1
|
Mertelsmann AM, Bowers SF, Wright D, Maganga JK, Mazigo HD, Ndhlovu LC, Changalucha JM, Downs JA. Effects of Schistosoma haematobium infection and treatment on the systemic and mucosal immune phenotype, gene expression and microbiome: A systematic review. PLoS Negl Trop Dis 2024; 18:e0012456. [PMID: 39250522 PMCID: PMC11412685 DOI: 10.1371/journal.pntd.0012456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 09/19/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Urogenital schistosomiasis caused by Schistosoma haematobium affects approximately 110 million people globally, with the majority of cases in low- and middle-income countries. Schistosome infections have been shown to impact the host immune system, gene expression, and microbiome composition. Studies have demonstrated variations in pathology between schistosome subspecies. In the case of S. haematobium, infection has been associated with HIV acquisition and bladder cancer. However, the underlying pathophysiology has been understudied compared to other schistosome species. This systematic review comprehensively investigates and assimilates the effects of S. haematobium infection on systemic and local host mucosal immunity, cellular gene expression and microbiome. METHODS We conducted a systematic review assessing the reported effects of S. haematobium infections and anthelmintic treatment on the immune system, gene expression and microbiome in humans and animal models. This review followed PRISMA guidelines and was registered prospectively in PROSPERO (CRD42022372607). Randomized clinical trials, cohort, cross-sectional, case-control, experimental ex vivo, and animal studies were included. Two reviewers performed screening independently. RESULTS We screened 3,177 studies and included 94. S. haematobium was reported to lead to: (i) a mixed immune response with a predominant type 2 immune phenotype, increased T and B regulatory cells, and select pro-inflammatory cytokines; (ii) distinct molecular alterations that would compromise epithelial integrity, such as increased metalloproteinase expression, and promote immunological changes and cellular transformation, specifically upregulation of genes p53 and Bcl-2; and (iii) microbiome dysbiosis in the urinary, intestinal, and genital tracts. CONCLUSION S. haematobium induces distinct alterations in the host's immune system, molecular profile, and microbiome. This leads to a diverse range of inflammatory and anti-inflammatory responses and impaired integrity of the local mucosal epithelial barrier, elevating the risks of secondary infections. Further, S. haematobium promotes cellular transformation with oncogenic potential and disrupts the microbiome, further influencing the immune system and genetic makeup. Understanding the pathophysiology of these interactions can improve outcomes for the sequelae of this devastating parasitic infection.
Collapse
Affiliation(s)
- Anna M Mertelsmann
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, United States of America
- Center for Global Health, Weill Cornell Medicine, New York, New York, United States of America
| | - Sheridan F Bowers
- Center for Global Health, Weill Cornell Medicine, New York, New York, United States of America
| | - Drew Wright
- Samuel J. Wood Library & C.V. Starr Biomedical Information Center, Weill Cornell Medical College, New York, New York, United States of America
| | - Jane K Maganga
- Mwanza Intervention Trials Unit/National Institute for Medical Research, Mwanza, Tanzania
| | - Humphrey D Mazigo
- Department of Parasitology and Entomology, Catholic University of Health and Allied Sciences, Mwanza, Tanzania
| | - Lishomwa C Ndhlovu
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, United States of America
| | - John M Changalucha
- Mwanza Intervention Trials Unit/National Institute for Medical Research, Mwanza, Tanzania
| | - Jennifer A Downs
- Center for Global Health, Weill Cornell Medicine, New York, New York, United States of America
- Mwanza Intervention Trials Unit/National Institute for Medical Research, Mwanza, Tanzania
- Weill Bugando School of Medicine, Mwanza, Tanzania
| |
Collapse
|
2
|
Houlder EL, Stam KA, Koopman JPR, König MH, Langenberg MCC, Hoogerwerf MA, Niewold P, Sonnet F, Janse JJ, Partal MC, Sijtsma JC, de Bes-Roeleveld LHM, Kruize YCM, Yazdanbakhsh M, Roestenberg M. Early symptom-associated inflammatory responses shift to type 2 responses in controlled human schistosome infection. Sci Immunol 2024; 9:eadl1965. [PMID: 38968336 DOI: 10.1126/sciimmunol.adl1965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 06/07/2024] [Indexed: 07/07/2024]
Abstract
Schistosomiasis is an infection caused by contact with Schistosoma-contaminated water and affects more than 230 million people worldwide with varying morbidity. The roles of T helper 2 (TH2) cells and regulatory immune responses in chronic infection are well documented, but less is known about human immune responses during acute infection. Here, we comprehensively map immune responses during controlled human Schistosoma mansoni infection using male or female cercariae. Immune responses to male or female parasite single-sex infection were comparable. An early TH1-biased inflammatory response was observed at week 4 after infection, which was particularly apparent in individuals experiencing symptoms of acute schistosomiasis. By week 8 after infection, inflammatory responses were followed by an expansion of TH2 and regulatory cell subsets. This study demonstrates the shift from TH1 to both TH2 and regulatory responses, typical of chronic schistosomiasis, in the absence of egg production and provides immunological insight into the clinical manifestations of acute schistosomiasis.
Collapse
Affiliation(s)
- Emma L Houlder
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, Netherlands
| | - Koen A Stam
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, Netherlands
| | - Jan Pieter R Koopman
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, Netherlands
| | - Marion H König
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, Netherlands
| | - Marijke C C Langenberg
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, Netherlands
| | - Marie-Astrid Hoogerwerf
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, Netherlands
| | - Paula Niewold
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, Netherlands
| | - Friederike Sonnet
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, Netherlands
| | - Jacqueline J Janse
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, Netherlands
| | - Miriam Casacuberta Partal
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, Netherlands
| | - Jeroen C Sijtsma
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, Netherlands
| | - Laura H M de Bes-Roeleveld
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, Netherlands
| | - Yvonne C M Kruize
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, Netherlands
| | - Maria Yazdanbakhsh
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, Netherlands
| | - Meta Roestenberg
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, Netherlands
| |
Collapse
|
3
|
McManus CM, Maizels RM. Regulatory T cells in parasite infections: susceptibility, specificity and specialisation. Trends Parasitol 2023; 39:547-562. [PMID: 37225557 DOI: 10.1016/j.pt.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/06/2023] [Accepted: 04/06/2023] [Indexed: 05/26/2023]
Abstract
Regulatory T cells (Tregs) are essential to control immune system responses to innocuous self-specificities, intestinal and environmental antigens. However, they may also interfere with immunity to parasites, particularly in chronic infection. Susceptibility to many parasite infections is, to a greater or lesser extent, controlled by Tregs, but often they play a more prominent role in moderating the immunopathological consequences of parasitism, and dampening bystander reactions in an antigen-nonspecific manner. More recently, Treg subtypes have been defined which may preferentially act in different contexts; we also discuss the degree to which this specialisation is now being mapped onto how Tregs maintain the delicate balance between tolerance, immunity, and pathology in infection.
Collapse
Affiliation(s)
- Caitlin M McManus
- Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| | - Rick M Maizels
- Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK.
| |
Collapse
|
4
|
Marascio N, Loria MT, Pavia G, Peronace C, Adams NJ, Campolo M, Divenuto F, Lamberti AG, Giancotti A, Barreca GS, Mazzitelli M, Trecarichi EM, Torti C, Perandin F, Bisoffi Z, Quirino A, Matera G. Evaluation of IL-35, as a Possible Biomarker for Follow-Up after Therapy, in Chronic Human Schistosoma Infection. Vaccines (Basel) 2023; 11:vaccines11050995. [PMID: 37243099 DOI: 10.3390/vaccines11050995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
The host response to helminth infections is characterized by systemic and tissue-related immune responses that play a crucial role in pathological diseases. Recently, experimental studies have highlighted the role of regulatory T (Tregs) and B (Bregs) cells with secreted cytokines as important markers in anti-schistosomiasis immunity. We investigated the serical levels of five cytokines (TNFα, IFN-γ, IL-4, IL-10 and IL-35) in pre- and post-treatment samples from chronic Schistosoma infected patients to identify potential serological markers during follow-up therapy. Interestingly, we highlighted an increased serum level of IL-35 in the pre-therapy samples (median 439 pg/mL for Schistosoma haematobium and 100.5 pg/mL for Schistsoma mansoni infected patients) compared to a control group (median 62 pg/mL and 58 pg/mL, respectively, p ≤ 0.05), and a significantly lower concentration in post-therapy samples (181 pg/mL for S. haematobium and 49.5 pg/mL for S. mansoni infected patients, p ≤ 0.05). The present study suggests the possible role of IL-35 as a novel serological biomarker in the evaluation of Schistosoma therapy follow-up.
Collapse
Affiliation(s)
- Nadia Marascio
- Clinical Microbiology Unit, Department of Health Sciences, "Magna Græcia" University of Catanzaro-"Mater Domini" Teaching Hospital, 88100 Catanzaro, Italy
| | - Maria Teresa Loria
- Clinical Microbiology Unit, Department of Health Sciences, "Magna Græcia" University of Catanzaro-"Mater Domini" Teaching Hospital, 88100 Catanzaro, Italy
| | - Grazia Pavia
- Clinical Microbiology Unit, Department of Health Sciences, "Magna Græcia" University of Catanzaro-"Mater Domini" Teaching Hospital, 88100 Catanzaro, Italy
| | - Cinzia Peronace
- Clinical Microbiology Unit, Department of Health Sciences, "Magna Græcia" University of Catanzaro-"Mater Domini" Teaching Hospital, 88100 Catanzaro, Italy
| | - Neill James Adams
- Clinical Microbiology Unit, Department of Health Sciences, "Magna Græcia" University of Catanzaro-"Mater Domini" Teaching Hospital, 88100 Catanzaro, Italy
| | - Morena Campolo
- Clinical Microbiology Unit, Department of Health Sciences, "Magna Græcia" University of Catanzaro-"Mater Domini" Teaching Hospital, 88100 Catanzaro, Italy
| | - Francesca Divenuto
- Clinical Microbiology Unit, Department of Health Sciences, "Magna Græcia" University of Catanzaro-"Mater Domini" Teaching Hospital, 88100 Catanzaro, Italy
| | - Angelo Giuseppe Lamberti
- Clinical Microbiology Unit, Department of Health Sciences, "Magna Græcia" University of Catanzaro-"Mater Domini" Teaching Hospital, 88100 Catanzaro, Italy
| | - Aida Giancotti
- Clinical Microbiology Unit, Department of Health Sciences, "Magna Græcia" University of Catanzaro-"Mater Domini" Teaching Hospital, 88100 Catanzaro, Italy
| | - Giorgio Settimo Barreca
- Clinical Microbiology Unit, Department of Health Sciences, "Magna Græcia" University of Catanzaro-"Mater Domini" Teaching Hospital, 88100 Catanzaro, Italy
| | - Maria Mazzitelli
- Infectious and Tropical Diseases Unit, Padua University Hospital, 35128 Padua, Italy
| | - Enrico Maria Trecarichi
- Infectious and Tropical Diseases Unit, Department of Medical and Surgical Sciences, "Magna Graecia" University-"Mater Domini" Teaching Hospital, 88100 Catanzaro, Italy
| | - Carlo Torti
- Infectious and Tropical Diseases Unit, Department of Medical and Surgical Sciences, "Magna Graecia" University-"Mater Domini" Teaching Hospital, 88100 Catanzaro, Italy
| | - Francesca Perandin
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy
| | - Zeno Bisoffi
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy
| | - Angela Quirino
- Clinical Microbiology Unit, Department of Health Sciences, "Magna Græcia" University of Catanzaro-"Mater Domini" Teaching Hospital, 88100 Catanzaro, Italy
| | - Giovanni Matera
- Clinical Microbiology Unit, Department of Health Sciences, "Magna Græcia" University of Catanzaro-"Mater Domini" Teaching Hospital, 88100 Catanzaro, Italy
| |
Collapse
|
5
|
Houlder EL, Costain AH, Nambuya I, Brown SL, Koopman JPR, Langenberg MCC, Janse JJ, Hoogerwerf MA, Ridley AJL, Forde-Thomas JE, Colombo SAP, Winkel BMF, Galdon AA, Hoffmann KF, Cook PC, Roestenberg M, Mpairwe H, MacDonald AS. Pulmonary inflammation promoted by type-2 dendritic cells is a feature of human and murine schistosomiasis. Nat Commun 2023; 14:1863. [PMID: 37012228 PMCID: PMC10070318 DOI: 10.1038/s41467-023-37502-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 03/17/2023] [Indexed: 04/05/2023] Open
Abstract
Schistosomiasis is a parasitic disease affecting over 200 million people in multiple organs, including the lungs. Despite this, there is little understanding of pulmonary immune responses during schistosomiasis. Here, we show type-2 dominated lung immune responses in both patent (egg producing) and pre-patent (larval lung migration) murine Schistosoma mansoni (S. mansoni) infection. Human pre-patent S. mansoni infection pulmonary (sputum) samples revealed a mixed type-1/type-2 inflammatory cytokine profile, whilst a case-control study showed no significant pulmonary cytokine changes in endemic patent infection. However, schistosomiasis induced expansion of pulmonary type-2 conventional dendritic cells (cDC2s) in human and murine hosts, at both infection stages. Further, cDC2s were required for type-2 pulmonary inflammation in murine pre-patent or patent infection. These data elevate our fundamental understanding of pulmonary immune responses during schistosomiasis, which may be important for future vaccine design, as well as for understanding links between schistosomiasis and other lung diseases.
