1
|
Rivera-Asencios D, Espinoza-Culupú A, Carmen-Sifuentes S, Ramirez P, García-de-la-Guarda R. Design of a multi-epitope vaccine candidate against carrion disease by immunoinformatics approach. Comput Biol Med 2025; 184:109397. [PMID: 39566279 DOI: 10.1016/j.compbiomed.2024.109397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/09/2024] [Accepted: 11/07/2024] [Indexed: 11/22/2024]
Abstract
Carrion's disease, caused by the bacterium Bartonella bacilliformis, is a serious public health problem in Peru, Ecuador and Colombia. Currently there is no available vaccine against B. bacilliformis. While antibiotics are the standard treatment, resistant strains have been reported, and there is a potential spread of the vector that transmits the bacteria. This study aimed to design a multi-epitope vaccine candidate against the causative agent of Carrion's disease using immunoinformatics tools. Predictions of B-cell epitopes, as well as CD4+ and CD8+T cell epitopes, were performed from the entire proteome of B. bacilliformis KC583 using the most frequent alleles from Peru, Ecuador, Colombia, and worldwide. B-cell epitopes and T-cell nested epitopes from outer membrane and virulence-associated proteins were selected. Epitopes were filtered out based on promiscuity, non-allergenicity, conservation, non-homology and non-toxicity. Two vaccine constructs were assembled using linkers. The tertiary structure of the constructs was predicted, and their stability was evaluated through molecular dynamics simulations. The most stable construct was selected for molecular docking with the TLR4 receptor. This study proposes a vaccine construct evaluated in silico as a potential vaccine candidate against Bartonella bacilliformis.
Collapse
Affiliation(s)
- Damaris Rivera-Asencios
- Molecular Microbiology and Biotechnology Laboratory, Faculty of Biological Sciences, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Abraham Espinoza-Culupú
- Molecular Microbiology and Biotechnology Laboratory, Faculty of Biological Sciences, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | | | - Pablo Ramirez
- Molecular Microbiology and Biotechnology Laboratory, Faculty of Biological Sciences, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Ruth García-de-la-Guarda
- Molecular Microbiology and Biotechnology Laboratory, Faculty of Biological Sciences, Universidad Nacional Mayor de San Marcos, Lima, Peru.
| |
Collapse
|
2
|
Rao H, Liu Y, Cui J, Niu J, Li D, Yu J. Genetic diversity of Bartonella species in small mammals in the Qinghai Menyuan section of Qilian Mountain National Park, China. Sci Rep 2024; 14:25285. [PMID: 39455748 PMCID: PMC11511999 DOI: 10.1038/s41598-024-76222-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Bartonella are vector-borne gram-negative facultative intracellular bacteria that can infect a wide spectrum of mammals, and are recognized as emerging human pathogens. This study aimed to investigate the prevalence and molecular characteristics of Bartonella infections in small mammals within the Qinghai Menyuan section of Qilian Mountain National Park, China. Small mammals were captured, and the liver, spleen and kidney were collected for Bartonella detection and identification using a combination of real-time PCR targeting the transfer-mRNA (ssrA) gene and followed by sequencing of the citrate synthase (gltA) gene. A total of 52 rodents were captured, and 36 rodents were positive for Bartonella, with a positivity rate of 69.23% (36/52). Bartonella was detected in Cricetulus longicaudatus, Microtus oeconomus, Mus musculus, and Ochotona cansus. The positivity rate was significantly different in the different habitats. Two Bartonella species were observed, including Bartonella grahamii and Bartonella heixiaziensis, and B. grahamii was the dominant epidemic strain in this area. Phylogenetic analysis showed that B. grahamii mainly clustered into two clusters, which were closely related to the Apodemus isolates from China and Japan and the local plateau pika isolates, respectively. In addition, genetic polymorphism analysis showed that B. grahamii had high genetic diversity, and its haplotype had certain regional differences and host specificity. Overall, high prevalence of Bartonella in small mammals in the Qinghai Menyuan section of Qilian Mountain National Park. B. grahamii is the dominant strain with high genetic diversity and potential pathogenicity to humans, and corresponding control measures should be considered.
Collapse
Affiliation(s)
- Huaxiang Rao
- Department of Public Health and Preventive Medicine, Changzhi Medical College, Changzhi, 046000, China
- Shanxi Higher Education Institutions of Science and Technology Innovation Plan Platform, Laboratory of Environmental Factors and Population Health, Changzhi, 046000, China
- Key Laboratory of Environmental Pathogenic Mechanisms and Prevention of Chronic Diseases, Changzhi Medical College, Changzhi, 046000, China
| | - Yiping Liu
- Department of Basic Medical Sciences, Changzhi Medical College, Changzhi, 046000, China
| | - Jia Cui
- Department of Basic Medical Sciences, Changzhi Medical College, Changzhi, 046000, China
| | - Jingrong Niu
- Department of Basic Medical Sciences, Changzhi Medical College, Changzhi, 046000, China
| | - Dongmei Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Department of Vector Biology and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| | - Juan Yu
- Department of Basic Medical Sciences, Changzhi Medical College, Changzhi, 046000, China.
| |
Collapse
|
3
|
Lee DAB, Fernandes Shimabukuro PH, Brilhante AF, Cadina Arantes PV, Sanches GS, Franco EO, Machado RZ, Maggi RG, Breitschwerdt EB, André MR. Bartonella spp. in Phlebotominae Sand Flies, Brazil. Emerg Infect Dis 2024; 30:2099-2107. [PMID: 39320166 PMCID: PMC11431920 DOI: 10.3201/eid3010.240397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024] Open
Abstract
Bartonella spp. are opportunistic, vectorborne bacteria that can cause disease in both animals and humans. We investigated the molecular occurrence of Bartonella spp. in 634 phlebotomine sand fly specimens, belonging to 44 different sand fly species, sampled during 2017-2021 in north and northeastern Brazil. We detected Bartonella sp. DNA in 8.7% (55/634) of the specimens by using a quantitative real-time PCR targeting the 16S-23S internal transcribed spacer intergenic region. Phylogenetic analysis positioned the Lutzomyia longipalpis sand fly-associated Bartonella gltA gene sequence in the same subclade as Bartonella ancashensis sequences and revealed a Bartonella sp. sequence in a Dampfomyia beltrani sand fly from Mexico. We amplified a bat-associated Bartonella nuoG sequence from a specimen of Nyssomyia antunesi sand fly. Our findings document the presence of Bartonella DNA in sand flies from Brazil, suggesting possible involvement of these insects in the epidemiologic cycle of Bartonella species.
Collapse
|
4
|
Oršolić M, Sarač N, Balen Topić M. Vector-Borne Zoonotic Lymphadenitis-The Causative Agents, Epidemiology, Diagnostic Approach, and Therapeutic Possibilities-An Overview. Life (Basel) 2024; 14:1183. [PMID: 39337966 PMCID: PMC11433605 DOI: 10.3390/life14091183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/02/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
In addition to common skin pathogens, acute focal lymphadenitis in humans can, in rare cases, be caused by a zoonotic pathogen. Furthermore, it can develop in the absence of any direct or indirect contact with infected animals, in cases when the microorganism is transmitted by a vector. These clinical entities are rare, and therefore often not easily recognized, yet many zoonotic illnesses are currently considered emerging or re-emerging in many regions. Focal zoonotic vector-borne lymphadenitis and its numerous causative agents, with their variegated clinical manifestations, have been described in some case reports and small case series. Therefore, we summarized those data in this narrative overview, with the aim of raising clinical awareness, which could improve clinical outcomes. This overview briefly covers reported pathogens, their vectors and geographic distribution, and their main clinical manifestations, diagnostic possibilities, and recommended therapy. Vector-borne tularemia, plague, bartonellosis, rickettsioses, borreliosis, and Malayan filariasis are mentioned. According to the existing data, when acute focal bacterial vector-borne zoonotic lymphadenitis is suspected, in severe or complicated cases it seems prudent to apply combined aminoglycoside (or quinolone) plus doxycycline as an empirical therapy, pending definite diagnostic results. In this field, the "one health approach" and further epidemiological and clinical studies are needed.
Collapse
Affiliation(s)
- Martina Oršolić
- University Hospital for Infectious Diseases "Dr. Fran Mihaljević", Mirogojska 8, 10 000 Zagreb, Croatia
| | - Nikolina Sarač
- University Hospital for Infectious Diseases "Dr. Fran Mihaljević", Mirogojska 8, 10 000 Zagreb, Croatia
| | - Mirjana Balen Topić
- University Hospital for Infectious Diseases "Dr. Fran Mihaljević", Mirogojska 8, 10 000 Zagreb, Croatia
- School of Medicine, University of Zagreb, Šalata 3, 10 000 Zagreb, Croatia
| |
Collapse
|
5
|
León-Sosa A, Orlando SA, Mora-Jaramillo N, Calderón J, Rodriguez-Pazmino AS, Carvajal E, Guizado-Herrera D, Narváez Y, Sánchez E, Arreaga A, Zevallos JC, Carrillo C, Garcia-Bereguiain MA. First report of Bartonella henselae and Bartonella clarridgeiae carriage in stray cats from Ecuador and its link to a cat scratch disease outbreak in 2022. Acta Trop 2024; 257:107278. [PMID: 38851625 DOI: 10.1016/j.actatropica.2024.107278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/26/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
INTRODUCTION The genus Bartonella includes species and subspecies of fastidious, facultative intracellular Gram-negative bacilli that infect a wide variety of mammalian reservoirs including cats and humans. In 2022, the Ecuadorian Ministry of Health reported an outbreak of cat scratch disease caused by B. henselae in the city of Guayaquil. Therefore, we aimed to characterize the presence of Bartonella spp. in domestic and stray cats from the area of Guayaquil where the outbreak happened in 2022. METHODS Whole blood samples of 100 domestic and stray cats were collected. Riboflavin synthase (ribC) and 16S rRNA genes detection was performed by PCR using Bartonella spp. specific primers, followed by Sanger sequencing and phylogenetic analysis. RESULTS 14 cats were positive for Bartonella spp. carriage. Phylogenetic analysis confirmed the presence of 12 cats infected with B. henselae and 2 cats with B. clarridgeiae. CONCLUSIONS There is a high prevalence of Bartonella spp. carriage in cats in the city of Guayaquil within the area where a recent cat scratch disease outbreak happened. Considering the high presence of cats and other domestic and stray animals in the city of Guayaquil, a One Health approach for surveillance and prevention of zoonotic diseases like cat scratch disease is needed.
Collapse
Affiliation(s)
- Ariana León-Sosa
- Instituto Nacional de Investigación en Salud Pública "Leopoldo Izquieta Pérez", Dirección Técnica de Investigación, Desarrollo e Innovación, Guayaquil, Ecuador
| | - Solon Alberto Orlando
- Instituto Nacional de Investigación en Salud Pública "Leopoldo Izquieta Pérez", Dirección Técnica de Investigación, Desarrollo e Innovación, Guayaquil, Ecuador; Universidad Espíritu Santo, Guayaquil, Ecuador
| | - Naomi Mora-Jaramillo
- Instituto Nacional de Investigación en Salud Pública "Leopoldo Izquieta Pérez", Dirección Técnica de Investigación, Desarrollo e Innovación, Guayaquil, Ecuador
| | - Joselyn Calderón
- Instituto Nacional de Investigación en Salud Pública "Leopoldo Izquieta Pérez", Dirección Técnica de Investigación, Desarrollo e Innovación, Guayaquil, Ecuador
| | | | - Elsy Carvajal
- One Health Research Group, Universidad de Las Américas, Quito, Ecuador
| | - David Guizado-Herrera
- Instituto Nacional de Investigación en Salud Pública "Leopoldo Izquieta Pérez", Dirección Técnica de Investigación, Desarrollo e Innovación, Guayaquil, Ecuador
| | - Yolanda Narváez
- Instituto Nacional de Investigación en Salud Pública "Leopoldo Izquieta Pérez", Dirección Técnica de Investigación, Desarrollo e Innovación, Guayaquil, Ecuador
| | - Eusebio Sánchez
- Instituto Nacional de Investigación en Salud Pública "Leopoldo Izquieta Pérez", Dirección Técnica de Investigación, Desarrollo e Innovación, Guayaquil, Ecuador
| | - Alma Arreaga
- Instituto Nacional de Investigación en Salud Pública "Leopoldo Izquieta Pérez", Dirección Técnica de Investigación, Desarrollo e Innovación, Guayaquil, Ecuador
| | | | | | | |
Collapse
|
6
|
Vilca-Machaca LS, Calvay-Sanchez KD, Zarate-Sulca Y, Jimenez-Vasquez V, Ramirez P, Mendoza-Mujica G. Baculovirus-Assisted Production of Bartonella bacilliformis Proteins: A Potential Strategy for Improving Serological Diagnosis of Carrion's Disease. Pathogens 2024; 13:690. [PMID: 39204290 PMCID: PMC11357310 DOI: 10.3390/pathogens13080690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 09/03/2024] Open
Abstract
Carrion's disease, caused by Bartonella bacilliformis, is a neglected tropical disease prevalent in the Andean region of South America. Without antimicrobial treatment, this disease has a mortality rate of up to 88% in infected patients. The most common method for diagnosing B. bacilliformis infection is serological testing. However, the current serological assays are limited in sensitivity and specificity, underscoring the need for the development of novel and more accurate diagnostic tools. Recombinant proteins have emerged as promising candidates to improve the serological diagnosis of Carrion's disease. So, we focused on evaluating the conditions for producing two previously predicted proteins of B. bacilliformis using the baculovirus-insect cell expression system, mainly the flashBAC ULTRA technology. We assessed various parameters to identify the conditions that yield the highest protein production, including cell lines, temperature, and hours post-infection (hpi). The results showed that the expression conditions for achieving the highest yields of the Prot_689 and Prot_504 proteins were obtained using High Five™ cells at 21 °C and harvesting at 120 hpi. Subsequently, the seroreactivity of recombinant proteins was evaluated using positive sera from patients diagnosed with Carrion's disease. These findings offer valuable insights into the production conditions of B. bacilliformis recombinant proteins using the baculovirus system, which could significantly contribute to developing more precise diagnostic tools for Carrion's disease. Therefore, this research provides implications for improving diagnostics and potentially developing therapeutic strategies.
