1
|
Kitandwe PK, Rogers P, Hu K, Nayebare O, Blakney AK, McKay PF, Kaleebu P, Shattock RJ. A Lipid Nanoparticle-Formulated Self-Amplifying RNA Rift Valley Fever Vaccine Induces a Robust Humoral Immune Response in Mice. Vaccines (Basel) 2024; 12:1088. [PMID: 39460255 PMCID: PMC11511412 DOI: 10.3390/vaccines12101088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/30/2024] [Accepted: 09/10/2024] [Indexed: 10/28/2024] Open
Abstract
Rift Valley fever (RVF) is a mosquito-borne viral zoonosis that causes high fetal and neonatal mortality rates in ruminants and sometimes severe to fatal complications like encephalitis and hemorrhagic fever in humans. There is no licensed RVF vaccine for human use while approved livestock vaccines have suboptimal safety or efficacy. We designed self-amplifying RNA (saRNA) RVF vaccines and assessed their humoral immunogenicity in mice. Plasmid DNA encoding the Rift Valley fever virus (RVFV) medium (M) segment consensus sequence (WT consensus) and its derivatives mutated to enhance cell membrane expression of the viral surface glycoproteins n (Gn) and c (Gc) were assessed for in vitro expression. The WT consensus and best-expressing derivative (furin-T2A) were cloned into a Venezuelan equine encephalitis virus (VEEV) plasmid DNA replicon and in vitro transcribed into saRNA. The saRNA was formulated in lipid nanoparticles and its humoral immunogenicity in BALB/c mice was assessed. High quantities of dose-dependent RVFV Gn IgG antibodies were detected in the serum of all mice immunized with either WT consensus or furin-T2A saRNA RVF vaccines. Significant RVFV pseudovirus-neutralizing activity was induced in mice immunized with 1 µg or 10 µg of the WT consensus saRNA vaccine. The WT consensus saRNA RVF vaccine warrants further development.
Collapse
Affiliation(s)
- Paul K. Kitandwe
- MRC/UVRI & LSHTM Uganda Research Unit, Plot 51-59 Nakiwogo Road, Entebbe P.O. Box 49, Uganda; (O.N.); (P.K.)
| | - Paul Rogers
- Department of Infectious Diseases, Imperial College London, Norfolk Place, London W2 1PG, UK; (P.R.); (K.H.); (A.K.B.); (P.F.M.); (R.J.S.)
| | - Kai Hu
- Department of Infectious Diseases, Imperial College London, Norfolk Place, London W2 1PG, UK; (P.R.); (K.H.); (A.K.B.); (P.F.M.); (R.J.S.)
| | - Owen Nayebare
- MRC/UVRI & LSHTM Uganda Research Unit, Plot 51-59 Nakiwogo Road, Entebbe P.O. Box 49, Uganda; (O.N.); (P.K.)
| | - Anna K. Blakney
- Department of Infectious Diseases, Imperial College London, Norfolk Place, London W2 1PG, UK; (P.R.); (K.H.); (A.K.B.); (P.F.M.); (R.J.S.)
| | - Paul F. McKay
- Department of Infectious Diseases, Imperial College London, Norfolk Place, London W2 1PG, UK; (P.R.); (K.H.); (A.K.B.); (P.F.M.); (R.J.S.)
| | - Pontiano Kaleebu
- MRC/UVRI & LSHTM Uganda Research Unit, Plot 51-59 Nakiwogo Road, Entebbe P.O. Box 49, Uganda; (O.N.); (P.K.)
- Uganda Virus Research Institute, Plot 51-59, Nakiwogo Road, Entebbe P.O. Box 49, Uganda
| | - Robin J. Shattock
- Department of Infectious Diseases, Imperial College London, Norfolk Place, London W2 1PG, UK; (P.R.); (K.H.); (A.K.B.); (P.F.M.); (R.J.S.)
| |
Collapse
|
2
|
Mahony TJ, Briody TE, Ommeh SC. Can the Revolution in mRNA-Based Vaccine Technologies Solve the Intractable Health Issues of Current Ruminant Production Systems? Vaccines (Basel) 2024; 12:152. [PMID: 38400135 PMCID: PMC10893269 DOI: 10.3390/vaccines12020152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
To achieve the World Health Organization's global Sustainable Development Goals, increased production of high-quality protein for human consumption is required while minimizing, ideally reducing, environmental impacts. One way to achieve these goals is to address losses within current livestock production systems. Infectious diseases are key limiters of edible protein production, affecting both quantity and quality. In addition, some of these diseases are zoonotic threats and potential contributors to the emergence of antimicrobial resistance. Vaccination has proven to be highly successful in controlling and even eliminating several livestock diseases of economic importance. However, many livestock diseases, both existing and emerging, have proven to be recalcitrant targets for conventional vaccination technologies. The threat posed by the COVID-19 pandemic resulted in unprecedented global investment in vaccine technologies to accelerate the development of safe and efficacious vaccines. While several vaccination platforms emerged as front runners to meet this challenge, the clear winner is mRNA-based vaccination. The challenge now is for livestock industries and relevant stakeholders to harness these rapid advances in vaccination to address key diseases affecting livestock production. This review examines the key features of mRNA vaccines, as this technology has the potential to control infectious diseases of importance to livestock production that have proven otherwise difficult to control using conventional approaches. This review focuses on the challenging diseases of ruminants due to their importance in global protein production. Overall, the current literature suggests that, while mRNA vaccines have the potential to address challenges in veterinary medicine, further developments are likely to be required for this promise to be realized for ruminant and other livestock species.
Collapse
Affiliation(s)
- Timothy J. Mahony
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia; (T.E.B.); (S.C.O.)
| | | | | |
Collapse
|
3
|
Alkan C, Jurado-Cobena E, Ikegami T. Advancements in Rift Valley fever vaccines: a historical overview and prospects for next generation candidates. NPJ Vaccines 2023; 8:171. [PMID: 37925544 PMCID: PMC10625542 DOI: 10.1038/s41541-023-00769-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/18/2023] [Indexed: 11/06/2023] Open
Abstract
Rift Valley fever (RVF) is a zoonotic viral disease transmitted by mosquitoes and causes abortion storms, fetal malformations, and newborn animal deaths in livestock ruminants. In humans, RVF can manifest as hemorrhagic fever, encephalitis, or retinitis. Outbreaks of RVF have been occurring in Africa since the early 20th century and continue to pose a threat to both humans and animals in various regions such as Africa, Madagascar, the Comoros, Saudi Arabia, and Yemen. The development of RVF vaccines is crucial in preventing mortality and morbidity and reducing the spread of the virus. While several veterinary vaccines have been licensed in endemic countries, there are currently no licensed RVF vaccines for human use. This review provides an overview of the existing RVF vaccines, as well as potential candidates for future studies on RVF vaccine development, including next-generation vaccines that show promise in combating the disease in both humans and animals.
Collapse
Affiliation(s)
- Cigdem Alkan
- Department of Pathology, The University of Texas Medical Branch at Galveston, 301 University Blvd, Galveston, TX, 77555, USA
| | - Eduardo Jurado-Cobena
- Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, 301 University Blvd, Galveston, TX, 77555, USA
| | - Tetsuro Ikegami
- Department of Pathology, The University of Texas Medical Branch at Galveston, 301 University Blvd, Galveston, TX, 77555, USA.
- The Sealy Institute for Vaccine Sciences, The University of Texas Medical Branch at Galveston, 301 University Blvd, Galveston, TX, 77555, USA.
- The Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch at Galveston, 301 University Blvd, Galveston, TX, 77555, USA.
| |
Collapse
|
4
|
Bian T, Hao M, Zhao X, Zhao C, Luo G, Zhang Z, Fu G, Yang L, Chen Y, Wang Y, Yu C, Yang Y, Li J, Chen W. A Rift Valley fever mRNA vaccine elicits strong immune responses in mice and rhesus macaques. NPJ Vaccines 2023; 8:164. [PMID: 37891181 PMCID: PMC10611786 DOI: 10.1038/s41541-023-00763-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Rift Valley fever virus (RVFV) is listed as a priority pathogen by the World Health Organization (WHO) because it causes serious and fatal disease in humans, and there are currently no effective countermeasures. Therefore, it is urgent to develop a safe and efficacious vaccine. Here, we developed six nucleotide-modified mRNA vaccines encoding different regions of the Gn and Gc proteins of RVFV encapsulated in lipid nanoparticles, compared their ability to induce immune responses in mice and found that mRNA vaccine encoding the full-length Gn and Gc proteins had the strongest ability to induce cellular and humoral immune responses. IFNAR(-/-) mice vaccinated with mRNA-GnGc were protected from lethal RVFV challenge. In addition, mRNA-GnGc induced high levels of neutralizing antibodies and cellular responses in rhesus macaques, as well as antigen-specific memory B cells. These data demonstrated that mRNA-GnGc is a potent and promising vaccine candidate for RVFV.
Collapse
Affiliation(s)
- Ting Bian
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, 100071, China
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, China
- Frontier Biotechnology Laboratory, Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
| | - Meng Hao
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Xiaofan Zhao
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Chuanyi Zhao
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Gang Luo
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Zhendong Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Guangcheng Fu
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Lu Yang
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Yi Chen
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Yudong Wang
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Changming Yu
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Yilong Yang
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, 100071, China.
| | - Jianmin Li
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, 100071, China.
