1
|
Edenborough K, Supriyati E, Dufault S, Arguni E, Indriani C, Denton J, Sasmono RT, Ahmad RA, Anders KL, Simmons CP. Dengue virus genomic surveillance in the applying Wolbachia to eliminate dengue trial reveals genotypic efficacy and disruption of focal transmission. Sci Rep 2024; 14:28004. [PMID: 39543157 PMCID: PMC11564853 DOI: 10.1038/s41598-024-78008-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 10/28/2024] [Indexed: 11/17/2024] Open
Abstract
Release of Aedes aegypti mosquitoes infected with Wolbachia pipientis (wMel strain) is a biocontrol approach against Ae. aegypti-transmitted arboviruses. The Applying Wolbachia to Eliminate Dengue (AWED) cluster-randomised trial was conducted in Yogyakarta, Indonesia in 2018-2020 and provided pivotal evidence for the efficacy of wMel-Ae. aegypti mosquito population replacement in significantly reducing the incidence of virologically-confirmed dengue (VCD) across all four dengue virus (DENV) serotypes. Here, we sequenced the DENV genomes from 318 dengue cases detected in the AWED trial, with the aim of characterising DENV genetic diversity, measuring genotype-specific intervention effects, and inferring DENV transmission dynamics in wMel-treated and untreated areas of Yogyakarta. Phylogenomic analysis of all DENV sequences revealed the co-circulation of five endemic DENV genotypes: DENV-1 genotype I (12.5%) and IV (4.7%), DENV-2 Cosmopolitan (47%), DENV-3 genotype I (8.5%), and DENV-4 genotype II (25.7%), and one recently imported genotype, DENV-4 genotype I (1.6%). The diversity of genotypes detected among AWED trial participants enabled estimation of the genotype-specific protective efficacies of wMel, which were similar (± 10%) to the point estimates of the respective serotype-specific efficacies reported previously. This indicates that wMel afforded protection to all of the six genotypes detected in Yogyakarta. We show that within this substantial overall viral diversity, there was a strong spatial and temporal structure to the DENV genomic relationships, consistent with highly focal DENV transmission around the home in wMel-untreated areas and a near-total disruption of transmission by wMel. These findings can inform long-term monitoring of DENV transmission dynamics in Wolbachia-treated areas including Yogyakarta.
Collapse
Affiliation(s)
- Kathryn Edenborough
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
| | - Endah Supriyati
- Centre for Tropical Medicine, Faculty of Medicine Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Suzanne Dufault
- Division of Biostatistics, School of Public Health, University of California, Berkeley, USA
| | - Eggi Arguni
- Centre for Tropical Medicine, Faculty of Medicine Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Department of Child Health, Faculty of Medicine Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Citra Indriani
- Centre for Tropical Medicine, Faculty of Medicine Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Department of Epidemiology Biostatistics and Public Health, Faculty of Medicine Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Jai Denton
- World Mosquito Program, Monash University, Clayton, Melbourne, VIC, Australia
| | - R Tedjo Sasmono
- Eijkman Research Centre for Molecular Biology, National Research and Innovation Agency, Cibinong, Bogor, 16911, Indonesia
| | - Riris Andono Ahmad
- Centre for Tropical Medicine, Faculty of Medicine Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Department of Epidemiology Biostatistics and Public Health, Faculty of Medicine Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Katherine L Anders
- World Mosquito Program, Monash University, Clayton, Melbourne, VIC, Australia
- School of Public Health and Preventive Medicine, Monash University, Prahran, Melbourne, VIC, Australia
| | - Cameron P Simmons
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
- World Mosquito Program, Monash University, Clayton, Melbourne, VIC, Australia.
| |
Collapse
|
2
|
Menis Candela F, Soria EA, Moliva MV, Suárez Perrone A, Reinoso EB, Giordano W, Sabini MC. Anti-DENV-2 Activity of Ethanolic Extracts from Arachis hypogaea L.: Peanut Skin as a Relevant Resource of Bioactive Compounds against Dengue Virus. PLANTS (BASEL, SWITZERLAND) 2024; 13:2881. [PMID: 39458828 PMCID: PMC11511524 DOI: 10.3390/plants13202881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024]
Abstract
Dengue is an emerging disease of high impact on human health. Plants are an important source of new antivirals and Arachis hypogaea stands for its biological properties. The aim of this study was to evaluate the cytotoxicity and antiviral activity and elucidate the antiviral mechanism of ethanolic extracts from A. hypogaea against dengue virus 2 (DENV-2). The skin or tegument ethanolic extract (TEEs) and seed ethanolic extract (SEEs) were obtained. Cytotoxicity was evaluated by MTT and Neutral Red Uptake (NRU). Antiviral activity was evaluated at different stages of the viral replication cycle by the lysis plaque reduction method. The 50% inhibitory concentration (IC50) and selectivity index (SI) were determined. Antiviral activity was further determined by RT-qPCR. The CC50 values were 169 (NRU) and 65 (MTT) µg/mL for TEE. In addition, the CC50 values were >1400 (NRU) and 636 (MTT) µg/mL for SEE. The TEE demonstrated 99.9 ± 0.1% viral inhibition. The TEE presented an IC50 = 3.47 and SI of 48.7 (NRU) and 18.73 (MTT). Its mechanism of antiviral action is broad and it acts in the viral adsorption-penetration stage and inhibits the first steps of infection in the post-penetration stage. It is also capable of acting as virucidal and as prophylactic. Studies of RT-qPCR indicated that the TEE inhibited viral RNA synthesis. These findings suggest that the TEE from A. hypogaea could be a promising antiviral candidate for treating DENV-2 infections.