Collapse
Affiliation(s)
- Lizbeth Sally Vilca-Machaca
- Faculty of Biological Sciences, Universidad Nacional Mayor de San Marcos, Lima 15081, Peru
- Laboratory of Vector-Borne and Zoonotic Bacterial Diseases, National Institute of Health, Lima 15072, Peru
| | | | - Yanina Zarate-Sulca
- Laboratory of Vector-Borne and Zoonotic Bacterial Diseases, National Institute of Health, Lima 15072, Peru
| | - Victor Jimenez-Vasquez
- Laboratory of Vector-Borne and Zoonotic Bacterial Diseases, National Institute of Health, Lima 15072, Peru
| | - Pablo Ramirez
- Faculty of Biological Sciences, Universidad Nacional Mayor de San Marcos, Lima 15081, Peru
| | - Giovanna Mendoza-Mujica
- Laboratory of Vector-Borne and Zoonotic Bacterial Diseases, National Institute of Health, Lima 15072, Peru
| |
Collapse
|
7
|
Hong XG, Zhu Y, Wang T, Chen JJ, Tang F, Jiang RR, Ma XF, Xu Q, Li H, Wang LP, Sun Y, Fang LQ, Liu W. Mapping the distribution of sandflies and sandfly-associated pathogens in China. PLoS Negl Trop Dis 2024; 18:e0012291. [PMID: 39012845 PMCID: PMC11251628 DOI: 10.1371/journal.pntd.0012291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/13/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND Understanding and mapping the distribution of sandflies and sandfly-associated pathogens (SAPs) is crucial for guiding the surveillance and control effort. However, their distribution and the related risk burden in China remain poorly understood. METHODS We mapped the distribution of sandflies and SAPs using literature data from 1940 to 2022. We also mapped the human visceral leishmaniasis (VL) cases using surveillance data from 2014 to 2018. The ecological drivers of 12 main sandfly species and VL were identified by applying machine learning, and their distribution and risk were predicted in three time periods (2021-2040, 2041-2060, and 2061-2080) under three scenarios of climate and socioeconomic changes. RESULTS In the mainland of China, a total of 47 sandfly species have been reported, with the main 12 species classified into three clusters according to their ecological niches. Additionally, 6 SAPs have been identified, which include two protozoa, two bacteria, and two viruses. The incidence risk of different VL subtypes was closely associated with the distribution risk of specific vectors. The model predictions also revealed a substantial underestimation of the current sandfly distribution and VL risk. The predicted areas affected by the 12 major species of sandflies and the high-risk areas for VL were found to be 37.9-1121.0% and 136.6% larger, respectively, than the observed range in the areas. The future global changes were projected to decrease the risk of mountain-type zoonotic VL (MT-ZVL), but anthroponotic VL (AVL) and desert-type zoonotic VL (DT-ZVL) could remain stable or slightly increase. CONCLUSIONS Current field observations underestimate the spatial distributions of main sandfly species and VL in China. More active surveillance and field investigations are needed where high risks are predicted, especially in areas where the future risk of VL is projected to remain high or increase.
Collapse
Affiliation(s)
- Xue-Geng Hong
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing, P. R. China
| | - Ying Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, P. R. China
| | - Tao Wang
- The 949th Chinese PLA Hospital, Altay, P. R. China
| | - Jin-Jin Chen
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing, P. R. China
| | - Fang Tang
- Center for Disease Control and Prevention of Chinese People’s Armed Police Forces, Beijing, P. R. China
| | - Rui-Ruo Jiang
- Institute of NBC Defense, PLA Army, Beijing, P. R. China
| | - Xiao-Fang Ma
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, P. R. China
| | - Qiang Xu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing, P. R. China
| | - Hao Li
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing, P. R. China
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, P. R. China
| | - Li-Ping Wang
- Center for Public Health Surveillance and Information Service, Chinese Center for Disease Control and Prevention, Beijing, P. R. China
| | - Yi Sun
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing, P. R. China
| | - Li-Qun Fang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing, P. R. China
| | - Wei Liu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing, P. R. China
| |
Collapse
|
8
|
Zarate-Sulca Y, Calvay-Sanchez KD, Jimenez-Vasquez V, Ruiz J, Acosta-Conchucos O, Mendoza-Mujica G. Single-nucleotide polymorphisms in ialB, gltA and rpoB genes of Bartonella bacilliformis isolated from patients in endemic Peruvian regions. PLoS Negl Trop Dis 2023; 17:e0011615. [PMID: 37815991 PMCID: PMC10564245 DOI: 10.1371/journal.pntd.0011615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/22/2023] [Indexed: 10/12/2023] Open
Abstract
Bartonella bacilliformis is a Gram-negative, aerobic bacterium and the known causal agent of Carrion's disease, still considered a neglected disease. There is limited information about the nucleotide sequences of this bacterium in international databases, and few studies have addressed the genetic diversity of B. bacilliformis. We analyzed a total of 20 isolates of B. bacilliformis from the Peruvian regions of Ancash and Cajamarca. Three genes (ialB, gltA, and rpoB) were sequenced in each isolate and nucleotide sequences retrieved from GenBank (16 B. bacilliformis genomes) were also included in the study. All this information was merged in order to obtain clearer evidence of the phylogenetic relationships of B. bacilliformis. In the phylogenetic analysis conducted with the concatenated markers, four isolates (B.b-1, B. b-3, B. b- 7, B.b-8) from the Ancash region were observed to form a subgroup different from B. bacilliformis type strain KC583, showing dissimilarity levels of 5.96% (ialB), 3.69% (gltA) and 3.04% (rpoB). Our results suggest that B. bacilliformis consists of two different subgroups. Future investigations are needed to establish the taxonomic status of these subgroups.
Collapse
Affiliation(s)
- Yanina Zarate-Sulca
- Laboratorio de Referencia Nacional de Metaxénicas y Zoonosis Bacterianas, Centro Nacional de Salud Pública, Instituto Nacional de Salud Perú, Lima, Perú
| | - Karen Daphne Calvay-Sanchez
- Laboratorio de Referencia Nacional de Metaxénicas y Zoonosis Bacterianas, Centro Nacional de Salud Pública, Instituto Nacional de Salud Perú, Lima, Perú
| | - Víctor Jimenez-Vasquez
- Laboratorio de Referencia Nacional de Metaxénicas y Zoonosis Bacterianas, Centro Nacional de Salud Pública, Instituto Nacional de Salud Perú, Lima, Perú
| | - Joaquim Ruiz
- Grupo de Investigación en Enfermedades Infecciosas Emergentes, Universidad Científica del Sur, Lima, Perú
| | | | - Giovanna Mendoza-Mujica
- Laboratorio de Referencia Nacional de Metaxénicas y Zoonosis Bacterianas, Centro Nacional de Salud Pública, Instituto Nacional de Salud Perú, Lima, Perú
| |
Collapse
|
9
|
Jin X, Gou Y, Xin Y, Li J, Sun J, Li T, Feng J. Advancements in understanding the molecular and immune mechanisms of Bartonella pathogenicity. Front Microbiol 2023; 14:1196700. [PMID: 37362930 PMCID: PMC10288214 DOI: 10.3389/fmicb.2023.1196700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
Bartonellae are considered to be emerging opportunistic pathogens. The bacteria are transmitted by blood-sucking arthropods, and their hosts are a wide range of mammals including humans. After a protective barrier breach in mammals, Bartonella colonizes endothelial cells (ECs), enters the bloodstream, and infects erythrocytes. Current research primarily focuses on investigating the interaction between Bartonella and ECs and erythrocytes, with recent attention also paid to immune-related aspects. Various molecules related to Bartonella's pathogenicity have been identified. The present review aims to provide a comprehensive overview of the newly described molecular and immune responses associated with Bartonella's pathogenicity.
Collapse
Affiliation(s)
- Xiaoxia Jin
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Yuze Gou
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou, China
| | - Yuxian Xin
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou, China
| | - Jingwei Li
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jingrong Sun
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou, China
| | - Tingting Li
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jie Feng
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou, China
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou, China
| |
Collapse
|
10
|
Minnick MF, Robinson AJ, Powell RD, Rowland TE. Experimental Colonization of Sand Flies ( Lutzomyia longipalpis; Diptera: Psychodidae) by Bartonella ancashensis. Vector Borne Zoonotic Dis 2023; 23:324-330. [PMID: 36939868 PMCID: PMC10278011 DOI: 10.1089/vbz.2022.0087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023] Open
Abstract
Background: Bartonella ancashensis is a recently described Bartonella species endemic to Peru, where it causes verruga peruana in humans. While the arthropod vector of B. ancashensis transmission is unknown, human coinfections with Bartonella bacilliformis suggest that phlebotomine sand flies are a vector. Materials and Methods: To address the hypothesis that sand flies are involved in the bacterium's transmission, Lutzomyia longipalpis sand flies were used as an infection model, together with green fluorescent protein-expressing B. ancashensis. Results: Results showed that bacterial infections were clearly established, limited to the anterior midgut of the female fly, and maintained for roughly 7 days. At 3-7 days postinfection, a prominent microcolony of aggregated bacteria was observed in the anterior midgut, immediately distal to the stomodeal valve of the esophagus. In contrast, eggs, diuretic fluid, feces, and other tissues were not infected. Conclusion: These results suggest that certain sand fly species within the endemic zone for B. ancashensis may play a role in the bacterium's maintenance and possibly in its transmission to humans.
Collapse
Affiliation(s)
- Michael F. Minnick
- Program in Cellular, Molecular, and Microbial Biology, Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Autumn J. Robinson
- Program in Cellular, Molecular, and Microbial Biology, Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Ruby D. Powell
- Program in Cellular, Molecular, and Microbial Biology, Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Tobin E. Rowland
- Entomology Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| |
Collapse
|
11
|
Abstract
Bartonella bacilliformis causes Carrión's disease, an infectious disease present in rural Andean areas of Peru and Ecuador. The disease has an acute and a chronic phase called Oroya fever and Peruvian wart, respectively. Oroya fever is potentially fatal if treated inadequately. Female Lutzomyia verrucarum, a phlebotomine sand fly endemic to South America, is the major vector. B. bacilliformis exhibits high susceptibility levels to a variety of antibacterial agents. B. bacilliformis is difficult to culture. Most endemic areas are remote with fragile health systems and poor communication. Thus, the true burden of the disease is difficult to ascertain.
Collapse
Affiliation(s)
- Joaquim Ruiz
- Grupo de Enfermedades Emergentes y Reemergentes, Universidad Científica del Sur, Lima, Peru
| |
Collapse
|
12
|
A system for transposon mutagenesis of Bartonella bacilliformis. J Microbiol Methods 2022; 203:106623. [PMID: 36400246 DOI: 10.1016/j.mimet.2022.106623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022]
Abstract
Bartonella bacilliformis is the etiologic agent of Carrión's disease in South America. Lack of a system for random mutagenesis has significantly hampered research on the pathogen's molecular biology. Here, we describe a transposon (Tn)-based mutagenesis strategy for B. bacilliformis using pSAM_Rl; a Tn-mariner delivery vector originally constructed for members of the Rhizobiaceae family. Following electroporation of the vector, five candidate mutant strains were selected based on aberrant colony morphologies, and four mutations confirmed and identified using arbitrarily-primed PCR coupled with Sanger sequencing. One mutant strain, 4B2, was found to have a disrupted flgI gene, encoding the P-ring component of the flagellar motor. We therefore investigated the flgI strain's motility phenotype in a novel motility medium and found that insertional mutagenesis produced a non-motile mutant. Taken as a whole, the results show that: 1) pSAM_R1 is a practical Tn delivery vector for B. bacilliformis, 2) the plasmid can be used to create random Tn mariner mutants, 3) arbitrarily-primed PCR coupled with Sanger sequencing is a rapid and simple method for identifying and locating mutations generated by this Tn, and 4) in silico-predicted mutant phenotypes can be verified in vitro following mutagenesis. This system of Tn mutagenesis and mutation identification provides a novel and straightforward approach to investigate the molecular biology of B. bacilliformis.
