1
|
Pokeerbux MR, Mavingui P, Gérardin P, Agrinier N, Gokalsing E, Meilhac O, Cournot M. A Holistic Approach to Cardiometabolic and Infectious Health in the General Population of Reunion Island: The REUNION Study. J Epidemiol Glob Health 2024; 14:839-846. [PMID: 38564109 PMCID: PMC11442726 DOI: 10.1007/s44197-024-00221-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
INTRODUCTION Reunion Island is a French overseas department in the South West Indian Ocean with a unique multi-ethnic population. Cardiovascular diseases are the most common chronic conditions with higher prevalences of hypertension and diabetes compared to mainland France. Moreover, Reunion Island is particularly exposed to vector-borne diseases such as chikungunya and dengue. Our objective is to describe the prevalence of cardiometabolic and infectious diseases in Reunion Island and explore causal mechanisms linking these diseases. METHODS The REUNION study is an ongoing French prospective study. From January 2022, 2,000 consenting participants (18-68 years old) are being recruited from the general population according to polling lists and random generation of cellphone number. Baseline examination consists of (i) general health examination, assessment of cardiovascular risk factors, markers of subclinical atherosclerosis, bronchial obstruction, neuropathic and autonomic dysfunction, (ii) questionnaires to determine sociodemographic characteristics, diet, exposure to vector-borne diseases, mental health and cognitive functions, social inequalities in health and ethnic origins, (iii) biological sampling for determination of cardiovascular risk factors, seroprevalence of infectious diseases, innovative lipid biomarkers, advanced omics, composition of intestinal, periodontal and skin microbiota, and biobanking. CONCLUSIONS The REUNION study should provide new insights into the prevalence of cardiometabolic and infectious diseases, as well as their potential associations through the examination of various environmental pathways and a wide range of health aspects.
Collapse
Affiliation(s)
- Mohammad Ryadh Pokeerbux
- Université de La Réunion, UMR Diabète Athérothrombose Réunion Océan Indien (DéTROI), INSERM U1188, Saint-Pierre, La Réunion, 97410, France.
| | - Patrick Mavingui
- Université de La Réunion, UMR Processus Infectieux en Milieu Insulaire et Tropical (PIMIT), CNRS 9192, INSERM U1187, IRD 249, Sainte-Clotilde, La Réunion, 97490, France
| | - Patrick Gérardin
- Plateforme de Recherche Clinique et Translationnelle, INSERM CIC1410, CHU de La Réunion, Saint-Pierre, La Réunion, 97400, France
| | - Nelly Agrinier
- CHRU-Nancy, Université de Lorraine, CIC, Epidémiologie clinique, Inserm, Nancy, F-54000, France
- Université de Lorraine, Inserm, INSPIIRE, Nancy, F-54000, France
| | - Erick Gokalsing
- Etablissement Public de Santé Mentale de La Réunion, 42 chemin du Grand Pourpier, 97866, Saint-Paul Cedex, France
- Laboratoire IRISSE (IngéniéRIe de la Santé, du Sport et de l'Environnement), Université de La Réunion, UFR SHE, Saint Pierre, EA, 4075, France
| | - Olivier Meilhac
- Université de La Réunion, UMR Diabète Athérothrombose Réunion Océan Indien (DéTROI), INSERM U1188, Saint-Pierre, La Réunion, 97410, France
- Plateforme de Recherche Clinique et Translationnelle, INSERM CIC1410, CHU de La Réunion, Saint-Pierre, La Réunion, 97400, France
| | - Maxime Cournot
- Université de La Réunion, UMR Diabète Athérothrombose Réunion Océan Indien (DéTROI), INSERM U1188, Saint-Pierre, La Réunion, 97410, France
- Groupe de santé Clinifutur, Clinique Les Orchidées, Le Port, La Réunion, 97420, France
| |
Collapse
|
2
|
Rani A, Stadler JT, Marsche G. HDL-based therapeutics: A promising frontier in combating viral and bacterial infections. Pharmacol Ther 2024; 260:108684. [PMID: 38964560 DOI: 10.1016/j.pharmthera.2024.108684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/03/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Low levels of high-density lipoprotein (HDL) and impaired HDL functionality have been consistently associated with increased susceptibility to infection and its serious consequences. This has been attributed to the critical role of HDL in maintaining cellular lipid homeostasis, which is essential for the proper functioning of immune and structural cells. HDL, a multifunctional particle, exerts pleiotropic effects in host defense against pathogens. It functions as a natural nanoparticle, capable of sequestering and neutralizing potentially harmful substances like bacterial lipopolysaccharides. HDL possesses antiviral activity, preventing viruses from entering or fusing with host cells, thereby halting their replication cycle. Understanding the complex relationship between HDL and the immune system may reveal innovative targets for developing new treatments to combat infectious diseases and improve patient outcomes. This review aims to emphasize the role of HDL in influencing the course of bacterial and viral infections and its and its therapeutic potential.
Collapse
Affiliation(s)
- Alankrita Rani
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Styria, Austria
| | - Julia T Stadler
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Styria, Austria
| | - Gunther Marsche
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Styria, Austria; BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Styria, Austria.
| |
Collapse
|
3
|
Gao L, Yang W, Wang J. Implications of mosquito metabolism on vector competence. INSECT SCIENCE 2024; 31:674-682. [PMID: 37907431 DOI: 10.1111/1744-7917.13288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 11/02/2023]
Abstract
Mosquito-borne diseases (MBDs) annually kill nearly half a million people. Due to the lack of effective vaccines and drugs on most MBDs, disease prevention relies primarily on controlling mosquitoes. Despite huge efforts having been put into mosquito control, eco-friendly and sustainable mosquito-control strategies are still lacking and urgently demanded. Most mosquito-transmitted pathogens have lost the capacity of de novo nutrition biosynthesis, and rely on their vertebrate and invertebrate hosts for sustenance during the long-term obligate parasitism process. Therefore, a better understanding of the metabolic interactions between mosquitoes and pathogens will contribute to the discovery of novel metabolic targets or regulators that lead to reduced mosquito populations or vector competence. This review summarizes the current knowledge about the effects of mosquito metabolism on the transmission of multiple pathogens. We also discuss that research in this area remains to be explored to develop multiple biological prevention and control strategies for MBDs.
Collapse
Affiliation(s)
- Li Gao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Wenxu Yang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Jingwen Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Perera DR, Ranadeva ND, Sirisena K, Wijesinghe KJ. Roles of NS1 Protein in Flavivirus Pathogenesis. ACS Infect Dis 2024; 10:20-56. [PMID: 38110348 DOI: 10.1021/acsinfecdis.3c00566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Flaviviruses such as dengue, Zika, and West Nile viruses are highly concerning pathogens that pose significant risks to public health. The NS1 protein is conserved among flaviviruses and is synthesized as a part of the flavivirus polyprotein. It plays a critical role in viral replication, disease progression, and immune evasion. Post-translational modifications influence NS1's stability, secretion, antigenicity, and interactions with host factors. NS1 protein forms extensive interactions with host cellular proteins allowing it to affect vital processes such as RNA processing, gene expression regulation, and cellular homeostasis, which in turn influence viral replication, disease pathogenesis, and immune responses. NS1 acts as an immune evasion factor by delaying complement-dependent lysis of infected cells and contributes to disease pathogenesis by inducing endothelial cell damage and vascular leakage and triggering autoimmune responses. Anti-NS1 antibodies have been shown to cross-react with host endothelial cells and platelets, causing autoimmune destruction that is hypothesized to contribute to disease pathogenesis. However, in contrast, immunization of animal models with the NS1 protein confers protection against lethal challenges from flaviviruses such as dengue and Zika viruses. Understanding the multifaceted roles of NS1 in flavivirus pathogenesis is crucial for effective disease management and control. Therefore, further research into NS1 biology, including its host protein interactions and additional roles in disease pathology, is imperative for the development of strategies and therapeutics to combat flavivirus infections successfully. This Review provides an in-depth exploration of the current available knowledge on the multifaceted roles of the NS1 protein in the pathogenesis of flaviviruses.
Collapse
Affiliation(s)
- Dayangi R Perera
- Department of Chemistry, Faculty of Science, University of Colombo, Sri Lanka 00300
| | - Nadeeka D Ranadeva
- Department of Biomedical Science, Faculty of Health Sciences, KIU Campus Sri Lanka 10120
| | - Kavish Sirisena
- Department of Chemistry, Faculty of Science, University of Colombo, Sri Lanka 00300
- Section of Genetics, Institute for Research and Development in Health and Social Care, Sri Lanka 10120
| | | |
Collapse
|
5
|
Henriques P, Rosa A, Caldeira-Araújo H, Soares P, Vigário AM. Flying under the radar - impact and factors influencing asymptomatic DENV infections. Front Cell Infect Microbiol 2023; 13:1284651. [PMID: 38076464 PMCID: PMC10704250 DOI: 10.3389/fcimb.2023.1284651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
The clinical outcome of DENV and other Flaviviruses infections represents a spectrum of severity that ranges from mild manifestations to severe disease, which can ultimately lead to death. Nonetheless, most of these infections result in an asymptomatic outcome that may play an important role in the persistent circulation of these viruses. Also, although little is known about the mechanisms that lead to these asymptomatic infections, they are likely the result of a complex interplay between viral and host factors. Specific characteristics of the infecting viral strain, such as its replicating efficiency, coupled with host factors, like gene expression of key molecules involved in the immune response or in the protection against disease, are among crucial factors to study. This review revisits recent data on factors that may contribute to the asymptomatic outcome of the world's widespread DENV, highlighting the importance of silent infections in the transmission of this pathogen and the immune status of the host.
Collapse
Affiliation(s)
- Paulo Henriques
- Projecto Medicina, Faculdade de Ciências da Vida, Universidade da Madeira, Funchal, Portugal
| | - Alexandra Rosa
- Projecto Medicina, Faculdade de Ciências da Vida, Universidade da Madeira, Funchal, Portugal
| | - Helena Caldeira-Araújo
- Projecto Medicina, Faculdade de Ciências da Vida, Universidade da Madeira, Funchal, Portugal
- CQM-Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal
| | - Pedro Soares
- Department of Biology, CBMA (Centre of Molecular and Environmental Biology), Braga, Portugal
- Department of Biology, Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Braga, Portugal
| | - Ana Margarida Vigário
- Projecto Medicina, Faculdade de Ciências da Vida, Universidade da Madeira, Funchal, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
6
|
Moallemi S, Lloyd AR, Rodrigo C. Early biomarkers for prediction of severe manifestations of dengue fever: a systematic review and a meta-analysis. Sci Rep 2023; 13:17485. [PMID: 37838744 PMCID: PMC10576797 DOI: 10.1038/s41598-023-44559-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/10/2023] [Indexed: 10/16/2023] Open
Abstract
Early identification of dengue patients at risk of adverse outcomes is important to prevent hospital overcrowding in low- to middle- income countries during epidemics. We performed a systematic review to identify which biomarkers measured in first 96 h of fever could predict dengue haemorrhagic fever (DHF, World Health Organization 1997 clinical classification) or severe dengue (SD, WHO 2009, clinical classification). PubMed, Scopus, CINAHL, Web of Science, and EMBASE databases were searched for prospective cohort and nested case-control studies published from 1997 to Feb 27, 2022. The protocol for the study was registered in PROSPERO (ID: CRD42021230053). After screening 6747 publications, and analysing 37 eligible studies reporting on 5925 patients, elevated C-reactive protein, aspartate aminotransferase, interleukin-8 and decreased albumin levels were strongly associated with dengue haemorrhagic fever (by meta-analyses of multiple studies, p < 0.05), while elevated vascular cell adhesion protein 1, syndecan-1, aspartate aminotransferase and C-reactive protein levels were strongly associated with severe dengue (by meta-analyses of multiple studies, p < 0.05). Further 44 and 28 biomarkers were associated with the risk of DHF and SD respectively, but only in a single study. The meta-analyses suggest the importance of early acute inflammation with hepatic involvement in determining the subsequent course of illness in dengue.
Collapse
Affiliation(s)
- Samaneh Moallemi
- School of Biomedical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, 2052, Australia
- Viral Immunology Systems Program, Kirby Institute, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Andrew R Lloyd
- Viral Immunology Systems Program, Kirby Institute, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Chaturaka Rodrigo
- School of Biomedical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, 2052, Australia.