Collapse
Affiliation(s)
- E L Houlder
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Centre, Leiden, Netherlands
| | - A H Costain
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Centre, Leiden, Netherlands
| | - I Nambuya
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
- MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - S L Brown
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - J P R Koopman
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Centre, Leiden, Netherlands
| | - M C C Langenberg
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Centre, Leiden, Netherlands
| | - J J Janse
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Centre, Leiden, Netherlands
| | - M A Hoogerwerf
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Centre, Leiden, Netherlands
| | - A J L Ridley
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - J E Forde-Thomas
- Department of Life Sciences, Aberystwyth University, Aberystwyth, SY23 3DA, UK
| | - S A P Colombo
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - B M F Winkel
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Centre, Leiden, Netherlands
| | - A A Galdon
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - K F Hoffmann
- Department of Life Sciences, Aberystwyth University, Aberystwyth, SY23 3DA, UK
| | - P C Cook
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - M Roestenberg
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Centre, Leiden, Netherlands
| | - H Mpairwe
- MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - A S MacDonald
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK.
| |
Collapse
|
6
|
Immunological Interactions between Intestinal Helminth Infections and Tuberculosis. Diagnostics (Basel) 2022; 12:diagnostics12112676. [PMID: 36359526 PMCID: PMC9689268 DOI: 10.3390/diagnostics12112676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/13/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Helminth infections are among the neglected tropical diseases affecting billions of people globally, predominantly in developing countries. Helminths’ effects are augmented by coincident tuberculosis disease, which infects a third of the world’s population. The role of helminth infections on the pathogenesis and pathology of active tuberculosis (T.B.) remains controversial. Parasite-induced suppression of the efficacy of Bacille Calmette-Guerin (BCG) has been widely reported in helminth-endemic areas worldwide. T.B. immune response is predominantly proinflammatory T-helper type 1 (Th1)-dependent. On the other hand, helminth infections induce an opposing anti-inflammatory Th2 and Th3 immune-regulatory response. This review summarizes the literature focusing on host immune response profiles during single-helminth, T.B. and dual infections. It also aims to necessitate investigations into the complexity of immunity in helminth/T.B. coinfected patients since the research data are limited and contradictory. Helminths overlap geographically with T.B., particularly in Sub-Saharan Africa. Each disease elicits a response which may skew the immune responses. However, these effects are helminth species-dependent, where some parasites have no impact on the immune responses to concurrent T.B. The implications for the complex immunological interactions that occur during coinfection are highlighted to inform government treatment policies and encourage the development of high-efficacy T.B. vaccines in areas where helminths are prevalent.
Collapse
|
7
|
Nogueira RA, Lira MGS, Licá ICL, Frazão GCCG, Dos Santos VAF, Filho ACCM, Rodrigues JGM, Miranda GS, Carvalho RC, Nascimento FRF. Praziquantel: An update on the mechanism of its action against schistosomiasis and new therapeutic perspectives. Mol Biochem Parasitol 2022; 252:111531. [PMID: 36375598 DOI: 10.1016/j.molbiopara.2022.111531] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 11/13/2022]
Abstract
Praziquantel (PZQ) is the drug of choice for the treatment of all forms of schistosomiasis, although its mechanisms of action are not completely understood. PZQ acts largely on adult worms. This narrative literature review describes what is known about the mechanisms of action of PZQ against schistosomes from in vitro and in vivo studies and highlights the molecular targets in parasites and immune responses induced in definitive hosts by this drug. Moreover, new therapeutic uses of PZQ are discussed. Studies have demonstrated that in addition to impacting voltage-operated Ca2 + channels, PZQ may interact with other schistosome molecules, such as myosin regulatory light chain, glutathione S-transferase, and transient receptor potential channels. Following PZQ administration, increased T regulatory type 1 (Tr1) cell differentiation and decreased inflammation were observed, indicating that PZQ promotes immunoregulatory pathways. Although PZQ is widely used in mass drug administration schemes, the existence of resistant parasites has not been proven; however, it is a concern that should be constantly investigated in human populations. In addition, we discuss studies that evaluate health applications of PZQ (other than helminth infection), such as its effect in cancer therapy and its adjuvant action in vaccines against viruses.
Collapse
Affiliation(s)
- Ranielly Araujo Nogueira
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | - Maria Gabriela Sampaio Lira
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil; Department of Education, Federal Institute of Education, Science and Technology of Maranhão, Zé Doca, MA, Brazil
| | - Irlla Correia Lima Licá
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | | | - Vitor Augusto Ferreira Dos Santos
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | | | - João Gustavo Mendes Rodrigues
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Guilherme Silva Miranda
- Department of Education, Federal Institute of Education, Science and Technology of Maranhão, São Raimundo das Mangabeiras, MA, Brazil
| | - Rafael Cardoso Carvalho
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | - Flávia Raquel Fernandes Nascimento
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil; Department of Pathology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil.
| |
Collapse
|
8
|
Kadji Fassi JB, Boukeng Jatsa H, Membe Femoe U, Greigert V, Brunet J, Cannet C, Kenfack CM, Gipwe Feussom N, Tienga Nkondo E, Abou-Bacar A, Pfaff AW, Kamgang R, Kamtchouing P, Tchuem Tchuenté LA. Protein undernutrition reduces the efficacy of praziquantel in a murine model of Schistosoma mansoni infection. PLoS Negl Trop Dis 2022; 16:e0010249. [PMID: 35839247 PMCID: PMC9328564 DOI: 10.1371/journal.pntd.0010249] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 07/27/2022] [Accepted: 06/28/2022] [Indexed: 01/03/2023] Open
Abstract
Background Undernutrition and schistosomiasis are public health problems and often occur in low and middle-income countries. Protein undernutrition can alter the host-parasite environment system and aggravate the course of schistosomiasis. This study aimed to assess the impact of a low-protein diet on the efficacy of praziquantel. Methodology/Principal findings Thirty-day-old mice were fed with a low-protein diet, and 40 days later, they were individually infected with fifty Schistosoma mansoni cercariae. A 28-day-treatment with praziquantel at 100 mg/kg for five consecutive days followed by distilled water begins on the 36th day post-infection. Mice were sacrificed on the 64th day post-infection. We determined the parasitological burden, liver and intestine histomorphometry, liver injury, and immunomodulation parameters. Praziquantel treatment of infected mice fed with a standard diet (IN-PZQ) resulted in a significant reduction of worm and egg burdens and a normalization of iron and calcium levels. The therapy also improved schistosomiasis-induced hepatopathy and oxidative stress. The anti-inflammatory and immunomodulatory activities of praziquantel were also significant in these mice. When infected mice receiving the low-protein diet were treated with praziquantel (ILP-PZQ), the body weight loss and hepatomegaly were not alleviated, and the worm and liver egg burdens were significantly higher than those of IN-PZQ mice (P < 0.001). The treatment did not reduce the increased activities of ALT and γ-GGT, the high malondialdehyde concentration, and the liver granuloma volume. The iron and calcium levels were not ameliorated and differed from those of IN-PZQ mice (P < 0.001 and P < 0.05). Moreover, in these mice, praziquantel treatment did not reverse the high level of IL-5 and the low mRNA expression of CCL3/MIP-1α and CXCL-10/IP-10 induced by S. mansoni infection. Conclusion/Significance These results demonstrated that a low-protein diet reduced the schistosomicidal, antioxidant, anti-inflammatory, and immunomodulatory activities of praziquantel. Almost 90% of people requiring schistosomiasis preventive chemotherapy in 2018 lived in sub-Saharan Africa. Besides, 205.3 million children under five years suffer and die of undernutrition in low- and middle-income countries. The physiopathology of schistosomiasis mansoni involves liver damage, oxidative stress, and perturbation of the immune response. These disturbances are intensified by undernutrition. Praziquantel is used to treat schistosomiasis, but its efficacy on the comorbidity of S. mansoni infection and undernutrition has not been investigated. We conducted this study to assess the effectiveness of praziquantel on S. mansoni infection in mice fed with a low-protein diet. We recorded growth retardation, hepatomegaly, and high worm and egg burdens in mice fed with a low-protein diet and treated with PZQ. Moreover, the treatment did not reverse the liver function injury, oxidative stress, high iron level, and low calcium level. The proinflammatory cytokine IL-5 was still high, and the gene expression of some macrophage-associated chemokines was reduced. Therefore, this study demonstrated that in a murine model of a low-protein diet, the efficacy of praziquantel on S. mansoni infection was reduced. It also underlines the importance of targeting protein deficiency and malnutrition in populations living in schistosomiasis endemic areas for efficient disease control.
Collapse
Affiliation(s)
- Joseph Bertin Kadji Fassi
- Laboratory of Animal Physiology, Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
- Centre for Schistosomiasis and Parasitology, Yaoundé, Cameroon
| | - Hermine Boukeng Jatsa
- Laboratory of Animal Physiology, Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
- Centre for Schistosomiasis and Parasitology, Yaoundé, Cameroon
- * E-mail:
| | - Ulrich Membe Femoe
- Laboratory of Animal Physiology, Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
- Centre for Schistosomiasis and Parasitology, Yaoundé, Cameroon
- Institute of Parasitology and Tropical Diseases, Dynamic Host-Pathogen Interactions, University of Strasbourg, Strasbourg, France
| | - Valentin Greigert
- Institute of Parasitology and Tropical Diseases, Dynamic Host-Pathogen Interactions, University of Strasbourg, Strasbourg, France
| | - Julie Brunet
- Institute of Parasitology and Tropical Diseases, Dynamic Host-Pathogen Interactions, University of Strasbourg, Strasbourg, France
| | - Catherine Cannet
- Laboratory of Histomorphometry, Institute of Legal Medicine, University of Strasbourg, Strasbourg, France
| | - Christian Mérimé Kenfack
- Laboratory of Animal Physiology, Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
- Centre for Schistosomiasis and Parasitology, Yaoundé, Cameroon
| | - Nestor Gipwe Feussom
- Laboratory of Animal Physiology, Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
- Centre for Schistosomiasis and Parasitology, Yaoundé, Cameroon
| | - Emilienne Tienga Nkondo
- Laboratory of Animal Physiology, Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
- Centre for Schistosomiasis and Parasitology, Yaoundé, Cameroon
| | - Ahmed Abou-Bacar
- Institute of Parasitology and Tropical Diseases, Dynamic Host-Pathogen Interactions, University of Strasbourg, Strasbourg, France
| | - Alexander Wilhelm Pfaff
- Institute of Parasitology and Tropical Diseases, Dynamic Host-Pathogen Interactions, University of Strasbourg, Strasbourg, France
| | - René Kamgang
- Laboratory of Animal Physiology, Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Pierre Kamtchouing
- Laboratory of Animal Physiology, Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Louis-Albert Tchuem Tchuenté
- Centre for Schistosomiasis and Parasitology, Yaoundé, Cameroon
- Laboratory of Parasitology and Ecology, Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| |
Collapse
|
9
|
Dejon-Agobé JC, Edoa JR, Adegnika AA, Grobusch MP. Schistosomiasis in Gabon from 2000 to 2021 - A review. Acta Trop 2022; 228:106317. [PMID: 35051384 DOI: 10.1016/j.actatropica.2022.106317] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/20/2021] [Accepted: 01/16/2022] [Indexed: 11/01/2022]
Abstract
INTRODUCTION Schistosomiasis is a public health issue of concern in Gabon, with the disease being reported from all regions of the country. The topic has been of interest for the local researchers and physicians for over two decades. The objective of this narrative review was to provide an overview of the research activities in the area from 2000 to early 2021. METHODS We performed a narrative literature review. The search strategy was designed to get a broad overview of the different research topics on schistosomiasis and the national control programme, and included grey literature. RESULTS A total of 159 articles was screened, and 42 were included into the review in addition to the grey literature. During the past two decades, the work on schistosomiasis originated from five out of the nine provinces of the country, with diverse aspects of the disease investigated; including immunology, epidemiology, diagnosis and treatment. Several studies investigated various aspects of schistosomiasis-related morbidity in the respective study populations. The body of work demonstrates that much effort was made to understand the details of the host immune response to schistosomiasis, and the immune profile changes induced in patients treated with praziquantel. Although some MDA campaigns were conducted in the country; little, however, is known on the epidemiological situation of the disease, particularly of its distribution within the population, as well as co-infections with other parasitic diseases also endemic in the area. CONCLUSION Progress has been made over the past two decades in the understanding of schistosomiasis in the country, including disease-related morbidity and its interaction with other parasitic infections, and the immunology and epidemiology of the disease. However, for optimising control of the disease, there is a need to fine-tune these findings with detailed local epidemiological and malacological data. We call for such studies to accomplish the knowledge of schistosomiasis in the country, particularly in areas of moderate or high endemicity, and recommend this approach to comparable schistosomiasis-endemic areas elsewhere.
Collapse
|
10
|
Gao YR, Sun XZ, Li R, Tang CL, Zhang RH, Zhu YW, Li XR, Pan Q. The effect of regulatory T cells in Schistosoma-mediated protection against type 2 diabetes. Acta Trop 2021; 224:106073. [PMID: 34487719 DOI: 10.1016/j.actatropica.2021.106073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 12/28/2022]
Abstract
In western societies, the prevalence of type 2 diabetes (T2D) is related to the hygiene hypothesis, which implies that reduced exposure to infectious factors results in a loss of the immune stimulation necessary to form the immune system during development. In fact, it has been reported that parasites, such as Schistosoma, can improve or prevent the development of T2D, which may be related to the activity of immune cells, including regulatory T cells (Tregs). Hence, Schistosoma, Tregs, and T2D share a close relationship. Schistosoma infection and the molecules released can lead to an increase in Tregs, which play an important role in the suppression of T2D. In this review, we provide an overview of the role of Tregs in the response to Schistosoma infection and the protective mechanism of Schistosoma-related molecular products against T2D.