Collapse
|
13
|
Identification of the Bartonella autotransporter CFA as a protective antigen and hypervariable target of neutralizing antibodies in mice. Proc Natl Acad Sci U S A 2022; 119:e2202059119. [PMID: 35714289 PMCID: PMC9231624 DOI: 10.1073/pnas.2202059119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bartonella infections represent a significant burden to human health and are difficult to cure. Protective Bartonella vaccines are not available. Acquired immunity to Bartonella infection could provide a blueprint for vaccine design but remains incompletely defined. Moreover, bacterial immune evasion mechanisms have the potential to thwart vaccination efforts. Our study in a model of a natural Bartonella–host relationship revealed that antibody-mediated prevention of bacterial attachment to erythrocytes is sufficient for protection. We identified the bacterial surface determinant CFA (CAMP-like factor autotransporter) as a target of protective antibodies. While immunization with CFA protected against challenge with the homologous Bartonella isolate, extensive variability of CFA already at the strain level revealed bacterial immune evasion mechanisms with implications for Bartonella vaccine design. The bacterial genus Bartonella comprises numerous emerging pathogens that cause a broad spectrum of disease manifestations in humans. The targets and mechanisms of the anti-Bartonella immune defense are ill-defined and bacterial immune evasion strategies remain elusive. We found that experimentally infected mice resolved Bartonella infection by mounting antibody responses that neutralized the bacteria, preventing their attachment to erythrocytes and suppressing bacteremia independent of complement or Fc receptors. Bartonella-neutralizing antibody responses were rapidly induced and depended on CD40 signaling but not on affinity maturation. We cloned neutralizing monoclonal antibodies (mAbs) and by mass spectrometry identified the bacterial autotransporter CFA (CAMP-like factor autotransporter) as a neutralizing antibody target. Vaccination against CFA suppressed Bartonella bacteremia, validating CFA as a protective antigen. We mapped Bartonella-neutralizing mAb binding to a domain in CFA that we found is hypervariable in both human and mouse pathogenic strains, indicating mutational antibody evasion at the Bartonella subspecies level. These insights into Bartonella immunity and immune evasion provide a conceptual framework for vaccine development, identifying important challenges in this endeavor.
Collapse
|
14
|
Yu J, Xie B, Bi GY, Zuo HH, Du XY, Bi LF, Li DM, Rao HX. Prevalence and diversity of small rodent-associated Bartonella species in Shangdang Basin, China. PLoS Negl Trop Dis 2022; 16:e0010446. [PMID: 35648747 PMCID: PMC9159596 DOI: 10.1371/journal.pntd.0010446] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 04/22/2022] [Indexed: 11/18/2022] Open
Abstract
The aim of this study was to investigate the occurrence and molecular characteristics of Bartonella infections in small rodents in the Shangdang Basin, China. Small rodents were captured using snap traps, and their liver, spleen, and kidney tissues were harvested for Bartonella detection and identification using a combination of real-time PCR of the ssrA gene (296 bp) and conventional PCR and sequencing of the gltA gene (379 bp). Results showed that 55 of 147 small rodents to be positive for Bartonella, with a positivity rate of 37.41%, and 95% confidence interval of 29.50%- 45.33%. While the positivity rate across genders (42.62% in males and 33.72% in females, χ2 = 1.208, P = 0.272) and tissues (28.57% in liver, 33.59% in spleen, and 36.76% in kidney, χ2 = 2.197, P = 0.333) of small rodents was not statistically different, that in different habitats (5.13% in villages, 84.44% in forests, and 54.17% in farmlands, χ2 = 80.105, P<0.001) was statistically different. There were 42 Bartonella sequences identified in six species, including 30 B. grahamii, three B. phoceensis, two B. japonica, two B. queenslandensis, one B. fuyuanensis and four unknown Bartonella species from Niviventer confucianus, Apodemus agrarius and Tscherskia triton. In addition to habitat, Bartonella species infection could be affected by the rodent species as well. Among the Bartonella species detected in this area, B. grahamii was the dominant epidemic species (accounting for 71.43%). B. grahamii exhibited four distinct clusters, and showed a certain host specificity. In addition, 11 haplotypes of B. grahamii were observed using DNASP 6.12.03, among which nine haplotypes were novel. Overall, high occurrence and genetic diversity of Bartonella were observed among small rodents in the Shangdang Basin; this information could potentially help the prevention and control of rodent-Bartonella species in this area.
Collapse
Affiliation(s)
- Juan Yu
- Department of Basic Medical Sciences, Changzhi Medical College, Changzhi, China
| | - Bing Xie
- Department of Nursing, Changzhi Medical College, Changzhi, China
| | - Ge-Yue Bi
- Department of Clinical Medicine, Changzhi Medical College, Changzhi, China
| | - Hui-Hui Zuo
- Department of Teaching and Scientific Research, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Xia-Yan Du
- Department of Clinical Medicine, Changzhi Medical College, Changzhi, China
| | - Li-Fang Bi
- Department of Clinical Medicine, Changzhi Medical College, Changzhi, China
| | - Dong-Mei Li
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- * E-mail: (DML); (HXR)
| | - Hua-Xiang Rao
- Department of Public Health and Preventive Medicine, Changzhi Medical College, Changzhi, China
- * E-mail: (DML); (HXR)
| |
Collapse
|
15
|
Detection and genetic diversity of Bartonella species in small mammals from the central region of the Qinghai-Tibetan Plateau, China. Sci Rep 2022; 12:6996. [PMID: 35488125 PMCID: PMC9054800 DOI: 10.1038/s41598-022-11419-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 04/25/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, we aimed to investigate the prevalence and molecular characteristics of Bartonella infections in small mammals from the central region of the Qinghai-Tibetan Plateau. Toward this, small mammals were captured using snap traps in Yushu City and Nangqian County, West China, and the spleen tissue was used for Bartonella culture. The suspected positive colonies were evaluated using polymerase chain reaction (PCR) amplification and by sequencing the citrate synthase (gltA) gene. We discovered that 31 out of the 103 small mammals tested positive for Bartonella, with an infection rate of 30.10%. Sex differences between the mammals did not result in a significant difference in infection rate (χ2 = 0.018, P = 0.892). However, there was a significant difference in infection rates in different small mammals (Fisher’s exact probability method, P = 0.017) and habitats (χ2 = 7.157, P = 0.028). Additionally, 31 Bartonella strains belonging to three species were identified, including B. grahamii (25), B. japonica (4) and B. heixiaziensis (2), among which B. grahamii was the dominant epidemic strain (accounting for 80.65%). Phylogenetic analyses showed that most of the B. grahamii isolates identified in this study may be closely related to the strains isolated from Japan and China. Genetic diversity analyses revealed that B. grahamii strains had high genetic diversity, which showed a certain host and geographical specificity. The results of Tajima’s test suggested that the B. grahamii followed the progressions simulated by a neutral evolutionary model in the process of evolution. Overall, a high prevalence and genetic diversity of Bartonella infection were observed in small mammals in the central region of the Qinghai-Tibetan Plateau. B. grahamii as the dominant epidemic strain may cause diseases in humans, and the corresponding prevention and control measures should be taken into consideration in this area.
Collapse
|
16
|
The Passenger Domain of Bartonella bacilliformis BafA Promotes Endothelial Cell Angiogenesis via the VEGF Receptor Signaling Pathway. mSphere 2022; 7:e0008122. [PMID: 35379004 PMCID: PMC9044958 DOI: 10.1128/msphere.00081-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bartonella bacilliformis is a Gram-negative bacterial pathogen that provokes pathological angiogenesis and causes Carrion’s disease, a neglected tropical disease restricted to South America. Little is known about how B. bacilliformis facilitates vasoproliferation resulting in hemangioma in the skin in verruga peruana, the chronic phase of Carrion’s disease. Here, we demonstrate that B. bacilliformis extracellularly secrets a passenger domain of the autotransporter BafA exhibiting proangiogenic activity. The B. bacilliformis-derived BafA passenger domain (BafABba) increased the number of human umbilical endothelial cells (HUVECs) and promoted tube-like morphogenesis. Neutralizing antibody against BafABba detected the BafA derivatives from the culture supernatant of B. bacilliformis and inhibited the infection-mediated hyperproliferation of HUVECs. Moreover, stimulation with BafABba promoted phosphorylation of vascular endothelial growth factor receptor 2 (VEGFR2) and extracellular-signal-regulated kinase 1/2 in HUVECs. Suppression of VEGFR2 by anti-VEGFR2 antibody or RNA interference reduced the sensitivity of cells to BafABba. In addition, surface plasmon resonance analysis confirmed that BafABba directly interacts with VEGFR2 with lower affinity than VEGF or Bartonella henselae-derived BafA. These findings indicate that BafABba acts as a VEGFR2 agonist analogous to the previously identified B. henselae- and Bartonella quintana-derived BafA proteins despite the low sequence similarity. The identification of a proangiogenic factor produced by B. bacilliformis that directly stimulates endothelial cells provides an important insight into the pathophysiology of verruga peruana. IMPORTANCEBartonella bacilliformis causes life-threatening bacteremia or dermal eruption known as Carrion’s disease in South America. During infection, B. bacilliformis promotes endothelial cell proliferation and the angiogenic process, but the underlying molecular mechanism has not been well understood. We show that B. bacilliformis induces vasoproliferation and angiogenesis by producing the proangiogenic autotransporter BafA. As the cellular/molecular basis for angiogenesis, BafA stimulates the signaling pathway of vascular endothelial growth factor receptor 2 (VEGFR2). Identification of functional BafA protein from B. bacilliformis in addition to B. henselae and B. quintana, the causes of cat scratch disease and trench fever, raises the possibility that BafA is a common virulence factor for human-pathogenic Bartonella.
Collapse
|
17
|
Cecílio P, Cordeiro-da-Silva A, Oliveira F. Sand flies: Basic information on the vectors of leishmaniasis and their interactions with Leishmania parasites. Commun Biol 2022; 5:305. [PMID: 35379881 PMCID: PMC8979968 DOI: 10.1038/s42003-022-03240-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/08/2022] [Indexed: 11/09/2022] Open
Abstract
Blood-sucking arthropods transmit a variety of human pathogens acting as disseminators of the so-called vector-borne diseases. Leishmaniasis is a spectrum of diseases caused by different Leishmania species, transmitted quasi worldwide by sand flies. However, whereas many laboratories focus on the disease(s) and etiological agents, considerably less study the respective vectors. In fact, information on sand flies is neither abundant nor easy to find; aspects including basic biology, ecology, and sand-fly-Leishmania interactions are usually reported separately. Here, we compile elemental information on sand flies, in the context of leishmaniasis. We discuss the biology, distribution, and life cycle, the blood-feeding process, and the Leishmania-sand fly interactions that govern parasite transmission. Additionally, we highlight some outstanding questions that need to be answered for the complete understanding of parasite–vector–host interactions in leishmaniasis. In this review, numerous aspects of sand flies as vectors of Leishmania parasites—from biology to the vector parasite interactions—are discussed.
Collapse
Affiliation(s)
- Pedro Cecílio
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA. .,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal. .,Parasite Disease Group, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal. .,Departamento de Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto (FFUP), Porto, Portugal.
| | - Anabela Cordeiro-da-Silva
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Parasite Disease Group, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,Departamento de Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto (FFUP), Porto, Portugal
| | - Fabiano Oliveira
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA.
| |
Collapse
|
18
|
Yu J, Zhang XY, Chen YX, Cheng HB, Li DM, Rao HX. Molecular detection and genetic characterization of small rodents associated Bartonella species in Zhongtiao Mountain, China. PLoS One 2022; 17:e0264591. [PMID: 35226692 PMCID: PMC8884503 DOI: 10.1371/journal.pone.0264591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/11/2022] [Indexed: 11/18/2022] Open
Abstract
The prevalence and molecular characteristics of Bartonella infections in small rodents in the Zhongtiao Mountain, China have been explored. In this study, the liver, spleen and kidney tissues of captured rodents were used for Bartonella spp. detection and identification by combination of real-time PCR of transfer-mRNA (ssrA) gene and traditional PCR and sequencing of citrate synthase (gltA) gene. It was shown that 49.52% of the rodents (52/105) were positive for Bartonella spp.. The infection rate in different gender (χ2 = 0.079, P = 0.778) and tissues (χ2 = 0.233, P = 0.890) of small rodents did not have statistical difference, but that in different small rodents (Fisher's exact test, P < 0.001) and habitats (χ2 = 5.483, P = 0.019) had statistical difference. And, the sequencing data suggests that Bartonella sequences (n = 31) were identified into three species, including 14 of B. grahamii, 3 of B. queenslandensis and 14 of unknown Bartonella species. Phylogenetic analysis showed that B. grahamii sequences were clustered with the isolates from South Korea and China, and B. queenslandensis sequences were mainly closely related to the isolates from China and Thailand. The genetic diversity analysis showed that B. grahamii and B. queenslandensis sequences exhibited noticeable intraspecies diversity. Taken together our data demonstrates the high prevalence and genetic diversity of Bartonella infections in small rodents in the Zhongtiao Mountain, especially a potential novel Bartonella specie was detected, which could benefit the prevention and control of rodent-Bartonella species in this area.