- Viral Immunology Systems Program, Kirby Institute, UNSW Sydney, Sydney, NSW, 2052, Australia.
| |
Collapse
|
7
|
Lambrechts L, Reiner RC, Briesemeister MV, Barrera P, Long KC, Elson WH, Vizcarra A, Astete H, Bazan I, Siles C, Vilcarromero S, Leguia M, Kawiecki AB, Perkins TA, Lloyd AL, Waller LA, Kitron U, Jenkins SA, Hontz RD, Campbell WR, Carrington LB, Simmons CP, Ampuero JS, Vasquez G, Elder JP, Paz-Soldan VA, Vazquez-Prokopec GM, Rothman AL, Barker CM, Scott TW, Morrison AC. Direct mosquito feedings on dengue-2 virus-infected people reveal dynamics of human infectiousness. PLoS Negl Trop Dis 2023; 17:e0011593. [PMID: 37656759 PMCID: PMC10501553 DOI: 10.1371/journal.pntd.0011593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 09/14/2023] [Accepted: 08/14/2023] [Indexed: 09/03/2023] Open
Abstract
Dengue virus (DENV) transmission from humans to mosquitoes is a poorly documented, but critical component of DENV epidemiology. Magnitude of viremia is the primary determinant of successful human-to-mosquito DENV transmission. People with the same level of viremia, however, can vary in their infectiousness to mosquitoes as a function of other factors that remain to be elucidated. Here, we report on a field-based study in the city of Iquitos, Peru, where we conducted direct mosquito feedings on people naturally infected with DENV and that experienced mild illness. We also enrolled people naturally infected with Zika virus (ZIKV) after the introduction of ZIKV in Iquitos during the study period. Of the 54 study participants involved in direct mosquito feedings, 43 were infected with DENV-2, two with DENV-3, and nine with ZIKV. Our analysis excluded participants whose viremia was detectable at enrollment but undetectable at the time of mosquito feeding, which was the case for all participants with DENV-3 and ZIKV infections. We analyzed the probability of onward transmission during 50 feeding events involving 27 participants infected with DENV-2 based on the presence of infectious virus in mosquito saliva 7-16 days post blood meal. Transmission probability was positively associated with the level of viremia and duration of extrinsic incubation in the mosquito. In addition, transmission probability was influenced by the day of illness in a non-monotonic fashion; i.e., transmission probability increased until 2 days after symptom onset and decreased thereafter. We conclude that mildly ill DENV-infected humans with similar levels of viremia during the first two days after symptom onset will be most infectious to mosquitoes on the second day of their illness. Quantifying variation within and between people in their contribution to DENV transmission is essential to better understand the biological determinants of human infectiousness, parametrize epidemiological models, and improve disease surveillance and prevention strategies.
Collapse
Affiliation(s)
- Louis Lambrechts
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Insect-Virus Interactions Unit, Paris, France
| | - Robert C. Reiner
- University of Washington, Seattle, Washington, United States of America
| | - M. Veronica Briesemeister
- Department of Entomology and Nematology, University of California, Davis, California, United States of America
| | - Patricia Barrera
- Department of Entomology and Nematology, University of California, Davis, California, United States of America
- Genomics Laboratory, Pontificia Universidad Católica del Peru, Lima, Peru
| | - Kanya C. Long
- Department of Family Medicine and Public Health, University of California San Diego School of Medicine, La Jolla, California, United States of America
| | - William H. Elson
- Department of Entomology and Nematology, University of California, Davis, California, United States of America
| | - Alfonso Vizcarra
- Department of Entomology and Nematology, University of California, Davis, California, United States of America
| | - Helvio Astete
- Virology and Emerging Infections Department, United States Naval Medical Research Unit No. 6, Lima, Peru
- Department of Entomology, United States Naval Medical Research Unit No. 6, Lima, Peru
| | - Isabel Bazan
- Virology and Emerging Infections Department, United States Naval Medical Research Unit No. 6, Lima, Peru
| | - Crystyan Siles
- Virology and Emerging Infections Department, United States Naval Medical Research Unit No. 6, Lima, Peru
| | - Stalin Vilcarromero
- Virology and Emerging Infections Department, United States Naval Medical Research Unit No. 6, Lima, Peru
| | - Mariana Leguia
- Genomics Laboratory, Pontificia Universidad Católica del Peru, Lima, Peru
| | - Anna B. Kawiecki
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - T. Alex Perkins
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Alun L. Lloyd
- Biomathematics Graduate Program and Department of Mathematics, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Lance A. Waller
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| | - Uriel Kitron
- Department of Environmental Sciences, Emory University, Atlanta, Georgia, United States of America
| | - Sarah A. Jenkins
- Virology and Emerging Infections Department, United States Naval Medical Research Unit No. 6, Lima, Peru
| | - Robert D. Hontz
- Virology and Emerging Infections Department, United States Naval Medical Research Unit No. 6, Lima, Peru
| | - Wesley R. Campbell
- Virology and Emerging Infections Department, United States Naval Medical Research Unit No. 6, Lima, Peru
| | | | - Cameron P. Simmons
- Institute for Vector-Borne Disease, Monash University, Clayton, Victoria, Australia
| | - J. Sonia Ampuero
- Virology and Emerging Infections Department, United States Naval Medical Research Unit No. 6, Lima, Peru
| | - Gisella Vasquez
- Department of Entomology, United States Naval Medical Research Unit No. 6, Lima, Peru
| | - John P. Elder
- School of Public Health, San Diego State University, San Diego, California, United States of America
| | - Valerie A. Paz-Soldan
- Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, United States of America
| | | | - Alan L. Rothman
- Institute for Immunology and Informatics and Department of Cell and Molecular Biology, University of Rhode Island, Providence, Rhode Island, United States of America
| | - Christopher M. Barker
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Thomas W. Scott
- Department of Entomology and Nematology, University of California, Davis, California, United States of America
| | - Amy C. Morrison
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
| |
Collapse
|
8
|
Alcalá AC, Ludert JE. The dengue virus NS1 protein; new roles in pathogenesis due to similarities with and affinity for the high-density lipoprotein (HDL)? PLoS Pathog 2023; 19:e1011587. [PMID: 37616216 PMCID: PMC10449462 DOI: 10.1371/journal.ppat.1011587] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023] Open
Affiliation(s)
- Ana C. Alcalá
- MU Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, MO, United States of America
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, United States of America
- Bond Life Science Center, University of Missouri, Columbia, MO, United States of America
| | - Juan E. Ludert
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV), Mexico City, Mexico
| |
Collapse
|
9
|
Marten AD, Tift CT, Tree MO, Bakke J, Conway MJ. Chronic depletion of vertebrate lipids in Aedes aegypti cells dysregulates lipid metabolism and inhibits innate immunity without altering dengue infectivity. PLoS Negl Trop Dis 2022; 16:e0010890. [PMID: 36279305 PMCID: PMC9632908 DOI: 10.1371/journal.pntd.0010890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 11/03/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
Aedes aegypti is the primary vector of dengue virus (DENV) and other arboviruses. Previous literature suggests that vertebrate and invertebrate lipids and the nutritional status of mosquitoes modify virus infection. Here, we developed a vertebrate lipid-depleted Ae. aegypti cell line to investigate if chronic depletion of vertebrate lipids normally present in a blood meal and insect cell culture medium would impact cell growth and virus infection. Chronic depletion of vertebrate lipids reduced cell size and proliferation, although cells retained equivalent total intracellular lipids per cell by reducing lipolysis and modifying gene expression related to sugar and lipid metabolism. Downregulation of innate immunity genes was also observed. We hypothesized that chronic depletion of vertebrate lipids would impact virus infection; however, the same amount of DENV was produced per cell. This study reveals how Ae. aegypti cells adapt in the absence of vertebrate lipids, and how DENV can replicate equally well in cells that contain predominately vertebrate or invertebrate lipids. Aedes aegypti is a major threat to public health. Ae. aegypti is the primary vector of dengue virus types 1–4 (DENV 1–4), zika virus (ZIKV), chikungunya virus (CHIKV), and yellow fever virus (YFV). Ae. aegypti acquires arboviruses from a vertebrate host during blood feeding. Blood feeding introduces vertebrate-specific factors into the mosquito that may be important for both mosquito and virus. This study reveals that Ae. aegypti adapts to depletion of vertebrate lipids by inhibiting lipolysis and promoting de novo synthesis of invertebrate lipids, and that DENV can replicate equally well without high concentrations of cholesterol and other vertebrate lipid species. Understanding how disease vectors adapt to nutritional changes will identify novel strategies for vector control and disease mitigation.
Collapse
Affiliation(s)
- Andrew D. Marten
- Foundational Sciences, Central Michigan University College of Medicine, Mt. Pleasant, Michigan, United States of America
| | - Clara T. Tift
- Foundational Sciences, Central Michigan University College of Medicine, Mt. Pleasant, Michigan, United States of America
| | - Maya O. Tree
- Foundational Sciences, Central Michigan University College of Medicine, Mt. Pleasant, Michigan, United States of America
| | - Jesse Bakke
- Foundational Sciences, Central Michigan University College of Medicine, Mt. Pleasant, Michigan, United States of America
| | - Michael J. Conway
- Foundational Sciences, Central Michigan University College of Medicine, Mt. Pleasant, Michigan, United States of America
- * E-mail:
| |
Collapse
|
10
|
Kowalska K, Sabatowska Z, Forycka J, Młynarska E, Franczyk B, Rysz J. The Influence of SARS-CoV-2 Infection on Lipid Metabolism—The Potential Use of Lipid-Lowering Agents in COVID-19 Management. Biomedicines 2022; 10:biomedicines10092320. [PMID: 36140421 PMCID: PMC9496398 DOI: 10.3390/biomedicines10092320] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/31/2022] [Accepted: 09/07/2022] [Indexed: 12/15/2022] Open
Abstract
Several studies have indicated lipid metabolism alterations during COVID-19 infection, specifically a decrease in high-density lipoprotein (HDL) and low-density lipoprotein (LDL) concentrations and an increase in triglyceride (TG) levels during the infection. However, a decline in triglycerides can also be observed in critical cases. A direct correlation can be observed between a decrease in serum cholesterol, HDL-C, LDL-C and TGs, and the severity of the disease; these laboratory findings can serve as potential markers for patient outcomes. The transmission of coronavirus increases proportionally with rising levels of cholesterol in the cell membrane. This is due to the fact that cholesterol increases the number of viral entry spots and the concentration of angiotensin-converting enzyme 2 (ACE2) receptor, crucial for viral penetration. Studies have found that lower HDL-C levels correspond with a higher susceptibility to SARS-CoV-2 infection and infections in general, while higher HDL-C levels were related to a lower risk of developing them. However, extremely high HDL-C levels in serum increase the risk of infectious diseases and is associated with a higher risk of cardiovascular events. Low HDL-C levels are already accepted as a marker for risk stratification in critical illnesses, and higher HDL-C levels prior to the infection is associated with a lower risk of death in older patients. The correlation between LDL-C levels and disease severity is still unclear. However, TG levels were significantly higher in non-surviving severe patients compared to those that survived; therefore, elevated TG-C levels in COVID-19 patients may be considered an indicator of uncontrolled inflammation and an increased risk of death.
Collapse
|
11
|
Benfrid S, Park K, Dellarole M, Voss JE, Tamietti C, Pehau‐Arnaudet G, Raynal B, Brûlé S, England P, Zhang X, Mikhailova A, Hasan M, Ungeheuer M, Petres S, Biering SB, Harris E, Sakuntabhai A, Buchy P, Duong V, Dussart P, Coulibaly F, Bontems F, Rey FA, Flamand M. Dengue virus NS1 protein conveys pro-inflammatory signals by docking onto high-density lipoproteins. EMBO Rep 2022; 23:e53600. [PMID: 35607830 PMCID: PMC10549233 DOI: 10.15252/embr.202153600] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 04/24/2022] [Accepted: 04/27/2022] [Indexed: 10/05/2023] Open
Abstract
The dengue virus nonstructural protein 1 (NS1) is a secreted virulence factor that modulates complement, activates immune cells and alters endothelial barriers. The molecular basis of these events remains incompletely understood. Here we describe a functional high affinity complex formed between NS1 and human high-density lipoproteins (HDL). Collapse of the soluble NS1 hexamer upon binding to the lipoprotein particle leads to the anchoring of amphipathic NS1 dimeric subunits into the HDL outer layer. The stable complex can be visualized by electron microscopy as a spherical HDL with rod-shaped NS1 dimers protruding from the surface. We further show that the assembly of NS1-HDL complexes triggers the production of pro-inflammatory cytokines in human primary macrophages while NS1 or HDL alone do not. Finally, we detect NS1 in complex with HDL and low-density lipoprotein (LDL) particles in the plasma of hospitalized dengue patients and observe NS1-apolipoprotein E-positive complexes accumulating overtime. The functional reprogramming of endogenous lipoprotein particles by NS1 as a means to exacerbate systemic inflammation during viral infection provides a new paradigm in dengue pathogenesis.
