1
|
Janati-Fard F, Housaindokht MR, Moosavi F, Nakhaei-Rad S. Structural Insights Into the Impact of the Glycine-Rich Loop Mutation in Noonan Syndrome on the ATP Binding Pocket of CRAF Kinase. Proteins 2025; 93:1022-1034. [PMID: 39739408 DOI: 10.1002/prot.26769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/19/2024] [Accepted: 11/07/2024] [Indexed: 01/02/2025]
Abstract
The pathogenic G361A variant of CRAF, associated with increased intrinsic kinase activity in Noonan syndrome (NS), remains poorly understood in terms of its molecular and structural impact on kinase activity. To elucidate the mechanistic implications of the glycine to alanine substitution at residue 361 in CRAF, we employed molecular dynamics simulations. Our findings reveal that this mutation predominantly affects the ATP binding pocket and critical intermolecular interactions within the active cleft that favors the phosphate transfer reaction. Notably, our data highlight significant alterations in key interactions involving Lys470/Asp486 and ATP.Mg2+ in CRAFG361A that are absent in wild-type CRAF. Additionally, we identified a novel interaction mode between Lys431 and γ-phosphate in wild-type CRAF, a residue evolutionarily conserved in CRAFs but not in related kinases such as BRAF, ARAF, and KSR1/2. Furthermore, observed shifts in the αC-helix and G-loop relative to the wild-type correlate with an enlarged ATP-binding cavity in the mutant, reflecting structural adaptations due to these mutations. Overall, these structural insights underscore the elevated intrinsic kinase activity of the CRAFG361A variant and provide crucial mechanistic details that could inform the development of specific inhibitors targeting this variant.
Collapse
Affiliation(s)
- Fatemeh Janati-Fard
- Stem Cell Biology, and Regenerative Medicine Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Fatemeh Moosavi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Saeideh Nakhaei-Rad
- Stem Cell Biology, and Regenerative Medicine Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
2
|
Guhathakurta D, Selzam F, Petrušková A, Weiss EM, Akdaş EY, Montenegro-Venegas C, Zenker M, Fejtová A. Rasopathy-Associated Mutation Ptpn11 D61Y has Age-Dependent Effect on Synaptic Vesicle Recycling. Cell Mol Neurobiol 2024; 44:77. [PMID: 39570442 PMCID: PMC11582327 DOI: 10.1007/s10571-024-01505-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 10/14/2024] [Indexed: 11/22/2024]
Abstract
Rasopathies are genetic disorders often associated with developmental delay and intellectual disability. Noonan syndrome (NS) is one of the most common Rasopathies, caused by mutations in PTPN11 in more than 50% of cases. In mammalian neurons, PTPN11 controls the trafficking of postsynaptic glutamate receptors. This process is disrupted in neurons expressing PTPN11 variants associated with Rasopathies and is thought to contribute to the cognitive impairments in Noonan syndrome. Recent work revealed presynaptic impairments upon expression of RASopathy-linked PTPN11 variants in Drosophila. However, the presynaptic role of PTPN11 has not yet been addressed in mammals. Here, we investigated membrane trafficking of synaptic vesicles in cultured mouse cortical neurons expressing Rasopathy-associated PTPN11D61Y variant. We observed a significantly smaller readily releasable and total recycling pool of synaptic vesicles. The drop in synaptic vesicle release competence was accompanied by a decreased rate of SV retrieval. Interestingly, the presynaptic phenotype was evident in mature (DIV21) but not in immature (DIV12) neurons. Thus, our data reveal importance of balanced PTPN11 activity for normal trafficking of neurotransmitter-filled synaptic vesicles in the presynaptic ending of mature neurons.
Collapse
Affiliation(s)
- Debarpan Guhathakurta
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Franziska Selzam
- RG Presynaptic Plasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Institute of Human Genetics, Medical Faculty, University Hospital Magdeburg, Otto Von Guericke University, Magdeburg, Germany
| | - Aneta Petrušková
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- National Institute of Mental Health, Klecany, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Eva-Maria Weiss
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Enes Yağız Akdaş
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Carolina Montenegro-Venegas
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Institute for Pharmacology and Toxicology, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Martin Zenker
- Institute of Human Genetics, Medical Faculty, University Hospital Magdeburg, Otto Von Guericke University, Magdeburg, Germany
| | - Anna Fejtová
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
- RG Presynaptic Plasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany.
| |
Collapse
|
3
|
Weiss EM, Guhathakurta D, Petrušková A, Hundrup V, Zenker M, Fejtová A. Developmental effect of RASopathy mutations on neuronal network activity on a chip. Front Cell Neurosci 2024; 18:1388409. [PMID: 38910965 PMCID: PMC11190344 DOI: 10.3389/fncel.2024.1388409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/14/2024] [Indexed: 06/25/2024] Open
Abstract
RASopathies are a group of genetic disorders caused by mutations in genes encoding components and regulators of the RAS/MAPK signaling pathway, resulting in overactivation of signaling. RASopathy patients exhibit distinctive facial features, cardiopathies, growth and skeletal abnormalities, and varying degrees of neurocognitive impairments including neurodevelopmental delay, intellectual disabilities, or attention deficits. At present, it is unclear how RASopathy mutations cause neurocognitive impairment and what their neuron-specific cellular and network phenotypes are. Here, we investigated the effect of RASopathy mutations on the establishment and functional maturation of neuronal networks. We isolated cortical neurons from RASopathy mouse models, cultured them on multielectrode arrays and performed longitudinal recordings of spontaneous activity in developing networks as well as recordings of evoked responses in mature neurons. To facilitate the analysis of large and complex data sets resulting from long-term multielectrode recordings, we developed MATLAB-based tools for data processing, analysis, and statistical evaluation. Longitudinal analysis of spontaneous network activity revealed a convergent developmental phenotype in neurons carrying the gain-of-function Noonan syndrome-related mutations Ptpn11 D61Y and Kras V14l. The phenotype was more pronounced at the earlier time points and faded out over time, suggesting the emergence of compensatory mechanisms during network maturation. Nevertheless, persistent differences in excitatory/inhibitory balance and network excitability were observed in mature networks. This study improves the understanding of the complex relationship between genetic mutations and clinical manifestations in RASopathies by adding insights into functional network processes as an additional piece of the puzzle.
