in the zebrafish and revealed an unexpected role of this pathway in vertebrate embryonic development. We showed that knockdown of mondoa impaired the early morphogenetic movement of epiboly in zebrafish embryos and caused microtubule defects. Expression of genes in the terpenoid backbone and sterol biosynthesis pathways upstream of pregnenolone synthesis was coordinately downregulated in these embryos, including the most downregulated gene nsdhl. Loss of Nsdhl function likewise impaired epiboly, similar to MondoA loss of function. Both epiboly and microtubule defects were partially restored by pregnenolone treatment. Maternal-zygotic mutants of mondoa showed perturbed epiboly with low penetrance and compensatory changes in the expression of terpenoid/sterol/steroid metabolism genes. Collectively, our results show a novel role for MondoA in the regulation of early vertebrate development, connecting glucose, cholesterol and steroid hormone metabolism with early embryonic cell movements.
Collapse
Affiliation(s)
- Meltem Weger
- Institute of Biological and Chemical Systems – Biological Information Processing, Karlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of BirminghamBirminghamUnited Kingdom
- Institute for Molecular Bioscience, The University of QueenslandBrisbaneAustralia
| | - Benjamin D Weger
- Institute of Biological and Chemical Systems – Biological Information Processing, Karlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany
- Institute for Molecular Bioscience, The University of QueenslandBrisbaneAustralia
- Nestlé Institute of Health Sciences SA, EPFL Innovation ParkLausanneSwitzerland
| | - Andrea Schink
- Institute of Biological and Chemical Systems – Biological Information Processing, Karlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany
| | - Masanari Takamiya
- Institute of Biological and Chemical Systems – Biological Information Processing, Karlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany
| | - Johannes Stegmaier
- Institute for Automation and Applied Informatics, Karlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany
| | - Cédric Gobet
- Nestlé Institute of Health Sciences SA, EPFL Innovation ParkLausanneSwitzerland
| | - Alice Parisi
- Nestlé Institute of Health Sciences SA, EPFL Innovation ParkLausanneSwitzerland
| | - Andrei Yu Kobitski
- Institute of Biological and Chemical Systems – Biological Information Processing, Karlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany
- Institute of Applied Physics, Karlsruhe Institute of TechnologyKarlsruheGermany
| | - Jonas Mertes
- Institute of Applied Physics, Karlsruhe Institute of TechnologyKarlsruheGermany
| | - Nils Krone
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of BirminghamBirminghamUnited Kingdom
| | - Uwe Strähle
- Institute of Biological and Chemical Systems – Biological Information Processing, Karlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany
| | - Gerd Ulrich Nienhaus
- Institute of Biological and Chemical Systems – Biological Information Processing, Karlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany
- Institute of Applied Physics, Karlsruhe Institute of TechnologyKarlsruheGermany
- Department of Physics, University of Illinois at Urbana-ChampaignUrbanaUnited States
- Institute of Nanotechnology, Karlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany
| | - Ralf Mikut
- Institute for Automation and Applied Informatics, Karlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany
| | - Frédéric Gachon
- Institute for Molecular Bioscience, The University of QueenslandBrisbaneAustralia
- Nestlé Institute of Health Sciences SA, EPFL Innovation ParkLausanneSwitzerland
| | - Philipp Gut
- Nestlé Institute of Health Sciences SA, EPFL Innovation ParkLausanneSwitzerland
| | - Thomas Dickmeis
- Institute of Biological and Chemical Systems – Biological Information Processing, Karlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany
| |
Collapse
|
31
|
A Global Cndp1-Knock-Out Selectively Increases Renal Carnosine and Anserine Concentrations in an Age- and Gender-Specific Manner in Mice. Int J Mol Sci 2020; 21:ijms21144887. [PMID: 32664451 PMCID: PMC7402351 DOI: 10.3390/ijms21144887] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 01/21/2023] Open
Abstract
Carnosinase 1 (CN1) is encoded by the Cndp1 gene and degrades carnosine and anserine, two natural histidine-containing dipeptides. In vitro and in vivo studies suggest carnosine- and anserine-mediated protection against long-term sequelae of reactive metabolites accumulating, e.g., in diabetes mellitus. We have characterized the metabolic impact of CN1 in 11- and 55-week-old Cndp1-knockout (Cndp1-KO) mice and litter-matched wildtypes (WT). In Cndp1-KO mice, renal carnosine and anserine concentrations were gender-specifically increased 2- to 9-fold, respectively in the kidney and both most abundant in the renal cortex, but remained unchanged in all other organs and in serum. Renal oxidized/reduced glutathione concentrations, renal morphology and function were unaltered. In Cndp1-KO mice at week 11, renal asparagine, serine and glutamine levels and at week 55, renal arginine concentration were reduced. Renal heat-shock-protein 70 (Hspa1a/b) mRNA declined with age in WT but not in Cndp1-KO mice, transcription factor heat-shock-factor 1 was higher in 55-week-old KO mice. Fasting blood glucose concentrations decreased with age in WT mice, but were unchanged in Cndp1-KO mice. Blood glucose response to intraperitoneal insulin was gender- but not genotype-dependent, the response to intraperitoneal glucose injection was similar in all groups. A global Cndp1-KO selectively, age- and gender-specifically, increases renal carnosine and anserine concentrations, alters renal amino acid- and HSP70 profile and modifies systemic glucose homeostasis. Increase of the natural occurring carnosine and anserine levels in the kidney by modulation of CN1 represents a promising therapeutic approach to mitigate or prevent chronic kidney diseases such as diabetic nephropathy.