- Frontier Biotechnology Laboratory, Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China.
| | - Wei Chen
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, 100071, China.
| |
Collapse
|
5
|
Nair N, Osterhaus ADME, Rimmelzwaan GF, Prajeeth CK. Rift Valley Fever Virus-Infection, Pathogenesis and Host Immune Responses. Pathogens 2023; 12:1174. [PMID: 37764982 PMCID: PMC10535968 DOI: 10.3390/pathogens12091174] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/09/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Rift Valley Fever Virus is a mosquito-borne phlebovirus causing febrile or haemorrhagic illness in ruminants and humans. The virus can prevent the induction of the antiviral interferon response through its NSs proteins. Mutations in the NSs gene may allow the induction of innate proinflammatory immune responses and lead to attenuation of the virus. Upon infection, virus-specific antibodies and T cells are induced that may afford protection against subsequent infections. Thus, all arms of the adaptive immune system contribute to prevention of disease progression. These findings will aid the design of vaccines using the currently available platforms. Vaccine candidates have shown promise in safety and efficacy trials in susceptible animal species and these may contribute to the control of RVFV infections and prevention of disease progression in humans and ruminants.
Collapse
|
6
|
Chen T, Ding Z, Lan J, Wong G. Advances and perspectives in the development of vaccines against highly pathogenic bunyaviruses. Front Cell Infect Microbiol 2023; 13:1174030. [PMID: 37274315 PMCID: PMC10234439 DOI: 10.3389/fcimb.2023.1174030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/03/2023] [Indexed: 06/06/2023] Open
Abstract
Increased human activities around the globe and the rapid development of once rural regions have increased the probability of contact between humans and wild animals. A majority of bunyaviruses are of zoonotic origin, and outbreaks may result in the substantial loss of lives, economy contraction, and social instability. Many bunyaviruses require manipulation in the highest levels of biocontainment, such as Biosafety Level 4 (BSL-4) laboratories, and the scarcity of this resource has limited the development speed of vaccines for these pathogens. Meanwhile, new technologies have been created, and used to innovate vaccines, like the mRNA vaccine platform and bioinformatics-based antigen design. Here, we summarize current vaccine developments for three different bunyaviruses requiring work in the highest levels of biocontainment: Crimean-Congo Hemorrhagic Fever Virus (CCHFV), Rift Valley Fever Virus (RVFV), and Hantaan virus (HTNV), and provide perspectives and potential future directions that can be further explored to advance specific vaccines for humans and livestock.
Collapse
Affiliation(s)
- Tong Chen
- Viral Hemorrhagic Fevers Research Unit, Chinese Academy of Sciences (CAS) Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences (CAS), Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhe Ding
- Viral Hemorrhagic Fevers Research Unit, Chinese Academy of Sciences (CAS) Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences (CAS), Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiaming Lan
- Viral Hemorrhagic Fevers Research Unit, Chinese Academy of Sciences (CAS) Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Gary Wong
- Viral Hemorrhagic Fevers Research Unit, Chinese Academy of Sciences (CAS) Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences (CAS), Shanghai, China
| |
Collapse
|
7
|
Evaluations of rationally designed rift valley fever vaccine candidate RVax-1 in mosquito and rodent models. NPJ Vaccines 2022; 7:109. [PMID: 36131104 PMCID: PMC9492667 DOI: 10.1038/s41541-022-00536-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 09/01/2022] [Indexed: 12/14/2022] Open
Abstract
Rift Valley fever (RVF) is a mosquito-borne zoonosis endemic to Africa and the Arabian Peninsula, which causes large outbreaks among humans and ruminants. Single dose vaccinations using live-attenuated RVF virus (RVFV) support effective prevention of viral spread in endemic countries. Due to the segmented nature of RVFV genomic RNA, segments of vaccine strain-derived genomic RNA could be incorporated into wild-type RVFV within co-infected mosquitoes or animals. Rationally designed vaccine candidate RVax-1 displays protective epitopes fully identical to the previously characterized MP-12 vaccine. Additionally, all genome segments of RVax-1 contribute to the attenuation phenotype, which prevents the formation of pathogenic reassortant strains. This study demonstrated that RVax-1 cannot replicate efficiently in orally fed Aedes aegypti mosquitoes, while retaining strong immunogenicity and protective efficacy in an inbred mouse model, which were indistinguishable from the MP-12 vaccine. These findings support further development of RVax-1 as the next generation MP-12-based vaccine for prevention of Rift Valley fever in humans and animals.
Collapse
|
8
|
Zhang S, Yan F, Liu D, Li E, Feng N, Xu S, Wang H, Gao Y, Yang S, Zhao Y, Xia X. Bacterium-Like Particles Displaying the Rift Valley Fever Virus Gn Head Protein Induces Efficacious Immune Responses in Immunized Mice. Front Microbiol 2022; 13:799942. [PMID: 35369468 PMCID: PMC8969503 DOI: 10.3389/fmicb.2022.799942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/03/2022] [Indexed: 11/13/2022] Open
Abstract
Rift Valley fever virus (RVFV), a mosquito-borne zoonotic phlebovirus, causes serious disease in humans and ruminants. According to the World Health Organization, Rift Valley fever is classified as a priority disease, and as such, vaccine development is of high priority due to the lack of licensed vaccines. In this study, a bacterium-like particle vaccine (BLP), RVFV-BLPs, is constructed. A novel display system is described, which is based on non-living and non-genetically modified Gram-positive bacterial cells, designated as Gram-positive enhancer matrix (GEM). The RVFV Gn head protein was displayed on the surface of GEM by co-expression with the peptidoglycan-binding domain (protein anchor) at the C-terminus. We determined that the RVFV Gn head-PA fusion protein was successfully displayed on the GEM. Mice immunized with RVFV-BLPs produced humoral and cellular immunity. Interestingly, comparing the production of RVFV Gn head-specific IgG and its subtype by vaccinating with different antigen doses of the RVFV-BLPs determined that the RVFV-BLPs (50 μg) group showed a greater effect than the other two groups. More importantly, antibodies produced by mice immunized with RVFV-BLPs (50 μg) exhibited potent neutralizing activity against RVFV pseudovirus. RVFV-BLPs (50 μg) also could induce IFN-γ and IL-4 in immunized mice; these mice generated memory cells among the proliferating T cell population after immunization with RVFV-BLPs with effector memory T cells as the major population, which means that RVFV-BLPs is an effective vaccine to establish a long-lived population of memory T cells. The findings suggest that the novel RVFV-BLPs subunit vaccine has the potential to be considered a safe and effective candidate vaccine against RVFV infection.
Collapse
Affiliation(s)
- Shengnan Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Feihu Yan
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Dongping Liu
- The Nanjing Unicorn Academy of Innovation, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Nanjing, China
| | - Entao Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Na Feng
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Shengnan Xu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Hualei Wang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yuwei Gao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Songtao Yang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- *Correspondence: Songtao Yang,
| | - Yongkun Zhao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Yongkun Zhao,
| | - Xianzhu Xia
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Xianzhu Xia,
| |
Collapse
|
9
|
Rift Valley fever virus detection in susceptible hosts with special emphasis in insects. Sci Rep 2021; 11:9822. [PMID: 33972596 PMCID: PMC8110843 DOI: 10.1038/s41598-021-89226-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 04/15/2021] [Indexed: 11/09/2022] Open
Abstract
Rift Valley fever phlebovirus (RVFV, Phenuiviridae) is an emerging arbovirus that can cause potentially fatal disease in many host species including ruminants and humans. Thus, tools to detect this pathogen within tissue samples from routine diagnostic investigations or for research purposes are of major interest. This study compares the immunohistological usefulness of several mono- and polyclonal antibodies against RVFV epitopes in tissue samples derived from natural hosts of epidemiologic importance (sheep), potentially virus transmitting insect species (Culex quinquefasciatus, Aedes aegypti) as well as scientific infection models (mouse, Drosophila melanogaster, C6/36 cell pellet). While the nucleoprotein was the epitope most prominently detected in mammal and mosquito tissue samples, fruit fly tissues showed expression of glycoproteins only. Antibodies against non-structural proteins exhibited single cell reactions in salivary glands of mosquitoes and the C6/36 cell pellet. However, as single antibodies exhibited a cross reactivity of varying degree in non-infected specimens, a careful interpretation of positive reactions and consideration of adequate controls remains of critical importance. The results suggest that primary antibodies directed against viral nucleoproteins and glycoproteins can facilitate RVFV detection in mammals and insects, respectively, and therefore will allow RVFV detection for diagnostic and research purposes.
Collapse
|
10
|
Wichgers Schreur PJ, Tacken M, Gutjahr B, Keller M, van Keulen L, Kant J, van de Water S, Lin Y, Eiden M, Rissmann M, von Arnim F, König R, Brix A, Charreyre C, Audonnet JC, Groschup MH, Kortekaas J. Vaccine Efficacy of Self-Assembled Multimeric Protein Scaffold Particles Displaying the Glycoprotein Gn Head Domain of Rift Valley Fever Virus. Vaccines (Basel) 2021; 9:vaccines9030301. [PMID: 33806789 PMCID: PMC8005036 DOI: 10.3390/vaccines9030301] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/18/2021] [Accepted: 03/20/2021] [Indexed: 02/06/2023] Open
Abstract
Compared to free antigens, antigens immobilized on scaffolds, such as nanoparticles, generally show improved immunogenicity. Conventionally, antigens are conjugated to scaffolds through genetic fusion or chemical conjugation, which may result in impaired assembly or heterogeneous binding and orientation of the antigens. By combining two emerging technologies-i.e., self-assembling multimeric protein scaffold particles (MPSPs) and bacterial superglue-these shortcomings can be overcome and antigens can be bound on particles in their native conformation. In the present work, we assessed whether this technology could improve the immunogenicity of a candidate subunit vaccine against the zoonotic Rift Valley fever virus (RVFV). For this, the head domain of glycoprotein Gn, a known target of neutralizing antibodies, was coupled on various MPSPs to further assess immunogenicity and efficacy in vivo. The results showed that the Gn head domain, when bound to the lumazine synthase-based MPSP, reduced mortality in a lethal mouse model and protected lambs, the most susceptible RVFV target animals, from viremia and clinical signs after immunization. Furthermore, the same subunit coupled to two other MPSPs (Geobacillus stearothermophilus E2 or a modified KDPG Aldolase) provided full protection in lambs as well.
