1
|
Molla E, Dugassa S, Alemayehu L, Ejigu LA, Deressa JD, Demisse M, Abdo M, Wolde Behaksra S, Keffale M, Tadesse FG, Gadisa E, Mamo H. Seasonal Dynamics of Symptomatic and Asymptomatic Plasmodium falciparum and Plasmodium vivax Infections in Coendemic Low-Transmission Settings, South Ethiopia. Am J Trop Med Hyg 2024; 111:481-489. [PMID: 38955195 PMCID: PMC11376164 DOI: 10.4269/ajtmh.24-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/24/2024] [Indexed: 07/04/2024] Open
Abstract
Ethiopia has a plan to eliminate malaria in selected low-transmission districts by 2025. However, complex factors such as seasonality, focal heterogeneity, and coendemicity of Plasmodium vivax and Plasmodium falciparum, and asymptomatic cases, along with other factors, pose challenges. This longitudinal study assessed these dynamics and associated factors in three elimination-targeted settings in southern Ethiopia. The study included rural districts (Wonago and Yirgacheffe) and an urban setting (Dilla town) with 504 participants from 168 households per season. The study covered the peak and minor malaria transmission seasons and the dry season. Finger-prick blood was collected for microscopy, rapid diagnostic tests, and 18S-rRNA-based quantitative polymerase chain reaction (qPCR). During the dry season, P. vivax accounted for most infections (64.5%, 71/110) and symptomatic malaria (50.9%, 29/57), whereas P. falciparum dominated during the peak transmission season (45.7%, 42/92 infections and 58.1%, 25/43 of symptomatic cases). Treatment-seeking behavior was low, with 65.3% (143/219) of symptomatic individuals not seeking treatment. Dilla town had significantly higher infection prevalence (29.6%, 149/504, P <0.001) in all seasons compared with the rural sites. The incidence rate was 12/1,000 person-seasons by qPCR and 5/1,000 person-seasons by microscopy. Urban residents, those with low hemoglobin levels, nonuse of mosquito nets, and proximity to stagnant water had a significantly higher risk of infection (P <0.001). Tailored approaches are needed in elimination-targeted areas, focusing on urban settings, Plasmodium species, and strengthening community-level interventions for behavioral change and active case detection.
Collapse
Affiliation(s)
- Eshetu Molla
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Sisay Dugassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Lina Alemayehu
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | | | | | | | - Melat Abdo
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | | | | | | | | | - Hassen Mamo
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
2
|
Garba MN, M Moustapha L, Sow D, Karimoun A, Issa I, Sanoussi MK, Diallo MA, Doutchi M, Diongue K, Ibrahim ML, Ndiaye D, Badiane AS. Circulation of Non- falciparum Species in Niger: Implications for Malaria Diagnosis. Open Forum Infect Dis 2024; 11:ofae474. [PMID: 39282631 PMCID: PMC11394099 DOI: 10.1093/ofid/ofae474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/16/2024] [Indexed: 09/19/2024] Open
Abstract
Background Niger's National Malaria Control Programme and its partners use histidine-rich protein 2-based RDTs, which are specific to Plasmodium falciparum diagnosis. This study aimed to screen for the circulation of non-falciparum species in Zinder, a region of Niger, West Africa. Methods A cross-sectional study was carried out from July to December 2022 at the district hospital of the Zinder region of Niger. P falciparum histidine-rich protein 2-based rapid diagnostic tests were performed, and dried blood spot samples were collected for further laboratory multiplexed photo-induced electron transfer-polymerase chain reaction (PET-PCR) analysis on positive light microscopy from all patients with fever who attended the Zinder district hospital during the study period. Results In total, 340 dried blood spots were collected and analyzed by PET-PCR. Overall, 73.2% (95% CI, 68.2%-77.9%; 249/340) were positive for Plasmodium genus and species and represented the study population. Plasmodium species proportions were 89.5% (95% CI, 85.1%-93.1%; 223/249) for P falciparum, 38.5% (95% CI, 32.5%-44.9%; 96/249) for P malariae, 10.8% (95% CI, 7.3%-15.4%; 27/249) for P vivax, and 1.6% (95% CI, .4%-4.1%; 4/249) for P ovale. Single infection with Plasmodium species counted for 61.8% (95% CI, 55.5%-67.9%; 154/249), and the mixed infections rate, with at least 2 Plasmodium species, was 38.1% (95% CI, 32.1%-44.5%; 95/249). Single non-falciparum infections represented a rate of 10.0% (95% CI, 6.6%-14.5%; 25/249). Conclusion This study confirms the first evidence of Plasmodium vivax by PET-PCR in Niger in addition to the other 3 Plasmodium species. These findings underline the need to adapt malaria diagnostic tools and therapeutic management, as well as the training of microscopists, for recognition of non-falciparum plasmodial species circulating in the country. This will better inform the strategies toward malaria control and elimination, as well as the decision making of the health authorities of Niger.
Collapse
Affiliation(s)
- Mamane N Garba
- Centre International de Recherche et de Formation en Génomique Appliquée et de Surveillance Sanitaire, Faculté de Médecine, de Pharmacie et d'Odontologie, Université Cheikh Anta Diop de Dakar, Sénégal
| | - Lamine M Moustapha
- Faculté des Sciences et Techniques, Université André Salifou de Zinder, Niger
| | - Djiby Sow
- Centre International de Recherche et de Formation en Génomique Appliquée et de Surveillance Sanitaire, Faculté de Médecine, de Pharmacie et d'Odontologie, Université Cheikh Anta Diop de Dakar, Sénégal
| | | | - Ibrahima Issa
- Centre de Recherche Médicale et Sanitaire de Niamey, Niger
| | - Mamane K Sanoussi
- Programme National de Lutte contre le Paludisme/National Malaria Control Programme, Niamey, Niger
| | - Mamadou A Diallo
- Centre International de Recherche et de Formation en Génomique Appliquée et de Surveillance Sanitaire, Faculté de Médecine, de Pharmacie et d'Odontologie, Université Cheikh Anta Diop de Dakar, Sénégal
| | - Mahamadou Doutchi
- Faculté des Sciences de la Santé, Université André Salifou de Zinder, Niger
| | - Khadim Diongue
- Centre International de Recherche et de Formation en Génomique Appliquée et de Surveillance Sanitaire, Faculté de Médecine, de Pharmacie et d'Odontologie, Université Cheikh Anta Diop de Dakar, Sénégal
| | | | - Daouda Ndiaye
- Centre International de Recherche et de Formation en Génomique Appliquée et de Surveillance Sanitaire, Faculté de Médecine, de Pharmacie et d'Odontologie, Université Cheikh Anta Diop de Dakar, Sénégal
| | - Aida S Badiane
- Centre International de Recherche et de Formation en Génomique Appliquée et de Surveillance Sanitaire, Faculté de Médecine, de Pharmacie et d'Odontologie, Université Cheikh Anta Diop de Dakar, Sénégal
| |
Collapse
|
3
|
Marzano-Miranda A, Pereira Cardoso-Oliveira G, Carla de Oliveira I, Carvalho Mourão L, Reis Cussat L, Gomes Fraga V, Delfin Chávez Olórtegui C, Jesus Fernandes Fontes C, Castanheira Bartholomeu D, Braga EM. Identification and serological responses to a novel Plasmodium vivax merozoite surface protein 1 ( PvMSP-1) derived synthetic peptide: a putative biomarker for malaria exposure. PeerJ 2024; 12:e17632. [PMID: 38948214 PMCID: PMC11212635 DOI: 10.7717/peerj.17632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/04/2024] [Indexed: 07/02/2024] Open
Abstract
Background The integration of diagnostic methods holds promise for advancing the surveillance of malaria transmission in both endemic and non-endemic regions. Serological assays emerge as valuable tools to identify and delimit malaria transmission, serving as a complementary method to rapid diagnostic tests (RDT) and thick smear microscopy. Here, we evaluate the potential of antibodies directed against peptides encompassing the entire amino acid sequence of the PvMSP-1 Sal-I strain as viable serological biomarkers for P. vivax exposure. Methods We screened peptides encompassing the complete amino acid sequence of the Plasmodium vivax Merozoite Surface Protein 1 (PvMSP-1) Sal-I strain as potential biomarkers for P. vivax exposure. Here, immunodominant peptides specifically recognized by antibodies from individuals infected with P. vivax were identified using the SPOT-synthesis technique followed by immunoblotting. Two 15-mer peptides were selected based on their higher and specific reactivity in immunoblotting assays. Subsequently, peptides p70 and p314 were synthesized in soluble form using SPPS (Solid Phase Peptide Synthesis) and tested by ELISA (IgG, and subclasses). Results This study unveils the presence of IgG antibodies against the peptide p314 in most P. vivax-infected individuals from the Brazilian Amazon region. In silico B-cell epitope prediction further supports the utilization of p314 as a potential biomarker for evaluating malaria transmission, strengthened by its amino acid sequence being part of a conserved block of PvMSP-1. Indeed, compared to patients infected with P. falciparum and uninfected individuals never exposed to malaria, P. vivax-infected patients have a notably higher recognition of p314 by IgG1 and IgG3.
Collapse
Affiliation(s)
- Aline Marzano-Miranda
- Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | - Luiza Carvalho Mourão
- Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Letícia Reis Cussat
- Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Vanessa Gomes Fraga
- Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | | | - Erika M. Braga
- Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
4
|
Malla P, Wang Z, Brashear A, Yang Z, Lo E, Baird K, Wang C, Cui L. Effectiveness of an Unsupervised Primaquine Regimen for Preventing Plasmodium vivax Malaria Relapses in Northeast Myanmar: A Single-Arm Nonrandomized Observational Study. J Infect Dis 2024; 229:1557-1564. [PMID: 38041857 PMCID: PMC11095535 DOI: 10.1093/infdis/jiad552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 11/16/2023] [Accepted: 11/29/2023] [Indexed: 12/04/2023] Open
Abstract
BACKGROUND Plasmodium vivax presents a significant challenge for malaria elimination in the Greater Mekong Subregion. We evaluated the effectiveness of primaquine for reducing relapses of vivax malaria. METHODS Patients with uncomplicated P vivax malaria from eastern Myanmar received chloroquine (25-mg base/kg given in 3 days) plus unsupervised PQ (0.25 mg/kg/d for 14 days) without screening for glucose-6-phosphate dehydrogenase deficiency and were followed for a year. RESULTS A total of 556 patients were enrolled to receive the chloroquine/primaquine treatment from February 2012 to August 2013. During the follow-up, 38 recurrences were detected, presenting a cumulative recurrence rate of 9.1% (95% CI, 4.1%-14.1%). Genotyping at the pvmsp1 and pvmsp3α loci by amplicon deep sequencing and model prediction indicated that 13 of the 27 recurrences with genotyping data were likely due to relapses. Notably, all confirmed relapses occurred within the first 6 months. CONCLUSIONS The unsupervised standard dose of primaquine was highly effective as a radical cure for P vivax malaria in eastern Myanmar. The high presumed effectiveness might have benefited from the health messages delivered during the enrollment and follow-up activities. Six-month follow-ups in the Greater Mekong Subregion are sufficient for detecting most relapses.
Collapse
Affiliation(s)
- Pallavi Malla
- Department of Internal Medicine, Morsani College of Medicine
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa
| | - Zenglei Wang
- MHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Beijing Union Medical College
| | - Awtum Brashear
- Department of Internal Medicine, Morsani College of Medicine
| | - Zhaoqing Yang
- Department of Pathogen Biology and Immunology, Kunming Medical University, China
| | - Eugenia Lo
- Department of Microbiology and Immunology, College of Medicine, Drexel University
| | - Kevin Baird
- Eijkman-Oxford Clinical Research Unit, Eijkman Institute for Molecular Biology, Jakarta, Indonesia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Chengqi Wang
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine
| |
Collapse
|
5
|
Pepey A, Souris M, Kim S, Obadia T, Chy S, Ea M, Ouk S, Remoue F, Sovannaroth S, Mueller I, Witkowski B, Vantaux A. Comparing malaria risk exposure in rural Cambodia population using GPS tracking and questionnaires. Malar J 2024; 23:75. [PMID: 38475843 DOI: 10.1186/s12936-024-04890-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND The Great Mekong Subregion has attained a major decline in malaria cases and fatalities over the last years, but residual transmission hotspots remain, supposedly fueled by forest workers and migrant populations. This study aimed to: (i) characterize the fine-scale mobility of forest-goers and understand links between their daily movement patterns and malaria transmission, using parasites detection via real time polymerase chain reaction (RT PCR) and the individual exposure to Anopheles bites by quantification of anti-Anopheles saliva antibodies via enzyme-linked immunosorbent assay; (ii) assess the concordance of questionnaires and Global Positioning System (GPS) data loggers for measuring mobility. METHODS Two 28 day follow-ups during dry and rainy seasons, including a GPS tracking, questionnaires and health examinations, were performed on male forest goers representing the population at highest risk of infection. Their time spent in different land use categories and demographic data were analyzed in order to understand the risk factors driving malaria in the study area. RESULTS Malaria risk varied with village forest cover and at a resolution of only a few kilometers: participants from villages outside the forest had the highest malaria prevalence compared to participants from forest fringe's villages. The time spent in a specific environment did not modulate the risk of malaria, in particular the time spent in forest was not associated with a higher probability to detect malaria among forest-goers. The levels of antibody response to Anopheles salivary peptide among participants were significantly higher during the rainy season, in accordance with Anopheles mosquito density variation, but was not affected by sociodemographic and mobility factors. The agreement between GPS and self-reported data was only 61.9% in reporting each kind of visited environment. CONCLUSIONS In a context of residual malaria transmission which was mainly depicted by P. vivax asymptomatic infections, the implementation of questionnaires, GPS data-loggers and quantification of anti-saliva Anopheles antibodies on the high-risk group were not powerful enough to detect malaria risk factors associated with different mobility behaviours or time spent in various environments. The joint implementation of GPS trackers and questionnaires allowed to highlight the limitations of both methodologies and the benefits of using them together. New detection and follow-up strategies are still called for.