Collapse
Affiliation(s)
- Florencia Menis Candela
- Departament of Microbiology and Inmunology, Virology Area, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, Río Cuarto CP 5800, Argentina; (F.M.C.); (A.S.P.)
| | - Elio Andrés Soria
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), Consejo Nacional de Investigaciones Científicas y Técnicas, Boulevard de la Reforma y Enfermera Gordillo Gómez, Ciudad Universitaria, Córdoba Capital CP 5016, Argentina;
- Instituto de Biología Celular, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Boulevard de la Reforma y Enfermera Gordillo Gómez, Ciudad Universitaria, Córdoba Capital CP 5016, Argentina
| | - Melina Vanesa Moliva
- Departament of Microbiology and Inmunology, Microbial Genetics Area, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, Río Cuarto CP 5800, Argentina; (M.V.M.); (E.B.R.)
| | - Agostina Suárez Perrone
- Departament of Microbiology and Inmunology, Virology Area, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, Río Cuarto CP 5800, Argentina; (F.M.C.); (A.S.P.)
| | - Elina Beatríz Reinoso
- Departament of Microbiology and Inmunology, Microbial Genetics Area, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, Río Cuarto CP 5800, Argentina; (M.V.M.); (E.B.R.)
| | - Walter Giordano
- Instituto de Biotecnología Ambiental y Salud, INBIAS-Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Ruta 36 Km 601, Río Cuarto CP 5800, Argentina;
| | - María Carola Sabini
- Departament of Microbiology and Inmunology, Virology Area, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, Río Cuarto CP 5800, Argentina; (F.M.C.); (A.S.P.)
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), Consejo Nacional de Investigaciones Científicas y Técnicas, Boulevard de la Reforma y Enfermera Gordillo Gómez, Ciudad Universitaria, Córdoba Capital CP 5016, Argentina;
- Instituto de Biología Celular, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Boulevard de la Reforma y Enfermera Gordillo Gómez, Ciudad Universitaria, Córdoba Capital CP 5016, Argentina
| |
Collapse
|
3
|
Rajak P, Ganguly A, Adhikary S, Bhattacharya S. Smart technology for mosquito control: Recent developments, challenges, and future prospects. Acta Trop 2024; 258:107348. [PMID: 39098749 DOI: 10.1016/j.actatropica.2024.107348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Smart technology coupled with digital sensors and deep learning networks have emerging scopes in various fields, including surveillance of mosquitoes. Several studies have been conducted to examine the efficacy of such technologies in the differential identification of mosquitoes with high accuracy. Some smart trap uses computer vision technology and deep learning networks to identify live Aedes aegypti and Culex quinquefasciatus in real time. Implementing such tools integrated with a reliable capture mechanism can be beneficial in identifying live mosquitoes without destroying their morphological features. Such smart traps can correctly differentiates between Cx. quinquefasciatus and Ae. aegypti mosquitoes, and may also help control mosquito-borne diseases and predict their possible outbreak. Smart devices embedded with YOLO V4 Deep Neural Network algorithm has been designed with a differential drive mechanism and a mosquito trapping module to attract mosquitoes in the environment. The use of acoustic and optical sensors in combination with machine learning techniques have escalated the automatic classification of mosquitoes based on their flight characteristics, including wing-beat frequency. Thus, such Artificial Intelligence-based tools have promising scopes for surveillance of mosquitoes to control vector-borne diseases. However working efficiency of such technologies requires further evaluation for implementation on a global scale.
Collapse
Affiliation(s)
- Prem Rajak
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India.
| | - Abhratanu Ganguly
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Satadal Adhikary
- Post Graduate Department of Zoology, A. B. N. Seal College, Cooch Behar, West Bengal, India
| | | |
Collapse
|
4
|
Douglas KO, Payne K, Sabino-Santos G, Chami P, Lorde T. The Impact of Climate on Human Dengue Infections in the Caribbean. Pathogens 2024; 13:756. [PMID: 39338947 PMCID: PMC11434940 DOI: 10.3390/pathogens13090756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/19/2024] [Accepted: 07/30/2024] [Indexed: 09/30/2024] Open
Abstract
Climate change is no longer a hypothetical problem in the Caribbean but a new reality to which regional public health systems must adapt. One of its significant impacts is the increased transmission of infectious diseases, such as dengue fever, which is endemic in the region, and the presence of the Aedes aegypti mosquito vector responsible for transmitting the disease. (1) Methods: To assess the association between climatic factors and human dengue virus infections in the Caribbean, we conducted a systematic review of published studies on MEDLINE and Web of Science databases according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria. (2) Results: In total, 153 papers were identified, with 27 studies selected that met the inclusion criteria ranging from the northern and southern Caribbean. Rainfall/precipitation and vapor pressure had a strong positive association with dengue incidence, whereas the evidence for the impact of temperatures was mixed. (3) Conclusions: The interaction between climate and human dengue disease in the Caribbean is complex and influenced by multiple factors, including waste management, infrastructure risks, land use changes, and challenged public health systems. Thus, more detailed research is necessary to understand the complexity of dengue within the wider Caribbean and achieve better dengue disease management.