Collapse
Affiliation(s)
- Paul J. Wichgers Schreur
- Department of Virology, Wageningen Bioveterinary Research, 8221 RA Lelystad, The Netherlands; (M.T.); (L.v.K.); (J.K.); (S.v.d.W.); (Y.L.); (J.K.)
- Correspondence:
| | - Mirriam Tacken
- Department of Virology, Wageningen Bioveterinary Research, 8221 RA Lelystad, The Netherlands; (M.T.); (L.v.K.); (J.K.); (S.v.d.W.); (Y.L.); (J.K.)
| | - Benjamin Gutjahr
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany; (B.G.); (M.K.); (M.E.); (M.R.); (F.v.A.); (R.K.); (M.H.G.)
| | - Markus Keller
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany; (B.G.); (M.K.); (M.E.); (M.R.); (F.v.A.); (R.K.); (M.H.G.)
| | - Lucien van Keulen
- Department of Virology, Wageningen Bioveterinary Research, 8221 RA Lelystad, The Netherlands; (M.T.); (L.v.K.); (J.K.); (S.v.d.W.); (Y.L.); (J.K.)
| | - Jet Kant
- Department of Virology, Wageningen Bioveterinary Research, 8221 RA Lelystad, The Netherlands; (M.T.); (L.v.K.); (J.K.); (S.v.d.W.); (Y.L.); (J.K.)
| | - Sandra van de Water
- Department of Virology, Wageningen Bioveterinary Research, 8221 RA Lelystad, The Netherlands; (M.T.); (L.v.K.); (J.K.); (S.v.d.W.); (Y.L.); (J.K.)
| | - Yanyin Lin
- Department of Virology, Wageningen Bioveterinary Research, 8221 RA Lelystad, The Netherlands; (M.T.); (L.v.K.); (J.K.); (S.v.d.W.); (Y.L.); (J.K.)
| | - Martin Eiden
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany; (B.G.); (M.K.); (M.E.); (M.R.); (F.v.A.); (R.K.); (M.H.G.)
| | - Melanie Rissmann
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany; (B.G.); (M.K.); (M.E.); (M.R.); (F.v.A.); (R.K.); (M.H.G.)
| | - Felicitas von Arnim
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany; (B.G.); (M.K.); (M.E.); (M.R.); (F.v.A.); (R.K.); (M.H.G.)
| | - Rebecca König
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany; (B.G.); (M.K.); (M.E.); (M.R.); (F.v.A.); (R.K.); (M.H.G.)
| | - Alexander Brix
- Boehringer Ingelheim Veterinary Research Center GmbH & Co. KG, 30559 Hannover, Germany;
| | | | | | - Martin H. Groschup
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany; (B.G.); (M.K.); (M.E.); (M.R.); (F.v.A.); (R.K.); (M.H.G.)
| | - Jeroen Kortekaas
- Department of Virology, Wageningen Bioveterinary Research, 8221 RA Lelystad, The Netherlands; (M.T.); (L.v.K.); (J.K.); (S.v.d.W.); (Y.L.); (J.K.)
- Laboratory of Virology, Wageningen University and Research, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
11
|
Gonzalez-Valdivieso J, Borrego B, Girotti A, Moreno S, Brun A, Bermejo-Martin JF, Arias FJ. A DNA Vaccine Delivery Platform Based on Elastin-Like Recombinamer Nanosystems for Rift Valley Fever Virus. Mol Pharm 2020; 17:1608-1620. [PMID: 32233501 DOI: 10.1021/acs.molpharmaceut.0c00054] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This work analyzes the immunogenicity of six genetically engineered constructs based on elastin-like recombinamers (ELRs) fused to the Gn glycoprotein from Rift Valley fever virus (RVFV). Upon transfection, all constructs showed no effect on cell viability. While fusion constructs including ELR blocks containing hydrophobic amino acids (alanine or isoleucine) did not increase the expression of viral Gn in eukaryotic cells, glutamic acid- or valine-rich fusion proteins showed enhanced expression levels compared with the constructs encoding the viral antigen alone. However, in vivo DNA plasmid immunization assays determined that the more hydrophobic constructs reduced viremia levels after RVFV challenge to a higher extent than glutamic- or valine-rich encoding plasmids and were better inducers of cellular immunity as judged by in vitro restimulation experiments. Although the Gn-ELR fusion constructs did not surpass the protective efficacy of a plasmid vaccine expressing nonfused Gn, our results warrant further experiments directed to take advantage of the immunomodulatory potential of ELR biomaterials for improving vaccines against infectious diseases.
Collapse
Affiliation(s)
- Juan Gonzalez-Valdivieso
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), CIBER-BBN, University of Valladolid, Paseo de Belén 19, 47011, Valladolid, Spain
| | - Belen Borrego
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Centro de Investigación en Sanidad Animal (CISA), Valdeolmos, 28130 Madrid, Spain
| | - Alessandra Girotti
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), CIBER-BBN, University of Valladolid, Paseo de Belén 19, 47011, Valladolid, Spain
| | - Sandra Moreno
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Centro de Investigación en Sanidad Animal (CISA), Valdeolmos, 28130 Madrid, Spain
| | - Alejandro Brun
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Centro de Investigación en Sanidad Animal (CISA), Valdeolmos, 28130 Madrid, Spain
| | - Jesus F Bermejo-Martin
- Laboratory of Biomedical Research in Sepsis (BioSepsis), Hospital Universitario Río Hortega, Calle Dulzaina, 2, 47012 Valladolid, Spain.,Institute for Biomedical Research of Salamanca (IBSAL), Paseo de San Vicente, 58-182, 37007 Salamanca, Spain
| | - F Javier Arias
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), CIBER-BBN, University of Valladolid, Paseo de Belén 19, 47011, Valladolid, Spain
| |
Collapse
|
12
|
Harmon JR, Barbeau DJ, Nichol ST, Spiropoulou CF, McElroy AK. Rift Valley fever virus vaccination induces long-lived, antigen-specific human T cell responses. NPJ Vaccines 2020; 5:17. [PMID: 32140261 PMCID: PMC7048758 DOI: 10.1038/s41541-020-0166-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 01/27/2020] [Indexed: 02/07/2023] Open
Abstract
Rift Valley fever virus (RVFV) is a zoonotic arbovirus of clinical significance in both livestock and humans. A formalin-inactivated virus preparation was initially developed for human use and tested in laboratory workers in the 1960s. Vaccination resulted in generation of neutralizing antibody titers in most recipients, but neutralization titers waned over time, necessitating frequent booster doses. In this study, T cell-based immune responses to the formalin-inactivated vaccine were examined in a cohort of seven individuals who received between 1 and 6 doses of the vaccine. RVFV-specific T cell responses were detectable up to 24 years post vaccination. Peripheral blood mononuclear cells from this cohort of individuals were used to map out the viral epitopes targeted by T cells in humans. These data provide tools for assessing human RVFV-specific T cell responses and are thus a valuable resource for future human RVFV vaccine efforts.
Collapse
Affiliation(s)
- Jessica R Harmon
- US Centers for Disease Control and Prevention, Viral Special Pathogens Branch, 1600 Clifton Rd, Atlanta, GA 30333 United States
| | - Dominique J Barbeau
- 2University of Pittsburgh, Division of Pediatric Infectious Disease, 3501 Fifth Ave, Pittsburgh, PA 15261 United States
| | - Stuart T Nichol
- US Centers for Disease Control and Prevention, Viral Special Pathogens Branch, 1600 Clifton Rd, Atlanta, GA 30333 United States
| | - Christina F Spiropoulou
- US Centers for Disease Control and Prevention, Viral Special Pathogens Branch, 1600 Clifton Rd, Atlanta, GA 30333 United States
| | - Anita K McElroy
- US Centers for Disease Control and Prevention, Viral Special Pathogens Branch, 1600 Clifton Rd, Atlanta, GA 30333 United States.,2University of Pittsburgh, Division of Pediatric Infectious Disease, 3501 Fifth Ave, Pittsburgh, PA 15261 United States
| |
Collapse
|
13
|
Genetically Modified Rabies Virus Vector-Based Rift Valley Fever Virus Vaccine is Safe and Induces Efficacious Immune Responses in Mice. Viruses 2019; 11:v11100919. [PMID: 31597372 PMCID: PMC6832564 DOI: 10.3390/v11100919] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 09/29/2019] [Accepted: 09/30/2019] [Indexed: 12/17/2022] Open
Abstract
Rift Valley fever virus (RVFV), which causes Rift Valley fever (RVF), is a mosquito-borne zoonotic pathogen that causes serious morbidity and mortality in livestock and humans. RVF is a World Health Organization (WHO) priority disease and, together with rabies, is a major health burden in Africa. Here, we present the development and characterization of an inactivated recombinant RVFV and rabies virus (RABV) vaccine candidate (rSRV9-eGn). Immunization with rSRV9-eGn stimulated the production of RVFV-specific IgG antibodies and induced humoral and cellular immunity in mice but did not induce the production of neutralizing antibodies. IgG1 and IgG2a were the main isotypes observed by IgG subtype detection, and IgG3 antibodies were not detected. The ratios of IgG1/IgG2a > 1 indicated a Type 2 humoral immune response. An effective vaccine is intended to establish a long-lived population of memory T cells, and mice generated memory cells among the proliferating T cell population after immunization with rSRV9-eGn, with effector memory T cells (TEM) as the major population. Due to the lack of prophylactic treatment experiments, it is impossible to predict whether this vaccine can protect animals from RVFV infection with only high titres of anti-RVFV IgG antibodies and no neutralizing antibodies induced, and thus, protection confirmation needs further verification. However, this RVFV vaccine designed with RABV as the vector provides ideas for the development of vaccines that prevent RVFV and RABV infections.