Collapse
Affiliation(s)
- Eva-Maria Weiss
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Debarpan Guhathakurta
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Aneta Petrušková
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Third Faculty of Medicine, Charles University, Prague, Czechia
- National Institute of Mental Health, Prague, Czechia
| | - Verena Hundrup
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Martin Zenker
- Medical Faculty, Institute of Human Genetics, University Hospital Magdeburg, Otto von Guericke University, Magdeburg, Germany
| | - Anna Fejtová
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
4
|
Bjorklund GR, Rees KP, Balasubramanian K, Hewitt LT, Nishimura K, Newbern JM. Hyperactivation of MEK1 in cortical glutamatergic neurons results in projection axon deficits and aberrant motor learning. Dis Model Mech 2024; 17:dmm050570. [PMID: 38826084 PMCID: PMC11247507 DOI: 10.1242/dmm.050570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/21/2024] [Indexed: 06/04/2024] Open
Abstract
Abnormal extracellular signal-regulated kinase 1/2 (ERK1/2, encoded by Mapk3 and Mapk1, respectively) signaling is linked to multiple neurodevelopmental diseases, especially the RASopathies, which typically exhibit ERK1/2 hyperactivation in neurons and non-neuronal cells. To better understand how excitatory neuron-autonomous ERK1/2 activity regulates forebrain development, we conditionally expressed a hyperactive MEK1 (MAP2K1) mutant, MEK1S217/221E, in cortical excitatory neurons of mice. MEK1S217/221E expression led to persistent hyperactivation of ERK1/2 in cortical axons, but not in soma/nuclei. We noted reduced axonal arborization in multiple target domains in mutant mice and reduced the levels of the activity-dependent protein ARC. These changes did not lead to deficits in voluntary locomotion or accelerating rotarod performance. However, skilled motor learning in a single-pellet retrieval task was significantly diminished in these MEK1S217/221E mutants. Restriction of MEK1S217/221E expression to layer V cortical neurons recapitulated axonal outgrowth deficits but did not affect motor learning. These results suggest that cortical excitatory neuron-autonomous hyperactivation of MEK1 is sufficient to drive deficits in axon outgrowth, which coincide with reduced ARC expression, and deficits in skilled motor learning. Our data indicate that neuron-autonomous decreases in long-range axonal outgrowth may be a key aspect of neuropathogenesis in RASopathies.
Collapse
Affiliation(s)
- George R. Bjorklund
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Katherina P. Rees
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | | | - Lauren T. Hewitt
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Kenji Nishimura
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Jason M. Newbern
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
5
|
Cherra SJ, Lamb R. Interactions between Ras and Rap signaling pathways during neurodevelopment in health and disease. Front Mol Neurosci 2024; 17:1352731. [PMID: 38463630 PMCID: PMC10920261 DOI: 10.3389/fnmol.2024.1352731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/08/2024] [Indexed: 03/12/2024] Open
Abstract
The Ras family of small GTPases coordinates tissue development by modulating cell proliferation, cell-cell adhesion, and cellular morphology. Perturbations of any of these key steps alter nervous system development and are associated with neurological disorders. While the underlying causes are not known, genetic mutations in Ras and Rap GTPase signaling pathways have been identified in numerous neurodevelopmental disorders, including autism spectrum, neurofibromatosis, intellectual disability, epilepsy, and schizophrenia. Despite diverse clinical presentations, intersections between these two signaling pathways may provide a better understanding of how deviations in neurodevelopment give rise to neurological disorders. In this review, we focus on presynaptic and postsynaptic functions of Ras and Rap GTPases. We highlight various roles of these small GTPases during synapse formation and plasticity. Based on genomic analyses, we discuss how disease-related mutations in Ras and Rap signaling proteins may underlie human disorders. Finally, we discuss how recent observations have identified molecular interactions between these pathways and how these findings may provide insights into the mechanisms that underlie neurodevelopmental disorders.
Collapse
Affiliation(s)
- Salvatore J. Cherra
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY, United States
| | | |
Collapse
|
6
|
Nakhaei-Rad S, Fejtova A. Editorial: Identifying the isoform-specific roles of RAS paralogs in health and disease. Front Cell Dev Biol 2023; 11:1199356. [PMID: 37123419 PMCID: PMC10133564 DOI: 10.3389/fcell.2023.1199356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 05/02/2023] Open
Affiliation(s)
- Saeideh Nakhaei-Rad
- Stem Cell Biology and Regenerative Medicine Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- *Correspondence: Saeideh Nakhaei-Rad, ; Anna Fejtova,
| | - Anna Fejtova
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- *Correspondence: Saeideh Nakhaei-Rad, ; Anna Fejtova,
| |
Collapse
|
7
|
Fear stress promotes glioma progression through inhibition of ferroptosis by enhancing FSP1 stability. Clin Transl Oncol 2022; 25:1378-1388. [PMID: 36484954 DOI: 10.1007/s12094-022-03032-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE Patients diagnosed with cancer often suffer from emotional stressors, such as anxiety, depression, and fear of death. However, whether fear stress could influence the glioma progression is still unclear. METHODS Xenograft glioma animal models were established in nude mice. Tumor-bearing mice were subjected to fear stress by living closely with cats and then their depressive behaviors were measured using an open field test. Hematoxylin and eosin staining, the TUNEL staining and immunochemical staining were used to detect the histopathological changes of tumor tissues. Gene expression profiling was used to screen the aberrant gene expression. Methylated RNA immunoprecipitation was used to identify the RNA m6A level. Gene expression was measured by western blot and real-time PCR, respectively. RESULTS We found that fear stress promoted glioma tumor progression in mice. Fear stress-induced upregulation of METTL3 and FSP1, increased m6A level of glioma tumor tissues, and inhibited ferroptosis in glioma progression, which were reversed by knockdown of METTL3 and FSP1 in vivo. In addition, we found that when iFSP1 (a ferroptosis inducer by targeting inhibition of FSP1) was introduced to glioma cells, the cells viability of glioma significantly was decreased and ferroptosis was enhanced in glioma cells. CONCLUSIONS Fear stress-induced upregulation of METTL3 stabilized FSP1 mRNA by m6A modification, leading to tumor progression through inhibition of ferroptosis. Our study provides a new understanding of psychological effects on glioma development, and new insights for glioma therapy.