Collapse
Affiliation(s)
- Kirk Osmond Douglas
- Centre for Biosecurity Studies, The University of the West Indies, Cave Hill Campus, Cave Hill, Bridgetown BB11000, Barbados
| | - Karl Payne
- Centre for Environmental Resource Management, The University of the West Indies, Cave Hill Campus, Cave Hill, Bridgetown BB11000, Barbados;
| | - Gilberto Sabino-Santos
- Department of Microbiology and Immunology, Tulane University School of Medicine, 1430 Tulane Ave Rm. 5718, New Orleans, LA 70112, USA;
- Centre for Virology Research, School of Medicine in Ribeirao Preto, University of Sao Paulo, 3900 Bandeirantes Ave, Ribeirao Preto 14049-900, SP, Brazil
| | - Peter Chami
- Department of Computer Science, Mathematics, & Physics, The University of the West Indies, Cave Hill Campus, Cave Hill, Bridgetown BB11000, Barbados;
| | - Troy Lorde
- Department of Economics, The University of the West Indies, Cave Hill Campus, Cave Hill, Bridgetown BB11000, Barbados;
| |
Collapse
|
5
|
Martínez D, Gómez M, Hernández C, Campo-Palacio S, González-Robayo M, Montilla M, Pavas-Escobar N, Tovar-Acero C, Geovo-Arias L, Valencia-Urrutia E, Córdoba-Renteria N, Carrillo-Hernandez MY, Ruiz-Saenz J, Martinez-Gutierrez M, Paniz-Mondolfi A, Patiño LH, Muñoz M, Ramírez JD. Cryptic transmission and novel introduction of Dengue 1 and 2 genotypes in Colombia. Virus Evol 2024; 10:veae068. [PMID: 39347444 PMCID: PMC11429525 DOI: 10.1093/ve/veae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/03/2024] [Accepted: 08/27/2024] [Indexed: 10/01/2024] Open
Abstract
Dengue fever remains as a public health challenge in Colombia, standing as the most prevalent infectious disease in the country. The cyclic nature of dengue epidemics, occurring approximately every 3 years, is intricately linked to meteorological events like El Niño Southern Oscillation (ENSO). Therefore, the Colombian system faces challenges in genomic surveillance. This study aimed to evaluate local dengue virus (DENV) transmission and genetic diversity in four Colombian departments with heterogeneous incidence patterns (department is first-level territorial units in Colombia). For this study, we processed 266 serum samples to identify DENV. Subsequently, we obtained 118 genome sequences by sequencing DENV genomes from serum samples of 134 patients infected with DENV-1 and DENV-2 serotypes. The predominant serotype was DENV-2 (108/143), with the Asian-American (AA) genotype (91/118) being the most prevalent one. Phylogenetic analysis revealed concurrent circulation of two lineages of both DENV-2 AA and DENV-1 V, suggesting ongoing genetic exchange with sequences from Venezuela and Cuba. The continuous migration of Venezuelan citizens into Colombia can contribute to this exchange, emphasizing the need for strengthened prevention measures in border areas. Notably, the time to most recent common ancestor analysis identified cryptic transmission of DENV-2 AA since approximately 2015, leading to the recent epidemic. This challenges the notion that major outbreaks are solely triggered by recent virus introductions, emphasizing the importance of active genomic surveillance. The study also highlighted the contrasting selection pressures on DENV-1 V and DENV-2 AA, with the latter experiencing positive selection, possibly influencing its transmissibility. The presence of a cosmopolitan genotype in Colombia, previously reported in Brazil and Peru, raises concerns about transmission routes, emphasizing the necessity for thorough DENV evolution studies. Despite limitations, the study underscores genomic epidemiology's crucial role in early detection and comprehension of DENV genotypes, recommending the use of advanced sequencing techniques as an early warning system to help prevent and control dengue outbreaks in Colombia and worldwide.
Collapse
Affiliation(s)
- David Martínez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Marcela Gómez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Grupo de Investigación en Ciencias Básicas (NÚCLEO) Facultad de Ciencias e Ingeniería, Universidad de Boyacá, Tunja, Colombia
| | - Carolina Hernández
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Centro de Tecnología en Salud (CETESA), Innovaseq SAS, Bogotá, Colombia
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sandra Campo-Palacio
- Laboratorio de Salud Pública, Secretaría de Salud Departamental Meta, Villavicencio, Colombia
| | - Marina González-Robayo
- Laboratorio de Salud Pública, Secretaría de Salud Departamental Meta, Villavicencio, Colombia
| | - Marcela Montilla
- Laboratorio de Salud Pública, Secretaría de Salud Departamental Meta, Villavicencio, Colombia
- Universidad Cooperativa de Colombia, Villavicencio, Colombia
| | - Norma Pavas-Escobar
- Laboratorio de Salud Pública, Secretaría de Salud Departamental Meta, Villavicencio, Colombia
- Universidad Cooperativa de Colombia, Villavicencio, Colombia
| | - Catalina Tovar-Acero
- Grupo de Enfermedades Tropicales y Resistencia Bacteriana, Universidad del Sinú, Montería, Córdoba, Colombia
| | - Lillys Geovo-Arias
- Secretaria de Salud departamental Chocó-Laboratorio de Salud Pública, Chocó, Colombia
| | | | | | - Marlen Y Carrillo-Hernandez
- Grupo de Investigación en Ciencias Animales-GRICA, Universidad Cooperativa de Colombia, Bucaramanga, Colombia
- Programa de Estudio y Control de Enfermedades Tropicales-PECET, Universidad de Antioquia, Medellín, Colombia
| | - Julian Ruiz-Saenz
- Grupo de Investigación en Ciencias Animales-GRICA, Universidad Cooperativa de Colombia, Bucaramanga, Colombia
| | - Marlen Martinez-Gutierrez
- Grupo de Investigación en Ciencias Animales-GRICA, Universidad Cooperativa de Colombia, Bucaramanga, Colombia
- Programa de Estudio y Control de Enfermedades Tropicales-PECET, Universidad de Antioquia, Medellín, Colombia
| | - Alberto Paniz-Mondolfi
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Luz H Patiño
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Molecular Epidemiology Laboratory, Instituto de Biotecnología-UN (IBUN), Universidad Nacional de Colombia, Bogotá, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
6
|
Acosta-España JD, Dueñas-Espín I, Grijalva Narvaez DF, Altamirano-Jara JB, Gómez-Jaramillo AM, Rodriguez-Morales AJ. Analysis of inpatient data on dengue fever, malaria and leishmaniasis in Ecuador: A cross-sectional national study, 2015-2022. New Microbes New Infect 2024; 60-61:101421. [PMID: 38818245 PMCID: PMC11137557 DOI: 10.1016/j.nmni.2024.101421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 06/01/2024] Open
Abstract
Background Despite concerted efforts in South America, these diseases continue to pose a significant burden of morbidity and mortality in endemic regions. This study aimed to analyse hospital data and investigate the hospitalisation rates of dengue fever, leishmaniasis, and malaria in Ecuador between 2015 and 2022. Methods Open-access databases from the National Institute of Statistics and Censuses of Ecuador between 2015 and 2022 were analysed. Data were filtered using specific terms for each disease (ICD-10), and descriptive statistics of geographical distributions were calculated using Microsoft Excel, Stata 14.2, and Rstudio. Results Dengue had the highest burden, with 31,616 reported cases, followed by malaria (1,316) and leishmaniasis (283). From 2015 to 2022, the highest hospitalisation rate per 105 inhabitants for dengue was observed in Sucumbios province (697.2), for malaria in Pastaza province (108.4), and for leishmaniasis in Morona Santiago province (18.8). The data's trend analysis revealed a slight increase in dengue and mild downward trends in hospitalisation for malaria and leishmaniasis. Conclusions The results suggest that vector-borne disease control has failed in Ecuador. Unfortunately, there was no significant trend towards a decrease in dengue, malaria, and leishmaniasis in Ecuador during the years studied. This study highlights the need to optimise sustainable vector control programs and emphasises continuous monitoring of disease incidence and control measures.