Collapse
Affiliation(s)
- Souheyla Benfrid
- Unité de Virologie StructuraleInstitut Pasteur and CNRS UMR3569ParisFrance
- Université Paris Descartes SorbonneParis CitéFrance
- Present address:
Laboratoire de Santé AnimaleANSES, INRA, ENVA, UMR 1161Université Paris‐EstMaisons‐AlfortFrance
| | - Kyu‐Ho Park
- Unité de Virologie StructuraleInstitut Pasteur and CNRS UMR3569ParisFrance
- Present address:
Applied Molecular VirologyInstitut Pasteur KoreaSeongnam‐siKorea
| | - Mariano Dellarole
- Unité de Virologie StructuraleInstitut Pasteur and CNRS UMR3569ParisFrance
- Present address:
Virus Biophysics LaboratoryBionanosciences Research Center (CIBION)National Scientific and Technical Research Council (CONICET)Ciudad Autónoma de Buenos AiresArgentina
| | - James E Voss
- Unité de Virologie StructuraleInstitut Pasteur and CNRS UMR3569ParisFrance
- Present address:
Department of Immunology and MicrobiologyThe Scripps Research InstituteLa JollaCAUSA
| | - Carole Tamietti
- Unité de Virologie StructuraleInstitut Pasteur and CNRS UMR3569ParisFrance
| | | | - Bertrand Raynal
- Molecular Biophysics FacilityCNRS UMR 3528Institut PasteurParisFrance
| | - Sébastien Brûlé
- Molecular Biophysics FacilityCNRS UMR 3528Institut PasteurParisFrance
| | - Patrick England
- Molecular Biophysics FacilityCNRS UMR 3528Institut PasteurParisFrance
| | - Xiaokang Zhang
- Unité de Virologie StructuraleInstitut Pasteur and CNRS UMR3569ParisFrance
- Present address:
Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulationthe Brain Cognition and Brain Disease Institute (BCBDI)Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen‐Hong Kong Institute of Brain Science‐Shenzhen Fundamental Research InstitutionsShenzhenChina
| | - Anastassia Mikhailova
- HIV Inflammation et PersistanceInstitut PasteurParisFrance
- Present address:
Division of Molecular NeurobiologyDepartment of Medical Biochemistry and BiophysicsKarolinska InstituteStockholmSweden
| | - Milena Hasan
- Cytometry and Biomarkers Unit of Technology and ServiceCB UTechSParisFrance
| | | | - Stéphane Petres
- Production and Purification of Recombinant Proteins FacilityInstitut PasteurParisFrance
| | - Scott B Biering
- Division of Infectious Diseases and VaccinologySchool of Public HealthUniversity of CaliforniaBerkeleyCAUSA
| | - Eva Harris
- Division of Infectious Diseases and VaccinologySchool of Public HealthUniversity of CaliforniaBerkeleyCAUSA
| | | | - Philippe Buchy
- Virology UnitInstitut Pasteur du CambodgeInstitut Pasteur International NetworkPhnom PenhCambodia
- Present address:
GlaxoSmithKline Vaccines R&DSingaporeSingapore
| | - Veasna Duong
- Virology UnitInstitut Pasteur du CambodgeInstitut Pasteur International NetworkPhnom PenhCambodia
| | - Philippe Dussart
- Virology UnitInstitut Pasteur du CambodgeInstitut Pasteur International NetworkPhnom PenhCambodia
| | - Fasséli Coulibaly
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVic.Australia
| | - François Bontems
- Unité de Virologie StructuraleInstitut Pasteur and CNRS UMR3569ParisFrance
- Département de Biologie et Chimie StructuralesInstitut de Chimie des Substances Naturelles, CNRS UPR2301Gif‐sur‐YvetteFrance
| | - Félix A Rey
- Unité de Virologie StructuraleInstitut Pasteur and CNRS UMR3569ParisFrance
| | - Marie Flamand
- Unité de Virologie StructuraleInstitut Pasteur and CNRS UMR3569ParisFrance
| |
Collapse
|
12
|
Chidambaram V, Shanmugavel Geetha H, Kumar A, Majella MG, Sivakumar RK, Voruganti D, Mehta JL, Karakousis PC. Association of Lipid Levels With COVID-19 Infection, Disease Severity and Mortality: A Systematic Review and Meta-Analysis. Front Cardiovasc Med 2022; 9:862999. [PMID: 35402531 PMCID: PMC8988060 DOI: 10.3389/fcvm.2022.862999] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/25/2022] [Indexed: 12/15/2022] Open
Abstract
Background Coronavirus disease 2019 (COVID-19) ranges from asymptomatic infection to severe illness. Cholesterol in the host cell plasma membrane plays an important role in the SARS-CoV-2 virus entry into cells. Serum lipids, especially low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C), are in constant interaction with the lipid rafts in the host cell membranes and can modify the interaction of virus with host cells and the resultant disease severity. Recent studies on serum lipid levels and COVID-19 disease severity lack consistency. Objectives Our systematic review and meta-analysis compared the serum levels of total cholesterol (TC), LDL-C, HDL-C, and triglycerides (TG) between (1) COVID-19 patients vs. healthy controls; (2) severe vs. non-severe COVID-19 disease; (3) deceased vs. surviving COVID-19 patients. Methods PRISMA guidelines were followed. We included peer-reviewed articles on observational (case-control and cohort) studies from PubMed and Embase published from the database inception until September 1, 2021. We used random-effects meta-analysis for pooled mean-differences (pMD) in lipid levels (mg/dL) for the above groups. Results Among 441 articles identified, 29 articles (26 retrospective and 3 prospective cohorts), with an aggregate of 256,721 participants, were included. COVID-19 patients had lower TC (pMD-14.9, 95%CI-21.6 to -8.3) and HDL-C (pMD-6.9, 95%CI -10.2 to -3.7) levels (mg/dL). Severe COVID-19 patients had lower TC (pMD-10.4, 95%CI -18.7 to -2.2), LDL-C (pMD-4.4, 95%CI -8.4 to -0.42), and HDL-C (pMD-4.4, 95%CI -6.9 to -1.8) at admission compared to patients with non-severe disease. Deceased patients had lower TC (pMD-14.9, 95%CI -21.6 to -8.3), LDL-C (pMD-10.6, 95%CI -16.5 to -4.6) and HDL-C (pMD-2.5, 95%CI -3.9 to -1.0) at admission. TG levels did not differ based on COVID-19 severity or mortality. No publication bias was noted. Conclusion We demonstrated lower lipid levels in patients with COVID-19 infection and an association with disease severity and mortality. Their potential role in COVID-19 pathogenesis and their utility as prognostic factors require further investigation.
Collapse
Affiliation(s)
- Vignesh Chidambaram
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | | | - Amudha Kumar
- Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Marie Gilbert Majella
- Department of Community Medicine, Sri Venkateshwaraa Medical College Hospital and Research Centre, Pondicherry, India
| | - Ranjith Kumar Sivakumar
- Department of Anaesthesia and Intensive Care, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Dinesh Voruganti
- Division of Cardiovascular Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Jawahar L. Mehta
- Division of Cardiovascular Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Division of Cardiovascular Medicine, Central Arkansas Veterans Healthcare System, Little Rock, AR, United States
| | - Petros C. Karakousis
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| |
Collapse
|
13
|
UYAROĞLU OA, ÖZDEDE M, ÇALIK BAŞARAN N, KÖYLÜ B, SAHİN TK, ÖZIŞIK L, TANRIÖVER MD, GÜVEN GS. Hyperlipidemia in Post-COVID patients; a unique observational follow-up study on lipid levels in post-COVID patients. JOURNAL OF HEALTH SCIENCES AND MEDICINE 2022. [DOI: 10.32322/jhsm.1027661] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
14
|
Zhu S, Li Y, Gao H, Hou G, Cui X, Chen S, Ding C. Identification and assessment of pulmonary Cryptococcus neoformans infection by blood serum surface-enhanced Raman spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 260:119978. [PMID: 34077861 DOI: 10.1016/j.saa.2021.119978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/06/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
Cryptococcus neoformans (C. neoformans) is a causative agent for acute pulmonary infection, which can further develop to lethal meningoencephalitis if untreated. The meningoencephalitis infection can be prevented, if timely treatment on pulmonary cryptococcal infection can be implemented based on its early diagnosis and accurate assessment. In this study, blood serum surface-enhanced Raman spectroscopy (SERS) method was investigated on identification and assessment of pulmonary C. neoformans infection. The serum SERS measurements were collected from the mice infected with C. neoformans and the healthy mice, in which the infected mice were further divided into four subgroups according to the duration of infection. Based on those SRES measurements, biochemical differences were analyzed among those different groups to investigate the potential biomarkers for identifying and assessing the pulmonary C. neoformans infection. Furthermore, partial least square (PLS) analysis followed by linear discriminant analysis (LDA) model was employed to identify pulmonary cryptococcal infection and to assess the degrees of infection with the accuracies of 96.7% and 85.3%, respectively. Therefore, our study has demonstrated the great clinical potential of using serum SERS technique for an accurate identification and assessment of pulmonary cryptococcal infection.
Collapse
Affiliation(s)
- Shanshan Zhu
- Research Institute for Medical and Biological Engineering, Ningbo University, Ningbo 315211, China; College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
| | - Yanjian Li
- College of Life and Health Sciences, Northeastern University, Shenyang 110169, China
| | - Han Gao
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
| | - Gang Hou
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing 100029, China; National Center of Respiratory Medicine, China
| | - Xiaoyu Cui
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China; Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, China
| | - Shuo Chen
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China; Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, China.
| | - Chen Ding
- College of Life and Health Sciences, Northeastern University, Shenyang 110169, China.
| |
Collapse
|
15
|
Farfan-Morales CN, Cordero-Rivera CD, Reyes-Ruiz JM, Hurtado-Monzón AM, Osuna-Ramos JF, González-González AM, De Jesús-González LA, Palacios-Rápalo SN, Del Ángel RM. Anti-flavivirus Properties of Lipid-Lowering Drugs. Front Physiol 2021; 12:749770. [PMID: 34690817 PMCID: PMC8529048 DOI: 10.3389/fphys.2021.749770] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/20/2021] [Indexed: 12/11/2022] Open
Abstract
Although Flaviviruses such as dengue (DENV) and zika (ZIKV) virus are important human pathogens, an effective vaccine or antiviral treatment against them is not available. Hence, the search for new strategies to control flavivirus infections is essential. Several studies have shown that the host lipid metabolism could be an antiviral target because cholesterol and other lipids are required during the replicative cycle of different Flaviviridae family members. FDA-approved drugs with hypolipidemic effects could be an alternative for treating flavivirus infections. However, a better understanding of the regulation between host lipid metabolism and signaling pathways triggered during these infections is required. The metabolic pathways related to lipid metabolism modified during DENV and ZIKV infection are analyzed in this review. Additionally, the role of lipid-lowering drugs as safe host-targeted antivirals is discussed.
Collapse
Affiliation(s)
- Carlos Noe Farfan-Morales
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Carlos Daniel Cordero-Rivera
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - José Manuel Reyes-Ruiz
- Unidad Médica de Alta Especialidad, Hospital de Especialidades No. 14, Centro Médico Nacional "Adolfo Ruiz Cortines," Instituto Mexicano del Seguro Social, Heroica Veracruz, Mexico
| | - Arianna M Hurtado-Monzón
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Juan Fidel Osuna-Ramos
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Arely M González-González
- Laboratorio de Ingeniería Tisular y Medicina Traslacional, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Luis Adrián De Jesús-González
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Selvin Noé Palacios-Rápalo
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Rosa María Del Ángel
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| |
Collapse
|
16
|
Rodrigo C, Sigera C, Fernando D, Rajapakse S. Plasma leakage in dengue: a systematic review of prospective observational studies. BMC Infect Dis 2021; 21:1082. [PMID: 34670495 PMCID: PMC8527656 DOI: 10.1186/s12879-021-06793-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/12/2021] [Indexed: 11/10/2022] Open
Abstract
Plasma leakage is a precursor to life-threatening complications of dengue, but this group is poorly defined and not often reported in literature. Patients with Dengue haemorrhagic fever (DHF) as defined in the 1997 World Health Organization classification are often reported, and they all have plasma leakage, but some patients with plasma leakage do not meet the definition of DHF. The study aims to estimate the frequency of plasma leakage and DHF (as a surrogate of plasma leakage) in dengue and its variations based on virus serotype, geography, patient gender and pre-existing immunity to dengue. PUBMED, Scopus, EMBASE, CINAHL and Web of Science were searched for prospective observational studies reporting on plasma leakage or DHF. Quality of data was assessed using the NIH quality assessment tool for cohort studies. Forty-three studies that recruited 15,794 confirmed dengue patients were eligible. Cumulative frequency of plasma leakage was 36.8% (15 studies, 1642/4462, 95% CI 35.4-38.2%), but surprisingly the estimated cumulative frequency of DHF was higher (45.7%, 32 studies, 4758/10417, 95% CI 44.7-46.6%), indicating that current medical literature over-reports DHF or under-reports plasma leakage. Therefore, a reliable estimate for the proportion of dengue patients developing plasma leakage cannot be derived from existing medical literature even after applying rigorous inclusion criteria to select homogenous studies. Plasma leakage is an important marker of "at-risk" dengue patients and standardizing its definition, diagnosis and reporting should be a priority in research and global policy.