Collapse
|
32
|
Klf9 is a key feedforward regulator of the transcriptomic response to glucocorticoid receptor activity. Sci Rep 2020; 10:11415. [PMID: 32651405 PMCID: PMC7351738 DOI: 10.1038/s41598-020-68040-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 06/17/2020] [Indexed: 01/01/2023] Open
Abstract
The zebrafish has recently emerged as a model system for investigating the developmental roles of glucocorticoid signaling and the mechanisms underlying glucocorticoid-induced developmental programming. To assess the role of the Glucocorticoid Receptor (GR) in such programming, we used CRISPR-Cas9 to produce a new frameshift mutation, GR369-, which eliminates all potential in-frame initiation codons upstream of the DNA binding domain. Using RNA-seq to ask how this mutation affects the larval transcriptome under both normal conditions and with chronic cortisol treatment, we find that GR mediates most of the effects of the treatment, and paradoxically, that the transcriptome of cortisol-treated larvae is more like that of larvae lacking a GR than that of larvae with a GR, suggesting that the cortisol-treated larvae develop GR resistance. The one transcriptional regulator that was both underexpressed in GR369- larvae and consistently overexpressed in cortisol-treated larvae was klf9. We therefore used CRISPR-Cas9-mediated mutation of klf9 and RNA-seq to assess Klf9-dependent gene expression in both normal and cortisol-treated larvae. Our results indicate that Klf9 contributes significantly to the transcriptomic response to chronic cortisol exposure, mediating the upregulation of proinflammatory genes that we reported previously.
Collapse
|
33
|
Marchi D, Santhakumar K, Markham E, Li N, Storbeck KH, Krone N, Cunliffe VT, van Eeden FJM. Bidirectional crosstalk between Hypoxia-Inducible Factor and glucocorticoid signalling in zebrafish larvae. PLoS Genet 2020; 16:e1008757. [PMID: 32379754 PMCID: PMC7237044 DOI: 10.1371/journal.pgen.1008757] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 05/19/2020] [Accepted: 04/03/2020] [Indexed: 12/20/2022] Open
Abstract
In the last decades in vitro studies highlighted the potential for crosstalk between Hypoxia-Inducible Factor-(HIF) and glucocorticoid-(GC) signalling pathways. However, how this interplay precisely occurs in vivo is still debated. Here, we use zebrafish larvae (Danio rerio) to elucidate how and to what degree hypoxic signalling affects the endogenous glucocorticoid pathway and vice versa, in vivo. Firstly, our results demonstrate that in the presence of upregulated HIF signalling, both glucocorticoid receptor (Gr) responsiveness and endogenous cortisol levels are repressed in 5 days post fertilisation larvae. In addition, despite HIF activity being low at normoxia, our data show that it already impedes both glucocorticoid activity and levels. Secondly, we further analysed the in vivo contribution of glucocorticoids to HIF activity. Interestingly, our results show that both glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) play a key role in enhancing it. Finally, we found indications that glucocorticoids promote HIF signalling via multiple routes. Cumulatively, our findings allowed us to suggest a model for how this crosstalk occurs in vivo.