Collapse
Affiliation(s)
- Jaime David Acosta-España
- Health Sciences Faculty, Universidad Internacional SEK (UISEK), Quito, 170120, Ecuador
- Postgraduate Program in Infectious Diseases, School of Medicine, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
- Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Ivan Dueñas-Espín
- Instituto de Salud Pública, Postgrado de Medicina Familiar y Comunitaria, Facultad de Medicina, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | | | - Jenny Belén Altamirano-Jara
- Medical Graduate of the Faculty of Medicine of the Evandro Chagas University Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana María Gómez-Jaramillo
- Pontifical Catholic University of Ecuador, Quito, Ecuador
- Centro de Investigación para la Salud en América Latina (CISeAL), Quito, Ecuador
| | - Alfonso J. Rodriguez-Morales
- Master Program of Clinical Epidemiology and Biostatistics, School of Medicine, Universidad Científica del Sur, Lima, 4861, Peru
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, P.O. Box 36, Lebanon
| |
Collapse
|
7
|
Soto-Garita C, Murillo T, Chávez-Peraza I, Campos-Ávila J, Prado-Hidalgo G, Drexler JF, Moreira-Soto A, Corrales-Aguilar E. Epidemiological, virological and clinical characterization of a Dengue/Zika outbreak in the Caribbean region of Costa Rica 2017-2018. Front Cell Infect Microbiol 2024; 14:1421744. [PMID: 38988809 PMCID: PMC11233455 DOI: 10.3389/fcimb.2024.1421744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/11/2024] [Indexed: 07/12/2024] Open
Abstract
The increase in incidence and geographical expansion of viruses transmitted by the Aedes mosquitoes, such as dengue (DENV) and zika (ZIKV) in the Americas, represents a burden for healthcare systems in tropical and subtropical regions. These and other under-detected arboviruses co-circulate in Costa Rica, adding additional complexity to their management due to their shared epidemiological behavior and similarity of symptoms in early stages. Since diagnostics of febrile illness is mostly based on clinical symptoms alone, we gathered acute-phase serum and urine from 399 samples of acute dengue-like cases from two healthcare facilities of Costa Rica, during an outbreak of arboviruses from July 2017 to May 2018, and tested them using molecular and serological methods. The analyses showed that of the clinically presumptive arbovirus cases that were reported, only 39.4% (n=153) of the samples were confirmed positive by RT-PCR to be DENV (DENV (10.3%), CHIKV (0.2%), ZIKV (27.3%), or mixed infections (1.5%). RT-PCR for other alphaviruses and flaviviruses, and PCR for Leptospira sp were negative. Furthermore, to assess flavivirus positivity in post-acute patients, the negative sera were tested against Dengue-IgM. 20% of sera were found positive, confounding even more the definitive number of cases, and emphasizing the need of several distinct diagnostic tools for accurate diagnostics. Molecular characterization of the prM and E genes from isolated viruses revealed that the American/Asian genotype of DENV-2 and the Asian lineage of ZIKV were circulating during this outbreak. Two different clades of DENV-2 American/Asian genotype were identified to co-circulate in the same region and a difference in the platelet and leukocyte count was noted between people infected with each clade, suggesting a putative distinct virulence. Our study sheds light on the necessity for healthcare strategies in managing arbovirus outbreaks, emphasizing the importance of comprehensive molecular and serological diagnostic approaches, as well as molecular characterization. This approach aids in enhancing our understanding of the clinical and epidemiological aspects of arboviral diseases during outbreaks. Our research highlights the need to strengthen training programs for health professionals and the need to increase research-based on laboratory evidence for diagnostic accuracy, guidance, development and implementation of public health interventions and epidemiological surveillance.