Collapse
Affiliation(s)
- Chaturaka Rodrigo
- Department of Pathology, School of Medical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia.
- Kirby Institute, UNSW Sydney, Sydney, NSW, 2052, Australia.
| | - Chathurani Sigera
- Department of Parasitology, Faculty of Medicine, University of Colombo, Colombo, 00800, Sri Lanka
| | - Deepika Fernando
- Department of Parasitology, Faculty of Medicine, University of Colombo, Colombo, 00800, Sri Lanka
| | - Senaka Rajapakse
- Department of Clinical Medicine, Faculty of Medicine, University of Colombo, Colombo, 00800, Sri Lanka
| |
Collapse
|
17
|
Thach TQ, Eisa HG, Hmeda AB, Faraj H, Thuan TM, Abdelrahman MM, Awadallah MG, Ha NX, Noeske M, Abdul Aziz JM, Nam NH, Nile ME, Dumre SP, Huy NT, Hirayama K. Predictive markers for the early prognosis of dengue severity: A systematic review and meta-analysis. PLoS Negl Trop Dis 2021; 15:e0009808. [PMID: 34610027 PMCID: PMC8519480 DOI: 10.1371/journal.pntd.0009808] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 10/15/2021] [Accepted: 09/10/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Predictive markers represent a solution for the proactive management of severe dengue. Despite the low mortality rate resulting from severe cases, dengue requires constant examination and round-the-clock nursing care due to the unpredictable progression of complications, posing a burden on clinical triage and material resources. Accordingly, identifying markers that allow for predicting disease prognosis from the initial diagnosis is needed. Given the improved pathogenesis understanding, myriad candidates have been proposed to be associated with severe dengue progression. Thus, we aim to review the relationship between the available biomarkers and severe dengue. METHODOLOGY We performed a systematic review and meta-analysis to compare the differences in host data collected within 72 hours of fever onset amongst the different disease severity levels. We searched nine bibliographic databases without restrictive criteria of language and publication date. We assessed risk of bias and graded robustness of evidence using NHLBI quality assessments and GRADE, respectively. This study protocol is registered in PROSPERO (CRD42018104495). PRINCIPAL FINDINGS Of 4000 records found, 40 studies for qualitative synthesis, 19 for meta-analysis. We identified 108 host and viral markers collected within 72 hours of fever onset from 6160 laboratory-confirmed dengue cases, including hematopoietic parameters, biochemical substances, clinical symptoms, immune mediators, viral particles, and host genes. Overall, inconsistent case classifications explained substantial heterogeneity, and meta-analyses lacked statistical power. Still, moderate-certainty evidence indicated significantly lower platelet counts (SMD -0.65, 95% CI -0.97 to -0.32) and higher AST levels (SMD 0.87, 95% CI 0.36 to 1.38) in severe cases when compared to non-severe dengue during this time window. CONCLUSION The findings suggest that alterations of platelet count and AST level-in the first 72 hours of fever onset-are independent markers predicting the development of severe dengue.
Collapse
Affiliation(s)
- Tran Quang Thach
- Department of Immunogenetics, Nagasaki University, Nagasaki, Japan
| | - Heba Gamal Eisa
- Faculty of Medicine, Menoufia University, Shebin El-Koum, Egypt
| | | | - Hazem Faraj
- Faculty of Medicine, University of Tripoli, Tripoli, Libya
| | - Tieu Minh Thuan
- Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | | | | | - Nam Xuan Ha
- Hue University of Medicine and Pharmacy, Hue, Vietnam
| | - Michael Noeske
- American University of the Caribbean School of Medicine, Cupecoy, Sint Maarten
| | | | - Nguyen Hai Nam
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | - Nguyen Tien Huy
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Kenji Hirayama
- Department of Immunogenetics, Nagasaki University, Nagasaki, Japan
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
18
|
Magnasco L, Sepulcri C, Antonello RM, Di Bella S, Labate L, Luzzati R, Giacobbe DR, Bassetti M. The role of PCSK9 in infectious diseases. Curr Med Chem 2021; 29:1000-1015. [PMID: 34269657 DOI: 10.2174/0929867328666210714160343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/01/2021] [Accepted: 05/13/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND In recent years, many aspects of the physiological role of PCSK9 have been elucidated, particularly regarding its role in lipid metabolism, cardiovascular risk, and its role in innate immunity. Increasing evidence is available about the involvement of PCSK9 in the pathogenesis of viral infections, mainly HCV, and the regulation of host response to bacterial infections, primarily sepsis and septic shock. Moreover, the action of PCSK9 has been investigated as a crucial step in the pathogenesis of malaria infection and disease severity. OBJECTIVE This paper aims to review the available published literature on the role of PCSK9 in a wide array of infectious diseases. CONCLUSION Besides the ongoing investigation on PCSK9 inhibition among HIV-infected patients to treat HIV- and ART-related hyperlipidemia, preclinical studies indicate how PCSK9 is involved in reducing the replication of HCV. Interestingly, high plasmatic PCSK9 levels have been described in patients with sepsis. Moreover, a protective role of PCSK9 inhibition has also been proposed against dengue and SARS-CoV-2 viral infections. Finally, a loss of function in the PCSK9-encoding gene has been reported to reduce malaria infection mortality.
Collapse
Affiliation(s)
- Laura Magnasco
- Infectious Diseases Unit, San Martino Policlinico Hospital - IRCCS, Genoa, Italy
| | - Chiara Sepulcri
- Infectious Diseases Unit, San Martino Policlinico Hospital - IRCCS, Genoa, Italy
| | | | | | - Laura Labate
- Infectious Diseases Unit, San Martino Policlinico Hospital - IRCCS, Genoa, Italy
| | - Roberto Luzzati
- Clinical Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | | | - Matteo Bassetti
- Infectious Diseases Unit, San Martino Policlinico Hospital - IRCCS, Genoa, Italy
| |
Collapse
|
19
|
ApoA1 Neutralizes Proinflammatory Effects of Dengue Virus NS1 Protein and Modulates Viral Immune Evasion. J Virol 2021; 95:e0197420. [PMID: 33827950 DOI: 10.1128/jvi.01974-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dengue is a mosquito-borne infectious disease that is highly endemic in tropical and subtropical countries. Symptomatic patients can rapidly progress to severe conditions of hemorrhage, plasma extravasation, and hypovolemic shock, which leads to death. The blood tests of patients with severe dengue typically reveal low levels of high-density lipoprotein (HDL), which is responsible for reverse cholesterol transport (RCT) and regulation of the lipid composition in peripheral tissues. It is well known that dengue virus (DENV) depends on membrane cholesterol rafts to infect and to replicate in mammalian cells. Here, we describe the interaction of DENV nonstructural protein 1 (NS1) with apolipoprotein A1 (ApoA1), which is the major protein component of HDL. NS1 is secreted by infected cells and can be found circulating in the serum of patients with the onset of symptoms. NS1 concentrations in plasma are related to dengue severity, which is attributed to immune evasion and an acute inflammatory response. Our data show that the DENV NS1 protein induces an increase of lipid rafts in noninfected cell membranes and enhances further DENV infection. We also show that ApoA1-mediated lipid raft depletion inhibits DENV attachment to the cell surface. In addition, ApoA1 is able to neutralize NS1-induced cell activation and to prevent NS1-mediated enhancement of DENV infection. Furthermore, we demonstrate that the ApoA1 mimetic peptide 4F is also capable of mediating lipid raft depletion to control DENV infection. Taken together, our results suggest the potential of RCT-based therapies for dengue treatment. These results should motivate studies to assess the importance of RCT in DENV infection in vivo. IMPORTANCE DENV is one of the most relevant mosquito-transmitted viruses worldwide, infecting more than 390 million people every year and leading to more than 20 thousand deaths. Although a DENV vaccine has already been approved, its potential side effects have hampered its use in large-scale immunizations. Therefore, new treatment options are urgently needed to prevent disease worsening or to improve current clinical management of severe cases. In this study, we describe a new interaction of the NS1 protein, one of the major viral components, with a key component of HDL, ApoA1. This interaction seems to alter membrane susceptibility to virus infection and modulates the mechanisms triggered by DENV to evade the immune response. We also propose the use of a mimetic peptide named 4F, which was originally developed for atherosclerosis, as a potential therapy for relieving DENV symptoms.
Collapse
|
20
|
Gan ES, Tan HC, Le DHT, Huynh TT, Wills B, Seidah NG, Ooi EE, Yacoub S. Dengue virus induces PCSK9 expression to alter antiviral responses and disease outcomes. J Clin Invest 2021; 130:5223-5234. [PMID: 32644974 PMCID: PMC7524462 DOI: 10.1172/jci137536] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 07/01/2020] [Indexed: 12/17/2022] Open
Abstract
Dengue virus (DENV) infection requires cholesterol as a proviral factor, although statin treatment did not show antiviral efficacy in patients with dengue. Here, we show that DENV infection manipulated cholesterol metabolism in cells residing in low-oxygen microenvironments (hypoxia) such as in the liver, spleen, and lymph nodes. DENV infection induced expression of proprotein convertase subtilisin/kexin type 9 (PCSK9), which reduces low-density lipoprotein receptor (LDLR) recycling and hence cholesterol uptake. We found that, whereas LDLR uptake would have distributed cholesterol throughout the various cell compartments, de novo cholesterol synthesis enriched this lipid in the endoplasmic reticulum (ER). With cholesterol enrichment in the ER, ER-resident STING and type I IFN (IFN) activation was repressed during DENV infection. Our in vitro findings were further supported by the detection of elevated plasma PCSK9 levels in patients with dengue with high viremia and increased severity of plasma leakage. Our findings therefore suggest that PCSK9 plays a hitherto unrecognized role in dengue pathogenesis and that PCSK9 inhibitors could be a suitable host-directed treatment for patients with dengue.
Collapse
Affiliation(s)
| | - Hwee Cheng Tan
- Duke-National University of Singapore Medical School, Singapore
| | - Duyen Huynh Thi Le
- Oxford University Clinical Research Unit (OUCRU), Ho Chi Minh City, Vietnam
| | - Trieu Trung Huynh
- Oxford University Clinical Research Unit (OUCRU), Ho Chi Minh City, Vietnam
| | - Bridget Wills
- Oxford University Clinical Research Unit (OUCRU), Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute, Université de Montréal, Montréal, Québec, Canada
| | - Eng Eong Ooi
- Duke-National University of Singapore Medical School, Singapore.,Saw Swee Hock School of Public Health, National University of Singapore, Singapore.,SingHealth Duke-National University of Singapore Global Health Institute, Singapore.,Antimicrobial Resistance Interdisciplinary Research Group, Singapore MIT Alliance in Research and Technology, Singapore
| | - Sophie Yacoub
- Oxford University Clinical Research Unit (OUCRU), Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom.,Antimicrobial Resistance Interdisciplinary Research Group, Singapore MIT Alliance in Research and Technology, Singapore
| |
Collapse
|
21
|
Li Y, Zhang Y, Lu R, Dai M, Shen M, Zhang J, Cui Y, Liu B, Lin F, Chen L, Han D, Fan Y, Zeng Y, Li W, Li S, Chen X, Li H, Pan P. Lipid metabolism changes in patients with severe COVID-19. Clin Chim Acta 2021; 517:66-73. [PMID: 33639119 PMCID: PMC7903909 DOI: 10.1016/j.cca.2021.02.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 02/07/2021] [Accepted: 02/10/2021] [Indexed: 02/09/2023]
Abstract
Background We investigated the dynamic changes in lipid profiles and their correlations with disease severity and clinical outcome in patients with severe COVID-19. Methods We retrospectively reviewed 519 severe COVID-19 patients with confirmed outcomes (discharged or deceased), admitted to the West Court of Union Hospital in Wuhan, China, between 29 January and 8 April 2020. Results Altogether, 424 severe COVID-19 patients, including 34 non-survivors and 390 survivors, were included in the final analyses. During hospitalization, low-density lipoprotein cholesterol (LDL-C), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C) and apolipoprotein A-I (apoA-I) showed an increasing trend in survivors, but showed a downward trend in non-survivors. The serum concentrations of HDL-C and apoA-I were inversely correlated with C-reactive protein (CRP), length of hospital stay of survivors, and disease severity scores. For in-hospital deaths, the areas under the receiver operating characteristic curves (AUCs) of the ratios of CRP/HDL-C and CRP/apoA-I at admission were 0.84 and 0.83, respectively. Moreover, patients with high ratios of CRP/HDL-C (>77.39) or CRP/apoA-I (>72.37) had higher mortality rates during hospitalization (log-rank p < 0.001). Logistic regression analysis demonstrated that hypertension, lactate dehydrogenase, SOFA score, and High CRP/HDL-C ratio were independent predictors of in-hospital mortality. Conclusions During severe COVID-19, HDL-C and apoA-I concentrations are dramatically decreased in non-survivors. Moreover, High CRP/HDL-C ratio is significantly associated with an increase in mortality and a poor prognosis.
