1
|
Černý J, Arora G. Proteases and protease inhibitors in saliva of hard ticks: Biological role and pharmacological potential. ADVANCES IN PARASITOLOGY 2024; 126:229-251. [PMID: 39448192 DOI: 10.1016/bs.apar.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Hard ticks (family Ixodidae) are significant vectors of pathogens affecting humans and animals. This review explores the composition of tick saliva, focusing on proteases and protease inhibitors, their biological roles, and their potential in vaccines and therapies. Tick saliva contains various proteases, mostly metalloproteases, serpins, cystatins, and Kunitz-type inhibitors, which modulate host hemostatic, immune, and wound healing responses to facilitate blood feeding and pathogen transmission. Proteases inhibit blood clotting, degrade extracellular matrix components, and modulate immune responses. Serpins, cystatins, and Kunitz-type inhibitors further inhibit key proteases involved in coagulation and inflammation, making them promising candidates for anticoagulant, anti-inflammatory, and immunomodulatory therapies. Several tick proteases and protease inhibitors have shown potential as vaccine targets, reducing tick feeding success and pathogen transmission. Future research should focus on comprehensive proteomic and genomic analyses, detailed structural and functional studies, and vaccine trials. Advanced omics approaches and bioinformatics tools will be crucial in uncovering the complex interactions between ticks, hosts, and pathogens, improving tick control strategies and public health outcomes.
Collapse
Affiliation(s)
- Jiří Černý
- Centre for Infectious Animal Diseases, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague-Suchdol, Czechia.
| | - Gunjan Arora
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States; Laboratory of Host-Pathogen Dynamics, National Heart Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States; Molecular and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| |
Collapse
|
2
|
Schoville SD, Burke RL, Dong DY, Ginsberg HS, Maestas L, Paskewitz SM, Tsao JI. Genome resequencing reveals population divergence and local adaptation of blacklegged ticks in the United States. Mol Ecol 2024; 33:e17460. [PMID: 38963031 DOI: 10.1111/mec.17460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/12/2024] [Accepted: 04/15/2024] [Indexed: 07/05/2024]
Abstract
Tick vectors and tick-borne disease are increasingly impacting human populations globally. An important challenge is to understand tick movement patterns, as this information can be used to improve management and predictive modelling of tick population dynamics. Evolutionary analysis of genetic divergence, gene flow and local adaptation provides insight on movement patterns at large spatiotemporal scales. We develop low coverage, whole genome resequencing data for 92 blacklegged ticks, Ixodes scapularis, representing range-wide variation across the United States. Through analysis of population genomic data, we find that tick populations are structured geographically, with gradual isolation by distance separating three population clusters in the northern United States, southeastern United States and a unique cluster represented by a sample from Tennessee. Populations in the northern United States underwent population contractions during the last glacial period and diverged from southern populations at least 50 thousand years ago. Genome scans of selection provide strong evidence of local adaptation at genes responding to host defences, blood-feeding and environmental variation. In addition, we explore the potential of low coverage genome sequencing of whole-tick samples for documenting the diversity of microbial pathogens and recover important tick-borne pathogens such as Borrelia burgdorferi. The combination of isolation by distance and local adaptation in blacklegged ticks demonstrates that gene flow, including recent expansion, is limited to geographical scales of a few hundred kilometres.
Collapse
Affiliation(s)
- Sean D Schoville
- Department of Entomology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Russell L Burke
- Department of Biology, Hofstra University, Hempstead, New York, USA
| | - Dahn-Young Dong
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Howard S Ginsberg
- United States Geological Survey, Eastern Ecological Science Center, Woodward Hall - PSE, Field Station at the University of Rhode Island, Kingston, Rhode Island, USA
| | - Lauren Maestas
- Cattle Fever Tick Research Laboratory, USDA, Agricultural Research Service, Edinburg, Texas, USA
| | - Susan M Paskewitz
- Department of Entomology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jean I Tsao
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, USA
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
3
|
Ansari MA, Nguyen TT, Kocurek KI, Kim WTH, Kim TK, Mulenga A. Recombinant Ixodes scapularis Calreticulin Binds Complement Proteins but Does Not Protect Borrelia burgdorferi from Complement Killing. Pathogens 2024; 13:560. [PMID: 39057787 PMCID: PMC11280304 DOI: 10.3390/pathogens13070560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Ixodes scapularis is a blood-feeding obligate ectoparasite responsible for transmitting the Lyme disease (LD) agent, Borrelia burgdorferi. During the feeding process, I. scapularis injects B. burgdorferi into the host along with its saliva, facilitating the transmission and colonization of the LD agent. Tick calreticulin (CRT) is one of the earliest tick saliva proteins identified and is currently utilized as a biomarker for tick bites. Our recent findings revealed elevated levels of CRT in the saliva proteome of B. burgdorferi-infected I. scapularis nymphs compared to uninfected ticks. Differential precipitation of proteins (DiffPOP) and LC-MS/MS analyses were used to identify the interactions between Ixs (I. scapularis) CRT and human plasma proteins and further explore its potential role in shielding B. burgdorferi from complement killing. We observed that although yeast-expressed recombinant (r) IxsCRT binds to the C1 complex (C1q, C1r, and C1s), the activator of complement via the classical cascade, it did not inhibit the deposition of the membrane attack complex (MAC) via the classical pathway. Intriguingly, rIxsCRT binds intermediate complement proteins (C3, C5, and C9) and reduces MAC deposition through the lectin pathway. Despite the inhibition of MAC deposition in the lectin pathway, rIxsCRT did not protect a serum-sensitive B. burgdorferi strain (B314/pBBE22Luc) from complement-induced killing. As B. burgdorferi establishes a local dermal infection before disseminating to secondary organs, it is noteworthy that rIxsCRT promotes the replication of B. burgdorferi in culture. We hypothesize that rIxsCRT may contribute to the transmission and/or host colonization of B. burgdorferi by acting as a decoy activator of complement and by fostering B. burgdorferi replication at the transmission site.
Collapse
Affiliation(s)
- Moiz Ashraf Ansari
- Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA; (M.A.A.); (T.-T.N.); (W.T.H.K.)
| | - Thu-Thuy Nguyen
- Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA; (M.A.A.); (T.-T.N.); (W.T.H.K.)
| | | | - William Tae Heung Kim
- Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA; (M.A.A.); (T.-T.N.); (W.T.H.K.)
| | - Tae Kwon Kim
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA;
| | - Albert Mulenga
- Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA; (M.A.A.); (T.-T.N.); (W.T.H.K.)
| |
Collapse
|
4
|
Ali EAA, Hussein NA, El-Hakim AE, Amer MA, Shahein YE. Cloning and catalytic profile of Hyalomma dromedarii leucine aminopeptidase. Int J Biol Macromol 2024; 268:131778. [PMID: 38657929 DOI: 10.1016/j.ijbiomac.2024.131778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/15/2024] [Accepted: 04/21/2024] [Indexed: 04/26/2024]
Abstract
Ticks have harmful impacts on both human and animal health and cause considerable economic losses. Leucine aminopeptidase enzymes (LAP) play important roles during tick infestation to liberate vital amino acids necessary for growth. The aim of the current study is to identify, express and characterize the LAP from the hard tick Hyalomma dromedarii and elucidate its biochemical characteristics. We cloned an open reading frame of 1560 bp encoding a protein of 519 amino acids. The LAP full-length was expressed in Escherichia coli BL21 (DE3) and purified. The recombinant enzyme (H.d rLAP- 6×His) had a predicted molecular mass of approximately 55 kDa. Purification and the enzymatic characteristics of H.d rLAP- 6×His were studied. The purified enzyme showed maximum activity at 37 °C and pH 8.0-8.5 using Leu-p-nitroanilide as a substrate. The activity of H.d rLAP- 6×His was sensitive to β-mercaptoethanol, dl-dithiothreitol, 1,10- phenanthroline, bestatin HCl, and EDTA and completely abolished by 0.05 % SDS. In parallel, the enzymatic activity was enhanced by Ni2+, Mn2+ and Mg2+, partially inhibited by Na+, Cu2+, Ca2+ and completely inhibited by Zn2+.
Collapse
Affiliation(s)
- Esraa A A Ali
- Molecular Biology Department, Biotechnology Research Institute, National Research Centre, Dokki, 12622 Cairo, Egypt
| | - Nahla A Hussein
- Molecular Biology Department, Biotechnology Research Institute, National Research Centre, Dokki, 12622 Cairo, Egypt.
| | - Amr E El-Hakim
- Molecular Biology Department, Biotechnology Research Institute, National Research Centre, Dokki, 12622 Cairo, Egypt
| | - Mahmoud A Amer
- Zoology Department, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | - Yasser E Shahein
- Molecular Biology Department, Biotechnology Research Institute, National Research Centre, Dokki, 12622 Cairo, Egypt.
| |
Collapse
|
5
|
Dedavid E Silva LA, Parizi LF, Molossi FA, Driemeier D, da Silva Vaz Junior I. Rhipicephalus microplus thyropin-like protein: Structural and immunologic analyzes. Vet Parasitol 2024; 327:110136. [PMID: 38290194 DOI: 10.1016/j.vetpar.2024.110136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/01/2024]
Abstract
Tick saliva has a pivotal function in parasitism. It has pharmacological and immunomodulatory properties, with several proteins reported in its composition. Thyroglobulin type-1 domain protease inhibitor (thyropin)-like proteins are found in tick saliva, but their function, properties and structures are poorly characterized. It has been reported that thyropins are capable of inhibiting cysteine peptidases present in antigen-presenting cells. To elucidate the role of thyropin-like proteins in ticks, we conducted in silico analysis and cloned an open reading frame from a thyropin-like protein found in Rhipicephalus microplus. The recombinant protein was successfully expressed, followed by immunological characterization and a vaccine trial against Rhipicephalus sanguineus in rabbits. Several differences are observed between thyropin-like proteins from hard and soft ticks, especially the number of thyroglobulin domains and predicted glycosylation pattern. Thyropin-like proteins also differ between postriata and metastriata ticks, the latter having a coil-domain at the C-terminal region and high number of predicted glycosylation sites. Overall, the data suggested divergence in thyropin-like proteins functions among ticks. The recombinant thyropin-like protein is immunogenic and the antibodies against it are able to recognize the native protein in tick saliva and tissues. While the recombinant protein does not elicit a protective response against R. sanguineus infestation, its characterization paves the way for further investigations aimed at determining the precise function of this protein in tick physiology.
Collapse
Affiliation(s)
- Lucas Andre Dedavid E Silva
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Prédio 43421, Porto Alegre 91501-970, RS, Brazil
| | - Luís Fernando Parizi
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Prédio 43421, Porto Alegre 91501-970, RS, Brazil
| | - Franciéli Adriane Molossi
- Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9090, Porto Alegre 91540-000, RS, Brazil
| | - David Driemeier
- Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9090, Porto Alegre 91540-000, RS, Brazil
| | - Itabajara da Silva Vaz Junior
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Prédio 43421, Porto Alegre 91501-970, RS, Brazil; Instituto Nacional de Ciência e Tecnologia - Entomologia Molecular, Rio de Janeiro, RJ, Brazil; Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9090, Porto Alegre 91540-000, RS, Brazil.
| |
Collapse
|
6
|
da Silva Vaz Junior I, Lu S, Pinto AFM, Diedrich JK, Yates JR, Mulenga A, Termignoni C, Ribeiro JM, Tirloni L. Changes in saliva protein profile throughout Rhipicephalus microplus blood feeding. Parasit Vectors 2024; 17:36. [PMID: 38281054 PMCID: PMC10821567 DOI: 10.1186/s13071-024-06136-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/12/2024] [Indexed: 01/29/2024] Open
Abstract
BACKGROUND When feeding on a vertebrate host, ticks secrete saliva, which is a complex mixture of proteins, lipids, and other molecules. Tick saliva assists the vector in modulating host hemostasis, immunity, and tissue repair mechanisms. While helping the vector to feed, its saliva modifies the site where pathogens are inoculated and often facilitates the infection process. The objective of this study is to uncover the variation in protein composition of Rhipicephalus microplus saliva during blood feeding. METHODS Ticks were fed on calves, and adult females were collected, weighed, and divided in nine weight groups, representing the slow and rapid feeding phases of blood feeding. Tick saliva was collected, and mass spectrometry analyses were used to identify differentially secreted proteins. Bioinformatic tools were employed to predict the structural and functional features of the salivary proteins. Reciprocal best hit analyses were used to identify conserved families of salivary proteins secreted by other tick species. RESULTS Changes in the protein secretion profiles of R. microplus adult female saliva during the blood feeding were observed, characterizing the phenomenon known as "sialome switching." This observation validates the idea that the switch in protein expression may serve as a mechanism for evading host responses against tick feeding. Cattle tick saliva is predominantly rich in heme-binding proteins, secreted conserved proteins, lipocalins, and protease inhibitors, many of which are conserved and present in the saliva of other tick species. Additionally, another remarkable observation was the identification of host-derived proteins as a component of tick saliva. CONCLUSIONS Overall, this study brings new insights to understanding the dynamics of the proteomic profile of tick saliva, which is an important component of tick feeding biology. The results presented here, along with the disclosed sequences, contribute to our understanding of tick feeding biology and might aid in the identification of new targets for the development of novel anti-tick methods.