Collapse
Affiliation(s)
- Yan-Ru Gao
- Medical Department, Wuhan City College, Wuhan, 430083, China
| | - Xue-Zhi Sun
- Wuhan Pulmonary Hospital, Wuhan Institute for Tuberculosis Control, Wuhan 430030, China
| | - Ru Li
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan 430063, China
| | - Chun-Lian Tang
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan 430063, China
| | - Rong-Hui Zhang
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan 430063, China
| | - Ya-Wen Zhu
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan 430063, China
| | - Xiu-Rong Li
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan 430063, China.
| | - Qun Pan
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan 430063, China.
| |
Collapse
|
11
|
The relationship between Schistosoma and glycolipid metabolism. Microb Pathog 2021; 159:105120. [PMID: 34358648 DOI: 10.1016/j.micpath.2021.105120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 02/02/2023]
Abstract
Diabetes and obesity have become the most popular metabolic diseases in the world. A large number of previous studies have shown that glucose and lipid metabolism disorder is an important risk factor and a main cause of diabetes and obesity. Schistosoma is a parasite transmitted by freshwater snails. It can induce a series of inflammatory and immune reactions after infecting the human body, causing schistosomiasis. However, in recent years, studies have found that Schistosoma infection or Schistosoma related products can improve or prevent some immune and inflammatory diseases, such as severe asthma, inflammatory bowel disease, diabetes and so on. Further experiments have also revealed that Schistosoma can promote the secretion of anti-inflammatory factors and regulate the glucose and lipid metabolism in the host body by polarizing immune cells such as T cells, B cells and dendritic cells (DCs). In this review, we summarize studies that investigated Schistosoma and Schistosoma-derived products and their relationship with glycolipid metabolism and related diseases, highlighting potential protective mechanisms.
Collapse
|
12
|
Labuda LA, Adegnika AA, Rosa BA, Martin J, Ateba-Ngoa U, Amoah AS, Lima HM, Meurs L, Mbow M, Manurung MD, Zinsou JF, Smits HH, Kremsner PG, Mitreva M, Yazdanbakhsh M. A Praziquantel Treatment Study of Immune and Transcriptome Profiles in Schistosoma haematobium-Infected Gabonese Schoolchildren. J Infect Dis 2021; 222:2103-2113. [PMID: 31844885 PMCID: PMC7661769 DOI: 10.1093/infdis/jiz641] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 12/15/2019] [Indexed: 12/13/2022] Open
Abstract
Background Although Schistosoma haematobium infection has been reported to be associated with alterations in immune function, in particular immune hyporesponsiveness, there have been only few studies that have used the approach of removing infection by drug treatment to establish this and to understand the underlying molecular mechanisms. Methods Schistosoma haematobium-infected schoolchildren were studied before and after praziquantel treatment and compared with uninfected controls. Cellular responses were characterized by cytokine production and flow cytometry, and in a subset of children RNA sequencing (RNA-Seq) transcriptome profiling was performed. Results Removal of S haematobium infection resulted in increased schistosome-specific cytokine responses that were negatively associated with CD4+CD25+FOXP3+ T-cells and accompanied by increased frequency of effector memory T-cells. Innate responses to Toll like receptor (TLR) ligation decreased with treatment and showed positive association with CD4+CD25+FOXP3+ T-cells. At the transcriptome level, schistosome infection was associated with enrichment in cell adhesion, whereas parasite removal was associated with a more quiescent profile. Further analysis indicated that alteration in cellular energy metabolism was associated with S haematobium infection and that the early growth response genes 2 and 3 (EGR 2 and EGR3), transcription factors that negatively regulate T-cell activation, may play a role in adaptive immune hyporesponsiveness. Conclusions Using a longitudinal study design, we found contrasting effects of schistosome infection on innate and adaptive immune responses. Whereas the innate immune system appears more activated, the adaptive immunity is in a hyporesponsive state reflected in alterations in CD4+CD25+FOXP3+ T-cells, cellular metabolism, and transcription factors involved in anergy.
Collapse
Affiliation(s)
- Lucja A Labuda
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands.,Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon.,Institut für Tropenmedizin, Universität Tübingen, Tübingen, Germany
| | - Ayola A Adegnika
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands.,Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon.,Institut für Tropenmedizin, Universität Tübingen, Tübingen, Germany
| | - Bruce A Rosa
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri, USA
| | - John Martin
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Ulysse Ateba-Ngoa
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands.,Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon.,Institut für Tropenmedizin, Universität Tübingen, Tübingen, Germany
| | - Abena Serwaa Amoah
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Honorine Mbenkep Lima
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands.,Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon.,Institut für Tropenmedizin, Universität Tübingen, Tübingen, Germany
| | - Lynn Meurs
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Moustapha Mbow
- Service d'Immunologie du Département de Pharmacie, FMPO, Université Cheikh Anta Diop, Fann- Dakar, Sénégal
| | - Mikhael D Manurung
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jeannot F Zinsou
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
| | - Hermelijn H Smits
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter G Kremsner
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon.,Institut für Tropenmedizin, Universität Tübingen, Tübingen, Germany
| | - Makedonka Mitreva
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri, USA.,Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Maria Yazdanbakhsh
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
13
|
Mawa PA, Kincaid-Smith J, Tukahebwa EM, Webster JP, Wilson S. Schistosomiasis Morbidity Hotspots: Roles of the Human Host, the Parasite and Their Interface in the Development of Severe Morbidity. Front Immunol 2021; 12:635869. [PMID: 33790908 PMCID: PMC8005546 DOI: 10.3389/fimmu.2021.635869] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/25/2021] [Indexed: 12/14/2022] Open
Abstract
Schistosomiasis is the second most important human parasitic disease in terms of socioeconomic impact, causing great morbidity and mortality, predominantly across the African continent. For intestinal schistosomiasis, severe morbidity manifests as periportal fibrosis (PPF) in which large tracts of macro-fibrosis of the liver, visible by ultrasound, can occlude the main portal vein leading to portal hypertension (PHT), sequelae such as ascites and collateral vasculature, and ultimately fatalities. For urogenital schistosomiasis, severe morbidity manifests as pathology throughout the urinary system and genitals, and is a definitive cause of squamous cell bladder carcinoma. Preventative chemotherapy (PC) programmes, delivered through mass drug administration (MDA) of praziquantel (PZQ), have been at the forefront of schistosomiasis control programmes in sub-Saharan Africa since their commencement in Uganda in 2003. However, despite many successes, 'biological hotspots' (as distinct from 'operational hotspots') of both persistent high transmission and morbidity remain. In some areas, this failure to gain control of schistosomiasis has devastating consequences, with not only persistently high infection intensities, but both "subtle" and severe morbidity remaining prevalent. These hotspots highlight the requirement to revisit research into severe morbidity and its mechanisms, a topic that has been out of favor during times of PC implementation. Indeed, the focality and spatially-structured epidemiology of schistosomiasis, its transmission persistence and the morbidity induced, has long suggested that gene-environmental-interactions playing out at the host-parasite interface are crucial. Here we review evidence of potential unique parasite factors, host factors, and their gene-environmental interactions in terms of explaining differential morbidity profiles in the human host. We then take the situation of schistosomiasis mansoni within the Albertine region of Uganda as a case study in terms of elucidating the factors behind the severe morbidity observed and the avenues and directions for future research currently underway within a new research and clinical trial programme (FibroScHot).
Collapse
Affiliation(s)
- Patrice A. Mawa
- Immunomodulation and Vaccines Programme, Medical Research Council-Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit, Entebbe, Uganda
- Department of Immunology, Uganda Virus Research Institute, Entebbe, Uganda
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Julien Kincaid-Smith
- Centre for Emerging, Endemic and Exotic Diseases (CEEED), Department of Pathobiology and Population Sciences (PPS), Royal Veterinary College, University of London, Herts, United Kingdom
| | | | - Joanne P. Webster
- Centre for Emerging, Endemic and Exotic Diseases (CEEED), Department of Pathobiology and Population Sciences (PPS), Royal Veterinary College, University of London, Herts, United Kingdom
| | - Shona Wilson
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
14
|
Driciru E, Koopman JPR, Cose S, Siddiqui AA, Yazdanbakhsh M, Elliott AM, Roestenberg M. Immunological Considerations for Schistosoma Vaccine Development: Transitioning to Endemic Settings. Front Immunol 2021; 12:635985. [PMID: 33746974 PMCID: PMC7970007 DOI: 10.3389/fimmu.2021.635985] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/11/2021] [Indexed: 12/16/2022] Open
Abstract
Despite mass drug administration programmes with praziquantel, the prevalence of schistosomiasis remains high. A vaccine is urgently needed to control transmission of this debilitating disease. As some promising schistosomiasis vaccine candidates are moving through pre-clinical and clinical testing, we review the immunological challenges that these vaccine candidates may encounter in transitioning through the clinical trial phases in endemic settings. Prior exposure of the target population to schistosomes and other infections may impact vaccine response and efficacy and therefore requires considerable attention. Schistosomes are known for their potential to induce T-reg/IL-10 mediated immune suppression in populations which are chronically infected. Moreover, endemicity of schistosomiasis is focal whereby target and trial populations may exhibit several degrees of prior exposure as well as in utero exposure which may increase heterogeneity of vaccine responses. The age dependent distribution of exposure and development of acquired immunity, and general differences in the baseline immunological profile, adds to the complexity of selecting suitable trial populations. Similarly, prior or concurrent infections with other parasitic helminths, viral and bacterial infections, may alter immunological responses. Consequently, treatment of co-infections may benefit the immunogenicity of vaccines and may be considered despite logistical challenges. On the other hand, viral infections leave a life-long immunological imprint on the human host. Screening for serostatus may be needed to facilitate interpretation of vaccine responses. Co-delivery of schistosome vaccines with PZQ is attractive from a perspective of implementation but may complicate the immunogenicity of schistosomiasis vaccines. Several studies have reported PZQ treatment to induce both transient and long-term immuno-modulatory effects as a result of tegument destruction, worm killing and subsequent exposure of worm antigens to the host immune system. These in turn may augment or antagonize vaccine immunogenicity. Understanding the complex immunological interactions between vaccine, co-infections or prior exposure is essential in early stages of clinical development to facilitate phase 3 clinical trial design and implementation policies. Besides well-designed studies in different target populations using schistosome candidate vaccines or other vaccines as models, controlled human infections could also help identify markers of immune protection in populations with different disease and immunological backgrounds.
Collapse
Affiliation(s)
- Emmanuella Driciru
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | | | - Stephen Cose
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Afzal A. Siddiqui
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University School of Medicine, Lubbock, TX, United States
- Department of Internal Medicine, Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Maria Yazdanbakhsh
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Alison M. Elliott
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Meta Roestenberg
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
15
|
Nkurunungi G, Zirimenya L, Nassuuna J, Natukunda A, Kabuubi PN, Niwagaba E, Oduru G, Kabami G, Amongin R, Mutebe A, Namutebi M, Zziwa C, Amongi S, Ninsiima C, Onen C, Akello F, Sewankambo M, Kiwanuka S, Kizindo R, Kaweesa J, Cose S, Webb E, Elliott AM. Effect of intensive treatment for schistosomiasis on immune responses to vaccines among rural Ugandan island adolescents: randomised controlled trial protocol A for the ' POPulation differences in VACcine responses' (POPVAC) programme. BMJ Open 2021; 11:e040426. [PMID: 33593768 PMCID: PMC7888376 DOI: 10.1136/bmjopen-2020-040426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Several licensed and investigational vaccines have lower efficacy, and induce impaired immune responses, in low-income versus high-income countries and in rural, versus urban, settings. Understanding these population differences is essential to optimising vaccine effectiveness in the tropics. We suggest that repeated exposure to and immunomodulation by chronic helminth infections partly explains population differences in vaccine response. METHODS AND ANALYSIS We have designed an individually randomised, parallel group trial of intensive versus standard praziquantel (PZQ) intervention against schistosomiasis, to determine effects on vaccine response outcomes among school-going adolescents (9-17 years) from rural Schistosoma mansoni-endemic Ugandan islands. Vaccines to be studied comprise BCG on day 'zero'; yellow fever, oral typhoid and human papilloma virus (HPV) vaccines at week 4; and HPV and tetanus/diphtheria booster vaccine at week 28. The intensive arm will receive PZQ doses three times, each 2 weeks apart, before BCG immunisation, followed by a dose at week 8 and quarterly thereafter. The standard arm will receive PZQ at week 8 and 52. We expect to enrol 480 participants, with 80% infected with S. mansoni at the outset.Primary outcomes are BCG-specific interferon-γ ELISpot responses 8 weeks after BCG immunisation and for other vaccines, antibody responses to key vaccine antigens at 4 weeks after immunisation. Secondary analyses will determine the effects of intensive anthelminthic treatment on correlates of protective immunity, on waning of vaccine response, on priming versus boosting immunisations and on S. mansoni infection status and intensity. Exploratory immunology assays using archived samples will enable assessment of mechanistic links between helminths and vaccine responses. ETHICS AND DISSEMINATION Ethics approval has been obtained from relevant ethics committes of Uganda and UK. Results will be shared with Uganda Ministry of Health, relevant district councils, community leaders and study participants. Further dissemination will be done through conference proceedings and publications. TRIAL REGISTRATION NUMBER ISRCTN60517191.