Collapse
Affiliation(s)
- Claudio Soto-Garita
- Research Center for Tropical Diseases (CIET) and Faculty of Microbiology, University of Costa Rica, San José, Costa Rica
- National Reference Centre for Virology, Costa Rican Institute for Research and Education on Nutrition and Health (INCIENSA), San José, Costa Rica
| | - Tatiana Murillo
- Research Center for Tropical Diseases (CIET) and Faculty of Microbiology, University of Costa Rica, San José, Costa Rica
| | - Ileana Chávez-Peraza
- Siquirres Integral Healthcare Center (CAIS), Costa Rican Social Security Fund (CCSS), Limón, Costa Rica
| | - Josué Campos-Ávila
- Siquirres Integral Healthcare Center (CAIS), Costa Rican Social Security Fund (CCSS), Limón, Costa Rica
| | - Grace Prado-Hidalgo
- Talamanca Healthcare Center, Costa Rican Social Security Fund (CCSS), Limón, Costa Rica
| | - Jan Felix Drexler
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Virology, Berlin, Germany
- German Centre for Infection Research (DZIF), Associated Partner Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Andres Moreira-Soto
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Virology, Berlin, Germany
| | - Eugenia Corrales-Aguilar
- Research Center for Tropical Diseases (CIET) and Faculty of Microbiology, University of Costa Rica, San José, Costa Rica
| |
Collapse
|
8
|
Cerpas C, Vásquez G, Moreira H, Juarez JG, Coloma J, Harris E, Bennett SN, Balmaseda Á. Introduction of New Dengue Virus Lineages of Multiple Serotypes after COVID-19 Pandemic, Nicaragua, 2022. Emerg Infect Dis 2024; 30:1203-1213. [PMID: 38782023 PMCID: PMC11138998 DOI: 10.3201/eid3006.231553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
Major dengue epidemics throughout Nicaragua's history have been dominated by 1 of 4 dengue virus serotypes (DENV-1-4). To examine serotypes during the dengue epidemic in Nicaragua in 2022, we performed real-time genomic surveillance in-country and documented cocirculation of all 4 serotypes. We observed a shift toward co-dominance of DENV-1 and DENV-4 over previously dominant DENV-2. By analyzing 135 new full-length DENV sequences, we found that introductions underlay the resurgence: DENV-1 clustered with viruses from Ecuador in 2014 rather than those previously seen in Nicaragua; DENV-3, which last circulated locally in 2014, grouped instead with Southeast Asia strains expanding into Florida and Cuba in 2022; and new DENV-4 strains clustered within a South America lineage spreading to Florida in 2022. In contrast, DENV-2 persisted from the formerly dominant Nicaragua clade. We posit that the resurgence emerged from travel after the COVID-19 pandemic and that the resultant intensifying hyperendemicity could affect future dengue immunity and severity.
Collapse
Affiliation(s)
- Cristhiam Cerpas
- Sustainable Sciences Institute, Managua, Nicaragua (C. Cerpas, G. Vásquez, H. Moreira, J.G. Juarez, Á. Balmaseda)
- Laboratorio Nacional de Virologia, Centro Nacional de Diagnóstico y Referencia Ministerio de Salud, Managua (C. Cerpas, Á. Balmaseda)
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California Berkeley, Berkeley, California, USA (J. Coloma, E. Harris)
- California Academy of Sciences, San Francisco, California, USA (S.N. Bennett)
| | - Gerald Vásquez
- Sustainable Sciences Institute, Managua, Nicaragua (C. Cerpas, G. Vásquez, H. Moreira, J.G. Juarez, Á. Balmaseda)
- Laboratorio Nacional de Virologia, Centro Nacional de Diagnóstico y Referencia Ministerio de Salud, Managua (C. Cerpas, Á. Balmaseda)
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California Berkeley, Berkeley, California, USA (J. Coloma, E. Harris)
- California Academy of Sciences, San Francisco, California, USA (S.N. Bennett)
| | - Hanny Moreira
- Sustainable Sciences Institute, Managua, Nicaragua (C. Cerpas, G. Vásquez, H. Moreira, J.G. Juarez, Á. Balmaseda)
- Laboratorio Nacional de Virologia, Centro Nacional de Diagnóstico y Referencia Ministerio de Salud, Managua (C. Cerpas, Á. Balmaseda)
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California Berkeley, Berkeley, California, USA (J. Coloma, E. Harris)
- California Academy of Sciences, San Francisco, California, USA (S.N. Bennett)
| | - Jose G. Juarez
- Sustainable Sciences Institute, Managua, Nicaragua (C. Cerpas, G. Vásquez, H. Moreira, J.G. Juarez, Á. Balmaseda)
- Laboratorio Nacional de Virologia, Centro Nacional de Diagnóstico y Referencia Ministerio de Salud, Managua (C. Cerpas, Á. Balmaseda)
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California Berkeley, Berkeley, California, USA (J. Coloma, E. Harris)
- California Academy of Sciences, San Francisco, California, USA (S.N. Bennett)
| | - Josefina Coloma
- Sustainable Sciences Institute, Managua, Nicaragua (C. Cerpas, G. Vásquez, H. Moreira, J.G. Juarez, Á. Balmaseda)
- Laboratorio Nacional de Virologia, Centro Nacional de Diagnóstico y Referencia Ministerio de Salud, Managua (C. Cerpas, Á. Balmaseda)
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California Berkeley, Berkeley, California, USA (J. Coloma, E. Harris)
- California Academy of Sciences, San Francisco, California, USA (S.N. Bennett)
| | | | | | | |
Collapse
|
9
|
Fraenkel S, Nabeshima T, Xayavong D, Nguyen TTN, Xu Q, Kapandji M, Yamao K, Balingit JC, Pandey BD, Morita K, Hasebe F, Ngwe Tun MM, Takamatsu Y. The Development of New Primer Sets for the Amplification and Sequencing of the Envelope Gene of All Dengue Virus Serotypes. Microorganisms 2024; 12:1092. [PMID: 38930474 PMCID: PMC11205395 DOI: 10.3390/microorganisms12061092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/20/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024] Open
Abstract
Dengue virus (DENV) poses a significant threat to global health, infecting approximately 390 million people annually. This virus comprises four serotypes capable of causing severe disease. Genetic analyses are crucial for understanding the epidemiology, evolution, and spread of DENV. Although previous studies have focused on the envelope protein-coding (E) gene, only a few primers can efficiently detect and amplify the viral genes from multiple endemic countries simultaneously. In this study, we designed degenerate primer pairs for each DENV serotype to amplify and sequence the entire E gene, using globally representative sequences for each serotype. These primers were validated using DENV isolates from various Asian countries and demonstrated broad-spectrum detection capabilities and high-quality sequences. The primers provide effective tools for genetic analysis in the regions affected by dengue, aiding strain identification and epidemiological studies during outbreaks.
Collapse
Affiliation(s)
- Stefania Fraenkel
- Department of Virology, Institute of Tropical Medicine (ITM-NU), Nagasaki University, Nagasaki 852-8523, Japan; (S.F.); (T.N.); (D.X.); (T.T.N.N.); (Q.X.); (M.K.); (K.Y.); (J.C.B.); (B.D.P.); (K.M.); (F.H.); (M.M.N.T.)