Collapse
Affiliation(s)
- Yi Li
- Department of Respiratory and Critical Care Medicine, Central South University, Changsha 410008, China
| | - Yan Zhang
- Department of Respiratory and Critical Care Medicine, Central South University, Changsha 410008, China
| | - Rongli Lu
- Department of Respiratory and Critical Care Medicine, Central South University, Changsha 410008, China
| | - Minhui Dai
- Department of Respiratory and Critical Care Medicine, Central South University, Changsha 410008, China
| | - Minxue Shen
- Department of Dermatology, Central South University, Changsha 410008, China; Department of Social Medicine and Health Management, Central South University, Changsha 410008, China
| | - Jianchu Zhang
- Department of Respiratory and Critical Care Medicine, Union Hospital of Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Yanhui Cui
- Department of Respiratory and Critical Care Medicine, Central South University, Changsha 410008, China
| | - Ben Liu
- Department of Respiratory and Critical Care Medicine, Central South University, Changsha 410008, China; Department of Emergency Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Fengyu Lin
- Department of Respiratory and Critical Care Medicine, Central South University, Changsha 410008, China
| | - Lingli Chen
- Department of Respiratory and Critical Care Medicine, Central South University, Changsha 410008, China
| | - Duoduo Han
- Department of Respiratory and Critical Care Medicine, Central South University, Changsha 410008, China
| | - Yifei Fan
- Department of Respiratory and Critical Care Medicine, Central South University, Changsha 410008, China
| | - Yanjun Zeng
- Department of Respiratory and Critical Care Medicine, Central South University, Changsha 410008, China
| | - Wen Li
- Department of Respiratory and Critical Care Medicine, Central South University, Changsha 410008, China
| | - Sha Li
- Department of Radiology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xiang Chen
- Department of Dermatology, Central South University, Changsha 410008, China
| | - Haitao Li
- First Department of Thoracic Medicine, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University
| | - Pinhua Pan
- Department of Respiratory and Critical Care Medicine, Central South University, Changsha 410008, China.
| |
Collapse
|
22
|
Expression of Nitric Oxide Synthase and Nitric Oxide Levels in Peripheral Blood Cells and Oxidized Low-Density Lipoprotein Levels in Saliva as Early Markers of Severe Dengue. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6650596. [PMID: 33628800 PMCID: PMC7889359 DOI: 10.1155/2021/6650596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/25/2021] [Accepted: 01/30/2021] [Indexed: 11/18/2022]
Abstract
Background Severe dengue (SD), experienced by only a fraction of dengue patients, can be lethal. Due to the lack of early markers that can predict the evolution of SD, all dengue patients have to be monitored under hospital care. We discovered early oxidative stress markers of SD to identify patients who can benefit from early intervention before the symptoms appear. Methods The expression of inducible nitric oxide synthase (iNOS) in peripheral blood cells (PBC), nitric oxide (NO), and oxidized low-density lipoprotein (oxLDL) levels in plasma and saliva collected at early stages of dengue infection from 20 nonsevere dengue fever (DF) patients and 20 patients who later developed SD were analyzed in a retrospective nested case-control study. Results The expression of iNOS is significantly (P < 0.05) lower in patients who developed SD than in DF patients at admission within 4 days from fever onset. Median plasma NO concentration within 4 days from fever onset is also significantly (P < 0.05) lower in patients who developed SD (17.9 ± 1.6 μmol/L) than DF (23.0 ± 2.1 μmol/L). Median oxLDL levels in plasma within 3 days from fever onset is significantly (P < 0.05) lower in patients who developed SD (509.4 ± 224.1 ng/mL) than DF (740.0 ± 300.0 ng/mL). Median salivary oxLDL levels are also significantly (P < 0.05) lower in patients who developed SD (0.8 ± 0.5 ng/mL) than DF (3.6 ± 2.6 ng/mL) within 4 days from fever onset. Conclusions These findings suggest that the expression of iNOS (73% sensitivity, 86% specificity) and plasma NO (96% sensitivity, 61% specificity at 22.3 μmol/L; P < 0.05) may serve as early markers of SD within 3 days from fever onset. Salivary oxLDL levels may serve as early noninvasive markers of SD with a sensitivity and specificity, respectively, of 57% and 91% at 0.9 ng/mL; 76% and 55% at 2.3 ng/mL; and 100% and 50% at 4.6 ng/mL (P < 0.05) within 4 days from fever onset.
Collapse
|
23
|
O'Neal AJ, Butler LR, Rolandelli A, Gilk SD, Pedra JH. Lipid hijacking: a unifying theme in vector-borne diseases. eLife 2020; 9:61675. [PMID: 33118933 PMCID: PMC7595734 DOI: 10.7554/elife.61675] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/20/2020] [Indexed: 12/16/2022] Open
Abstract
Vector-borne illnesses comprise a significant portion of human maladies, representing 17% of global infections. Transmission of vector-borne pathogens to mammals primarily occurs by hematophagous arthropods. It is speculated that blood may provide a unique environment that aids in the replication and pathogenesis of these microbes. Lipids and their derivatives are one component enriched in blood and are essential for microbial survival. For instance, the malarial parasite Plasmodium falciparum and the Lyme disease spirochete Borrelia burgdorferi, among others, have been shown to scavenge and manipulate host lipids for structural support, metabolism, replication, immune evasion, and disease severity. In this Review, we will explore the importance of lipid hijacking for the growth and persistence of these microbes in both mammalian hosts and arthropod vectors.
Collapse
Affiliation(s)
- Anya J O'Neal
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, United States
| | - L Rainer Butler
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, United States
| | - Agustin Rolandelli
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, United States
| | - Stacey D Gilk
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, United States
| | - Joao Hf Pedra
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, United States
| |
Collapse
|
24
|
Tanaka S, De Tymowski C, Assadi M, Zappella N, Jean-Baptiste S, Robert T, Peoc'h K, Lortat-Jacob B, Fontaine L, Bouzid D, Tran-Dinh A, Tashk P, Meilhac O, Montravers P. Lipoprotein concentrations over time in the intensive care unit COVID-19 patients: Results from the ApoCOVID study. PLoS One 2020; 15:e0239573. [PMID: 32970772 PMCID: PMC7514065 DOI: 10.1371/journal.pone.0239573] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/10/2020] [Indexed: 01/08/2023] Open
Abstract
INTRODUCTION Severe acute respiratory syndrome coronavirus2 has caused a global pandemic of coronavirus disease 2019 (COVID-19). High-density lipoproteins (HDLs), particles chiefly known for their reverse cholesterol transport function, also display pleiotropic properties, including anti-inflammatory or antioxidant functions. HDLs and low-density lipoproteins (LDLs) can neutralize lipopolysaccharides and increase bacterial clearance. HDL cholesterol (HDL-C) and LDL cholesterol (LDL-C) decrease during bacterial sepsis, and an association has been reported between low lipoprotein levels and poor patient outcomes. The goal of this study was to characterize the lipoprotein profiles of severe ICU patients hospitalized for COVID-19 pneumonia and to assess their changes during bacterial ventilator-associated pneumonia (VAP) superinfection. METHODS A prospective study was conducted in a university hospital ICU. All consecutive patients admitted for COVID-19 pneumonia were included. Lipoprotein levels were assessed at admission and daily thereafter. The assessed outcomes were survival at 28 days and the incidence of VAP. RESULTS A total of 48 patients were included. Upon admission, lipoprotein concentrations were low, typically under the reference values ([HDL-C] = 0.7[0.5-0.9] mmol/L; [LDL-C] = 1.8[1.3-2.3] mmol/L). A statistically significant increase in HDL-C and LDL-C over time during the ICU stay was found. There was no relationship between HDL-C and LDL-C concentrations and mortality on day 28 (log-rank p = 0.554 and p = 0.083, respectively). A comparison of alive and dead patients on day 28 did not reveal any differences in HDL-C and LDL-C concentrations over time. Bacterial VAP was frequent (64%). An association was observed between HDL-C and LDL-C concentrations on the day of the first VAP diagnosis and mortality ([HDL-C] = 0.6[0.5-0.9] mmol/L in survivors vs. [HDL-C] = 0.5[0.3-0.6] mmol/L in nonsurvivors, p = 0.036; [LDL-C] = 2.2[1.9-3.0] mmol/L in survivors vs. [LDL-C] = 1.3[0.9-2.0] mmol/L in nonsurvivors, p = 0.006). CONCLUSION HDL-C and LDL-C concentrations upon ICU admission are low in severe COVID-19 pneumonia patients but are not associated with poor outcomes. However, low lipoprotein concentrations in the case of bacterial superinfection during ICU hospitalization are associated with mortality, which reinforces the potential role of these particles during bacterial sepsis.