Collapse
Affiliation(s)
- Gyaviira Nkurunungi
- Immunomodulation and Vaccines Programme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - Ludoviko Zirimenya
- Immunomodulation and Vaccines Programme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - Jacent Nassuuna
- Immunomodulation and Vaccines Programme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - Agnes Natukunda
- Immunomodulation and Vaccines Programme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - Prossy N Kabuubi
- Immunomodulation and Vaccines Programme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - Emmanuel Niwagaba
- Immunomodulation and Vaccines Programme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - Gloria Oduru
- Immunomodulation and Vaccines Programme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - Grace Kabami
- Immunomodulation and Vaccines Programme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - Rebecca Amongin
- Immunomodulation and Vaccines Programme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - Alex Mutebe
- Immunomodulation and Vaccines Programme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - Milly Namutebi
- Immunomodulation and Vaccines Programme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - Christopher Zziwa
- Immunomodulation and Vaccines Programme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - Susan Amongi
- Immunomodulation and Vaccines Programme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - Caroline Ninsiima
- Immunomodulation and Vaccines Programme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - Caroline Onen
- Immunomodulation and Vaccines Programme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - Florence Akello
- Immunomodulation and Vaccines Programme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - Moses Sewankambo
- Immunomodulation and Vaccines Programme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - Samuel Kiwanuka
- Immunomodulation and Vaccines Programme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - Robert Kizindo
- Immunomodulation and Vaccines Programme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - James Kaweesa
- Vector Control Division, Republic of Uganda Ministry of Health, Kampala, Uganda
| | - Stephen Cose
- Immunomodulation and Vaccines Programme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, UK
| | - Emily Webb
- MRC Tropical Epidemiology Group, Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | - Alison M Elliott
- Immunomodulation and Vaccines Programme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
16
|
Loss of natural resistance to schistosome in T cell deficient rat. PLoS Negl Trop Dis 2020; 14:e0008909. [PMID: 33347431 PMCID: PMC7785244 DOI: 10.1371/journal.pntd.0008909] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 01/05/2021] [Accepted: 10/21/2020] [Indexed: 01/08/2023] Open
Abstract
Schistosomiasis is among the major neglected tropical diseases and effective prevention by boosting the immune system is still not available. T cells are key cellular components governing adaptive immune response to various infections. While common laboratory mice, such as C57BL/6, are highly susceptible to schistosomiasis, the SD rats are extremely resistant. However, whether adaptive immunity is necessary for such natural resistance to schistosomiasis in rats remains to be determined. Therefore, it is necessary to establish genetic model deficient in T cells and adaptive immunity on the resistant SD background, and to characterize liver pathology during schistosomiasis. In this study we compared experimental schistosomiasis in highly susceptible C57BL/6 (B6) mice and in resistant SD rats, using cercariae of Schistosoma japonicum. We observed a marked T cell expansion in the spleen of infected B6 mice, but not resistant SD rats. Interestingly, CD3e−/− B6 mice in which T cells are completely absent, the infectious burden of adult worms was significantly higher than that in WT mice, suggesting an anti-parasitic role for T cells in B6 mice during schistosome infection. In further experiments, we established Lck deficient SD rats by using CRISPR/Cas9 in which T cell development was completely abolished. Strikingly, we found that such Lck deficiency in SD rats severely impaired their natural resistance to schistosome infection, and fostered parasite growth. Together with an additional genetic model deficient in T cells, the CD3e−/− SD rats, we confirmed the absence of T cell resulted in loss of natural resistance to schistosome infection, but also mitigated liver immunopathology. Our further experiments showed that regulatory T cell differentiation in infected SD rats was significantly decreased during schistosomiasis, in contrast to significant increase of regulatory T cells in infected B6 mice. These data suggest that T cell mediated immune tolerance facilitates persistent infection in mice but not in SD rats. The demonstration of an important role for T cells in natural resistance of SD rats to schistosomiasis provides experimental evidences supporting the rationale to boost T cell responses in humans to prevent and treat schistosomiasis. Schistosomiasis is among the major neglected tropical diseases and affects mainly the developing countries. Although the role of the immune system in driving immunopathology in schistosomiasis has been extensively studied, how adaptive immunity contributes to disease resistance during schistosome infection is still not completely understood. Most livestock species as well as humans are susceptible to schistosomiasis, while some mammals are extremely resistant. The common laboratory C57BL/6 mice are highly susceptible to schistosomiasis; however, the SD rats are extremely resistant. In this study, we first used T cell deficient CD3e−/− C57BL/6 mice and experimental Schistosoma japonicum infection and further established novel T cell deficient models in SD rats to assess anti-parasite roles of T cells. Strikingly, we found that the natural resistance of SD rat to schistosomiasis was abolished in the absence of T cells, despite the fact that the liver pathology was mitigated following infection. Therefore, our study presented experimental support for the rationale to boost T cell function for clearance of schistosome parasites.
Collapse
|
17
|
Bengu MD, Dorsamy V, Moodley J. Schistosomiasis infections in South African pregnant women: A review. S Afr J Infect Dis 2020; 35:171. [PMID: 39380900 PMCID: PMC11459292 DOI: 10.4102/sajid.v35i1.171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 06/24/2020] [Indexed: 10/10/2024] Open
Abstract
Background Schistosomiasis, a chronic parasitic disease caused by Schistosoma species, has a negative impact on pregnancy outcomes and child development. The disease affects over 230 million people worldwide, and in South Africa an estimated 5.2 million people are thought to be infected. However, there is scant data on the impact of schistosomiasis in pregnancy in South Africa and globally. The aim of this review was to analyse the current knowledge of schistosomiasis in pregnancy, particularly in South Africa, focusing on maternal and neonatal complications linked directly to the disease or its treatment. Methods An electronic search of online databases was used to identify and collect relevant research articles related to schistosomiasis in pregnancy, with a focus on South Africa. Results Schistosomiasis can cause severe organ damage when left untreated and influences maternal and foetal morbidity and mortality. Although South Africa's first helminth control programme was established in 1997, there is currently no ongoing treatment strategy programme, and little information is available on prevalence rates in pregnant women for the last 20 years. There is also an absence of data from well-controlled clinical trials that focus on the efficacy and safety of treatment during pregnancy, which has led to this vulnerable group being neglected. Conclusion This review highlights the dearth of information on the impact of schistosomiasis in pregnant women in South Africa and the need for high-quality evidence-based studies.
Collapse
Affiliation(s)
- Melissa D Bengu
- Department of Obstetrics and Gynaecology, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Vinogrin Dorsamy
- Department of Laboratory Medicine and Medical Sciences, Faculty of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Jagidesa Moodley
- Department of Obstetrics and Gynaecology, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
18
|
Bohnacker S, Troisi F, de Los Reyes Jiménez M, Esser-von Bieren J. What Can Parasites Tell Us About the Pathogenesis and Treatment of Asthma and Allergic Diseases. Front Immunol 2020; 11:2106. [PMID: 33013887 PMCID: PMC7516051 DOI: 10.3389/fimmu.2020.02106] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/04/2020] [Indexed: 12/18/2022] Open
Abstract
The same mechanisms that enable host defense against helminths also drive allergic inflammation. This suggests that pathomechanisms of allergic diseases represent evolutionary old responses against helminth parasites and that studying antihelminth immunity may provide insights into pathomechanisms of asthma. However, helminths have developed an intricate array of immunoregulatory mechanisms to modulate type 2 immune mechanisms. This has led to the hypothesis that the lack of helminth infection may contribute to the rise in allergic sensitization in modern societies. Indeed, the anti-inflammatory potential of helminth (worm) parasites and their products in allergy and asthma has been recognized for decades. As helminth infections bring about multiple undesired effects including an increased susceptibility to other infections, intended helminth infection is not a feasible approach to broadly prevent or treat allergic asthma. Thus, the development of new helminth-based biopharmaceutics may represent a safer approach of harnessing type 2–suppressive effects of helminths. However, progress regarding the mechanisms and molecules that are employed by helminths to modulate allergic inflammation has been relatively recent. The scavenging of alarmins and the modulation of lipid mediator pathways and macrophage function by helminth proteins have been identified as important immunoregulatory mechanisms targeting innate immunity in asthma and allergy. In addition, by regulating the activation of dendritic cells and by promoting regulatory T-cell responses, helminth proteins can counterregulate the adaptive T helper 2 cell response that drives allergic inflammation. Despite these insights, important open questions remain to be addressed before helminth molecules can be used for the prevention and treatment of asthma and other allergic diseases.
Collapse
Affiliation(s)
- Sina Bohnacker
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Munich, Germany
| | - Fabiana Troisi
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Munich, Germany
| | - Marta de Los Reyes Jiménez
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Munich, Germany
| | - Julia Esser-von Bieren
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Munich, Germany
| |
Collapse
|
19
|
White MPJ, McManus CM, Maizels RM. Regulatory T-cells in helminth infection: induction, function and therapeutic potential. Immunology 2020; 160:248-260. [PMID: 32153025 PMCID: PMC7341546 DOI: 10.1111/imm.13190] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 12/11/2022] Open
Abstract
Helminth parasites infect an alarmingly large proportion of the world's population, primarily within tropical regions, and their ability to down‐modulate host immunity is key to their persistence. Helminths have developed multiple mechanisms that induce a state of hyporesponsiveness or immune suppression within the host; of particular interest are mechanisms that drive the induction of regulatory T‐cells (Tregs). Helminths actively induce Tregs either directly by secreting factors, such as the TGF‐β mimic Hp‐TGM, or indirectly by interacting with bystander cell types such as dendritic cells and macrophages that then induce Tregs. Expansion of Tregs not only enhances parasite survival but, in cases such as filarial infection, Tregs also play a role in preventing parasite‐associated pathologies. Furthermore, Tregs generated during helminth infection have been associated with suppression of bystander immunopathologies in a range of inflammatory conditions such as allergy and autoimmune disease. In this review, we discuss evidence from natural and experimental infections that point to the pathways and molecules involved in helminth Treg induction, and postulate how parasite‐derived molecules and/or Tregs might be applied as anti‐inflammatory therapies in the future.
Collapse
Affiliation(s)
- Madeleine P J White
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Caitlin M McManus
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Rick M Maizels
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| |
Collapse
|
20
|
Yegorov S, Joag V, Galiwango RM, Good SV, Okech B, Kaul R. Impact of Endemic Infections on HIV Susceptibility in Sub-Saharan Africa. TROPICAL DISEASES TRAVEL MEDICINE AND VACCINES 2019; 5:22. [PMID: 31798936 PMCID: PMC6884859 DOI: 10.1186/s40794-019-0097-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/07/2019] [Indexed: 02/08/2023]
Abstract
Human immunodeficiency virus (HIV) remains a leading cause of global morbidity with the highest burden in Sub-Saharan Africa (SSA). For reasons that are incompletely understood, the likelihood of HIV transmission is several fold higher in SSA than in higher income countries, and most of these infections are acquired by young women. Residents of SSA are also exposed to a variety of endemic infections, such as malaria and various helminthiases that could influence mucosal and systemic immunology. Since these immune parameters are important determinants of HIV acquisition and progression, this review explores the possible effects of endemic infections on HIV susceptibility and summarizes current knowledge of the epidemiology and underlying immunological mechanisms by which endemic infections could impact HIV acquisition. A better understanding of the interaction between endemic infections and HIV may enhance HIV prevention programs in SSA.
Collapse
Affiliation(s)
- Sergey Yegorov
- 1Departments of Immunology and Medicine, University of Toronto, Toronto, Canada.,2Department of Pedagogical Mathematics and Natural Science, Faculty of Education and Humanities, Suleyman Demirel University, Almaty, Kazakhstan
| | - Vineet Joag
- 3Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN USA
| | - Ronald M Galiwango
- 1Departments of Immunology and Medicine, University of Toronto, Toronto, Canada
| | - Sara V Good
- 4Genetics & Genome Biology, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, ON Canada.,5Community Health Sciences, University of Manitoba, Winnipeg, MB Canada
| | | | - Rupert Kaul
- 1Departments of Immunology and Medicine, University of Toronto, Toronto, Canada.,7Department of Medicine, University Health Network, Toronto, Canada
| |
Collapse
|
21
|
Takeuchi H, Khan MA, Ahmad SM, Hasan SMT, Alam MJ, Takanashi S, Hore SK, Yeasmin S, Jimba M, Iwata T. Concurrent decreases in the prevalence of wheezing and Ascaris infection among 5-year-old children in rural Bangladesh and their regulatory T cell immunity after the implementation of a national deworming program. Immun Inflamm Dis 2019; 7:160-169. [PMID: 31256445 PMCID: PMC6688081 DOI: 10.1002/iid3.253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 04/16/2019] [Accepted: 04/26/2019] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Epidemiological research on the prevalence of asthma and helminthic infections in various countries has led to the hypothesis that helminthic infections protect against asthma by suppressing the host's immune response. This study was conducted to elucidate whether decreased Ascaris infection following a national deworming program was associated with increased recurrent wheezing among rural Bangladeshi children and to test their anti-inflammatory immunity. METHODS This nested case-control study was conducted from December 2015 to October 2016 in the rural service area of the International Centre for Diarrhoeal Disease Research, Bangladesh. Of the 1800 5-year old children randomly selected for the study, informed consent was obtained from the guardians of 1658 children. Data were collected using a semistructured questionnaire adopted from the International Study of Asthma and Allergies in Childhood and blood samples for the analysis of regulatory T (Treg) cell immune responses and the balance between Th1 and Th2 immunity in Ascaris infections. RESULTS A total of 145 children were found to have wheezing, yielding a prevalence rate of 8.7%, which was significantly lower than the rate found in 2001 (16.2%, P < .001); Ascaris infection also decreased from 2001 to 2016. The 127 wheezing children who agreed to participate further were compared to 114 randomly selected never-wheezing children. Wheezing had a significant positive association with antibiotic use, history of pneumonia, parents' history of asthma, and Ascaris infection; children with Ascaris infection were twice as likely to have wheezing (adjusted odds ratio = 2.31, P = .053). Flow cytometry found no significant differences in the rates of Th1, Th2, and CD4 + CD25 + CD127low cells by the wheezing group. CONCLUSIONS Ascaris infection had a positive rather than a negative association with wheezing and the rates of wheezing and Ascaris infections both decreased from 2001 to 2016. These findings undermines the hypothesis that such infections provide protection against asthma.