- School of Tropical Medicine and Global Health (TMGH), Nagasaki University, Nagasaki 852-8523, Japan
| | - Takeshi Nabeshima
- Department of Virology, Institute of Tropical Medicine (ITM-NU), Nagasaki University, Nagasaki 852-8523, Japan; (S.F.); (T.N.); (D.X.); (T.T.N.N.); (Q.X.); (M.K.); (K.Y.); (J.C.B.); (B.D.P.); (K.M.); (F.H.); (M.M.N.T.)
- Kenya Research Station, Institute of Tropical Medicine (ITM-NU), Nagasaki University, Nagasaki 852-8523, Japan
| | - Dalouny Xayavong
- Department of Virology, Institute of Tropical Medicine (ITM-NU), Nagasaki University, Nagasaki 852-8523, Japan; (S.F.); (T.N.); (D.X.); (T.T.N.N.); (Q.X.); (M.K.); (K.Y.); (J.C.B.); (B.D.P.); (K.M.); (F.H.); (M.M.N.T.)
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
| | - Thi Thanh Ngan Nguyen
- Department of Virology, Institute of Tropical Medicine (ITM-NU), Nagasaki University, Nagasaki 852-8523, Japan; (S.F.); (T.N.); (D.X.); (T.T.N.N.); (Q.X.); (M.K.); (K.Y.); (J.C.B.); (B.D.P.); (K.M.); (F.H.); (M.M.N.T.)
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
| | - Qiang Xu
- Department of Virology, Institute of Tropical Medicine (ITM-NU), Nagasaki University, Nagasaki 852-8523, Japan; (S.F.); (T.N.); (D.X.); (T.T.N.N.); (Q.X.); (M.K.); (K.Y.); (J.C.B.); (B.D.P.); (K.M.); (F.H.); (M.M.N.T.)
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
| | - Merveille Kapandji
- Department of Virology, Institute of Tropical Medicine (ITM-NU), Nagasaki University, Nagasaki 852-8523, Japan; (S.F.); (T.N.); (D.X.); (T.T.N.N.); (Q.X.); (M.K.); (K.Y.); (J.C.B.); (B.D.P.); (K.M.); (F.H.); (M.M.N.T.)
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
| | - Kano Yamao
- Department of Virology, Institute of Tropical Medicine (ITM-NU), Nagasaki University, Nagasaki 852-8523, Japan; (S.F.); (T.N.); (D.X.); (T.T.N.N.); (Q.X.); (M.K.); (K.Y.); (J.C.B.); (B.D.P.); (K.M.); (F.H.); (M.M.N.T.)
- Dental School, Nagasaki University, Nagasaki 852-8588, Japan
| | - Jean Claude Balingit
- Department of Virology, Institute of Tropical Medicine (ITM-NU), Nagasaki University, Nagasaki 852-8523, Japan; (S.F.); (T.N.); (D.X.); (T.T.N.N.); (Q.X.); (M.K.); (K.Y.); (J.C.B.); (B.D.P.); (K.M.); (F.H.); (M.M.N.T.)
- DEJIMA Infectious Disease Research Alliance, Nagasaki University, Nagasaki 852-8523, Japan
| | - Basu Dev Pandey
- Department of Virology, Institute of Tropical Medicine (ITM-NU), Nagasaki University, Nagasaki 852-8523, Japan; (S.F.); (T.N.); (D.X.); (T.T.N.N.); (Q.X.); (M.K.); (K.Y.); (J.C.B.); (B.D.P.); (K.M.); (F.H.); (M.M.N.T.)
- DEJIMA Infectious Disease Research Alliance, Nagasaki University, Nagasaki 852-8523, Japan
| | - Kouichi Morita
- Department of Virology, Institute of Tropical Medicine (ITM-NU), Nagasaki University, Nagasaki 852-8523, Japan; (S.F.); (T.N.); (D.X.); (T.T.N.N.); (Q.X.); (M.K.); (K.Y.); (J.C.B.); (B.D.P.); (K.M.); (F.H.); (M.M.N.T.)
- DEJIMA Infectious Disease Research Alliance, Nagasaki University, Nagasaki 852-8523, Japan
- Center for Vaccines and Therapeutic Antibodies for Emerging Infectious Diseases, Shimane University, Izumo 690-8504, Japan
| | - Futoshi Hasebe
- Department of Virology, Institute of Tropical Medicine (ITM-NU), Nagasaki University, Nagasaki 852-8523, Japan; (S.F.); (T.N.); (D.X.); (T.T.N.N.); (Q.X.); (M.K.); (K.Y.); (J.C.B.); (B.D.P.); (K.M.); (F.H.); (M.M.N.T.)
- Vietnam Research Station, Institute of Tropical Medicine (ITM-NU), Nagasaki University, Nagasaki 852-8523, Japan
| | - Mya Myat Ngwe Tun
- Department of Virology, Institute of Tropical Medicine (ITM-NU), Nagasaki University, Nagasaki 852-8523, Japan; (S.F.); (T.N.); (D.X.); (T.T.N.N.); (Q.X.); (M.K.); (K.Y.); (J.C.B.); (B.D.P.); (K.M.); (F.H.); (M.M.N.T.)
- DEJIMA Infectious Disease Research Alliance, Nagasaki University, Nagasaki 852-8523, Japan
- Center for Vaccines and Therapeutic Antibodies for Emerging Infectious Diseases, Shimane University, Izumo 690-8504, Japan
| | - Yuki Takamatsu
- Department of Virology, Institute of Tropical Medicine (ITM-NU), Nagasaki University, Nagasaki 852-8523, Japan; (S.F.); (T.N.); (D.X.); (T.T.N.N.); (Q.X.); (M.K.); (K.Y.); (J.C.B.); (B.D.P.); (K.M.); (F.H.); (M.M.N.T.)