Collapse
Affiliation(s)
- Juan Yu
- Department of Basic Medical Sciences, Changzhi Medical College, Changzhi, Shanxi, China
| | - Xiong-Ying Zhang
- Department of Basic Medical Sciences, Changzhi Medical College, Changzhi, Shanxi, China
| | - Yun-Xia Chen
- Department of Basic Medical Sciences, Changzhi Medical College, Changzhi, Shanxi, China
| | - Hong-Bing Cheng
- Department of Basic Medical Sciences, Changzhi Medical College, Changzhi, Shanxi, China
| | - Dong-Mei Li
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hua-Xiang Rao
- Department of Public Health and Preventive Medicine, Changzhi Medical College, Changzhi, Shanxi, China
| |
Collapse
|
19
|
Flores-Nuñez A, Ventura G, Bailon H, Marcelo A, Sandoval G, Padilla-Rojas C. Cloning, expression and seroreactivity of the recombinant lipopolysaccharide assembly protein - D (LptD) from Bartonella bacilliformis. Rev Peru Med Exp Salud Publica 2022; 39:15-23. [PMID: 35766735 PMCID: PMC11397601 DOI: 10.17843/rpmesp.2022.391.9292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 03/09/2022] [Indexed: 09/15/2024] Open
Abstract
OBJECTIVE. To evaluate in silico and at the serological level the antigenic potential of the recombinant extracellular domain of the lipopolysaccharide assembly protein - D (LptD) of Bartonella bacilliformis (dexr_LptD). MATERIALS AND METHODS. Through in silico analysis, we selected a B. bacilliformis protein with antigenic and immunogenic potential. The selected protein gene was cloned into Escherichia coli TOP10 and expressed in Escherichia coli BL21 (DE3) pLysS. Recombinant protein was expressed using isopropyl-β-D-1-thiogalactopyranoside (IPTG) and induction conditions were optimized. Finally, it was purified with Ni-IDA resin (His60 Ni Superflow) and a Western Blot assay was conducted. RESULTS. In silico, the selected protein was LptD because it is located in the outer membrane and is antigenic and immunogenic. Optimized conditions for dexr_LptD induction were 0.5 mM IPTG, 16 hours, TB (Terrific Broth) medium, 3% (v/v) ethanol, 28 ºC, OD600: 1-1.5 and 200 rpm. Purification was carried out under denaturating conditions on a small scale and we obtained 2.6 μg/mL of partially purified dexr_LptD. The Western Blot assay showed a positive reaction between the sera from patients with Carrión's Disease and dexr_LptD, which shows the antigenicity of dexr_LptD. CONCLUSIONS. The dexr_LptD shows antigenicity both in silico and at the serological level, these results are the basis for further studies on vaccine candidates against Carrion's Disease.
Collapse
Affiliation(s)
- Astrid Flores-Nuñez
- Laboratorio de Biotecnología y Biología Molecular, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Perú
- Grupo de Investigación en Bioinformática y Biología Estructural, Universidad Nacional Mayor de San Marcos, Lima, Perú
| | - Gladis Ventura
- Laboratorio de Biotecnología y Biología Molecular, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Perú
| | - Henri Bailon
- Laboratorio de Biotecnología y Biología Molecular, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Perú
| | - Adolfo Marcelo
- Laboratorio de Referencia Nacional de Metaxénicas Virales, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Perú
| | - Gustavo Sandoval
- Grupo de Investigación en Bioinformática y Biología Estructural, Universidad Nacional Mayor de San Marcos, Lima, Perú
| | - Carlos Padilla-Rojas
- Laboratorio de Biotecnología y Biología Molecular, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Perú
| |
Collapse
|
20
|
Dichter AA, Schultze TG, Wenigmann A, Ballhorn W, Latz A, Schlüfter E, Ventosilla P, Guerra Allison H, Ugarte-Gil C, Tsukayama P, Kempf VAJ. Identification of immunodominant Bartonella bacilliformis proteins: a combined in-silico and serology approach. THE LANCET MICROBE 2021; 2:e685-e694. [DOI: 10.1016/s2666-5247(21)00184-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/30/2021] [Accepted: 07/09/2021] [Indexed: 11/15/2022] Open
|
21
|
Albert DM, Salman AR, Winthrop KL, Bartley GB. The Continuing Ophthalmic Challenge of Bartonella henselae. OPHTHALMOLOGY SCIENCE 2021; 1:100048. [PMID: 36247815 PMCID: PMC9559971 DOI: 10.1016/j.xops.2021.100048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 11/02/2022]
Abstract
Purpose Methods Results Conclusions
Collapse
|
22
|
Zorrilla VO, Lozano ME, Espada LJ, Kosoy M, McKee C, Valdivia HO, Arevalo H, Troyes M, Stoops CA, Fisher ML, Vásquez GM. Comparison of sand fly trapping approaches for vector surveillance of Leishmania and Bartonella species in ecologically distinct, endemic regions of Peru. PLoS Negl Trop Dis 2021; 15:e0009517. [PMID: 34260585 PMCID: PMC8279425 DOI: 10.1371/journal.pntd.0009517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/28/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND In Peru, the information regarding sand fly vectors of leishmaniasis and bartonellosis in the Amazon region is limited. In this study, we carried out sand fly collections in Peruvian lowland and highland jungle areas using different trap type configurations and screened them for Leishmania and Bartonella DNA. METHODOLOGY/PRINCIPAL FINDINGS Phlebotomine sand flies were collected in Peruvian Amazon jungle and inter Andean regions using CDC light trap, UV and color LED traps, Mosquito Magnet trap, BG Sentinel trap, and a Shannon trap placed outside the houses. Leishmania spp. screening was performed by kDNA PCR and confirmed by a nested cytochrome B gene (cytB) PCR. Bartonella spp. screening was performed by ITS PCR and confirmed by citrate synthase gene (gltA). The PCR amplicons were sequenced to identify Leishmania and Bartonella species. UV and Blue LED traps collected the highest average number of sand flies per hour in low jungle; UV, Mosquito Magnet and Shannon traps in high jungle; and Mosquito Magnet in inter Andean region. Leishmania guyanensis in Lutzomyia carrerai carrerai and L. naiffi in Lu. hirsuta hirsuta were identified based on cytB sequencing. Bartonella spp. related to Bartonella bacilliformis in Lu. whitmani, Lu. nevesi, Lu. hirsuta hirsuta and Lu. sherlocki, and a Bartonella sp. related to Candidatus B. rondoniensis in Lu. nevesi and Lu. maranonensis were identified based on gltA gene sequencing. CONCLUSIONS/SIGNIFICANCE UV, Blue LED, Mosquito Magnet and Shannon traps were more efficient than the BG-Sentinel, Green, and Red LED traps. This is the first report of L. naiffi and of two genotypes of Bartonella spp. related to B. bacilliformis and Candidatus B. rondoniensis infecting sand fly species from the Amazon region in Peru.
Collapse
Affiliation(s)
- Victor O. Zorrilla
- Department of Entomology, U.S. Naval Medical Research Unit No.6, Bellavista, Peru
- * E-mail:
| | - Marisa E. Lozano
- Department of Entomology, U.S. Naval Medical Research Unit No.6, Bellavista, Peru
- Vysnova Partners, Lima, Peru
| | - Liz J. Espada
- Department of Entomology, U.S. Naval Medical Research Unit No.6, Bellavista, Peru
- Vysnova Partners, Lima, Peru
| | - Michael Kosoy
- KB One Health LLC, Fort Collins, Colorado, United States of America
| | - Clifton McKee
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, United States of America
- Department of Biology, Colorado State University, Fort Collins, Colorado, United States of America
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Hugo O. Valdivia
- Department of Parasitology, U.S. Naval Medical Research Unit No.6, Bellavista, Peru
| | - Heriberto Arevalo
- Laboratorio Referencial de Salud, Tarapoto, Direccion Regional de Salud San Martin, Peru
| | | | - Craig A. Stoops
- Department of Entomology, U.S. Naval Medical Research Unit No.6, Bellavista, Peru
| | - Michael L. Fisher
- Department of Entomology, U.S. Naval Medical Research Unit No.6, Bellavista, Peru
| | - Gissella M. Vásquez
- Department of Entomology, U.S. Naval Medical Research Unit No.6, Bellavista, Peru
| |
Collapse
|
23
|
Serral F, Castello FA, Sosa EJ, Pardo AM, Palumbo MC, Modenutti C, Palomino MM, Lazarowski A, Auzmendi J, Ramos PIP, Nicolás MF, Turjanski AG, Martí MA, Fernández Do Porto D. From Genome to Drugs: New Approaches in Antimicrobial Discovery. Front Pharmacol 2021; 12:647060. [PMID: 34177572 PMCID: PMC8219968 DOI: 10.3389/fphar.2021.647060] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 05/17/2021] [Indexed: 01/31/2023] Open
Abstract
Decades of successful use of antibiotics is currently challenged by the emergence of increasingly resistant bacterial strains. Novel drugs are urgently required but, in a scenario where private investment in the development of new antimicrobials is declining, efforts to combat drug-resistant infections become a worldwide public health problem. Reasons behind unsuccessful new antimicrobial development projects range from inadequate selection of the molecular targets to a lack of innovation. In this context, increasingly available omics data for multiple pathogens has created new drug discovery and development opportunities to fight infectious diseases. Identification of an appropriate molecular target is currently accepted as a critical step of the drug discovery process. Here, we review how diverse layers of multi-omics data in conjunction with structural/functional analysis and systems biology can be used to prioritize the best candidate proteins. Once the target is selected, virtual screening can be used as a robust methodology to explore molecular scaffolds that could act as inhibitors, guiding the development of new drug lead compounds. This review focuses on how the advent of omics and the development and application of bioinformatics strategies conduct a "big-data era" that improves target selection and lead compound identification in a cost-effective and shortened timeline.
Collapse
Affiliation(s)
- Federico Serral
- Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Florencia A Castello
- Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ezequiel J Sosa
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Ciudad Universitaria, Buenos Aires, Argentina
| | - Agustín M Pardo
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Ciudad Universitaria, Buenos Aires, Argentina
| | - Miranda Clara Palumbo
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carlos Modenutti
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Ciudad Universitaria, Buenos Aires, Argentina
| | - María Mercedes Palomino
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Ciudad Universitaria, Buenos Aires, Argentina
| | - Alberto Lazarowski
- Departamento de Bioquímica Clínica, Instituto de Investigaciones en Fisiopatología y Bioquímica Clínica (INFIBIOC), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jerónimo Auzmendi
- Departamento de Bioquímica Clínica, Instituto de Investigaciones en Fisiopatología y Bioquímica Clínica (INFIBIOC), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Pablo Ivan P Ramos
- Centro de Integração de Dados e Conhecimentos para Saúde (CIDACS), Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
| | - Marisa F Nicolás
- Laboratório Nacional de Computação Científica (LNCC), Petrópolis, Brazil
| | - Adrián G Turjanski
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Ciudad Universitaria, Buenos Aires, Argentina
| | - Marcelo A Martí
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Ciudad Universitaria, Buenos Aires, Argentina
| | - Darío Fernández Do Porto
- Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
24
|
Mehrmal S, Mhlaba JM, Zhou XA. Cutaneous Bacillary Angiomatosis in a Renal Transplant Patient. Skinmed 2021; 19:150-154. [PMID: 33938441 PMCID: PMC8579760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A 37-year-old man with a history of renal transplantation in 2013 due to focal segmental glomerulosclerosis presented to the emergency room with a 2-week history of fever, chills, anorexia, weight loss, abdominal pain, diarrhea, and a new asymptomatic lesion on the right side of the neck. The patient worked as a truck driver and frequently traveled to Wisconsin; he had not traveled internationally in the past year. He lived with his brother who had a pet cat. He was compliant with his anti-rejection medication regimen, which included mycophenolate mofetil, tacrolimus, and prednisone. Physical examination of the neck revealed an 8-mm exophytic, friable, red papule with overlying blood crusts (Figure 1). The remainder of the mucocutaneous examination was unremarkable, and there was no palpable lymphadenopathy. The patient was started on empiric intravenous cefepime and metronidazole and admitted to the hospital for further management. A punch biopsy of the lesion was performed.
Collapse
Affiliation(s)
- Sino Mehrmal
- Department of Internal Medicine, Alameda Health System - Highland Hospital, Oakland, CA
| | - Julia M Mhlaba
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Xiaolong A Zhou
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL;
| |
Collapse
|
25
|
Brčić I, Spasić S, England JS, Zuo Y, Velez-Torres J, Diaz-Perez JA, Gorkiewicz G, Rosenberg AE. Clear Cell Change in Reactive Angiogenesis: A Potential Diagnostic Pitfall. Am J Surg Pathol 2021; 45:531-536. [PMID: 33002917 DOI: 10.1097/pas.0000000000001595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Reactive angiogenesis is commonplace, occurs in many circumstances, and is important in the repair of injured tissue. Histologically, it is characterized by newly formed capillaries arranged in a lobular architecture and lined by plump endothelial cells. We have encountered a form of reactive angiogenesis not well described; composed of large endothelial cells with abundant clear cytoplasm that causes diagnostic challenges. The cohort includes 10 patients, aged 4 to 61, mean 40 years; 7 males, 3 females. One case involved bone (ilium), and 9 involved soft tissue: fingers (n=2), toes (n=2), hip joint (n=1), shoulder (n=1), thigh (n=2), and anal mucosa (n=1). Clinically, the patients had chronic ulcers, osteomyelitis, or localized infection. All cases exhibited a lobular proliferation of capillaries lined by large polyhedral endothelial cells that obscured the vessel lumens and were admixed with acute and chronic inflammation. The endothelial nuclei were vesicular with small nucleoli and the cytoplasm was abundant and clear or palely eosinophilic. The endothelial cells were stained with CD31 and ERG (7/7 cases), CD34 (6/6), FLI1 (4/4), and were negative for keratin and CD68 (6/6). Periodic acid-Schiff stain and periodic acid-Schiff stain-diastase on 3 cases did not demonstrate glycogen. Using a polymerase chain reaction, no Bartonella henselae was found in all 6 cases tested. Reactive angiogenesis with clear cell change unassociated with Bartonella spp. has not been described. It causes diagnostic challenges and the differential diagnosis includes benign and malignant tumors, as well as unusual infections. It is important to distinguish between these possibilities because of the significant impact on treatment and prognosis.