Collapse
Affiliation(s)
- Itabajara da Silva Vaz Junior
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Stephen Lu
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, MD, USA
| | - Antônio F M Pinto
- Clayton Foundation Peptide Biology Lab, Salk Institute for Biological Studies, La Jolla, CA, USA
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Jolene K Diedrich
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
- Mass Spectrometry Core, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Albert Mulenga
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
| | - Carlos Termignoni
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - José Marcos Ribeiro
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, MD, USA
| | - Lucas Tirloni
- Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA.
| |
Collapse
|
7
|
Li Z, McComic S, Chen R, Kim WTH, Gaithuma AK, Mooney B, Macaluso KR, Mulenga A, Swale DR. ATP-sensitive inward rectifier potassium channels regulate secretion of pro-feeding salivary proteins in the lone star tick (Amblyomma americanum). Int J Biol Macromol 2023; 253:126545. [PMID: 37652342 DOI: 10.1016/j.ijbiomac.2023.126545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/02/2023]
Abstract
Understanding the physiological and molecular regulation of tick feeding is necessary for developing intervention strategies to curb disease transmission by ticks. Pharmacological activation of ATP-gated inward rectifier potassium (KATP) channels reduced fluid secretion from isolated salivary gland and blood feeding in the lone star tick, Amblyomma americanum, yet the temporal expression pattern of KATP channel proteins remained unknown. KATP channels were highly expressed in type II and III acini in off-host stage and early feeding phase ticks, yet expression was reduced in later stages of feeding. We next assessed KATP channel regulation of the secreted proteome of tick saliva. LC-MS/MS analysis identified 40 differentially secreted tick saliva proteins after exposure to KATP activators or inhibitors. Secretion of previously validated tick saliva proteins that promote tick feeding, AV422, AAS27, and AAS41 were significantly reduced by upwards of 8 log units in ticks exposed to KATP channel activators when compared to untreated ticks. Importantly, activation of KATP channels inhibited tick feeding and vice versa for KATP channel inhibitors. Data indicate KATP channels regulate tick feeding biology by controlling secretion of pro-feeding proteins that are essential during early feeding phases, which provides insights into physiological and molecular regulation of tick feeding behavior.
Collapse
Affiliation(s)
- Zhilin Li
- Department of Entomology, Louisiana State University AgCenter, Baton Rouge, LA, United States of America; Emerging Pathogens Institute, Department of Entomology and Nematology, University of Florida, Gainesville, FL 32610, USA
| | - Sarah McComic
- Emerging Pathogens Institute, Department of Entomology and Nematology, University of Florida, Gainesville, FL 32610, USA
| | - Rui Chen
- Emerging Pathogens Institute, Department of Entomology and Nematology, University of Florida, Gainesville, FL 32610, USA
| | - William Tae Heung Kim
- Department of Veterinary pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
| | - Alex Kiarie Gaithuma
- Department of Veterinary pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
| | - Brian Mooney
- Department of Biochemistry, Charles W Gehrlke Proteomics Center, University of Missouri, MO, USA
| | - Kevin R Macaluso
- Department of Microbiology and Immunology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Albert Mulenga
- Department of Veterinary pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
| | - Daniel R Swale
- Emerging Pathogens Institute, Department of Entomology and Nematology, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
8
|
Tang X, Lynn GE, Cui Y, Cerny J, Arora G, Tomayko MM, Craft J, Fikrig E. Bulk and single-nucleus RNA sequencing highlight immune pathways induced in individuals during an Ixodes scapularis tick bite. Infect Immun 2023; 91:e0028223. [PMID: 37846980 PMCID: PMC10652856 DOI: 10.1128/iai.00282-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/14/2023] [Indexed: 10/18/2023] Open
Abstract
Ticks are hematophagous arthropods that use a complex mixture of salivary proteins to evade host defenses while taking a blood meal. Little is known about the immunological and physiological consequences of tick feeding on humans. Here, we performed the first bulk and single-nucleus RNA sequencing (snRNA-seq) of skin and blood of four persons presenting with naturally acquired, attached Ixodes scapularis ticks. Pathways and individual genes associated with innate and adaptive immunity were identified based on bulk RNA sequencing, including interleukin-17 signaling and platelet activation pathways at the site of tick attachment or in peripheral blood. snRNA-seq further revealed that the Hippo signaling, cell adhesion, and axon guidance pathways were involved in the response to an I. scapularis bite in humans. Features of the host response in these individuals also overlapped with that of laboratory guinea pigs exposed to I. scapularis and which acquired resistance to ticks. These findings offer novel insights for the development of new biomarkers for I. scapularis exposure and anti-tick vaccines for human use.
Collapse
Affiliation(s)
- Xiaotian Tang
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Geoffrey E. Lynn
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yingjun Cui
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jiri Cerny
- Czech University of Life Sciences Prague, Praha-Suchdol, Czechia
| | - Gunjan Arora
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Mary M. Tomayko
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Joseph Craft
- Section of Rheumatology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
9
|
Bencosme-Cuevas E, Kim TK, Nguyen TT, Berry J, Li J, Adams LG, Smith LA, Batool SA, Swale DR, Kaufmann SHE, Jones-Hall Y, Mulenga A. Ixodes scapularis nymph saliva protein blocks host inflammation and complement-mediated killing of Lyme disease agent, Borrelia burgdorferi. Front Cell Infect Microbiol 2023; 13:1253670. [PMID: 37965264 PMCID: PMC10641286 DOI: 10.3389/fcimb.2023.1253670] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/14/2023] [Indexed: 11/16/2023] Open
Abstract
Tick serine protease inhibitors (serpins) play crucial roles in tick feeding and pathogen transmission. We demonstrate that Ixodes scapularis (Ixs) nymph tick saliva serpin (S) 41 (IxsS41), secreted by Borrelia burgdorferi (Bb)-infected ticks at high abundance, is involved in regulating tick evasion of host innate immunity and promoting host colonization by Bb. Recombinant (r) proteins were expressed in Pichia pastoris, and substrate hydrolysis assays were used to determine. Ex vivo (complement and hemostasis function related) and in vivo (paw edema and effect on Bb colonization of C3H/HeN mice organs) assays were conducted to validate function. We demonstrate that rIxsS41 inhibits chymase and cathepsin G, pro-inflammatory proteases that are released by mast cells and neutrophils, the first immune cells at the tick feeding site. Importantly, stoichiometry of inhibition analysis revealed that 2.2 and 2.8 molecules of rIxsS41 are needed to 100% inhibit 1 molecule of chymase and cathepsin G, respectively, suggesting that findings here are likely events at the tick feeding site. Furthermore, chymase-mediated paw edema, induced by the mast cell degranulator, compound 48/80 (C48/80), was blocked by rIxsS41. Likewise, rIxsS41 reduced membrane attack complex (MAC) deposition via the alternative and lectin complement activation pathways and dose-dependently protected Bb from complement killing. Additionally, co-inoculating C3H/HeN mice with Bb together with rIxsS41 or with a mixture (rIxsS41 and C48/80). Findings in this study suggest that IxsS41 markedly contributes to tick feeding and host colonization by Bb. Therefore, we conclude that IxsS41 is a potential candidate for an anti-tick vaccine to prevent transmission of the Lyme disease agent.
Collapse
Affiliation(s)
- Emily Bencosme-Cuevas
- Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Tae Kwon Kim
- Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Thu-Thuy Nguyen
- Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Jacquie Berry
- Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Jianrong Li
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Leslie Garry Adams
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | | | | | - Daniel R. Swale
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | - Stefan H. E. Kaufmann
- Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
- Hagler Institute for Advanced Study, Texas A&M University, College Station, TX, United States
- Max Planck Institute for Infection Biology, Berlin, Germany
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Yava Jones-Hall
- Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Albert Mulenga
- Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
10
|
Rodríguez-Durán A, Ullah S, Parizi LF, Ali A, da Silva Vaz Junior I. Rabbits as Animal Models for Anti-Tick Vaccine Development: A Global Scenario. Pathogens 2023; 12:1117. [PMID: 37764925 PMCID: PMC10536012 DOI: 10.3390/pathogens12091117] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Studies evaluating candidate tick-derived proteins as anti-tick vaccines in natural hosts have been limited due to high costs. To overcome this problem, animal models are used in immunization tests. The aim of this article was to review the use of rabbits as an experimental model for the evaluation of tick-derived proteins as vaccines. A total of 57 tick proteins were tested for their immunogenic potential using rabbits as models for vaccination. The most commonly used rabbit breeds were New Zealand (73.8%), Japanese white (19%), Californians (4.8%) and Flemish lop-eared (2.4%) rabbits. Anti-tick vaccines efficacy resulted in up to 99.9%. Haemaphysalis longicornis (17.9%) and Ornithodoros moubata (12.8%) were the most common tick models in vaccination trials. Experiments with rabbits have revealed that some proteins (CoAQP, OeAQP, OeAQP1, Bm86, GST-Hl, 64TRP, serpins and voraxin) can induce immune responses against various tick species. In addition, in some cases it was possible to determine that the vaccine efficacy in rabbits was similar to that of experiments performed on natural hosts (e.g., Bm86, IrFER2, RmFER2, serpins and serine protease inhibitor). In conclusion, results showed that prior to performing anti-tick vaccination trials using natural hosts, rabbits can be used as suitable experimental models for these studies.
Collapse
Affiliation(s)
- Arlex Rodríguez-Durán
- Centro de Biotecnologia, Universidade Federal do Rio Grande de Sul, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970, RS, Brazil; (A.R.-D.); (S.U.); (L.F.P.)
- Programa de Pós-Graduação em Ciências Veterinária, Universidade Federal do Rio Grande de Sul, Avenida Bento Gonçalves, 9090, Porto Alegre 91540-000, RS, Brazil
- Grupo de Investigación Parasitología Veterinaria, Laboratorio de Parasitología Veterinaria, Universidad Nacional de Colombia, Carrera 45 No. 26-85, Bogotá 110911, Colombia
| | - Shafi Ullah
- Centro de Biotecnologia, Universidade Federal do Rio Grande de Sul, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970, RS, Brazil; (A.R.-D.); (S.U.); (L.F.P.)
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Khyber Pakhtunkhwa, Pakistan;
| | - Luís Fernando Parizi
- Centro de Biotecnologia, Universidade Federal do Rio Grande de Sul, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970, RS, Brazil; (A.R.-D.); (S.U.); (L.F.P.)
| | - Abid Ali
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Khyber Pakhtunkhwa, Pakistan;
| | - Itabajara da Silva Vaz Junior
- Centro de Biotecnologia, Universidade Federal do Rio Grande de Sul, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970, RS, Brazil; (A.R.-D.); (S.U.); (L.F.P.)
- Faculdade de Veterinária, Universidade Federal do Rio Grande de Sul, Avenida Bento Gonçalves, 9090, Porto Alegre 91540-000, RS, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro 21941-853, RJ, Brazil
| |
Collapse
|
11
|
Parizi LF, Githaka NW, Logullo C, Zhou J, Onuma M, Termignoni C, da Silva Vaz I. Universal Tick Vaccines: Candidates and Remaining Challenges. Animals (Basel) 2023; 13:2031. [PMID: 37370541 DOI: 10.3390/ani13122031] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/29/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
Recent advancements in molecular biology, particularly regarding massively parallel sequencing technologies, have enabled scientists to gain more insight into the physiology of ticks. While there has been progress in identifying tick proteins and the pathways they are involved in, the specificities of tick-host interaction at the molecular level are not yet fully understood. Indeed, the development of effective commercial tick vaccines has been slower than expected. While omics studies have pointed to some potential vaccine immunogens, selecting suitable antigens for a multi-antigenic vaccine is very complex due to the participation of redundant molecules in biological pathways. The expansion of ticks and their pathogens into new territories and exposure to new hosts makes it necessary to evaluate vaccine efficacy in unusual and non-domestic host species. This situation makes ticks and tick-borne diseases an increasing threat to animal and human health globally, demanding an urgent availability of vaccines against multiple tick species and their pathogens. This review discusses the challenges and advancements in the search for universal tick vaccines, including promising new antigen candidates, and indicates future directions in this crucial research field.
Collapse
Affiliation(s)
- Luís Fernando Parizi
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | | | - Carlos Logullo
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-853, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-853, Brazil
| | - Jinlin Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Misao Onuma
- Department of Infectious Diseases, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Carlos Termignoni
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-853, Brazil
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre 90040-060, Brazil
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-853, Brazil
- Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre 91540-000, Brazil
| |
Collapse
|
12
|
Liu L, Cheng R, Mao SQ, Duan DY, Feng LL, Cheng TY. Saliva proteome of partially- and fully-engorged adult female Haemaphysalis flava ticks. Vet Parasitol 2023; 318:109933. [PMID: 37043866 DOI: 10.1016/j.vetpar.2023.109933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/13/2023] [Accepted: 04/06/2023] [Indexed: 04/14/2023]
Abstract
Tick saliva is a reservoir of bioactive proteins. Saliva protein compositions change dynamically during blood-feeding. Decipherment of protein profiles in different blood-feeding stages may bring deeper insight into tick feeding physiology and provide targets for immunologic control alternatives. However, having the infancy of tick genome sequencing, assembly, annotation, and limited knowledge of tick salivary proteins restrain the data interpretation. Here, we aimed to depict the saliva protein profile in partially- (PE) and fully-engorged (FE) Haemaphysalis flava ticks, with a special focus on the analysis of those uncharacterized proteins. Saliva was collected from PE and FE adult female H. flava ticks. Saliva proteins were analyzed by high-performance liquid chromatography-tandem mass spectrometry (HPLC/MS-MS). MS data were searched against an in-house salivary gland transcriptome library for identification of tick-derived proteins. Abundances of proteins were compared between PE and FE ticks. The uncharacterized proteins detected in saliva were further bioinformatically analyzed. In total, 614 proteins were identified including 94 host proteins and 520 tick-derived proteins. The 226 tick-derived high-confidence proteins were classified into 10 categories: transporters, enzymes, protease inhibitors, immunity-related proteins, lipocalins, glycine-rich proteins, muscle proteins, secreted proteins, uncharacterized proteins and others. A total of 98 proteins were shared in both PE and FE with 74 only in PE and 54 only in FE. Abundances of 24 shared proteins were significantly higher in PE. The profile of top 15 most abundant proteins was also different between PE and FE ticks. The 65 uncharacterized proteins detected in tick saliva were branched into subclusters 1 A, 1B, 2, 3 A, 3B and 3 C based on particular motifs like RGD, LRR, indicating their diverse predicted functions like anti-coagulation, regulation of innate immune, or other functions. This study provides and compares saliva proteomes of H. flava ticks in two feeding stages with special cluster analysis on the uncharacterized proteins. Further investigations are needed to confirm the roles of these uncharacterized proteins in ticks.