Collapse
|
14
|
Chrun T, Lacôte S, Urien C, Richard CA, Tenbusch M, Aubrey N, Pulido C, Lakhdar L, Marianneau P, Schwartz-Cornil I. A DNA Vaccine Encoding the Gn Ectodomain of Rift Valley Fever Virus Protects Mice via a Humoral Response Decreased by DEC205 Targeting. Front Immunol 2019; 10:860. [PMID: 31105695 PMCID: PMC6494931 DOI: 10.3389/fimmu.2019.00860] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 04/03/2019] [Indexed: 12/13/2022] Open
Abstract
The Rift Valley fever virus (RVFV) is responsible for a serious mosquito-borne viral disease in humans and ruminants. The development of a new and safer vaccine is urgently needed due to the risk of introduction of this arbovirus into RVFV-free continents. We recently showed that a DNA vaccine encoding eGn, the ectodomain of the RVFV Gn glycoprotein, conferred a substantial protection in the sheep natural host and that the anti-eGn IgG levels correlated to protection. Addressing eGn to DEC205 reduced the protective efficacy while decreasing the antibody and increasing the IFNγ T cell responses in sheep. In order to get further insight into the involved mechanisms, we evaluated our eGn-encoding DNA vaccine strategy in the reference mouse species. A DNA vaccine encoding eGn induced full clinical protection in mice and the passive transfer of immune serum was protective. This further supports that antibodies, although non-neutralizing in vitro, are instrumental in the protection against RVFV. Addressing eGn to DEC205 was also detrimental to protection in mice, and in this species, both the antibody and the IFNγ T cell responses were strongly decreased. Conversely when using a plasmid encoding a different antigen, i.e., mCherry, DEC205 targeting promoted the antibody response. Altogether our results show that the outcome of targeting antigens to DEC205 depends on the species and on the fused antigen and is not favorable in the case of eGn. In addition, we bring evidences that eGn in itself is a pertinent antigen to be included in a DNA vaccine and that next developments should aim at promoting the anti-eGn antibody response.
Collapse
Affiliation(s)
- Tiphany Chrun
- VIM-INRA-Université Paris-Saclay, Jouy-en-Josas, France.,ANSES-Laboratoire de Lyon, Unité Virologie, Lyon, France
| | - Sandra Lacôte
- ANSES-Laboratoire de Lyon, Unité Virologie, Lyon, France
| | - Céline Urien
- VIM-INRA-Université Paris-Saclay, Jouy-en-Josas, France
| | | | - Matthias Tenbusch
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Medical Immunology Campus Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Nicolas Aubrey
- ISP, INRA, Université de Tours, UMR 1282 Team BioMAP, Nouzilly, France
| | - Coralie Pulido
- ANSES-Laboratoire de Lyon, Plateforme d'Expérimentation Animale, Lyon, France
| | - Latifa Lakhdar
- ANSES-Laboratoire de Lyon, Plateforme d'Expérimentation Animale, Lyon, France
| | | | | |
Collapse
|
15
|
A Rift Valley fever virus Gn ectodomain-based DNA vaccine induces a partial protection not improved by APC targeting. NPJ Vaccines 2018; 3:14. [PMID: 29707242 PMCID: PMC5910381 DOI: 10.1038/s41541-018-0052-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 02/26/2018] [Accepted: 03/28/2018] [Indexed: 01/20/2023] Open
Abstract
Rift Valley fever virus, a phlebovirus endemic in Africa, causes serious diseases in ruminants and humans. Due to the high probability of new outbreaks and spread to other continents where competent vectors are present, vaccine development is an urgent priority as no licensed vaccines are available outside areas of endemicity. In this study, we evaluated in sheep the protective immunity induced by DNA vaccines encoding the extracellular portion of the Gn antigen which was either or not targeted to antigen-presenting cells. The DNA encoding untargeted antigen was the most potent at inducing IgG responses, although not neutralizing, and conferred a significant clinical and virological protection upon infectious challenge, superior to DNA vaccines encoding the targeted antigen. A statistical analysis of the challenge parameters supported that the anti-eGn IgG, rather than the T-cell response, was instrumental in protection. Altogether, this work shows that a DNA vaccine encoding the extracellular portion of the Gn antigen confers substantial—although incomplete—protective immunity in sheep, a natural host with high preclinical relevance, and provides some insights into key immune correlates useful for further vaccine improvements against the Rift Valley fever virus. A vaccine made from the genome of Rift Valley fever virus (RVFV) offers partial protection, but pieces of the puzzle are missing, say scientists. French and Spanish researchers, led by the French National Institute for Agricultural Research’s Isabelle Schwartz-Cornil, tested in sheep three slightly-differing vaccine candidates using RVFV genes. Such DNA vaccines are designed to generate proteins which a host’s immune system can use to arm itself against a genuine viral infection. Two of the candidates, designed to target cells that would present the viral proteins to the host’s immune system, provided some benefit to the vaccinated sheep. However, the third untargeted candidate, was the most efficient at protecting sheep, although not completely, and at boosting antibody levels despite not neutralizing the virus. These results provide hope for DNA vaccines against RVFV, and offer direction for future research effort.
Collapse
|
16
|
Abstract
Vaccination is essential in livestock farming and in companion animal ownership. Nucleic acid vaccines based on DNA or RNA provide an elegant alternative to those classical veterinary vaccines that have performed suboptimally. Recent advances in terms of rational design, safety, and efficacy have strengthened the position of nucleic acid vaccines in veterinary vaccinology. The present review focuses on replicon vaccines designed for veterinary use. Replicon vaccines are self-amplifying viral RNA sequences that, in addition to the sequence encoding the antigen of interest, contain all elements necessary for RNA replication. Vaccination results in high levels of in situ antigen expression and induction of potent immune responses. Both positive- and negative-stranded viruses have been used to construct replicons, and they can be delivered as RNA, DNA, or viral replicon particles. An introduction to the biology and the construction of different viral replicon vectors is given, and examples of veterinary replicon vaccine applications are discussed.
Collapse
Affiliation(s)
- Mia C Hikke
- Laboratory of Virology, Wageningen University, 6708 PB Wageningen, The Netherlands;
| | - Gorben P Pijlman
- Laboratory of Virology, Wageningen University, 6708 PB Wageningen, The Netherlands;
| |
Collapse
|
17
|
Protective effects of a Modified Vaccinia Ankara-based vaccine candidate against Crimean-Congo Haemorrhagic Fever virus require both cellular and humoral responses. PLoS One 2016; 11:e0156637. [PMID: 27272940 PMCID: PMC4896484 DOI: 10.1371/journal.pone.0156637] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 05/17/2016] [Indexed: 01/26/2023] Open
Abstract
Crimean-Congo Haemorrhagic Fever (CCHF) is a severe tick-borne disease, endemic in many countries in Africa, the Middle East, Eastern Europe and Asia. There is no approved vaccine currently available against CCHF. The most promising candidate, which has previously been shown to confer protection in the small animal model, is a modified Vaccinia Ankara virus vector expressing the CCHF viral glycoprotein (MVA-GP). It has been shown that MVA-GP induces both humoral and cellular immunogenicity. In the present study, sera and T-lymphocytes were passively and adoptively transferred into recipient mice prior to challenge with CCHF virus. Results demonstrated that mediators from both arms of the immune system were required to demonstrate protective effects against lethal challenge.
Collapse
|
18
|
Wiley CA, Bhardwaj N, Ross TM, Bissel SJ. Emerging Infections of CNS: Avian Influenza A Virus, Rift Valley Fever Virus and Human Parechovirus. Brain Pathol 2015; 25:634-50. [PMID: 26276027 PMCID: PMC4538697 DOI: 10.1111/bpa.12281] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 06/22/2015] [Indexed: 11/28/2022] Open
Abstract
History is replete with emergent pandemic infections that have decimated the human population. Given the shear mass of humans that now crowd the earth, there is every reason to suspect history will repeat itself. We describe three RNA viruses that have recently emerged in the human population to mediate severe neurological disease. These new diseases are results of new mutations in the infectious agents or new exposure pathways to the agents or both. To appreciate their pathogenesis, we summarize the essential virology and immune response to each agent. Infection is described in the context of known host defenses. Once the viruses evade immune defenses and enter central nervous system (CNS) cells, they rapidly co-opt host RNA processing to a cataclysmic extent. It is not clear why the brain is particularly susceptible to RNA viruses; but perhaps because of its tremendous dependence on RNA processing for physiological functioning, classical mechanisms of host defense (eg, interferon disruption of viral replication) are diminished or not available. Effectiveness of immunity, immunization and pharmacological therapies is reviewed to contextualize the scope of the public health challenge. Unfortunately, vaccines that confer protection from systemic disease do not necessarily confer protection for the brain after exposure through unconventional routes.