Collapse
Affiliation(s)
- Iva Brčić
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Smiljana Spasić
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, FL
| | - Jonathan S England
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, FL
| | - Yiqin Zuo
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, FL
| | - Jaylou Velez-Torres
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, FL
| | - Julio A Diaz-Perez
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, FL
| | - Gregor Gorkiewicz
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Andrew E Rosenberg
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, FL
| |
Collapse
|
26
|
Genetic diversity of Bartonella species in small mammals in the Qaidam Basin, western China. Sci Rep 2021; 11:1735. [PMID: 33462399 PMCID: PMC7814127 DOI: 10.1038/s41598-021-81508-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/07/2021] [Indexed: 01/09/2023] Open
Abstract
Investigation of the prevalence and diversity of Bartonella infections in small mammals in the Qaidam Basin, western China, could provide a scientific basis for the control and prevention of Bartonella infections in humans. Accordingly, in this study, small mammals were captured using snap traps in Wulan County and Ge’ermu City, Qaidam Basin, China. Spleen and brain tissues were collected and cultured to isolate Bartonella strains. The suspected positive colonies were detected with polymerase chain reaction amplification and sequencing of gltA, ftsZ, RNA polymerase beta subunit (rpoB) and ribC genes. Among 101 small mammals, 39 were positive for Bartonella, with the infection rate of 38.61%. The infection rate in different tissues (spleens and brains) (χ2 = 0.112, P = 0.738) and gender (χ2 = 1.927, P = 0.165) of small mammals did not have statistical difference, but that in different habitats had statistical difference (χ2 = 10.361, P = 0.016). Through genetic evolution analysis, 40 Bartonella strains were identified (two different Bartonella species were detected in one small mammal), including B. grahamii (30), B. jaculi (3), B. krasnovii (3) and Candidatus B. gerbillinarum (4), which showed rodent-specific characteristics. B. grahamii was the dominant epidemic strain (accounted for 75.0%). Furthermore, phylogenetic analysis showed that B. grahamii in the Qaidam Basin, might be close to the strains isolated from Japan and China. Overall, we observed a high prevalence of Bartonella infection in small mammals in the Qaidam Basin. B. grahamii may cause human disease, and the pathogenicity of the others Bartonella species needs further study, the corresponding prevention and control measures should be taken into consideration.
Collapse
|
27
|
Vaselek S, Oguz G, Ayhan N, Ozbel Y, Kadriaj P, Ćupina AI, Velo E, Muja N, Baymak D, Alishani M, Toz S, Nalcaci M, Sherifi K, Charrel R, Alten B, Petrić D. Sandfly surveillance and investigation of Leishmania spp. DNA in sandflies in Kosovo. MEDICAL AND VETERINARY ENTOMOLOGY 2020; 34:394-401. [PMID: 32438501 DOI: 10.1111/mve.12451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 04/16/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
In the past decade, leishmaniasis seems to be re-emerging in Balkan countries. There are serious implications that Kosovo is a visceral leishmaniasis endemic region with autochthonous transmission; nevertheless, surveillance of vectors, reservoirs or the disease is not yet established. Gaining knowledge about sandfly vector species is a prerequisite for the development of a monitoring and control plan in the future. After a long gap in research of over 70 years, sandfly studies in Kosovo were resumed in 2014. During this presence/absence study, nine sandfly species were detected: Phlebotomus papatasi, Ph. perfiliewi, Ph. tobbi, Ph. neglectus, Ph. simici, Ph. balcanicus, Ph. alexandri, Ph. mascittii and Sergentomyia minuta. Three species are new with regard to the fauna of Kosovo - Ph. alexandri, Ph. balcanicus and Ph. mascittii. Besides increased diversity, changes in the number of collected specimens and distribution range of species were recorded, with Ph. neglectus being the most dominant species with the widest distribution. Testing of randomly chosen females for Leishmania spp. DNA resulted the in detection of L. tropica in a specimen of Ph. neglectus. The presence of numerous vector species in the sandfly fauna of Kosovo pose a threat for the re-emergence of vector-borne diseases. Therefore, continuous surveillance is recommended with regular updates on vector distribution and abundance.
Collapse
Affiliation(s)
- S Vaselek
- Laboratory for Medical Entomology, Department of Plant and Environmental Protection, Faculty of Agriculture, University of Novi Sad, Novi Sad, Serbia
| | - G Oguz
- VERG Laboratory, Ecology Division, Department of Biology, Faculty of Science, Hacettepe University, Beytepe, Ankara, Turkey
| | - N Ayhan
- Unité des Virus Emergents (UVE: Aix Marseille Univ, IRD 190, INSERM 1207, IHU Méditerranée Infection), Marseille, France
| | - Y Ozbel
- Faculty of Medicine, Ege University, Izmir, Turkey
| | - P Kadriaj
- Control of Infectious Diseases Department, Institute of Public Health, Tirana, Albania
| | - A I Ćupina
- Laboratory for Medical Entomology, Department of Plant and Environmental Protection, Faculty of Agriculture, University of Novi Sad, Novi Sad, Serbia
| | - E Velo
- Control of Infectious Diseases Department, Institute of Public Health, Tirana, Albania
| | - N Muja
- Faculty of Mathematics and Natural Science, Department of Biology, University of Prishtina "Hasan Prishtina", Prishtina, Kosovo
| | - D Baymak
- Kosovo National Institute of Public Health, Prishtina, Kosovo
| | - M Alishani
- Faculty of Agriculture and Veterinary, Department of Veterinary Medicine, University of Prishtina "Hasan Prishtina", Prishtina, Kosovo
| | - S Toz
- Faculty of Medicine, Ege University, Izmir, Turkey
| | - M Nalcaci
- Faculty of Medicine, Ege University, Izmir, Turkey
| | - K Sherifi
- Faculty of Agriculture and Veterinary, Department of Veterinary Medicine, University of Prishtina "Hasan Prishtina", Prishtina, Kosovo
| | - R Charrel
- Unité des Virus Emergents (UVE: Aix Marseille Univ, IRD 190, INSERM 1207, IHU Méditerranée Infection), Marseille, France
| | - B Alten
- VERG Laboratory, Ecology Division, Department of Biology, Faculty of Science, Hacettepe University, Beytepe, Ankara, Turkey
| | - D Petrić
- Laboratory for Medical Entomology, Department of Plant and Environmental Protection, Faculty of Agriculture, University of Novi Sad, Novi Sad, Serbia
| |
Collapse
|
28
|
Wachter S, Hicks LD, Raghavan R, Minnick MF. Novel small RNAs expressed by Bartonella bacilliformis under multiple conditions reveal potential mechanisms for persistence in the sand fly vector and human host. PLoS Negl Trop Dis 2020; 14:e0008671. [PMID: 33216745 PMCID: PMC7717549 DOI: 10.1371/journal.pntd.0008671] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/04/2020] [Accepted: 10/06/2020] [Indexed: 11/30/2022] Open
Abstract
Bartonella bacilliformis, the etiological agent of Carrión's disease, is a Gram-negative, facultative intracellular alphaproteobacterium. Carrión's disease is an emerging but neglected tropical illness endemic to Peru, Colombia, and Ecuador. B. bacilliformis is spread between humans through the bite of female phlebotomine sand flies. As a result, the pathogen encounters significant and repeated environmental shifts during its life cycle, including changes in pH and temperature. In most bacteria, small non-coding RNAs (sRNAs) serve as effectors that may post-transcriptionally regulate the stress response to such changes. However, sRNAs have not been characterized in B. bacilliformis, to date. We therefore performed total RNA-sequencing analyses on B. bacilliformis grown in vitro then shifted to one of ten distinct conditions that simulate various environments encountered by the pathogen during its life cycle. From this, we identified 160 sRNAs significantly expressed under at least one of the conditions tested. sRNAs included the highly-conserved tmRNA, 6S RNA, RNase P RNA component, SRP RNA component, ffH leader RNA, and the alphaproteobacterial sRNAs αr45 and speF leader RNA. In addition, 153 other potential sRNAs of unknown function were discovered. Northern blot analysis was used to confirm the expression of eight novel sRNAs. We also characterized a Bartonella bacilliformis group I intron (BbgpI) that disrupts an un-annotated tRNACCUArg gene and determined that the intron splices in vivo and self-splices in vitro. Furthermore, we demonstrated the molecular targeting of Bartonella bacilliformis small RNA 9 (BbsR9) to transcripts of the ftsH, nuoF, and gcvT genes, in vitro.
Collapse
Affiliation(s)
- Shaun Wachter
- Program in Cellular, Molecular & Microbial Biology, Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Linda D. Hicks
- Program in Cellular, Molecular & Microbial Biology, Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Rahul Raghavan
- Department of Biology and Center for Life in Extreme Environments, Portland State University, Portland, Oregon, United States of America
| | - Michael F. Minnick
- Program in Cellular, Molecular & Microbial Biology, Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| |
Collapse
|
29
|
Shrestha B, Lee Y. Cellular and molecular mechanisms of DEET toxicity and disease-carrying insect vectors: a review. Genes Genomics 2020; 42:1131-1144. [DOI: 10.1007/s13258-020-00991-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 08/20/2020] [Indexed: 12/15/2022]
|
30
|
O'Kelly B, Lambert JS. Vector-borne diseases in pregnancy. Ther Adv Infect Dis 2020; 7:2049936120941725. [PMID: 32944240 PMCID: PMC7469740 DOI: 10.1177/2049936120941725] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 06/15/2020] [Indexed: 12/14/2022] Open
Abstract
Vector-borne infections cause a significant proportion of world-wide morbidity and mortality and many are increasing in incidence. This is due to a combination of factors, primarily environmental change, encroachment of human habitats from urban to peri-urban areas and rural to previously uninhabited areas, persistence of poverty, malnutrition and resource limitation in geographical areas where these diseases are endemic. Pregnant women represent the single largest ‘at risk’ group, due to immune-modulation and a unique physiological state. Many of these diseases have not benefitted from the same level of drug development as other infectious and medical domains, a factor attributing to the ‘neglected tropical disease’ title many vector-borne diseases hold. Pregnancy compounds this issue as data for safety and efficacy for many drugs is practically non-existent, precluding exposure in pregnancy to many first-line therapeutic agents for ‘fear of the unknown’ or overstated adverse pregnancy-foetal outcomes. In this review, major vector-borne diseases, their impact on pregnancy outcomes, current treatment, vaccination and short-comings of current medical practice for pregnant women will be discussed.
Collapse
Affiliation(s)
- Brendan O'Kelly
- Infectious Diseases Specialist Registrar, Mater Misericordiae University Hospital, Dublin, Ireland
| | - John S Lambert
- Consultant in Infectious Diseases, Medicine and Sexual Health (GUM), Mater, Rotunda and UCD, Mater Misericordiae University Hospital, Clinic 6, Eccles St, Inns Quay, Dublin, D07 R2WY University College Dublin Rotunda Maternity Hospital
| |
Collapse
|
31
|
Farfán-López M, Espinoza-Culupú A, García-de-la-Guarda R, Serral F, Sosa E, Palomino MM, Fernández Do Porto DA. Prioritisation of potential drug targets against Bartonella bacilliformis by an integrative in-silico approach. Mem Inst Oswaldo Cruz 2020; 115:e200184. [PMID: 32785422 PMCID: PMC7416641 DOI: 10.1590/0074-02760200184] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/22/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Carrion's disease (CD) is a neglected biphasic illness caused by Bartonella bacilliformis, a Gram-negative bacteria found in the Andean valleys. The spread of resistant strains underlines the need for novel antimicrobials against B. bacilliformis and related bacterial pathogens. OBJECTIVE The main aim of this study was to integrate genomic-scale data to shortlist a set of proteins that could serve as attractive targets for new antimicrobial discovery to combat B. bacilliformis. METHODS We performed a multidimensional genomic scale analysis of potential and relevant targets which includes structural druggability, metabolic analysis and essentiality criteria to select proteins with attractive features for drug discovery. FINDINGS We shortlisted seventeen relevant proteins to develop new drugs against the causative agent of Carrion's disease. Particularly, the protein products of fabI, folA, aroA, trmFO, uppP and murE genes, meet an important number of desirable features that make them attractive targets for new drug development. This data compendium is freely available as a web server (http://target.sbg.qb.fcen.uba.ar/). MAIN CONCLUSION This work represents an effort to reduce the costs in the first phases of B. bacilliformis drug discovery.
Collapse
Affiliation(s)
- Mariella Farfán-López
- Laboratorio de Microbiología Molecular y Biotecnología, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Abraham Espinoza-Culupú
- Laboratorio de Microbiología Molecular y Biotecnología, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Ruth García-de-la-Guarda
- Laboratorio de Microbiología Molecular y Biotecnología, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Federico Serral
- Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ezequiel Sosa
- Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Mercedes Palomino
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Darío A Fernández Do Porto
- Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
32
|
The Bartonella autotransporter BafA activates the host VEGF pathway to drive angiogenesis. Nat Commun 2020; 11:3571. [PMID: 32678094 PMCID: PMC7366657 DOI: 10.1038/s41467-020-17391-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/26/2020] [Indexed: 12/29/2022] Open
Abstract
Pathogenic bacteria of the genus Bartonella can induce vasoproliferative lesions during infection. The underlying mechanisms are unclear, but involve secretion of an unidentified mitogenic factor. Here, we use functional transposon-mutant screening in Bartonella henselae to identify such factor as a pro-angiogenic autotransporter, called BafA. The passenger domain of BafA induces cell proliferation, tube formation and sprouting of microvessels, and drives angiogenesis in mice. BafA interacts with vascular endothelial growth factor (VEGF) receptor-2 and activates the downstream signaling pathway, suggesting that BafA functions as a VEGF analog. A BafA homolog from a related pathogen, Bartonella quintana, is also functional. Our work unveils the mechanistic basis of vasoproliferative lesions observed in bartonellosis, and we propose BafA as a key pathogenic factor contributing to bacterial spread and host adaptation. Pathogenic bacteria of the genus Bartonella can induce vasoproliferative lesions during infection. Here, Tsukamoto et al. show that this effect is caused by a secreted protein that induces cell proliferation and angiogenesis by acting as an analog of the host’s vascular endothelial growth factor (VEGF).