Collapse
Affiliation(s)
- Lei Liu
- Research Center for Parasites & Vectors (RCPV), College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Rong Cheng
- Research Center for Parasites & Vectors (RCPV), College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Si-Qing Mao
- Research Center for Parasites & Vectors (RCPV), College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - De-Yong Duan
- Research Center for Parasites & Vectors (RCPV), College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Li-Li Feng
- Research Center for Parasites & Vectors (RCPV), College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Tian-Yin Cheng
- Research Center for Parasites & Vectors (RCPV), College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
13
|
Narasimhan S, Booth CJ, Philipp MT, Fikrig E, Embers ME. Repeated Tick Infestations Impair Borrelia burgdorferi Transmission in a Non-Human Primate Model of Tick Feeding. Pathogens 2023; 12:132. [PMID: 36678479 PMCID: PMC9861725 DOI: 10.3390/pathogens12010132] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/03/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
The blacklegged tick, Ixodes scapularis, is the predominant vector of Borrelia burgdorferi, the agent of Lyme disease in the USA. Natural hosts of I. scapularis such as Peromyscus leucopus are repeatedly infested by these ticks without acquiring tick resistance. However, upon repeated tick infestations, non-natural hosts such as guinea pigs, mount a robust immune response against critical tick salivary antigens and acquire tick resistance able to thwart tick feeding and Borrelia burgdorferi transmission. The salivary targets of acquired tick resistance could serve as vaccine targets to prevent tick feeding and the tick transmission of human pathogens. Currently, there is no animal model able to demonstrate both tick resistance and diverse clinical manifestations of Lyme disease. Non-human primates serve as robust models of human Lyme disease. By evaluating the responses to repeated tick infestation, this animal model could accelerate our ability to define the tick salivary targets of acquired resistance that may serve as vaccines to prevent the tick transmission of human pathogens. Towards this goal, we assessed the development of acquired tick resistance in non-human primates upon repeated tick infestations. We report that following repeated tick infestations, non-human primates do not develop the hallmarks of acquired tick resistance observed in guinea pigs. However, repeated tick infestations elicit immune responses able to impair the tick transmission of B. burgdorferi. A mechanistic understanding of the protective immune responses will provide insights into B. burgdorferi-tick-host interactions and additionally contribute to anti-tick vaccine discovery.
Collapse
Affiliation(s)
- Sukanya Narasimhan
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Carmen J. Booth
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Mario T. Philipp
- Division of Bacteriology & Parasitology, Tulane School of Medicine, New Orleans, LA 70112, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Monica E. Embers
- Division of Bacteriology & Parasitology, Tulane School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
14
|
Mulenga A, Radulovic Z, Porter L, Britten TH, Kim TK, Tirloni L, Gaithuma AK, Adeniyi-Ipadeola GO, Dietrich JK, Moresco JJ, Yates JR. Identification and characterization of proteins that form the inner core Ixodes scapularis tick attachment cement layer. Sci Rep 2022; 12:21300. [PMID: 36494396 PMCID: PMC9734129 DOI: 10.1038/s41598-022-24881-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
Ixodes scapularis long-term blood feeding behavior is facilitated by a tick secreted bio adhesive (tick cement) that attaches tick mouthparts to skin tissue and prevents the host from dislodging the attached tick. Understanding tick cement formation is highly sought after as its disruption will prevent tick feeding. This study describes proteins that form the inner core layer of I. scapularis tick cement as disrupting these proteins will likely stop formation of the outer cortical layer. The inner core cement layer completes formation by 24 h of tick attachment. Thus, we used laser-capture microdissection to isolate cement from cryosections of 6 h and 24 h tick attachment sites and to distinguish between early and late inner core cement proteins. LC-MS/MS analysis identified 138 tick cement proteins (TCPs) of which 37 and 35 were unique in cement of 6 and 24 h attached ticks respectively. We grouped TCPs in 14 functional categories: cuticular protein (16%), tick specific proteins of unknown function, cytoskeletal proteins, and enzymes (13% each), enzymes (10%), antioxidant, glycine rich, scaffolding, heat shock, histone, histamine binding, proteases and protease inhibitors, and miscellaneous (3-6% each). Gene ontology analysis confirm that TCPs are enriched for bio adhesive properties. Our data offer insights into tick cement bonding patterns and set the foundation for understanding the molecular basis of I. scapularis tick cement formation.
Collapse
Affiliation(s)
- Albert Mulenga
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA.
| | - Zeljko Radulovic
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
- Department of Biology, Stephen F. Austin State University, Nacogdoches, TX, USA
| | - Lindsay Porter
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
- Department of Biology, Stephen F. Austin State University, Nacogdoches, TX, USA
| | - Taylor Hollman Britten
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
| | - Tae Kwon Kim
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Lucas Tirloni
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
| | - Alex Kiarie Gaithuma
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
| | - Grace O Adeniyi-Ipadeola
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jolene K Dietrich
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
- Mass Spectrometry Core, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - James J Moresco
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
- Center for Genetics of Host Defense, UT Southwestern Medical Center, Dallas, TX, USA
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
15
|
Cheng BX, Shao GY, Li Y, Tian QQ, Wang SY, Liu F. Molecular cloning and characterisation of the PmEglin cDNA in the leech Hirudinaria sp. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01277-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
16
|
Jin L, Jiang BG, Yin Y, Guo J, Jiang JF, Qi X, Crispell G, Karim S, Cao WC, Lai R. Interference with LTβR signaling by tick saliva facilitates transmission of Lyme disease spirochetes. Proc Natl Acad Sci U S A 2022; 119:e2208274119. [PMID: 36383602 PMCID: PMC9704693 DOI: 10.1073/pnas.2208274119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022] Open
Abstract
Lyme spirochetes have coevolved with ticks to optimize transmission to hosts using tick salivary molecules (TSMs) to counteract host defenses. TSMs modulate various molecular events at the tick-host interface. Lymphotoxin-beta receptor (LTβR) is a vital immune receptor and plays protective roles in host immunity against microbial infections. We found that Ltbr knockout mice were more susceptible to Lyme disease spirochetes, suggesting the involvement of LTβR signaling in tick-borne Borrelia infection. Further investigation showed that a 15-kDa TSM protein from Ixodes persulcatus (I. persulcatus salivary protein; IpSAP) functioned as an immunosuppressant to facilitate the transmission and infection of Lyme disease spirochetes. IpSAP directly interacts with LTβR to block its activation, thus inhibiting the downstream signaling and consequently suppressing immunity. IpSAP immunization provided mice with significant protection against I. persulcatus-mediated Borrelia garinii infection. Notably, the immunization showed considerable cross-protection against other Borrelia infections mediated by other ixodid ticks. One of the IpSAP homologs from other ixodid ticks showed similar effects on Lyme spirochete transmission. Together, our findings suggest that LTβR signaling plays an important role in blocking the transmission and pathogenesis of tick-borne Lyme disease spirochetes, and that IpSAP and its homologs are promising candidates for broad-spectrum vaccine development.
Collapse
Affiliation(s)
- Lin Jin
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Bao-Gui Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100101, China
| | - Yizhu Yin
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China
| | - Jingya Guo
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jia-Fu Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100101, China
| | - Xiaopeng Qi
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China
| | - Gary Crispell
- Cell and Molecular Biology, School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS 39406
| | - Shahid Karim
- Cell and Molecular Biology, School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS 39406
| | - Wu-Chun Cao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100101, China
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China
| |
Collapse
|
17
|
Hodosi R, Kazimirova M, Soltys K. What do we know about the microbiome of I. ricinus? Front Cell Infect Microbiol 2022; 12:990889. [PMID: 36467722 PMCID: PMC9709289 DOI: 10.3389/fcimb.2022.990889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 10/17/2022] [Indexed: 10/07/2023] Open
Abstract
I. ricinus is an obligate hematophagous parasitic arthropod that is responsible for the transmission of a wide range of zoonotic pathogens including spirochetes of the genus Borrelia, Rickettsia spp., C. burnetii, Anaplasma phagocytophilum and Francisella tularensis, which are part the tick´s microbiome. Most of the studies focus on "pathogens" and only very few elucidate the role of "non-pathogenic" symbiotic microorganisms in I. ricinus. While most of the members of the microbiome are leading an intracellular lifestyle, they are able to complement tick´s nutrition and stress response having a great impact on tick´s survival and transmission of pathogens. The composition of the tick´s microbiome is not consistent and can be tied to the environment, tick species, developmental stage, or specific organ or tissue. Ovarian tissue harbors a stable microbiome consisting mainly but not exclusively of endosymbiotic bacteria, while the microbiome of the digestive system is rather unstable, and together with salivary glands, is mostly comprised of pathogens. The most prevalent endosymbionts found in ticks are Rickettsia spp., Ricketsiella spp., Coxiella-like and Francisella-like endosymbionts, Spiroplasma spp. and Candidatus Midichloria spp. Since microorganisms can modify ticks' behavior, such as mobility, feeding or saliva production, which results in increased survival rates, we aimed to elucidate the potential, tight relationship, and interaction between bacteria of the I. ricinus microbiome. Here we show that endosymbionts including Coxiella-like spp., can provide I. ricinus with different types of vitamin B (B2, B6, B7, B9) essential for eukaryotic organisms. Furthermore, we hypothesize that survival of Wolbachia spp., or the bacterial pathogen A. phagocytophilum can be supported by the tick itself since coinfection with symbiotic Spiroplasma ixodetis provides I. ricinus with complete metabolic pathway of folate biosynthesis necessary for DNA synthesis and cell division. Manipulation of tick´s endosymbiotic microbiome could present a perspective way of I. ricinus control and regulation of spread of emerging bacterial pathogens.
Collapse
Affiliation(s)
- Richard Hodosi
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Maria Kazimirova
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Katarina Soltys
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
- Comenius University Science Park, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
18
|
Strobl J, Mündler V, Müller S, Gindl A, Berent S, Schötta AM, Kleissl L, Staud C, Redl A, Unterluggauer L, Aguilar González AE, Weninger ST, Atzmüller D, Klasinc R, Stanek G, Markowicz M, Stockinger H, Stary G. Tick feeding modulates the human skin immune landscape to facilitate tick-borne pathogen transmission. J Clin Invest 2022; 132:e161188. [PMID: 36166299 PMCID: PMC9621130 DOI: 10.1172/jci161188] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
During cutaneous tick attachment, the feeding cavity becomes a site of transmission for tick salivary compounds and tick-borne pathogens. However, the immunological consequences of tick feeding for human skin remain unclear. Here, we assessed human skin and blood samples upon tick bite and developed a human skin explant model mimicking Ixodes ricinus bites and tick-borne pathogen infection. Following tick attachment, we observed rapidly occurring patterns of immunomodulation, including increases in neutrophils and cutaneous B and T cells. T cells upregulated tissue residency markers, while lymphocytic cytokine production was impaired. In early stages of Borrelia burgdorferi model infections, we detected strain-specific immune responses and close spatial relationships between macrophages and spirochetes. Preincubation of spirochetes with tick salivary gland extracts hampered accumulation of immune cells and increased spirochete loads. Collectively, we showed that tick feeding exerts profound changes on the skin immune network that interfere with the primary response against tick-borne pathogens.
Collapse
Affiliation(s)
- Johanna Strobl
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Verena Mündler
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Sophie Müller
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Anna Gindl
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Sara Berent
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Anna-Margarita Schötta
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Lisa Kleissl
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Clement Staud
- Department of Plastic and Reconstructive Surgery, Medical University of Vienna, Vienna, Austria
| | - Anna Redl
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | | | | | - Sophie T. Weninger
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Denise Atzmüller
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Romana Klasinc
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Gerold Stanek
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Mateusz Markowicz
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Austrian Agency for Health and Food Safety (AGES), Vienna, Austria
| | - Hannes Stockinger
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Georg Stary
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| |
Collapse
|
19
|
Lynn GE, Černý J, Kurokawa C, Diktaş H, Matias J, Sajid A, Arora G, DePonte K, Narasimhan S, Fikrig E. Immunization of guinea pigs with cement extract induces resistance against Ixodes scapularis ticks. Ticks Tick Borne Dis 2022; 13:102017. [PMID: 35963188 DOI: 10.1016/j.ttbdis.2022.102017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/22/2022] [Accepted: 08/03/2022] [Indexed: 11/30/2022]
Abstract
As hematophagous parasites, many tick species are important vectors of medical and veterinary disease agents. Proteins found in tick saliva and midgut have been used with some success in immunizations of animal hosts against feeding ticks, and whole saliva has been used effectively in this capacity against Ixodes scapularis, the primary vector of tickborne pathogens in the United States. Tick saliva is a complex substance containing hundreds of proteins, and the identification of specific protective antigens is ongoing. We performed a series of experiments immunizing guinea pigs with extracts prepared from midgut or attachment cement collected from adult female I. scapularis followed by challenge with nymphs of the same species. Midgut extract did not induce protective immunity, while immunization with cement extract resulted in partial protection of hosts as evidenced by premature tick detachment and 34-41% reduction in tick engorgement weights. Proteomic characterization of I. scapularis cement was performed, demonstrating that the cement extract was compositionally different from tick saliva, and vitellogenin-like lipoproteins were the most abundant proteins in cement extract (>40%). Cement was also heavily enriched with lysozymes and defensins, including those originating from both the mammalian host as well as ticks. These results demonstrate that I. scapularis cement contains immunogenic components capable of stimulating host resistance against tick feeding. Because the cement is present at the tick-host interface for an extended period of time during the feeding process, these antigens present auspicious candidates for further evaluation and potential inclusion in an anti-tick vaccine.