Collapse
Affiliation(s)
- Sébastien Tanaka
- Assistance Publique—Hôpitaux de Paris (AP-HP), Department of Anesthesiology and Critical Care Medicine, Bichat-Claude Bernard Hospital, Paris, France
- Réunion Island University, French Institute of Health and Medical Research (INSERM), U1188 Diabetes atherothrombosis Réunion Indian Ocean (DéTROI), CYROI Plateform, Saint-Denis de La Réunion, Réunion, France
| | - Christian De Tymowski
- Assistance Publique—Hôpitaux de Paris (AP-HP), Department of Anesthesiology and Critical Care Medicine, Bichat-Claude Bernard Hospital, Paris, France
- French Institute of Health and Medical Research (INSERM) U1149, Center for Research on Inflammation, Paris, France
- University of Paris, UFR Denis Diderot, Paris, France
| | - Maksud Assadi
- Assistance Publique—Hôpitaux de Paris (AP-HP), Department of Anesthesiology and Critical Care Medicine, Bichat-Claude Bernard Hospital, Paris, France
- University of Paris, UFR Denis Diderot, Paris, France
| | - Nathalie Zappella
- Assistance Publique—Hôpitaux de Paris (AP-HP), Department of Anesthesiology and Critical Care Medicine, Bichat-Claude Bernard Hospital, Paris, France
| | - Sylvain Jean-Baptiste
- Assistance Publique—Hôpitaux de Paris (AP-HP), Department of Anesthesiology and Critical Care Medicine, Bichat-Claude Bernard Hospital, Paris, France
| | - Tiphaine Robert
- Assistance Publique—Hôpitaux de Paris (AP-HP), Biochemistry Department, Bichat-Claude Bernard Hospital, Paris, France
| | - Katell Peoc'h
- French Institute of Health and Medical Research (INSERM) U1149, Center for Research on Inflammation, Paris, France
- University of Paris, UFR Denis Diderot, Paris, France
- Assistance Publique—Hôpitaux de Paris (AP-HP), Biochemistry Department, Bichat-Claude Bernard Hospital, Paris, France
| | - Brice Lortat-Jacob
- Assistance Publique—Hôpitaux de Paris (AP-HP), Department of Anesthesiology and Critical Care Medicine, Bichat-Claude Bernard Hospital, Paris, France
| | - Lauriane Fontaine
- Assistance Publique—Hôpitaux de Paris (AP-HP), Department of Anesthesiology and Critical Care Medicine, Bichat-Claude Bernard Hospital, Paris, France
| | - Donia Bouzid
- University of Paris, UFR Denis Diderot, Paris, France
- INSERM U1137 IAME, Paris, France
- Assistance Publique—Hôpitaux de Paris (AP-HP), Emergency Department, Bichat-Claude Bernard Hospital, Paris, France
| | - Alexy Tran-Dinh
- Assistance Publique—Hôpitaux de Paris (AP-HP), Department of Anesthesiology and Critical Care Medicine, Bichat-Claude Bernard Hospital, Paris, France
- French Institute of Health and Medical Research (INSERM) U1148, Laboratory for Vascular Translational Science, Paris, France
| | - Parvine Tashk
- Assistance Publique—Hôpitaux de Paris (AP-HP), Department of Anesthesiology and Critical Care Medicine, Bichat-Claude Bernard Hospital, Paris, France
| | - Olivier Meilhac
- Réunion Island University, French Institute of Health and Medical Research (INSERM), U1188 Diabetes atherothrombosis Réunion Indian Ocean (DéTROI), CYROI Plateform, Saint-Denis de La Réunion, Réunion, France
- Réunion Island University-affiliated Hospital, Réunion, France
| | - Philippe Montravers
- Assistance Publique—Hôpitaux de Paris (AP-HP), Department of Anesthesiology and Critical Care Medicine, Bichat-Claude Bernard Hospital, Paris, France
- University of Paris, UFR Denis Diderot, Paris, France
- French Institute of Health and Medical Research (INSERM) U1152, Physiopathology and Epidemiology of Respiratory Diseases, Paris, France
| |
Collapse
|
25
|
Dussart P, Duong V, Bleakley K, Fortas C, Lorn Try P, Kim KS, Choeung R, In S, Andries AC, Cantaert T, Flamand M, Buchy P, Sakuntabhai A. Comparison of dengue case classification schemes and evaluation of biological changes in different dengue clinical patterns in a longitudinal follow-up of hospitalized children in Cambodia. PLoS Negl Trop Dis 2020; 14:e0008603. [PMID: 32925941 PMCID: PMC7515206 DOI: 10.1371/journal.pntd.0008603] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 09/24/2020] [Accepted: 07/14/2020] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The World Health Organization (WHO) proposed guidelines on dengue clinical classification in 1997 and more recently in 2009 for the clinical management of patients. The WHO 1997 classification defines three categories of dengue infection according to severity: dengue fever (DF), dengue hemorrhagic fever (DHF), and dengue shock syndrome (DSS). Alternative WHO 2009 guidelines provide a cross-sectional classification aiming to discriminate dengue fever from dengue with warning signs (DWWS) and severe dengue (SD). The primary objective of this study was to perform a comparison of two dengue classifications. The secondary objective was to describe the changes of hematological and biochemical parameters occurring in patients presenting with different degrees of severity during the course of the disease, since progression to more severe clinical forms is unpredictable. METHODOLOGY/PRINCIPAL FINDINGS We performed a prospective, monocentric, cross-sectional study of hospitalized children in Cambodia, aged from 2 to 15 years old with severe and non-severe dengue. We enrolled 243 patients with acute dengue-like illness: 71.2% were dengue infections confirmed using quantitative reverse transcription PCR or NS1 antigen capture ELISA, of which 87.2% and 9.0% of DF cases were respectively classified DWWS and SD, and 35.9% of DHF were designated SD using an adapted WHO 2009 classification for SD case definition. Systematic use of ultrasound at patient admission was crucial for detecting plasma leakage. No difference was observed in the concentration of secreted NS1 protein between different dengue severity groups. Lipid profiles were different between DWWS and SD at admission, characterized by a decrease in total cholesterol, HDL cholesterol, and LDL cholesterol, in SD. CONCLUSIONS/SIGNIFICANCE Our results show discrepancies between the two classifications, including misclassification of severe dengue cases as mild cases by the WHO 1997 classification. Using an adapted WHO 2009 classification, SD more precisely defines the group of patients requiring careful clinical care at a given time during hospitalization.
Collapse
Affiliation(s)
- Philippe Dussart
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
| | - Veasna Duong
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
| | - Kevin Bleakley
- Laboratoire de mathématiques d'Orsay, Université Paris-Saclay, CNRS, Inria, Orsay, France
| | - Camille Fortas
- Epidemiology and Public Health Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
| | - Patrich Lorn Try
- Pediatric Department, Kampong Cham Provincial hospital, Kampong Cham, Cambodia
| | - Kim Srorn Kim
- Pediatric Department, Kampong Cham Provincial hospital, Kampong Cham, Cambodia
| | - Rithy Choeung
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
| | - Saraden In
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
| | - Anne-Claire Andries
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
| | - Tineke Cantaert
- Immunology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
| | - Marie Flamand
- Structural Virology Unit, Department of Virology, Institut Pasteur, CNRS UMR 3569, Paris, France
| | | | - Anavaj Sakuntabhai
- Functional Genetics of Infectious Diseases Unit, Department of Genomes and Genetics, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique, Génomique évolutive, modélisation et santé, UMR 2000, Paris, France
| |
Collapse
|
26
|
Chuong C, Bates TA, Akter S, Werre SR, LeRoith T, Weger-Lucarelli J. Nutritional status impacts dengue virus infection in mice. BMC Biol 2020; 18:106. [PMID: 32854687 PMCID: PMC7453574 DOI: 10.1186/s12915-020-00828-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 07/11/2020] [Indexed: 01/09/2023] Open
Abstract
Background Dengue virus (DENV) is estimated to infect 390 million people annually. However, few host factors that alter disease severity are known. Malnutrition, defined as both over- and undernutrition, is a growing problem worldwide and has long been linked to dengue disease severity by epidemiological and anecdotal observations. Accordingly, we sought to establish a mouse model to assess the impact of nutritional status on DENV disease severity. Results Using transiently immunocompromised mice, we established a model of mild dengue disease with measurable viremia. We then applied it to study the effects of healthy weight, obese, and low-protein diets representing normal, over-, and undernutrition, respectively. Upon infection with DENV serotype 2, obese mice experienced more severe morbidity in the form of weight loss and thrombocytopenia compared to healthy weight groups. Additionally, obesity altered cytokine expression following DENV infection. Although low protein-fed mice did not lose significant weight after DENV2 infection, they also experienced a reduction in platelets as well as increased spleen pathology and viral titers. Conclusions Our results indicate that obese or undernourished mice incur greater disease severity after DENV infection. These studies establish a role for nutritional status in DENV disease severity.
Collapse
Affiliation(s)
- Christina Chuong
- Department of Biomedical Sciences and Pathobiology, VA-MD College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | - Tyler A Bates
- Department of Biomedical Sciences and Pathobiology, VA-MD College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | - Shamima Akter
- Department of Biomedical Sciences and Pathobiology, VA-MD College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA.,Present Address: Department of Bioinformatics and Computational Biology, School of Systems Biology, George Mason University, Fairfax, VA, USA
| | - Stephen R Werre
- Department of Population Health Sciences, VA-MD College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | - Tanya LeRoith
- Department of Biomedical Sciences and Pathobiology, VA-MD College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | - James Weger-Lucarelli
- Department of Biomedical Sciences and Pathobiology, VA-MD College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
27
|
Harapan H, Michie A, Sasmono RT, Imrie A. Dengue: A Minireview. Viruses 2020; 12:v12080829. [PMID: 32751561 PMCID: PMC7472303 DOI: 10.3390/v12080829] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/14/2020] [Accepted: 06/23/2020] [Indexed: 12/24/2022] Open
Abstract
Dengue, caused by infection of any of four dengue virus serotypes (DENV-1 to DENV-4), is a mosquito-borne disease of major public health concern associated with significant morbidity, mortality, and economic cost, particularly in developing countries. Dengue incidence has increased 30-fold in the last 50 years and over 50% of the world’s population, in more than 100 countries, live in areas at risk of DENV infection. We reviews DENV biology, epidemiology, transmission dynamics including circulating serotypes and genotypes, the immune response, the pathogenesis of the disease as well as updated diagnostic methods, treatments, vector control and vaccine developments.
Collapse
Affiliation(s)
- Harapan Harapan
- Medical Research Unit, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh 23111, Indonesia
- Department of Microbiology, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh 23111, Indonesia
- Tropical Disease Centre, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh 23111, Indonesia
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA 6009, Australia;
- Correspondence: (H.H.); (A.I.); Tel.: +62-(0)-651-7551843 (H.H.)
| | - Alice Michie
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA 6009, Australia;
| | - R. Tedjo Sasmono
- Eijkman Institute for Molecular Biology, Jakarta 10430, Indonesia;
| | - Allison Imrie
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA 6009, Australia;
- Correspondence: (H.H.); (A.I.); Tel.: +62-(0)-651-7551843 (H.H.)
| |
Collapse
|
28
|
Wang WH, Urbina AN, Chang MR, Assavalapsakul W, Lu PL, Chen YH, Wang SF. Dengue hemorrhagic fever - A systemic literature review of current perspectives on pathogenesis, prevention and control. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2020; 53:963-978. [PMID: 32265181 DOI: 10.1016/j.jmii.2020.03.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/26/2020] [Accepted: 03/08/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Dengue is an arboviral disease caused by dengue virus. Symptomatic dengue infection causes a wide range of clinical manifestations, from mild dengue fever (DF) to potentially fatal disease, such as dengue hemorrhagic fever (DHF) or dengue shock syndrome (DSS). We conducted a literature review to analyze the risks of DHF and current perspectives for DHF prevention and control. METHODS According to the PRISMA guidelines, the references were selected from PubMed, Web of Science and Google Scholar database using search strings containing a combination of terms that included dengue hemorrhagic fever, pathogenesis, prevention and control. Quality of references were evaluated by independent reviewers. RESULTS DHF was first reported in the Philippines in 1953 and further transmitted to the countries in the region of South-East Asia and Western Pacific. Plasma leakages is the main pathophysiological hallmark that distinguishes DHF from DF. Severe plasma leakage can result in hypovolemic shock. Various factors are thought to impact disease presentation and severity. Virus virulence, preexisting dengue antibodies, immune dysregulation, lipid change and host genetic susceptibility are factors reported to be correlated with the development of DHF. However, the exact reasons and mechanisms that triggers DHF remains controversial. Currently, no specific drugs and licensed vaccines are available to treat dengue disease in any of its clinical presentations. CONCLUSION This study concludes that antibody-dependent enhancement, cytokine dysregulation and variation of lipid profiles are correlated with DHF occurrence. Prompt diagnosis, appropriate treatment, active and continuous surveillance of cases and vectors are the essential determinants for dengue prevention and control.
Collapse
Affiliation(s)
- Wen-Hung Wang
- Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| | - Aspiro Nayim Urbina
- Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City, 80708, Taiwan.
| | - Max R Chang
- Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City, 80708, Taiwan.
| | - Wanchai Assavalapsakul
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Po-Liang Lu
- Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| | - Yen-Hsu Chen
- Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| | - Sheng-Fan Wang
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
29
|
Freitas MN, Marten AD, Moore GA, Tree MO, McBrayer SP, Conway MJ. Extracellular vesicles restrict dengue virus fusion in Aedes aegypti cells. Virology 2020; 541:141-149. [PMID: 32056712 DOI: 10.1016/j.virol.2019.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/23/2019] [Accepted: 12/27/2019] [Indexed: 01/24/2023]
Abstract
Aedes aegypti is the primary vector of dengue virus (DENV), and acquires this virus from a vertebrate host during blood feeding. Previous literature has shown that vertebrate blood factors such as complement protein C5a and low-density lipoprotein (LDL) influence DENV acquisition in the mosquito. Here, we show that extracellular vesicles in cell culture medium inhibit DENV infection in mosquito cells. Specifically, extracellular vesicles enter into mosquito cells and inhibit an early stage of infection. Extracellular vesicles had no effect on virus cell attachment or entry. Instead, extracellular vesicles restricted virus membrane fusion. Extracellular vesicles only inhibited DENV infection in mosquito cells and not vertebrate cells. These data highlight a novel virus-vector-host interaction that limits virus infection in mosquito cells by restricting virus membrane fusion.