Collapse
Affiliation(s)
- Anaïs Pepey
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, 5 Blvd Monivong, Phnom Penh 120 210, Phnom Penh, BP983, Cambodia.
| | - Marc Souris
- UMR Unité des Virus Emergents, UVE: Aix-Marseille Univ-IRD 190-Inserm 1207-IHU 5 Méditerranée Infection, 13005, Marseille, France
| | - Saorin Kim
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, 5 Blvd Monivong, Phnom Penh 120 210, Phnom Penh, BP983, Cambodia
| | - Thomas Obadia
- Institut Pasteur, G5 Infectious Disease Epidemiology and Analytics, Université Paris Cité, 75015, Paris, France
- Institut Pasteur, Bioinformatics and Biostatistics Hub, Université Paris Cité, 75015, Paris, France
| | - Sophy Chy
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, 5 Blvd Monivong, Phnom Penh 120 210, Phnom Penh, BP983, Cambodia
| | - Malen Ea
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, 5 Blvd Monivong, Phnom Penh 120 210, Phnom Penh, BP983, Cambodia
| | - Sivkeng Ouk
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, 5 Blvd Monivong, Phnom Penh 120 210, Phnom Penh, BP983, Cambodia
| | - Franck Remoue
- UMR MIVEGEC, IRD, CNRS, University of Montpellier, Montpellier, France
| | - Siv Sovannaroth
- National Centre for Parasitology Entomology and Malaria Control (CNM), Phnom Penh 120 801, Phnom Penh, Cambodia
| | - Ivo Mueller
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Benoit Witkowski
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, 5 Blvd Monivong, Phnom Penh 120 210, Phnom Penh, BP983, Cambodia
- Genetic and Biology of Plasmodium Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | - Amélie Vantaux
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, 5 Blvd Monivong, Phnom Penh 120 210, Phnom Penh, BP983, Cambodia
- Genetic and Biology of Plasmodium Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| |
Collapse
|
6
|
Anwar MN, Smith L, Devine A, Mehra S, Walker CR, Ivory E, Conway E, Mueller I, McCaw JM, Flegg JA, Hickson RI. Mathematical models of Plasmodium vivax transmission: A scoping review. PLoS Comput Biol 2024; 20:e1011931. [PMID: 38483975 DOI: 10.1371/journal.pcbi.1011931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/26/2024] [Accepted: 02/19/2024] [Indexed: 03/27/2024] Open
Abstract
Plasmodium vivax is one of the most geographically widespread malaria parasites in the world, primarily found across South-East Asia, Latin America, and parts of Africa. One of the significant characteristics of the P. vivax parasite is its ability to remain dormant in the human liver as hypnozoites and subsequently reactivate after the initial infection (i.e. relapse infections). Mathematical modelling approaches have been widely applied to understand P. vivax dynamics and predict the impact of intervention outcomes. Models that capture P. vivax dynamics differ from those that capture P. falciparum dynamics, as they must account for relapses caused by the activation of hypnozoites. In this article, we provide a scoping review of mathematical models that capture P. vivax transmission dynamics published between January 1988 and May 2023. The primary objective of this work is to provide a comprehensive summary of the mathematical models and techniques used to model P. vivax dynamics. In doing so, we aim to assist researchers working on mathematical epidemiology, disease transmission, and other aspects of P. vivax malaria by highlighting best practices in currently published models and highlighting where further model development is required. We categorise P. vivax models according to whether a deterministic or agent-based approach was used. We provide an overview of the different strategies used to incorporate the parasite's biology, use of multiple scales (within-host and population-level), superinfection, immunity, and treatment interventions. In most of the published literature, the rationale for different modelling approaches was driven by the research question at hand. Some models focus on the parasites' complicated biology, while others incorporate simplified assumptions to avoid model complexity. Overall, the existing literature on mathematical models for P. vivax encompasses various aspects of the parasite's dynamics. We recommend that future research should focus on refining how key aspects of P. vivax dynamics are modelled, including spatial heterogeneity in exposure risk and heterogeneity in susceptibility to infection, the accumulation of hypnozoite variation, the interaction between P. falciparum and P. vivax, acquisition of immunity, and recovery under superinfection.
Collapse
Affiliation(s)
- Md Nurul Anwar
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Australia
- Department of Mathematics, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Lauren Smith
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Angela Devine
- Division of Global and Tropical Health, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
- Health Economics Unit, Centre for Health Policy, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Australia
| | - Somya Mehra
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Australia
| | - Camelia R Walker
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Australia
| | - Elizabeth Ivory
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Australia
| | - Eamon Conway
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Ivo Mueller
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - James M McCaw
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Australia
| | - Jennifer A Flegg
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Australia
| | - Roslyn I Hickson
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Australia
- Commonwealth Scientific and Industrial Research Organisation, Townsville, Australia
| |
Collapse
|
7
|
Lek D, Tsai YC, Hirano J, Sovannaroth S, Bunreth V, Vonn P, Vannthen O, Bunkea T, Samphornarann T, Sokomar N, Sarath M, Kheang ST, Wong E, Burbach MK, Hughes J, Rekol H. Radical cure for Plasmodium vivax malaria after G6PD qualitative testing in four provinces in Cambodia, results from Phase I implementation. Malar J 2024; 23:56. [PMID: 38395925 PMCID: PMC10893713 DOI: 10.1186/s12936-024-04884-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Cambodia aims to eliminate all forms of malaria by 2025. In 2020, 90% of all malaria cases were Plasmodium vivax. Thus, preventing P. vivax and relapse malaria is a top priority for elimination. 14-day primaquine, a World Health Organization-recommended radical cure treatment regimen, specifically targets dormant hypnozoites in the liver to prevent relapse. Cambodia introduced P. vivax radical cure with primaquine after glucose-6-phosphate dehydrogenase (G6PD) qualitative testing in 2019. This paper presents Cambodia's radical cure Phase I implementation results and assesses the safety, effectiveness, and feasibility of the programme prior to nationwide scale up. METHODS Phase I implementation was carried out in 88 select health facilities (HFs) across four provinces. Males over 20kgs with confirmed P. vivax or mixed (P. vivax and Plasmodium falciparum) infections were enrolled. A descriptive analysis evaluated the following: successful referral to health facilities, G6PD testing results, and self-reported 14-day treatment adherence. P. vivax incidence was compared before and after radical cure rollout and a controlled interrupted time series analysis compared the estimated relapse rate between implementation and non-implementation provinces before and after radical cure. RESULTS In the 4 provinces from November 2019 to December 2020, 3,239 P. vivax/mixed infections were reported, 1,282 patients underwent G6PD deficiency testing, and 959 patients received radical cure, achieving 29.6% radical cure coverage among all P. vivax/mixed cases and 98.8% coverage among G6PD normal patients. Among those who initiated radical cure, 747 patients (78%) completed treatment. Six patients reported side effects. In implementation provinces, an average 31.8 relapse cases per month were estimated signaling a 90% (286 cases) reduction in relapse compared to what would be expected if radical cure was not implemented. CONCLUSIONS Plasmodium vivax radical cure is a crucial tool for malaria elimination in Cambodia. The high coverage of radical cure initiation and adherence among G6PD normal patients demonstrated the high feasibility of providing radical cure at point of care in Cambodia. Incomplete referral from community to HFs and limited capacity of HF staff to conduct G6PD testing in high burden areas led to lower coverage of G6PD testing. Phase I implementation informed approaches to improve referral completion and patient adherence during the nationwide expansion of radical cure in 2021.
Collapse
Affiliation(s)
- Dysoley Lek
- National Center for Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
- School of Public Health, National Institute of Public Health, Phnom Penh, Cambodia
| | - Yu-Cheng Tsai
- Clinton Health Access Initiative, Phnom Penh, Cambodia
| | | | - Siv Sovannaroth
- National Center for Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
| | - Voeurng Bunreth
- Provincial Health Department, Ministry of Health, Phnom Penh, Cambodia
| | - Prak Vonn
- Provincial Health Department, Ministry of Health, Phnom Penh, Cambodia
| | - Or Vannthen
- Provincial Health Department, Ministry of Health, Phnom Penh, Cambodia
| | - Tol Bunkea
- National Center for Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
| | | | - Nguon Sokomar
- Cambodia Malaria Elimination Project, Phnom Penh, Cambodia
| | - Mak Sarath
- Population Services International, Phnom Penh, Cambodia
| | - Soy Ty Kheang
- Center for Health and Social Development, Phnom Penh, Cambodia
- School of Public Health, National Institute of Public Health, Phnom Penh, Cambodia
- Partnership for Vivax Elimination, Phnom Penh, Cambodia
| | - Evelyn Wong
- Clinton Health Access Initiative, Phnom Penh, Cambodia
| | | | - Jayme Hughes
- Clinton Health Access Initiative, Phnom Penh, Cambodia.
| | - Huy Rekol
- National Center for Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
| |
Collapse
|
8
|
Dowd S, Chen N, Gatton ML, Edstein MD, Cheng Q. Cytochrome P450 2D6 profiles and anti-relapse efficacy of tafenoquine against Plasmodium vivax in Australian Defence Force personnel. Antimicrob Agents Chemother 2023; 67:e0101423. [PMID: 37971260 PMCID: PMC10720419 DOI: 10.1128/aac.01014-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/21/2023] [Indexed: 11/19/2023] Open
Abstract
Plasmodium vivax infections and relapses remain a major health problem for malaria-endemic countries, deployed military personnel, and travelers. Presumptive anti-relapse therapy and radical cure using the 8-aminoquinoline drugs primaquine and tafenoquine are necessary to prevent relapses. Although it has been demonstrated that the efficacy of primaquine is associated with Cytochrome P450 2D6 (CYP2D6) activity, there is insufficient data on the role of CYP2D6 in the anti-relapse efficacy of tafenoquine. We investigated the relationship between CYP2D6 activity status and tafenoquine efficacy in preventing P. vivax relapses retrospectively using plasma samples collected from Australian Defence Force personnel deployed to Papua New Guinea and Timor-Leste who participated in clinical trials of tafenoquine during 1999-2001. The CYP2D6 gene was amplified from plasma samples and fully sequenced from 92 participant samples, comprised of relapse (n = 31) and non-relapse (n = 61) samples, revealing 14 different alleles. CYP2D6 phenotypes deduced from combinations of CYP2D6 alleles predicted that among 92 participants 67, 15, and 10 were normal, intermediate, and poor metabolizers, respectively. The deduced CYP2D6 phenotype did not correlate with the corresponding participant's plasma tafenoquine concentrations that were determined in the early 2000s by high-performance liquid chromatography or liquid chromatography-mass spectrometry. Furthermore, the deduced CYP2D6 phenotype did not associate with P. vivax relapse outcomes. Our results indicate that CYP2D6 does not affect plasma tafenoquine concentrations and the efficacy of tafenoquine in preventing P. vivax relapses in the assessed Australian Defence Force personnel.
Collapse
Affiliation(s)
- Simone Dowd
- Australian Defence Force Malaria and Infectious Disease Institute, Brisbane, Australia
| | - Nanhua Chen
- Australian Defence Force Malaria and Infectious Disease Institute, Brisbane, Australia
| | - Michelle L. Gatton
- Centre for Immunology and Infection Control, Faculty of Health, Queensland University of Technology, Brisbane, Australia
| | - Michael D. Edstein
- Australian Defence Force Malaria and Infectious Disease Institute, Brisbane, Australia
| | - Qin Cheng
- Australian Defence Force Malaria and Infectious Disease Institute, Brisbane, Australia
| |
Collapse
|
9
|
Walker CR, Hickson RI, Chang E, Ngor P, Sovannaroth S, Simpson JA, Price DJ, McCaw JM, Price RN, Flegg JA, Devine A. A model for malaria treatment evaluation in the presence of multiple species. Epidemics 2023; 44:100687. [PMID: 37348379 PMCID: PMC7614843 DOI: 10.1016/j.epidem.2023.100687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 03/12/2023] [Accepted: 05/12/2023] [Indexed: 06/24/2023] Open
Abstract
Plasmodium falciparum and P. vivax are the two most common causes of malaria. While the majority of deaths and severe morbidity are due to P. falciparum, P. vivax poses a greater challenge to eliminating malaria outside of Africa due to its ability to form latent liver stage parasites (hypnozoites), which can cause relapsing episodes within an individual patient. In areas where P. falciparum and P. vivax are co-endemic, individuals can carry parasites of both species simultaneously. These mixed infections complicate dynamics in several ways: treatment of mixed infections will simultaneously affect both species, P. falciparum can mask the detection of P. vivax, and it has been hypothesised that clearing P. falciparum may trigger a relapse of dormant P. vivax. When mixed infections are treated for only blood-stage parasites, patients are at risk of relapse infections due to P. vivax hypnozoites. We present a stochastic mathematical model that captures interactions between P. falciparum and P. vivax, and incorporates both standard schizonticidal treatment (which targets blood-stage parasites) and radical cure treatment (which additionally targets liver-stage parasites). We apply this model via a hypothetical simulation study to assess the implications of different treatment coverages of radical cure for mixed and P. vivax infections and a "unified radical cure" treatment strategy where P. falciparum, P. vivax, and mixed infections all receive radical cure after screening glucose-6-phosphate dehydrogenase (G6PD) normal. In addition, we investigated the impact of mass drug administration (MDA) of blood-stage treatment. We find that a unified radical cure strategy leads to a substantially lower incidence of malaria cases and deaths overall. MDA with schizonticidal treatment was found to decrease P. falciparum with little effect on P. vivax. We perform a univariate sensitivity analysis to highlight important model parameters.
Collapse
Affiliation(s)
- C R Walker
- School of Mathematics and Statistics, University of Melbourne, Australia.
| | - R I Hickson
- School of Mathematics and Statistics, University of Melbourne, Australia; Australian Institute of Tropical Health and Medicine, and College of Public Health, Medical & Veterinary Sciences, James Cook University, Australia; Health and Biosecurity, CSIRO, Australia
| | - E Chang
- School of Mathematics and Statistics, University of Melbourne, Australia
| | - P Ngor
- Cambodian National Center for Parasitology, Entomology and Malaria Control, Cambodia; Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Thailand
| | - S Sovannaroth
- Cambodian National Center for Parasitology, Entomology and Malaria Control, Cambodia
| | - J A Simpson
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Australia
| | - D J Price
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Australia; Department of Infectious Diseases, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Australia
| | - J M McCaw
- School of Mathematics and Statistics, University of Melbourne, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Australia
| | - R N Price
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Thailand; Division of Global and Tropical Health, Menzies School of Health Research and Charles Darwin University, Australia; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, UK
| | - J A Flegg
- School of Mathematics and Statistics, University of Melbourne, Australia
| | - A Devine
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Australia; Division of Global and Tropical Health, Menzies School of Health Research and Charles Darwin University, Australia
| |
Collapse
|
10
|
Taylor WRJ, Meagher N, Ley B, Thriemer K, Bancone G, Satyagraha A, Assefa A, Chand K, Chau NH, Dhorda M, Degaga TS, Ekawati LL, Hailu A, Hasanzai MA, Naddim MN, Pasaribu AP, Rahim AG, Sutanto I, Thanh NV, Tuyet-Trinh NT, Waithira N, Woyessa A, Dondorp A, von Seidlein L, Simpson JA, White NJ, Baird JK, Day NP, Price RN. Weekly primaquine for radical cure of patients with Plasmodium vivax malaria and glucose-6-phosphate dehydrogenase deficiency. PLoS Negl Trop Dis 2023; 17:e0011522. [PMID: 37672548 PMCID: PMC10482257 DOI: 10.1371/journal.pntd.0011522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 07/10/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND The World Health Organization recommends that primaquine should be given once weekly for 8-weeks to patients with Plasmodium vivax malaria and glucose-6-phosphate dehydrogenase (G6PD) deficiency, but data on its antirelapse efficacy and safety are limited. METHODS Within the context of a multicentre, randomised clinical trial of two primaquine regimens in P. vivax malaria, patients with G6PD deficiency were excluded and enrolled into a separate 12-month observational study. They were treated with a weekly dose of 0.75 mg/kg primaquine for 8 weeks (PQ8W) plus dihydroartemisinin piperaquine (Indonesia) or chloroquine (Afghanistan, Ethiopia, Vietnam). G6PD status was diagnosed using the fluorescent spot test and confirmed by genotyping for locally prevalent G6PD variants. The risk of P. vivax recurrence following PQ8W and the consequent haematological recovery were characterized in all patients and in patients with genotypically confirmed G6PD variants, and compared with the patients enrolled in the main randomised control trial. RESULTS Between July 2014 and November 2017, 42 male and 8 female patients were enrolled in Afghanistan (6), Ethiopia (5), Indonesia (19), and Vietnam (20). G6PD deficiency was confirmed by genotyping in 31 patients: Viangchan (14), Mediterranean (4), 357A-G (3), Canton (2), Kaiping (2), and one each for A-, Chatham, Gaohe, Ludhiana, Orissa, and Vanua Lava. Two patients had recurrent P. vivax parasitaemia (days 68 and 207). The overall 12-month cumulative risk of recurrent P. vivax malaria was 5.1% (95% CI: 1.3-18.9) and the incidence rate of recurrence was 46.8 per 1000 person-years (95% CI: 11.7-187.1). The risk of P. vivax recurrence was lower in G6PD deficient patients treated with PQ8W compared to G6PD normal patients in all treatment arms of the randomised controlled trial. Two of the 26 confirmed hemizygous males had a significant fall in haemoglobin (>5g/dl) after the first dose but were able to complete their 8 week regimen. CONCLUSIONS PQ8W was highly effective in preventing P. vivax recurrences. Whilst PQ8W was well tolerated in most patients across a range of different G6PD variants, significant falls in haemoglobin may occur after the first dose and require clinical monitoring. TRIAL REGISTRATION This trial is registered at ClinicalTrials.gov (NCT01814683).