Collapse
Affiliation(s)
- Geoffrey E Lynn
- Texas AgriLife Research and Extension Center at Uvalde, Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06420, United States.
| | - Jiří Černý
- Faculty of Tropical AgriSciences, Czech University of Life Sciences in Prague, Praha-Suchdol, CZ 16500, Czechia
| | - Cheyne Kurokawa
- Texas AgriLife Research and Extension Center at Uvalde, Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06420, United States
| | - Hüsrev Diktaş
- Texas AgriLife Research and Extension Center at Uvalde, Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06420, United States
| | - Jaqueline Matias
- Texas AgriLife Research and Extension Center at Uvalde, Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06420, United States
| | - Andaleeb Sajid
- Texas AgriLife Research and Extension Center at Uvalde, Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06420, United States
| | - Gunjan Arora
- Texas AgriLife Research and Extension Center at Uvalde, Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06420, United States
| | - Kathleen DePonte
- Texas AgriLife Research and Extension Center at Uvalde, Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06420, United States
| | - Sukanya Narasimhan
- Texas AgriLife Research and Extension Center at Uvalde, Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06420, United States
| | - Erol Fikrig
- Texas AgriLife Research and Extension Center at Uvalde, Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06420, United States; Howard Hughes Medical Institute, Chevy Chase, MD 20815, United States
| |
Collapse
|
20
|
The Acari Hypothesis, III: Atopic Dermatitis. Pathogens 2022; 11:pathogens11101083. [DOI: 10.3390/pathogens11101083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Atopic dermatitis is a chronic relapsing dermatopathology involving IgE against allergenic materials present on mammalian epithelial surfaces. Allergens are as diverse as pet danders, and polypeptides expressed by microbes of the mammalian microbiome, e.g., Malassezia spp. The Acari Hypothesis posits that the mammalian innate immune system utilizes pathogen-bound acarian immune effectors to protect against the vectorial threat posed by mites and ticks. Per The Hypothesis, IgE-mediated allergic disease is a specious consequence of the pairing of acarian gastrointestinal materials, e.g., allergenic foodstuffs, with acarian innate immune effectors that have interspecies operability. In keeping with The Hypothesis, the IgE profile of atopic patients should include both anti-acarian antibodies and specious antibodies responsible for specific allergy. Further, the profile should inform on the diet and/or environment of the acarian vector. In this regard, the prevalence of Demodex and Dermatophagoides on the skin of persons suffering from atopic dermatitis is increased. Importantly, the diets of these mites correspond well with the allergens of affected patients. In this report, roles for these specific acarians in the pathogenesis of atopic dermatitis are proposed and elaborated.
Collapse
|
21
|
Smith G, Manzano-Marín A, Reyes-Prieto M, Antunes CSR, Ashworth V, Goselle ON, Jan AAA, Moya A, Latorre A, Perotti MA, Braig HR. Human follicular mites: Ectoparasites becoming symbionts. Mol Biol Evol 2022; 39:msac125. [PMID: 35724423 PMCID: PMC9218549 DOI: 10.1093/molbev/msac125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 05/23/2022] [Accepted: 05/31/2022] [Indexed: 12/13/2022] Open
Abstract
Most humans carry mites in the hair follicles of their skin for their entire lives. Follicular mites are the only metazoans tha continuously live on humans. We propose that Demodex folliculorum (Acari) represents a transitional stage from a host-injuring obligate parasite to an obligate symbiont. Here, we describe the profound impact of this transition on the genome and physiology of the mite. Genome sequencing revealed that the permanent host association of D. folliculorum led to an extensive genome reduction through relaxed selection and genetic drift, resulting in the smallest number of protein-coding genes yet identified among panarthropods. Confocal microscopy revealed that this gene loss coincided with an extreme reduction in the number of cells. Single uninucleate muscle cells are sufficient to operate each of the three segments that form each walking leg. While it has been assumed that the reduction of the cell number in parasites starts early in development, we identified a greater total number of cells in the last developmental stage (nymph) than in the terminal adult stage, suggesting that reduction starts at the adult or ultimate stage of development. This is the first evolutionary step in an arthropod species adopting a reductive, parasitic or endosymbiotic lifestyle. Somatic nuclei show underreplication at the diploid stage. Novel eye structures or photoreceptors as well as a unique human host melatonin-guided day/night rhythm are proposed for the first time. The loss of DNA repair genes coupled with extreme endogamy might have set this mite species on an evolutionary dead-end trajectory.
Collapse
Affiliation(s)
- Gilbert Smith
- School of Natural Sciences, Bangor University, Bangor, Wales, United Kingdom
| | - Alejandro Manzano-Marín
- Centre for Microbiology and Environmental Systems Science (CMESS), University of Vienna, Vienna, Austria
| | - Mariana Reyes-Prieto
- Institute of Integrative Systems Biology (I2Sysbio), Universitat de València and Spanish Research Council (CSIC), València, Spain
- Foundation for the Promotion of Health and Biomedical Research of the Valencian Community (FISABIO), València, Spain
| | | | - Victoria Ashworth
- School of Natural Sciences, Bangor University, Bangor, Wales, United Kingdom
| | - Obed Nanjul Goselle
- School of Natural Sciences, Bangor University, Bangor, Wales, United Kingdom
| | | | - Andrés Moya
- Institute of Integrative Systems Biology (I2Sysbio), Universitat de València and Spanish Research Council (CSIC), València, Spain
- Foundation for the Promotion of Health and Biomedical Research of the Valencian Community (FISABIO), València, Spain
- Center for Networked Biomedical Research in Epidemiology and Public Health (CIBEResp), Madrid, Spain
| | - Amparo Latorre
- Institute of Integrative Systems Biology (I2Sysbio), Universitat de València and Spanish Research Council (CSIC), València, Spain
- Foundation for the Promotion of Health and Biomedical Research of the Valencian Community (FISABIO), València, Spain
- Center for Networked Biomedical Research in Epidemiology and Public Health (CIBEResp), Madrid, Spain
| | - M Alejandra Perotti
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Henk R Braig
- School of Natural Sciences, Bangor University, Bangor, Wales, United Kingdom
- Institute and Museum of Natural Sciences, National University of San Juan, San Juan, Argentina
| |
Collapse
|
22
|
Schön MP. The tick and I: Parasite-host interactions between ticks and humans. J Dtsch Dermatol Ges 2022; 20:818-853. [PMID: 35674196 DOI: 10.1111/ddg.14821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/25/2022] [Indexed: 11/28/2022]
Abstract
Ticks, particularly hard ticks (Ixodidae), which are among the most important vectors of dangerous infectious agents, feed on their hosts for extended periods of time. With this lifestyle, numerous adaptations have evolved in ticks and their hosts, the pharmacological importance of which is increasingly being recognized. Many bioactive substances in tick saliva are being considered as the basis of new drugs. For example, components of tick cement can be developed into tissue adhesives or wound closures. Analgesic and antipruritic salivary components inhibit histamine or bradykinin, while other tick-derived molecules bind opioid or cannabinoid receptors. Tick saliva inhibits the extrinsic, intrinsic, or common pathway of blood coagulation with implications for the treatment of thromboembolic diseases. It contains vasodilating substances and affects wound healing. The broad spectrum of immunomodulatory and immunosuppressive effects of tick saliva, such as inhibition of chemokines or cellular immune responses, allows development of drugs against inflammation in autoimmune diseases and/or infections. Finally, modern vaccines against ticks can curb the spread of serious infections. The medical importance of the complex tick-host interactions is increasingly being recognized and translated into first clinical applications. Using selected examples, an overview of the mutual adaptations of ticks and hosts is given here, focusing on their significance to medical advance.
Collapse
Affiliation(s)
- Michael P Schön
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Germany
| |
Collapse
|
23
|
Schön MP. Die Zecke und ich: Parasiten-Wirt-Interaktionen zwischen Zecken und Menschen. J Dtsch Dermatol Ges 2022; 20:818-855. [PMID: 35711058 DOI: 10.1111/ddg.14821_g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 12/01/2022]
Affiliation(s)
- Michael P Schön
- Klinik für Dermatologie, Venerologie und Allergologie, Universitätsmedizin Göttingen
| |
Collapse
|
24
|
Maqbool M, Sajid MS, Saqib M, Anjum FR, Tayyab MH, Rizwan HM, Rashid MI, Rashid I, Iqbal A, Siddique RM, Shamim A, Hassan MA, Atif FA, Razzaq A, Zeeshan M, Hussain K, Nisar RHA, Tanveer A, Younas S, Kamran K, Rahman SU. Potential Mechanisms of Transmission of Tick-Borne Viruses at the Virus-Tick Interface. Front Microbiol 2022; 13:846884. [PMID: 35602013 PMCID: PMC9121816 DOI: 10.3389/fmicb.2022.846884] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
Ticks (Acari; Ixodidae) are the second most important vector for transmission of pathogens to humans, livestock, and wildlife. Ticks as vectors for viruses have been reported many times over the last 100 years. Tick-borne viruses (TBVs) belong to two orders (Bunyavirales and Mononegavirales) containing nine families (Bunyaviridae, Rhabdoviridae, Asfarviridae, Orthomyxovirida, Reoviridae, Flaviviridae, Phenuviridae, Nyamiviridae, and Nairoviridae). Among these TBVs, some are very pathogenic, causing huge mortality, and hence, deserve to be covered under the umbrella of one health. About 38 viral species are being transmitted by <10% of the tick species of the families Ixodidae and Argasidae. All TBVs are RNA viruses except for the African swine fever virus from the family Asfarviridae. Tick-borne viral diseases have also been classified as an emerging threat to public health and animals, especially in resource-poor communities of the developing world. Tick-host interaction plays an important role in the successful transmission of pathogens. The ticks' salivary glands are the main cellular machinery involved in the uptake, settlement, and multiplication of viruses, which are required for successful transmission into the final host. Furthermore, tick saliva also participates as an augmenting tool during the physiological process of transmission. Tick saliva is an important key element in the successful transmission of pathogens and contains different antimicrobial proteins, e.g., defensin, serine, proteases, and cement protein, which are key players in tick-virus interaction. While tick-virus interaction is a crucial factor in the propagation of tick-borne viral diseases, other factors (physiological, immunological, and gut flora) are also involved. Some immunological factors, e.g., toll-like receptors, scavenger receptors, Janus-kinase (JAK-STAT) pathway, and immunodeficiency (IMD) pathway are involved in tick-virus interaction by helping in virus assembly and acting to increase transmission. Ticks also harbor some endogenous viruses as internal microbial faunas, which also play a significant role in tick-virus interaction. Studies focusing on tick saliva and its role in pathogen transmission, tick feeding, and control of ticks using functional genomics all point toward solutions to this emerging threat. Information regarding tick-virus interaction is somewhat lacking; however, this information is necessary for a complete understanding of transmission TBVs and their persistence in nature. This review encompasses insight into the ecology and vectorial capacity of tick vectors, as well as our current understanding of the predisposing, enabling, precipitating, and reinforcing factors that influence TBV epidemics. The review explores the cellular, biochemical, and immunological tools which ensure and augment successful evading of the ticks' defense systems and transmission of the viruses to the final hosts at the virus-vector interface. The role of functional genomics, proteomics, and metabolomics in profiling tick-virus interaction is also discussed. This review is an initial attempt to comprehensively elaborate on the epidemiological determinants of TBVs with a focus on intra-vector physiological processes involved in the successful execution of the docking, uptake, settlement, replication, and transmission processes of arboviruses. This adds valuable data to the existing bank of knowledge for global stakeholders, policymakers, and the scientific community working to devise appropriate strategies to control ticks and TBVs.
Collapse
Affiliation(s)
- Mahvish Maqbool
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Sohail Sajid
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
- Department of Epidemiology and Public Health, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Saqib
- Department of Clinical Medicine and Surgery, University of Agriculture, Faisalabad, Pakistan
| | - Faisal Rasheed Anjum
- Department of Epidemiology and Public Health, University of Agriculture, Faisalabad, Pakistan
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Haleem Tayyab
- Department of Clinical Medicine and Surgery, University of Agriculture, Faisalabad, Pakistan
| | - Hafiz Muhammad Rizwan
- Section of Parasitology, Department of Pathobiology, KBCMA College of Veterinary and Animal Sciences Narowal, Lahore, Pakistan
| | - Muhammad Imran Rashid
- Department of Parasitology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Imaad Rashid
- Department of Clinical Medicine and Surgery, University of Agriculture, Faisalabad, Pakistan
| | - Asif Iqbal
- Section of Parasitology, Department of Pathobiology, Riphah College of Veterinary Sciences, Riphah International University, Lahore, Pakistan
| | - Rao Muhammad Siddique
- Section of Parasitology, Department of Pathobiology, Riphah College of Veterinary Sciences, Riphah International University, Lahore, Pakistan
| | - Asim Shamim
- Department of Pathobiology, University of the Poonch Rawalakot, Rawalakot, Pakistan
| | - Muhammad Adeel Hassan
- Department of Parasitology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Farhan Ahmad Atif
- Medicine Section, Department of Clinical Sciences, Collège of Veterinary and Animal Sciences, Jhang, Pakistan
- University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Abdul Razzaq
- Agricultural Linkages Program, Pakistan Agriculture Research Council, Islamabad, Pakistan
| | - Muhammad Zeeshan
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
| | - Kashif Hussain
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
| | | | - Akasha Tanveer
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
| | - Sahar Younas
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
| | - Kashif Kamran
- Department of Zoology, University of Balochistan, Quetta, Pakistan
| | - Sajjad ur Rahman
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
25
|
Maldonado-Ruiz LP, Boorgula GD, Kim D, Fleming SD, Park Y. Tick Intrastadial Feeding and Its Role on IgE Production in the Murine Model of Alpha-gal Syndrome: The Tick "Transmission" Hypothesis. Front Immunol 2022; 13:844262. [PMID: 35309294 PMCID: PMC8930817 DOI: 10.3389/fimmu.2022.844262] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/10/2022] [Indexed: 11/13/2022] Open
Abstract
Recent studies have provided strong evidence indicating that lone star tick bites are a cause of AGS (alpha-gal syndrome, also known as red meat allergy RMA) in humans. AGS is characterized by an increase in IgE antibody production against galactose-alpha-1,3-galactose (aGal), which is a common glycan found in mammalian tissue, except in Old World monkeys and humans. The main causative factor of AGS, the lone star tick (Amblyomma americanum), is broadly distributed throughout the east and midwest of the United States and is a vector of a wide range of human and animal pathogens. Our earlier glycomics study of the salivary glands of partially fed male and female ticks revealed relatively high levels of aGal epitopes. In this study, we found that partially fed males of A. americanum on bovine blood, which engage in multiple intrastadial feedings, carry a large amount of aGal in the salivary glands. In our current work, we aimed to test whether ticks mediate the transmission of the aGal sensitizer acquired from nonhuman blood to humans in the intrastadial host switch (referred to as the "transmission" hypothesis). To test this hypothesis, we used an alpha-galactosyltransferase knockout mutant mouse (aGT-KO) model system infested with ticks that were unfed or partially fed on bovine blood. Based on the levels of total IgE and specific IgG and IgE antibodies against aGal after tick feedings, aGT-KO mice significantly responded to tick feeding and injection of aGal (Galα1-3Galβ1-4GlcNAc) conjugated to human serum albumin or mouse serum albumin (aGal-HSA or aGal-MSA) by increasing total IgE and aGal-specific IgE levels compared to those in C57BL/6 control mice. All of the treatments of aGT-KO mice involving the feeding of partially fed and unfed ticks functioned as sensitizers that increased the levels of specific IgE against aGal, with large individual variations. The data in this study do not support the "transmission" component of AGS, although they confirmed that aGT-KO mice can be used as a model for RMA studies.