Collapse
Affiliation(s)
- Megan N Freitas
- Central Michigan University College of Medicine, Foundational Sciences, Mount Pleasant, MI, 48859, USA
| | - Andrew D Marten
- Central Michigan University College of Medicine, Foundational Sciences, Mount Pleasant, MI, 48859, USA
| | - Gavin A Moore
- Central Michigan University College of Medicine, Foundational Sciences, Mount Pleasant, MI, 48859, USA
| | - Maya O Tree
- Central Michigan University College of Medicine, Foundational Sciences, Mount Pleasant, MI, 48859, USA
| | - Sean P McBrayer
- Central Michigan University College of Medicine, Foundational Sciences, Mount Pleasant, MI, 48859, USA
| | - Michael J Conway
- Central Michigan University College of Medicine, Foundational Sciences, Mount Pleasant, MI, 48859, USA.
| |
Collapse
|
30
|
Lima WG, Souza NA, Fernandes SOA, Cardoso VN, Godói IP. Serum lipid profile as a predictor of dengue severity: A systematic review and meta‐analysis. Rev Med Virol 2019; 29:e2056. [DOI: 10.1002/rmv.2056] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/24/2019] [Accepted: 04/27/2019] [Indexed: 12/12/2022]
Affiliation(s)
- William Gustavo Lima
- Laboratório de Radioisótopos, Departamento de Análises Clínicas e Toxicológicas, Faculdade de farmácia, Campus PampulhaUniversidade Federal de Minas Gerais Belo Horizonte MG Brazil
| | - Nayara Alves Souza
- Escola de Enfermagem, Campus Centro‐oeste Dona LinduUniversidade Federal de São João Del‐rei Divinópolis MG Brazil
| | - Simone Odília Antunes Fernandes
- Laboratório de Radioisótopos, Departamento de Análises Clínicas e Toxicológicas, Faculdade de farmácia, Campus PampulhaUniversidade Federal de Minas Gerais Belo Horizonte MG Brazil
| | - Valbert Nascimento Cardoso
- Laboratório de Radioisótopos, Departamento de Análises Clínicas e Toxicológicas, Faculdade de farmácia, Campus PampulhaUniversidade Federal de Minas Gerais Belo Horizonte MG Brazil
| | - Isabella Piassi Godói
- Instituto de Saúde e Estudos BiológicosUniversidade Federal do Sul e Sudeste do Pará Marabá Pará Brazil
| |
Collapse
|
31
|
Marin-Palma D, Sirois CM, Urcuqui-Inchima S, Hernandez JC. Inflammatory status and severity of disease in dengue patients are associated with lipoprotein alterations. PLoS One 2019; 14:e0214245. [PMID: 30901375 PMCID: PMC6430398 DOI: 10.1371/journal.pone.0214245] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/09/2019] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION The triggering of severe dengue has been associated with an exacerbated inflammatory process characterized by the production of pro-inflammatory cytokines such as IL-1β/IL-18, which are the product of inflammasome activation. Furthermore, alteration in the levels of high-density (HDL) and low-density lipoproteins (LDL) has been observed; and HDL are known to have immunomodulatory properties, including the regulation of inflammasomes. While HDL would be expected to counteract hyperactivation of the inflammasome, the relationship between HDL and dengue severity, has not previously been explored. METHODOLOGY We conducted a cross-sectional study of 30 patients with dengue and 39 healthy controls matched by sex and age. Lipid profile and levels of C-reactive protein were quantified. Serum levels of IL-1β, IL-6, IL-10, IL-18, and TNF-α, were assessed by ELISA. Expression of inflammasome-related genes in PBMC was quantified by qPCR. RESULTS Dengue patients presented an alteration in the parameters of the lipid profile, with a significant decrease in HDL levels, which was more pronounced in dengue patients with warning signs. Moreover, a decrease in the expression of the inflammasome-related genes NLRP1, NLRC4, caspase-1, IL-1β and IL-18 was observed, as well as an increase in serum levels of C-reactive protein and IL-10 in dengue patients versus healthy donors. Significant positive correlations between LDL levels and the relative expression of NLRP3, NLRC4, IL-1β and IL-18, were found. CONCLUSION The results suggest that there is a relationship between the alteration of LDL and HDL with the imbalance in the inflammatory response, which could be associated with the severity of dengue.
Collapse
Affiliation(s)
- Damariz Marin-Palma
- Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellin, Colombia
- Grupo Inmunovirologia, Facultad de Medicina, Universidad de Antioquia, UdeA, Medellín, Colombia
| | - Cherilyn M. Sirois
- Department of Biology & Chemistry, Springfield College, Springfield, MA, United States of America
| | - Silvio Urcuqui-Inchima
- Grupo Inmunovirologia, Facultad de Medicina, Universidad de Antioquia, UdeA, Medellín, Colombia
| | - Juan C. Hernandez
- Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellin, Colombia
- * E-mail:
| |
Collapse
|
32
|
Ezetimibe inhibits dengue virus infection in Huh-7 cells by blocking the cholesterol transporter Niemann–Pick C1-like 1 receptor. Antiviral Res 2018; 160:151-164. [DOI: 10.1016/j.antiviral.2018.10.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 10/25/2018] [Accepted: 10/26/2018] [Indexed: 12/29/2022]
|
33
|
Abstract
Multiple in vitro and mice model studies suggest statins may attenuate dengue severity. However, little is known about statin use and dengue severity in adult dengue patients with hyperlipidemia. We conducted a retrospective cohort study from 2004–2008 and 2012–2013 in Tan Tock Seng Hospital, Singapore on adult dengue patients with hyperlipidemia, comparing those with and without statin usage at hospitalization in terms of primary outcome of dengue hemorrhagic fever (DHF) or shock syndrome (DSS), and severe dengue (SD). Of 13,975 subjects screened, 257 dengue patients were included; 191 (74.3%) were statin users and 66 (25.7%) were non-users. Compared with non-users, statin use was not associated with decreased risk of DHF/DSS (adjusted risk ratio [aRR] = 0.66, 95%confidence interval [CI]: 0.41–1.08, P = 0.10) and SD (aRR = 1.43, 95%CI: 0.84–2.43, P = 0.19). Therefore, statin usage had minimal effect on dengue severity in our study population in Singapore.
Collapse
|
34
|
Osuna-Ramos JF, Reyes-Ruiz JM, Del Ángel RM. The Role of Host Cholesterol During Flavivirus Infection. Front Cell Infect Microbiol 2018; 8:388. [PMID: 30450339 PMCID: PMC6224431 DOI: 10.3389/fcimb.2018.00388] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/15/2018] [Indexed: 12/11/2022] Open
Abstract
In recent years the emergence and resurgence of arboviruses have generated a global health alert. Among arboviruses, Dengue (DENV), Zika (ZIKV), Yellow Fever (YFV), and West Nile (WNV) virus, belong to the genus Flavivirus, cause high viremia and occasionally fatal clinical disease in humans. Given the genetic austerity of the virus, they depend on cellular factors and organelles to complete its replication. One of the cellular components required for flavivirus infection is cholesterol. Cholesterol is an abundant lipid in biomembranes of eukaryotes cells and is necessary to maintain the cellular homeostasis. Recently, it has been reported, that cholesterol is fundamental during flavivirus infection in both mammal and insect vector models. During infection with DENV, ZIKV, YFV, and WNV the modulation of levels of host-cholesterol facilitates viral entry, replicative complexes formation, assembly, egress, and control of the interferon type I response. This modulation involves changes in cholesterol uptake with the concomitant regulation of cholesterol receptors as well as changes in cholesterol synthesis related to important modifications in cellular metabolism pathways. In view of the flavivirus dependence of cholesterol and the lack of an effective anti-flaviviral treatment, this cellular lipid has been proposed as a therapeutic target to treat infection using FDA-approved cholesterol-lowering drugs. This review aims to address the dependence of cholesterol by flaviviruses as well as the basis for anti flaviviral therapy using drugs which target is cholesterol synthesis or uptake.
Collapse
Affiliation(s)
- Juan Fidel Osuna-Ramos
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Ciudad de Mexico, Mexico
| | - José Manuel Reyes-Ruiz
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Ciudad de Mexico, Mexico
| | - Rosa Maria Del Ángel
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Ciudad de Mexico, Mexico
| |
Collapse
|
35
|
Chen P, Han L, Wang C, Jia Y, Song Q, Wang J, Guan S, Tan B, Liu B, Jia W, Cui J, Zhou W, Cheng Y. Preoperative serum lipids as prognostic predictors in esophageal squamous cell carcinoma patients with esophagectomy. Oncotarget 2018; 8:41605-41619. [PMID: 28404928 PMCID: PMC5522301 DOI: 10.18632/oncotarget.15651] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 01/06/2017] [Indexed: 11/25/2022] Open
Abstract
This study was to evaluate the prognostic significance of serum lipids in esophageal squamous cell carcinoma patients who underwent esophagectomy. Preoperative serum lipids were collected from 214 patients who were diagnosed with esophageal squamous cell carcinoma. All of the patients received esophagectomy in Qilu Hospital of Shandong University from January 2007 to December 2008. The records and data were analyzed retrospectively. We found that low total cholesterol (for T stage, p = 0.006; for TNM stage, p = 0.039) and low-density lipoprotein cholesterol (for T stage, p = 0.031; for TNM stage, p = 0.035) were associated with advanced T stage and TNM stage. Kaplan-Meier survival analysis indicated that low total cholesterol and low-density lipoprotein cholesterol were associated with shorter disease-free survival(for total cholesterol, p = 0.045; for low-density lipoprotein cholesterol, p < 0.001) and overall survival (for total cholesterol, p = 0.043; for low-density lipoprotein cholesterol, p < 0.001). Lower low-density lipoprotein cholesterol/high-density lipoprotein cholesterol ratio (LHR) indicated poorer disease-free survival and overall survival (both p < 0.001). In the multivariate analysis, low-density lipoprotein cholesterol and LHR were independent prognostic factors for disease-free survival and overall survival. In conclusion, our study indicated that preoperative serum total cholesterol and low-density lipoprotein cholesterol are prognostic factors for esophageal squamous cell carcinoma patients who underwent esophagectomy. LHR can serve as a promising serum lipids-based prognostic indicator.
Collapse
Affiliation(s)
- Pengxiang Chen
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Lihui Han
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Cong Wang
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Yibin Jia
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Qingxu Song
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Jianbo Wang
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Shanghui Guan
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Bingxu Tan
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Bowen Liu
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Wenqiao Jia
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Jianfeng Cui
- Department of Urology, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Wei Zhou
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Yufeng Cheng
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| |
Collapse
|
36
|
Osuna-Ramos JF, Rendón-Aguilar H, Reyes-Ruiz JM, del Ángel RM, Romero-Utrilla A, Ríos-Burgueño ER, Velarde-Rodriguez I, Velarde-Félix JS. The correlation of TNF alpha levels with the lipid profile of dengue patients. J Med Virol 2018; 90:1160-1163. [DOI: 10.1002/jmv.25056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/01/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Juan F. Osuna-Ramos
- Departamento de Infectómica y Patogénesis Molecular; Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN); Ciudad de México México
| | | | - José M. Reyes-Ruiz
- Departamento de Infectómica y Patogénesis Molecular; Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN); Ciudad de México México
| | - Rosa M. del Ángel
- Departamento de Infectómica y Patogénesis Molecular; Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN); Ciudad de México México
| | - Alejandra Romero-Utrilla
- Departamento de Anatomía Patológica; Hospital General de México “Dr. Eduardo Liceaga”; Ciudad de México México
| | - Efrén R. Ríos-Burgueño
- Hospital General de Culiacán; “Bernardo J Gastélum”; Culiacán Sinaloa México
- Departamento de Anatomía Patológica; Centro de Investigación y Docencia en Ciencias de la Salud (CIDOCS); Universidad Autónoma de Sinaloa; Culiacán Sinaloa México
| | | | - Jesús S. Velarde-Félix
- Hospital General de Culiacán; “Bernardo J Gastélum”; Culiacán Sinaloa México
- Unidad Académica Escuela de Biología; Universidad Autónoma de Sinaloa; Culiacán Sinaloa México
| |
Collapse
|
37
|
Anaplerotic Role of Glucose in the Oxidation of Endogenous Fatty Acids during Dengue Virus Infection. mSphere 2018; 3:mSphere00458-17. [PMID: 29404419 PMCID: PMC5793041 DOI: 10.1128/msphere.00458-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/20/2017] [Indexed: 12/21/2022] Open
Abstract
Dengue virus infection is a major cause of human arbovirosis, for which clinical and experimental evidence supports the idea that liver dysfunction and lipid metabolism disorders are characteristics of severe disease. Analyzing mitochondrial bioenergetics, here we show that infection of hepatic cells with dengue virus favors the cellular capacity of metabolizing glucose, impairing the normal metabolic flexibility that allows the oxidative machinery to switch among the main energetic substrates. However, instead of being used as an energy source, glucose performs an anaplerotic role in the oxidation of endogenous fatty acids, which become the main energetic substrate during infection. Taken together, the results shed light on metabolic mechanisms that may explain the profound alterations in lipid metabolism for severe dengue patients, contributing to the understanding of dengue physiopathology. Dengue virus (DENV) is among the most important human arboviruses and is clinically and experimentally associated with lipid metabolism disorders. Using high-resolution respirometry, we analyzed the metabolic switches induced by DENV in a human hepatic cell line. This experimental approach allowed us to determine the contribution of fatty acids, glutamine, glucose, and pyruvate to mitochondrial bioenergetics, shedding light on the mechanisms involved in DENV-induced metabolic alterations. We found that while infection strongly inhibits glutamine oxidation, it increases the cellular capacity of metabolizing glucose; remarkably, though, this substrate, instead being used as an energy source, performs an anaplerotic role in the oxidation of endogenous lipids. Fatty acids become the main energetic substrate in infected cell, and through the pharmacological modulation of β-oxidation we demonstrated that this pathway is essential for virus replication. Interestingly, infected cells were much less susceptible to the Crabtree effect, i.e., the glucose-mediated inhibition of mitochondrial oxygen consumption, suggesting that infection favors cellular respiration by increasing ADP availability. IMPORTANCE Dengue virus infection is a major cause of human arbovirosis, for which clinical and experimental evidence supports the idea that liver dysfunction and lipid metabolism disorders are characteristics of severe disease. Analyzing mitochondrial bioenergetics, here we show that infection of hepatic cells with dengue virus favors the cellular capacity of metabolizing glucose, impairing the normal metabolic flexibility that allows the oxidative machinery to switch among the main energetic substrates. However, instead of being used as an energy source, glucose performs an anaplerotic role in the oxidation of endogenous fatty acids, which become the main energetic substrate during infection. Taken together, the results shed light on metabolic mechanisms that may explain the profound alterations in lipid metabolism for severe dengue patients, contributing to the understanding of dengue physiopathology.