Collapse
Affiliation(s)
- Walter R. J. Taylor
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Niamh Meagher
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
- Department of Infectious Diseases University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Benedikt Ley
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - Kamala Thriemer
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - Germana Bancone
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Ari Satyagraha
- Eijkman Institute of Molecular Biology, Jakarta, Indonesia.8. Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | | | - Krisin Chand
- Oxford University Clinical Research Unit, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Nguyen Hoang Chau
- Oxford University Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Mehul Dhorda
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Tamiru S. Degaga
- College of Medicine & Health Sciences, Arbaminch University, Arbaminch, Ethiopia
| | - Lenny L. Ekawati
- Oxford University Clinical Research Unit, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Asrat Hailu
- College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | | | | | | | - Awab Ghulam Rahim
- Nangarhar Medical Faculty, Nangarhar University, Ministry of Higher Education, Jalalabad, Afghanistan
- Health and Social Development Organization, Kabul, Afghanistan
| | - Inge Sutanto
- Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Ngo Viet Thanh
- Oxford University Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Nguyen Thi Tuyet-Trinh
- Oxford University Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Naomi Waithira
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Adugna Woyessa
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Arjen Dondorp
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Lorenz von Seidlein
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Julie A. Simpson
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Nicholas J. White
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - J. Kevin Baird
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Oxford University Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Nicholas P. Day
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ric N. Price
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| |
Collapse
|
11
|
Anwar MN, Hickson RI, Mehra S, Price DJ, McCaw JM, Flegg MB, Flegg JA. Optimal Interruption of P. vivax Malaria Transmission Using Mass Drug Administration. Bull Math Biol 2023; 85:43. [PMID: 37076740 PMCID: PMC10115738 DOI: 10.1007/s11538-023-01153-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/30/2023] [Indexed: 04/21/2023]
Abstract
Plasmodium vivax is the most geographically widespread malaria-causing parasite resulting in significant associated global morbidity and mortality. One of the factors driving this widespread phenomenon is the ability of the parasites to remain dormant in the liver. Known as 'hypnozoites', they reside in the liver following an initial exposure, before activating later to cause further infections, referred to as 'relapses'. As around 79-96% of infections are attributed to relapses from activating hypnozoites, we expect it will be highly impactful to apply treatment to target the hypnozoite reservoir (i.e. the collection of dormant parasites) to eliminate P. vivax. Treatment with radical cure, for example tafenoquine or primaquine, to target the hypnozoite reservoir is a potential tool to control and/or eliminate P. vivax. We have developed a deterministic multiscale mathematical model as a system of integro-differential equations that captures the complex dynamics of P. vivax hypnozoites and the effect of hypnozoite relapse on disease transmission. Here, we use our multiscale model to study the anticipated effect of radical cure treatment administered via a mass drug administration (MDA) program. We implement multiple rounds of MDA with a fixed interval between rounds, starting from different steady-state disease prevalences. We then construct an optimisation model with three different objective functions motivated on a public health basis to obtain the optimal MDA interval. We also incorporate mosquito seasonality in our model to study its effect on the optimal treatment regime. We find that the effect of MDA interventions is temporary and depends on the pre-intervention disease prevalence (and choice of model parameters) as well as the number of MDA rounds under consideration. The optimal interval between MDA rounds also depends on the objective (combinations of expected intervention outcomes). We find radical cure alone may not be enough to lead to P. vivax elimination under our mathematical model (and choice of model parameters) since the prevalence of infection eventually returns to pre-MDA levels.
Collapse
Affiliation(s)
- Md Nurul Anwar
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Australia
- Department of Mathematics, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Roslyn I Hickson
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Australia
- Australian Institute of Tropical Health and Medicine, and College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Australia
- CSIRO, Townsville, Australia
| | - Somya Mehra
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Australia
| | - David J Price
- Department of Infectious Diseases, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Australia
| | - James M McCaw
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Australia
| | - Mark B Flegg
- School of Mathematics, Monash University, Melbourne, Australia
| | - Jennifer A Flegg
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Australia.
| |
Collapse
|
12
|
Stadler E, Cromer D, Mehra S, Adekunle AI, Flegg JA, Anstey NM, Watson JA, Chu CS, Mueller I, Robinson LJ, Schlub TE, Davenport MP, Khoury DS. Population heterogeneity in Plasmodium vivax relapse risk. PLoS Negl Trop Dis 2022; 16:e0010990. [PMID: 36534705 PMCID: PMC9810152 DOI: 10.1371/journal.pntd.0010990] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/03/2023] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
A key characteristic of Plasmodium vivax parasites is their ability to adopt a latent liver-stage form called hypnozoites, able to cause relapse of infection months or years after a primary infection. Relapses of infection through hypnozoite activation are a major contributor to blood-stage infections in P vivax endemic regions and are thought to be influenced by factors such as febrile infections which may cause temporary changes in hypnozoite activation leading to 'temporal heterogeneity' in reactivation risk. In addition, immunity and variation in exposure to infection may be longer-term characteristics of individuals that lead to 'population heterogeneity' in hypnozoite activation. We analyze data on risk of P vivax in two previously published data sets from Papua New Guinea and the Thailand-Myanmar border region. Modeling different mechanisms of reactivation risk, we find strong evidence for population heterogeneity, with 30% of patients having almost 70% of all P vivax infections. Model fitting and data analysis indicates that individual variation in relapse risk is a primary source of heterogeneity of P vivax risk of recurrences. Trial Registration: ClinicalTrials.gov NCT01640574, NCT01074905, NCT02143934.
Collapse
Affiliation(s)
- Eva Stadler
- The Kirby Institute, UNSW Sydney, Sydney, Australia
| | | | - Somya Mehra
- School of Mathematics and Statistics, University of Melbourne, Melbourne, Australia
| | - Adeshina I. Adekunle
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Australia
| | - Jennifer A. Flegg
- School of Mathematics and Statistics, University of Melbourne, Melbourne, Australia
| | | | - James A. Watson
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Headington, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Cindy S. Chu
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Headington, Oxford, United Kingdom
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Ivo Mueller
- Population Health & Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Leanne J. Robinson
- Population Health & Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
- Burnet Institute, Melbourne, Victoria, Australia
- PNG Institute of Medical Research, Madang, Papua New Guinea
| | - Timothy E. Schlub
- The Kirby Institute, UNSW Sydney, Sydney, Australia
- Sydney School of Public Health, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | | | | |
Collapse
|
13
|
Botnar A, Lawrence G, Maher SP, Vantaux A, Witkowski B, Shiau JC, Merino EF, De Vore D, Yang C, Murray C, Cassera MB, Leahy JW, Kyle DE. Alkyne modified purines for assessment of activation of Plasmodium vivax hypnozoites and growth of pre-erythrocytic and erythrocytic stages in Plasmodium spp. Int J Parasitol 2022; 52:733-744. [PMID: 35447149 PMCID: PMC9576819 DOI: 10.1016/j.ijpara.2022.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 12/26/2022]
Abstract
Malaria is a major global health problem which predominantly afflicts developing countries. Although many antimalarial therapies are currently available, the protozoan parasite causing this disease, Plasmodium spp., continues to evade eradication efforts. One biological phenomenon hampering eradication efforts is the parasite's ability to arrest development, transform into a drug-insensitive form, and then resume growth post-therapy. Currently, the mechanisms by which the parasite enters arrested development, or dormancy, and later recrudesces or reactivates to continue development, are unknown and the malaria field lacks techniques to study these elusive mechanisms. Since Plasmodium spp. salvage purines for DNA synthesis, we hypothesised that alkyne-containing purine nucleosides could be used to develop a DNA synthesis marker which could be used to investigate mechanisms behind dormancy. Using copper-catalysed click chemistry methods, we observe incorporation of alkyne modified adenosine, inosine, and hypoxanthine in actively replicating asexual blood stages of Plasmodium falciparum and incorporation of modified adenosine in actively replicating liver stage schizonts of Plasmodium vivax. Notably, these modified purines were not incorporated in dormant liver stage hypnozoites, suggesting this marker could be used as a tool to differentiate replicating and non-replicating liver forms and, more broadly, as a tool for advancing our understanding of Plasmodium dormancy mechanisms.
Collapse
Affiliation(s)
- Alona Botnar
- Department of Infectious Diseases, University of Georgia, Athens, GA, United States; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States
| | - Grant Lawrence
- Department of Chemistry, University of South Florida, Tampa, FL, United States
| | - Steven P Maher
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States
| | - Amélie Vantaux
- Malaria Molecular Epidemiology Unit, Pasteur Institute of Cambodia, Phnom Penh, Cambodia
| | - Benoît Witkowski
- Malaria Molecular Epidemiology Unit, Pasteur Institute of Cambodia, Phnom Penh, Cambodia
| | - Justine C Shiau
- Department of Infectious Diseases, University of Georgia, Athens, GA, United States; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States
| | - Emilio F Merino
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States; Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - David De Vore
- Department of Chemistry, University of South Florida, Tampa, FL, United States
| | - Christian Yang
- Department of Chemistry, University of South Florida, Tampa, FL, United States
| | - Cameron Murray
- Department of Chemistry, University of South Florida, Tampa, FL, United States
| | - Maria B Cassera
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States; Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - James W Leahy
- Department of Chemistry, University of South Florida, Tampa, FL, United States; The Florida Center for Excellence for Drug Discovery and Innovation, University of South Florida, Tampa, GA, United States; Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, GA, United States
| | - Dennis E Kyle
- Department of Infectious Diseases, University of Georgia, Athens, GA, United States; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States; Department of Cellular Biology, University of Georgia, Athens, GA, United States.
| |
Collapse
|
14
|
Ruberto AA, Maher SP, Vantaux A, Joyner CJ, Bourke C, Balan B, Jex A, Mueller I, Witkowski B, Kyle DE. Single-cell RNA profiling of Plasmodium vivax-infected hepatocytes reveals parasite- and host- specific transcriptomic signatures and therapeutic targets. Front Cell Infect Microbiol 2022; 12:986314. [PMID: 36093191 PMCID: PMC9453201 DOI: 10.3389/fcimb.2022.986314] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/08/2022] [Indexed: 12/12/2022] Open
Abstract
The resilience of Plasmodium vivax, the most widely-distributed malaria-causing parasite in humans, is attributed to its ability to produce dormant liver forms known as hypnozoites, which can activate weeks, months, or even years after an initial mosquito bite. The factors underlying hypnozoite formation and activation are poorly understood, as is the parasite's influence on the host hepatocyte. Here, we shed light on transcriptome-wide signatures of both the parasite and the infected host cell by sequencing over 1,000 P. vivax-infected hepatocytes at single-cell resolution. We distinguish between replicating schizonts and hypnozoites at the transcriptional level, identifying key differences in transcripts encoding for RNA-binding proteins associated with cell fate. In infected hepatocytes, we show that genes associated with energy metabolism and antioxidant stress response are upregulated, and those involved in the host immune response downregulated, suggesting both schizonts and hypnozoites alter the host intracellular environment. The transcriptional markers in schizonts, hypnozoites, and infected hepatocytes revealed here pinpoint potential factors underlying dormancy and can inform therapeutic targets against P. vivax liver-stage infection.
Collapse
Affiliation(s)
- Anthony A. Ruberto
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States
| | - Steven P. Maher
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States
| | - Amélie Vantaux
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Chester J. Joyner
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Caitlin Bourke
- Population Health & Immunity Division, Walter and Eliza Hall Institute, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Balu Balan
- Population Health & Immunity Division, Walter and Eliza Hall Institute, Parkville, VIC, Australia
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Aaron Jex
- Population Health & Immunity Division, Walter and Eliza Hall Institute, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Ivo Mueller
- Population Health & Immunity Division, Walter and Eliza Hall Institute, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Benoit Witkowski
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Dennis E. Kyle
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States
| |
Collapse
|
15
|
Gualdrón-López M, Díaz-Varela M, Zanghi G, Aparici-Herraiz I, Steel RW, Schäfer C, Cuscó P, Chuenchob V, Kangwangransan N, Billman ZP, Olsen TM, González JR, Roobsoong W, Sattabongkot J, Murphy SC, Mikolajczak SA, Borràs E, Sabidó E, Fernandez-Becerra C, Flannery EL, Kappe SH, del Portillo HA. Mass Spectrometry Identification of Biomarkers in Extracellular Vesicles From Plasmodium vivax Liver Hypnozoite Infections. Mol Cell Proteomics 2022; 21:100406. [PMID: 36030044 PMCID: PMC9520272 DOI: 10.1016/j.mcpro.2022.100406] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/12/2022] [Accepted: 08/20/2022] [Indexed: 01/18/2023] Open
Abstract
Latent liver stages termed hypnozoites cause relapsing Plasmodium vivax malaria infection and represent a major obstacle in the goal of malaria elimination. Hypnozoites are clinically undetectable, and presently, there are no biomarkers of this persistent parasite reservoir in the human liver. Here, we have identified parasite and human proteins associated with extracellular vesicles (EVs) secreted from in vivo infections exclusively containing hypnozoites. We used P. vivax-infected human liver-chimeric (huHEP) FRG KO mice treated with the schizonticidal experimental drug MMV048 as hypnozoite infection model. Immunofluorescence-based quantification of P. vivax liver forms showed that MMV048 removed schizonts from chimeric mice livers. Proteomic analysis of EVs derived from FRG huHEP mice showed that human EV cargo from infected FRG huHEP mice contain inflammation markers associated with active schizont replication and identified 66 P. vivax proteins. To identify hypnozoite-specific proteins associated with EVs, we mined the proteome data from MMV048-treated mice and performed an analysis involving intragroup and intergroup comparisons across all experimental conditions followed by a peptide compatibility analysis with predicted spectra to warrant robust identification. Only one protein fulfilled this stringent top-down selection, a putative filamin domain-containing protein. This study sets the stage to unveil biological features of human liver infections and identify biomarkers of hypnozoite infection associated with EVs.
Collapse
Affiliation(s)
- Melisa Gualdrón-López
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain,IGTP, Institute for Health Sciences Trias I Pujol, Barcelona, Spain
| | - Miriam Díaz-Varela
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain,IGTP, Institute for Health Sciences Trias I Pujol, Barcelona, Spain
| | - Gigliola Zanghi
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Iris Aparici-Herraiz
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain,IGTP, Institute for Health Sciences Trias I Pujol, Barcelona, Spain
| | - Ryan W.J. Steel
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Carola Schäfer
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Pol Cuscó
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
| | - Vorada Chuenchob
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Niwat Kangwangransan
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Zachary P. Billman
- Department of Laboratory Medicine and Pathology, and Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Tayla M. Olsen
- Department of Laboratory Medicine and Pathology, and Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Juan R. González
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
| | - Wanlapa Roobsoong
- MVRU, Mahidol Vivax Research Unit, Mahidol University, Bangkok, Thailand
| | | | - Sean C. Murphy
- Department of Laboratory Medicine and Pathology, and Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Sebastian A. Mikolajczak
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Eva Borràs
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Eduard Sabidó
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Carmen Fernandez-Becerra
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain,IGTP, Institute for Health Sciences Trias I Pujol, Barcelona, Spain
| | - Erika L. Flannery
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Stefan H.I. Kappe
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA,Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Hernando A. del Portillo
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain,IGTP, Institute for Health Sciences Trias I Pujol, Barcelona, Spain,ICREA, Catalan Institution for Research and Advanced Studies, Barcelona, Spain,For correspondence: Hernando A. del Portillo
| |
Collapse
|
16
|
Flannery EL, Kangwanrangsan N, Chuenchob V, Roobsoong W, Fishbaugher M, Zhou K, Billman ZP, Martinson T, Olsen TM, Schäfer C, Campo B, Murphy SC, Mikolajczak SA, Kappe SH, Sattabongkot J. Plasmodium vivax latent liver infection is characterized by persistent hypnozoites, hypnozoite-derived schizonts, and time-dependent efficacy of primaquine. Mol Ther Methods Clin Dev 2022; 26:427-440. [PMID: 36092359 PMCID: PMC9418049 DOI: 10.1016/j.omtm.2022.07.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/31/2022] [Indexed: 01/13/2023]
Abstract
Plasmodium vivax is a malaria-causing pathogen that establishes a dormant form in the liver (the hypnozoite), which can activate weeks, months, or years after the primary infection to cause a relapse, characterized by secondary blood-stage infection. These asymptomatic and undetectable latent liver infections present a significant obstacle to the goal of global malaria eradication. We use a human liver-chimeric mouse model (FRG huHep) to study P. vivax hypnozoite latency and activation in an in vivo model system. Functional activation of hypnozoites and formation of secondary schizonts is demonstrated by first eliminating primary liver schizonts using a schizont-specific antimalarial tool compound, and then measuring recurrence of secondary liver schizonts in the tissue and an increase in parasite RNA within the liver. We also reveal that, while primaquine does not immediately eliminate hypnozoites from the liver, it arrests developing schizonts and prevents activation of hypnozoites, consistent with its clinical activity in humans. Our findings demonstrate that the FRG huHep model can be used to study the biology of P. vivax infection and latency and assess the activity of anti-relapse drugs.