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
- DEJIMA Infectious Disease Research Alliance, Nagasaki University, Nagasaki 852-8523, Japan
| |
Collapse
|
10
|
da Consolação Magalhães Cunha M, Conrad Bohm B, Morais MHF, Dias Campos NB, Schultes OL, Pereira Campos Bruhn N, Pascoti Bruhn FR, Caiaffa WT. Temporal trends of dengue cases and deaths from 2007 to 2020 in Belo Horizonte, Brazil. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:2248-2263. [PMID: 37485862 DOI: 10.1080/09603123.2023.2237420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 07/13/2023] [Indexed: 07/25/2023]
Abstract
Dengue, a disease with multifactorial determinants, is linked to population susceptibility to circulating viruses and the extent of vector infestation. This study aimed to analyze the temporal trends of dengue cases and deaths in Belo Horizonte, Minas Gerais, Brazil, from 2007 to 2020. Data from the Notifiable Diseases Information System (Sinan) were utilized for the investigation. To assess the disease's progression over the study period and predict its future incidence, time series analyses were conducted using a generalized additive model (GAM) and a seasonal autoregressive integrated moving average (SARIMA) model. Over the study period, a total of 463,566 dengue cases and 125 deaths were reported. Notably, there was an increase in severe cases and deaths, marking hyperendemics characterized by simultaneous virus circulation (79.17% in 2016-50% in 2019). The generalized additive model revealed a non-linear pattern with epidemic peaks in 2010, 2013, 2016, and 2019, indicating an explosive pattern of dengue incidence. The SARIMA (3,1,1) (0,0,0)12 model was validated for each year (2015 to 2019). Comparing the actual and predicted numbers of dengue cases, the model demonstrated its effectiveness for predicting cases in the municipality. The rising number of dengue cases emphasizes the importance of vector surveillance and control. Enhanced models and predictions by local health services will aid in anticipating necessary control measures to combat future epidemics.
Collapse
Affiliation(s)
| | - Bianca Conrad Bohm
- Veterinary Epidemiology Laboratory, Preventive Veterinary Department, Federal University of Pelotas (UFPel), Pelotas, Brazil
| | | | - Natalia Bruna Dias Campos
- Urban Health Observatory - Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Olivia Lang Schultes
- Urban Health Observatory - Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | | | - Fabio Raphael Pascoti Bruhn
- Veterinary Epidemiology Laboratory, Preventive Veterinary Department, Federal University of Pelotas (UFPel), Pelotas, Brazil
| | - Waleska Teixeira Caiaffa
- Urban Health Observatory - Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| |
Collapse
|
11
|
Ortega-López LD, Betancourth MP, León R, Kohl A, Ferguson HM. Behaviour and distribution of Aedes aegypti mosquitoes and their relation to dengue incidence in two transmission hotspots in coastal Ecuador. PLoS Negl Trop Dis 2024; 18:e0010932. [PMID: 38683840 PMCID: PMC11081501 DOI: 10.1371/journal.pntd.0010932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 05/09/2024] [Accepted: 02/08/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Dengue (DENV) transmission is endemic throughout coastal Ecuador, showing heterogeneous incidence patterns in association with fine-scale variation in Aedes aegypti vector populations and other factors. Here, we investigated the impact of micro-climate and neighbourhood-level variation in urbanization on Aedes abundance, resting behaviour and associations with dengue incidence in two endemic areas. METHODOLOGY/PRINCIPAL FINDINGS Aedes aegypti were collected in Quinindé and Portoviejo, two urban cantons with hyperendemic dengue transmission in coastal Ecuador. Aedes vectors were sampled in and around houses within urban and peri-urban neighbourhoods at four time periods. We tested for variation in vector abundance and resting behaviour in relation to neighbourhood urbanization level and microclimatic factors. Aedes abundance increased towards the end of the rainy season, was significantly higher in Portoviejo than in Quinindé, and in urban than in peri-urban neighbourhoods. Aedes vectors were more likely to rest inside houses in Portoviejo but had similar abundance in indoor and outdoor resting collections in Quinindé. Over the study period, DENV incidence was lower in Quinindé than in Portoviejo. Relationships between weekly Ae. aegypti abundance and DENV incidence were highly variable between trapping methods; with positive associations being detected only between BG-sentinel and outdoor Prokopack collections. CONCLUSIONS/SIGNIFICANCE Aedes aegypti abundance was significantly higher in urban than peri-urban neighbourhoods, and their resting behaviour varied between study sites. This fine-scale spatial heterogeneity in Ae. aegypti abundance and behaviour could generate site-specific variation in human exposure and the effectiveness of indoor-based interventions. The trap-dependent nature of associations between Aedes abundance and local DENV incidence indicates further work is needed to identify robust entomological indicators of infection risk.
Collapse
Affiliation(s)
- Leonardo D. Ortega-López
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Mauro Pazmiño Betancourth
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Renato León
- Laboratorio de Entomología Médica & Medicina Tropical LEMMT, Colegio de Ciencias Biológicas y Ambientales COCIBA, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Heather M. Ferguson
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
12
|
Prestes-Carneiro LE, Barbosa Souza A, Belussi GL, Grande GHD, Bertacco EAM, Vieira AG, Flores EF. Dengue outbreaks in a city with recent transmission in São Paulo state, Brazil. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:1370-1383. [PMID: 37036947 DOI: 10.1080/09603123.2023.2199972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
We investigated the distribution of dengue cases, solid waste deposits (SWDs), forest fragments, water drainage, population income, and the possible association with dengue outbreaks in Presidente Prudente, São Paulo, Brazil. An urban setting with recent transmission. Data were obtained from public agencies. Kernel density maps of the variables were constructed. From 2015 to 2021, 33026 cases of dengue were reported; the incidence and mortality rate were highest in 2016. The number of cases decreased during the COVID-19 pandemic (2020 and 2021) compared with 2019, but alarming rates were registered in 2022. In 2015, 56 points of SWDs were identified, with an increase of 1.6-fold in 2020 and 2021. Multivariate analysis showed a positive correlation between the density of dengue cases and SWDs with the highest correlation (0.70) in 2020. Identifying these areas could guide public health authorities in surveillance measures and improvements in health care infrastructure.