Collapse
|
33
|
Thibau A, Dichter AA, Vaca DJ, Linke D, Goldman A, Kempf VAJ. Immunogenicity of trimeric autotransporter adhesins and their potential as vaccine targets. Med Microbiol Immunol 2020; 209:243-263. [PMID: 31788746 PMCID: PMC7247748 DOI: 10.1007/s00430-019-00649-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 11/19/2019] [Indexed: 12/15/2022]
Abstract
The current problem of increasing antibiotic resistance and the resurgence of numerous infections indicate the need for novel vaccination strategies more than ever. In vaccine development, the search for and the selection of adequate vaccine antigens is the first important step. In recent years, bacterial outer membrane proteins have become of major interest, as they are the main proteins interacting with the extracellular environment. Trimeric autotransporter adhesins (TAAs) are important virulence factors in many Gram-negative bacteria, are localised on the bacterial surface, and mediate the first adherence to host cells in the course of infection. One example is the Neisseria adhesin A (NadA), which is currently used as a subunit in a licensed vaccine against Neisseria meningitidis. Other TAAs that seem promising vaccine candidates are the Acinetobacter trimeric autotransporter (Ata), the Haemophilus influenzae adhesin (Hia), and TAAs of the genus Bartonella. Here, we review the suitability of various TAAs as vaccine candidates.
Collapse
Affiliation(s)
- Arno Thibau
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe-University, Paul-Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany
| | - Alexander A. Dichter
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe-University, Paul-Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany
| | - Diana J. Vaca
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe-University, Paul-Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany
| | - Dirk Linke
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Adrian Goldman
- Astbury Centre for Structural Molecular Biology, School of Biomedical Sciences, University of Leeds, Leeds, UK
- Molecular and Integrative Biosciences Program, University of Helsinki, Helsinki, Finland
| | - Volkhard A. J. Kempf
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe-University, Paul-Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany
| |
Collapse
|
34
|
Hicks LD, Minnick MF. Human vascular endothelial cells express epithelial growth factor in response to infection by Bartonella bacilliformis. PLoS Negl Trop Dis 2020; 14:e0008236. [PMID: 32302357 PMCID: PMC7190185 DOI: 10.1371/journal.pntd.0008236] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/29/2020] [Accepted: 03/18/2020] [Indexed: 12/16/2022] Open
Abstract
Bartonella are Gram-negative bacterial pathogens that trigger pathological angiogenesis during infection of humans. Bartonella bacilliformis (Bb) is a neglected tropical agent endemic to South America, where it causes Carrión’s disease. Little is known about Bb’s virulence determinants or how the pathogen elicits hyperproliferation of the vasculature, culminating in Peruvian warts (verruga peruana) of the skin. In this study, we determined that active infection of human umbilical vein endothelial cells (HUVECs) by live Bb induced host cell secretion of epidermal growth factor (EGF) using ELISA. Killed bacteria or lysates of various Bb strains did not cause EGF production, suggesting that an active infection was necessary for the response. Bb also caused hyperproliferation of infected HUVECs, and the mitogenic response could be inhibited by the EGF-receptor (EGFR) inhibitor, AG1478. Bb strains engineered to overexpress recombinant GroEL, evoked greater EGF production and hyperproliferation of HUVECs compared to control strains. Conditioned (spent) media from cultured HUVECs that had been previously infected by Bb were found to be mitogenic for naïve HUVECs, and the response could be inhibited by EGFR blocking with AG1478. Bb cells and cell lysates stimulated HUVEC migration and capillary-like tube formation in transmigration and Matrigel assays, respectively. To our knowledge, this is the first demonstration of EGF production by Bb-infected endothelial cells; an association that could contribute to hyperproliferation of the vascular bed during bartonellosis. Bartonella are bacteria that infect the circulatory system and, unlike other bacteria, cause blood vessels to grow uncontrollably in the skin, spleen and liver of humans. In many respects, the process resembles the aberrant blood vessel formation that occurs during tumor formation. This study found that when Bartonella bacilliformis (Bb) infects vascular endothelial cells (VECs) that line the circulatory system, it causes them to overproduce a protein called epidermal growth factor (EGF) which, in turn, causes the cells to multiply more rapidly than usual. We also found that VECs migrate towards the bacterium and form capillary-like tubes; processes that occur during an actual infection. This cause-effect has not been previously reported, and it may help to explain the pathology observed in humans infected by Bb.
Collapse
Affiliation(s)
- Linda D. Hicks
- Program in Cellular, Molecular & Microbial Biology, Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Michael F. Minnick
- Program in Cellular, Molecular & Microbial Biology, Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
- * E-mail:
| |
Collapse
|
35
|
Complete Genome Sequence of Bartonella bacilliformis Strain KC584 (ATCC 35686). Microbiol Resour Announc 2020; 9:9/1/e01377-19. [PMID: 31896649 PMCID: PMC6940301 DOI: 10.1128/mra.01377-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Bartonella bacilliformis is the biological agent of Carrion’s disease, a vector-borne, life-threatening human bartonellosis restricted to South America. Here, we report the complete genome sequence of B. bacilliformis KC584 (ATCC 35686). Although it is commonly used as a reference strain, to date, its complete genome has not been published. Bartonella bacilliformis is the biological agent of Carrion’s disease, a vector-borne, life-threatening human bartonellosis restricted to South America. Here, we report the complete genome sequence of B. bacilliformis KC584 (ATCC 35686). Although it is commonly used as a reference strain, to date, its complete genome has not been published.
Collapse
|
36
|
Rizzo MF, Osikowicz L, Cáceres AG, Luna-Caipo VD, Suarez-Puyen SM, Bai Y, Kosoy M. Identification of Bartonella rochalimae in Guinea Pigs ( Cavia porcellus) and Fleas Collected from Rural Peruvian Households. Am J Trop Med Hyg 2019; 101:1276-1281. [PMID: 31674296 PMCID: PMC6896888 DOI: 10.4269/ajtmh.19-0517] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/15/2019] [Indexed: 12/21/2022] Open
Abstract
In the present study, we tested 391 fleas collected from guinea pigs (Cavia porcellus) (241 Pulex species, 110 Ctenocephalides felis, and 40 Tiamastus cavicola) and 194 fleas collected from human bedding and clothing (142 Pulex species, 43 C. felis, five T. cavicola, and four Ctenocephalides canis) for the presence of Bartonella DNA. We also tested 83 blood spots collected on Flinders Technology Associates (FTA) cards from guinea pigs inhabiting 338 Peruvian households. Bartonella DNA was detected in 81 (20.7%) of 391 guinea pig fleas, in five (2.6%) of 194 human fleas, and in 16 (19.3%) of 83 guinea pig blood spots. Among identified Bartonella species, B. rochalimae was the most prevalent in fleas (89.5%) and the only species found in the blood spots from guinea pigs. Other Bartonella species detected in fleas included B. henselae (3.5%), B. clarridgeiae (2.3%), and an undescribed Bartonella species (4.7%). Our results demonstrated a high prevalence of zoonotic B. rochalimae in households in rural areas where the research was conducted and suggested a potential role of guinea pigs as a reservoir of this bacterium.
Collapse
Affiliation(s)
- María F. Rizzo
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado
| | - Lynn Osikowicz
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado
| | - Abraham G. Cáceres
- Sección de Entomología, Instituto de Medicina Tropical “Daniel A. Carrión” y Departamento Académico de Microbiología Médica, Facultad de Medicina, Universidad Nacional Mayor de San Marcos, Lima, Peru
- Laboratorio de Entomología, Instituto Nacional de Salud, Lima, Peru
| | - Violeta D. Luna-Caipo
- Dirección Ejecutiva de Salud Ambiental, Sub Región de Salud de Cutervo, Dirección Regional de Salud Cajamarca, Cajamarca, Peru
| | - Segundo M. Suarez-Puyen
- Dirección Ejecutiva de Salud Ambiental y Control Vectorial, Red de Salud Utcubamba, Dirección Regional de Salud Amazonas, Amazonas, Peru
| | - Ying Bai
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado
| | - Michael Kosoy
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado
| |
Collapse
|
37
|
Ulloa GM, Vásquez-Achaya F, Gomes C, Del Valle LJ, Ruiz J, Pons MJ, Del Valle Mendoza J. Molecular Detection of Bartonella bacilliformis in Lutzomyia maranonensis in Cajamarca, Peru: A New Potential Vector of Carrion's Disease in Peru? Am J Trop Med Hyg 2019; 99:1229-1233. [PMID: 30226144 DOI: 10.4269/ajtmh.18-0520] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Carrion's disease is a neglected, vector-borne illness that affects Colombia, Ecuador, and especially Peru. The phlebotomine sand flies Lutzomyia verrucarum and Lutzomyia peruensis are the main illness vectors described, although other species may be implicated in endemic areas such as some northern Peruvian regions, in which Carrion's disease vector has not been established. The aim of this study was to evaluate the presence of Bartonella bacilliformis DNA in Lutzomyia maranonensis from Cajamarca, northern Peru. This sand fly has not been defined as a vector yet. Centers for Disease Control and Prevention light traps were used to collect adult phlebotomine sand flies from 2007 to 2008 in the Cajamarca department. Female specimens were identified using morphological keys and were grouped into pools of five sand flies, taking into account district and sampling site (intradomicile or peridomicile). DNA was extracted, and then conventional and real-time polymerase chain reaction (RT-PCR) were performed to detect B. bacilliformis and subsequently confirmed by sequencing. A total of 383 specimens of L. maranonensis species were analyzed. Two of 76 pools were positive for B. bacilliformis by sequencing; all positives pools were from Querocotillo district. In addition, Mesorhizobium spp. were identified in two pools of sand flies, which is an α-proteobacteria phylogenetically very close to B. bacilliformis. This study presents molecular evidence that suggests L. maranonensis is naturally infected by B. bacilliformis in the Cajamarca department. Further research should determine if L. maranonensis is a vector and could transmit B. bacilliformis.
Collapse
Affiliation(s)
- Gabriela M Ulloa
- Emerge, Emerging Diseases and Climate Change Research Unit, School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Peru.,Centro de Investigación e Innovación, Facultad de Ciencias de la Salud, Universidad Peruana de Ciencias Aplicadas, Lima, Peru
| | - Fernando Vásquez-Achaya
- Centro de Investigación e Innovación, Facultad de Ciencias de la Salud, Universidad Peruana de Ciencias Aplicadas, Lima, Peru
| | - Cláudia Gomes
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Luis J Del Valle
- Centre de Recerca en Ciència i Enginyeria Multiescala de Barcelona, Departament d'Enginyeria Química, Escuela de Ingeniería de Barcelona Este (EEBE), Universitat Politècnica de Catalunya (UPC) BarcelonaTech, Barcelona, Spain
| | - Joaquim Ruiz
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Maria J Pons
- Centro de Investigación e Innovación, Facultad de Ciencias de la Salud, Universidad Peruana de Ciencias Aplicadas, Lima, Peru.,Laboratorio de Microbiología y Genómica Bacteriana, Universidad Científica del Sur, Lima, Peru
| | - Juana Del Valle Mendoza
- Centro de Investigación e Innovación, Facultad de Ciencias de la Salud, Universidad Peruana de Ciencias Aplicadas, Lima, Peru
| |
Collapse
|
38
|
Lins KDA, Drummond MR, Velho PENF. Cutaneous manifestations of bartonellosis. An Bras Dermatol 2019; 94:594-602. [PMID: 31780437 PMCID: PMC6857551 DOI: 10.1016/j.abd.2019.09.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 02/27/2019] [Indexed: 12/20/2022] Open
Abstract
Bartonellosis are diseases caused by any kind of Bartonella species. The infection manifests as asymptomatic bacteremia to potentially fatal disorders. Many species are pathogenic to humans, but three are responsible for most clinical symptoms: Bartonella bacilliformis, Bartonella quintana, and Bartonella henselae. Peruvian wart, caused by B. bacilliformis, may be indistinguishable from bacillary angiomatosis caused by the other two species. Other cutaneous manifestations include maculo-papular rash in trench fever, papules or nodules in cat scratch disease, and vasculitis (often associated with endocarditis). In addition, febrile morbilliform rash, purpura, urticaria, erythema nodosum, erythema multiforme, erythema marginatus, granuloma annularis, leukocytoclastic vasculitis, granulomatous reactions, and angioproliferative reactions may occur. Considering the broad spectrum of infection and the potential complications associated with Bartonella spp., the infection should be considered by physicians more frequently among the differential diagnoses of idiopathic conditions. Health professionals and researchers often neglected this diseases.