Collapse
Affiliation(s)
- Davide Marchi
- The Bateson Centre & Department of Biomedical Science, Firth Court, University of Sheffield, Western Bank, Sheffield, United Kingdom
- * E-mail: (DM); (FJMv)
| | - Kirankumar Santhakumar
- Department of Genetic Engineering, SRM Institute of Science and Technology Kattankulathur, India
| | - Eleanor Markham
- The Bateson Centre & Department of Biomedical Science, Firth Court, University of Sheffield, Western Bank, Sheffield, United Kingdom
| | - Nan Li
- The Bateson Centre & Department of Oncology and Metabolism, School of Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Karl-Heinz Storbeck
- Department of Biochemistry, Stellenbosch University, Stellenbosch, Matieland, South Africa
| | - Nils Krone
- The Bateson Centre & Department of Oncology and Metabolism, School of Medicine, University of Sheffield, Sheffield, United Kingdom
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Vincent T. Cunliffe
- The Bateson Centre & Department of Biomedical Science, Firth Court, University of Sheffield, Western Bank, Sheffield, United Kingdom
| | - Fredericus J. M. van Eeden
- The Bateson Centre & Department of Biomedical Science, Firth Court, University of Sheffield, Western Bank, Sheffield, United Kingdom
- * E-mail: (DM); (FJMv)
| |
Collapse
|
34
|
Calabrese F, Brivio P, Sbrini G, Gruca P, Lason M, Litwa E, Niemczyk M, Papp M, Riva MA. Effect of lurasidone treatment on chronic mild stress-induced behavioural deficits in male rats: The potential role for glucocorticoid receptor signalling. J Psychopharmacol 2020; 34:420-428. [PMID: 31913065 DOI: 10.1177/0269881119895547] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Stress represents one of the main precipitating factors for psychiatric diseases, characterised by an altered function of glucocorticoid receptors (GR), known to play a role in mood and cognitive function. We investigated the ability of the antipsychotic lurasidone to modulate the involvement of genomic and non-genomic GR signalling in the behavioural alterations due to chronic stress exposure. METHODS Male Wistar rats were exposed to seven weeks of chronic mild stress (CMS) and treated with lurasidone (3 mg/kg/day) starting from the second week of stress for more five weeks. Gene expression and protein analyses were conducted in dorsal hippocampus. RESULTS Seven weeks of CMS induced anhedonia and cognitive impairment, which were normalised by lurasidone. At molecular level, CMS rats showed an increase of GR protein levels by 60% (p<0.001 vs. CTRL/VEH) in the membrane compartment, which was paralleled by an up-regulation of phosphoSINAPSYN Ia/b by 88% (p<0.01 vs. CTRL/VEH) and of the mitochondrial marker Cox3 by 21% (p<0.05 vs. CTRL/VEH). Moreover, while exposure to the novel object recognition test increased the nuclear translocation of GRs by 96% (p<0.01 vs. CTRL/VEH/Naïve) and their transcriptional activity in non-stressed rats, such mechanisms were impaired in CMS rats. Interestingly, the genomic and non-genomic alterations of GR, induced by CMS, were normalised by lurasidone. CONCLUSION Our results further support the role of glucocorticoid signalling in the dysfunction associated with stress exposure. We provide novel insights on the mechanism of lurasidone, suggesting its effectiveness on different domains associated with psychiatric disorders.
Collapse
Affiliation(s)
- Francesca Calabrese
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Paola Brivio
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Giulia Sbrini
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Piotr Gruca
- Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Magdalena Lason
- Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Ewa Litwa
- Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Monika Niemczyk
- Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Mariusz Papp
- Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Marco A Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| |
Collapse
|
35
|
Coffman JA. Chronic stress, physiological adaptation and developmental programming of the neuroendocrine stress system. FUTURE NEUROLOGY 2020. [DOI: 10.2217/fnl-2019-0014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Chronic stress undermines physical and mental health, in part via dysregulation of the neuroendocrine stress system. Key to understand this dysregulation is recognizing that the problem is not stress per se, but rather its chronicity. The optimally functioning stress system is highly dynamic, and negative feedback regulation enforces transient responses to acute stressors. Chronic stress overrides this, and adaptation to the chronicity can result in persistent dysregulation by altering sensitivity thresholds critical for control of system dynamics. Such adaptation involves plasticity within the central nervous system (CNS) as well as epigenetic regulation. When it occurs during development, it can have persistent effects on neuroendocrine regulation. Understanding how chronic stress programs development of the neuroendocrine stress system requires elucidation of stress-responsive gene regulatory networks that control CNS plasticity and development.
Collapse
Affiliation(s)
- James A Coffman
- MDI Biological Laboratory, Kathryn W Davis Center for Regenerative Biology and Aging, Salisbury Cove, ME 04672, USA
| |
Collapse
|
36
|
Arjmand B, Tayanloo-Beik A, Foroughi Heravani N, Alaei S, Payab M, Alavi-Moghadam S, Goodarzi P, Gholami M, Larijani B. Zebrafish for Personalized Regenerative Medicine; A More Predictive Humanized Model of Endocrine Disease. Front Endocrinol (Lausanne) 2020; 11:396. [PMID: 32765420 PMCID: PMC7379230 DOI: 10.3389/fendo.2020.00396] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 05/18/2020] [Indexed: 12/18/2022] Open
Abstract
Regenerative medicine is a multidisciplinary field that aims to determine different factors and develop various methods to regenerate impaired tissues, organs, and cells in the disease and impairment conditions. When treatment procedures are specified according to the individual's information, the leading role of personalized regenerative medicine will be revealed in developing more effective therapies. In this concept, endocrine disorders can be considered as potential candidates for regenerative medicine application. Diabetes mellitus as a worldwide prevalent endocrine disease causes different damages such as blood vessel damages, pancreatic damages, and impaired wound healing. Therefore, a global effort has been devoted to diabetes mellitus investigations. Hereupon, the preclinical study is a fundamental step. Up to now, several species of animals have been modeled to identify the mechanism of multiple diseases. However, more recent researches have been demonstrated that animal models with the ability of tissue regeneration are more suitable choices for regenerative medicine studies in endocrine disorders, typically diabetes mellitus. Accordingly, zebrafish has been introduced as a model that possesses the capacity to regenerate different organs and tissues. Especially, fine regeneration in zebrafish has been broadly investigated in the regenerative medicine field. In addition, zebrafish is a suitable model for studying a variety of different situations. For instance, it has been used for developmental studies because of the special characteristics of its larva. In this review, we discuss the features of zebrafish that make it a desirable animal model, the advantages of zebrafish and recent research that shows zebrafish is a promising animal model for personalized regenerative diseases. Ultimately, we conclude that as a newly introduced model, zebrafish can have a leading role in regeneration studies of endocrine diseases and provide a good perception of underlying mechanisms.