Collapse
Affiliation(s)
- Erika L. Flannery
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98109, USA
- Corresponding author Erika L. Flannery, Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98109, USA.
| | - Niwat Kangwanrangsan
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Vorada Chuenchob
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98109, USA
| | - Wanlapa Roobsoong
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Matthew Fishbaugher
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98109, USA
| | - Kevin Zhou
- Department of Laboratory Medicine and Pathology, and Department of Microbiology, University of Washington, Seattle, WA 98115, USA
| | - Zachary P. Billman
- Department of Laboratory Medicine and Pathology, and Department of Microbiology, University of Washington, Seattle, WA 98115, USA
| | - Thomas Martinson
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98109, USA
| | - Tayla M. Olsen
- Department of Laboratory Medicine and Pathology, and Department of Microbiology, University of Washington, Seattle, WA 98115, USA
| | - Carola Schäfer
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98109, USA
| | - Brice Campo
- Medicines for Malaria Venture, Geneva, Switzerland
| | - Sean C. Murphy
- Department of Laboratory Medicine and Pathology, and Department of Microbiology, University of Washington, Seattle, WA 98115, USA
| | - Sebastian A. Mikolajczak
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98109, USA
| | - Stefan H.I. Kappe
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98109, USA
- Department of Pediatrics, University of Washington, Seattle, WA 98105, USA
- Corresponding author Stefan H.I. Kappe, Department of Pediatrics, University of Washington, Seattle, WA 98105, USA.
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Corresponding author Jetsumon Sattabongkot, Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
17
|
Ruberto AA, Bourke C, Vantaux A, Maher SP, Jex A, Witkowski B, Snounou G, Mueller I. Single-cell RNA sequencing of Plasmodium vivax sporozoites reveals stage- and species-specific transcriptomic signatures. PLoS Negl Trop Dis 2022; 16:e0010633. [PMID: 35926062 PMCID: PMC9380936 DOI: 10.1371/journal.pntd.0010633] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 08/16/2022] [Accepted: 07/04/2022] [Indexed: 11/24/2022] Open
Abstract
Background Plasmodium vivax sporozoites reside in the salivary glands of a mosquito before infecting a human host and causing malaria. Previous transcriptome-wide studies in populations of these parasite forms were limited in their ability to elucidate cell-to-cell variation, thereby masking cellular states potentially important in understanding malaria transmission outcomes. Methodology/Principal findings In this study, we performed transcription profiling on 9,947 P. vivax sporozoites to assess the extent to which they differ at single-cell resolution. We show that sporozoites residing in the mosquito’s salivary glands exist in distinct developmental states, as defined by their transcriptomic signatures. Additionally, relative to P. falciparum, P. vivax displays overlapping and unique gene usage patterns, highlighting conserved and species-specific gene programs. Notably, distinguishing P. vivax from P. falciparum were a subset of P. vivax sporozoites expressing genes associated with translational regulation and repression. Finally, our comparison of single-cell transcriptomic data from P. vivax sporozoite and erythrocytic forms reveals gene usage patterns unique to sporozoites. Conclusions/Significance In defining the transcriptomic signatures of individual P. vivax sporozoites, our work provides new insights into the factors driving their developmental trajectory and lays the groundwork for a more comprehensive P. vivax cell atlas. Plasmodium vivax is the second most common cause of malaria worldwide. It is particularly challenging for malaria elimination as it forms both active blood-stage infections, as well as asymptomatic liver-stage infections that can persist for extended periods of time. The activation of persister forms in the liver (hypnozoites) are responsible for relapsing infections occurring weeks or months following primary infection via a mosquito bite. How P. vivax persists in the liver remains a major gap in understanding of this organism. It has been hypothesized that there is pre-programming of the infectious sporozoite while it is in the salivary-glands that determines if the cell’s fate once in the liver is to progress towards immediate liver stage development or persist for long-periods as a hypnozoite. The aim of this study was to see if such differences were distinguishable at the transcript level in salivary-gland sporozoites. While we found significant variation amongst sporozoites, we did not find clear evidence that they are transcriptionally pre-programmed as has been suggested. Nevertheless, we highlight several intriguing patterns that appear to be P. vivax specific relative to non-relapsing species that cause malaria prompting further investigation.
Collapse
Affiliation(s)
- Anthony A. Ruberto
- Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
| | - Caitlin Bourke
- Division of Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Amélie Vantaux
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh, Kingdom of Cambodia
| | - Steven P. Maher
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
| | - Aaron Jex
- Division of Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Benoit Witkowski
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh, Kingdom of Cambodia
| | - Georges Snounou
- Commissariat à l’Énergie Atomique et aux Énergies Alternatives-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA-HB), Infectious Disease Models and Innovative Therapies (IDMIT) Department, Institut de Biologie François Jacob (IBFJ), Direction de la Recherche Fondamentale (DRF), Fontenay-aux-Roses, France
| | - Ivo Mueller
- Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- Division of Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail:
| |
Collapse
|
18
|
Difference between Microscopic and PCR Examination Result for Malaria Diagnosis and Treatment Evaluation in Sumba Barat Daya, Indonesia. Trop Med Infect Dis 2022; 7:tropicalmed7080153. [PMID: 36006245 PMCID: PMC9412636 DOI: 10.3390/tropicalmed7080153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/18/2022] [Accepted: 07/25/2022] [Indexed: 02/01/2023] Open
Abstract
Microscopic examination is the backbone of malaria diagnosis and treatment evaluation in Indonesia. This test has limited ability to detect malaria at low parasite density. Inversely, nested polymerase chain reaction (PCR) can detect parasites at a density below the microscopic examination’s detection limit. The objective of this study is to compare microscopic and PCR results when being used to identify malaria in suspected patients and patients who underwent dihydroartemisinin–piperaquine (DHP) therapy in the last 3–8 weeks with or without symptoms in Sumba Barat Daya, Nusa Tenggara Timur, Indonesia. Recruitment was conducted between April 2019 and February 2020. Blood samples were then taken for microscopic and PCR examinations. Participants (n = 409) were divided into three groups: suspected malaria (42.5%), post-DHP therapy with fever (4.9%), and post-DHP therapy without fever (52.6%). Microscopic examination found five cases of P. falciparum + P. vivax infection, while PCR found 346 cases. All microscopic examinations turned negative in the post-DHP-therapy group. Conversely, PCR result from the same group yielded 29 negative results. Overall, our study showed that microscopic examination and PCR generated different results in detecting Plasmodium species, especially in patients with mixed infection and in patients who recently underwent DHP therapy.
Collapse
|
19
|
Noviyanti R, Carey-Ewend K, Trianty L, Parobek C, Puspitasari AM, Balasubramanian S, Park Z, Hathaway N, Utami RAS, Soebianto S, Jeny J, Yudhaputri F, Perkasa A, Coutrier FN, Tirta YK, Ekawati L, Tjahyono B, Sutanto I, Nelwan EJ, Sudoyo H, Baird JK, Lin JT. Hypnozoite depletion in successive Plasmodium vivax relapses. PLoS Negl Trop Dis 2022; 16:e0010648. [PMID: 35867730 PMCID: PMC9348653 DOI: 10.1371/journal.pntd.0010648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/03/2022] [Accepted: 07/09/2022] [Indexed: 11/17/2022] Open
Abstract
Genotyping Plasmodium vivax relapses can provide insights into hypnozoite biology. We performed targeted amplicon sequencing of 127 relapses occurring in Indonesian soldiers returning to malaria-free Java after yearlong deployment in malarious Eastern Indonesia. Hepatic carriage of multiple hypnozoite clones was evident in three-quarters of soldiers with two successive relapses, yet the majority of relapse episodes only displayed one clonal population. The number of clones detected in relapse episodes decreased over time and through successive relapses, especially in individuals who received hypnozoiticidal therapy. Interrogating the multiplicity of infection in this P. vivax relapse cohort reveals evidence of independent activation and slow depletion of hypnozoites over many months by multiple possible mechanisms, including parasite senescence and host immunity. Investigating relapse patterns in infections of Plasmodium vivax, a parasite that causes malaria, is challenging due to concurrent reinfection events alongside true relapses in most clinical cohorts. We performed sequencing on P. vivax samples from a cohort of Indonesian soldiers who were exposed to the parasite while deployed in a malaria-endemic region and then experienced relapses after their return to a region with no current malaria transmission. From these true relapses, we show that most infected individuals harbor multiple lineages of hypnozoites (latent liver stage parasites that reactivate to cause relapse) but individual relapses are largely driven by a single hypnozoite lineage or clone. Additionally, the average number of parasite clones detected in each relapse decreases over time. These findings suggest that P. vivax hypnozoites activate independently from each other and that their population in the liver decreases over time after the initial infection, possibly due to immune clearance or loss of parasite viability.
Collapse
Affiliation(s)
| | - Kelly Carey-Ewend
- Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, United States of America
- University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
- * E-mail: (KCE); (JTL)
| | - Leily Trianty
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Christian Parobek
- University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | | | - Sujata Balasubramanian
- University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Zackary Park
- University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Nicholas Hathaway
- University of Massachusetts Chan Medical School of Medicine, Worcester, Massachusetts, United States of America
| | | | | | - Jeny Jeny
- Eijkman-Oxford Clinical Research Unit, Jakarta, Indonesia
| | | | - Aditya Perkasa
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | | | | | - Lenny Ekawati
- Eijkman-Oxford Clinical Research Unit, Jakarta, Indonesia
| | - Bagus Tjahyono
- Health Services, Army of the Republic of Indonesia, Jakarta, Indonesia
| | - Inge Sutanto
- Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | - Erni J. Nelwan
- Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | | | - J. Kevin Baird
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
- Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | - Jessica T. Lin
- University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
- * E-mail: (KCE); (JTL)
| |
Collapse
|
20
|
Plasmodium vivax malaria serological exposure markers: Assessing the degree and implications of cross-reactivity with P. knowlesi. Cell Rep Med 2022; 3:100662. [PMID: 35732155 PMCID: PMC9245056 DOI: 10.1016/j.xcrm.2022.100662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/22/2022] [Accepted: 05/26/2022] [Indexed: 11/21/2022]
Abstract
Serological markers are a promising tool for surveillance and targeted interventions for Plasmodium vivax malaria. P. vivax is closely related to the zoonotic parasite P. knowlesi, which also infects humans. P. vivax and P. knowlesi are co-endemic across much of South East Asia, making it important to design serological markers that minimize cross-reactivity in this region. To determine the degree of IgG cross-reactivity against a panel of P. vivax serological markers, we assayed samples from human patients with P. knowlesi malaria. IgG antibody reactivity is high against P. vivax proteins with high sequence identity with their P. knowlesi ortholog. IgG reactivity peaks at 7 days post-P. knowlesi infection and is short-lived, with minimal responses 1 year post-infection. We designed a panel of eight P. vivax proteins with low levels of cross-reactivity with P. knowlesi. This panel can accurately classify recent P. vivax infections while reducing misclassification of recent P. knowlesi infections.
Collapse
|
21
|
Abstract
"The Primate Malarias" book has been a uniquely important resource for multiple generations of scientists, since its debut in 1971, and remains pertinent to the present day. Indeed, nonhuman primates (NHPs) have been instrumental for major breakthroughs in basic and pre-clinical research on malaria for over 50 years. Research involving NHPs have provided critical insights and data that have been essential for malaria research on many parasite species, drugs, vaccines, pathogenesis, and transmission, leading to improved clinical care and advancing research goals for malaria control, elimination, and eradication. Whilst most malaria scientists over the decades have been studying Plasmodium falciparum, with NHP infections, in clinical studies with humans, or using in vitro culture or rodent model systems, others have been dedicated to advancing research on Plasmodium vivax, as well as on phylogenetically related simian species, including Plasmodium cynomolgi, Plasmodium coatneyi, and Plasmodium knowlesi. In-depth study of these four phylogenetically related species over the years has spawned the design of NHP longitudinal infection strategies for gathering information about ongoing infections, which can be related to human infections. These Plasmodium-NHP infection model systems are reviewed here, with emphasis on modern systems biological approaches to studying longitudinal infections, pathogenesis, immunity, and vaccines. Recent discoveries capitalizing on NHP longitudinal infections include an advanced understanding of chronic infections, relapses, anaemia, and immune memory. With quickly emerging new technological advances, more in-depth research and mechanistic discoveries can be anticipated on these and additional critical topics, including hypnozoite biology, antigenic variation, gametocyte transmission, bone marrow dysfunction, and loss of uninfected RBCs. New strategies and insights published by the Malaria Host-Pathogen Interaction Center (MaHPIC) are recapped here along with a vision that stresses the importance of educating future experts well trained in utilizing NHP infection model systems for the pursuit of innovative, effective interventions against malaria.
Collapse
Affiliation(s)
- Mary R Galinski
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA.
- Emory Vaccine Center, Emory University, Atlanta, GA, USA.
- Emory National Primate Research Center (Yerkes National Primate Research Center), Emory University, Atlanta, GA, USA.
| |
Collapse
|
22
|
Bourke C, Takashima E, Chan LJ, Dietrich MH, Mazhari R, White M, Sattabongkot J, Tham WH, Tsuboi T, Mueller I, Longley R. Comparison of total immunoglobulin G antibody responses to different protein fragments of Plasmodium vivax Reticulocyte binding protein 2b. Malar J 2022; 21:71. [PMID: 35246142 PMCID: PMC8896302 DOI: 10.1186/s12936-022-04085-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/13/2022] [Indexed: 12/03/2022] Open
Abstract
Background Plasmodium vivax is emerging as the dominant and prevalent species causing malaria in near-elimination settings outside of Africa. Hypnozoites, the dormant liver stage parasite of P. vivax, are undetectable to any currently available diagnostic test, yet are a major reservoir for transmission. Advances have been made to harness the naturally acquired immune response to identify recent exposure to P. vivax blood-stage parasites and, therefore, infer the presence of hypnozoites. This in-development diagnostic is currently able to detect infections within the last 9-months with 80% sensitivity and 80% specificity. Further work is required to optimize protein expression and protein constructs used for antibody detection. Methods The antibody response against the top performing predictor of recent infection, P. vivax reticulocyte binding protein 2b (PvRBP2b), was tested against multiple fragments of different sizes and from different expression systems. The IgG induced against the recombinant PvRBP2b fragments in P. vivax infected individuals was measured at the time of infection and in a year-long observational cohort; both conducted in Thailand. Results The antibody responses to some but not all different sized fragments of PvRBP2b protein are highly correlated with each other, significantly higher 1-week post-P. vivax infection, and show potential for use as predictors of recent P. vivax infection. Conclusions To achieve P. vivax elimination goals, novel diagnostics are required to aid in detection of hidden parasite reservoirs. PvRBP2b was previously shown to be the top candidate for single-antigen classification of recent P. vivax exposure and here, it is concluded that several alternative recombinant PvRBP2b fragments can achieve equal sensitivity and specificity at predicting recent P. vivax exposure. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-022-04085-x.