Collapse
Affiliation(s)
| | - Nitin Bhardwaj
- Department of Infectious Diseases and MicrobiologyUniversity of PittsburghPittsburghPA
- Present address:
Sanofi Pasteur1755 Steeles Avenue WestTorontoOntarioCanadaM2R 3T4
| | - Ted M. Ross
- Center for Vaccine DevelopmentUniversity of GeorgiaAthensGA
- Department of Infectious DiseasesUniversity of GeorgiaAthensGA
| | | |
Collapse
|
19
|
Mansfield KL, Banyard AC, McElhinney L, Johnson N, Horton DL, Hernández-Triana LM, Fooks AR. Rift Valley fever virus: A review of diagnosis and vaccination, and implications for emergence in Europe. Vaccine 2015; 33:5520-5531. [PMID: 26296499 DOI: 10.1016/j.vaccine.2015.08.020] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 06/12/2015] [Accepted: 08/05/2015] [Indexed: 12/14/2022]
Abstract
Rift Valley fever virus (RVFV) is a mosquito-borne virus, and is the causative agent of Rift Valley fever (RVF), a zoonotic disease characterised by an increased incidence of abortion or foetal malformation in ruminants. Infection in humans can also lead to clinical manifestations that in severe cases cause encephalitis or haemorrhagic fever. The virus is endemic throughout much of the African continent. However, the emergence of RVFV in the Middle East, northern Egypt and the Comoros Archipelago has highlighted that the geographical range of RVFV may be increasing, and has led to the concern that an incursion into Europe may occur. At present, there is a limited range of veterinary vaccines available for use in endemic areas, and there is no licensed human vaccine. In this review, the methods available for diagnosis of RVFV infection, the current status of vaccine development and possible implications for RVFV emergence in Europe, are discussed.
Collapse
Affiliation(s)
- Karen L Mansfield
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency, Woodham Lane, New Haw KT15 3NB, UK.
| | - Ashley C Banyard
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency, Woodham Lane, New Haw KT15 3NB, UK
| | - Lorraine McElhinney
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency, Woodham Lane, New Haw KT15 3NB, UK; NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool L69 7BE, UK
| | - Nicholas Johnson
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency, Woodham Lane, New Haw KT15 3NB, UK
| | - Daniel L Horton
- School of Veterinary Medicine, University of Surrey, Guildford GU2 7XH, UK
| | - Luis M Hernández-Triana
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency, Woodham Lane, New Haw KT15 3NB, UK
| | - Anthony R Fooks
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency, Woodham Lane, New Haw KT15 3NB, UK; NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool L69 7BE, UK; Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool L69 7BE, UK
| |
Collapse
|
20
|
Abstract
Inactivated and attenuated vaccines have contributed to the control or even the eradication of significant animal pathogens. However, these traditional vaccine technologies have limitations and disadvantages. Inactivated vaccines lack efficacy against certain pathogens, while attenuated vaccines are not always as safe. New technology vaccines, namely DNA and recombinant viral vector vaccines, are being developed and tested against pathogens of small ruminants. These vaccines induce both humoral and cellular immune responses, are safe to manufacture and use and can be utilized in strategies for differentiation of infected from vaccinated animals. Although there are more strict regulatory requirements for the safety standards of these vaccines, once a vaccine platform is evaluated and established, effective vaccines can be rapidly produced and deployed in the field to prevent spread of emerging pathogens. The present article offers an introduction to these next generation technologies and examples of vaccines that have been tested against important diseases of sheep and goats.
Collapse
Affiliation(s)
- C S Kyriakis
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.
| |
Collapse
|
21
|
Terasaki K, Tercero BR, Makino S. Single-cycle replicable Rift Valley fever virus mutants as safe vaccine candidates. Virus Res 2015; 216:55-65. [PMID: 26022573 DOI: 10.1016/j.virusres.2015.05.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 05/05/2015] [Accepted: 05/06/2015] [Indexed: 10/23/2022]
Abstract
Rift Valley fever virus (RVFV) is an arbovirus circulating between ruminants and mosquitoes to maintain its enzootic cycle. Humans are infected with RVFV through mosquito bites or direct contact with materials of infected animals. The virus causes Rift Valley fever (RVF), which was first recognized in the Great Rift Valley of Kenya in 1931. RVF is characterized by a febrile illness resulting in a high rate of abortions in ruminants and an acute febrile illness, followed by fatal hemorrhagic fever and encephalitis in humans. Initially, the virus was restricted to the eastern region of Africa, but the disease has now spread to southern and western Africa, as well as outside of the African continent, e.g., Madagascar, Saudi Arabia and Yemen. There is a serious concern that the virus may spread to other areas, such as North America and Europe. As vaccination is an effective tool to control RVFV epidemics, formalin-inactivated vaccines and live-attenuated RVFV vaccines have been used in endemic areas. The formalin-inactivated vaccines require boosters for effective protection, whereas the live-attenuated vaccines enable the induction of protective immunity by a single vaccination. However, the use of live-attenuated RVFV vaccines for large human populations having a varied health status is of concern, because of these vaccines' residual neuro-invasiveness and neurovirulence. Recently, novel vaccine candidates have been developed using replication-defective RVFV that can undergo only a single round of replication in infected cells. The single-cycle replicable RVFV does not cause systemic infection in immunized hosts, but enables the conferring of protective immunity. This review summarizes the properties of various RVFV vaccines and recent progress on the development of the single-cycle replicable RVFV vaccines.
Collapse
Affiliation(s)
- Kaori Terasaki
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555-1019, USA.
| | - Breanna R Tercero
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555-1019, USA
| | - Shinji Makino
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555-1019, USA; Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch, Galveston, TX 77555-1019, USA; UTMB Center for Tropical Diseases, The University of Texas Medical Branch, Galveston, TX 77555-1019, USA; Sealy Center for Vaccine Development, The University of Texas Medical Branch, Galveston, TX 77555-1019, USA; Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, TX 77555-1019, USA
| |
Collapse
|
22
|
Lorenzo G, López-Gil E, Warimwe GM, Brun A. Understanding Rift Valley fever: contributions of animal models to disease characterization and control. Mol Immunol 2015; 66:78-88. [PMID: 25725948 DOI: 10.1016/j.molimm.2015.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 12/26/2014] [Accepted: 02/03/2015] [Indexed: 11/30/2022]
Abstract
Rift Valley fever (RVF) is a mosquito-borne viral zoonosis with devastating health impacts in domestic ruminants and humans. Effective vaccines and accurate disease diagnostic tools are key components in the control of RVF. Animal models reproducing infection with RVF virus are of upmost importance in the development of these disease control tools. Rodent infection models are currently used in the initial steps of vaccine development and for the study of virus induced pathology. Translation of data obtained in these animal models to target species (ruminants and humans) is highly desirable but does not always occur. Small ruminants and non-human primates have been used for pathogenesis and transmission studies, and for testing the efficacy of vaccines and therapeutic antiviral compounds. However, the molecular mechanisms of the immune response elicited by RVF virus infection or vaccination are still poorly understood. The paucity of data in this area offers opportunities for new research activities and programs. This review summarizes our current understanding with respect to immunity and pathogenesis of RVF in animal models with a particular emphasis on small ruminants and non-human primates, including recent experimental infection data in sheep.
Collapse
Affiliation(s)
- Gema Lorenzo
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación Agraria y Alimentaria (INIA-CISA), Valdeolmos, Madrid, Spain
| | - Elena López-Gil
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación Agraria y Alimentaria (INIA-CISA), Valdeolmos, Madrid, Spain
| | - George M Warimwe
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Alejandro Brun
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación Agraria y Alimentaria (INIA-CISA), Valdeolmos, Madrid, Spain.
| |
Collapse
|
23
|
Carter DM, Bloom CE, Kirchenbaum GA, Tsvetnitsky V, Isakova-Sivak I, Rudenko L, Ross TM. Cross-protection against H7N9 influenza strains using a live-attenuated H7N3 virus vaccine. Vaccine 2015; 33:108-16. [PMID: 25448100 DOI: 10.1016/j.vaccine.2014.11.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 10/18/2014] [Accepted: 11/06/2014] [Indexed: 01/25/2023]
Abstract
In 2013, avian H7N9 influenza viruses were detected infecting people in China resulting in high mortality. Influenza H7 vaccines that provide cross-protection against these new viruses are needed until specific H7N9 vaccines are ready to market. In this study, an available H7N3 cold-adapted, temperature sensitive, live attenuated influenza vaccine (LAIV) elicited protective immune responses in ferrets against H7N9 viruses. The H7N3 LAIV administered alone (by intranasal or subcutaneous administration) or in a prime-boost strategy using inactivated H7N9 virus resulted in high HAI titers and protected 100% of the animals against H7N9 challenge. Naïve ferrets passively administered immune serum from H7N3 LAIV infected animals were also protected. In contrast, recombinant HA protein or inactivated viruses did not protect ferrets against challenge and elicited lower antibody titers. Thus, the H7N3 LAIV vaccine was immunogenic in healthy seronegative ferrets and protected these ferrets against the newly emerged H7N9 avian influenza virus.