Collapse
Affiliation(s)
- Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Tayanloo-Beik
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Najmeh Foroughi Heravani
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Setareh Alaei
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Moloud Payab
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Goodarzi
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Gholami
- Department of Toxicology and Pharmacology, Toxicology and Poisoning Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- *Correspondence: Bagher Larijani
| |
Collapse
|
37
|
Schmöhl F, Peters V, Schmitt CP, Poschet G, Büttner M, Li X, Weigand T, Poth T, Volk N, Morgenstern J, Fleming T, Nawroth PP, Kroll J. CNDP1 knockout in zebrafish alters the amino acid metabolism, restrains weight gain, but does not protect from diabetic complications. Cell Mol Life Sci 2019; 76:4551-4568. [PMID: 31073745 PMCID: PMC11105213 DOI: 10.1007/s00018-019-03127-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 04/22/2019] [Accepted: 04/30/2019] [Indexed: 12/12/2022]
Abstract
The gene CNDP1 was associated with the development of diabetic nephropathy. Its enzyme carnosinase 1 (CN1) primarily hydrolyzes the histidine-containing dipeptide carnosine but other organ and metabolic functions are mainly unknown. In our study we generated CNDP1 knockout zebrafish, which showed strongly decreased CN1 activity and increased intracellular carnosine levels. Vasculature and kidneys of CNDP1-/- zebrafish were not affected, except for a transient glomerular alteration. Amino acid profiling showed a decrease of certain amino acids in CNDP1-/- zebrafish, suggesting a specific function for CN1 in the amino acid metabolisms. Indeed, we identified a CN1 activity for Ala-His and Ser-His. Under diabetic conditions increased carnosine levels in CNDP1-/- embryos could not protect from respective organ alterations. Although, weight gain through overfeeding was restrained by CNDP1 loss. Together, zebrafish exhibits CN1 functions, while CNDP1 knockout alters the amino acid metabolism, attenuates weight gain but cannot protect organs from diabetic complications.
Collapse
Affiliation(s)
- Felix Schmöhl
- European Center for Angioscience (ECAS), Department of Vascular Biology and Tumor Angiogenesis, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13-17, 68167, Mannheim, Germany
| | - Verena Peters
- Center for Paediatric and Adolescent Medicine, University of Heidelberg, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany
| | - Claus Peter Schmitt
- Center for Paediatric and Adolescent Medicine, University of Heidelberg, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany
| | - Gernot Poschet
- Center for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 360, 69120, Heidelberg, Germany
| | - Michael Büttner
- Center for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 360, 69120, Heidelberg, Germany
| | - Xiaogang Li
- European Center for Angioscience (ECAS), Department of Vascular Biology and Tumor Angiogenesis, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13-17, 68167, Mannheim, Germany
| | - Tim Weigand
- Center for Paediatric and Adolescent Medicine, University of Heidelberg, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany
| | - Tanja Poth
- CMCP-Center for Model System and Comparative Pathology, Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Nadine Volk
- Tissue Bank of the National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Jakob Morgenstern
- Department of Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Thomas Fleming
- Department of Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Peter P Nawroth
- Department of Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- German Center for Diabetes Research (DZD), 85764, München-Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Helmholtz-Zentrum, München, Im Neuenheimer Feld 410, F02 Room 02.414-02.434, 69120, Heidelberg, Germany
| | - Jens Kroll
- European Center for Angioscience (ECAS), Department of Vascular Biology and Tumor Angiogenesis, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13-17, 68167, Mannheim, Germany.
| |
Collapse
|
38
|
Cederroth CR, Park JS, Basinou V, Weger BD, Tserga E, Sarlus H, Magnusson AK, Kadri N, Gachon F, Canlon B. Circadian Regulation of Cochlear Sensitivity to Noise by Circulating Glucocorticoids. Curr Biol 2019; 29:2477-2487.e6. [PMID: 31353184 PMCID: PMC6904421 DOI: 10.1016/j.cub.2019.06.057] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 05/21/2019] [Accepted: 06/20/2019] [Indexed: 01/27/2023]
Abstract
The cochlea possesses a robust circadian clock machinery that regulates auditory function. How the cochlear clock is influenced by the circadian system remains unknown. Here, we show that cochlear rhythms are system driven and require local Bmal1 as well as central input from the suprachiasmatic nuclei (SCN). SCN ablations disrupted the circadian expression of the core clock genes in the cochlea. Because the circadian secretion of glucocorticoids (GCs) is controlled by the SCN and GCs are known to modulate auditory function, we assessed their influence on circadian gene expression. Removal of circulating GCs by adrenalectomy (ADX) did not have a major impact on core clock gene expression in the cochlea. Rather it abolished the transcription of clock-controlled genes involved in inflammation. ADX abolished the known differential auditory sensitivity to day and night noise trauma and prevented the induction of GABA-ergic and glutamate receptors mRNA transcripts. However, these improvements were unrelated to changes at the synaptic level, suggesting other cochlear functions may be involved. Due to this circadian regulation of noise sensitivity by GCs, we evaluated the actions of the synthetic glucocorticoid dexamethasone (DEX) at different times of the day. DEX was effective in protecting from acute noise trauma only when administered during daytime, when circulating glucocorticoids are low, indicating that chronopharmacological approaches are important for obtaining optimal treatment strategies for hearing loss. GCs appear as a major regulator of the differential sensitivity to day or night noise trauma, a mechanism likely involving the circadian control of inflammatory responses.