Collapse
Affiliation(s)
- Caitlin Bourke
- The Walter and Eliza Hall Institute of Medical Research, 3052, Parkville, Australia.,Department of Medical Biology, The University of Melbourne, 3052, Parkville, Australia
| | - Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Li-Jin Chan
- The Walter and Eliza Hall Institute of Medical Research, 3052, Parkville, Australia.,Department of Medical Biology, The University of Melbourne, 3052, Parkville, Australia
| | - Melanie H Dietrich
- The Walter and Eliza Hall Institute of Medical Research, 3052, Parkville, Australia.,Department of Medical Biology, The University of Melbourne, 3052, Parkville, Australia
| | - Ramin Mazhari
- The Walter and Eliza Hall Institute of Medical Research, 3052, Parkville, Australia.,Department of Medical Biology, The University of Melbourne, 3052, Parkville, Australia
| | - Michael White
- Infectious Disease Epidemiology and Analytics G5 Unit, Institut Pasteur, Paris, France
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Wai-Hong Tham
- The Walter and Eliza Hall Institute of Medical Research, 3052, Parkville, Australia.,Department of Medical Biology, The University of Melbourne, 3052, Parkville, Australia
| | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Ivo Mueller
- The Walter and Eliza Hall Institute of Medical Research, 3052, Parkville, Australia.,Department of Medical Biology, The University of Melbourne, 3052, Parkville, Australia
| | - Rhea Longley
- The Walter and Eliza Hall Institute of Medical Research, 3052, Parkville, Australia. .,Department of Medical Biology, The University of Melbourne, 3052, Parkville, Australia. .,Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
23
|
Huber JH, Koepfli C, España G, Nekkab N, White MT, Alex Perkins T. How radical is radical cure? Site-specific biases in clinical trials underestimate the effect of radical cure on Plasmodium vivax hypnozoites. Malar J 2021; 20:479. [PMID: 34930278 PMCID: PMC8686294 DOI: 10.1186/s12936-021-04017-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 12/08/2021] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Plasmodium vivax blood-stage relapses originating from re-activating hypnozoites are a major barrier for control and elimination of this disease. Radical cure is a form of therapy capable of addressing this problem. Recent clinical trials of radical cure have yielded efficacy estimates ranging from 65 to 94%, with substantial variation across trial sites. METHODS An analysis of simulated trial data using a transmission model was performed to demonstrate that variation in efficacy estimates across trial sites can arise from differences in the conditions under which trials are conducted. RESULTS The analysis revealed that differences in transmission intensity, heterogeneous exposure and relapse rate can yield efficacy estimates ranging as widely as 12-78%, despite simulating trial data under the uniform assumption that treatment had a 75% chance of clearing hypnozoites. A longer duration of prophylaxis leads to a greater measured efficacy, particularly at higher transmission intensities, making the comparison between the protection of different radical cure treatment regimens against relapse more challenging. Simulations show that vector control and parasite genotyping offer two potential means to yield more standardized efficacy estimates that better reflect prevention of relapse. CONCLUSIONS Site-specific biases are likely to contribute to variation in efficacy estimates both within and across clinical trials. Future clinical trials can reduce site-specific biases by conducting trials in low-transmission settings where re-infections from mosquito bite are less common, by preventing re-infections using vector control measures, or by identifying and excluding likely re-infections that occur during follow-up, by using parasite genotyping methods.
Collapse
Affiliation(s)
- John H Huber
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA.
| | - Cristian Koepfli
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - Guido España
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - Narimane Nekkab
- Unité Malaria: Parasites et Hôtes, Département Parasites et Insectes Vecteur, Institut Pasteur, Paris, France
| | - Michael T White
- Unité Malaria: Parasites et Hôtes, Département Parasites et Insectes Vecteur, Institut Pasteur, Paris, France
| | - T Alex Perkins
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
24
|
Fernandez-Becerra C, Aparici-Herraiz I, Del Portillo HA. Cryptic erythrocytic infections in Plasmodium vivax, another challenge to its elimination. Parasitol Int 2021; 87:102527. [PMID: 34896615 DOI: 10.1016/j.parint.2021.102527] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 12/04/2021] [Accepted: 12/04/2021] [Indexed: 12/26/2022]
Abstract
Human malaria caused by Plasmodium vivax infection (vivax malaria) is a major global health issue. It is the most geographically widespread form of the disease, accounting for 7 million annual clinical cases, the majority of cases in America and Asia and an estimation of over 2.5 billion people living under risk of infection. The general perception towards vivax malaria has shifted recently, following a series of reports, from being viewed as a benign infection to the recognition of its potential for more severe manifestations including fatal cases. However, the underlying pathogenic mechanisms of vivax malaria remain largely unresolved. Asymptomatic carriers of malaria parasites are a major challenge for malaria elimination. In the case of P. vivax, it has been widely accepted that the only source of cryptic parasites is hypnozoite dormant stages. Here, we will review new evidence indicating that cryptic erythrocytic niches outside the liver, in particular in the spleen and bone marrow, can represent a major source of asymptomatic infections. The origin of such parasites is being controversial and many key gaps in the knowledge of such infections remain unanswered. Yet, as parasites in these niches seem to be sheltered from immune response and antimalarial drugs, research on this area should be reinforced if elimination of malaria is to be achieved. Last, we will glimpse into the role of reticulocyte-derived exosomes, extracellular vesicles of endocytic origin, as intercellular communicators likely involved in the formation of such cryptic erythrocytic infections.
Collapse
Affiliation(s)
- Carmen Fernandez-Becerra
- ISGlobal, Hospital Clínic, Universitat de Barcelona, 08036 Barcelona, Spain; Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain.
| | | | - Hernando A Del Portillo
- ISGlobal, Hospital Clínic, Universitat de Barcelona, 08036 Barcelona, Spain; Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain.
| |
Collapse
|
25
|
Bantuchai S, Imad H, Nguitragool W. Plasmodium vivax gametocytes and transmission. Parasitol Int 2021; 87:102497. [PMID: 34748969 DOI: 10.1016/j.parint.2021.102497] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/14/2021] [Accepted: 10/30/2021] [Indexed: 10/19/2022]
Abstract
Malaria elimination means cessation of parasite transmission. At present, the declining malaria incidence in many countries has made elimination a feasible goal. Transmission control has thus been placed at the center of the national malaria control programs. The efficient transmission of Plasmodium vivax from humans to mosquitoes is a key factor that helps perpetuate malaria in endemic areas. A better understanding of transmission is crucial to the success of elimination efforts. Biological delineation of the parasite transmission process is important for identifying and prioritizing new targets of intervention. Identification of the infectious parasite reservoir in the community is key to devising an effective elimination strategy. Here we describe the fundamental characteristics of P. vivax gametocytes - the dynamics of their production, longevity, and the relationship with the total parasitemia - as well as recent advances in the molecular understanding of parasite sexual development. In relation to malaria elimination, factors influencing the human infectivity and the current evidence for a role of asymptomatic carriers in transmission are presented.
Collapse
Affiliation(s)
- Sirasate Bantuchai
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok 10400, Thailand.
| | - Hisham Imad
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok 10400, Thailand.
| | - Wang Nguitragool
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok 10400, Thailand; Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok 10400, Thailand.
| |
Collapse
|
26
|
Abstract
J. Kevin Baird and colleagues, examine and discuss the estimated global burden of vivax malaria and it's biological, clinical, and public health complexity.
Collapse
Affiliation(s)
- Katherine E. Battle
- Institute for Disease Modeling, Seattle, Washington, United States of America
| | - J. Kevin Baird
- Eijkman-Oxford Clinical Research Unit, Eijkman Institute of Molecular Biology, Jakarta, Indonesia
- Nuffield Department of Medicine, Centre for Tropical Medicine, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
27
|
Baird JK. Basic Research of Plasmodium vivax Biology Enabling Its Management as a Clinical and Public Health Problem. Front Cell Infect Microbiol 2021; 11:696598. [PMID: 34540716 PMCID: PMC8447957 DOI: 10.3389/fcimb.2021.696598] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/22/2021] [Indexed: 12/20/2022] Open
Abstract
The emerging understanding of Plasmodium vivax as an infection seated in extravascular spaces of its human host carries fundamentally important implications for its management as a complex clinical and public health problem. This progress begins to reverse decades of neglected research borne of the false dogma of P. vivax as an intrinsically benign and inconsequential parasite. This Review provides real world context for the on-going laboratory explorations of the molecular and cellular events in the life of this parasite. Chemotherapies against the latent reservoir impose extraordinarily complex and difficult problems of science and medicine, but great strides in studies of the biology of hepatic P. vivax promise solutions. Fundamental assumptions regarding the interpretation of parasitaemia in epidemiology, clinical medicine, and public health are being revisited and reassessed in light of new studies of P. vivax cellular/molecular biology and pathogenesis. By examining these long overlooked complexities of P. vivax malaria, we open multiple new avenues to vaccination, chemoprevention, countermeasures against transmission, epidemiology, diagnosis, chemotherapy, and clinical management. This Review expresses how clarity of vision of biology and pathogenesis may rationally and radically transform the multiple means by which we may combat this insidiously harmful infection.
Collapse
Affiliation(s)
- J Kevin Baird
- Eijkman-Oxford Clinical Research Unit, Eijkman Institute of Molecular Biology, Jakarta, Indonesia.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
28
|
Rotejanaprasert C, Lee D, Ekapirat N, Sudathip P, Maude RJ. Spatiotemporal distributed lag modelling of multiple Plasmodium species in a malaria elimination setting. Stat Methods Med Res 2021; 30:22-34. [PMID: 33595402 DOI: 10.1177/0962280220938977] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In much of the Greater Mekong Sub-region, malaria is now confined to patches and small foci of transmission. Malaria transmission is seasonal with the spatiotemporal patterns being associated with variation in environmental and climatic factors. However, the possible effect at different lag periods between meteorological variables and clinical malaria has not been well studied in the region. Thus, in this study we developed distributed lagged modelling accounting for spatiotemporal excessive zero cases in a malaria elimination setting. A multivariate framework was also extended to incorporate multiple data streams and investigate the spatiotemporal patterns from multiple parasite species via their lagged association with climatic variables. A simulation study was conducted to examine robustness of the methodology and a case study is provided of weekly data of clinical malaria cases at sub-district level in Thailand.
Collapse
Affiliation(s)
- Chawarat Rotejanaprasert
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Duncan Lee
- School of Mathematics and Statistics, University of Glasgow, Glasgow, UK
| | - Nattwut Ekapirat
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Prayuth Sudathip
- Division of Vector Borne Diseases, Department of Disease Control, Ministry of Public Health, Nonthaburi, Thailand
| | - Richard J Maude
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Harvard T.H. Chan School of Public Health, Harvard University, Cambridge, MA, USA.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
29
|
Satyagraha AW, Sadhewa A, Panggalo LV, Subekti D, Elyazar I, Soebianto S, Mahpud N, Harahap AR, Baird JK. Genotypes and phenotypes of G6PD deficiency among Indonesian females across diagnostic thresholds of G6PD activity guiding safe primaquine therapy of latent malaria. PLoS Negl Trop Dis 2021; 15:e0009610. [PMID: 34270547 PMCID: PMC8318249 DOI: 10.1371/journal.pntd.0009610] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/28/2021] [Accepted: 06/30/2021] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Plasmodium vivax occurs as a latent infection of liver and a patent infection of red blood cells. Radical cure requires both blood schizontocidal and hypnozoitocidal chemotherapies. The hypnozoitocidal therapies available are primaquine and tafenoquine, 8-aminoquinoline drugs that can provoke threatening acute hemolytic anemia in patients having an X-linked G6PD-deficiency. Heterozygous females may screen as G6PD-normal prior to radical cure and go on to experience hemolytic crisis. METHODS & FINDINGS This study examined G6PD phenotypes in 1928 female subjects living in malarious Sumba Island in eastern Indonesia to ascertain the prevalence of females vulnerable to diagnostic misclassification as G6PD-normal. All 367 (19%) females having <80% G6PD normal activity were genotyped. Among those, 103 (28%) were G6PD wild type, 251 (68·4%) were heterozygous, three (0·8%) were compound heterozygotes, and ten (2·7%) were homozygous deficient. The variants Vanua Lava, Viangchan, Coimbra, Chatham, and Kaiping occurred among them. Below the 70% of normal G6PD activity threshold, just 18 (8%) were G6PD-normal and 214 (92%) were G6PD-deficient. Among the 31 females with <30% G6PD normal activity were all ten homozygotes, all three compound heterozygotes, and just 18 were heterozygotes (7% of those). CONCLUSIONS In this population, most G6PD heterozygosity in females occurred between 30% and 70% of normal (69·3%; 183/264). The prevalence of females at risk of G6PD misclassification as normal by qualitative screening was 9·5% (183/1928). Qualitative G6PD screening prior to 8-aminoquinoline therapies against P. vivax may leave one in ten females at risk of hemolytic crisis, which may be remedied by point-of-care quantitative tests.