Collapse
|
8
|
Aberrant Cortical Layer Development of Brain Organoids Derived from Noonan Syndrome-iPSCs. Int J Mol Sci 2022; 23:ijms232213861. [PMID: 36430334 PMCID: PMC9699065 DOI: 10.3390/ijms232213861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/01/2022] [Accepted: 11/09/2022] [Indexed: 11/12/2022] Open
Abstract
Noonan syndrome (NS) is a genetic disorder mainly caused by gain-of-function mutations in Src homology region 2-containing protein tyrosine phosphatase 2 (SHP2). Although diverse neurological manifestations are commonly diagnosed in NS patients, the mechanisms as to how SHP2 mutations induce the neurodevelopmental defects associated with NS remain elusive. Here, we report that cortical organoids (NS-COs) derived from NS-induced pluripotent stem cells (iPSCs) exhibit developmental abnormalities, especially in excitatory neurons (ENs). Although NS-COs develop normally in their appearance, single-cell transcriptomic analysis revealed an increase in the EN population and overexpression of cortical layer markers in NS-COs. Surprisingly, the EN subpopulation co-expressing the upper layer marker SATB2 and the deep layer maker CTIP2 was enriched in NS-COs during cortical development. In parallel with the developmental disruptions, NS-COs also exhibited reduced synaptic connectivity. Collectively, our findings suggest that perturbed cortical layer identity and impeded neuronal connectivity contribute to the neurological manifestations of NS.
Collapse
|
9
|
Solman M, Woutersen DTJ, den Hertog J. Modeling (not so) rare developmental disorders associated with mutations in the protein-tyrosine phosphatase SHP2. Front Cell Dev Biol 2022; 10:1046415. [PMID: 36407105 PMCID: PMC9672471 DOI: 10.3389/fcell.2022.1046415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
Src homology region 2 (SH2)-containing protein tyrosine phosphatase 2 (SHP2) is a highly conserved protein tyrosine phosphatase (PTP), which is encoded by PTPN11 and is indispensable during embryonic development. Mutations in PTPN11 in human patients cause aberrant signaling of SHP2, resulting in multiple rare hereditary diseases, including Noonan Syndrome (NS), Noonan Syndrome with Multiple Lentigines (NSML), Juvenile Myelomonocytic Leukemia (JMML) and Metachondromatosis (MC). Somatic mutations in PTPN11 have been found to cause cancer. Here, we focus on the role of SHP2 variants in rare diseases and advances in the understanding of its pathogenesis using model systems.
Collapse
Affiliation(s)
- Maja Solman
- Hubrecht Institute-KNAW, University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Jeroen den Hertog
- Hubrecht Institute-KNAW, University Medical Center Utrecht, Utrecht, Netherlands
- Institute Biology Leiden, Leiden University, Leiden, Netherlands
- *Correspondence: Jeroen den Hertog,
| |
Collapse
|
10
|
Yang H, Hou C, Xiao W, Qiu Y. The role of mechanosensitive ion channels in the gastrointestinal tract. Front Physiol 2022; 13:904203. [PMID: 36060694 PMCID: PMC9437298 DOI: 10.3389/fphys.2022.904203] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Mechanosensation is essential for normal gastrointestinal (GI) function, and abnormalities in mechanosensation are associated with GI disorders. There are several mechanosensitive ion channels in the GI tract, namely transient receptor potential (TRP) channels, Piezo channels, two-pore domain potassium (K2p) channels, voltage-gated ion channels, large-conductance Ca2+-activated K+ (BKCa) channels, and the cystic fibrosis transmembrane conductance regulator (CFTR). These channels are located in many mechanosensitive intestinal cell types, namely enterochromaffin (EC) cells, interstitial cells of Cajal (ICCs), smooth muscle cells (SMCs), and intrinsic and extrinsic enteric neurons. In these cells, mechanosensitive ion channels can alter transmembrane ion currents in response to mechanical forces, through a process known as mechanoelectrical coupling. Furthermore, mechanosensitive ion channels are often associated with a variety of GI tract disorders, including irritable bowel syndrome (IBS) and GI tumors. Mechanosensitive ion channels could therefore provide a new perspective for the treatment of GI diseases. This review aims to highlight recent research advances regarding the function of mechanosensitive ion channels in the GI tract. Moreover, it outlines the potential role of mechanosensitive ion channels in related diseases, while describing the current understanding of interactions between the GI tract and mechanosensitive ion channels.