Collapse
Affiliation(s)
- Karina de Almeida Lins
- Department of Clinical Medicine, School of Medical Sciences, Universidade Estadual de Campinas, Campinas, SP, Brazil; Laboratory of Applied Research in Dermatology and Bartonella Infection, School of Medical Sciences, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Marina Rovani Drummond
- Department of Clinical Medicine, School of Medical Sciences, Universidade Estadual de Campinas, Campinas, SP, Brazil; Laboratory of Applied Research in Dermatology and Bartonella Infection, School of Medical Sciences, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Paulo Eduardo Neves Ferreira Velho
- Laboratory of Applied Research in Dermatology and Bartonella Infection, School of Medical Sciences, Universidade Estadual de Campinas, Campinas, SP, Brazil; Discipline of Dermatology, Department of Clinical Medicine, School of Medical Sciences, Universidade Estadual de Campinas, Campinas, SP, Brazil.
| |
Collapse
|
39
|
Garcia-Quintanilla M, Dichter AA, Guerra H, Kempf VAJ. Carrion's disease: more than a neglected disease. Parasit Vectors 2019; 12:141. [PMID: 30909982 PMCID: PMC6434794 DOI: 10.1186/s13071-019-3390-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/07/2019] [Indexed: 01/30/2023] Open
Abstract
Infections with Bartonella bacilliformis result in Carrion's disease in humans. In the first phase of infection, the pathogen causes a hemolytic fever ("Oroya fever") with case-fatality rates as high as ~90% in untreated patients, followed by a chronical phase resulting in angiogenic skin lesions ("verruga peruana"). Bartonella bacilliformis is endemic to South American Andean valleys and is transmitted via sand flies (Lutzomyia spp.). Humans are the only known reservoir for this old disease and therefore no animal infection model is available. In the present review, we provide the current knowledge on B. bacilliformis and its pathogenicity factors, vectors, possible unknown reservoirs, established and potential infection models and immunological aspects of the disease.
Collapse
Affiliation(s)
- Meritxell Garcia-Quintanilla
- University Hospital, Goethe-University, Institute for Medical Microbiology and Infection Control, Frankfurt am Main, Germany
| | - Alexander A Dichter
- University Hospital, Goethe-University, Institute for Medical Microbiology and Infection Control, Frankfurt am Main, Germany
| | - Humberto Guerra
- Universidad Peruana Cayetano Heredia and the Instituto de Medicina Tropical Alexander von Humboldt, Lima, Peru
| | - Volkhard A J Kempf
- University Hospital, Goethe-University, Institute for Medical Microbiology and Infection Control, Frankfurt am Main, Germany.
| |
Collapse
|
40
|
Vieira CB, Praça YR, Bentes KLDS, Santiago PB, Silva SMM, Silva GDS, Motta FN, Bastos IMD, de Santana JM, de Araújo CN. Triatomines: Trypanosomatids, Bacteria, and Viruses Potential Vectors? Front Cell Infect Microbiol 2018; 8:405. [PMID: 30505806 PMCID: PMC6250844 DOI: 10.3389/fcimb.2018.00405] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/29/2018] [Indexed: 12/17/2022] Open
Abstract
Triatominae bugs are the vectors of Chagas disease, a major concern to public health especially in Latin America, where vector-borne Chagas disease has undergone resurgence due mainly to diminished triatomine control in many endemic municipalities. Although the majority of Triatominae species occurs in the Americas, species belonging to the genus Linshcosteus occur in India, and species belonging to the Triatoma rubrofasciata complex have been also identified in Africa, the Middle East, South-East Asia, and in the Western Pacific. Not all of Triatominae species have been found to be infected with Trypanosoma cruzi, but the possibility of establishing vector transmission to areas where Chagas disease was previously non-endemic has increased with global population mobility. Additionally, the worldwide distribution of triatomines is concerning, as they are able to enter in contact and harbor other pathogens, leading us to wonder if they would have competence and capacity to transmit them to humans during the bite or after successful blood feeding, spreading other infectious diseases. In this review, we searched the literature for infectious agents transmitted to humans by Triatominae. There are reports suggesting that triatomines may be competent vectors for pathogens such as Serratia marcescens, Bartonella, and Mycobacterium leprae, and that triatomine infection with other microrganisms may interfere with triatomine-T. cruzi interactions, altering their competence and possibly their capacity to transmit Chagas disease.
Collapse
Affiliation(s)
- Caroline Barreto Vieira
- Programa de Pós-Graduação em Ciências Médicas, Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil
| | - Yanna Reis Praça
- Programa de Pós-Graduação em Ciências Médicas, Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil
| | - Kaio Luís da Silva Bentes
- Laboratório de Interação Patógeno-Hospedeiro, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Universidade de Brasília, Brasília, Brazil
| | - Paula Beatriz Santiago
- Laboratório de Interação Patógeno-Hospedeiro, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Universidade de Brasília, Brasília, Brazil
| | - Sofia Marcelino Martins Silva
- Laboratório de Interação Patógeno-Hospedeiro, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Universidade de Brasília, Brasília, Brazil
| | - Gabriel dos Santos Silva
- Laboratório de Interação Patógeno-Hospedeiro, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Universidade de Brasília, Brasília, Brazil
| | - Flávia Nader Motta
- Laboratório de Interação Patógeno-Hospedeiro, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Universidade de Brasília, Brasília, Brazil
- Faculdade de Ceilândia, Universidade de Brasília, Brasília, Brazil
| | - Izabela Marques Dourado Bastos
- Laboratório de Interação Patógeno-Hospedeiro, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Universidade de Brasília, Brasília, Brazil
| | - Jaime Martins de Santana
- Laboratório de Interação Patógeno-Hospedeiro, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Universidade de Brasília, Brasília, Brazil
| | - Carla Nunes de Araújo
- Laboratório de Interação Patógeno-Hospedeiro, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Universidade de Brasília, Brasília, Brazil
- Faculdade de Ceilândia, Universidade de Brasília, Brasília, Brazil
| |
Collapse
|
41
|
Urrutia LC, Patiño-Barbosa AM, Arroyave-Valencia F, Sabogal-Roman JA, Cardona-Ospina JA, Rodriguez-Morales AJ. Oroya Fever, Verruga Peruana, and Other Bartonelloses Incidence Rates in Colombia (2009-2013). Cureus 2018; 10:e3528. [PMID: 30648063 PMCID: PMC6318093 DOI: 10.7759/cureus.3528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Bartonella bacilliformis, the etiological agent of Carrion's disease and presumed to be transmitted by phlebotomine sandflies, is endemic to the high-altitude valleys of the South American Andes, including Colombia. Methods This observational, retrospective study in which the incidence of bartonelloses (International Classification of Diseases, 10th revision (ICD-10) codes A44.0-A44.9) in Colombia, from 2009-2013, was estimated based on data extracted from the personal health records system (Registro Individual Prestación Servicios, RIPS). Using the official population estimates of the National Statistics Department (Departamento Administrativo Nacional de Estadísticas, DANE), crude and adjusted incidence rates were estimated (cases/100,000 population). Results A total of 1,389 cases were reported (median 289/year), for a cumulative national rate of 3.02 cases/100,000 population; 91.2% were female; 66.8% were <40-year-old (3.8% <9.9-year-old). The cases were 2.9% Oroya fever (A44.0), 13.1% verruga peruana (A44.1), and the rest (85.3%) were other forms of bartonelloses (A44.8-A44.9). The highest rates of Oroya fever were reported in Bolivar (2.5 cases/1,000,000 population). For verruga peruana highest number of cases were reported in Antioquia (32; 17.8%; 5.21 cases/1,000,000 population) and the highest rate at Magdalena (11.54 cases/1,000,000 population) (Risaralda, 6.45; Caldas, 5.1). For other forms of bartonelloses, the highest rates were reported at Magdalena (48.65 cases/1,000,000 population), followed by Huila (32.8) and La Guajira (18.9). At Nariño, Putumayo, Amazonas, Cauca, and Valle del Cauca, 11.7% of the cases of the country were reported. Conclusions Lutzomyia columbiana, the potential vector of Bartonella bacilliformis in Colombia, is distributed not only in Nariño, Cauca, and Valle del Cauca but also in the Antioquia, Caldas, Huila, La Guajira, Risaralda, Cordoba, and Caribbean areas. Given this distribution, the transmission would be occurring, as seen in reported cases, in more areas than previously described by classic reports of these diseases in the country.
Collapse
|
42
|
Becker DJ, Bergner LM, Bentz AB, Orton RJ, Altizer S, Streicker DG. Genetic diversity, infection prevalence, and possible transmission routes of Bartonella spp. in vampire bats. PLoS Negl Trop Dis 2018; 12:e0006786. [PMID: 30260954 PMCID: PMC6159870 DOI: 10.1371/journal.pntd.0006786] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 08/27/2018] [Indexed: 12/20/2022] Open
Abstract
Bartonella spp. are globally distributed bacteria that cause endocarditis in humans and domestic animals. Recent work has suggested bats as zoonotic reservoirs of some human Bartonella infections; however, the ecological and spatiotemporal patterns of infection in bats remain largely unknown. Here we studied the genetic diversity, prevalence of infection across seasons and years, individual risk factors, and possible transmission routes of Bartonella in populations of common vampire bats (Desmodus rotundus) in Peru and Belize, for which high infection prevalence has previously been reported. Phylogenetic analysis of the gltA gene for a subset of PCR-positive blood samples revealed sequences that were related to Bartonella described from vampire bats from Mexico, other Neotropical bat species, and streblid bat flies. Sequences associated with vampire bats clustered significantly by country but commonly spanned Central and South America, implying limited spatial structure. Stable and nonzero Bartonella prevalence between years supported endemic transmission in all sites. The odds of Bartonella infection for individual bats was unrelated to the intensity of bat flies ectoparasitism, but nearly all infected bats were infested, which precluded conclusive assessment of support for vector-borne transmission. While metagenomic sequencing found no strong evidence of Bartonella DNA in pooled bat saliva and fecal samples, we detected PCR positivity in individual saliva and feces, suggesting the potential for bacterial transmission through both direct contact (i.e., biting) and environmental (i.e., fecal) exposures. Further investigating the relative contributions of direct contact, environmental, and vector-borne transmission for bat Bartonella is an important next step to predict infection dynamics within bats and the risks of human and livestock exposures.
Collapse
Affiliation(s)
- Daniel J. Becker
- Odum School of Ecology, University of Georgia, Athens, Georgia, United States of America
- Center for the Ecology of Infectious Disease, University of Georgia, Athens, Georgia, United States of Ameirca
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, United States of America
| | - Laura M. Bergner
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Alexandra B. Bentz
- Department of Poultry Science, University of Georgia, Athens, Georgia, United States of America
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Richard J. Orton
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
- MRC–University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Sonia Altizer
- Odum School of Ecology, University of Georgia, Athens, Georgia, United States of America
- Center for the Ecology of Infectious Disease, University of Georgia, Athens, Georgia, United States of Ameirca
| | - Daniel G. Streicker
- Odum School of Ecology, University of Georgia, Athens, Georgia, United States of America
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
- MRC–University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| |
Collapse
|
43
|
Del Valle-Mendoza J, Rojas-Jaimes J, Vásquez-Achaya F, Aguilar-Luis MA, Correa-Nuñez G, Silva-Caso W, Lescano AG, Song X, Liu Q, Li D. Molecular identification of Bartonella bacilliformis in ticks collected from two species of wild mammals in Madre de Dios: Peru. BMC Res Notes 2018; 11:405. [PMID: 29941013 PMCID: PMC6019227 DOI: 10.1186/s13104-018-3518-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/19/2018] [Indexed: 01/21/2023] Open
Abstract
Objective To study the presence of Bartonella bacilliformis in ticks collected from two wild mammals in Madre de Dios, Peru. Results A total of 110 ticks were collected. Among the 43 Amblyomma spp. extracted from the 3 Tapirus terrestris only 3 were positive for B. bacilliformis. In addition, 12 out of the 67 Rhipicephalus (Boophilus) microplus obtained from the 3 Pecari tajacu were positive for B. bacilliformis. For the first time B. bacilliformis have been detected in arthropods other than Lutzomyia spp. Further studies are required to elucidate the possible role of ticks in the spread of South American Bartonellosis.
Collapse
Affiliation(s)
- Juana Del Valle-Mendoza
- School of Medicine, Research and Innovation Centre of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima, Peru. .,Laboratorio de Biología Molecular, Instituto de Investigación Nutricional, Lima, Peru.
| | - Jesús Rojas-Jaimes
- Laboratorio de Biología Molecular y Celular, Escuela de Medicina Humana, Universidad Científica del Sur, Lima, Peru
| | - Fernando Vásquez-Achaya
- School of Medicine, Research and Innovation Centre of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima, Peru
| | - Miguel Angel Aguilar-Luis
- School of Medicine, Research and Innovation Centre of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima, Peru.,Laboratorio de Biología Molecular, Instituto de Investigación Nutricional, Lima, Peru.,Instituto de Investigación de Enfermedades Infecciosas, Lima, Peru
| | - Germán Correa-Nuñez
- Departamento Académico de Ciencias Básicas, Universidad Nacional Amazónica de Madre de Dios, Puerto Maldonado, Peru
| | - Wilmer Silva-Caso
- School of Medicine, Research and Innovation Centre of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima, Peru
| | - Andrés G Lescano
- Emerge, Emerging Diseases and Climate Change Research Unit, School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Xiuping Song
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), P.O. Box5, Changping District, Beijing, 102206, People's Republic of China
| | - Qiyong Liu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), P.O. Box5, Changping District, Beijing, 102206, People's Republic of China
| | - Dongmei Li
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), P.O. Box5, Changping District, Beijing, 102206, People's Republic of China.
| |
Collapse
|
44
|
Revisiting Bartonella bacilliformis MLST. INFECTION GENETICS AND EVOLUTION 2018; 63:231-235. [PMID: 29864510 DOI: 10.1016/j.meegid.2018.05.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 05/29/2018] [Accepted: 05/31/2018] [Indexed: 11/21/2022]
Abstract
All the studies published including Bartonella bacilliformis MLST data, as well as all B. bacilliformis genomes present in GenBank were analyzed. Overall 64 isolates and their geographical distribution were analyzed, and 14 different MLST patterns were observed. The results highlight the need for expanding the MLST studies and adding a higher number of isolates from all endemic areas.