Collapse
Affiliation(s)
| | | | | | - Decy Subekti
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
- Eijkman-Oxford Clinical Research Unit, Jakarta, Indonesia
| | - Iqbal Elyazar
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
- Eijkman-Oxford Clinical Research Unit, Jakarta, Indonesia
| | - Saraswati Soebianto
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
- Eijkman-Oxford Clinical Research Unit, Jakarta, Indonesia
| | - Nunung Mahpud
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
- Eijkman-Oxford Clinical Research Unit, Jakarta, Indonesia
| | | | - J. Kevin Baird
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
- Eijkman-Oxford Clinical Research Unit, Jakarta, Indonesia
- Centre for Tropical Medicine & Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
30
|
Schäfer C, Zanghi G, Vaughan AM, Kappe SHI. Plasmodium vivax Latent Liver Stage Infection and Relapse: Biological Insights and New Experimental Tools. Annu Rev Microbiol 2021; 75:87-106. [PMID: 34196569 DOI: 10.1146/annurev-micro-032421-061155] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Plasmodium vivax is the most widespread human malaria parasite, in part because it can form latent liver stages known as hypnozoites after transmission by female anopheline mosquitoes to human hosts. These persistent stages can activate weeks, months, or even years after the primary clinical infection; replicate; and initiate relapses of blood stage infection, which causes disease and recurring transmission. Eliminating hypnozoites is a substantial obstacle for malaria treatment and eradication since the hypnozoite reservoir is undetectable and unaffected by most antimalarial drugs. Importantly, in some parts of the globe where P. vivax malaria is endemic, as many as 90% of P. vivax blood stage infections are thought to be relapses rather than primary infections, rendering the hypnozoite a major driver of P. vivax epidemiology. Here, we review the biology of the hypnozoite and recent discoveries concerning this enigmatic parasite stage. We discuss treatment and prevention challenges, novel animal models to study hypnozoites and relapse, and hypotheses related to hypnozoite formation and activation. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Carola Schäfer
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington 98109, USA; , , ,
| | - Gigliola Zanghi
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington 98109, USA; , , ,
| | - Ashley M Vaughan
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington 98109, USA; , , , .,Department of Pediatrics, University of Washington, Seattle, Washington 98105, USA
| | - Stefan H I Kappe
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington 98109, USA; , , , .,Department of Pediatrics, University of Washington, Seattle, Washington 98105, USA.,Deparment of Global Health, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
31
|
Devine A, Battle KE, Meagher N, Howes RE, Dini S, Gething PW, Simpson JA, Price RN, Lubell Y. Global economic costs due to vivax malaria and the potential impact of its radical cure: A modelling study. PLoS Med 2021; 18:e1003614. [PMID: 34061843 PMCID: PMC8168905 DOI: 10.1371/journal.pmed.1003614] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 04/07/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND In 2017, an estimated 14 million cases of Plasmodium vivax malaria were reported from Asia, Central and South America, and the Horn of Africa. The clinical burden of vivax malaria is largely driven by its ability to form dormant liver stages (hypnozoites) that can reactivate to cause recurrent episodes of malaria. Elimination of both the blood and liver stages of the parasites ("radical cure") is required to achieve a sustained clinical response and prevent ongoing transmission of the parasite. Novel treatment options and point-of-care diagnostics are now available to ensure that radical cure can be administered safely and effectively. We quantified the global economic cost of vivax malaria and estimated the potential cost benefit of a policy of radical cure after testing patients for glucose-6-phosphate dehydrogenase (G6PD) deficiency. METHODS AND FINDINGS Estimates of the healthcare provider and household costs due to vivax malaria were collated and combined with national case estimates for 44 endemic countries in 2017. These provider and household costs were compared with those that would be incurred under 2 scenarios for radical cure following G6PD screening: (1) complete adherence following daily supervised primaquine therapy and (2) unsupervised treatment with an assumed 40% effectiveness. A probabilistic sensitivity analysis generated credible intervals (CrIs) for the estimates. Globally, the annual cost of vivax malaria was US$359 million (95% CrI: US$222 to 563 million), attributable to 14.2 million cases of vivax malaria in 2017. From a societal perspective, adopting a policy of G6PD deficiency screening and supervision of primaquine to all eligible patients would prevent 6.1 million cases and reduce the global cost of vivax malaria to US$266 million (95% CrI: US$161 to 415 million), although healthcare provider costs would increase by US$39 million. If perfect adherence could be achieved with a single visit, then the global cost would fall further to US$225 million, equivalent to $135 million in cost savings from the baseline global costs. A policy of unsupervised primaquine reduced the cost to US$342 million (95% CrI: US$209 to 532 million) while preventing 2.1 million cases. Limitations of the study include partial availability of country-level cost data and parameter uncertainty for the proportion of patients prescribed primaquine, patient adherence to a full course of primaquine, and effectiveness of primaquine when unsupervised. CONCLUSIONS Our modelling study highlights a substantial global economic burden of vivax malaria that could be reduced through investment in safe and effective radical cure achieved by routine screening for G6PD deficiency and supervision of treatment. Novel, low-cost interventions for improving adherence to primaquine to ensure effective radical cure and widespread access to screening for G6PD deficiency will be critical to achieving the timely global elimination of P. vivax.
Collapse
Affiliation(s)
- Angela Devine
- Division of Global and Tropical Health, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Katherine E. Battle
- Institute for Disease Modeling, Seattle, Washington, United States of America
| | - Niamh Meagher
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Victoria, Australia
- Victorian Infectious Diseases Reference Laboratory Epidemiology Unit, Royal Melbourne Hospital, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Rosalind E. Howes
- Foundation for Innovative New Diagnostics (FIND), Geneva, Switzerland
- Oxford Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Saber Dini
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Peter W. Gething
- Telethon Kids Institute, Perth Children’s Hospital, Nedlands, Western Australia, Australia
- Curtin University, Bentley, Western Australia, Australia
| | - Julie A. Simpson
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Ric N. Price
- Division of Global and Tropical Health, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
- Mahidol Oxford Tropical Medicine Research Unit, Bangkok, Thailand
| | - Yoel Lubell
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
- Mahidol Oxford Tropical Medicine Research Unit, Bangkok, Thailand
| |
Collapse
|
32
|
Schäfer C, Dambrauskas N, Reynolds LM, Trakhimets O, Raappana A, Flannery EL, Roobsoong W, Sattabongkot J, Mikolajczak SA, Kappe SHI, Sather DN. Partial protection against P. vivax infection diminishes hypnozoite burden and blood-stage relapses. Cell Host Microbe 2021; 29:752-756.e4. [PMID: 33857426 DOI: 10.1016/j.chom.2021.03.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/16/2021] [Accepted: 03/18/2021] [Indexed: 01/23/2023]
Abstract
Latent forms of Plasmodium vivax, called hypnozoites, cause malaria relapses from the liver into the bloodstream and are a major obstacle to malaria eradication. To experimentally assess the impact of a partially protective pre-erythrocytic vaccine on reducing Plasmodium vivax relapses, we developed a liver-humanized mouse model that allows monitoring of relapses directly in the blood. We passively infused these mice with a suboptimal dose of an antibody that targets the circumsporozoite protein prior to challenge with P. vivax sporozoites. Although this regimen did not completely prevent primary infection, antibody-treated mice experienced 62% fewer relapses. The data constitute unprecedented direct experimental evidence that suboptimal efficacy of infection-blocking antibodies, while not completely preventing primary infection, has a pronounced benefit in reducing the number of relapses. These findings suggest that a partially efficacious pre-erythrocytic Plasmodium vivax vaccine can have a disproportionately high impact in positive public health outcomes.
Collapse
Affiliation(s)
- Carola Schäfer
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Nicholas Dambrauskas
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Laura M Reynolds
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Olesya Trakhimets
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Andrew Raappana
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Erika L Flannery
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Wanlapa Roobsoong
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Sebastian A Mikolajczak
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Stefan H I Kappe
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA; Department of Pediatrics, University of Washington, Seattle, WA 98105, USA; Department of Global Health, University of Washington, Seattle, WA 98105, USA.
| | - D Noah Sather
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA; Department of Pediatrics, University of Washington, Seattle, WA 98105, USA; Department of Global Health, University of Washington, Seattle, WA 98105, USA.
| |
Collapse
|
33
|
Popovici J, Tebben K, Witkowski B, Serre D. Primaquine for Plasmodium vivax radical cure: What we do not know and why it matters. Int J Parasitol Drugs Drug Resist 2021; 15:36-42. [PMID: 33529838 PMCID: PMC7851417 DOI: 10.1016/j.ijpddr.2020.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/15/2020] [Accepted: 12/21/2020] [Indexed: 11/26/2022]
Abstract
Plasmodium vivax radical cure requires the administration of a blood schizonticide for killing blood-stage parasites and the addition of a drug able to kill hypnozoites, the dormant parasite stages residing in the liver of infected patients. All drugs used clinically for killing hypnozoites are 8-aminoquinolines and among them, primaquine has been at the forefront of P. vivax case management for decades. We discuss here the possible factors that could lead to the emergence and selection of P. vivax primaquine resistant parasites and emphasize on how a better understanding of the mechanisms underlying primaquine treatment and hypnozoite biology is needed to prevent this catastrophic scenario from happening.
Collapse
Affiliation(s)
- Jean Popovici
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia; Malaria Translational Research Unit, Institut Pasteur, Paris & Institut Pasteur du Cambodge, Phnom Penh, Cambodia.
| | - Kieran Tebben
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, USA
| | - Benoit Witkowski
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia; Malaria Translational Research Unit, Institut Pasteur, Paris & Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - David Serre
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, USA
| |
Collapse
|
34
|
Ferreira MU, Nobrega de Sousa T, Rangel GW, Johansen IC, Corder RM, Ladeia-Andrade S, Gil JP. Monitoring Plasmodium vivax resistance to antimalarials: Persisting challenges and future directions. Int J Parasitol Drugs Drug Resist 2021; 15:9-24. [PMID: 33360105 PMCID: PMC7770540 DOI: 10.1016/j.ijpddr.2020.12.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 11/23/2022]
Abstract
Emerging antimalarial drug resistance may undermine current efforts to control and eliminate Plasmodium vivax, the most geographically widespread yet neglected human malaria parasite. Endemic countries are expected to assess regularly the therapeutic efficacy of antimalarial drugs in use in order to adjust their malaria treatment policies, but proper funding and trained human resources are often lacking to execute relatively complex and expensive clinical studies, ideally complemented by ex vivo assays of drug resistance. Here we review the challenges for assessing in vivo P. vivax responses to commonly used antimalarials, especially chloroquine and primaquine, in the presence of confounding factors such as variable drug absorption, metabolism and interaction, and the risk of new infections following successful radical cure. We introduce a simple modeling approach to quantify the relative contribution of relapses and new infections to recurring parasitemias in clinical studies of hypnozoitocides. Finally, we examine recent methodological advances that may render ex vivo assays more practical and widely used to confirm P. vivax drug resistance phenotypes in endemic settings and review current approaches to the development of robust genetic markers for monitoring chloroquine resistance in P. vivax populations.
Collapse
Affiliation(s)
- Marcelo U Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Global Health and Tropical Medicine, Institute of Hygiene and Tropical Medicine, Nova University of Lisbon, Lisbon, Portugal.
| | - Tais Nobrega de Sousa
- Molecular Biology and Malaria Immunology Research Group, René Rachou Institute, Fiocruz, Belo Horizonte, Brazil
| | - Gabriel W Rangel
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Igor C Johansen
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rodrigo M Corder
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Simone Ladeia-Andrade
- Laboratory of Parasitic Diseases, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| | - José Pedro Gil
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Solna, Sweden
| |
Collapse
|
35
|
Impact of outdoor residual spraying on the biting rate of malaria vectors: A pilot study in four villages in Kayin state, Myanmar. PLoS One 2020; 15:e0240598. [PMID: 33119645 PMCID: PMC7595390 DOI: 10.1371/journal.pone.0240598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/29/2020] [Indexed: 11/19/2022] Open
Abstract
Outdoor and early mosquito biters challenge the efficacy of bed-nets and indoor residual spraying on the Thailand-Myanmar border. Outdoor residual spraying is proposed for the control of exophilic mosquito species. The objective of this study was to assess the impact of outdoor residual spraying on the biting rate of malaria vectors in Kayin state, Myanmar. Outdoor residual spraying using lambda-cyhalothrin was carried out in two villages in December 2016 (beginning of the dry season) and two villages were used as a control. Malaria mosquitoes were captured at baseline and monthly for four months after the intervention using human-landing catch and cow-baited trap collection methods. The impact of outdoor residual spraying on human-biting rate was estimated with propensity score adjusted generalized linear mixed-effect regressions. At baseline, mean indoor and outdoor human-biting rate estimates ranged between 2.12 and 29.16 bites /person /night, and between 0.20 and 1.72 bites /person /night in the intervention and control villages respectively. Using model output, we estimated that human-biting rate was reduced by 91% (95%CI = 88–96, P <0.0001) immediately after outdoor residual spraying. Human-biting rate remained low in all sprayed villages for 3 months after the intervention. Malaria vector populations rose at month 4 in the intervention villages but not in the controls. This coincided with the expected end of insecticide mist residual effects, thereby suggesting that residual effects are important determinants of intervention outcome. We conclude that outdoor residual spraying with a capsule suspension of lambda-cyhalothrin rapidly reduced the biting rate malaria vectors in this area where pyrethroid resistance has been documented.
Collapse
|
36
|
Commons RJ, Simpson JA, Watson J, White NJ, Price RN. Estimating the Proportion of Plasmodium vivax Recurrences Caused by Relapse: A Systematic Review and Meta-Analysis. Am J Trop Med Hyg 2020; 103:1094-1099. [PMID: 32524950 PMCID: PMC7470578 DOI: 10.4269/ajtmh.20-0186] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Plasmodium vivax and Plasmodium ovale form dormant liver hypnozoites that can reactivate weeks to months following initial infection. Malaria recurrences caused by relapses are an important cause of morbidity and source of transmission. To estimate the proportions of P. vivax malaria recurrences caused by relapses in different geographical locations, we systematically reviewed clinical efficacy studies of uncomplicated P. vivax malaria, in which patients were randomized to treatment with or without radical cure primaquine regimens and were followed up for 1 year. The minimum proportion of recurrences caused by relapses was estimated for each study site by assuming primaquine prevented all relapses and did not augment blood-stage efficacy. Of the 261 studies identified, six were eligible enrolling 4,092 patients from 14 treatment arm comparisons across seven countries. Of the 2,735 patients treated with primaquine, 24.3% received low dose (2.5 to < 5.0 mg/kg total) and 75.7% received high-dose primaquine (≥ 5.0 mg/kg total). The overall pooled incidence rate ratio of P. vivax relapses for patients treated with primaquine versus no primaquine was 0.15 (95% CI: 0.10-0.21; I 2 = 83.3%), equating to a minimum of 79% of recurrences attributable to relapse. Country-specific incidence rate ratios ranged from 0.05 (95% CI: 0.01-0.34; one estimate) in Pakistan to 0.34 in Nepal (95% CI: 0.12-0.83; one estimate) and Afghanistan (95% CI: 0.22-0.51; three estimates). Relapses account for a very high proportion of recurrent infections following schizontocidal treatment of acute P. vivax malaria across diverse geographic locations. This emphasizes the importance of implementing hypnozoitocidal treatment.
Collapse
Affiliation(s)
- Robert J. Commons
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia;,Internal Medical Services, Ballarat Health Services, Ballarat, Australia;,Address correspondence to Robert J. Commons, Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, P.O. Box 41096, Casuarina 0811, Australia. E-mail:
| | - Julie A. Simpson
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - James Watson
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand;,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Nicholas J. White
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand;,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Ric N. Price
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia;,Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand;,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
37
|
Devine A, Howes RE, Price DJ, Moore KA, Ley B, Simpson JA, Dittrich S, Price RN. Cost-Effectiveness Analysis of Sex-Stratified Plasmodium vivax Treatment Strategies Using Available G6PD Diagnostics to Accelerate Access to Radical Cure. Am J Trop Med Hyg 2020; 103:394-403. [PMID: 32372747 PMCID: PMC7356471 DOI: 10.4269/ajtmh.19-0943] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Tafenoquine has been licensed for the single-dose radical cure of Plasmodium vivax in adults; however, it is only recommended in patients with > 70% of normal glucose-6-phosphate dehydrogenase (G6PD) activity. Because this may hinder widespread use, we investigated sex-based treatment strategies in which all adult patients are tested with a qualitative G6PD rapid diagnostic test (RDT). Glucose-6-phosphate dehydrogenase normal males are prescribed tafenoquine in all three strategies, whereas G6PD normal females are prescribed either a low-dose 14-day primaquine regimen (PQ14, total dose 3.5 mg/kg) or a high-dose 7-day primaquine regimen (PQ7, total dose 7 mg/kg), or referred to a healthcare facility for quantitative G6PD testing before prescribing tafenoquine. Patients testing G6PD deficient are prescribed a weekly course of primaquine for 8 weeks. We compared the cost-effectiveness of these three strategies to usual care in four countries using a decision tree model. Usual care in Ethiopia does not include radical cure, whereas Afghanistan, Indonesia, and Vietnam prescribe PQ14 without G6PD screening. The cost per disability-adjusted life-year (DALY) averted was expressed through incremental cost-effectiveness ratios (ICERs). Compared with usual care, the ICERs for a sex-based treatment strategy with PQ7 for females from a healthcare provider perspective were $127 per DALY averted in Vietnam, $466 in Ethiopia, $1,089 in Afghanistan, and $4,443 in Indonesia. The PQ14 and referral options cost more while averting fewer DALYs than PQ7. This study provides an alternative cost-effective mode of rolling out tafenoquine in areas where initial testing with only a G6PD RDT is feasible.