Collapse
Affiliation(s)
- Haoyu Yang
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Chaofeng Hou
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Weidong Xiao
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yuan Qiu
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
- *Correspondence: Yuan Qiu,
| |
Collapse
|
11
|
Montenegro‐Venegas C, Guhathakurta D, Pina‐Fernandez E, Andres‐Alonso M, Plattner F, Gundelfinger ED, Fejtova A. Bassoon controls synaptic vesicle release via regulation of presynaptic phosphorylation and
cAMP. EMBO Rep 2022; 23:e53659. [PMID: 35766170 PMCID: PMC9346490 DOI: 10.15252/embr.202153659] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 05/23/2022] [Accepted: 06/01/2022] [Indexed: 11/11/2022] Open
Abstract
Neuronal presynaptic terminals contain hundreds of neurotransmitter‐filled synaptic vesicles (SVs). The morphologically uniform SVs differ in their release competence segregating into functional pools that differentially contribute to neurotransmission. The presynaptic scaffold bassoon is required for neurotransmission, but the underlying molecular mechanisms are unknown. We report that glutamatergic synapses lacking bassoon feature decreased SV release competence and increased resting pool of SVs as assessed by imaging of SV release in cultured neurons. CDK5/calcineurin and cAMP/PKA presynaptic signalling are dysregulated, resulting in an aberrant phosphorylation of their downstream effectors synapsin1 and SNAP25, well‐known regulators of SV release competence. An acute pharmacological restoration of physiological CDK5 and cAMP/PKA activity fully normalises the SV pools in neurons lacking bassoon. Finally, we demonstrate that CDK5‐dependent regulation of PDE4 activity interacts with cAMP/PKA signalling and thereby controls SV release competence. These data reveal that bassoon organises SV pools in glutamatergic synapses via regulation of presynaptic phosphorylation and cAMP homeostasis and indicate a role of CDK5/PDE4/cAMP axis in the control of neurotransmitter release.
Collapse
Affiliation(s)
- Carolina Montenegro‐Venegas
- Department of Neurochemistry and Molecular Biology Leibniz Institute for Neurobiology Magdeburg Germany
- Center for Behavioral Brain Sciences (CBBS) Magdeburg Germany
- Institute for Pharmacology and Toxicology, Medical Faculty Otto von Guericke University Magdeburg Germany
| | - Debarpan Guhathakurta
- Molecular Psychiatry, Department of Psychiatry and Psychotherapy Universitätsklinikum Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg Erlangen Germany
| | | | - Maria Andres‐Alonso
- RG Presynaptic Plasticity Leibniz Institute for Neurobiology Magdeburg Germany
| | | | - Eckart D Gundelfinger
- Department of Neurochemistry and Molecular Biology Leibniz Institute for Neurobiology Magdeburg Germany
- Center for Behavioral Brain Sciences (CBBS) Magdeburg Germany
- Institute for Pharmacology and Toxicology, Medical Faculty Otto von Guericke University Magdeburg Germany
| | - Anna Fejtova
- Department of Neurochemistry and Molecular Biology Leibniz Institute for Neurobiology Magdeburg Germany
- Molecular Psychiatry, Department of Psychiatry and Psychotherapy Universitätsklinikum Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg Erlangen Germany
- RG Presynaptic Plasticity Leibniz Institute for Neurobiology Magdeburg Germany
| |
Collapse
|
12
|
Cammann C, Israel N, Frentzel S, Jeron A, Topfstedt E, Schüler T, Simeoni L, Zenker M, Fehling HJ, Schraven B, Bruder D, Seifert U. T cell-specific constitutive active SHP2 enhances T cell memory formation and reduces T cell activation. Front Immunol 2022; 13:958616. [PMID: 35983034 PMCID: PMC9379337 DOI: 10.3389/fimmu.2022.958616] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Upon antigen recognition by the T cell receptor (TCR), a complex signaling network orchestrated by protein-tyrosine kinases (PTKs) and protein-tyrosine phosphatases (PTPs) regulates the transmission of the extracellular signal to the nucleus. The role of the PTPs Src-homology 2 (SH2) domain-containing phosphatase 1 (SHP1, Ptpn6) and Src-homology 2 (SH2) domain-containing phosphatase 2 (SHP2, Ptpn11) have been studied in various cell types including T cells. Whereas SHP1 acts as an essential negative regulator of the proximal steps in T cell signalling, the role of SHP2 in T cell activation is still a matter of debate. Here, we analyzed the role of the constitutively active SHP2-D61Y-mutant in T cell activation using knock-in mice expressing the mutant form Ptpn11D61Y in T cells. We observed reduced numbers of CD8+ and increased numbers of CD4+ T cells in the bone marrow and spleen of young and aged SHP2-D61Y-mutant mice as well as in Influenza A Virus (IAV)-infected mice compared to controls. In addition, we found elevated frequencies of effector memory CD8+ T cells and an upregulation of the programmed cell death protein 1 (PD-1)-receptor on both CD4+ and CD8+ T cells. Functional analysis of SHP2-D61Y-mutated T cells revealed an induction of late apoptosis/necrosis, a reduced proliferation and altered signaling upon TCR stimulation. However, the ability of D61Y-mutant mice to clear viral infection was not affected. In conclusion, our data indicate an important regulatory role of SHP2 in T cell function, where the effect is determined by the kinetics of SHP2 phosphatase activity and differs in the presence of the permanently active and the temporally regulated phosphatase. Due to interaction of SHP2 with the PD-1-receptor targeting the protein-tyrosine phosphatase might be a valuable tool to enhance T cell activities in immunotherapy.