Collapse
Affiliation(s)
| | - Jung-Sub Park
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm 17177, Sweden; Department of Otolaryngology, Ajou University School of Medicine, 164, Worldcup-ro, Yeongtong-gu, Suwon 16499, Korea
| | - Vasiliki Basinou
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm 17177, Sweden
| | - Benjamin D Weger
- Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, 1015 Lausanne, Switzerland
| | - Evangelia Tserga
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm 17177, Sweden
| | - Heela Sarlus
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm 17177, Sweden
| | - Anna K Magnusson
- Department of Clinical Science Intervention and Technology, Karolinska Institutet, Stockholm 17177, Sweden
| | - Nadir Kadri
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm 17177, Sweden
| | - Frédéric Gachon
- Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, 1015 Lausanne, Switzerland; School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Barbara Canlon
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm 17177, Sweden
| |
Collapse
|
39
|
Lodd E, Wiggenhauser LM, Morgenstern J, Fleming TH, Poschet G, Büttner M, Tabler CT, Wohlfart DP, Nawroth PP, Kroll J. The combination of loss of glyoxalase1 and obesity results in hyperglycemia. JCI Insight 2019; 4:126154. [PMID: 31217350 DOI: 10.1172/jci.insight.126154] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 05/16/2019] [Indexed: 12/31/2022] Open
Abstract
The increased formation of methylglyoxal (MG) under hyperglycemia is associated with the development of microvascular complications in patients with diabetes mellitus; however, the effects of elevated MG levels in vivo are poorly understood. In zebrafish, a transient knockdown of glyoxalase 1, the main MG detoxifying system, led to the elevation of endogenous MG levels and blood vessel alterations. To evaluate effects of a permanent knockout of glyoxalase 1 in vivo, glo1-/- zebrafish mutants were generated using CRISPR/Cas9. In addition, a diet-induced-obesity zebrafish model was used to analyze glo1-/- zebrafish under high nutrient intake. Glo1-/- zebrafish survived until adulthood without growth deficit and showed increased tissue MG concentrations. Impaired glucose tolerance developed in adult glo1-/- zebrafish and was indicated by increased postprandial blood glucose levels and postprandial S6 kinase activation. Challenged by an overfeeding period, fasting blood glucose levels in glo1-/- zebrafish were increased which translated into retinal blood vessel alterations. Thus, the data have identified a defective MG detoxification as a metabolic prerequisite and glyoxalase 1 alterations as a genetic susceptibility to the development of type 2 diabetes mellitus under high nutrition intake.
Collapse
Affiliation(s)
- Elisabeth Lodd
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Lucas M Wiggenhauser
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jakob Morgenstern
- Department of Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas H Fleming
- Department of Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, Heidelberg, Germany
| | - Gernot Poschet
- Metabolomics Core Technology Platform, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Michael Büttner
- Metabolomics Core Technology Platform, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Christoph T Tabler
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - David P Wohlfart
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Peter P Nawroth
- Department of Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, Heidelberg, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,Joint Heidelberg-IDC Translational Diabetes Program, Helmholtz-Zentrum, München, Heidelberg, Germany
| | - Jens Kroll
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
40
|
Efficient Extraction from Mice Feces for NMR Metabolomics Measurements with Special Emphasis on SCFAs. Metabolites 2019; 9:metabo9030055. [PMID: 30901936 PMCID: PMC6468719 DOI: 10.3390/metabo9030055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/15/2019] [Accepted: 03/17/2019] [Indexed: 01/29/2023] Open
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is one of the most promising methods for use in metabolomics studies as it is able to perform non targeted measurement of metabolites in a quantitative and non-destructive way. Sample preparation of liquid samples like urine or blood serum is comparatively easy in NMR metabolomics, because mainly buffer and chemical shift reference substance are added. For solid samples like feces suitable extraction protocols need to be defined as initial step, where the exact protocol depends on sample type and features. Focusing on short chain fatty acids (SCFAs) in mice feces, we describe here a set of extraction protocols developed with the aim to suppress changes in metabolite composition within 24 h after extraction. Feces are obtained from mice fed on either standard rodent diet or high fat diet. The protocols presented in this manuscript are straightforward for application, and successfully minimize residual bacterial and enzymatic activities. Additionally, they are able to minimize the lipid background originating from the high fat diet.