Collapse
Affiliation(s)
| | | | - Donghun Kim
- Department of Entomology, Kyungpook National University, Daegu, South Korea
| | - Sherry D. Fleming
- Division of Biology, Kansas State University, Manhattan, KS, United States
| | - Yoonseong Park
- Department of Entomology, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
26
|
Fernández-Ruiz N, Estrada-Peña A. Scenes From Tick Physiology: Proteins of Sialome Talk About Their Biological Processes. Front Cell Infect Microbiol 2022; 11:767845. [PMID: 35059322 PMCID: PMC8765405 DOI: 10.3389/fcimb.2021.767845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/26/2021] [Indexed: 11/13/2022] Open
Abstract
Ticks are blood-sucking parasites with different strategies of feeding depending on the tick family. The major families are Ixodidae or Argasidae, being slow or fast feeders, respectively. In the recent years, the advances in molecular sequencing techniques have enabled to gain knowledge about the proteome of the tick's salivary glands. But an holistic view of the biological processes underlying the expression of the sialome has been neglected. In this study we propose the use of standard biological processes as a tool to draw the physiology of the tick's salivary glands. We used published data on the sialome of Rhipicephalus sanguineus s.l. (Ixodidae) and Ornithodoros rostratus (Argasidae). A partial set of proteins obtained by these studies were used to define the biological process(es) in which proteins are involved. We used a directed network construction in which the nodes are proteins (source) and biological processes (target), separately for the low-level processes ("children") and the top-level ones ("parents"). We applied the method to feeding R. sanguineus at different time slices, and to different organs of O. rostratus. The network connects the proteins and the processes with a strength directly proportional to the transcript per millions of each protein. We used PageRank as a measure of the importance of each biological process. As suggested in previous studies, the sialome of unfed R. sanguineus express about 30% less biological processes than feeding ticks. Another decrease (25%) is noticed at the middle of the feeding and before detachment. However, top-level processes are deeply affected only at the onset of feeding, demonstrating a redundancy in the feeding. When ixodid-argasid are compared, large differences were observed: they do not share 91% of proteins, but share 90% of the biological processes. However, caution must be observed when examining these results. The hypothesis of different proteins linked to similar biological process(es) in both ticks is an extreme not confirmed in this study. Considering the limitations of this study, carried out with a selected set of proteins, we propose the networks of proteins of sialome linked to their biological processes as a tool aimed to explain the biological processes behind families of proteins.
Collapse
Affiliation(s)
- Natalia Fernández-Ruiz
- Faculty of Veterinary Medicine, University of Zaragoza, Zaragoza, Spain.,Group of Research on Emerging Zoonoses, Instituto Agroalimentario de Aragón (IA2), Zaragoza, Spain
| | - Agustín Estrada-Peña
- Faculty of Veterinary Medicine, University of Zaragoza, Zaragoza, Spain.,Group of Research on Emerging Zoonoses, Instituto Agroalimentario de Aragón (IA2), Zaragoza, Spain
| |
Collapse
|
27
|
Villar M, Pacheco I, Mateos-Hernández L, Cabezas-Cruz A, Tabor AE, Rodríguez-Valle M, Mulenga A, Kocan KM, Blouin EF, de la Fuente J. Characterization of tick salivary gland and saliva alphagalactome reveals candidate alpha-gal syndrome disease biomarkers. Expert Rev Proteomics 2021; 18:1099-1116. [PMID: 34904495 DOI: 10.1080/14789450.2021.2018305] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Ticks are obligate hematophagous arthropods that synthesize the glycan Galα1-3Galβ1-(3)4GlcNAc-R (α-Gal) associated with the alpha-gal syndrome (AGS) or allergy to mammalian meat consumption. RESEARCH DESIGN AND METHODS In this study, we used a proteomics approach to characterize tick proteins in salivary glands (sialome SG), secreted saliva (sialome SA) and with α-Gal modification (alphagalactome SG and SA) in model tick species associated with the AGS in the United States (Amblyomma americanum) and Australia (Ixodes holocyclus). Selected proteins reactive to sera (IgE) from patients with AGS were identified to advance in the identification of possible proteins associated with the AGS. For comparative analysis, the α-Gal content was measured in various tick species. RESULTS The results confirmed that ticks produce proteins with α-Gal modifications and secreted into saliva during feeding. Proteins identified in tick alphagalactome SA by sera from patients with severe AGS symptomatology may constitute candidate disease biomarkers. CONCLUSIONS The results support the presence tick-derived proteins with α-Gal modifications in the saliva with potential implications in AGS and other disorders and protective capacity against tick infestations and pathogen infection. Future research should focus on the characterization of the function of tick glycoproteins with α-Gal in tick biology and AGS.
Collapse
Affiliation(s)
- Margarita Villar
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC-CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13005 Ciudad Real, Spain.,Biochemistry Section, Faculty of Science and Chemical Technologies, and Regional Centre for Biomedical Research (CRIB), University of Castilla-La Mancha, 13071, Ciudad Real, Spain
| | - Iván Pacheco
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC-CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13005 Ciudad Real, Spain
| | - Lourdes Mateos-Hernández
- UMR BIPAR, INRAE, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, 94700, France
| | - Alejandro Cabezas-Cruz
- UMR BIPAR, INRAE, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, 94700, France
| | - Ala E Tabor
- Queensland Alliance for Agriculture & Food Innovation, Centre for Animal Science, The University of Queensland, 306 Carmody Road, St. Lucia, QLD 4072, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, 68 Cooper Road, St. Lucia, QLD 4072, Australia
| | - Manuel Rodríguez-Valle
- Queensland Alliance for Agriculture & Food Innovation, Centre for Animal Science, The University of Queensland, 306 Carmody Road, St. Lucia, QLD 4072, Australia
| | - Albert Mulenga
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX77843, United States
| | - Katherine M Kocan
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Edmour F Blouin
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC-CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13005 Ciudad Real, Spain.,Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
28
|
Sajid A, Matias J, Arora G, Kurokawa C, DePonte K, Tang X, Lynn G, Wu MJ, Pal U, Strank NO, Pardi N, Narasimhan S, Weissman D, Fikrig E. mRNA vaccination induces tick resistance and prevents transmission of the Lyme disease agent. Sci Transl Med 2021; 13:eabj9827. [PMID: 34788080 DOI: 10.1126/scitranslmed.abj9827] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Ixodes scapularis ticks transmit many pathogens that cause human disease, including Borrelia burgdorferi. Acquired resistance to I. scapularis due to repeated tick exposure has the potential to prevent tick-borne infectious diseases, and salivary proteins have been postulated to contribute to this process. We examined the ability of lipid nanoparticle–containing nucleoside-modified mRNAs encoding 19 I. scapularis salivary proteins (19ISP) to enhance the recognition of a tick bite and diminish I. scapularis engorgement on a host and thereby prevent B. burgdorferi infection. Guinea pigs were immunized with a 19ISP mRNA vaccine and subsequently challenged with I. scapularis. Animals administered 19ISP developed erythema at the bite site shortly after ticks began to attach, and these ticks fed poorly, marked by early detachment and decreased engorgement weights. 19ISP immunization also impeded B. burgdorferi transmission in the guinea pigs. The effective induction of local redness early after I. scapularis attachment and the inability of the ticks to take a normal blood meal suggest that 19ISP may be used either alone or in conjunction with traditional pathogen-based vaccines for the prevention of Lyme disease, and potentially other tick-borne infections.
Collapse
Affiliation(s)
- Andaleeb Sajid
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jaqueline Matias
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Gunjan Arora
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Cheyne Kurokawa
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Kathleen DePonte
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Xiaotian Tang
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Geoffrey Lynn
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ming-Jie Wu
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Utpal Pal
- Department of Veterinary Medicine, University of Maryland, College Park, MD 20472, USA
- Virginia-Maryland Regional College of Veterinary Medicine, College Park, MD 20472, USA
| | - Norma Olivares Strank
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Norbert Pardi
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sukanya Narasimhan
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
29
|
Ferreira Leal B, Sanchez Ferreira CA. Ticks and antibodies: May parasite density and tick evasion influence the outcomes following immunization protocols? Vet Parasitol 2021; 300:109610. [PMID: 34735848 DOI: 10.1016/j.vetpar.2021.109610] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/07/2021] [Accepted: 10/19/2021] [Indexed: 11/30/2022]
Abstract
Ticks are a major concern to human health and livestock worldwide, being responsible for economic losses that go beyond billions of US dollars per year. This scenario instigates the development of vaccines against these ectoparasites, emphasized by the fact that the main method of controlling ticks still relies on the use of acaricides, what increases costs and may affect the environment as well as human and animal health. The first commercial vaccines against ectoparasites were produced against the tick Rhipicephalus microplus and their efficacy were based on antibodies. Many additional attempts have been conducted to produce protective immune responses against ticks by immunization with specific antigens and the antibody response has usually been the main target of evaluation. But some controversy still populates the roles possibly performed by humoral responses in tick-mammalian host relationships. This review focuses on the analysis of specific aspects concerning antibodies and ticks, especially the influence of parasite density and evasion/modulation. The immunization trials already described against R. microplus were also compiled and analyzed based on the characteristics of the molecules tested, protocols of immunization and tick challenge. Within these issues, it is discussed if or when antibody levels can be directly correlated with the development of tick resistance, and whether anti-tick protective immune responses generated by infestations may become ineffective under a different tick density. Also, higher titers of antibodies can be correlated with protection or susceptibility to tick infestations, what may be altered following continuous or repeated infestations and differ greatly comparing hosts with distinct genetic backgrounds. Regarding evasion, ticks present a sophisticated mechanism for dealing with antibodies, including Immunoglobulin Binding Proteins (IGBPs), that capture, transport and inject them back into the host, while keeping their properties within the parasite. The comparison of immunization protocols shows a total of 22 molecules already tested in cattle vaccination trials against R. microplus, with the predominance of concealed and dual antigens as well as marked differences in tick challenge schemes. The presence of an antibody evasion apparatus and variable levels of tick resistance when facing different densities of parasites are concerns that should be considered when testing vaccine candidates. Ultimately, more refinement may be necessary to effectively design a cocktail vaccine with tick molecules, which may be needed to be altered and combined in non-competing immune contexts to be universally secure and protective.
Collapse
Affiliation(s)
- Bruna Ferreira Leal
- Laboratório de Imunologia e Microbiologia, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av. Ipiranga, 6681, 90619-900, Porto Alegre, RS, Brazil.
| | - Carlos Alexandre Sanchez Ferreira
- Laboratório de Imunologia e Microbiologia, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av. Ipiranga, 6681, 90619-900, Porto Alegre, RS, Brazil.
| |
Collapse
|
30
|
Mihaljica D, Marković D, Repac J, Božić B, Radulović Ž, Veinović G, Sukara R, Ristanović E, Chochlakis D, Nedeljković BB, Tomanović S. Exploring immunogenicity of tick salivary AV422 protein in persons exposed to ticks: prospects for utilization. EXPERIMENTAL & APPLIED ACAROLOGY 2021; 85:83-99. [PMID: 34432178 DOI: 10.1007/s10493-021-00653-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
In order to determine whether conserved tick salivary protein AV422 is immunogenic, the goal of our study was to detect specific IgG response within at-risk populations. Study groups included 76 individuals, differing in occurrence of recently recorded tick bites and health status. Western blotting with recombinant (r) protein derived from Ixodes ricinus (Ir) was performed. IgG response to Borrelia/Rickettsia, as indicators of previous tick infestations, was also assessed. Additionally, a detailed in silico AV422 protein sequence analysis was performed, followed by modelling of the interactions between peptides and corresponding MHC II molecules by molecular docking. Anti-rIrAV422 seroprevalences among individuals exposed to ticks were high (62.5, 57.9 and 66.7%) and anti-Borrelia/Rickettsia seroprevalences were 54.2, 15.8 and 44.4% among individuals with/without recent tick bite and patients suspected of tick-borne disease, respectively. In silico analysis of AV422 protein sequence showed a high level of conservation across tick genera, including also the predicted antigenic determinants specific for T and B cells. Docking to the restricted MHC II molecules was performed for all predicted AV422 T cell epitopes, and the most potent (highly immunogenic) epitope determinants were suggested. The epitope prediction reveals that tick salivary protein AV422 may elicit humoral immune response in humans, which is consistent with the high anti-rIrAV422 seroprevalence in tested at-risk subjects. Tick-borne diseases are a growing public health concern worldwide, and AV422 is potentially useful in clinical practice and epidemiological studies.