Collapse
Affiliation(s)
- Haruko Takeuchi
- Department of Community and Global Health, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Md. Alfazal Khan
- Nutrition and Clinical Services DivisionInternational Centre for Diarrhoeal Disease ResearchBangladesh
| | | | - S. M. Tafsir Hasan
- Nutrition and Clinical Services DivisionInternational Centre for Diarrhoeal Disease ResearchBangladesh
| | - Md. Jahangir Alam
- Infectious Diseases DivisionInternational Centre for Diarrhoeal Disease ResearchBangladesh
| | - Sayaka Takanashi
- Department of Developmental Medical Sciences, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Samar Kumar Hore
- Centre for Equity and Health SystemInternational Centre for Diarrhoeal Disease ResearchBangladesh
| | - Sultana Yeasmin
- Infectious Diseases DivisionInternational Centre for Diarrhoeal Disease ResearchBangladesh
| | - Masamine Jimba
- Department of Community and Global Health, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Tsutomu Iwata
- Department of Education for Childcare, Faculty of Child StudiesTokyo Kasei UniversityTokyoJapan
| |
Collapse
|
22
|
Tang CL, Gao YR, Wang LX, Zhu YW, Pan Q, Zhang RH, Xiong Y. Role of regulatory T cells in Schistosoma-mediated protection against type 1 diabetes. Mol Cell Endocrinol 2019; 491:110434. [PMID: 31078638 DOI: 10.1016/j.mce.2019.04.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 01/18/2019] [Accepted: 04/16/2019] [Indexed: 12/15/2022]
Abstract
The prevalence of T1D in developed societies is partly based on the hygiene hypothesis, that is, the loss of exposure to infectious agents accompanies the loss of immune stimuli shaping the immune system during development. Indeed, the components of parasites, such as Schistosoma, have been reported to ameliorate or prevent the development of T1D, which might be associated with immune cell activity especially that of regulatory T cells (Tregs). Schistosoma infection can lead to the expansion of Treg. Herein, we provide a comprehensive overview of the involvement of Tregs in the response against Schistosoma infection and the mechanism of Schistosoma-associated host protection against T1D.
Collapse
Affiliation(s)
- Chun-Lian Tang
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, 430063, China
| | - Yan-Ru Gao
- Medical Department, City College, Wuhan University of Science and Technology, Wuhan, 430083, China
| | - Li-Xia Wang
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, 430063, China
| | - Ya-Wen Zhu
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, 430063, China
| | - Qun Pan
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, 430063, China
| | - Rong-Hui Zhang
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, 430063, China
| | - Ying Xiong
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, 430063, China.
| |
Collapse
|
23
|
Abioye AI, McDonald EA, Park S, Joshi A, Kurtis JD, Wu H, Pond-Tor S, Sharma S, Ernerudh J, Baltazar P, Acosta LP, Olveda RM, Tallo V, Friedman JF. Maternal, placental and cord blood cytokines and the risk of adverse birth outcomes among pregnant women infected with Schistosoma japonicum in the Philippines. PLoS Negl Trop Dis 2019; 13:e0007371. [PMID: 31188820 PMCID: PMC6590831 DOI: 10.1371/journal.pntd.0007371] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/24/2019] [Accepted: 04/08/2019] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The objectives of this study were to 1) evaluate the influence of treatment with praziquantel on the inflammatory milieu in maternal, placental, and cord blood, 2) assess the extent to which proinflammatory signatures in placental and cord blood impacts birth outcomes, and 3) evaluate the impact of other helminths on the inflammatory micro environment. METHODS/FINDINGS This was a secondary analysis of samples from 369 mother-infant pairs participating in a randomized controlled trial of praziquantel given at 12-16 weeks' gestation. We performed regression analysis to address our study objectives. In maternal peripheral blood, the concentrations of CXCL8, and TNF receptor I and II decreased from 12 to 32 weeks' gestation, while IL-13 increased. Praziquantel treatment did not significantly alter the trajectory of the concentration of any of the cytokines examined. Hookworm infection was associated with elevated placental IL-1, CXCL8 and IFN-γ. The risk of small-for-gestational age increased with elevated IL-6, IL-10, and CXCL8 in cord blood. The risk of prematurity was increased when cord blood sTNFRI and placental IL-5 were elevated. CONCLUSIONS Our study suggests that fetal cytokines, which may be related to infectious disease exposures, contribute to poor intrauterine growth. Additionally, hookworm infection influences cytokine concentrations at the maternal-fetal interface. CLINICAL TRIAL REGISTRY NUMBER AND WEBSITE ClinicalTrials.gov (NCT00486863).
Collapse
Affiliation(s)
- Ajibola I. Abioye
- Center for International Health Research, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI, United States of America
- Department of Pediatrics, The Warren Alpert Medical School of Brown University, Providence, RI, United States of America
| | - Emily A. McDonald
- Center for International Health Research, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI, United States of America
- Department of Pediatrics, The Warren Alpert Medical School of Brown University, Providence, RI, United States of America
| | - Sangshin Park
- Center for International Health Research, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI, United States of America
- Department of Pediatrics, The Warren Alpert Medical School of Brown University, Providence, RI, United States of America
- Graduate School of Urban Public Health, University of Seoul, Seoul, Republic of Korea
| | - Ayush Joshi
- Center for International Health Research, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI, United States of America
- Department of Pediatrics, The Warren Alpert Medical School of Brown University, Providence, RI, United States of America
| | - Jonathan D. Kurtis
- Center for International Health Research, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI, United States of America
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School of Brown University, Providence, RI, United States of America
| | - Hannah Wu
- Center for International Health Research, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI, United States of America
- Department of Pediatrics, The Warren Alpert Medical School of Brown University, Providence, RI, United States of America
| | - Sunthorn Pond-Tor
- Center for International Health Research, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI, United States of America
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School of Brown University, Providence, RI, United States of America
| | - Surendra Sharma
- Department of Pediatrics, The Warren Alpert Medical School of Brown University, Providence, RI, United States of America
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School of Brown University, Providence, RI, United States of America
- Department of Pediatrics, Women and Infants Hospital of Rhode Island, Providence, RI, United States of America
| | - Jan Ernerudh
- Departments of Clinical Immunology and Transfusion Medicine, Linkoping University, Linkoping, Sweden
- Departments of Clinical and Experimental Medicine, Linkoping University, Linkoping, Sweden
| | - Palmera Baltazar
- Remedios Trinidad Romualdez Hospital, Tacloban City, Leyte, The Philippines
| | - Luz P. Acosta
- Research Institute for Tropical Medicine, Manila, Philippines
| | | | - Veronica Tallo
- Research Institute for Tropical Medicine, Manila, Philippines
| | - Jennifer F. Friedman
- Center for International Health Research, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI, United States of America
- Department of Pediatrics, The Warren Alpert Medical School of Brown University, Providence, RI, United States of America
| |
Collapse
|
24
|
Zychlinsky Scharff A, Rousseau M, Lacerda Mariano L, Canton T, Consiglio CR, Albert ML, Fontes M, Duffy D, Ingersoll MA. Sex differences in IL-17 contribute to chronicity in male versus female urinary tract infection. JCI Insight 2019; 5:122998. [PMID: 31145099 DOI: 10.1172/jci.insight.122998] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Sex-based differences influence incidence and outcome of infectious disease. Women have a significantly greater incidence of urinary tract infection (UTI) than men, yet, conversely, male UTI is more persistent with greater associated morbidity. Mechanisms underlying these sex-based differences are unknown, in part due to a lack of experimental models. We optimized a model to transurethrally infect male mice and directly compared UTI in both sexes. Although both sexes were initially equally colonized by uropathogenic E. coli, only male and testosterone-treated female mice remained chronically infected for up to 4 weeks. Female mice had more robust innate responses, including higher IL-17 expression, and increased γδ T cells and group 3 innate lymphoid cells in the bladder following infection. Accordingly, neutralizing IL-17 abolished resolution in female mice, identifying a cytokine pathway necessary for bacterial clearance. Our findings support the concept that sex-based responses to UTI contribute to impaired innate immunity in males and provide a rationale for non-antibiotic-based immune targeting to improve the response to UTI.
Collapse
Affiliation(s)
| | - Matthieu Rousseau
- Department of Immunology, Institut Pasteur, Paris, France.,INSERM U1223, Paris, France
| | - Livia Lacerda Mariano
- Department of Immunology, Institut Pasteur, Paris, France.,INSERM U1223, Paris, France
| | - Tracy Canton
- Department of Immunology, Institut Pasteur, Paris, France.,INSERM U1223, Paris, France
| | | | - Matthew L Albert
- Department of Immunology, Institut Pasteur, Paris, France.,INSERM U1223, Paris, France
| | - Magnus Fontes
- International Group for Data Analysis, Institut Pasteur, Paris, France.,The Centre for Mathematical Sciences, Lund University, Lund, Sweden.,The Center for Genomic Medicine at Rigshospitalet and Persimune, Copenhagen, Denmark
| | - Darragh Duffy
- Department of Immunology, Institut Pasteur, Paris, France.,INSERM U1223, Paris, France
| | - Molly A Ingersoll
- Department of Immunology, Institut Pasteur, Paris, France.,INSERM U1223, Paris, France
| |
Collapse
|
25
|
Tweyongyere R, Nassanga BR, Muhwezi A, Odongo M, Lule SA, Nsubuga RN, Webb EL, Cose SC, Elliott AM. Effect of Schistosoma mansoni infection and its treatment on antibody responses to measles catch-up immunisation in pre-school children: A randomised trial. PLoS Negl Trop Dis 2019; 13:e0007157. [PMID: 30763405 PMCID: PMC6392333 DOI: 10.1371/journal.pntd.0007157] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 02/27/2019] [Accepted: 01/14/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Schistosoma infection is associated with immune modulation that can influence responses to non-schistosome antigens. Vaccine responses may be impaired in S. mansoni-infected individuals. We investigated effects of S. mansoni infection on responses to childhood measles catch-up immunisation and of praziquantel treatment on this outcome in a randomised trial. METHODOLOGY The Immune Modulation and Childhood Immunisation (IMoChI) study was based in Entebbe, Uganda. Children aged 3-5 years (193 S. mansoni-infected and 61 uninfected) were enrolled. Infected children were randomised in a 1:1:1 ratio to receive praziquantel 2 weeks before, at time of, or 1 week after, measles catch-up immunisation. Plasma anti-measles IgG was measured at enrolment, 1 week and 24 weeks after measles immunisation. Primary outcomes were IgG levels and percentage of participants with levels considered protective against measles. RESULTS Anti-measles IgG levels increased following immunisation, but at 1 week post-immunisation S. mansoni-infected, compared to uninfected, children had lower levels of anti-measles IgG (adjusted geometric mean ratio (aGMR) 0.4 [95% CI 0.2-0.7]) and the percentage with protective antibody levels was also lower (adjusted odds ratio 0.1 [0-0.9]). Among S. mansoni-infected children, anti-measles IgG one week post-immunisation was higher among those treated with praziquantel than among those who were not yet treated (treatment before immunisation, aGMR 2.3 [1.5-4.8]; treatment at immunisation aGMR 1.8 [1.1-3.5]). At 24 weeks post-immunisation, IgG levels did not differ between the trial groups, but tended to be lower among previously-infected children who were still S mansoni stool-positive than among those who became stool-negative. CONCLUSIONS AND SIGNIFICANCE Our findings suggest that S. mansoni infection among pre-school children is associated with a reduced antibody response to catch-up measles immunisation, and that praziquantel treatment improves the response. S. mansoni infection may contribute to impaired vaccine responses in endemic populations; effective schistosomiasis control may be beneficial for vaccine efficacy. This should be further explored. TRIAL REGISTRATION ISRCTN87107592.
Collapse
Affiliation(s)
- Robert Tweyongyere
- Department of Veterinary Pharmacy Clinical and Comparative Medicine, Makerere University, Kampala, Uganda
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Beatrice R. Nassanga
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Allan Muhwezi
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Matthew Odongo
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Swaib A. Lule
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Rebecca N. Nsubuga
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Emily L. Webb
- London School of Hygiene & Tropical Medicine, Keppel Street, London United Kingdom
| | - Stephen C. Cose
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
- London School of Hygiene & Tropical Medicine, Keppel Street, London United Kingdom
| | - Alison M. Elliott
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
- London School of Hygiene & Tropical Medicine, Keppel Street, London United Kingdom
| |
Collapse
|
26
|
Eyoh E, McCallum P, Killick J, Amanfo S, Mutapi F, Astier AL. The anthelmintic drug praziquantel promotes human Tr1 differentiation. Immunol Cell Biol 2019; 97:512-518. [PMID: 30623486 DOI: 10.1111/imcb.12229] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/28/2018] [Accepted: 01/07/2019] [Indexed: 12/20/2022]
Abstract
Praziquantel (PZQ) is an anthelminthic human and veterinary drug used to treat trematode and cestode worms. Changes in immune responses have been demonstrated in humans following curative PZQ treatment of schistosome infections. These changes have been attributed to the removal of immunosupressive worms and immune responses to parasite antigens exposed from dying worms. To date, there has been no study investigating the potential direct effect of PZQ on the host immune cells. Herein, we analyzed the effect of PZQ on human CD4+ T cells classically costimulated by CD3/CD28 or costimulated by the complement regulator CD46 to induce Type 1 regulatory T cells (Tr1). Our results show that PZQ enhanced T-cell proliferation, increased secretion of IL-17 and IL-10 but had no effect on secretion of GM-CSF or IFNγ. Moreover, PZQ increased the coexpression of CD49b and LAG-3, a hallmark of Tr1 cells, suggesting increased Tr1 differentiation. Indeed, supernatants from PZQ-treated cells were able to decrease bystander T-cell activation, and this was partly reduced when blocking IL-10. Hence, our study demonstrates that PZQ directly modulates human T-cell activation and promotes Tr1 differentiation, suggesting that PZQ may have immunomodulatory functions in parasite-unrelated human inflammatory diseases.