Collapse
|
41
|
Dickmeis T, Feng Y, Mione MC, Ninov N, Santoro M, Spaink HP, Gut P. Nano-Sampling and Reporter Tools to Study Metabolic Regulation in Zebrafish. Front Cell Dev Biol 2019; 7:15. [PMID: 30873407 PMCID: PMC6401643 DOI: 10.3389/fcell.2019.00015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 01/31/2019] [Indexed: 01/09/2023] Open
Abstract
In the past years, evidence has emerged that hallmarks of human metabolic disorders can be recapitulated in zebrafish using genetic, pharmacological or dietary interventions. An advantage of modeling metabolic diseases in zebrafish compared to other "lower organisms" is the presence of a vertebrate body plan providing the possibility to study the tissue-intrinsic processes preceding the loss of metabolic homeostasis. While the small size of zebrafish is advantageous in many aspects, it also has shortcomings such as the difficulty to obtain sufficient amounts for biochemical analyses in response to metabolic challenges. A workshop at the European Zebrafish Principal Investigator meeting in Trento, Italy, was dedicated to discuss the advantages and disadvantages of zebrafish to study metabolic disorders. This perspective article by the participants highlights strategies to achieve improved tissue-resolution for read-outs using "nano-sampling" approaches for metabolomics as well as live imaging of zebrafish expressing fluorescent reporter tools that inform on cellular or subcellular metabolic processes. We provide several examples, including the use of reporter tools to study the heterogeneity of pancreatic beta-cells within their tissue environment. While limitations exist, we believe that with the advent of new technologies and more labs developing methods that can be applied to minimal amounts of tissue or single cells, zebrafish will further increase their utility to study energy metabolism.
Collapse
Affiliation(s)
- Thomas Dickmeis
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Yi Feng
- Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, Scotland
| | | | - Nikolay Ninov
- DFG-Center for Regenerative Therapies Dresden, Cluster of Excellence, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden, Helmholtz Zentrum München, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | | | - Herman P. Spaink
- Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Philipp Gut
- Nestlé Research, EPFL Innovation Park, Lausanne, Switzerland
| |
Collapse
|
42
|
Weger M, Weger BD, Görling B, Poschet G, Yildiz M, Hell R, Luy B, Akcay T, Güran T, Dickmeis T, Müller F, Krone N. Glucocorticoid deficiency causes transcriptional and post-transcriptional reprogramming of glutamine metabolism. EBioMedicine 2018; 36:376-389. [PMID: 30266295 PMCID: PMC6197330 DOI: 10.1016/j.ebiom.2018.09.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/07/2018] [Accepted: 09/13/2018] [Indexed: 01/12/2023] Open
Abstract
Background Deficient glucocorticoid biosynthesis leading to adrenal insufficiency is life-threatening and is associated with significant co-morbidities. The affected pathways underlying the pathophysiology of co-morbidities due to glucocorticoid deficiency remain poorly understood and require further investigation. Methods To explore the pathophysiological processes related to glucocorticoid deficiency, we have performed global transcriptional, post-transcriptional and metabolic profiling of a cortisol-deficient zebrafish mutant with a disrupted ferredoxin (fdx1b) system. Findings fdx1b−/− mutants show pervasive reprogramming of metabolism, in particular of glutamine-dependent pathways such as glutathione metabolism, and exhibit changes of oxidative stress markers. The glucocorticoid-dependent post-transcriptional regulation of key enzymes involved in de novo purine synthesis was also affected in this mutant. Moreover, fdx1b−/− mutants exhibit crucial features of primary adrenal insufficiency, and mirror metabolic changes detected in primary adrenal insufficiency patients. Interpretation Our study provides a detailed map of metabolic changes induced by glucocorticoid deficiency as a consequence of a disrupted ferredoxin system in an animal model of adrenal insufficiency. This improved pathophysiological understanding of global glucocorticoid deficiency informs on more targeted translational studies in humans suffering from conditions associated with glucocorticoid deficiency. Fund Marie Curie Intra-European Fellowships for Career Development, HGF-programme BIFTM, Deutsche Forschungsgemeinschaft, BBSRC.
Collapse
Affiliation(s)
- Meltem Weger
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - Benjamin D Weger
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Benjamin Görling
- Institute for Organic Chemistry and Institute for Biological Interfaces 4 - Magnetic Resonance, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Gernot Poschet
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany
| | - Melek Yildiz
- Kanuni Sultan Süleyman Education and Research Hospital, Küçükçekmece, Istanbul, Turkey
| | - Rüdiger Hell
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany
| | - Burkhard Luy
- Institute for Organic Chemistry and Institute for Biological Interfaces 4 - Magnetic Resonance, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Teoman Akcay
- Istinye University Gaziosmanpasa Medical Park Hospital Gaziosmanpasa, Istanbul, Turkey
| | - Tülay Güran
- Marmara University, Department of Pediatric Endocrinology and Diabetes, Pendik, Istanbul, Turkey
| | - Thomas Dickmeis
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Ferenc Müller
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Nils Krone
- Department of Oncology & Metabolism, University of Sheffield, Sheffield S10 2TH, UK; Department of Biomedical Science, The Bateson Centre, Firth Court, Western Bank, Sheffield S10 2TN, UK..