Collapse
Affiliation(s)
- Darko Mihaljica
- Group for Medical Entomology, Centre of Excellence for Food- and Vector-Borne Zoonoses, Institute for Medical Research, University of Belgrade, Belgrade, Serbia.
| | - Dragana Marković
- Group for Immunology, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Jelena Repac
- Institute for Physiology and Biochemistry "Ivan Djaja", University of Belgrade, Belgrade, Serbia
| | - Bojan Božić
- Institute for Physiology and Biochemistry "Ivan Djaja", University of Belgrade, Belgrade, Serbia
| | - Željko Radulović
- Department of Biology, College of Sciences and Mathematics, Stephen F. Austin State University, Nacogdoches, TX, USA
| | - Gorana Veinović
- Group for Medical Entomology, Centre of Excellence for Food- and Vector-Borne Zoonoses, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Ratko Sukara
- Group for Medical Entomology, Centre of Excellence for Food- and Vector-Borne Zoonoses, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Elizabeta Ristanović
- Institute for Microbiology, University of Defense, Military Medical Academy, Belgrade, Serbia
| | - Dimosthenis Chochlakis
- Laboratory of Clinical Microbiology and Microbial Pathogenesis, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | | | - Snežana Tomanović
- Group for Medical Entomology, Centre of Excellence for Food- and Vector-Borne Zoonoses, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
31
|
Bobe JR, Jutras BL, Horn EJ, Embers ME, Bailey A, Moritz RL, Zhang Y, Soloski MJ, Ostfeld RS, Marconi RT, Aucott J, Ma'ayan A, Keesing F, Lewis K, Ben Mamoun C, Rebman AW, McClune ME, Breitschwerdt EB, Reddy PJ, Maggi R, Yang F, Nemser B, Ozcan A, Garner O, Di Carlo D, Ballard Z, Joung HA, Garcia-Romeu A, Griffiths RR, Baumgarth N, Fallon BA. Recent Progress in Lyme Disease and Remaining Challenges. Front Med (Lausanne) 2021; 8:666554. [PMID: 34485323 PMCID: PMC8416313 DOI: 10.3389/fmed.2021.666554] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 07/12/2021] [Indexed: 12/14/2022] Open
Abstract
Lyme disease (also known as Lyme borreliosis) is the most common vector-borne disease in the United States with an estimated 476,000 cases per year. While historically, the long-term impact of Lyme disease on patients has been controversial, mounting evidence supports the idea that a substantial number of patients experience persistent symptoms following treatment. The research community has largely lacked the necessary funding to properly advance the scientific and clinical understanding of the disease, or to develop and evaluate innovative approaches for prevention, diagnosis, and treatment. Given the many outstanding questions raised into the diagnosis, clinical presentation and treatment of Lyme disease, and the underlying molecular mechanisms that trigger persistent disease, there is an urgent need for more support. This review article summarizes progress over the past 5 years in our understanding of Lyme and tick-borne diseases in the United States and highlights remaining challenges.
Collapse
Affiliation(s)
- Jason R. Bobe
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Brandon L. Jutras
- Department of Biochemistry, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, United States
| | | | - Monica E. Embers
- Tulane University Health Sciences, New Orleans, LA, United States
| | - Allison Bailey
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Ying Zhang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mark J. Soloski
- Division of Rheumatology, Department of Medicine, Lyme Disease Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | | | - Richard T. Marconi
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, Richmond, VA, United States
| | - John Aucott
- Division of Rheumatology, Department of Medicine, Lyme Disease Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Avi Ma'ayan
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Kim Lewis
- Department of Biology, Northeastern University, Boston, MA, United States
| | | | - Alison W. Rebman
- Division of Rheumatology, Department of Medicine, Lyme Disease Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Mecaila E. McClune
- Department of Biochemistry, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, United States
| | - Edward B. Breitschwerdt
- Department of Clinical Sciences, Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | | | - Ricardo Maggi
- Department of Clinical Sciences, Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Frank Yang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Bennett Nemser
- Steven & Alexandra Cohen Foundation, Stamford, CT, United States
| | - Aydogan Ozcan
- University of California, Los Angeles, Los Angeles, CA, United States
| | - Omai Garner
- University of California, Los Angeles, Los Angeles, CA, United States
| | - Dino Di Carlo
- University of California, Los Angeles, Los Angeles, CA, United States
| | - Zachary Ballard
- University of California, Los Angeles, Los Angeles, CA, United States
| | - Hyou-Arm Joung
- University of California, Los Angeles, Los Angeles, CA, United States
| | - Albert Garcia-Romeu
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Roland R. Griffiths
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Nicole Baumgarth
- Center for Immunology and Infectious Diseases and the Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Brian A. Fallon
- Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
32
|
Liu L, Tang H, Duan DY, Liu JB, Wang J, Feng LL, Cheng TY. Characterization of AV422 from Haemaphysalis flava ticks in vitro. EXPERIMENTAL & APPLIED ACAROLOGY 2021; 84:809-823. [PMID: 34297228 DOI: 10.1007/s10493-021-00645-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Ticks are hematophagous ectoparasites and cause a major public health threat worldwide. Development of anti-tick vaccines is regarded to be an optimal alternative for tick control. AV422, a unique protein in ticks, is secreted into hosts during blood-feeding, but its roles are not confirmed in Haemaphysalis flava ticks. We retrieved a gene fragment encoding AV422 from a transcriptome dataset of H. flava, and based on it, we reconstructed the full length of AV422 from H. flava (Hf-AV422) by rapid amplification of cDNA ends. Expression profiles of Hf-AV422 in whole ticks and organs of different engorgement levels were determined by qPCR. Then its opening reading frame (ORF) was expressed in Escherichia coli strain BL21 (DE3). The prothrombin time (PT), activated partial thromboplastin time (APTT) and thrombin time (TT) assays were conducted to test anticoagulant activities of the purified recombinant protein (rHf-AV422). The full length of AV422 was 1152 bp. Hf-AV422 showed to be conserved as indicated by multiple sequence alignment. Expression of Hf-AV422 was significantly higher in salivary glands and cuticles than in ovaries. Its expression in whole ticks decreased during engorgement with the highest levels in 1/4 engorged ticks. rHf-AV422 prolonged PT, APTT and TT when incubated with rabbit plasma. Our data demonstrated that Hf-AV422 is a conserved salivary protein with anticoagulant activity. Further studies are needed to test in detail its functional properties to ensure it an adequate antigen candidate for the development of broad-spectrum vaccines against ticks.
Collapse
Affiliation(s)
- Lei Liu
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Research Center for Parasites & Vectors, Hunan Collaborative Innovation Center for Safety Production of Livestock and Poultry, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Hao Tang
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Research Center for Parasites & Vectors, Hunan Collaborative Innovation Center for Safety Production of Livestock and Poultry, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - De-Yong Duan
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Research Center for Parasites & Vectors, Hunan Collaborative Innovation Center for Safety Production of Livestock and Poultry, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Jin-Bao Liu
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Research Center for Parasites & Vectors, Hunan Collaborative Innovation Center for Safety Production of Livestock and Poultry, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Jie Wang
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Research Center for Parasites & Vectors, Hunan Collaborative Innovation Center for Safety Production of Livestock and Poultry, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Li-Li Feng
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Research Center for Parasites & Vectors, Hunan Collaborative Innovation Center for Safety Production of Livestock and Poultry, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Tian-Yin Cheng
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Research Center for Parasites & Vectors, Hunan Collaborative Innovation Center for Safety Production of Livestock and Poultry, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
33
|
Oliva Chávez AS, Wang X, Marnin L, Archer NK, Hammond HL, Carroll EEM, Shaw DK, Tully BG, Buskirk AD, Ford SL, Butler LR, Shahi P, Morozova K, Clement CC, Lawres L, Neal AJO, Mamoun CB, Mason KL, Hobbs BE, Scoles GA, Barry EM, Sonenshine DE, Pal U, Valenzuela JG, Sztein MB, Pasetti MF, Levin ML, Kotsyfakis M, Jay SM, Huntley JF, Miller LS, Santambrogio L, Pedra JHF. Tick extracellular vesicles enable arthropod feeding and promote distinct outcomes of bacterial infection. Nat Commun 2021; 12:3696. [PMID: 34140472 PMCID: PMC8211691 DOI: 10.1038/s41467-021-23900-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 05/24/2021] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles are thought to facilitate pathogen transmission from arthropods to humans and other animals. Here, we reveal that pathogen spreading from arthropods to the mammalian host is multifaceted. Extracellular vesicles from Ixodes scapularis enable tick feeding and promote infection of the mildly virulent rickettsial agent Anaplasma phagocytophilum through the SNARE proteins Vamp33 and Synaptobrevin 2 and dendritic epidermal T cells. However, extracellular vesicles from the tick Dermacentor andersoni mitigate microbial spreading caused by the lethal pathogen Francisella tularensis. Collectively, we establish that tick extracellular vesicles foster distinct outcomes of bacterial infection and assist in vector feeding by acting on skin immunity. Thus, the biology of arthropods should be taken into consideration when developing strategies to control vector-borne diseases.
Collapse
Affiliation(s)
- Adela S Oliva Chávez
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Xiaowei Wang
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Liron Marnin
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nathan K Archer
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Holly L Hammond
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Erin E McClure Carroll
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
- Excerpta Medica, Doylestown, PA, USA
| | - Dana K Shaw
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
| | - Brenden G Tully
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Amanda D Buskirk
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
- Center for Drug Evaluation and Research, Office of Pharmaceutical Quality, Office of Process and Facilities, Division of Microbiology Assessment, Microbiology Assessment Branch III, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Shelby L Ford
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - L Rainer Butler
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Preeti Shahi
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kateryna Morozova
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Cristina C Clement
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Radiation Oncology and Physiology and Biophysics, Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Lauren Lawres
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Anya J O' Neal
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Choukri Ben Mamoun
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Kathleen L Mason
- USDA, ARS, Animal Disease Research Unit, Washington State University, Pullman, WA, USA
| | - Brandi E Hobbs
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Glen A Scoles
- USDA, ARS, Animal Disease Research Unit, Washington State University, Pullman, WA, USA
- USDA, ARS, Invasive Insect Biocontrol and Behavior Laboratory, Beltsville, MD, USA
| | - Eileen M Barry
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Daniel E Sonenshine
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
| | - Utpal Pal
- Department of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Jesus G Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Marcelo B Sztein
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Marcela F Pasetti
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Michael L Levin
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Michail Kotsyfakis
- Institute of Parasitology, Biology Center of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Steven M Jay
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Jason F Huntley
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Lloyd S Miller
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Immunology, Janssen Research and Development, Spring House, PA, USA
| | - Laura Santambrogio
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Radiation Oncology and Physiology and Biophysics, Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Joao H F Pedra
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
34
|
Ticks Resist Skin Commensals with Immune Factor of Bacterial Origin. Cell 2021; 183:1562-1571.e12. [PMID: 33306955 DOI: 10.1016/j.cell.2020.10.042] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/13/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022]
Abstract
Ticks transmit a diverse array of microbes to vertebrate hosts, including human pathogens, which has led to a human-centric focus in this vector system. Far less is known about pathogens of ticks themselves. Here, we discover that a toxin in blacklegged ticks (Ixodes scapularis) horizontally acquired from bacteria-called domesticated amidase effector 2 (dae2)-has evolved to kill mammalian skin microbes with remarkable efficiency. Secreted into the saliva and gut of ticks, Dae2 limits skin-associated staphylococci in ticks while feeding. In contrast, Dae2 has no intrinsic ability to kill Borrelia burgdorferi, the tick-borne Lyme disease bacterial pathogen. These findings suggest ticks resist their own pathogens while tolerating symbionts. Thus, just as tick symbionts can be pathogenic to humans, mammalian commensals can be harmful to ticks. Our study underscores how virulence is context-dependent and bolsters the idea that "pathogen" is a status and not an identity.
Collapse
|
35
|
Davis MM, Brock AM, DeHart TG, Boribong BP, Lee K, McClune ME, Chang Y, Cramer N, Liu J, Jones CN, Jutras BL. The peptidoglycan-associated protein NapA plays an important role in the envelope integrity and in the pathogenesis of the lyme disease spirochete. PLoS Pathog 2021; 17:e1009546. [PMID: 33984073 PMCID: PMC8118282 DOI: 10.1371/journal.ppat.1009546] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/08/2021] [Indexed: 12/11/2022] Open
Abstract
The bacterial pathogen responsible for causing Lyme disease, Borrelia burgdorferi, is an atypical Gram-negative spirochete that is transmitted to humans via the bite of an infected Ixodes tick. In diderms, peptidoglycan (PG) is sandwiched between the inner and outer membrane of the cell envelope. In many other Gram-negative bacteria, PG is bound by protein(s), which provide both structural integrity and continuity between envelope layers. Here, we present evidence of a peptidoglycan-associated protein (PAP) in B. burgdorferi. Using an unbiased proteomics approach, we identified Neutrophil Attracting Protein A (NapA) as a PAP. Interestingly, NapA is a Dps homologue, which typically functions to bind and protect cellular DNA from damage during times of stress. While B. burgdorferi NapA is known to be involved in the oxidative stress response, it lacks the critical residues necessary for DNA binding. Biochemical and cellular studies demonstrate that NapA is localized to the B. burgdorferi periplasm and is indeed a PAP. Cryo-electron microscopy indicates that mutant bacteria, unable to produce NapA, have structural abnormalities. Defects in cell-wall integrity impact growth rate and cause the napA mutant to be more susceptible to osmotic and PG-specific stresses. NapA-linked PG is secreted in outer membrane vesicles and augments IL-17 production, relative to PG alone. Using microfluidics, we demonstrate that NapA acts as a molecular beacon-exacerbating the pathogenic properties of B. burgdorferi PG. These studies further our understanding of the B. burgdorferi cell envelope, provide critical information that underlies its pathogenesis, and highlight how a highly conserved bacterial protein can evolve mechanistically, while maintaining biological function.