Collapse
Affiliation(s)
- Clemens Cammann
- Friedrich Loeffler-Institute for Medical Microbiology-Virology, University Medicine Greifswald, Greifswald, Germany
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Nicole Israel
- Friedrich Loeffler-Institute for Medical Microbiology-Virology, University Medicine Greifswald, Greifswald, Germany
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Sarah Frentzel
- Institute of Medical Microbiology, Infection Prevention and Control, Infection Immunology Group, Health Campus Immunology, Infectiology and Inflammation, Ottovon-Guericke-University Magdeburg, Magdeburg, Germany
- Immune Regulation Group, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Andreas Jeron
- Institute of Medical Microbiology, Infection Prevention and Control, Infection Immunology Group, Health Campus Immunology, Infectiology and Inflammation, Ottovon-Guericke-University Magdeburg, Magdeburg, Germany
- Immune Regulation Group, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Eylin Topfstedt
- Friedrich Loeffler-Institute for Medical Microbiology-Virology, University Medicine Greifswald, Greifswald, Germany
| | - Thomas Schüler
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Luca Simeoni
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Martin Zenker
- Institute of Human Genetics, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | | | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Dunja Bruder
- Institute of Medical Microbiology, Infection Prevention and Control, Infection Immunology Group, Health Campus Immunology, Infectiology and Inflammation, Ottovon-Guericke-University Magdeburg, Magdeburg, Germany
- Immune Regulation Group, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Ulrike Seifert
- Friedrich Loeffler-Institute for Medical Microbiology-Virology, University Medicine Greifswald, Greifswald, Germany
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- *Correspondence: Ulrike Seifert,
| |
Collapse
|
13
|
Das TK, Gatto J, Mirmira R, Hourizadeh E, Kaufman D, Gelb BD, Cagan R. Drosophila RASopathy models identify disease subtype differences and biomarkers of drug efficacy. iScience 2021; 24:102306. [PMID: 33855281 PMCID: PMC8026909 DOI: 10.1016/j.isci.2021.102306] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/30/2020] [Accepted: 03/10/2021] [Indexed: 12/13/2022] Open
Abstract
RASopathies represent a family of mostly autosomal dominant diseases that are caused by missense variants in the rat sarcoma viral oncogene/mitogen activated protein kinase (RAS/MAPK) pathway including KRAS, NRAS, BRAF, RAF1, and SHP2. These variants are associated with overlapping but distinct phenotypes that affect the heart, craniofacial, skeletal, lymphatic, and nervous systems. Here, we report an analysis of 13 Drosophila transgenic lines, each expressing a different human RASopathy isoform. Similar to their human counterparts, each Drosophila line displayed common aspects but also important differences including distinct signaling pathways such as the Hippo and SAPK/JNK signaling networks. We identified multiple classes of clinically relevant drugs-including statins and histone deacetylase inhibitors-that improved viability across most RASopathy lines; in contrast, several canonical RAS pathway inhibitors proved less broadly effective. Overall, our study compares and contrasts a large number of RASopathy-associated variants including their therapeutic responses.
Collapse
Affiliation(s)
- Tirtha K. Das
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York NY, USA
- The Mindich Child Health and Development Institute, Department of Pediatrics, Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York NY, USA
| | - Jared Gatto
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York NY, USA
- The Mindich Child Health and Development Institute, Department of Pediatrics, Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York NY, USA
| | - Rupa Mirmira
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York NY, USA
| | - Ethan Hourizadeh
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York NY, USA
| | - Dalia Kaufman
- The Mindich Child Health and Development Institute, Department of Pediatrics, Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York NY, USA
| | - Bruce D. Gelb
- The Mindich Child Health and Development Institute, Department of Pediatrics, Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York NY, USA
| | - Ross Cagan
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York NY, USA
| |
Collapse
|
14
|
Montenegro-Venegas C, Fienko S, Anni D, Pina-Fernández E, Frischknecht R, Fejtova A. Bassoon inhibits proteasome activity via interaction with PSMB4. Cell Mol Life Sci 2020; 78:1545-1563. [PMID: 32651614 PMCID: PMC7904567 DOI: 10.1007/s00018-020-03590-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 06/19/2020] [Accepted: 07/01/2020] [Indexed: 01/06/2023]
Abstract
Abstract Proteasomes are protein complexes that mediate controlled degradation of damaged or unneeded cellular proteins. In neurons, proteasome regulates synaptic function and its dysfunction has been linked to neurodegeneration and neuronal cell death. However, endogenous mechanisms controlling proteasomal activity are insufficiently understood. Here, we describe a novel interaction between presynaptic scaffolding protein bassoon and PSMB4, a β subunit of the 20S core proteasome. Expression of bassoon fragments that interact with PSMB4 in cell lines or in primary neurons attenuates all endopeptidase activities of cellular proteasome and induces accumulation of several classes of ubiquitinated and non-ubiquitinated substrates of the proteasome. Importantly, these effects are distinct from the previously reported impact of bassoon on ubiquitination and autophagy and might rely on a steric interference with the assembly of the 20S proteasome core. In line with a negative regulatory role of bassoon on endogenous proteasome we found increased proteasomal activity in the synaptic fractions prepared from brains of bassoon knock-out mice. Finally, increased activity of proteasome and lower expression levels of synaptic substrates of proteasome could be largely normalized upon expression of PSMB4-interacting fragments of bassoon in neurons derived from bassoon deficient mice. Collectively, we propose that bassoon interacts directly with proteasome to control its activity at presynapse and thereby it contributes to a compartment-specific regulation of neuronal protein homeostasis. These findings provide a mechanistic explanation for the recently described link of bassoon to human diseases associated with pathological protein aggregation. Graphic Abstract Presynaptic cytomatrix protein bassoon (Bsn) interacts with PSMB4, the β7 subunit of 20S core proteasome, via three independent interaction interfaces. Bsn inhibits proteasomal proteolytic activity and degradation of different classes of proteasomal substrates presumably due to steric interference with the assembly of 20S core of proteasome. Upon Bsn deletion in neurons, presynaptic substrates of the proteasome are depleted, which can be reversed upon expression of PSMB4-interacting interfaces of Bsn. Taken together, bsn controls the degree of proteasome degradation within the presynaptic compartment and thus, contributes to the regulation of synaptic proteome![]() Electronic supplementary material The online version of this article (10.1007/s00018-020-03590-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Carolina Montenegro-Venegas
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University and Center for Behavior Brain Sciences (CBBS), Magdeburg, Germany
| | - Sandra Fienko
- Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
- RG Presynaptic Plasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Daniela Anni
- Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Eneko Pina-Fernández
- RG Presynaptic Plasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Renato Frischknecht
- Department of Biology, Animal Physiology, Friedrich-Alexander University of Erlangen- Nürnberg, Erlangen, Germany
| | - Anna Fejtova
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany.
- Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany.