Collapse
Affiliation(s)
- Enwono Eyoh
- Institute of Immunology & Infection Research and Centre for Immunity, Infection and Evolution, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, King's Buildings, Edinburgh, UK
| | - Patrick McCallum
- Institute of Immunology & Infection Research and Centre for Immunity, Infection and Evolution, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, King's Buildings, Edinburgh, UK
| | - Justin Killick
- The MRC Centre for Inflammation Research, Edinburgh Centre for MS research, University of Edinburgh, Edinburgh, UK
| | - Seth Amanfo
- Institute of Immunology & Infection Research and Centre for Immunity, Infection and Evolution, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, King's Buildings, Edinburgh, UK
| | - Francisca Mutapi
- Institute of Immunology & Infection Research and Centre for Immunity, Infection and Evolution, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, King's Buildings, Edinburgh, UK.,NIHR Global Health Research Unit Tackling Infections to Benefit Africa (TIBA), Ashworth Laboratories, University of Edinburgh, King's Buildings, Edinburgh, UK
| | - Anne L Astier
- The MRC Centre for Inflammation Research, Edinburgh Centre for MS research, University of Edinburgh, Edinburgh, UK.,Centre de Physiopathologie Toulouse-Purpan (CPTP) INSERM U1043, CNRS U5282, Université de Toulouse, Toulouse, France
| |
Collapse
|
27
|
Resende SD, Magalhães FC, Rodrigues-Oliveira JL, Castro VN, Souza CSA, Oliveira EJ, Carneiro M, Geiger SM, Negrão-Corrêa DA. Modulation of Allergic Reactivity in Humans Is Dependent on Schistosoma mansoni Parasite Burden, Low Levels of IL-33 or TNF-α and High Levels of IL-10 in Serum. Front Immunol 2019; 9:3158. [PMID: 30713536 PMCID: PMC6345678 DOI: 10.3389/fimmu.2018.03158] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/21/2018] [Indexed: 12/15/2022] Open
Abstract
Helminth infections and allergies are characterized by a predominant type-2 immune response. In schistosomiasis, the Th-2 response is usually accompanied by induction of immunoregulatory mechanisms that contribute to worm survival and less severe schistosomiasis. Although helminth-induced immunomodulatory mechanisms seem to affect atopy, epidemiological studies on the relationship between helminths and allergy have been inconsistent, and data suggest that the modulatory effects may be influenced by helminth species, chronicity of infection, and parasite burden. Here we performed a cross-sectional study to investigate the effects of Schistosoma mansoni parasite burden and immune response on allergic reactivity of individuals living in a schistosomiasis endemic area in Brazil. Fecal samples from the participants were collected for extensive parasitological examinations by spontaneous sedimentation, Kato-Katz, Helmintex and Saline Gradient tests and molecular detection of S. mansoni by qPCR. Additionally, the concentrations of cytokines and chemokines, total IgE and IgE-reactivity to common house dust allergens were quantified from serum samples. IgE reactivity to dust allergens was detected in 47 individuals (23.8%), and 140 individuals (54.4%) were diagnosed with S. mansoni infection. Most of the infected population (108 individuals) presented very low parasite burden (≤12 eggs/g of feces). The frequency and intensity (p ≤ 0.03) of allergic reactivity were lower in S. mansoni-infected compared with non-infected individuals. Multivariable logistic regression models adjusted by age revealed that allergic reactivity was positively associated with low IL-10 response (OR, 4.55, 95% CI, 0.56–7.36) and high concentration of the inflammatory mediators IL-33 (OR, 2.70, 95% CI, 1.02–7.15) or TNF-α (OR, 6.88, 95% CI, 0.32–143.39) in serum, and inversely associated with S. mansoni infection (OR, 0.38, 95% CI, 0.16–0.87). Most importantly, the logistic regression demonstrated that the modulatory effects of Schistosoma infection depend on parasite burden, with individuals infected with ≤12 eggs/g of feces showing allergic IgE-reactivity similar to non-infected individuals Altogether, our data show that immunomodulation of allergic reactivity depends on S. mansoni burden, low type-2 inflammatory response, and high level of IL-10.
Collapse
Affiliation(s)
- Samira D Resende
- Department of Parasitology, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Fernanda C Magalhães
- Department of Parasitology, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | | | - Vanessa N Castro
- Department of Parasitology, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Carolina S A Souza
- Schistosomiasis Laboratory, René Rachou Research Center, Oswaldo Cruz Foundation, Belo Horizonte, Brazil
| | - Edward J Oliveira
- Schistosomiasis Laboratory, René Rachou Research Center, Oswaldo Cruz Foundation, Belo Horizonte, Brazil
| | - Mariângela Carneiro
- Department of Parasitology, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Stefan M Geiger
- Department of Parasitology, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Deborah A Negrão-Corrêa
- Department of Parasitology, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| |
Collapse
|
28
|
Fukushige M, Mutapi F, Woolhouse ME. Population level changes in schistosome-specific antibody levels following chemotherapy. Parasite Immunol 2019; 41:e12604. [PMID: 30467873 PMCID: PMC6492179 DOI: 10.1111/pim.12604] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 11/13/2018] [Indexed: 11/28/2022]
Abstract
AIMS Previous studies have reported that chemotherapy of schistosomiasis by praziquantel in humans boosts protective antibody responses against S mansoni and S haematobium. A number of studies have reported schistosome-specific antibody levels before and after chemotherapy. Using these reports, a meta-analysis was conducted to identify predictors of population level change in schistosome-specific antibody levels after chemotherapy. METHODS AND RESULTS Following a systematic review, 92 observations from 26 articles published between 1988 and 2013 were included in this study. Observations were grouped by antigen type and antibody isotypes for the classification and regression tree (CART) analysis. The study showed that the change in antibody levels was variable: (a) between different human populations and (b) according to the parasite antigen and antibody isotypes. Thus, while anti-worm responses predominantly increased after chemotherapy, anti-egg responses decreased or did not show a significant trend. The change in antibody levels depended on a combination of age and infection intensity for anti-egg IgA, IgM, IgG1, IgG2 and anti-worm IgM and IgG. CONCLUSION The study results are consistent with praziquantel treatment boosting anti-worm antibody responses. However, there is considerable heterogeneity in post-treatment changes in specific antibody levels that is related to host age and pre-treatment infection intensity.
Collapse
Affiliation(s)
- Mizuho Fukushige
- Present address:
Faculty of MedicineUniversity of TsukubaTsukubaJapan
- Centre for ImmunityInfection & EvolutionCollege of Medicine and Veterinary MedicineUniversity of EdinburghEdinburghUK
| | - Francisca Mutapi
- Institute of Immunology and Infection ResearchCentre for ImmunityInfection & EvolutionSchool of Biological SciencesNIHR Global Health Research Unit Tackling Infections to Benefit Africa (TIBA)University of EdinburghEdinburghUK
| | - Mark E.J. Woolhouse
- Centre for ImmunityInfection & Evolution, and Usher Institute of Population Health Sciences & InformaticsCollege of Medicine and Veterinary MedicineUniversity of EdinburghEdinburghUK
| |
Collapse
|
29
|
McSorley HJ, Chayé MAM, Smits HH. Worms: Pernicious parasites or allies against allergies? Parasite Immunol 2018; 41:e12574. [PMID: 30043455 PMCID: PMC6585781 DOI: 10.1111/pim.12574] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/13/2018] [Accepted: 07/18/2018] [Indexed: 12/14/2022]
Abstract
Type 2 immune responses are most commonly associated with allergy and helminth parasite infections. Since the discovery of Th1 and Th2 immune responses more than 30 years ago, models of both allergic disease and helminth infections have been useful in characterizing the development, effector mechanisms and pathological consequences of type 2 immune responses. The observation that some helminth infections negatively correlate with allergic and inflammatory disease led to a large field of research into parasite immunomodulation. However, it is worth noting that helminth parasites are not always benign infections, and that helminth immunomodulation can have stimulatory as well as suppressive effects on allergic responses. In this review, we will discuss how parasitic infections change host responses, the consequences for bystander immunity and how this interaction influences clinical symptoms of allergy.
Collapse
Affiliation(s)
- Henry J McSorley
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Mathilde A M Chayé
- Department of Parasitology, Leiden Immunology of Parasitic Infections Group, Leiden University Medical Centre, ZA Leiden, The Netherlands
| | - Hermelijn H Smits
- Department of Parasitology, Leiden Immunology of Parasitic Infections Group, Leiden University Medical Centre, ZA Leiden, The Netherlands
| |
Collapse
|
30
|
Wei K, Jiang BC, Guan JH, Zhang DN, Zhang MX, Wu JL, Zhu GZ. Decreased CD4 +CD25 +CD127 dim/- Regulatory T Cells and T Helper 17 Cell Responsiveness to Toll-Like Receptor 2 in Chronic Hepatitis C Patients with Daclatasvir Plus Asunaprevir Therapy. Viral Immunol 2018; 31:559-567. [PMID: 30067145 DOI: 10.1089/vim.2018.0055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Direct-acting antivirals (DAAs) not only rapidly inhibited hepatitis C virus (HCV) replication but also modulated innate and adaptive immune response in chronic hepatitis C patients. However, the regulatory activity of DAAs to Toll-like receptor 2 (TLR2) stimulation on CD4+CD25+CD127dim/- regulatory T cells (Tregs) and T helper (Th) 17 cells was not completely understood. In the present study, a total of 23 patients with chronic HCV genotype 1b infection were enrolled, and blood samples were collected at baseline (treatment naive), end of therapy (EOT), and 12 weeks after EOT (SVR12) with daclatasvir plus asunaprevir therapy. TLR2 expression on Tregs and Th17 cells was measured by flow cytometry. Cellular proliferation, cytokine production, and suppressive activity were also tested in purified CD4+CD25+CD127dim/- Tregs in response to the stimulation of Pam3Csk4, an agonist of TLR2. Inhibition of HCV RNA by daclatasvir and asunaprevir did not affect either percentage of Tregs/Th17 cells or TLR2 expression on Tregs/Th17 cells. Pam3Csk4 stimulation also did not influence either cellular proliferation or Tregs/Th17 proportion at each time point. Stimulation with Pam3Csk4 only enhanced the suppressive function and interleukin (IL)-35 production by Tregs purified from baseline, but not those from EOT or SVR12. Similarly, Pam3Csk4 stimulation only elevated Th17 cell frequency of CD4+ T cells from baseline, but not those from EOT or SVR12. Moreover, daclatasvir and asunaprevir therapy did not promote TLR2-induced shift of Tregs toward Th17-like phenotype and function. These data suggested that daclatasvir plus asunaprevir therapy resulted in the decreased responsiveness of Tregs/Th17 cells to TLR2 stimulation in chronic hepatitis C patients, which might provide a novel mechanism underlying DAA-induced immunoregulation.
Collapse
Affiliation(s)
- Kun Wei
- 1 Department of Clinical Laboratory Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine , Changchun, China
| | - Ben-Chun Jiang
- 1 Department of Clinical Laboratory Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine , Changchun, China
| | - Jing-Hui Guan
- 2 Department of Blood Transfusion, The Affiliated Hospital to Changchun University of Chinese Medicine , Changchun, China
| | - Dong-Na Zhang
- 1 Department of Clinical Laboratory Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine , Changchun, China
| | - Meng-Xuan Zhang
- 3 Clinical Medicine College, Changchun University of Chinese Medicine , Changchun, China
| | - Jun-Long Wu
- 1 Department of Clinical Laboratory Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine , Changchun, China
| | - Guang-Ze Zhu
- 1 Department of Clinical Laboratory Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine , Changchun, China
| |
Collapse
|
31
|
Freer JB, Bourke CD, Durhuus GH, Kjetland EF, Prendergast AJ. Schistosomiasis in the first 1000 days. THE LANCET. INFECTIOUS DISEASES 2018; 18:e193-e203. [PMID: 29170089 DOI: 10.1016/s1473-3099(17)30490-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 07/02/2017] [Accepted: 07/13/2017] [Indexed: 12/29/2022]
Abstract
Infections during the first 1000 days-the period from conception to a child's second birthday-can have lifelong effects on health, because this is a crucial phase of growth and development. There is increasing recognition of the burden and potential effects of schistosomiasis in women of reproductive age and young children. Exposure to schistosomes during pregnancy can modulate infant immune development and schistosomiasis can occur from early infancy, such that the high disease burden found in adolescents is often due to accumulation of infections with long-lived schistosomes from early life. Women of reproductive age and young children are largely neglected in mass drug administration programmes, but early treatment could avert subsequent disease. We evaluate the evidence that early schistosomiasis has adverse effects on birth, growth, and development. We also discuss the case for expanding public health interventions for schistosomiasis in women of reproductive age and preschool-age children, and the need for further research to evaluate the potential of treating women pre-conception to maximise health across the life course.