| |
Collapse
|
43
|
Kirwan JA, Brennan L, Broadhurst D, Fiehn O, Cascante M, Dunn WB, Schmidt MA, Velagapudi V. Preanalytical Processing and Biobanking Procedures of Biological Samples for Metabolomics Research: A White Paper, Community Perspective (for "Precision Medicine and Pharmacometabolomics Task Group"-The Metabolomics Society Initiative). Clin Chem 2018; 64:1158-1182. [PMID: 29921725 DOI: 10.1373/clinchem.2018.287045] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/01/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND The metabolome of any given biological system contains a diverse range of low molecular weight molecules (metabolites), whose abundances can be affected by the timing and method of sample collection, storage, and handling. Thus, it is necessary to consider the requirements for preanalytical processes and biobanking in metabolomics research. Poor practice can create bias and have deleterious effects on the robustness and reproducibility of acquired data. CONTENT This review presents both current practice and latest evidence on preanalytical processes and biobanking of samples intended for metabolomics measurement of common biofluids and tissues. It highlights areas requiring more validation and research and provides some evidence-based guidelines on best practices. SUMMARY Although many researchers and biobanking personnel are familiar with the necessity of standardizing sample collection procedures at the axiomatic level (e.g., fasting status, time of day, "time to freezer," sample volume), other less obvious factors can also negatively affect the validity of a study, such as vial size, material and batch, centrifuge speeds, storage temperature, time and conditions, and even environmental changes in the collection room. Any biobank or research study should establish and follow a well-defined and validated protocol for the collection of samples for metabolomics research. This protocol should be fully documented in any resulting study and should involve all stakeholders in its design. The use of samples that have been collected using standardized and validated protocols is a prerequisite to enable robust biological interpretation unhindered by unnecessary preanalytical factors that may complicate data analysis and interpretation.
Collapse
Affiliation(s)
- Jennifer A Kirwan
- Berlin Institute of Health, Berlin, Germany; .,Max Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
| | - Lorraine Brennan
- UCD School of Agriculture and Food Science, Institute of Food and Health, UCD, Dublin, Ireland
| | | | - Oliver Fiehn
- NIH West Coast Metabolomics Center, UC Davis, Davis, CA
| | - Marta Cascante
- Department of Biochemistry and Molecular Biomedicine and IBUB, Universitat de Barcelona, Barcelona and Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBER-EHD), Madrid, Spain
| | - Warwick B Dunn
- School of Biosciences and Phenome Centre Birmingham, University of Birmingham, Birmingham, UK
| | - Michael A Schmidt
- Advanced Pattern Analysis and Countermeasures Group, Research Innovation Center, Colorado State University, Fort Collins, CO.,Sovaris Aerospace, LLC, Boulder, CO
| | - Vidya Velagapudi
- Metabolomics Unit, Institute for Molecular Medicine FIMM, HiLIFE, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
44
|
Weger M, Diotel N, Weger BD, Beil T, Zaucker A, Eachus HL, Oakes JA, do Rego JL, Storbeck KH, Gut P, Strähle U, Rastegar S, Müller F, Krone N. Expression and activity profiling of the steroidogenic enzymes of glucocorticoid biosynthesis and the fdx1 co-factors in zebrafish. J Neuroendocrinol 2018; 30:e12586. [PMID: 29486070 DOI: 10.1111/jne.12586] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 02/06/2018] [Accepted: 02/22/2018] [Indexed: 01/23/2023]
Abstract
The spatial and temporal expression of steroidogenic genes in zebrafish has not been fully characterised. Because zebrafish are increasingly employed in endocrine and stress research, a better characterisation of steroidogenic pathways is required to target specific steps in the biosynthetic pathways. In the present study, we have systematically defined the temporal and spatial expression of steroidogenic enzymes involved in glucocorticoid biosynthesis (cyp21a2, cyp11c1, cyp11a1, cyp11a2, cyp17a1, cyp17a2, hsd3b1, hsd3b2), as well as the mitochondrial electron-providing ferredoxin co-factors (fdx1, fdx1b), during zebrafish development. Our studies showed an early expression of all these genes during embryogenesis. In larvae, expression of cyp11a2, cyp11c1, cyp17a2, cyp21a2, hsd3b1 and fdx1b can be detected in the interrenal gland, which is the zebrafish counterpart of the mammalian adrenal gland, whereas the fdx1 transcript is mainly found in the digestive system. Gene expression studies using quantitative reverse transcriptase-PCR and whole-mount in situ hybridisation in the adult zebrafish brain revealed a wide expression of these genes throughout the encephalon, including neurogenic regions. Using ultra-high-performance liquid chromatography tandem mass spectrometry, we were able to demonstrate the presence of the glucocorticoid cortisol in the adult zebrafish brain. Moreover, we demonstrate de novo biosynthesis of cortisol and the neurosteroid tetrahydrodeoxycorticosterone in the adult zebrafish brain from radiolabelled pregnenolone. Taken together, the present study comprises a comprehensive characterisation of the steroidogenic genes and the fdx co-factors facilitating glucocorticoid biosynthesis in zebrafish. Furthermore, we provide additional evidence of de novo neurosteroid biosynthesising in the brain of adult zebrafish facilitated by enzymes involved in glucocorticoid biosynthesis. Our study provides a valuable source for establishing the zebrafish as a translational model with respect to understanding the roles of the genes for glucocorticoid biosynthesis and fdx co-factors during embryonic development and stress, as well as in brain homeostasis and function.