- RG Presynaptic Plasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany.
| |
Collapse
|
15
|
Zoicas I, Schumacher F, Kleuser B, Reichel M, Gulbins E, Fejtova A, Kornhuber J, Rhein C. The Forebrain-Specific Overexpression of Acid Sphingomyelinase Induces Depressive-Like Symptoms in Mice. Cells 2020; 9:cells9051244. [PMID: 32443534 PMCID: PMC7290754 DOI: 10.3390/cells9051244] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 11/16/2022] Open
Abstract
Human and murine studies identified the lysosomal enzyme acid sphingomyelinase (ASM) as a target for antidepressant therapy and revealed its role in the pathophysiology of major depression. In this study, we generated a mouse model with overexpression of Asm (Asm-tgfb) that is restricted to the forebrain to rule out any systemic effects of Asm overexpression on depressive-like symptoms. The increase in Asm activity was higher in male Asm-tgfb mice than in female Asm-tgfb mice due to the breeding strategy, which allows for the generation of wild-type littermates as appropriate controls. Asm overexpression in the forebrain of male mice resulted in a depressive-like phenotype, whereas in female mice, Asm overexpression resulted in a social anxiogenic-like phenotype. Ceramides in male Asm-tgfb mice were elevated specifically in the dorsal hippocampus. mRNA expression analyses indicated that the increase in Asm activity affected other ceramide-generating pathways, which might help to balance ceramide levels in cortical brain regions. This forebrain-specific mouse model offers a novel tool for dissecting the molecular mechanisms that play a role in the pathophysiology of major depression.
Collapse
Affiliation(s)
- Iulia Zoicas
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (I.Z.); (M.R.); (A.F.); (J.K.)
| | - Fabian Schumacher
- Department of Toxicology, University of Potsdam, 14558 Nuthetal, Germany; (F.S.); (B.K.)
- Department of Molecular Biology, University of Duisburg-Essen, 45147 Essen, Germany;
| | - Burkhard Kleuser
- Department of Toxicology, University of Potsdam, 14558 Nuthetal, Germany; (F.S.); (B.K.)
| | - Martin Reichel
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (I.Z.); (M.R.); (A.F.); (J.K.)
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, 45147 Essen, Germany;
| | - Anna Fejtova
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (I.Z.); (M.R.); (A.F.); (J.K.)
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (I.Z.); (M.R.); (A.F.); (J.K.)
| | - Cosima Rhein
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (I.Z.); (M.R.); (A.F.); (J.K.)
- Department of Psychosomatic Medicine and Psychotherapy, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Correspondence: ; Tel.: +49-9131-85-44542
| |
Collapse
|
16
|
Gross AM, Frone M, Gripp KW, Gelb BD, Schoyer L, Schill L, Stronach B, Biesecker LG, Esposito D, Hernandez ER, Legius E, Loh ML, Martin S, Morrison DK, Rauen KA, Wolters PL, Zand D, McCormick F, Savage SA, Stewart DR, Widemann BC, Yohe ME. Advancing RAS/RASopathy therapies: An NCI-sponsored intramural and extramural collaboration for the study of RASopathies. Am J Med Genet A 2020; 182:866-876. [PMID: 31913576 DOI: 10.1002/ajmg.a.61485] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 12/22/2019] [Indexed: 12/18/2022]
Abstract
RASopathies caused by germline pathogenic variants in genes that encode RAS pathway proteins. These disorders include neurofibromatosis type 1 (NF1), Noonan syndrome (NS), cardiofaciocutaneous syndrome (CFC), and Costello syndrome (CS), and others. RASopathies are characterized by heterogenous manifestations, including congenital heart disease, failure to thrive, and increased risk of cancers. Previous work led by the NCI Pediatric Oncology Branch has altered the natural course of one of the key manifestations of the RASopathy NF1. Through the conduct of a longitudinal cohort study and early phase clinical trials, the MEK inhibitor selumetinib was identified as the first active therapy for the NF1-related peripheral nerve sheath tumors called plexiform neurofibromas (PNs). As a result, selumetinib was granted breakthrough therapy designation by the FDA for the treatment of PN. Other RASopathy manifestations may also benefit from RAS targeted therapies. The overall goal of Advancing RAS/RASopathy Therapies (ART), a new NCI initiative, is to develop effective therapies and prevention strategies for the clinical manifestations of the non-NF1 RASopathies and for tumors characterized by somatic RAS mutations. This report reflects discussions from a February 2019 initiation meeting for this project, which had broad international collaboration from basic and clinical researchers and patient advocates.
Collapse
Affiliation(s)
- Andrea M Gross
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Megan Frone
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Karen W Gripp
- Department of Genetics, Division of Pediatrics, Al duPont Hospital for Children, Wilmington, Delaware
| | - Bruce D Gelb
- Department of Pediatrics, Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Genetics and Genomic Sciences, Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | | | | | - Leslie G Biesecker
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, Bethesda, Maryland
| | - Dominic Esposito
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Edjay Ralph Hernandez
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Eric Legius
- Laboratory for Neurofibromatosis Research, Department of Human Genetics, KU Leuven University Hospital, Leuven, Belgium
| | - Mignon L Loh
- Department of Pediatrics, Benioff Children's Hospital and the Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Staci Martin
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Deborah K Morrison
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Katherine A Rauen
- Department of Pediatrics, Division of Genomic Medicine, University of California Davis, Sacramento, California
| | - Pamela L Wolters
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Dina Zand
- Center for Drug Evaluation and Research, Food and Drug Administration, Rockville, Maryland
| | - Frank McCormick
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Sharon A Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Douglas R Stewart
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Brigitte C Widemann
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Marielle E Yohe
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| |
Collapse
|
17
|
Salar S, Guhathakurta D, Marx Hofmann L. Differential contribution of pyramidal cells and interneurons to activity-dependent gene transcription changes. J Neurophysiol 2019; 122:2203-2205. [PMID: 31483698 DOI: 10.1152/jn.00089.2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The type of neuronal activity determines the outcome of gene expression. Hence, the characterization of underlying mechanisms in transcriptome alterations may serve as a biomarker and provide new intervention methods for the treatment of pathologic conditions. Parrish et al. (Parrish RR, Codadu NK, Racca C, Trevelyan AJ. J Neurophysiol 120: 2358-2367, 2018) show that the changes in interneuronal gene transcription are correlated with the type of the activated neuronal population and that the initiation route of Ras/ERK MAPK pathway determines the polarity of the gene expression.