Collapse
|
45
|
Moreira J, Bressan CS, Brasil P, Siqueira AM. Epidemiology of acute febrile illness in Latin America. Clin Microbiol Infect 2018; 24:827-835. [PMID: 29777926 PMCID: PMC7172187 DOI: 10.1016/j.cmi.2018.05.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 05/01/2018] [Accepted: 05/03/2018] [Indexed: 12/11/2022]
Abstract
Background The causes of acute febrile illness (AFI) in Latin America are diverse and their complexity increases as the proportion of fever due to malaria decreases, as malaria control measures and new pathogens emerge in the region. In this context, it is important to shed light on the gaps in the epidemiological characteristics and the geographic range for many AFI aetiologies. Objectives To review studies on community-acquired fever aetiology other than malaria in Latin America, and to highlight knowledge gaps and challenges needing further investigation. Sources PubMed from 2012 to April 2018. Content We found 17 eligible studies describing 13 539 patients. The median number of pathogens tested per individual was 3.5 (range 2–17). A causative pathogen could be determined for 6661 (49.2%) individuals. The most frequently reported pathogen during the study periods was dengue virus (DENV) (14 studies), followed by chikungunya virus (nine studies) and Zika virus (seven studies). Among the studies reporting concurrent infections, 296 individuals (2.2%) were found to have co-infections. In-hospital mortality was reported in eight (47%) studies, ranging between 0% and 18%. Implications DENV fever is the febrile illness most frequently reported, reflecting its importance, while chikungunya and zika viruses present increasing trends since their emergence in the region. Studies with systematic and harmonized approaches for detection of multiple pathogens are needed and would probably reveal a higher burden of neglected pathogens such as Rickettsia spp. and arenaviruses. The lack of point-of-care tests and harmonized approach limits the care provided by health professionals and the efficacy of surveillance for AFI in the region.
Collapse
Affiliation(s)
- J Moreira
- Instituto Nacional de Infectologia Evandro Chagas, Fundacao Oswaldo Cruz, Rio de Janeiro, Brazil; Programa de Pós-Graduação em Pesquisa Clínica, Fundacao Oswaldo Cruz, Rio de Janeiro, Brazil
| | - C S Bressan
- Instituto Nacional de Infectologia Evandro Chagas, Fundacao Oswaldo Cruz, Rio de Janeiro, Brazil; Programa de Pós-Graduação em Pesquisa Clínica, Fundacao Oswaldo Cruz, Rio de Janeiro, Brazil
| | - P Brasil
- Instituto Nacional de Infectologia Evandro Chagas, Fundacao Oswaldo Cruz, Rio de Janeiro, Brazil; Programa de Pós-Graduação em Pesquisa Clínica, Fundacao Oswaldo Cruz, Rio de Janeiro, Brazil
| | - A M Siqueira
- Instituto Nacional de Infectologia Evandro Chagas, Fundacao Oswaldo Cruz, Rio de Janeiro, Brazil; Programa de Pós-Graduação em Pesquisa Clínica, Fundacao Oswaldo Cruz, Rio de Janeiro, Brazil.
| |
Collapse
|
46
|
Hashiguchi Y, Gomez L. EA, Cáceres AG, Velez LN, Villegas NV, Hashiguchi K, Mimori T, Uezato H, Kato H. Andean cutaneous leishmaniasis (Andean-CL, uta) in Peru and Ecuador: the vector Lutzomyia sand flies and reservoir mammals. Acta Trop 2018; 178:264-275. [PMID: 29224978 DOI: 10.1016/j.actatropica.2017.12.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/28/2017] [Accepted: 12/02/2017] [Indexed: 11/25/2022]
Abstract
The vector Lutzomyia sand flies and reservoir host mammals of the Leishmania parasites, causing the Andean cutaneous leishmaniasis (Andean-CL, uta) in Peru and Ecuador were thoroughly reviewed, performing a survey of literatures including our unpublished data. The Peruvian L. (V.) peruviana, a principal Leishmania species causing Andean-CL in Peru, possessed three Lutzomyia species, Lu. peruensis, Lu. verrucarum and Lu. ayacuchensis as vectors, while the Ecuadorian L. (L.) mexicana parasite possessed only one species Lu. ayacuchensis as the vector. Among these, the Ecuadorian showed a markedly higher rate of natural Leishmania infections. However, the monthly and diurnal biting activities were mostly similar among these vector species was in both countries, and the higher rates of infection (transmission) reported, corresponded to sand fly's higher monthly-activity season (rainy season). The Lu. tejadai sand fly participated as a vector of a hybrid parasite of L. (V.) braziliensis/L. (V.) peruviana in the Peruvian Andes. Dogs were considered to be principal reservoir hosts of the L. (V.) peruviana and L. (L.) mexicana parasites in both countries, followed by other sylvatic mammals such as Phyllotis andium, Didelphis albiventris and Akodon sp. in Peru, and Rattus rattus in Ecuador, but information on the reservoir hosts/mammals was extremely poor in both countries. Thus, the Peruvian disease form demonstrated more complicated transmission dynamics than the Ecuadorian. A brief review was also given to the control of vector and reservoirs in the Andes areas. Such information is crucial for future development of the control strategies of the disease.
Collapse
|
47
|
Abstract
Carrion's disease (CD) is a neglected biphasic vector-borne illness related to Bartonella bacilliformis. It is found in the Andean valleys and is transmitted mainly by members of the Lutzomyia genus but also by blood transfusions and from mother to child. The acute phase, Oroya fever, presents severe anemia and fever. The lethality is high in the absence of adequate treatment, despite the organism being susceptible to most antibiotics. Partial immunity is developed after infection by B. bacilliformis, resulting in high numbers of asymptomatic carriers. Following infection there is the chronic phase, Peruvian warts, involving abnormal proliferation of the endothelial cells. Despite potentially being eradicable, CD has been expanded due to human migration and geographical expansion of the vector. Moreover, in vitro studies have demonstrated the risk of the development of antimicrobial resistance. These findings, together with the description of new Bartonella species producing CD-like infections, the presence of undescribed potential vectors in new areas, the lack of adequate diagnostic tools and knowledge of the immunology and bacterial pathogenesis of CD, and poor international visibility, have led to the risk of increasing the potential expansion of resistant strains which will challenge current treatment schemes as well as the possible appearance of CD in areas where it is not endemic.
Collapse
Affiliation(s)
- Cláudia Gomes
- Institute for Global Health, Barcelona Centre for International Health Research, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Joaquim Ruiz
- Institute for Global Health, Barcelona Centre for International Health Research, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
48
|
Silva-Caso W, Mazulis F, Weilg C, Aguilar-Luis MA, Sandoval I, Correa-Nuñez G, Li D, Song X, Liu Q, Del Valle-Mendoza J. Co-infection with Bartonella bacilliformis and Mycobacterium spp. in a coastal region of Peru. BMC Res Notes 2017; 10:656. [PMID: 29191209 PMCID: PMC5709857 DOI: 10.1186/s13104-017-2977-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 11/22/2017] [Indexed: 12/03/2022] Open
Abstract
Objective This study investigated an outbreak of Bartonellosis in a coastal region in Peru. Results A total of 70 (n = 70) samples with clinical criteria for the acute phase of Bartonellosis and a positive peripheral blood smear were included. 22.85% (n = 16) cases of the samples were positive for Bartonella bacilliformis by PCR and automatic sequencing. Of those positive samples, 62.5% (n = 10) cases were positive only for B. bacilliformis and 37.5% (n = 6) cases were positive to both Mycobacterium spp. and B. bacilliformis. The symptom frequencies were similar in patients diagnosed with Carrion’s disease and those co-infected with Mycobacterium spp. The most common symptoms were headaches, followed by malaise and arthralgia.
Collapse
Affiliation(s)
- Wilmer Silva-Caso
- School of Medicine, Research and Innovation Centre of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Av. San Marcos cuadra. 2, Chorrillos, Lima, Peru
| | - Fernando Mazulis
- School of Medicine, Research and Innovation Centre of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Av. San Marcos cuadra. 2, Chorrillos, Lima, Peru
| | - Claudia Weilg
- School of Medicine, Research and Innovation Centre of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Av. San Marcos cuadra. 2, Chorrillos, Lima, Peru
| | - Miguel Angel Aguilar-Luis
- School of Medicine, Research and Innovation Centre of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Av. San Marcos cuadra. 2, Chorrillos, Lima, Peru.,Laboratorio de Biología Molecular, Instituto de Investigación Nutricional, Lima, Peru
| | | | - German Correa-Nuñez
- Departamento Académico de Ciencias Básicas, Universidad Nacional Amazónica de Madre de Dios, Madre de Dios, Peru
| | - Dongmei Li
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Xiuping Song
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Qiyong Liu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Juana Del Valle-Mendoza
- School of Medicine, Research and Innovation Centre of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Av. San Marcos cuadra. 2, Chorrillos, Lima, Peru. .,Laboratorio de Biología Molecular, Instituto de Investigación Nutricional, Lima, Peru.
| |
Collapse
|
49
|
Abstract
Since the reclassification of the genus Bartonella in 1993, the number of species has grown from 1 to 45 currently designated members. Likewise, the association of different Bartonella species with human disease continues to grow, as does the range of clinical presentations associated with these bacteria. Among these, blood-culture-negative endocarditis stands out as a common, often undiagnosed, clinical presentation of infection with several different Bartonella species. The limitations of laboratory tests resulting in this underdiagnosis of Bartonella endocarditis are discussed. The varied clinical picture of Bartonella infection and a review of clinical aspects of endocarditis caused by Bartonella are presented. We also summarize the current knowledge of the molecular basis of Bartonella pathogenesis, focusing on surface adhesins in the two Bartonella species that most commonly cause endocarditis, B. henselae and B. quintana. We discuss evidence that surface adhesins are important factors for autoaggregation and biofilm formation by Bartonella species. Finally, we propose that biofilm formation is a critical step in the formation of vegetative masses during Bartonella-mediated endocarditis and represents a potential reservoir for persistence by these bacteria.
Collapse
|
50
|
Harms A, Segers FHID, Quebatte M, Mistl C, Manfredi P, Körner J, Chomel BB, Kosoy M, Maruyama S, Engel P, Dehio C. Evolutionary Dynamics of Pathoadaptation Revealed by Three Independent Acquisitions of the VirB/D4 Type IV Secretion System in Bartonella. Genome Biol Evol 2017; 9:761-776. [PMID: 28338931 PMCID: PMC5381568 DOI: 10.1093/gbe/evx042] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2017] [Indexed: 12/23/2022] Open
Abstract
The α-proteobacterial genus Bartonella comprises a group of ubiquitous mammalian pathogens that are studied as a model for the evolution of bacterial pathogenesis. Vast abundance of two particular phylogenetic lineages of Bartonella had been linked to enhanced host adaptability enabled by lineage-specific acquisition of a VirB/D4 type IV secretion system (T4SS) and parallel evolution of complex effector repertoires. However, the limited availability of genome sequences from one of those lineages as well as other, remote branches of Bartonella has so far hampered comprehensive understanding of how the VirB/D4 T4SS and its effectors called Beps have shaped Bartonella evolution. Here, we report the discovery of a third repertoire of Beps associated with the VirB/D4 T4SS of B. ancashensis, a novel human pathogen that lacks any signs of host adaptability and is only distantly related to the two species-rich lineages encoding a VirB/D4 T4SS. Furthermore, sequencing of ten new Bartonella isolates from under-sampled lineages enabled combined in silico analyses and wet lab experiments that suggest several parallel layers of functional diversification during evolution of the three Bep repertoires from a single ancestral effector. Our analyses show that the Beps of B. ancashensis share many features with the two other repertoires, but may represent a more ancestral state that has not yet unleashed the adaptive potential of such an effector set. We anticipate that the effectors of B. ancashensis will enable future studies to dissect the evolutionary history of Bartonella effectors and help unraveling the evolutionary forces underlying bacterial host adaptation.
Collapse
Affiliation(s)
- Alexander Harms
- Focal Area Infection Biology, Biozentrum, University of Basel, Switzerland
| | | | - Maxime Quebatte
- Focal Area Infection Biology, Biozentrum, University of Basel, Switzerland
| | - Claudia Mistl
- Focal Area Infection Biology, Biozentrum, University of Basel, Switzerland
| | - Pablo Manfredi
- Focal Area Infection Biology, Biozentrum, University of Basel, Switzerland
| | - Jonas Körner
- Focal Area Infection Biology, Biozentrum, University of Basel, Switzerland
| | - Bruno B Chomel
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California Davis
| | - Michael Kosoy
- Bacterial Diseases Branch, Division of Vector-Borne Disease, Centers for Disease Control and Prevention, Fort Collins, Colorado
| | - Soichi Maruyama
- Laboratory of Veterinary Public Health, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Tokyo, Japan
| | - Philipp Engel
- Department of Fundamental Microbiology, University of Lausanne, Switzerland
| | - Christoph Dehio
- Focal Area Infection Biology, Biozentrum, University of Basel, Switzerland
| |
Collapse
|