Collapse
Affiliation(s)
- Angela Devine
- Division of Global and Tropical Health, Menzies School of Health Research, Charles Darwin University, Darwin, Australia;,Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia;,Address correspondence to Angela Devine, Division of Global and Tropical Health, Menisci School of Health Research, Charles Darwin University, P. O. Box 41096, Casuarina NT 0811, Australia. E-mail:
| | - Rosalind E. Howes
- Malaria and Fever Programme, Foundation for Innovative New Diagnostics (FIND), Geneva, Switzerland;,Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - David J. Price
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia;,Victorian Infectious Diseases Reference Laboratory Epidemiology Unit at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Kerryn A. Moore
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom;,Infection and Immunity, Murdoch Children’s Research Institute, Melbourne, Australia
| | - Benedikt Ley
- Division of Global and Tropical Health, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | - Julie A. Simpson
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Sabine Dittrich
- Malaria and Fever Programme, Foundation for Innovative New Diagnostics (FIND), Geneva, Switzerland;,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Ric N. Price
- Division of Global and Tropical Health, Menzies School of Health Research, Charles Darwin University, Darwin, Australia;,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom;,Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
38
|
Plasmodium vivax in the Era of the Shrinking P. falciparum Map. Trends Parasitol 2020; 36:560-570. [PMID: 32407682 PMCID: PMC7297627 DOI: 10.1016/j.pt.2020.03.009] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 01/13/2023]
Abstract
Plasmodium vivax is an important cause of malaria, associated with a significant public health burden. Whilst enhanced malaria-control activities have successfully reduced the incidence of Plasmodium falciparum malaria in many areas, there has been a consistent increase in the proportion of malaria due to P. vivax in regions where both parasites coexist. This article reviews the epidemiology and biology of P. vivax, how the parasite differs from P. falciparum, and the key features that render it more difficult to control and eliminate. Since transmission of the parasite is driven largely by relapses from dormant liver stages, its timely elimination will require widespread access to safe and effective radical cure.
Collapse
|
39
|
Taylor WRJ, Kheng S, Muth S, Tor P, Kim S, Bjorge S, Topps N, Kosal K, Sothea K, Souy P, Char CM, Vanna C, Ly P, Khieu V, Christophel E, Kerleguer A, Pantaleo A, Mukaka M, Menard D, Baird JK. Hemolytic Dynamics of Weekly Primaquine Antirelapse Therapy Among Cambodians With Acute Plasmodium vivax Malaria With or Without Glucose-6-Phosphate Dehydrogenase Deficiency. J Infect Dis 2020; 220:1750-1760. [PMID: 31549159 PMCID: PMC6804333 DOI: 10.1093/infdis/jiz313] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 06/18/2019] [Indexed: 12/22/2022] Open
Abstract
Background Hemoglobin (Hb) data are limited in Southeast Asian glucose-6-phosphate dehydrogenase (G6PD) deficient (G6PD−) patients treated weekly with the World Health Organization–recommended primaquine regimen (ie, 0.75 mg/kg/week for 8 weeks [PQ 0.75]). Methods We treated Cambodians who had acute Plasmodium vivax infection with PQ0.75 and a 3-day course of dihydroartemisinin/piperaquine and determined the Hb level, reticulocyte count, G6PD genotype, and Hb type. Results Seventy-five patients (male sex, 63) aged 5–63 years (median, 24 years) were enrolled. Eighteen were G6PD deficient (including 17 with G6PD Viangchan) and 57 were not G6PD deficient; 26 had HbE (of whom 25 were heterozygous), and 6 had α-/β-thalassemia. Mean Hb concentrations at baseline (ie, day 0) were similar between G6PD deficient and G6PD normal patients (12.9 g/dL [range, 9‒16.3 g/dL] and 13.26 g/dL [range, 9.6‒16 g/dL], respectively; P = .46). G6PD deficiency (P = <.001), higher Hb concentration at baseline (P = <.001), higher parasitemia level at baseline (P = .02), and thalassemia (P = .027) influenced the initial decrease in Hb level, calculated as the nadir level minus the baseline level (range, −5.8–0 g/dL; mean, −1.88 g/dL). By day 14, the mean difference from the day 7 level (calculated as the day 14 level minus the day 7 level) was 0.03 g/dL (range, −0.25‒0.32 g/dL). Reticulocyte counts decreased from days 1 to 3, peaking on day 7 (in the G6PD normal group) and day 14 (in the G6PD deficient group); reticulocytemia at baseline (P = .001), G6PD deficiency (P = <.001), and female sex (P = .034) correlated with higher counts. One symptomatic, G6PD-deficient, anemic male patient was transfused on day 4. Conclusions The first PQ0.75 exposure was associated with the greatest decrease in Hb level and 1 blood transfusion, followed by clinically insignificant decreases in Hb levels. PQ0.75 requires monitoring during the week after treatment. Safer antirelapse regimens are needed in Southeast Asia. Clinical Trials Registration ACTRN12613000003774.
Collapse
Affiliation(s)
- Walter R J Taylor
- National Center for Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia.,Service de Médecine Tropicale et Humanitaire, Hôpitaux Universitaires de Genève, Switzerland.,Mahidol Oxford Tropical Medicine Research Unit, Bangkok, Thailand
| | - Sim Kheng
- National Center for Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
| | - Sinoun Muth
- National Center for Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
| | - Pety Tor
- Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Saorin Kim
- Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Steven Bjorge
- World Health Organization (WHO) Cambodia Country Office, Phnom Penh, Cambodia
| | - Narann Topps
- World Health Organization (WHO) Cambodia Country Office, Phnom Penh, Cambodia
| | - Khem Kosal
- Pailin Referral Hospital, Pailin, Cambodia
| | | | - Phum Souy
- Anlong Veng Referral Hospital, Anlong Venh, Cambodia
| | - Chuor Meng Char
- National Center for Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
| | - Chan Vanna
- Pramoy Health Center, Veal Veng, Cambodia
| | - Po Ly
- National Center for Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
| | - Virak Khieu
- National Center for Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
| | - Eva Christophel
- WHO Western Pacific Regional Office, Manila, the Philippines
| | | | | | - Mavuto Mukaka
- Mahidol Oxford Tropical Medicine Research Unit, Bangkok, Thailand.,Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Didier Menard
- Institut Pasteur du Cambodge, Phnom Penh, Cambodia.,Malaria Genetics and Resistance Group, Biology of Host-Parasite Interactions Unit, Institut Pasteur, Paris, France
| | - J Kevin Baird
- Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, United Kingdom.,Eijkman Oxford Clinical Research Unit, Eijkman Institute of Molecular Biology, Jakarta, Indonesia
| |
Collapse
|
40
|
Lin FC, Li Q, Lin JT. Relapse or reinfection: Classification of malaria infection using transition likelihoods. Biometrics 2020; 76:1351-1363. [PMID: 32022247 DOI: 10.1111/biom.13226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/15/2019] [Accepted: 12/31/2019] [Indexed: 11/29/2022]
Abstract
In patients with Plasmodium vivax malaria treated with effective blood-stage therapy, the recurrent illness may occur due to relapse from latent liver-stage infection or reinfection from a new mosquito bite. Classification of the recurrent infection as either relapse or reinfection is critical when evaluating the efficacy of an anti-relapse treatment. Although one can use whether a shared genetic variant exists between baseline and recurrence genotypes to classify the outcome, little has been suggested to use both sharing and nonsharing variants to improve the classification accuracy. In this paper, we develop a novel classification criterion that utilizes transition likelihoods to distinguish relapse from reinfection. When tested in extensive simulation experiments with known outcomes, our classifier has superior operating characteristics. A real data set from 78 Cambodian P. vivax malaria patients was analyzed to demonstrate the practical use of our proposed method.
Collapse
Affiliation(s)
- Feng-Chang Lin
- Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina
| | - Quefeng Li
- Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina
| | - Jessica T Lin
- Institute of Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
41
|
van Dorp L, Gelabert P, Rieux A, de Manuel M, de-Dios T, Gopalakrishnan S, Carøe C, Sandoval-Velasco M, Fregel R, Olalde I, Escosa R, Aranda C, Huijben S, Mueller I, Marquès-Bonet T, Balloux F, Gilbert MTP, Lalueza-Fox C. Plasmodium vivax Malaria Viewed through the Lens of an Eradicated European Strain. Mol Biol Evol 2020; 37:773-785. [PMID: 31697387 PMCID: PMC7038659 DOI: 10.1093/molbev/msz264] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The protozoan Plasmodium vivax is responsible for 42% of all cases of malaria outside Africa. The parasite is currently largely restricted to tropical and subtropical latitudes in Asia, Oceania, and the Americas. Though, it was historically present in most of Europe before being finally eradicated during the second half of the 20th century. The lack of genomic information on the extinct European lineage has prevented a clear understanding of historical population structuring and past migrations of P. vivax. We used medical microscope slides prepared in 1944 from malaria-affected patients from the Ebro Delta in Spain, one of the last footholds of malaria in Europe, to generate a genome of a European P. vivax strain. Population genetics and phylogenetic analyses placed this strain basal to a cluster including samples from the Americas. This genome allowed us to calibrate a genomic mutation rate for P. vivax, and to estimate the mean age of the last common ancestor between European and American strains to the 15th century. This date points to an introduction of the parasite during the European colonization of the Americas. In addition, we found that some known variants for resistance to antimalarial drugs, including Chloroquine and Sulfadoxine, were already present in this European strain, predating their use. Our results shed light on the evolution of an important human pathogen and illustrate the value of antique medical collections as a resource for retrieving genomic information on pathogens from the past.
Collapse
Affiliation(s)
- Lucy van Dorp
- UCL Genetics Institute, University College London, London, United Kingdom
| | - Pere Gelabert
- Institute of Evolutionary Biology (CSIC-UPF), Barcelona, Spain
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Adrien Rieux
- CIRAD, UMR PVBMT, St. Pierre de la Réunion, France
| | - Marc de Manuel
- Institute of Evolutionary Biology (CSIC-UPF), Barcelona, Spain
| | - Toni de-Dios
- Institute of Evolutionary Biology (CSIC-UPF), Barcelona, Spain
| | - Shyam Gopalakrishnan
- Section for Evolutionary Genomics, Faculty of Health and Medical Sciences, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Christian Carøe
- Section for Evolutionary Genomics, Faculty of Health and Medical Sciences, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Marcela Sandoval-Velasco
- Section for Evolutionary Genomics, Faculty of Health and Medical Sciences, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Rosa Fregel
- Department of Genetics, Stanford University, Stanford, CA
- Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, La Laguna, Spain
| | - Iñigo Olalde
- Department of Genetics, Harvard Medical School, Boston, MA
| | - Raül Escosa
- Consorci de Polítiques Ambientals de les Terres de l'Ebre (COPATE), Deltebre, Spain
| | - Carles Aranda
- Servei de Control de Mosquits, Consell Comarcal del Baix Llobregat, Sant Feliu de Llobregat, Spain
| | - Silvie Huijben
- School of Life Sciences, Center for Evolution and Medicine, Arizona State University, Tempe, AZ
- ISGlobal, Barcelona Institute for Global Health, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Ivo Mueller
- ISGlobal, Barcelona Institute for Global Health, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
- Population Health and Immunity Division, Walter & Eliza Hall Institute, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Tomàs Marquès-Bonet
- Institute of Evolutionary Biology (CSIC-UPF), Barcelona, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Spain
- CNAG-CRG, Barcelona Institute of Science and Technology, Centre for Genomic Regulation (CRG), Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - François Balloux
- UCL Genetics Institute, University College London, London, United Kingdom
| | - M Thomas P Gilbert
- Section for Evolutionary Genomics, Faculty of Health and Medical Sciences, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
- University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | | |
Collapse
|
42
|
Taylor AR, Watson JA, Chu CS, Puaprasert K, Duanguppama J, Day NPJ, Nosten F, Neafsey DE, Buckee CO, Imwong M, White NJ. Resolving the cause of recurrent Plasmodium vivax malaria probabilistically. Nat Commun 2019; 10:5595. [PMID: 31811128 PMCID: PMC6898227 DOI: 10.1038/s41467-019-13412-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 10/29/2019] [Indexed: 11/23/2022] Open
Abstract
Relapses arising from dormant liver-stage Plasmodium vivax parasites (hypnozoites) are a major cause of vivax malaria. However, in endemic areas, a recurrent blood-stage infection following treatment can be hypnozoite-derived (relapse), a blood-stage treatment failure (recrudescence), or a newly acquired infection (reinfection). Each of these requires a different prevention strategy, but it was not previously possible to distinguish between them reliably. We show that individual vivax malaria recurrences can be characterised probabilistically by combined modelling of time-to-event and genetic data within a framework incorporating identity-by-descent. Analysis of pooled patient data on 1441 recurrent P. vivax infections in 1299 patients on the Thailand-Myanmar border observed over 1000 patient follow-up years shows that, without primaquine radical curative treatment, 3 in 4 patients relapse. In contrast, after supervised high-dose primaquine only 1 in 40 relapse. In this region of frequent relapsing P. vivax, failure rates after supervised high-dose primaquine are significantly lower (∼3%) than estimated previously.
Collapse
Affiliation(s)
- Aimee R Taylor
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| | - James A Watson
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK.
| | - Cindy S Chu
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
- Shoklo Malaria Research Unit, Mae Sot, Tak Province, 63110, Thailand
| | - Kanokpich Puaprasert
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Jureeporn Duanguppama
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Nicholas P J Day
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Francois Nosten
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
- Shoklo Malaria Research Unit, Mae Sot, Tak Province, 63110, Thailand
| | - Daniel E Neafsey
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Caroline O Buckee
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Mallika Imwong
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Nicholas J White
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK.
| |
Collapse
|
43
|
Humoral immunity prevents clinical malaria during Plasmodium relapses without eliminating gametocytes. PLoS Pathog 2019; 15:e1007974. [PMID: 31536608 PMCID: PMC6752766 DOI: 10.1371/journal.ppat.1007974] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 07/10/2019] [Indexed: 12/19/2022] Open
Abstract
Plasmodium relapses are attributed to the activation of dormant liver-stage parasites and are responsible for a significant number of recurring malaria blood-stage infections. While characteristic of human infections caused by P. vivax and P. ovale, their relative contribution to malaria disease burden and transmission remains poorly understood. This is largely because it is difficult to identify ‘bona fide’ relapse infections due to ongoing transmission in most endemic areas. Here, we use the P. cynomolgi–rhesus macaque model of relapsing malaria to demonstrate that clinical immunity can form after a single sporozoite-initiated blood-stage infection and prevent illness during relapses and homologous reinfections. By integrating data from whole blood RNA-sequencing, flow cytometry, P. cynomolgi-specific ELISAs, and opsonic phagocytosis assays, we demonstrate that this immunity is associated with a rapid recall response by memory B cells that expand and produce anti-parasite IgG1 that can mediate parasite clearance of relapsing parasites. The reduction in parasitemia during relapses was mirrored by a reduction in the total number of circulating gametocytes, but importantly, the cumulative proportion of gametocytes increased during relapses. Overall, this study reveals that P. cynomolgi relapse infections can be clinically silent in macaques due to rapid memory B cell responses that help to clear asexual-stage parasites but still carry gametocytes. Plasmodium vivax contributes significantly to global malaria morbidity and remains a major obstacle for malaria elimination due to its ability to form dormant stages in the liver. These forms can become activated to cause relapsing blood-stage infections. Relapses remain poorly understood because it is difficult to verify whether P. vivax blood-stage infections in patients are due to new infections or relapses in most cases. Here, we use a nonhuman primate model of Plasmodium vivax malaria in concert with state-of-the-art immunological and molecular techniques to assess pathogenesis, host responses, and circulating gametocyte levels during relapses. We found that relapses were clinically silent compared to initial infections, and they were associated with a robust memory B cell response. This response resulted in the production of antibodies that were able to mediate clearance of asexual parasites. Despite this rapid immune protection, the sexual-stage gametocytes continued to circulate. Our study provides mechanistic insights into the host-parasite interface during Plasmodium relapse infections and demonstrates that clinically silent relapses can harbor gametocytes that may be infectious to mosquitoes.