Collapse
Affiliation(s)
- Seda Salar
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Germany
| | - Debarpan Guhathakurta
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Germany
| | - Lena Marx Hofmann
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Germany
| |
Collapse
|
18
|
Ryu HH, Kim T, Kim JW, Kang M, Park P, Kim YG, Kim H, Ha J, Choi JE, Lee J, Lim CS, Kim CH, Kim SJ, Silva AJ, Kaang BK, Lee YS. Excitatory neuron-specific SHP2-ERK signaling network regulates synaptic plasticity and memory. Sci Signal 2019; 12:12/571/eaau5755. [PMID: 30837304 DOI: 10.1126/scisignal.aau5755] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mutations in RAS signaling pathway components cause diverse neurodevelopmental disorders, collectively called RASopathies. Previous studies have suggested that dysregulation in RAS-extracellular signal-regulated kinase (ERK) activation is restricted to distinct cell types in different RASopathies. Some cases of Noonan syndrome (NS) are associated with gain-of-function mutations in the phosphatase SHP2 (encoded by PTPN11); however, SHP2 is abundant in multiple cell types, so it is unclear which cell type(s) contribute to NS phenotypes. Here, we found that expressing the NS-associated mutant SHP2D61G in excitatory, but not inhibitory, hippocampal neurons increased ERK signaling and impaired both long-term potentiation (LTP) and spatial memory in mice, although endogenous SHP2 was expressed in both neuronal types. Transcriptomic analyses revealed that the genes encoding SHP2-interacting proteins that are critical for ERK activation, such as GAB1 and GRB2, were enriched in excitatory neurons. Accordingly, expressing a dominant-negative mutant of GAB1, which reduced its interaction with SHP2D61G, selectively in excitatory neurons, reversed SHP2D61G-mediated deficits. Moreover, ectopic expression of GAB1 and GRB2 together with SHP2D61G in inhibitory neurons resulted in ERK activation. These results demonstrate that RAS-ERK signaling networks are notably different between excitatory and inhibitory neurons, accounting for the cell type-specific pathophysiology of NS and perhaps other RASopathies.
Collapse
Affiliation(s)
- Hyun-Hee Ryu
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea.,Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - TaeHyun Kim
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Korea
| | - Jung-Woong Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Minkyung Kang
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Pojeong Park
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Korea
| | - Yong Gyu Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Hyopil Kim
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Korea
| | - Jiyeon Ha
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Ja Eun Choi
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Korea
| | - Jisu Lee
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Korea
| | - Chae-Seok Lim
- Department of Pharmacology, Wonkwang University School of Medicine, Iksan 54538, Korea
| | - Chul-Hong Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Sang Jeong Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Alcino J Silva
- Department of Neurobiology, Integrative Center for Learning and Memory, Brain Research Institute, University of California Los Angeles, California, CA 90095, USA
| | - Bong-Kiun Kaang
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Korea
| | - Yong-Seok Lee
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea. .,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
19
|
Bustelo XR, Crespo P, Fernández-Pisonero I, Rodríguez-Fdez S. RAS GTPase-dependent pathways in developmental diseases: old guys, new lads, and current challenges. Curr Opin Cell Biol 2018; 55:42-51. [PMID: 30007125 PMCID: PMC7615762 DOI: 10.1016/j.ceb.2018.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 05/14/2018] [Accepted: 06/14/2018] [Indexed: 10/28/2022]
Abstract
Deregulated RAS signaling is associated with increasing numbers of congenital diseases usually referred to as RASopathies. The spectrum of genes and mutant alleles causing these diseases has been significantly expanded in recent years. This progress has triggered new challenges, including the origin and subsequent selection of the mutations driving these diseases, the specific pathobiological programs triggered by those mutations, the type of correlations that exist between the genotype and the clinical features of patients, and the ancillary genetic factors that influence the severity of the disease in patients. These issues also directly impinge on the feasibility of using RAS pathway drugs to treat RASopathy patients. Here, we will review the main developments and pending challenges in this research topic.
Collapse
Affiliation(s)
- Xosé R Bustelo
- Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain; Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain.
| | - Piero Crespo
- CIBERONC, CSIC-University of Cantabria, 39011 Santander, Spain; Instituto de Biomedicina y Biotecnología de Cantabria, CSIC-University of Cantabria, 39011 Santander, Spain
| | - Isabel Fernández-Pisonero
- Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain; Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain
| | - Sonia Rodríguez-Fdez
- Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain; Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
20
|
Tajan M, Paccoud R, Branka S, Edouard T, Yart A. The RASopathy Family: Consequences of Germline Activation of the RAS/MAPK Pathway. Endocr Rev 2018; 39:676-700. [PMID: 29924299 DOI: 10.1210/er.2017-00232] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 06/13/2018] [Indexed: 12/13/2022]
Abstract
Noonan syndrome [NS; Mendelian Inheritance in Men (MIM) #163950] and related syndromes [Noonan syndrome with multiple lentigines (formerly called LEOPARD syndrome; MIM #151100), Noonan-like syndrome with loose anagen hair (MIM #607721), Costello syndrome (MIM #218040), cardio-facio-cutaneous syndrome (MIM #115150), type I neurofibromatosis (MIM #162200), and Legius syndrome (MIM #611431)] are a group of related genetic disorders associated with distinctive facial features, cardiopathies, growth and skeletal abnormalities, developmental delay/mental retardation, and tumor predisposition. NS was clinically described more than 50 years ago, and disease genes have been identified throughout the last 3 decades, providing a molecular basis to better understand their physiopathology and identify targets for therapeutic strategies. Most of these genes encode proteins belonging to or regulating the so-called RAS/MAPK signaling pathway, so these syndromes have been gathered under the name RASopathies. In this review, we provide a clinical overview of RASopathies and an update on their genetics. We then focus on the functional and pathophysiological effects of RASopathy-causing mutations and discuss therapeutic perspectives and future directions.