Collapse
|
38
|
Wagar ZL, Tree MO, Mpoy MC, Conway MJ. Low density lipopolyprotein inhibits flavivirus acquisition in Aedes aegypti. INSECT MOLECULAR BIOLOGY 2017; 26:734-742. [PMID: 28718976 DOI: 10.1111/imb.12334] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Aedes aegypti is the primary vector of a number of human pathogens including dengue virus (DENV) and Zika virus (ZIKV). Ae. aegypti acquires these viruses during the processing of bloodmeals obtained from an infected vertebrate host. Vertebrate blood contains a number of factors that have the potential to modify virus acquisition in the mosquito. Interestingly, low density lipopolyprotein (LDL) levels are decreased during severe DENV infection. Accordingly, we hypothesized that LDL is a modifiable factor that can influence flavivirus acquisition in the mosquito. We found that LDL is endocytosed by Ae. aegypti cells in a dynamin-dependent manner. LDL is also endocytosed by midgut epithelial cells and accumulates at the luminal midgut epithelium during bloodmeal digestion. Importantly, pretreatment with LDL, but not high density lipopolyprotein (HDL), significantly inhibited both DENV and ZIKV infection in vitro, and LDL inhibited ZIKV infection in vivo. This study identifies human LDL or 'bad cholesterol' as a modifiable factor that can inhibit flavivirus acquisition in Ae. aegypti. Identification of modifiable blood factors and critical cellular interactions that mediate pathogen acquisition may lead to novel strategies to disrupt the transmission cycle of vector-borne diseases.
Collapse
Affiliation(s)
- Z L Wagar
- Foundational Sciences, Central Michigan University, College of Medicine, Mount Pleasant, MI, USA
| | - M O Tree
- Foundational Sciences, Central Michigan University, College of Medicine, Mount Pleasant, MI, USA
| | - M C Mpoy
- Foundational Sciences, Central Michigan University, College of Medicine, Mount Pleasant, MI, USA
| | - M J Conway
- Foundational Sciences, Central Michigan University, College of Medicine, Mount Pleasant, MI, USA
| |
Collapse
|
39
|
Transcriptional Profiling Confirms the Therapeutic Effects of Mast Cell Stabilization in a Dengue Disease Model. J Virol 2017; 91:JVI.00617-17. [PMID: 28659489 PMCID: PMC5571258 DOI: 10.1128/jvi.00617-17] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/22/2017] [Indexed: 12/28/2022] Open
Abstract
There are no approved therapeutics for the treatment of dengue disease despite the global prevalence of dengue virus (DENV) and its mosquito vectors. DENV infections can lead to vascular complications, hemorrhage, and shock due to the ability of DENV to infect a variety of immune and nonimmune cell populations. Increasingly, studies have implicated the host response as a major contributor to severe disease. Inflammatory products of various cell types, including responding T cells, mast cells (MCs), and infected monocytes, can contribute to immune pathology. In this study, we show that the host response to DENV infection in immunocompetent mice recapitulates transcriptional changes that have been described in human studies. We found that DENV infection strongly induced metabolic dysregulation, complement signaling, and inflammation. DENV also affected the immune cell content of the spleen and liver, enhancing NK, NKT, and CD8+ T cell activation. The MC-stabilizing drug ketotifen reversed many of these responses without suppressing memory T cell formation and induced additional changes in the transcriptome and immune cell composition of the spleen, consistent with reduced inflammation. This study provides a global transcriptional map of immune activation in DENV target organs of an immunocompetent host and supports the further development of targeted immunomodulatory strategies to treat DENV disease.IMPORTANCE Dengue virus (DENV), which causes febrile illness, is transmitted by mosquito vectors throughout tropical and subtropical regions of the world. Symptoms of DENV infection involve damage to blood vessels and, in rare cases, hemorrhage and shock. Currently, there are no targeted therapies to treat DENV infection, but it is thought that drugs that target the host immune response may be effective in limiting symptoms that result from excessive inflammation. In this study, we measured the host transcriptional response to infection in multiple DENV target organs using a mouse model of disease. We found that DENV infection induced metabolic dysregulation and inflammatory responses and affected the immune cell content of the spleen and liver. The use of the mast cell stabilization drug ketotifen reversed many of these responses and induced additional changes in the transcriptome and immune cell repertoire that contribute to decreased dengue disease.
Collapse
|
40
|
Lipid testing in infectious diseases: possible role in diagnosis and prognosis. Infection 2017; 45:575-588. [PMID: 28484991 DOI: 10.1007/s15010-017-1022-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 05/04/2017] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Acute infections lead to significant alterations in metabolic regulation including lipids and lipoproteins, which play a central role in the host immune response. In this regard, several studies have investigated the role of lipid levels as a marker of infection severity and prognosis. SCOPE OF REVIEW We review here the role of lipids in immune response and the potential mechanisms underneath. Moreover, we summarize studies on lipid and lipoprotein alterations in acute bacterial, viral and parasitic infections as well as their diagnostic and prognostic significance. Chronic infections (HIV, HBV, HCV) are also considered. RESULTS All lipid parameters have been found to be significantly dearranged during acute infection. Common lipid alterations in this setting include a decrease of total cholesterol levels and an increase in the concentration of triglyceride-rich lipoproteins, mainly very low-density lipoproteins. Also, low-density lipoprotein cholesterol, apolipoprotein A1, low-density lipoprotein cholesterol and apolipoprotein-B levels decrease. These lipid alterations may have prognostic and diagnostic role in certain infections. CONCLUSION Lipid testing may be of help to assess response to treatment in septic patients and those with various acute infections (such as pneumonia, leptospirosis and others). Diagnostically, new onset of altered lipid levels should prompt the clinician to test for underlying infection (such as leishmaniasis).
Collapse
|
41
|
Martín-Acebes MA, Vázquez-Calvo Á, Saiz JC. Lipids and flaviviruses, present and future perspectives for the control of dengue, Zika, and West Nile viruses. Prog Lipid Res 2016; 64:123-137. [PMID: 27702593 DOI: 10.1016/j.plipres.2016.09.005] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 08/17/2016] [Accepted: 09/16/2016] [Indexed: 02/06/2023]
Abstract
Flaviviruses are emerging arthropod-borne pathogens that cause life-threatening diseases such as yellow fever, dengue, West Nile encephalitis, tick-borne encephalitis, Kyasanur Forest disease, tick-borne encephalitis, or Zika disease. This viral genus groups >50 viral species of small enveloped plus strand RNA virus that are phylogenetically closely related to hepatitis C virus. Importantly, the flavivirus life cycle is intimately associated to host cell lipids. Along this line, flaviviruses rearrange intracellular membranes from the endoplasmic-reticulum of the infected cells to develop adequate platforms for viral replication and particle biogenesis. Moreover, flaviviruses dramatically orchestrate a profound reorganization of the host cell lipid metabolism to create a favorable environment for viral multiplication. Consistently, recent work has shown the importance of specific lipid classes in flavivirus infections. For instances, fatty acid synthesis is linked to viral replication, phosphatidylserine and phosphatidylethanolamine are involved on the entry of flaviviruses, sphingolipids (ceramide and sphingomyelin) play a key role on virus assembly and pathogenesis, and cholesterol is essential for innate immunity evasion in flavivirus-infected cells. Here, we revise the current knowledge on the interactions of the flaviviruses with the cellular lipid metabolism to identify potential targets for future antiviral development aimed to combat these relevant health-threatening pathogens.
Collapse
Affiliation(s)
- Miguel A Martín-Acebes
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Carretera de A Coruña km 7.5, 28040 Madrid, Spain.
| | - Ángela Vázquez-Calvo
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Carretera de A Coruña km 7.5, 28040 Madrid, Spain
| | - Juan-Carlos Saiz
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Carretera de A Coruña km 7.5, 28040 Madrid, Spain
| |
Collapse
|
42
|
1H Nuclear Magnetic Resonance Metabolomics of Plasma Unveils Liver Dysfunction in Dengue Patients. J Virol 2016; 90:7429-7443. [PMID: 27279613 DOI: 10.1128/jvi.00187-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/27/2016] [Indexed: 01/03/2023] Open
Abstract
UNLABELLED Dengue, due to its global burden, is the most important arthropod-borne flavivirus disease, and early detection lowers fatality rates to below 1%. Since the metabolic resources crucial for viral replication are provided by host cells, detection of changes in the metabolic profile associated with disease pathogenesis could help with the identification of markers of prognostic and diagnostic importance. We applied (1)H nuclear magnetic resonance exploratory metabolomics to study longitudinal changes in plasma metabolites in a cohort in Recife, Brazil. To gain statistical power, we used innovative paired multivariate analyses to discriminate individuals with primary and secondary infection presenting as dengue fever (DF; mild) and dengue hemorrhagic fever (DHF; severe) and subjects with a nonspecific nondengue (ND) illness (ND subjects). Our results showed that a decrease in plasma low-density lipoprotein (LDL) and very-low-density lipoprotein (VLDL) discriminated dengue virus (DENV)-infected subjects from ND subjects, and also, subjects with severe infection even presented a decrease in lipoprotein concentrations compared to the concentrations in subjects with mild infection. These results add to the ongoing discussion that the manipulation of lipid metabolism is crucial for DENV replication and infection. In addition, a decrease in plasma glutamine content was characteristic of DENV infection and disease severity, and an increase in plasma acetate levels discriminated subjects with DF and DHF from ND subjects. Several other metabolites shown to be altered in DENV infection and the implications of these alterations are discussed. We hypothesize that these changes in the plasma metabolome are suggestive of liver dysfunction, could provide insights into the underlying molecular mechanisms of dengue virus pathogenesis, and could help to discriminate individuals at risk of the development of severe infection and predict disease outcome. IMPORTANCE Dengue, due to its global burden, is the most important mosquito-borne viral disease. There is no specific treatment for dengue disease, and early detection lowers fatality rates to below 1%. In this study, we observed the effects of dengue virus infection on the profile of small molecules in the blood of patients with mild and severe infection. Variations in the profiles of these small molecules reflected the replication of dengue virus in different tissues and the extent of tissue damage during infection. The results of this study showed that the molecules that changed the most were VLDL, LDL, and amino acids. We propose that these changes reflect liver dysfunction and also that they can be used to discriminate subjects with mild dengue from those with severe dengue.
Collapse
|
43
|
Morgan A, Mooney K, Wilkinson S, Pickles N, Mc Auley M. Cholesterol metabolism: A review of how ageing disrupts the biological mechanisms responsible for its regulation. Ageing Res Rev 2016; 27:108-124. [PMID: 27045039 DOI: 10.1016/j.arr.2016.03.008] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/22/2016] [Accepted: 03/30/2016] [Indexed: 02/06/2023]
Abstract
Cholesterol plays a vital role in the human body as a precursor of steroid hormones and bile acids, in addition to providing structure to cell membranes. Whole body cholesterol metabolism is maintained by a highly coordinated balancing act between cholesterol ingestion, synthesis, absorption, and excretion. The aim of this review is to discuss how ageing interacts with these processes. Firstly, we will present an overview of cholesterol metabolism. Following this, we discuss how the biological mechanisms which underpin cholesterol metabolism are effected by ageing. Included in this discussion are lipoprotein dynamics, cholesterol absorption/synthesis and the enterohepatic circulation/synthesis of bile acids. Moreover, we discuss the role of oxidative stress in the pathological progression of atherosclerosis and also discuss how cholesterol biosynthesis is effected by both the mammalian target of rapamycin and sirtuin pathways. Next, we examine how diet and alterations to the gut microbiome can be used to mitigate the impact ageing has on cholesterol metabolism. We conclude by discussing how mathematical models of cholesterol metabolism can be used to identify therapeutic interventions.
Collapse
|