Collapse
Affiliation(s)
- Donald M Carter
- Vaccine and Gene Therapy Institute of Florida, Port St. Lucie, FL, USA
| | - Chalise E Bloom
- Vaccine and Gene Therapy Institute of Florida, Port St. Lucie, FL, USA
| | | | | | - Irina Isakova-Sivak
- Department of Virology, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Larisa Rudenko
- Department of Virology, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Ted M Ross
- Vaccine and Gene Therapy Institute of Florida, Port St. Lucie, FL, USA.
| |
Collapse
|
24
|
Abstract
Recombinant nucleic acids are considered as promising next-generation vaccines. These vaccines express the native antigen upon delivery into tissue, thus mimicking live attenuated vaccines without having the risk of reversion to pathogenicity. They also stimulate the innate immune system, thus potentiating responses. Nucleic acid vaccines are easy to produce at reasonable cost and are stable. During the past years, focus has been on the use of plasmid DNA for vaccination. Now mRNA and replicon vaccines have come into focus as promising technology platforms for vaccine development. This review discusses self-replicating RNA vaccines developed from alphavirus expression vectors. These replicon vaccines can be delivered as RNA, DNA or as recombinant virus particles. All three platforms have been pre-clinically evaluated as vaccines against a number of infectious diseases and cancer. Results have been very encouraging and propelled the first human clinical trials, the results of which have been promising.
Collapse
Affiliation(s)
- Karl Ljungberg
- Department of Microbiology, Tumor and Cell Biology Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
25
|
Pompa-Mera EN, Arroyo-Matus P, Ocaña-Mondragón A, González-Bonilla CR, Yépez-Mulia L. Protective immunity against enteral stages of Trichinella spiralis elicited in mice by live attenuated Salmonella vaccine that secretes a 30-mer parasite epitope fused to the molecular adjuvant C3d-P28. Res Vet Sci 2014; 97:533-45. [PMID: 25311159 DOI: 10.1016/j.rvsc.2014.09.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 09/11/2014] [Accepted: 09/15/2014] [Indexed: 12/29/2022]
Abstract
The development of a veterinary vaccine against T. spiralis infection is an alternative strategy to control trichinellosis. In an effort to develop an efficient vaccine, BALB/c mice were immunized with attenuated Salmonella enterica serovar Typhimurium SL3261 that expresses a 30-mer peptide (Ag30) derived from the gp43 of T. spiralis muscle larvae fused to three copies of the molecular adjuvant P28 (Ag30-P283) and it was either displayed on the surface or secreted by recombinant Salmonella strains. Salmonella strain secreting Ag30-P283, reduced the adult worm burden 92.8% following challenge with T. spiralis muscle larvae compared to 42% achieved by recombinant Salmonella displaying Ag30-P283 on the surface. The protection induced by secreted Ag30-P283 was associated with a mixed Th1/Th2 with predominance of Th2 phenotype, which was characterized by the production of IgG1, intestinal IgA antibodies and IL-5 secretion. This finding could provide an efficient platform technology for the design of novel vaccination strategies.
Collapse
Affiliation(s)
- Ericka N Pompa-Mera
- Unidad de Investigación en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, Mexico City, Mexico; Unidad de Investigación Médica en Inmunología e Infectología, Hospital de Infectología, Centro Médico Nacional La Raza, IMSS, Mexico City, Mexico; Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Pablo Arroyo-Matus
- Unidad de Investigación en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, Mexico City, Mexico
| | - Alicia Ocaña-Mondragón
- Unidad de Investigación Médica en Inmunología e Infectología, Hospital de Infectología, Centro Médico Nacional La Raza, IMSS, Mexico City, Mexico
| | | | - Lilián Yépez-Mulia
- Unidad de Investigación en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, Mexico City, Mexico.
| |
Collapse
|
26
|
Abstract
RNA-based approaches have provided novel alternatives for modern drug discovery. The application of RNA as therapeutic agents has, until recently, been hampered by issues related to poor delivery and stability, but chemical modifications and new delivery approaches have increased progress. Moreover, the discovery of the importance of RNA in gene regulation and gene silencing has revealed new drug targets, especially related to treatment of cancer and other diseases. Recent engineering of small molecules designed from RNA sequences to target miRNAs opens up new possibilities in drug development. Furthermore, RNA-based vaccines have been engineered applying RNA virus vectors and non-viral delivery for vaccine development.
Collapse
|
27
|
Alphavirus-based vaccines. Viruses 2014; 6:2392-415. [PMID: 24937089 PMCID: PMC4074933 DOI: 10.3390/v6062392] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/03/2014] [Accepted: 06/04/2014] [Indexed: 12/18/2022] Open
Abstract
Alphavirus vectors have demonstrated high levels of transient heterologous gene expression both in vitro and in vivo and, therefore, possess attractive features for vaccine development. The most commonly used delivery vectors are based on three single-stranded encapsulated alphaviruses, namely Semliki Forest virus, Sindbis virus and Venezuelan equine encephalitis virus. Alphavirus vectors have been applied as replication-deficient recombinant viral particles and, more recently, as replication-proficient particles. Moreover, in vitro transcribed RNA, as well as layered DNA vectors have been applied for immunization. A large number of highly immunogenic viral structural proteins expressed from alphavirus vectors have elicited strong neutralizing antibody responses in multispecies animal models. Furthermore, immunization studies have demonstrated robust protection against challenges with lethal doses of virus in rodents and primates. Similarly, vaccination with alphavirus vectors expressing tumor antigens resulted in prophylactic protection against challenges with tumor-inducing cancerous cells. As certain alphaviruses, such as Chikungunya virus, have been associated with epidemics in animals and humans, attention has also been paid to the development of vaccines against alphaviruses themselves. Recent progress in alphavirus vector development and vaccine technology has allowed conducting clinical trials in humans.
Collapse
|
28
|
Kortekaas J. One Health approach to Rift Valley fever vaccine development. Antiviral Res 2014; 106:24-32. [DOI: 10.1016/j.antiviral.2014.03.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/10/2014] [Accepted: 03/15/2014] [Indexed: 10/25/2022]
|
29
|
Murakami S, Terasaki K, Ramirez SI, Morrill JC, Makino S. Development of a novel, single-cycle replicable rift valley Fever vaccine. PLoS Negl Trop Dis 2014; 8:e2746. [PMID: 24651859 PMCID: PMC3961198 DOI: 10.1371/journal.pntd.0002746] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 01/30/2014] [Indexed: 12/25/2022] Open
Abstract
Rift Valley fever virus (RVFV) (genus Phlebovirus, family Bunyaviridae) is an arbovirus that causes severe disease in humans and livestock in sub-Saharan African countries. Although the MP-12 strain of RVFV is a live attenuated vaccine candidate, neuroinvasiveness and neurovirulence of MP-12 in mice may be a concern when vaccinating certain individuals, especially those that are immunocompromised. We have developed a novel, single-cycle replicable MP-12 (scMP-12), which carries an L RNA, M RNA mutant encoding a mutant envelope protein lacking an endoplasmic reticulum retrieval signal and defective for membrane fusion function, and S RNA encoding N protein and green fluorescent protein. The scMP-12 underwent efficient amplification, then formed plaques and retained the introduced mutation after serial passages in a cell line stably expressing viral envelope proteins. However, inoculation of the scMP-12 into naïve cells resulted in a single round of viral replication, and production of low levels of noninfectious virus-like particles. Intracranial inoculation of scMP-12 into suckling mice did not cause clinical signs or death, a finding which demonstrated that the scMP-12 lacked neurovirulence. Mice immunized with a single dose of scMP-12 produced neutralizing antibodies, whose titers were higher than in mice immunized with replicon particles carrying L RNA and S RNA encoding N protein and green fluorescent protein. Moreover, 90% of the scMP-12-immunized mice were protected from wild-type RVFV challenge by efficiently suppressing viremia and replication of the challenge virus in the liver and the spleen. These data demonstrated that scMP-12 is a safe and immunogenic RVFV vaccine candidate.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/blood
- Antibodies, Viral/blood
- Disease Models, Animal
- Female
- Mice
- Mutant Proteins/genetics
- Mutant Proteins/metabolism
- Rift Valley Fever/prevention & control
- Rift Valley fever virus/genetics
- Rift Valley fever virus/immunology
- Rift Valley fever virus/physiology
- Survival Analysis
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/adverse effects
- Vaccines, Attenuated/genetics
- Vaccines, Attenuated/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/adverse effects
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Viral Proteins/genetics
- Viral Proteins/immunology
- Viral Vaccines/administration & dosage
- Viral Vaccines/adverse effects
- Viral Vaccines/genetics
- Viral Vaccines/immunology
- Virus Internalization
- Virus Replication
Collapse
Affiliation(s)
- Shin Murakami
- Department of Microbiology and Immunology, the University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Kaori Terasaki
- Department of Microbiology and Immunology, the University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Sydney I. Ramirez
- Department of Pathology, the University of Texas Medical Branch, Galveston, Texas, United States of America
| | - John C. Morrill
- Department of Microbiology and Immunology, the University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Shinji Makino
- Department of Microbiology and Immunology, the University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Biodefense and Emerging Infectious Diseases, the University of Texas Medical Branch, Galveston, Texas, United States of America
- UTMB Center for Tropical Diseases, the University of Texas Medical Branch, Galveston, Texas, United States of America
- Sealy Center for Vaccine Development, the University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
30
|
Oreshkova N, van Keulen L, Kant J, Moormann RJM, Kortekaas J. A single vaccination with an improved nonspreading Rift Valley fever virus vaccine provides sterile immunity in lambs. PLoS One 2013; 8:e77461. [PMID: 24167574 PMCID: PMC3805595 DOI: 10.1371/journal.pone.0077461] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 09/10/2013] [Indexed: 01/07/2023] Open
Abstract
Rift Valley fever virus (RVFV) is an important pathogen that affects ruminants and humans. Recently we developed a vaccine based on nonspreading RVFV (NSR) and showed that a single vaccination with this vaccine protects lambs from viremia and clinical signs. However, low levels of viral RNA were detected in the blood of vaccinated lambs shortly after challenge infection. These low levels of virus, when present in a pregnant ewe, could potentially infect the highly susceptible fetus. We therefore aimed to further improve the efficacy of the NSR vaccine. Here we report the expression of Gn, the major immunogenic protein of the virus, from the NSR genome. The resulting NSR-Gn vaccine was shown to elicit superior CD8 and CD4-restricted memory responses and improved virus neutralization titers in mice. A dose titration study in lambs revealed that the highest vaccination dose of 10(6.3) TCID50/ml protected all lambs from clinical signs and viremia. The lambs developed neutralizing antibodies within three weeks after vaccination and no anamnestic responses were observed following challenge. The combined results suggest that sterile immunity was achieved by a single vaccination with the NSR-Gn vaccine.