Collapse
Affiliation(s)
- Marisela M. Davis
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, United States of America
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Aaron M. Brock
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, United States of America
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, Virginia, United States of America
- Molecular and Cellular Biology, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Tanner G. DeHart
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, United States of America
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Brittany P. Boribong
- Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Katherine Lee
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Mecaila E. McClune
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, United States of America
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Yunjie Chang
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, United States of America
- Microbial Sciences Institute, Yale University, West Haven, Connecticut, United States of America
| | - Nicholas Cramer
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Jun Liu
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, United States of America
- Microbial Sciences Institute, Yale University, West Haven, Connecticut, United States of America
| | - Caroline N. Jones
- Molecular and Cellular Biology, Virginia Tech, Blacksburg, Virginia, United States of America
- Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Brandon L. Jutras
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, United States of America
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, Virginia, United States of America
- Molecular and Cellular Biology, Virginia Tech, Blacksburg, Virginia, United States of America
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, Virginia, United States of America
- Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, Virginia, United States of America
| |
Collapse
|
36
|
Kim TK, Tirloni L, Bencosme-Cuevas E, Kim TH, Diedrich JK, Yates JR, Mulenga A. Borrelia burgdorferi infection modifies protein content in saliva of Ixodes scapularis nymphs. BMC Genomics 2021; 22:152. [PMID: 33663385 PMCID: PMC7930271 DOI: 10.1186/s12864-021-07429-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Lyme disease (LD) caused by Borrelia burgdorferi is the most prevalent tick-borne disease. There is evidence that vaccines based on tick proteins that promote tick transmission of B. burgdorferi could prevent LD. As Ixodes scapularis nymph tick bites are responsible for most LD cases, this study sought to identify nymph tick saliva proteins associated with B. burgdorferi transmission using LC-MS/MS. Tick saliva was collected using a non-invasive method of stimulating ticks (uninfected and infected: unfed, and every 12 h during feeding through 72 h, and fully-fed) to salivate into 2% pilocarpine-PBS for protein identification using LC-MS/MS. RESULTS We identified a combined 747 tick saliva proteins of uninfected and B. burgdorferi infected ticks that were classified into 25 functional categories: housekeeping-like (48%), unknown function (18%), protease inhibitors (9%), immune-related (6%), proteases (8%), extracellular matrix (7%), and small categories that account for <5% each. Notably, B. burgdorferi infected ticks secreted high number of saliva proteins (n=645) than uninfected ticks (n=376). Counter-intuitively, antimicrobial peptides, which function to block bacterial infection at tick feeding site were suppressed 23-85 folds in B. burgdorferi infected ticks. Similar to glycolysis enzymes being enhanced in mammalian cells exposed to B. burgdorferi : eight of the 10-glycolysis pathway enzymes were secreted at high abundance by B. burgdorferi infected ticks. Of significance, rabbits exposed to B. burgdorferi infected ticks acquired potent immunity that caused 40-60% mortality of B. burgdorferi infected ticks during the second infestation compared to 15-28% for the uninfected. This might be explained by ELISA data that show that high expression levels of immunogenic proteins in B. burgdorferi infected ticks. CONCLUSION Data here suggest that B. burgdorferi infection modified protein content in tick saliva to promote its survival at the tick feeding site. For instance, enzymes; copper/zinc superoxide dismutase that led to production of H2O2 that is toxic to B. burgdorferi were suppressed, while, catalase and thioredoxin that neutralize H2O2, and pyruvate kinase which yields pyruvate that protects Bb from H2O2 killing were enhanced. We conclude data here is an important resource for discovery of effective antigens for a vaccine to prevent LD.
Collapse
Affiliation(s)
- Tae Kwon Kim
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
- Department of Diagnostic Medicine and Veterinary Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| | - Lucas Tirloni
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, Montana, United States of America
| | - Emily Bencosme-Cuevas
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
| | - Tae Heung Kim
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
| | - Jolene K Diedrich
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States of America
- Mass Spectrometry Core, Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Albert Mulenga
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America.
| |
Collapse
|
37
|
Helble JD, McCarthy JE, Hu LT. Interactions between Borrelia burgdorferi and its hosts across the enzootic cycle. Parasite Immunol 2021; 43:e12816. [PMID: 33368329 DOI: 10.1111/pim.12816] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 12/24/2022]
Abstract
The bacterial pathogen Borrelia burgdorferi is the causative agent of Lyme disease and is transmitted to humans through an Ixodes tick vector. B. burgdorferi is able to survive in both mammalian and tick hosts through careful modulation of its gene expression. This allows B. burgdorferi to adapt to the environmental and nutritional changes that occur when it is transmitted between the two hosts. Distinct interactions between the spirochete and its host occur at every step of the enzootic cycle and dictate the ability of the spirochete to survive until the next stage of the cycle. Studying the interface between B. burgdorferi, the Ixodes tick vector and the natural mammalian reservoirs has been made significantly more feasible through the complete genome sequences of the organisms and the advent of high throughput screening technologies. Ultimately, a thorough investigation of the interplay between the two domains (and two phyla within one domain) is necessary in order to completely understand how the pathogen is transmitted.
Collapse
Affiliation(s)
- Jennifer D Helble
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA, USA
| | - Julie E McCarthy
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA, USA
| | - Linden T Hu
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA, USA
| |
Collapse
|
38
|
Karim S, Kumar D, Adamson S, Ennen JR, Qualls CP, Ribeiro JMC. The sialotranscriptome of the gopher-tortoise tick, Amblyomma tuberculatum. Ticks Tick Borne Dis 2021; 12:101560. [PMID: 33007669 PMCID: PMC7736221 DOI: 10.1016/j.ttbdis.2020.101560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/07/2020] [Accepted: 09/14/2020] [Indexed: 12/16/2022]
Abstract
The gopher tortoise tick, Amblyomma tuberculatum, is known to parasitize keystone ectotherm reptile species. The biological success of ticks requires precise mechanisms to evade host hemostatic and immune responses. Acquisition of a full blood meal requires attachment, establishment of the blood pool, and engorgement of the tick. Tick saliva contains molecules which counter the host responses to allow uninterrupted feeding on the host. RNASeq of the salivary glands of Amblyomma tuberculatum ticks were sequenced resulting in 138,030 pyrosequencing reads which were assembled into 29,991 contigs. A total of 1875 coding sequences were deduced from the transcriptome assembly, including 602 putative secretory and 982 putative housekeeping proteins. The annotated data sets are available as a hyperlinked spreadsheet. The sialotranscriptome assembled for this tick species made available a valuable resource for mining novel pharmacological activities and comparative analysis.
Collapse
Affiliation(s)
- Shahid Karim
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Deepak Kumar
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Steve Adamson
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Joshua R Ennen
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Carl P Qualls
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - José M C Ribeiro
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12732 Twinbrook Parkway, Room 3E28, Rockville MD 20852, USA.
| |
Collapse
|
39
|
Lynn GE, Diktas H, DePonte K, Fikrig E. Naturally Acquired Resistance to Ixodes scapularis Elicits Partial Immunity against Other Tick Vectors in a Laboratory Host. Am J Trop Med Hyg 2021; 104:175-183. [PMID: 33258439 PMCID: PMC7790098 DOI: 10.4269/ajtmh.20-0776] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/04/2020] [Indexed: 12/15/2022] Open
Abstract
In many regions where ticks negatively impact public health or economic production, multiple medically important tick species may have overlapping geographic distribution, and in North America, this includes members of Ixodes, Dermacentor, and Amblyomma genera. Acquired tick resistance is the process by which some animals develop an immune response against feeding ticks after one or more exposures. This form of immunity can restrict the ability of ticks to feed and may inhibit transmission of pathogens. Likewise, many proteins present in tick saliva are conserved among tick species, and prior studies have reported cross-protective host immunity against certain combinations of ticks. In this study, we used a guinea pig model to assess whether host resistance against Ixodes scapularis could confer protection against two other medically important tick vectors, Dermacentor variabilis and Amblyomma americanum. Tick challenges using nymphs were used to induce host resistance against a primary species, followed by additional challenge using a secondary tick species. Tick attachment to hosts and engorgement weights were reduced significantly for D. variabilis and A. americanum feeding on I. scapularis-sensitized hosts. Reciprocally, I. scapularis engorgement weights were reduced to a lesser extent, and attachment was unaffected when feeding on hosts sensitized with either D. variabilis or A. americanum. These results indicate that immunity against I. scapularis could potentially be exploited for use in an anti-tick vaccine targeting multiple tick species and their associated pathogens.
Collapse
Affiliation(s)
- Geoffrey E. Lynn
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, Connecticut
| | - Husrev Diktas
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, Connecticut
| | - Kathleen DePonte
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, Connecticut
| | - Erol Fikrig
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, Connecticut
- Howard Hughes Medical Institute, Chevy Chase, Maryland
| |
Collapse
|
40
|
Narasimhan S, Kurokawa C, DeBlasio M, Matias J, Sajid A, Pal U, Lynn G, Fikrig E. Acquired tick resistance: The trail is hot. Parasite Immunol 2020; 43:e12808. [PMID: 33187012 DOI: 10.1111/pim.12808] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/09/2020] [Indexed: 12/17/2022]
Abstract
Acquired tick resistance is a phenomenon wherein the host elicits an immune response against tick salivary components upon repeated tick infestations. The immune responses, potentially directed against critical salivary components, thwart tick feeding, and the animal becomes resistant to subsequent tick infestations. The development of tick resistance is frequently observed when ticks feed on non-natural hosts, but not on natural hosts. The molecular mechanisms that lead to the development of tick resistance are not fully understood, and both host and tick factors are invoked in this phenomenon. Advances in molecular tools to address the host and the tick are beginning to reveal new insights into this phenomenon and to uncover a deeper understanding of the fundamental biology of tick-host interactions. This review will focus on the expanding understanding of acquired tick resistance and highlight the impact of this understanding on anti-tick vaccine development efforts.
Collapse
Affiliation(s)
- Sukanya Narasimhan
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Cheyne Kurokawa
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Melody DeBlasio
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Jaqueline Matias
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Andaleeb Sajid
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Utpal Pal
- Department of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Geoffrey Lynn
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
41
|
Perner J, Helm D, Haberkant P, Hatalova T, Kropackova S, Ribeiro JM, Kopacek P. The Central Role of Salivary Metalloproteases in Host Acquired Resistance to Tick Feeding. Front Cell Infect Microbiol 2020; 10:563349. [PMID: 33312963 PMCID: PMC7708348 DOI: 10.3389/fcimb.2020.563349] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 10/20/2020] [Indexed: 01/07/2023] Open
Abstract
During feeding on vertebrate hosts, ticks secrete saliva composed of a rich cocktail of bioactive molecules modulating host immune responses. Although most of the proteinaceous fraction of tick saliva is of little immunogenicity, repeated feeding of ticks on mammalian hosts may lead to impairment of tick feeding, preventing full engorgement. Here, we challenged rabbits with repeated feeding of both Ixodes ricinus nymphs and adults and observed the formation of specific antibodies against several tick salivary proteins. Repeated feeding of both I. ricinus stages led to a gradual decrease in engorged weights. To identify the salivary antigens, isolated immunoglobulins from repeatedly infested rabbits were utilized for a protein pull-down from the saliva of pilocarpine-treated ticks. Eluted antigens were first identified by peptide mass fingerprinting with the aid of available I. ricinus salivary gland transcriptomes originating from early phases of tick feeding. To increase the authenticity of immunogens identified, we also performed, for the first time, de novo assembly of the sialome from I. ricinus females fed for six days, a timepoint used for pilocarpine-salivation. The most dominant I. ricinus salivary immunogens identified in our study were zinc-dependent metalloproteases of three different families. To corroborate the role of metalloproteases at the tick/host interface, we fed ticks micro-injected with a zinc metalloprotease inhibitor, phosphoramidon, on a rabbit. These ticks clearly failed to initiate feeding and to engorge. However, neither feeding to ticks immune blood of repeatedly infested rabbits, nor phosphoramidon injection into ticks, prevented their engorgement when fed in vitro on an artificial membrane system. These data show that Zn metalloproteases play a decisive role in the success of tick feeding, mediated by complex molecular interactions between the host immune, inflammatory, and hemostatic processes, which are absent in in vitro feeding. This basic concept warrants further investigation and reconsideration of the current strategies towards the development of an effective “anti-tick” vaccine.
Collapse
Affiliation(s)
- Jan Perner
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czechia
| | - Dominic Helm
- Proteomics Core Facility, The European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Per Haberkant
- Proteomics Core Facility, The European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Tereza Hatalova
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czechia
| | - Sara Kropackova
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czechia
| | - Jose M Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Petr Kopacek
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czechia
| |
Collapse
|
42
|
Martins LA, Bensaoud C, Kotál J, Chmelař J, Kotsyfakis M. Tick salivary gland transcriptomics and proteomics. Parasite Immunol 2020; 43:e12807. [PMID: 33135186 DOI: 10.1111/pim.12807] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 12/14/2022]
Abstract
'Omics' technologies have facilitated the identification of hundreds to thousands of tick molecules that mediate tick feeding and play a role in the transmission of tick-borne diseases. Deep sequencing methodologies have played a key role in this knowledge accumulation, profoundly facilitating the study of the biology of disease vectors lacking reference genomes. For example, the nucleotide sequences of the entire set of tick salivary effectors, the so-called tick 'sialome', now contain at least one order of magnitude more transcript sequences compared to similar projects based on Sanger sequencing. Tick feeding is a complex and dynamic process, and while the dynamic 'sialome' is thought to mediate tick feeding success, exactly how transcriptome dynamics relate to tick-host-pathogen interactions is still largely unknown. The identification and, importantly, the functional analysis of the tick 'sialome' is expected to shed light on this 'black box'. This information will be crucial for developing strategies to block pathogen transmission, not only for anti-tick vaccine development but also the discovery and development of new, pharmacologically active compounds for human diseases.