Collapse
Affiliation(s)
- Mylène Tajan
- INSERM UMR 1048, Institute of Cardiovascular and Metabolic Diseases (I2MC), University of Toulouse Paul Sabatier, Toulouse, France
| | - Romain Paccoud
- INSERM UMR 1048, Institute of Cardiovascular and Metabolic Diseases (I2MC), University of Toulouse Paul Sabatier, Toulouse, France
| | - Sophie Branka
- INSERM UMR 1048, Institute of Cardiovascular and Metabolic Diseases (I2MC), University of Toulouse Paul Sabatier, Toulouse, France
| | - Thomas Edouard
- Endocrine, Bone Diseases, and Genetics Unit, Children's Hospital, Toulouse University Hospital, Toulouse, France
| | - Armelle Yart
- INSERM UMR 1048, Institute of Cardiovascular and Metabolic Diseases (I2MC), University of Toulouse Paul Sabatier, Toulouse, France
| |
Collapse
|
21
|
Levy AD, Xiao X, Shaw JE, Sudarsana Devi SP, Katrancha SM, Bennett AM, Greer CA, Howe JR, Machida K, Koleske AJ. Noonan Syndrome-Associated SHP2 Dephosphorylates GluN2B to Regulate NMDA Receptor Function. Cell Rep 2018; 24:1523-1535. [PMID: 30089263 PMCID: PMC6234505 DOI: 10.1016/j.celrep.2018.07.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/21/2018] [Accepted: 07/01/2018] [Indexed: 11/23/2022] Open
Abstract
Hyperactivating mutations in the non-receptor tyrosine phosphatase SHP2 cause Noonan syndrome (NS). NS is associated with cognitive deficits, but how hyperactivation of SHP2 in NS changes neuron function is not well understood. We find that mice bearing an NS-associated SHP2 allele (NS mice) have selectively impaired Schaffer collateral-CA1 NMDA (N-methyl-D-aspartate) receptor (NMDAR)-mediated neurotransmission and that residual NMDAR-mediated currents decay faster in NS mice because of reduced contribution of GluN1:GluN2B diheteromers. Consistent with altered GluN2B function, we identify GluN2B Y1252 as an NS-associated SHP2 substrate both in vitro and in vivo. Mutation of Y1252 does not alter recombinant GluN1:GluN2B receptor kinetics. Instead, phospho-Y1252 binds the actin-regulatory adaptor protein Nck2, and this interaction is required for proper NMDAR function. These results establish SHP2 and Nck2 as NMDAR regulatory proteins and strongly suggest that NMDAR dysfunction contributes to NS cognitive deficits.
Collapse
Affiliation(s)
- Aaron D Levy
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520, USA
| | - Xiao Xiao
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Juliana E Shaw
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | | | - Sara Marie Katrancha
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520, USA
| | - Anton M Bennett
- Department of Pharmacology, Yale University, New Haven, CT 06520, USA; Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University, New Haven, CT 06520, USA
| | - Charles A Greer
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520, USA; Department of Neurosurgery, Yale University, New Haven, CT 06520, USA; Department of Neuroscience, Yale University, New Haven, CT 06520, USA
| | - James R Howe
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520, USA; Department of Pharmacology, Yale University, New Haven, CT 06520, USA
| | - Kazuya Machida
- Raymond and Beverly Sackler Laboratory of Genetics and Molecular Medicine, Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Anthony J Koleske
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA; Department of Neuroscience, Yale University, New Haven, CT 06520, USA; Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
22
|
Schuhmacher AJ, Hernández-Porras I, García-Medina R, Guerra C. Noonan syndrome: lessons learned from genetically modified mouse models. Expert Rev Endocrinol Metab 2017; 12:367-378. [PMID: 30058892 DOI: 10.1080/17446651.2017.1361821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Noonan syndrome is a RASopathy that results from activating mutations in different members of the RAS/MAPK signaling pathway. At least eleven members of this pathway have been found mutated, PTPN11 being the most frequently mutated gene affecting about 50% of the patients, followed by SOS1 (10%), RAF1 (10%) and KRAS (5%). Recently, even more infrequent mutations have been newly identified by next generation sequencing. This spectrum of mutations leads to a broad variety of clinical symptoms such as cardiopathies, short stature, facial dysmorphia and neurocognitive impairment. The genetic variability of this syndrome makes it difficult to establish a genotype-phenotype correlation, which will greatly help in the clinical management of the patients. Areas covered: Studies performed with different genetically engineered mouse models (GEMMs) developed up to date. Expert commentary: GEMMs have helped us understand the role of some genes and the effect of the different mutations in the development of the syndrome. However, few models have been developed and more characterization of the existing ones should be performed to learn about the impact of the different modifiers in the phenotypes, the potential cancer risk in patients, as well as preventative and therapeutic strategies.
Collapse
Affiliation(s)
- Alberto J Schuhmacher
- a Instituto de Investigación Sanitaria Aragón , Centro de Investigación Biomédica de Aragón , Zaragoza , Spain
| | - Isabel Hernández-Porras
- b Molecular Oncology Programs , Centro Nacional de Investigaciones Oncológicas (CNIO) , Madrid , Spain
| | - Raquel García-Medina
- b Molecular Oncology Programs , Centro Nacional de Investigaciones Oncológicas (CNIO) , Madrid , Spain
| | - Carmen Guerra
- b Molecular Oncology Programs , Centro Nacional de Investigaciones Oncológicas (CNIO) , Madrid , Spain
| |
Collapse
|
23
|
Altmüller F, Pothula S, Annamneedi A, Nakhaei-Rad S, Montenegro-Venegas C, Pina-Fernández E, Marini C, Santos M, Schanze D, Montag D, Ahmadian MR, Stork O, Zenker M, Fejtova A. Correction: Aberrant neuronal activity-induced signaling and gene expression in a mouse model of RASopathy. PLoS Genet 2017. [PMID: 28622382 PMCID: PMC5473527 DOI: 10.1371/journal.pgen.1006843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
[This corrects the article DOI: 10.1371/journal.pgen.1006684.].
Collapse
|