Collapse
Affiliation(s)
- Nadia Oreshkova
- Department of Virology, Central Veterinary Institute, part of Wageningen University and Research Centre, Lelystad, The Netherlands
- Department of Infectious Diseases and Immunology, Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Lucien van Keulen
- Department of Virology, Central Veterinary Institute, part of Wageningen University and Research Centre, Lelystad, The Netherlands
| | - Jet Kant
- Department of Virology, Central Veterinary Institute, part of Wageningen University and Research Centre, Lelystad, The Netherlands
| | - Rob J. M. Moormann
- Department of Virology, Central Veterinary Institute, part of Wageningen University and Research Centre, Lelystad, The Netherlands
- Department of Infectious Diseases and Immunology, Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Jeroen Kortekaas
- Department of Virology, Central Veterinary Institute, part of Wageningen University and Research Centre, Lelystad, The Netherlands
- * E-mail:
| |
Collapse
|
31
|
A single immunization with MVA expressing GnGc glycoproteins promotes epitope-specific CD8+-T cell activation and protects immune-competent mice against a lethal RVFV infection. PLoS Negl Trop Dis 2013; 7:e2309. [PMID: 23875044 PMCID: PMC3708870 DOI: 10.1371/journal.pntd.0002309] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 05/30/2013] [Indexed: 11/22/2022] Open
Abstract
Background Rift Valley fever virus (RVFV) is a mosquito-borne pathogen causing an important disease in ruminants often transmitted to humans after epizootic outbreaks in African and Arabian countries. To help combat the spread of the disease, prophylactic measures need to be developed and/or improved. Methodology/Principal Findings In this work, we evaluated the immunogenicity and protective efficacy of recombinant plasmid DNA and modified vaccinia virus Ankara (rMVA) vectored vaccines against Rift Valley fever in mice. These recombinant vaccines encoded either of two components of the Rift Valley fever virus: the viral glycoproteins (Gn/Gc) or the nucleoprotein (N). Following lethal challenge with live RVFV, mice immunized with a single dose of the rMVA-Gn/Gc vaccine showed no viraemia or clinical manifestation of disease, but mounted RVFV neutralizing antibodies and glycoprotein specific CD8+ T-cell responses. Neither DNA-Gn/Gc alone nor a heterologous prime-boost immunization schedule (DNA-Gn/Gc followed by rMVAGn/Gc) was better than the single rMVA-Gn/Gc immunization schedule with regards to protective efficacy. However, the rMVA-Gn/Gc vaccine failed to protect IFNAR−/− mice upon lethal RVFV challenge suggesting a role for innate responses in protection against RVFV. Despite induction of high titer antibodies against the RVFV nucleoprotein, the rMVA-N vaccine, whether in homologous or heterologous prime-boost schedules with the corresponding recombinant DNA vaccine, only conferred partial protection to RVFV challenge. Conclusions/Significance Given the excellent safety profile of rMVA based vaccines in humans and animals, our data supports further development of rMVA-Gn/Gc as a vaccine strategy that can be used for the prevention of Rift Valley fever in both humans and livestock. Rift Valley fever (RVF) is an important disease of ruminants that affects most African and Arabian Peninsula countries where domestic livestock is the basis for subsistence in rural areas. The disease is caused by a bunyavirus that can be transmitted by close contact with infected animals or through the bite of infected mosquitoes thus facilitating the spread of the virus. Safer and practical methods to control virus spread are demanded in order to prevent both human and animal disease after disease outbreaks. The efficacy of a recombinant modified poxvirus vector (the vaccinia modified Ankara virus (rMVA)) and/or DNA-based vaccines in a mouse infection model has been investigated. A single immunization with a rMVA encoding the virus envelope glycoproteins provided sufficient immunity to protect mice against a lethal dose of RVFV. The immune mechanisms underlying the protection were also investigated. A number of specific immune CD8+-T cells could be activated in the presence of at least three different glycoprotein epitopes. On the other hand, the protective effect of the vaccine was found only in immune competent mice since in mice lacking IFN-type-I responses the vaccine was not efficient.
Collapse
|
32
|
Falzarano D, Feldmann H. Vaccines for viral hemorrhagic fevers--progress and shortcomings. Curr Opin Virol 2013; 3:343-51. [PMID: 23773330 PMCID: PMC3743920 DOI: 10.1016/j.coviro.2013.04.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 04/22/2013] [Indexed: 11/29/2022]
Abstract
With a few exceptions, vaccines for viruses that cause hemorrhagic fever remain unavailable or lack well-documented efficacy. In the past decade this has not been due to a lack of the ability to develop vaccine platforms against highly pathogenic viruses, but rather the lack of will/interest to invest in platforms that have the potential to become successful vaccines. The two exceptions to this are vaccines against Dengue virus (DENV) and Rift Valley fever virus (RVFV), which recently have seen significant progress in putting forward new and improved vaccines, respectively. Experimental vaccines for filoviruses and Lassa virus (LASV) do exist but are hindered by a lack of financial interest and only partially or ill-defined correlates/mechanisms of protection that could be assessed in clinical trials.
Collapse
Affiliation(s)
- Darryl Falzarano
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | | |
Collapse
|
33
|
Rift Valley fever virus clearance and protection from neurologic disease are dependent on CD4+ T cell and virus-specific antibody responses. J Virol 2013; 87:6161-71. [PMID: 23536675 DOI: 10.1128/jvi.00337-13] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rift Valley fever virus (RVFV) causes outbreaks of severe disease in people and livestock throughout Africa and the Arabian Peninsula. Human RVFV infections generally manifest as a self-limiting febrile illness, but in some individuals, the disease can progress to a fatal encephalitis or hemorrhagic syndrome. Little is known about the host characteristics that predispose development of more severe disease. Early in infection, interferon-mediated antiviral responses are critical for controlling RVFV replication, but the roles of downstream adaptive immune responses in determining clinical outcome have not been examined. Here, using a C57BL/6 mouse disease model, we evaluated the roles of B cells and T cells in RVFV pathogenesis. Given the profound inhibition of the innate response by the viral NSs protein and rapid course of wild-type infection, we utilized an attenuated RVFV lacking NSs to examine host responses following primary infection. Experiments utilizing B-cell-deficient mice or targeted T cell depletions of wild-type mice demonstrated that B cells and CD4(+) T cells, but not CD8(+) T cells, were critical for mediating viral clearance, even in the presence of a functional innate response. One-third of CD4-depleted mice developed severe neurologic disease following infection, in contrast to virus-infected mock-depleted mice that showed no clinical signs. CD4(+) T cells were required for robust IgG and neutralizing antibody responses that correlated with RVFV clearance from peripheral tissues. Furthermore, CD4-depleted mice demonstrated significantly stronger proinflammatory responses relative to controls, suggesting CD4(+) T cells regulate immune responses to RVFV infection. Together, these results indicate CD4(+) T cells are critical determinants of RVFV pathogenesis and play an important role in preventing onset of neurologic disease.
Collapse
|
34
|
Indran SV, Ikegami T. Novel approaches to develop Rift Valley fever vaccines. Front Cell Infect Microbiol 2012; 2:131. [PMID: 23112960 PMCID: PMC3481114 DOI: 10.3389/fcimb.2012.00131] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 10/05/2012] [Indexed: 01/26/2023] Open
Abstract
Rift Valley fever (RVF) is endemic to sub-Saharan Africa, and has spread into Madagascar, Egypt, Saudi Arabia, and Yemen. Rift Valley fever virus (RVFV) of the family Bunyaviridae, genus Phlebovirus causes hemorrhagic fever, neurological disorders or blindness in humans, and high rate abortion and fetal malformation in ruminants. RVFV is classified as a Category A Priority pathogen and overlap select agent by CDC/USDA due to its potential impact on public health and agriculture. There is a gap in the safety and immunogenicity in traditional RVF vaccines; the formalin-inactivated RVFV vaccine TSI-GSD-200 requires three doses for protection, and the live-attenuated Smithburn vaccine has a risk to cause abortion and fetal malformation in pregnant ruminants. In this review, problems of traditional vaccines and the safety and efficacy of recently reported novel RVF candidate vaccines including subunit vaccines, virus vector, and replicons are discussed.