Collapse
Affiliation(s)
- M Weger
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - N Diotel
- INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, Saint-Denis de La Réunion, France
| | - B D Weger
- Nestlé Institute of Health Sciences SA, Lausanne, Switzerland
| | - T Beil
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - A Zaucker
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - H L Eachus
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
- Department of Biomedical Science, The Bateson Centre, Sheffield, UK
| | - J A Oakes
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
- Department of Biomedical Science, The Bateson Centre, Sheffield, UK
| | - J L do Rego
- Plateforme d'Analyse Comportementale (SCAC), Institut de Recherche et d'Innovation Biomédicale, Inserm U1234, Université de Rouen, Rouen Cedex, France
| | - K-H Storbeck
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - P Gut
- Nestlé Institute of Health Sciences SA, Lausanne, Switzerland
| | - U Strähle
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - S Rastegar
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - F Müller
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - N Krone
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
- Department of Biomedical Science, The Bateson Centre, Sheffield, UK
| |
Collapse
|
45
|
Breitwieser H, Dickmeis T, Vogt M, Ferg M, Pylatiuk C. Fully Automated Pipetting Sorting System for Different Morphological Phenotypes of Zebrafish Embryos. SLAS Technol 2017; 23:128-133. [PMID: 29220613 DOI: 10.1177/2472630317745780] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Systems biology methods, such as transcriptomics and metabolomics, require large numbers of small model organisms, such as zebrafish embryos. Manual separation of mutant embryos from wild-type embryos is a tedious and time-consuming task that is prone to errors, especially if there are variable phenotypes of a mutant. Here we describe a zebrafish embryo sorting system with two cameras and image processing based on template-matching algorithms. In order to evaluate the system, zebrafish rx3 mutants that lack eyes due to a patterning defect in brain development were separated from their wild-type siblings. These mutants show glucocorticoid deficiency due to pituitary defects and serve as a model for human secondary adrenal insufficiencies. We show that the variable phenotypes of the mutant embryos can be safely distinguished from phenotypic wild-type zebrafish embryos and sorted from one petri dish into another petri dish or into a 96-well microtiter plate. On average, classification of a zebrafish embryo takes approximately 1 s, with a sensitivity and specificity of 87% to 95%, respectively. Other morphological phenotypes may be classified and sorted using similar techniques.
Collapse
Affiliation(s)
- Helmut Breitwieser
- 1 Institute for Applied Computer Science, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Thomas Dickmeis
- 2 Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Marcel Vogt
- 1 Institute for Applied Computer Science, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Marco Ferg
- 2 Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Christian Pylatiuk
- 1 Institute for Applied Computer Science, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
46
|
Atger F, Mauvoisin D, Weger B, Gobet C, Gachon F. Regulation of Mammalian Physiology by Interconnected Circadian and Feeding Rhythms. Front Endocrinol (Lausanne) 2017; 8:42. [PMID: 28337174 PMCID: PMC5340782 DOI: 10.3389/fendo.2017.00042] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 02/17/2017] [Indexed: 12/29/2022] Open
Abstract
Circadian clocks are endogenous timekeeping systems that adapt in an anticipatory fashion the physiology and behavior of most living organisms. In mammals, the master pacemaker resides in the suprachiasmatic nucleus and entrains peripheral clocks using a wide range of signals that differentially schedule physiology and gene expression in a tissue-specific manner. The peripheral clocks, such as those found in the liver, are particularly sensitive to rhythmic external cues like feeding behavior, which modulate the phase and amplitude of rhythmic gene expression. Consequently, the liver clock temporally tunes the expression of many genes involved in metabolism and physiology. However, the circadian modulation of cellular functions also relies on multiple layers of posttranscriptional and posttranslational regulation. Strikingly, these additional regulatory events may happen independently of any transcriptional oscillations, showing that complex regulatory networks ultimately drive circadian output functions. These rhythmic events also integrate feeding-related cues and adapt various metabolic processes to food availability schedules. The importance of such temporal regulation of metabolism is illustrated by metabolic dysfunctions and diseases resulting from circadian clock disruption or inappropriate feeding patterns. Therefore, the study of circadian clocks and rhythmic feeding behavior should be of interest to further advance our understanding of the prevention and therapy of metabolic diseases.
Collapse
Affiliation(s)
- Florian Atger
- Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, Lausanne, Switzerland
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Daniel Mauvoisin
- Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, Lausanne, Switzerland
- School of Life Sciences, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Benjamin Weger
- Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - Cédric Gobet
- Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, Lausanne, Switzerland
- School of Life Sciences, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Frédéric Gachon
- Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, Lausanne, Switzerland
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- *Correspondence: Frédéric Gachon,
| |
Collapse
|