Collapse
|
44
|
Abstract
The technical genesis and practice of 8-aminoquinoline therapy of latent malaria offer singular scientific, clinical, and public health insights. The 8-aminoquinolines brought revolutionary scientific discoveries, dogmatic practices, benign neglect, and, finally, enduring promise against endemic malaria. The clinical use of plasmochin-the first rationally synthesized blood schizontocide and the first gametocytocide, tissue schizontocide, and hypnozoitocide of any kind-commenced in 1926. Plasmochin became known to sometimes provoke fatal hemolytic crises. World War II delivered a newer 8-aminoquinoline, primaquine, and the discovery of glucose-6-phosphate dehydrogenase (G6PD) deficiency as the basis of its hemolytic toxicity came in 1956. Primaquine nonetheless became the sole therapeutic option against latent malaria. After 40 years of fitful development, in 2018 the U.S. Food and Drug Administration registered the 8-aminoquinoline called tafenoquine for the prevention of all malarias and the treatment of those that relapse. Tafenoquine also cannot be used in G6PD-unknown or -deficient patients. The hemolytic toxicity of the 8-aminoquinolines impedes their great potential, but this problem has not been a research priority. This review explores the complex technical dimensions of the history of 8-aminoquinolines. The therapeutic principles thus examined may be leveraged in improved practice and in understanding the bright prospect of discovery of newer drugs that cannot harm G6PD-deficient patients.
Collapse
Affiliation(s)
- J Kevin Baird
- Eijkman-Oxford Clinical Research Unit, Eijkman Institute for Molecular Biology, Jakarta, Indonesia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
45
|
Chaumeau V, Fustec B, Nay Hsel S, Montazeau C, Naw Nyo S, Metaane S, Sawasdichai S, Kittiphanakun P, Phatharakokordbun P, Kwansomboon N, Andolina C, Cerqueira D, Chareonviriyaphap T, Nosten FH, Corbel V. Entomological determinants of malaria transmission in Kayin state, Eastern Myanmar: A 24-month longitudinal study in four villages. Wellcome Open Res 2019; 3:109. [PMID: 31206035 PMCID: PMC6544137 DOI: 10.12688/wellcomeopenres.14761.4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2019] [Indexed: 11/20/2022] Open
Abstract
Background: The Thailand-Myanmar borderland is an area endemic for malaria where transmission is low, seasonal and unstable. The epidemiology has been described but there is relatively few data on the entomological determinants of malaria transmission. Methods: Entomological investigations were conducted during 24 months in four villages located in Kayin state, on the Myanmar side of the Thailand-Myanmar border.
Anopheles mosquitoes were identified by morphology, and molecular assays were used in order to discriminate between closely related sibling species of malaria vectors.
Plasmodium infection rate was determined using quantitative real-time PCR. Results: The diversity of
Anopheles mosquitoes was very high and multiple species were identified as malaria vectors. The intensity of human-vector contact (mean human-biting rate= 369 bites/person/month) compensates for the low infection rate in naturally infected populations of malaria vectors (mean sporozoite index= 0.04 and 0.17 % for
P. falciparum and
P. vivax respectively), yielding intermediary level of transmission intensity (mean entomological inoculation rate= 0.13 and 0.64 infective bites/person/month for
P. falciparum and
P. vivax, respectively). Only 36% of the infected mosquitoes were collected indoors between 09:00 pm and 05:00 am, suggesting that mosquito bed-nets would fail to prevent most of the infective bites in the study area. Conclusion: This study provided a unique opportunity to describe the entomology of malaria in low transmission settings of Southeast Asia. Our data are important in the context of malaria elimination in the Greater Mekong Subregion.
Collapse
Affiliation(s)
- Victor Chaumeau
- Centre Hospitalier Universitaire de Montpellier, Montpellier, 34295, France.,Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle, Institut de Recherche pour le Développement, Montpellier, 34394, France.,Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Bénédicte Fustec
- Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle, Institut de Recherche pour le Développement, Montpellier, 34394, France
| | - Saw Nay Hsel
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand
| | - Céline Montazeau
- Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle, Institut de Recherche pour le Développement, Montpellier, 34394, France
| | - Saw Naw Nyo
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand
| | - Selma Metaane
- Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle, Institut de Recherche pour le Développement, Montpellier, 34394, France
| | - Sunisa Sawasdichai
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand
| | - Prapan Kittiphanakun
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand
| | - Phabele Phatharakokordbun
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand
| | - Nittipha Kwansomboon
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand
| | - Chiara Andolina
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Dominique Cerqueira
- Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle, Institut de Recherche pour le Développement, Montpellier, 34394, France
| | | | - François H Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Vincent Corbel
- Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle, Institut de Recherche pour le Développement, Montpellier, 34394, France
| |
Collapse
|
46
|
Flannery EL, Markus MB, Vaughan AM. Plasmodium vivax. Trends Parasitol 2019; 35:583-584. [PMID: 31176582 DOI: 10.1016/j.pt.2019.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 01/01/2023]
|
47
|
Gupta DK, Dembele L, Voorberg-van der Wel A, Roma G, Yip A, Chuenchob V, Kangwanrangsan N, Ishino T, Vaughan AM, Kappe SH, Flannery EL, Sattabongkot J, Mikolajczak S, Bifani P, Kocken CH, Diagana TT. The Plasmodium liver-specific protein 2 (LISP2) is an early marker of liver stage development. eLife 2019; 8:43362. [PMID: 31094679 PMCID: PMC6542585 DOI: 10.7554/elife.43362] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 05/13/2019] [Indexed: 02/06/2023] Open
Abstract
Plasmodium vivax hypnozoites persist in the liver, cause malaria relapse and represent a major challenge to malaria elimination. Our previous transcriptomic study provided a novel molecular framework to enhance our understanding of the hypnozoite biology (Voorberg-van der Wel A, et al., 2017). In this dataset, we identified and characterized the Liver-Specific Protein 2 (LISP2) protein as an early molecular marker of liver stage development. Immunofluorescence analysis of hepatocytes infected with relapsing malaria parasites, in vitro (P. cynomolgi) and in vivo (P. vivax), reveals that LISP2 expression discriminates between dormant hypnozoites and early developing parasites. We further demonstrate that prophylactic drugs selectively kill all LISP2-positive parasites, while LISP2-negative hypnozoites are only sensitive to anti-relapse drug tafenoquine. Our results provide novel biological insights in the initiation of liver stage schizogony and an early marker suitable for the development of drug discovery assays predictive of anti-relapse activity.
Collapse
Affiliation(s)
- Devendra Kumar Gupta
- Novartis Institute for Tropical Diseases, Emeryville, United States.,Novartis Institute for Tropical Diseases, Singapore, Singapore
| | - Laurent Dembele
- Novartis Institute for Tropical Diseases, Singapore, Singapore.,Faculty of Pharmacy, Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), MRTC - DEAP, Bamako, Mali
| | | | - Guglielmo Roma
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Andy Yip
- Novartis Institute for Tropical Diseases, Singapore, Singapore
| | | | | | - Tomoko Ishino
- Graduate School of Medicine, Ehime University, Toon, Japan
| | | | - Stefan H Kappe
- Center for Infectious Disease Research, Seattle, United States
| | | | | | - Sebastian Mikolajczak
- Novartis Institute for Tropical Diseases, Emeryville, United States.,Center for Infectious Disease Research, Seattle, United States
| | - Pablo Bifani
- Novartis Institute for Tropical Diseases, Singapore, Singapore.,Singapore Immunology Network (SIgN), Singapore, Singapore.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Clemens Hm Kocken
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Thierry Tidiane Diagana
- Novartis Institute for Tropical Diseases, Emeryville, United States.,Novartis Institute for Tropical Diseases, Singapore, Singapore
| |
Collapse
|
48
|
Chaumeau V, Fustec B, Nay Hsel S, Montazeau C, Naw Nyo S, Metaane S, Sawasdichai S, Kittiphanakun P, Phatharakokordbun P, Kwansomboon N, Andolina C, Cerqueira D, Chareonviriyaphap T, Nosten FH, Corbel V. Entomological determinants of malaria transmission in Kayin state, Eastern Myanmar: A 24-month longitudinal study in four villages. Wellcome Open Res 2019; 3:109. [DOI: 10.12688/wellcomeopenres.14761.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2019] [Indexed: 11/20/2022] Open
Abstract
Background: The Thailand-Myanmar borderland is an area endemic for malaria where transmission is low, seasonal and unstable. The epidemiology has been described but there is relatively few data on the entomological determinants of malaria transmission. Methods: Entomological investigations were conducted during 24 months in four villages located in Kayin state, on the Myanmar side of the Thailand-Myanmar border. Anopheles mosquitoes were identified by morphology, and molecular assays were used in order to discriminate between closely related sibling species of malaria vectors. Plasmodium infection rate was determined using quantitative real-time PCR. Results: The diversity of Anopheles mosquitoes was very high and multiple species were identified as malaria vectors. The intensity of human-vector contact (mean human-biting rate= 369 bites/person/month) compensates for the low infection rate in naturally infected populations of malaria vectors (mean sporozoite index= 0.04 and 0.17 % for P. falciparum and P. vivax respectively), yielding intermediary level of transmission intensity (mean entomological inoculation rate= 0.13 and 0.64 infective bites/person/month for P. falciparum and P. vivax, respectively). Only 36% of the infected mosquitoes were collected indoors between 09:00 pm and 05:00 am, suggesting that mosquito bed-nets would fail to prevent most of the infective bites in the study area. Conclusion: This study provided a unique opportunity to describe the entomology of malaria in low transmission settings of Southeast Asia. Our data are important in the context of malaria elimination in the Greater Mekong Subregion.
Collapse
|
49
|
Chaumeau V, Fustec B, Nay Hsel S, Montazeau C, Naw Nyo S, Metaane S, Sawasdichai S, Kittiphanakun P, Phatharakokordbun P, Kwansomboon N, Andolina C, Cerqueira D, Chareonviriyaphap T, Nosten FH, Corbel V. Entomological determinants of malaria transmission in Kayin state, Eastern Myanmar: A 24-month longitudinal study in four villages. Wellcome Open Res 2019; 3:109. [DOI: 10.12688/wellcomeopenres.14761.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2019] [Indexed: 11/20/2022] Open
Abstract
Background: The Thailand-Myanmar borderland is an area endemic for malaria where transmission is low, seasonal and unstable. The epidemiology has been described but there is relatively few data on the entomological determinants of malaria transmission. Methods: Entomological investigations were conducted during 24 months in four villages located in Kayin state, on the Myanmar side of the Thailand-Myanmar border. Anopheles mosquitoes were identified by morphology, and molecular assays were used in order to discriminate between closely related sibling species of malaria vectors. Plasmodium infection rate was determined using quantitative real-time PCR. Results: The diversity of Anopheles mosquitoes was very high and multiple species were identified as malaria vectors. The intensity of human-vector contact (mean human-biting rate= 369 bites/person/month) compensates for the low infection rate in naturally infected populations of malaria vectors (mean sporozoite index= 0.04 and 0.17 % for P. falciparum and P. vivax respectively), yielding intermediary level of transmission intensity (mean entomological inoculation rate= 0.13 and 0.64 infective bites/person/month for P. falciparum and P. vivax, respectively). Only 36% of the infected mosquitoes were collected indoors between 09:00 pm and 05:00 am, suggesting that mosquito bed-nets would fail to prevent most of the infective bites in the study area. Conclusion: This study provided a unique opportunity to describe the entomology of malaria in low transmission settings of Southeast Asia. Our data are important in the context of malaria elimination in the Greater Mekong Subregion.
Collapse
|
50
|
Moreno-Gutierrez D, Llanos-Cuentas A, Luis Barboza J, Contreras-Mancilla J, Gamboa D, Rodriguez H, Carrasco-Escobar G, Boreux R, Hayette MP, Beutels P, Speybroeck N, Rosas-Aguirre A. Effectiveness of a Malaria Surveillance Strategy Based on Active Case Detection during High Transmission Season in the Peruvian Amazon. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15122670. [PMID: 30486449 PMCID: PMC6314008 DOI: 10.3390/ijerph15122670] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/15/2018] [Accepted: 11/21/2018] [Indexed: 12/24/2022]
Abstract
Background: Faced with the resurgence of malaria, malaria surveillance in the Peruvian Amazon incorporated consecutive active case detection (ACD) interventions using light microscopy (LM) as reactive measure in communities with an unusual high number of cases during high transmission season (HTS). We assessed the effectiveness in malaria detection of this local ACD-based strategy. Methods: A cohort study was conducted in June–July 2015 in Mazan, Loreto. Four consecutive ACD interventions at intervals of 10 days were conducted in four riverine communities (Gamitanacocha, Primero de Enero, Libertad and Urco Miraño). In each intervention, all inhabitants were visited at home, and finger-prick blood samples collected for immediate diagnosis by LM and on filter paper for later analysis by quantitative real-time polymerase chain reaction (qPCR). Effectiveness was calculated by dividing the number of malaria infections detected using LM by the number of malaria infections detected by delayed qPCR. Results: Most community inhabitants (88.1%, 822/933) were present in at least one of the four ACD interventions. A total of 451 infections were detected by qPCR in 446 participants (54.3% of total participants); five individuals had two infections. Plasmodium vivax was the predominant species (79.8%), followed by P. falciparum (15.3%) and P. vivax-P. falciparum co-infections (4.9%). Most qPCR-positive infections were asymptomatic (255/448, 56.9%). The ACD-strategy using LM had an effectiveness of 22.8% (detection of 103 of the total qPCR-positive infections). Children aged 5–14 years, and farming as main economic activity were associated with P. vivax infections. Conclusions: Although the ACD-strategy using LM increased the opportunity of detecting and treating malaria infections during HTS, the number of detected infections was considerably lower than the real burden of infections (those detected by qPCR).
Collapse
Affiliation(s)
- Diamantina Moreno-Gutierrez
- Facultad de Medicina Humana, Universidad Nacional de la Amazonía Peruana, Loreto 160, Peru.
- Research Institute of Health and Society (IRSS), Université catholique de Louvain, 1200 Brussels, Belgium.
- Centre for Health Economics Research and Modelling Infectious Diseases, Vaccine and Infectious Disease Institute, University of Antwerp, 2000 Antwerp, Belgium.
| | - Alejandro Llanos-Cuentas
- Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima 31, Peru.
- Facultad de Salud Pública y Administración, Universidad Peruana Cayetano Heredia, Lima 31, Peru.
| | - José Luis Barboza
- Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima 31, Peru.
| | - Juan Contreras-Mancilla
- Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima 31, Peru.
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima 31, Peru.
| | - Dionicia Gamboa
- Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima 31, Peru.
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima 31, Peru.
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima 31, Peru.
| | - Hugo Rodriguez
- Facultad de Medicina Humana, Universidad Nacional de la Amazonía Peruana, Loreto 160, Peru.
| | - Gabriel Carrasco-Escobar
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima 31, Peru.
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| | - Raphaël Boreux
- Department of Clinical Microbiology, Center for Interdisciplinary Research on Medicines (CIRM), University Hospital of Liège, 4000 Liège, Belgium.
| | - Marie-Pierre Hayette
- Department of Clinical Microbiology, Center for Interdisciplinary Research on Medicines (CIRM), University Hospital of Liège, 4000 Liège, Belgium.
| | - Philippe Beutels
- Centre for Health Economics Research and Modelling Infectious Diseases, Vaccine and Infectious Disease Institute, University of Antwerp, 2000 Antwerp, Belgium.
| | - Niko Speybroeck
- Research Institute of Health and Society (IRSS), Université catholique de Louvain, 1200 Brussels, Belgium.
| | - Angel Rosas-Aguirre
- Research Institute of Health and Society (IRSS), Université catholique de Louvain, 1200 Brussels, Belgium.
- Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima 31, Peru.
| |
Collapse
|