Collapse
Affiliation(s)
- Sabarish V Indran
- Department of Pathology, The University of Texas Medical Branch Galveston, TX, USA
| | | |
Collapse
|
35
|
Head JA, Kalveram B, Ikegami T. Functional analysis of Rift Valley fever virus NSs encoding a partial truncation. PLoS One 2012; 7:e45730. [PMID: 23029207 PMCID: PMC3446906 DOI: 10.1371/journal.pone.0045730] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 08/20/2012] [Indexed: 12/13/2022] Open
Abstract
Rift Valley fever virus (RVFV), belongs to genus Phlebovirus of the family Bunyaviridae, causes high rates of abortion and fetal malformation in infected ruminants as well as causing neurological disorders, blindness, or lethal hemorrhagic fever in humans. RVFV is classified as a category A priority pathogen and a select agent in the U.S., and currently there are no therapeutics available for RVF patients. NSs protein, a major virulence factor of RVFV, inhibits host transcription including interferon (IFN)-β mRNA synthesis and promotes degradation of dsRNA-dependent protein kinase (PKR). NSs self-associates at the C-terminus 17 aa., while NSs at aa.210–230 binds to Sin3A-associated protein (SAP30) to inhibit the activation of IFN-β promoter. Thus, we hypothesize that NSs function(s) can be abolished by truncation of specific domains, and co-expression of nonfunctional NSs with intact NSs will result in the attenuation of NSs function by dominant-negative effect. Unexpectedly, we found that RVFV NSs truncated at aa. 6–30, 31–55, 56–80, 81–105, 106–130, 131–155, 156–180, 181–205, 206–230, 231–248 or 249–265 lack functions of IFN–β mRNA synthesis inhibition and degradation of PKR. Truncated NSs were less stable in infected cells, while nuclear localization was inhibited in NSs lacking either of aa.81–105, 106–130, 131–155, 156–180, 181–205, 206–230 or 231–248. Furthermore, none of truncated NSs had exhibited significant dominant-negative functions for NSs-mediated IFN-β suppression or PKR degradation upon co-expression in cells infected with RVFV. We also found that any of truncated NSs except for intact NSs does not interact with RVFV NSs even in the presence of intact C-terminus self-association domain. Our results suggest that conformational integrity of NSs is important for the stability, cellular localization and biological functions of RVFV NSs, and the co-expression of truncated NSs does not exhibit dominant-negative phenotype.
Collapse
Affiliation(s)
- Jennifer A. Head
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Birte Kalveram
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Tetsuro Ikegami
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Sealy Center for Vaccine Development, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
36
|
Koukuntla R, Mandell RB, Flick R. Virus-Like Particle-Based Countermeasures Against Rift Valley Fever Virus. Zoonoses Public Health 2012; 59 Suppl 2:142-50. [DOI: 10.1111/j.1863-2378.2012.01478.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
37
|
Bird BH, Nichol ST. Breaking the chain: Rift Valley fever virus control via livestock vaccination. Curr Opin Virol 2012; 2:315-23. [DOI: 10.1016/j.coviro.2012.02.017] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 02/14/2012] [Indexed: 01/05/2023]
|
38
|
Kortekaas J, Zingeser J, de Leeuw P, de La Rocque S, Unger H, Moormann RJM. Rift Valley Fever Vaccine Development, Progress and Constraints. Emerg Infect Dis 2012; 17:e1. [PMID: 21888781 PMCID: PMC3322093 DOI: 10.3201/eid1709.110506] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Jeroen Kortekaas
- Central Veterinary Institute of Wageningen University and Research Centre, Lelystad, the Netherlands
| | | | | | | | | | | |
Collapse
|
39
|
Single-dose immunization with virus replicon particles confers rapid robust protection against Rift Valley fever virus challenge. J Virol 2012; 86:4204-12. [PMID: 22345465 DOI: 10.1128/jvi.07104-11] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Rift Valley fever virus (RVFV) causes outbreaks of severe disease in people and livestock throughout Africa and the Arabian Peninsula. The potential for RVFV introduction outside the area of endemicity highlights the need for fast-acting, safe, and efficacious vaccines. Here, we demonstrate a robust system for the reverse genetics generation of a RVF virus replicon particle (VRP(RVF)) vaccine candidate. Using a mouse model, we show that VRP(RVF) immunization provides the optimal balance of safety and single-dose robust efficacy. VRP(RVF) can actively synthesize viral RNA and proteins but lacks structural glycoprotein genes, preventing spread within immunized individuals and reducing the risk of vaccine-induced pathogenicity. VRP(RVF) proved to be completely safe following intracranial inoculation of suckling mice, a stringent test of vaccine safety. Single-dose subcutaneous immunization with VRP(RVF), although it is highly attenuated, completely protected mice against a virulent RVFV challenge dose which was 100,000-fold greater than the 50% lethal dose (LD(50)). Robust protection from lethal challenge was observed by 24 h postvaccination, with 100% protection induced in as little as 96 h. We show that a single subcutaneous VRP(RVF) immunization initiated a systemic antiviral state followed by an enhanced adaptive response. These data contrast sharply with the much-reduced survivability and immune responses observed among animals immunized with nonreplicating viral particles, indicating that replication, even if confined to the initially infected cells, contributes substantially to protective efficacy at early and late time points postimmunization. These data demonstrate that replicon vaccines successfully bridge the gap between safety and efficacy and provide insights into the kinetics of antiviral protection from RVFV infection.
Collapse
|
40
|
Ross TM, Bhardwaj N, Bissel SJ, Hartman AL, Smith DR. Animal models of Rift Valley fever virus infection. Virus Res 2012; 163:417-23. [DOI: 10.1016/j.virusres.2011.10.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 10/21/2011] [Accepted: 10/27/2011] [Indexed: 11/24/2022]
|
41
|
Boshra H, Lorenzo G, Rodriguez F, Brun A. A DNA vaccine encoding ubiquitinated Rift Valley fever virus nucleoprotein provides consistent immunity and protects IFNAR−/− mice upon lethal virus challenge. Vaccine 2011; 29:4469-75. [DOI: 10.1016/j.vaccine.2011.04.043] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 03/11/2011] [Accepted: 04/15/2011] [Indexed: 10/18/2022]
|
42
|
Abstract
Rift Valley fever virus (RVFV) is a zoonotic pathogen that primarily affects ruminants but can also be lethal in humans. A negative-stranded RNA virus of the family Bunyaviridae, this pathogen is transmitted mainly via mosquito vectors. RVFV has shown the ability to inflict significant damage to livestock and is also a threat to public health. While outbreaks have traditionally occurred in sub-Saharan Africa, recent outbreaks in the Middle East have raised awareness of the potential of this virus to spread to Europe, Asia, and the Americas. Although the virus was initially characterized almost 80 years ago, the only vaccine approved for widespread veterinary use is an attenuated strain that has been associated with significant pathogenic side effects. However, increased understanding of the molecular biology of the virus over the last few years has led to recent advances in vaccine design and has enabled the development of more-potent prophylactic measures to combat infection. In this review, we discuss several aspects of RVFV, with particular emphasis on the molecular components of the virus and their respective roles in pathogenesis and an overview of current vaccine candidates. Progress in understanding the epidemiology of Rift Valley fever has also enabled prediction of potential outbreaks well in advance, thus providing another tool to combat the physical and economic impact of this disease.
Collapse
|
43
|
Brun A, Bárcena J, Blanco E, Borrego B, Dory D, Escribano JM, Le Gall-Reculé G, Ortego J, Dixon LK. Current strategies for subunit and genetic viral veterinary vaccine development. Virus Res 2011; 157:1-12. [PMID: 21316403 DOI: 10.1016/j.virusres.2011.02.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 02/03/2011] [Accepted: 02/04/2011] [Indexed: 12/24/2022]
Abstract
Developing vaccines for livestock provides researchers with the opportunity to perform efficacy testing in the natural hosts. This enables the evaluation of different strategies, including definition of effective antigens or antigen combinations, and improvement in delivery systems for target antigens so that protective immune responses can be modulated or potentiated. An impressive amount of knowledge has been generated in recent years on vaccine strategies and consequently a wide variety of antigen delivery systems is now available for vaccine research. This paper reviews several antigen production and delivery strategies other than those based on the use of live viral vectors. Genetic and protein subunit vaccines as well as alternative production systems are considered in this review.
Collapse
Affiliation(s)
- Alejandro Brun
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos, 28130 Madrid, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Rift Valley fever virus (RVFV) is an important animal and human threat and leads to longstanding morbidity and mortality in susceptible hosts. Since no therapies currently exist to treat Rift Valley fever, it remains a public and animal health priority to develop safe, effective RVFV vaccines (whether for animals, humans, or both) that provide long-term protective immunity. In the evaluated article, Bhardwaj and colleagues describe the creation and testing of two successful vaccine strategies against RVFV, a DNA plasmid vaccine expressing Gn coupled to C3d, and an alpha-virus replicon vaccine expressing Gn protein. Both vaccines elicited strong neutralizing antibody responses, prevented morbidity and mortality in RVFV-challenged mice, and enabled protection of naive mice via passive antibody transfer from vaccinated mice. Both DNA and replicon RVFV vaccines have previously been shown to protect against RVFV challenge, but these results allow for direct comparison of the two methods and evaluation of a combined prime-boost method. The results also highlight the specific humoral and cell-mediated immune responses to vaccination.
Collapse
Affiliation(s)
- Desiree Labeaud
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, CA 94609, USA
| |
Collapse
|