Collapse
Affiliation(s)
- Joseph B Freer
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe; Blizard Institute, Queen Mary University of London, London, UK.
| | - Claire D Bourke
- Blizard Institute, Queen Mary University of London, London, UK
| | - Gunn H Durhuus
- Department of Internal Medicine, Sorlandet Hospital, Kristiansand, Norway
| | - Eyrun F Kjetland
- Norwegian Centre for Imported and Tropical Diseases, Department of Infectious Diseases Ullevaal, Oslo University Hospital, Oslo, Norway; Discipline of Public Health Medicine, Nelson R Mandela School of Medicine, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Andrew J Prendergast
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe; Blizard Institute, Queen Mary University of London, London, UK
| |
Collapse
|
32
|
Ondigo BN, Ndombi EM, Nicholson SC, Oguso JK, Carter JM, Kittur N, Secor WE, Karanja DMS, Colley DG. Functional Studies of T Regulatory Lymphocytes in Human Schistosomiasis in Western Kenya. Am J Trop Med Hyg 2018; 98:1770-1781. [PMID: 29692308 PMCID: PMC6086154 DOI: 10.4269/ajtmh.17-0966] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Immunoregulation is considered a common feature of Schistosoma mansoni infections, and elevated levels of T regulatory (Treg) lymphocytes have been reported during chronic human schistosomiasis. We now report that the removal of Treg (CD4+/CD25hi/CD127low lymphocytes) from peripheral blood mononuclear cells (PBMCs) of S. mansoni–infected individuals leads to increased levels of phytohemagglutinin (PHA)-stimulated interferon gamma (IFNγ) production and decreased interleukin-10 (IL-10) responses. Exposure to schistosome antigens did not result in measurable IFNγ by either PBMC or Treg-depleted populations. Interleukin-10 responses to soluble egg antigens (SEA) by PBMC were unchanged by Treg depletion, but the depletion of Treg greatly decreased IL-10 production to soluble worm antigenic preparation (SWAP). Proliferative responses to PHA increased upon Treg removal, but responses to SEA or SWAP did not, unless only initially low responders were evaluated. Addition of anti-IL-10 increased PBMC proliferative responses to either SEA or SWAP, but did not alter responses by Treg-depleted cells. Blockade by anti-transforming growth factor-beta (TGF-β) increased SEA but not SWAP proliferative responses by PBMC, whereas anti-TGF-β increased both SEA- and SWAP-stimulated responses by Treg-depleted cultures. Addition of both anti-IL-10 and anti-TGF-β to PBMC or Treg-depleted populations increased proliferation of both populations to either SEA or SWAP. These studies demonstrate that Treg appear to produce much of the antigen-stimulated IL-10, but other cell types or subsets of Treg may produce much of the TGF-β. The elevated levels of Treg seen in chronic schistosomiasis appear functional and involve IL-10 and TGF-β in antigen-specific immunoregulation perhaps leading to regulation of immunopathology and/or possibly decreased immunoprotective responses.
Collapse
Affiliation(s)
- Bartholomew N Ondigo
- Department of Biochemistry and Molecular Biology, Egerton University, Nakuru, Kenya.,Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Eric M Ndombi
- Department of Pathology, Kenyatta University, Nairobi, Kenya.,Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Sarah C Nicholson
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia
| | - John K Oguso
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Jennifer M Carter
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia
| | - Nupur Kittur
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia
| | - W Evan Secor
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Diana M S Karanja
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Daniel G Colley
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia.,Department of Microbiology, University of Georgia, Athens, Georgia
| |
Collapse
|
33
|
Abioye AI, Park S, Ripp K, McDonald EA, Kurtis JD, Wu H, Pond-Tor S, Sharma S, Ernerudh J, Baltazar P, Acosta LP, Olveda RM, Tallo V, Friedman JF. Anemia of Inflammation during Human Pregnancy Does Not Affect Newborn Iron Endowment. J Nutr 2018; 148:427-436. [PMID: 29546300 PMCID: PMC6454452 DOI: 10.1093/jn/nxx052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/27/2017] [Indexed: 12/20/2022] Open
Abstract
Background To our knowledge, no studies have addressed whether maternal anemia of inflammation (AI) affects newborn iron status, and few have addressed risk factors for specific etiologies of maternal anemia. Objectives The study aims were to evaluate 1) the contribution of AI and iron deficiency anemia (IDA) to newborn iron endowment, 2) hepcidin as a biomarker to distinguish AI from IDA among pregnant women, and 3) risk factors for specific etiologies of maternal anemia. Methods We measured hematologic biomarkers in maternal blood at 12 and 32 wk of gestation and in cord blood from a randomized trial of praziquantel in 358 pregnant women with Schistosoma japonicum in The Philippines. IDA was defined as anemia with serum ferritin <30 ng/mL and non-IDA (NIDA), largely due to AI, as anemia with ferritin ≥30 ng/mL. We identified cutoffs for biomarkers to distinguish IDA from NIDA by using area under the curve (AUC) analyses and examined the impact of different causes of anemia on newborn iron status (primary outcome) by using multivariate regression modeling. Results Of the 358 mothers, 38% (n = 136) had IDA and 9% (n = 32) had NIDA at 32 wk of gestation. At 32 wk of gestation, serum hepcidin performed better than soluble transferrin receptor (sTfR) in identifying women with NIDA compared with the rest of the cohort (AUCs: 0.75 and 0.70, respectively) and in identifying women with NIDA among women with anemia (0.73 and 0.72, respectively). The cutoff that optimally distinguished women with NIDA from women with IDA in our cohort was 6.1 µg/L. Maternal IDA, but not NIDA, was associated with significantly lower newborn ferritin (114.4 ng/mL compared with 148.4 µg/L; P = 0.042). Conclusions Hepcidin performed better than sTfR in identifying pregnant women with NIDA, but its cost may limit its use. Maternal IDA, but not NIDA, is associated with decreased newborn iron stores, emphasizing the need to identify this cause and provide iron therapy. This trial was registered at www.clinicaltrials.gov as NCT00486863.
Collapse
Affiliation(s)
- Ajibola I Abioye
- The Warren Alpert Medical School of Brown University, Providence, RI,Department of Pediatrics, Center for International Health Research, and Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Providence, RI,Department of Center for International Health Research, and Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Providence, RI
| | - Sangshin Park
- The Warren Alpert Medical School of Brown University, Providence, RI,Department of Pediatrics, Center for International Health Research, and Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Providence, RI,Department of Center for International Health Research, and Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Providence, RI,Address correspondence to SP (e-mail: or )
| | - Kelsey Ripp
- The Warren Alpert Medical School of Brown University, Providence, RI
| | - Emily A McDonald
- The Warren Alpert Medical School of Brown University, Providence, RI,Department of Pediatrics, Center for International Health Research, and Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Providence, RI,Department of Center for International Health Research, and Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Providence, RI
| | - Jonathan D Kurtis
- The Warren Alpert Medical School of Brown University, Providence, RI,Department of Center for International Health Research, and Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Providence, RI,Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Providence, RI
| | - Hannah Wu
- The Warren Alpert Medical School of Brown University, Providence, RI,Department of Pediatrics, Center for International Health Research, and Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Providence, RI,Department of Center for International Health Research, and Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Providence, RI
| | - Sunthorn Pond-Tor
- Department of Center for International Health Research, and Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Providence, RI
| | - Surendra Sharma
- The Warren Alpert Medical School of Brown University, Providence, RI,Department of Pediatrics, Women and Infants Hospital of Rhode Island, Providence, RI
| | - Jan Ernerudh
- Departments of Clinical Immunology and Transfusion Medicine and Clinical and Experimental Medicine, Linkoping University, Linkoping, Sweden,Departments of Clinical and Experimental Medicine, Linkoping University, Linkoping, Sweden
| | - Palmera Baltazar
- Research Institute for Tropical Medicine, Manila, Philippines,Remedios Trinidad Romualdez Hospital, Tacloban City, Leyte, Philippines
| | - Luz P Acosta
- Research Institute for Tropical Medicine, Manila, Philippines
| | | | - Veronica Tallo
- Research Institute for Tropical Medicine, Manila, Philippines
| | - Jennifer F Friedman
- The Warren Alpert Medical School of Brown University, Providence, RI,Department of Pediatrics, Center for International Health Research, and Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Providence, RI,Department of Center for International Health Research, and Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Providence, RI
| |
Collapse
|
34
|
Abstract
Schistosomiasis affects over 200 million people worldwide, most of whom are children. Research and control strategies directed at preschool-aged children (PSAC), i.e., ≤5 years old, have lagged behind those in older children and adults. With the recent WHO revision of the schistosomiasis treatment guidelines to include PSAC, and the recognition of gaps in our current knowledge on the disease and its treatment in this age group, there is now a concerted effort to address these shortcomings. Global and national schistosome control strategies are yet to include PSAC in treatment schedules. Maximum impact of schistosome treatment programmes will be realised through effective treatment of PSAC. In this review, we (i) discuss the current knowledge on the dynamics and consequences of paediatric schistosomiasis and (ii) identify knowledge and policy gaps relevant to these areas and to the successful control of schistosome infection and disease in this age group. Herein, we highlight risk factors, immune mechanisms, pathology, and optimal timing for screening, diagnosis, and treatment of paediatric schistosomiasis. We also discuss the tools required for treating schistosomiasis in PSAC and strategies for accessing them for treatment.
Collapse
Affiliation(s)
- Derick N. M. Osakunor
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, University of Edinburgh, Ashworth Laboratories, Edinburgh, United Kingdom
- * E-mail:
| | - Mark E. J. Woolhouse
- Centre for Immunity, Infection and Evolution, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Ashworth Laboratories, Edinburgh, United Kingdom
- NIHR Global Health Research Unit Tackling Infections to Benefit Africa (TIBA), University of Edinburgh, Ashworth Laboratories, Edinburgh, United Kingdom
| | - Francisca Mutapi
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, University of Edinburgh, Ashworth Laboratories, Edinburgh, United Kingdom
- NIHR Global Health Research Unit Tackling Infections to Benefit Africa (TIBA), University of Edinburgh, Ashworth Laboratories, Edinburgh, United Kingdom
| |
Collapse
|
35
|
Friedman JF, Olveda RM, Mirochnick MH, Bustinduy AL, Elliott AM. Praziquantel for the treatment of schistosomiasis during human pregnancy. Bull World Health Organ 2017; 96:59-65. [PMID: 29403101 PMCID: PMC5791873 DOI: 10.2471/blt.17.198879] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 10/31/2017] [Accepted: 11/15/2017] [Indexed: 02/08/2023] Open
Abstract
In 2014, an estimated 40 million women of reproductive age were infected with Schistosoma haematobium, S. japonicum and/or S. mansoni. In both 2003 and 2006, the World Health Organization (WHO) recommended that all schistosome-infected pregnant and breastfeeding women be offered treatment, with praziquantel, either individually or during treatment campaigns. In 2006, WHO also stated the need for randomized controlled trials to assess the safety and efficacy of such treatment. Some countries have yet to follow the recommendation on treatment and many programme managers and pregnant women in other countries remain reluctant to follow the recommended approach. Since 2006, two randomized controlled trials on the use of praziquantel during pregnancy have been conducted: one against S. mansoni in Uganda and the other against S. japonicum in the Philippines. In these trials, praziquantel treatment of pregnant women had no significant effect on birth weight, appeared safe and caused minimal side-effects that were similar to those seen in treated non-pregnant subjects. Having summarized the encouraging data, on efficacy, pharmacokinetics and safety, from these two trials and reviewed the safety data from non-interventional human studies, we recommend that all countries include pregnant women in praziquantel treatment campaigns. We identify the barriers to the treatment of pregnant women, in countries that already include such women in individual treatments and mass drug administration campaigns, and discuss ways to address these barriers.
Collapse
Affiliation(s)
- Jennifer F Friedman
- Center for International Health Research at Rhode Island Hospital, 55 Claverick Street, Suite 101, Providence, RI 02903, United States of America (USA)
| | - Remigio M Olveda
- Department of Immunology, Research Institute for Tropical Medicine, Manila, Philippines
| | - Mark H Mirochnick
- Division of Neonatology, Department of Pediatrics, Boston University School of Medicine, Boston, USA
| | - Amaya L Bustinduy
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, England
| | - Alison M Elliott
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, England
| |
Collapse
|
36
|
The immunology of the allergy epidemic and the hygiene hypothesis. Nat Immunol 2017; 18:1076-1083. [PMID: 28926539 DOI: 10.1038/ni.3829] [Citation(s) in RCA: 227] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/04/2017] [Indexed: 12/18/2022]
Abstract
The immunology of the hygiene hypothesis of allergy is complex and involves the loss of cellular and humoral immunoregulatory pathways as a result of the adoption of a Western lifestyle and the disappearance of chronic infectious diseases. The influence of diet and reduced microbiome diversity now forms the foundation of scientific thinking on how the allergy epidemic occurred, although clear mechanistic insights into the process in humans are still lacking. Here we propose that barrier epithelial cells are heavily influenced by environmental factors and by microbiome-derived danger signals and metabolites, and thus act as important rheostats for immunoregulation, particularly during early postnatal development. Preventive strategies based on this new knowledge could exploit the diversity of the microbial world and the way humans react to it, and possibly restore old symbiotic relationships that have been lost in recent times, without causing disease or requiring a return to an unhygienic life style.