Collapse
Affiliation(s)
- Larissa Almeida Martins
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, 37005, Czech Republic
| | - Chaima Bensaoud
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, 37005, Czech Republic
| | - Jan Kotál
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, 37005, Czech Republic.,Department of Medical Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Jindřich Chmelař
- Department of Medical Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Michail Kotsyfakis
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, 37005, Czech Republic.,Department of Medical Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| |
Collapse
|
43
|
An Ixodes scapularis Protein Disulfide Isomerase Contributes to Borrelia burgdorferi Colonization of the Vector. Infect Immun 2020; 88:IAI.00426-20. [PMID: 32928964 PMCID: PMC7671890 DOI: 10.1128/iai.00426-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 08/31/2020] [Indexed: 01/06/2023] Open
Abstract
Borrelia burgdorferi causes Lyme disease, the most common tick-transmitted illness in North America. When Ixodes scapularis feed on an infected vertebrate host, spirochetes enter the tick gut along with the bloodmeal and colonize the vector. Here, we show that a secreted tick protein, I. scapularis protein disulfide isomerase A3 (IsPDIA3), enhances B. burgdorferi colonization of the tick gut. I. scapularis ticks in which ispdiA3 has been knocked down using RNA interference have decreased spirochete colonization of the tick gut after engorging on B. burgdorferi-infected mice. Moreover, administration of IsPDIA3 antiserum to B. burgdorferi-infected mice reduced the ability of spirochetes to colonize the tick when feeding on these animals. We show that IsPDIA3 modulates inflammatory responses at the tick bite site, potentially facilitating spirochete survival at the vector-host interface as it exits the vertebrate host to enter the tick gut. These data provide functional insights into the complex interactions between B. burgdorferi and its arthropod vector and suggest additional targets to interfere with the spirochete life cycle.
Collapse
|
44
|
Tirloni L, Braz G, Nunes RD, Gandara ACP, Vieira LR, Assumpcao TC, Sabadin GA, da Silva RM, Guizzo MG, Machado JA, Costa EP, Santos D, Gomes HF, Moraes J, dos Santos Mota MB, Mesquita RD, de Souza Leite M, Alvarenga PH, Lara FA, Seixas A, da Fonseca RN, Fogaça AC, Logullo C, Tanaka AS, Daffre S, Oliveira PL, da Silva Vaz I, Ribeiro JMC. A physiologic overview of the organ-specific transcriptome of the cattle tick Rhipicephalus microplus. Sci Rep 2020. [DOI: 10.1246/nikkashi.1979.101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AbstractTo further obtain insights into the Rhipicephalus microplus transcriptome, we used RNA-seq to carry out a study of expression in (i) embryos; (ii) ovaries from partially and fully engorged females; (iii) salivary glands from partially engorged females; (iv) fat body from partially and fully engorged females; and (v) digestive cells from partially, and (vi) fully engorged females. We obtained > 500 million Illumina reads which were assembled de novo, producing > 190,000 contigs, identifying 18,857 coding sequences (CDS). Reads from each library were mapped back into the assembled transcriptome giving a view of gene expression in different tissues. Transcriptomic expression and pathway analysis showed that several genes related in blood digestion and host-parasite interaction were overexpressed in digestive cells compared with other tissues. Furthermore, essential genes for the cell development and embryogenesis were overexpressed in ovaries. Taken altogether, these data offer novel insights into the physiology of production and role of saliva, blood digestion, energy metabolism, and development with submission of 10,932 novel tissue/cell specific CDS to the NCBI database for this important tick species.
Collapse
|
45
|
A physiologic overview of the organ-specific transcriptome of the cattle tick Rhipicephalus microplus. Sci Rep 2020; 10:18296. [PMID: 33106528 PMCID: PMC7588415 DOI: 10.1038/s41598-020-75341-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/06/2020] [Indexed: 12/13/2022] Open
Abstract
To further obtain insights into the Rhipicephalus microplus transcriptome, we used RNA-seq to carry out a study of expression in (i) embryos; (ii) ovaries from partially and fully engorged females; (iii) salivary glands from partially engorged females; (iv) fat body from partially and fully engorged females; and (v) digestive cells from partially, and (vi) fully engorged females. We obtained > 500 million Illumina reads which were assembled de novo, producing > 190,000 contigs, identifying 18,857 coding sequences (CDS). Reads from each library were mapped back into the assembled transcriptome giving a view of gene expression in different tissues. Transcriptomic expression and pathway analysis showed that several genes related in blood digestion and host-parasite interaction were overexpressed in digestive cells compared with other tissues. Furthermore, essential genes for the cell development and embryogenesis were overexpressed in ovaries. Taken altogether, these data offer novel insights into the physiology of production and role of saliva, blood digestion, energy metabolism, and development with submission of 10,932 novel tissue/cell specific CDS to the NCBI database for this important tick species.
Collapse
|
46
|
Nawaz M, Malik MI, Zhang H, Hassan IA, Cao J, Zhou Y, Hameed M, Hussain Kuthu Z, Zhou J. Proteomic Analysis of Exosome-Like Vesicles Isolated From Saliva of the Tick Haemaphysalis longicornis. Front Cell Infect Microbiol 2020; 10:542319. [PMID: 33194791 PMCID: PMC7642894 DOI: 10.3389/fcimb.2020.542319] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 09/11/2020] [Indexed: 12/18/2022] Open
Abstract
Extracellular vesicles (EVs), are considered as vehicles of cellular communication. Parasites usually release EVs in their excretory-secretory products to modulate host environment. However, little is known about the secretion of EVs by ticks. In this study, we show for the first time that the tick Haemaphysalis longicornis secretes EVs in saliva that resembles exosomes. EVs were purified from pilocarpine induced saliva of partially engorged H. longicornis ticks. Electron microscopy analysis revealed the presence of exosome-like vesicles with a size of 100 nm. Proteomic analysis by LC-MS/MS identified a total of 356 proteins in tick-derived EVs. Proteome data of tick-derived EVs was validated by Western blot analysis. Immunodetection of Hsp70 and GAPDH proteins indicated that the proteomics data of tick-derived EVs were highly reliable. Bioinformatics analysis (Gene Ontology) indicated association of certain biological and molecular functions with proteins which may be helpful during tick development. Likewise, KEGG database revealed involvement of vesicular proteins in proton transport, detoxification, ECM-receptor interaction, ribosome, RNA transport, ABC transporters, and oxidative phosphorylation. The results of this study provide evidence that EVs are being secreted in tick saliva and suggest that tick saliva-derived EVs could play important roles in host-parasite relationships. Moreover, EVs could be a useful tool in development of vaccines or therapeutics against ticks.
Collapse
Affiliation(s)
- Mohsin Nawaz
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Muhammad Irfan Malik
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Houshuang Zhang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Ibrahim A Hassan
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Jie Cao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yongzhi Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Mudassar Hameed
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Zulfiqar Hussain Kuthu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Jinlin Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
47
|
Mans BJ. Quantitative Visions of Reality at the Tick-Host Interface: Biochemistry, Genomics, Proteomics, and Transcriptomics as Measures of Complete Inventories of the Tick Sialoverse. Front Cell Infect Microbiol 2020; 10:574405. [PMID: 33042874 PMCID: PMC7517725 DOI: 10.3389/fcimb.2020.574405] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/13/2020] [Indexed: 12/19/2022] Open
Abstract
Species have definitive genomes. Even so, the transcriptional and translational products of the genome are dynamic and subject to change over time. This is especially true for the proteins secreted by ticks at the tick-host feeding interface that represent a complex system known as the sialoverse. The sialoverse represent all of the proteins derived from tick salivary glands for all tick species that may be involved in tick-host interaction and the modulation of the host's defense mechanisms. The current study contemplates the advances made over time to understand and describe the complexity present in the sialoverse. Technological advances at given periods in time allowed detection of functions, genes, and proteins enabling a deeper insight into the complexity of the sialoverse and a concomitant expansion in complexity with as yet, no end in sight. The importance of systematic classification of the sialoverse is highlighted with the realization that our coverage of transcriptome and proteome space remains incomplete, but that complete descriptions may be possible in the future. Even so, analysis and integration of the sialoverse into a comprehensive understanding of tick-host interactions may require further technological advances given the high level of expected complexity that remains to be uncovered.
Collapse
Affiliation(s)
- Ben J Mans
- Epidemiology, Parasites and Vectors, Agricultural Research Council-Onderstepoort Veterinary Research, Pretoria, South Africa.,Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria, South Africa.,Department of Life and Consumer Sciences, University of South Africa, Pretoria, South Africa
| |
Collapse
|
48
|
Mites, ticks, anaphylaxis and allergy: The Acari hypothesis. Med Hypotheses 2020; 144:110257. [PMID: 33254563 DOI: 10.1016/j.mehy.2020.110257] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/31/2020] [Accepted: 09/05/2020] [Indexed: 02/01/2023]
Abstract
Anaphylaxis is a poorly understood immune process in which a Th2-/IgE-mediated adaptive response commandeers cellular machinery, typically reserved for defense against multicellular ectoparasites, to activate against otherwise benign molecules. Its clinical manifestations consist of rapid pathophysiological reflexes that target epithelial surfaces. The galactose-α-1,3-galactose hypersensitivity response is a compelling model of anaphylaxis for which causation has been demonstrated. At the core of the model, a tick bite sensitizes a recipient to a tick foodstuff. As proposed herein, the model likely informs on the origin of all allergic inflammation; namely, allergy is not intended to protect against seemingly harmless and irrelevant materials, but is, instead, intended to rid epithelial surfaces of pathogen-bearing Acari, i.e., mites and ticks. The demonstrated adjuvant activity of acarian gastrointestinal secretions, when paired with the polyphagous diet of mites, renders acarians eminently suited to accounting, mechanistically, for many, if not all, human allergies.
Collapse
|
49
|
Failed Disruption of Tick Feeding, Viability, and Molting after Immunization of Mice and Sheep with Recombinant Ixodes ricinus Salivary Proteins IrSPI and IrLip1. Vaccines (Basel) 2020; 8:vaccines8030475. [PMID: 32858821 PMCID: PMC7564719 DOI: 10.3390/vaccines8030475] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 12/11/2022] Open
Abstract
To identify potential vaccine candidates against Ixodes ricinus and tick-borne pathogen transmission, we have previously sequenced the salivary gland transcriptomes of female ticks infected or not with Bartonella henselae. The hypothesized potential of both IrSPI (I. ricinus serine protease inhibitor) and IrLip1 (I. ricinus lipocalin 1) as protective antigens decreasing tick feeding and/or the transmission of tick-borne pathogens was based on their presumed involvement in dampening the host immune response to tick feeding. Vaccine endpoints included tick larval and nymphal mortality, feeding, and molting in mice and sheep. Whether the antigens were administered individually or in combination, the vaccination of mice or sheep elicited a potent antigen-specific antibody response. However, and contrary to our expectations, vaccination failed to afford protection against the infestation of mice and sheep by I. ricinus nymphs and larvae, respectively. Rather, vaccination with IrSPI and IrLip1 appeared to enhance tick engorgement and molting and decrease tick mortality. To the best of our knowledge, these observations represent the first report of induction of vaccine-mediated enhancement in relation to anti-tick vaccination.
Collapse
|
50
|
Kurokawa C, Narasimhan S, Vidyarthi A, Booth CJ, Mehta S, Meister L, Diktas H, Strank N, Lynn GE, DePonte K, Craft J, Fikrig E. Repeat tick exposure elicits distinct immune responses in guinea pigs and mice. Ticks Tick Borne Dis 2020; 11:101529. [PMID: 32993942 DOI: 10.1016/j.ttbdis.2020.101529] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 12/19/2022]
Abstract
Ticks deposit salivary proteins into the skin during a bite to mediate acquisition of a blood meal. Acquired resistance to tick bites has been demonstrated to prevent Borrelia burgdorferi sensu lato (s.l.) transmission. However, the mechanism of resistance, as well as the protective antigens, have remained elusive. To address these unknowns, we utilized a guinea pig model of tick resistance and a mouse model of permissiveness. Guinea pigs developed immunity after multiple Ixodes scapularis tick infestations, characterized by rapid tick detachment and impaired feeding. In comparison, mice tolerated at least 6 infestations with no significant impact on feeding. We analyzed the bite sites by RNA-sequencing and histology, identifying several inflammatory pathways in tick immune animals, such as FcεRI signaling and complement activation, and activation of coagulation pathways that could impair local blood flow. Together, these results identify important pathways altered during tick rejection and potential tick proteins that could serve as vaccine candidates.
Collapse
Affiliation(s)
- Cheyne Kurokawa
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Sukanya Narasimhan
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Aurobind Vidyarthi
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Carmen J Booth
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Sameet Mehta
- Yale Center for Genome Analysis, Yale University, New Haven, CT 06520, USA
| | - Lea Meister
- Clermont Auvergne University School of Engineering Polytech, Clermont-Ferrand, France
| | - Husrev Diktas
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Norma Strank
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Geoffrey E Lynn
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Kathy DePonte
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Joseph Craft
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA; Section of Rheumatology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA.
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Howard Hughes Medical Institute. Chevy Chase, MD 20815, USA.
| |
Collapse
|