Collapse
|
37
|
Zhu P, Hu C, Hui K, Jiang X. The role and significance of VEGFR2 + regulatory T cells in tumor immunity. Onco Targets Ther 2017; 10:4315-4319. [PMID: 28919780 PMCID: PMC5590762 DOI: 10.2147/ott.s142085] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Tumor development is closely related to angiogenesis, and VEGFR2 plays an important role in tumor angiogenesis. It is broadly expressed in the blood vessels, especially in the microvessels of tumor tissues. Furthermore, VEGFR2 is detected on the surface of the cell membrane in various immune cells, such as dendritic cells, macrophages, and regulatory T cells (Tregs). Tregs, which are one of the key negative regulatory factors in tumor immune microenvironments, show high-level expression of VEGFR2 which participates in the regulation of immunosuppressive function. VEGFR2+ Tregs play a potent suppressive role in the formation of immunosuppressive microenvironments. A large number of reports have proven the synergistic effects between targeted therapy for VEGFR2 and immunotherapy. The depression of VEGFR2 activity on T cells can significantly reduce the infiltration of Tregs into the tumor tissue. Targeted therapy for VEGFR2+ Tregs also provides a new choice for the clinical treatment of malignant solid tumors. In this paper, the role and significance of VEGFR2+ Tregs in tumor immunity in recent years are reviewed.
Collapse
Affiliation(s)
- Panrong Zhu
- Tumor Laboratory, Department of Oncology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu, China
| | - Chenxi Hu
- Tumor Laboratory, Department of Oncology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu, China
| | - Kaiyuan Hui
- Tumor Laboratory, Department of Oncology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu, China
| | - Xiaodong Jiang
- Tumor Laboratory, Department of Oncology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu, China
| |
Collapse
|
38
|
Pereira LMS, Gomes STM, Ishak R, Vallinoto ACR. Regulatory T Cell and Forkhead Box Protein 3 as Modulators of Immune Homeostasis. Front Immunol 2017; 8:605. [PMID: 28603524 PMCID: PMC5445144 DOI: 10.3389/fimmu.2017.00605] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 05/08/2017] [Indexed: 12/15/2022] Open
Abstract
The transcription factor forkhead box protein 3 (FOXP3) is an essential molecular marker of regulatory T cell (Treg) development in different microenvironments. Tregs are cells specialized in the suppression of inadequate immune responses and the maintenance of homeostatic tolerance. Studies have addressed and elucidated the role played by FOXP3 and Treg in countless autoimmune and infectious diseases as well as in more specific cases, such as cancer. Within this context, the present article reviews aspects of the immunoregulatory profile of FOXP3 and Treg in the management of immune homeostasis, including issues relating to pathology as well as immune tolerance.
Collapse
Affiliation(s)
- Leonn Mendes Soares Pereira
- Laboratório de Virologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil.,Programa de Pós-Graduação em Biologia de Agentes Infecciosos e Parasitários, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Samara Tatielle Monteiro Gomes
- Laboratório de Virologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil.,Programa de Pós-Graduação em Biologia de Agentes Infecciosos e Parasitários, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Ricardo Ishak
- Laboratório de Virologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | | |
Collapse
|
39
|
Angerami MT, Suarez GV, Vecchione MB, Laufer N, Ameri D, Ben G, Perez H, Sued O, Salomón H, Quiroga MF. Expansion of CD25-Negative Forkhead Box P3-Positive T Cells during HIV and Mycobacterium tuberculosis Infection. Front Immunol 2017; 8:528. [PMID: 28536578 PMCID: PMC5422469 DOI: 10.3389/fimmu.2017.00528] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 04/19/2017] [Indexed: 12/13/2022] Open
Abstract
Tuberculosis (TB) and HIV alter the immune system, and coinfected (HIV-TB) individuals usually present deregulations of T-lymphocytic immune response. We previously observed an increased frequency of “unconventional” CD4+CD25−FoxP3+ Treg (uTreg) population during HIV-TB disease. Therefore, we aimed to explore the phenotype and function of uTreg and conventional CD4+CD25+FoxP3+ Treg subsets (cTreg) in this context. We evaluated the expression of CD39, programmed cell death protein 1 (PD1), glucocorticoid-induced tumor necrosis factor receptor (GITR), and the effector/memory distribution by flow cytometry in cTreg and uTreg. Also, IL-10, TGF-β, IFN-γ production, and the suppressor capacity of uTregs were analyzed in cocultures with effector lymphocytes and compared with the effect of regulatory T cells (Tregs). We found diminished expression of CD39 and higher levels of PD1 on uTreg compared to cTreg in both HIV-TB and healthy donors (HD). In addition, uTreg and cTreg showed differences in maturation status in both HIV-TB and HD groups, due to the expansion of effector memory uTregs. Interestingly, both HIV-TB and HD showed a pronounced production of IFN-γ in uTreg population, though no significant differences were observed for IL-10 and TGF-β production between uTreg and cTreg. Moreover, IFN-γ+ cells were restricted to the CD39− uTreg population. Finally, when the suppressor capacity was evaluated, both uTreg and cTreg inhibited polyclonal T cell-proliferation and IFN-γ production in a similar extent. These findings suggest that uTregs, which are expanded during HIV-TB coinfection, exert regulatory functions in a similar way to cTregs despite an altered surface expression of Treg characteristic markers and differences in cytokine production.
Collapse
Affiliation(s)
- Matías T Angerami
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Facultad de Medicina, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Guadalupe V Suarez
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Facultad de Medicina, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María B Vecchione
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Facultad de Medicina, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Natalia Laufer
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Facultad de Medicina, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Diego Ameri
- Hospital Juan A. Fernández, Buenos Aires, Argentina
| | - Graciela Ben
- Hospital Juan A. Fernández, Buenos Aires, Argentina
| | - Hector Perez
- Hospital Juan A. Fernández, Buenos Aires, Argentina
| | - Omar Sued
- Área de Investigaciones Médicas, Fundación Huésped, Buenos Aires, Argentina
| | - Horacio Salomón
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Facultad de Medicina, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María F Quiroga
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Facultad de Medicina, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
40
|
Mutapi F, Maizels R, Fenwick A, Woolhouse M. Human schistosomiasis in the post mass drug administration era. THE LANCET. INFECTIOUS DISEASES 2017; 17:e42-e48. [PMID: 27988094 PMCID: PMC7614913 DOI: 10.1016/s1473-3099(16)30475-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 09/30/2016] [Accepted: 10/05/2016] [Indexed: 11/16/2022]
Abstract
Profound changes are occurring in the epidemiology of schistosomiasis, a neglected tropical disease caused by a chronic infection with parasitic helminths of the genus Schistosoma. Schistosomiasis currently affects 240 million people worldwide, mostly in sub-Saharan Africa. The advent and proliferation of mass drug administration (MDA) programmes using the drug praziquantel is resulting in substantial increases in the number of people, mainly children aged 6-14 years, being effectively treated, approaching the point where most people in endemic areas will receive one or more treatments during their lifetimes. Praziquantel treatment not only cures infection but also frees the host from the powerful immunomodulatory action of the parasites. The treatment simultaneously enhances exposure to key parasite antigens, accelerating the development of protective acquired immunity, which would take many years to develop naturally. At a population level, these changes constitute a substantial alteration to schistosome ecology in that the parasites are more likely to be exposed not only to praziquantel directly but also to hosts with altered immune phenotypes. Here, we consider the consequences of this for schistosome biology, immunoepidemiology, and public health. We anticipate that there could be substantial effects on chronic pathology, natural immunity, vaccine development strategies, immune disorders, and drug efficacy. This makes for a complex picture that will only become apparent over decades. We recommend careful monitoring and assessment to accompany the roll-out of MDA programmes to ensure that the considerable health benefits to populations are achieved and sustained.
Collapse
Affiliation(s)
- Francisca Mutapi
- Institute of Immunology & Infection Research, University of Edinburgh, Edinburgh, UK; Centre for Infection, Immunity and Evolution, University of Edinburgh, Edinburgh, UK.
| | - Rick Maizels
- Institute of Immunology & Infection Research, University of Edinburgh, Edinburgh, UK; Centre for Infection, Immunity and Evolution, University of Edinburgh, Edinburgh, UK; Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunology and Inflammation, University of Glasgow, Glasgow UK
| | - Alan Fenwick
- Schistosomiasis Control Initiative, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Mark Woolhouse
- Centre for Infection, Immunity and Evolution, University of Edinburgh, Edinburgh, UK; Usher Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
41
|
Schistosoma mansoni Infection Can Jeopardize the Duration of Protective Levels of Antibody Responses to Immunizations against Hepatitis B and Tetanus Toxoid. PLoS Negl Trop Dis 2016; 10:e0005180. [PMID: 27926921 PMCID: PMC5142771 DOI: 10.1371/journal.pntd.0005180] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 11/10/2016] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Schistosomiasis is a disease of major public health importance in sub-Saharan Africa. Immunoregulation begins early in schistosome infection and is characterized by hyporesponsiveness to parasite and bystander antigens, suggesting that a schistosome infection at the time of immunization could negatively impact the induction of protective vaccine responses. This study examined whether having a Schistosoma mansoni infection at the time of immunization with hepatitis B and tetanus toxoid (TT) vaccines impacts an individual's ability to achieve and maintain protective antibody levels against hepatitis B surface antigen or TT. METHODS Adults were recruited from Kisumu Polytechnic College in Western Kenya. At enrollment, participants were screened for schistosomiasis and soil transmitted helminths (STHs) and assigned to groups based on helminth status. The vaccines were then administered and helminth infections treated a week after the first hepatitis B boost. Over an 8 month period, 3 blood specimens were obtained for the evaluation of humoral and cytokine responses to the vaccine antigens and for immunophenotyping. RESULTS 146 individuals were available for final analysis and 26% were S. mansoni positive (Sm+). Schistosomiasis did not impede the generation of initial minimum protective antibody levels to either hepatitis B or TT vaccines. However, median hepatitis B surface antibody levels were significantly lower in the Sm+ group after the first boost and remained lower, but not significantly lower, following praziquantel (PZQ) treatment and final boost. In addition, 8 months following TT boost and 7 months following PZQ treatment, Sm+ individuals were more likely to have anti-TT antibody levels fall below levels considered optimal for long term protection. IL-5 levels in response to in vitro TT stimulation of whole blood were significantly higher in the Sm+ group at the 8 month time period as well. CONCLUSIONS Individuals with schistosomiasis at the start the immunizations were capable of responding appropriately to the vaccines as measured by antibody responses. However, they may be at risk of a more rapid decline in antibody levels over time, suggesting that treating schistosome infections with praziquantel before immunizations could be beneficial. The timing of the treatment as well as its full impact on the maintenance of antibodies against vaccine antigens remains to be elucidated.
Collapse
|
42
|
Toulza F, Tsang L, Ottenhoff THM, Brown M, Dockrell HM. Mycobacterium tuberculosis-specific CD4+ T-cell response is increased, and Treg cells decreased, in anthelmintic-treated patients with latent TB. Eur J Immunol 2016; 46:752-61. [PMID: 26638865 DOI: 10.1002/eji.201545843] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 11/09/2015] [Accepted: 11/30/2015] [Indexed: 11/07/2022]
Abstract
In many settings, adults with active or latent tuberculosis will also be coinfected with helminths. Our study aimed to investigate how anthelmintic treatment modulates antimycobacterial immunity, in a setting where helminth reinfection should not occur. We investigated the potential impact of helminth infection on immune responses to Mycobacterium tuberculosis (Mtb) in patients with latent Mtb infection with or without helminth infection (Strongyloides or Schistosoma), and tested T-cell responses before and after anthelmintic treatment. The study was performed in migrants resident in the United Kingdom, where reexposure and reinfection following anthelmintic treatment would not occur. The frequency of CD4(+) IFN-γ(+) T cells was measured following stimulation with Mtb Purified Protein Derivative or ESAT-6/CFP-10 antigen, and concentrations of IFN-γ in culture supernatants measured by ELISA and multiplex bead array. Helminth infection was associated with a lower frequency of CD4(+) IFN-γ(+) T cells, which increased following treatment. Patients with helminth infection showed a significant increase in CD4(+) FoxP3(+) T cells (Treg) compared to those without helminth infection. There was a decrease in the frequency of Treg cells, and an associated increase in CD4(+) IFN-γ(+) T cells after the anthelmintic treatment. Here, we show a potential role of Treg cells in reducing the frequency and function of antimycobacterial CD4(+) IFN-γ(+) T cells, and that these effects are reversed after anthelmintic treatment.
Collapse
Affiliation(s)
- Frederic Toulza
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Lillian Tsang
- Hospital for Tropical Diseases, University College Hospital, and Clinical Research Department, London School of Hygiene and Tropical Medicine, London, UK
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Michael Brown
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.,Hospital for Tropical Diseases, University College Hospital, and Clinical Research Department, London School of Hygiene and Tropical Medicine, London, UK
| | - Hazel M Dockrell
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
43
|
Luty AJF, Elliott AM. Tackling neglect: treating schistosomiasis in pregnancy. THE LANCET. INFECTIOUS DISEASES 2015; 16:137-9. [PMID: 26511958 DOI: 10.1016/s1473-3099(15)00379-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 10/05/2015] [Indexed: 12/30/2022]
Affiliation(s)
- Adrian J F Luty
- Institut de Recherche pour le Développement, MERIT UMR 216, Cotonou, Bénin
| | - Alison M Elliott
- MRC/UVRI Uganda Research Unit on AIDS, PO Box 49, Entebbe, Uganda; London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK.
| |
Collapse
|