Collapse
Affiliation(s)
- Luiz Euribel Prestes-Carneiro
- Department of Emergency, Oeste Paulista University/Regional Hospital of Presidente Prudente, Presidente Prudente, São Paulo, Brazil
| | - Alana Barbosa Souza
- Department of Emergency, Oeste Paulista University/Regional Hospital of Presidente Prudente, Presidente Prudente, São Paulo, Brazil
| | - Gabriella Lima Belussi
- Department of Emergency, Oeste Paulista University/Regional Hospital of Presidente Prudente, Presidente Prudente, São Paulo, Brazil
| | | | | | - André Gonçalves Vieira
- Municipal Epidemiological Surveillance of Presidente Prudente, Presidente Prudente, São Paulo, Brazil
| | - Edilson Ferreira Flores
- Statistics Department, School of Sciences and Technology, São Paulo State University, Presidente Prudente, Brazil
| |
Collapse
|
13
|
Wani AK, Chopra C, Dhanjal DS, Akhtar N, Singh H, Bhau P, Singh A, Sharma V, Pinheiro RSB, Américo-Pinheiro JHP, Singh R. Metagenomics in the fight against zoonotic viral infections: A focus on SARS-CoV-2 analogues. J Virol Methods 2024; 323:114837. [PMID: 37914040 DOI: 10.1016/j.jviromet.2023.114837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
Zoonotic viral infections continue to pose significant threats to global public health, as highlighted by the COVID-19 pandemic caused by the SARS-CoV-2 virus. The emergence of SARS-CoV-2 served as a stark reminder of the potential for zoonotic transmission of viruses from animals to humans. Understanding the origins and dynamics of zoonotic viruses is critical for early detection, prevention, and effective management of future outbreaks. Metagenomics has emerged as a powerful tool for investigating the virome of diverse ecosystems, shedding light on the diversity of viral populations, their hosts, and potential zoonotic spillover events. We provide an in-depth examination of metagenomic approaches, including, NGS metagenomics, shotgun metagenomics, viral metagenomics, and single-virus metagenomics, highlighting their strengths and limitations in identifying and characterizing zoonotic viral pathogens. This review underscores the pivotal role of metagenomics in enhancing our ability to detect, monitor, and mitigate zoonotic viral infections, using SARS-CoV-2 analogues as a case study. We emphasize the need for continued interdisciplinary collaboration among virologists, ecologists, and bioinformaticians to harness the full potential of metagenomic approaches in safeguarding public health against emerging zoonotic threats.
Collapse
Affiliation(s)
- Atif Khurshid Wani
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab 144411, India
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab 144411, India
| | - Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab 144411, India
| | - Nahid Akhtar
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab 144411, India
| | - Himanshu Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab 144411, India
| | - Poorvi Bhau
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, India
| | - Anjuvan Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab 144411, India
| | - Varun Sharma
- NMC Genetics India Pvt. Ltd, Gurugram, Harayana, India
| | - Rafael Silvio Bonilha Pinheiro
- School of Veterinary Medicine and Animal Science, Department of Animal Production, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Juliana Heloisa Pinê Américo-Pinheiro
- Department of Forest Science, Soils and Environment, School of Agronomic Sciences, São Paulo State University (UNESP), Ave. Universitária, 3780, Botucatu, SP 18610-034, Brazil; Graduate Program in Environmental Sciences, Brazil University, Street Carolina Fonseca, 584, São Paulo, SP 08230-030, Brazil
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab 144411, India.
| |
Collapse
|
14
|
Calderon-Ruiz P, Haist G, Mascus A, Holguin-Rocha AF, Koliopoulos P, Daniel T, Velez G, Londono-Renteria B, Gröndahl B, Tobon-Castano A, Gehring S. Multiplex Reverse Transcription Polymerase Chain Reaction Combined with a Microwell Hybridization Assay Screening for Arbovirus and Parasitic Infections in Febrile Patients Living in Endemic Regions of Colombia. Trop Med Infect Dis 2023; 8:466. [PMID: 37888594 PMCID: PMC10610613 DOI: 10.3390/tropicalmed8100466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 09/29/2023] [Accepted: 10/05/2023] [Indexed: 10/28/2023] Open
Abstract
Acute febrile syndrome is a frequent reason for medical consultations in tropical and subtropical countries where the cause could have an infectious origin. Malaria and dengue are the primary etiologies in Colombia. As such, constant epidemiological surveillance and new diagnostic tools are required to identify the causative agents. A descriptive cross-sectional study was conducted to evaluate the circulation and differential diagnosis of six pathogens in two regions of Colombia. The results obtained via multiplex reverse transcription polymerase chain reaction combined with a microwell hybridization assay (m-RT-PCR-ELISA) were comparable to those obtained using rapid tests conducted at the time of patient enrollment. Of 155 patients evaluated, 25 (16.1%) and 16 (10.3%) were positive for malaria and dengue, respectively; no samples were positive for any of the other infectious agents tested. In most cases, m-RT-PCR-ELISA confirmed the results previously obtained through rapid testing.
Collapse
Affiliation(s)
- Paula Calderon-Ruiz
- Center of Pediatric and Adolescent Medicine, University Medical Center, 55131 Mainz, Germany; (G.H.); (A.M.); (P.K.); (T.D.); (B.G.); (S.G.)
- Malaria Group, Lab 610, Faculty of Medicine, University of Antioquia, Medellin 050010, Colombia; (G.V.); (A.T.-C.)
| | - Gregor Haist
- Center of Pediatric and Adolescent Medicine, University Medical Center, 55131 Mainz, Germany; (G.H.); (A.M.); (P.K.); (T.D.); (B.G.); (S.G.)
| | - Annina Mascus
- Center of Pediatric and Adolescent Medicine, University Medical Center, 55131 Mainz, Germany; (G.H.); (A.M.); (P.K.); (T.D.); (B.G.); (S.G.)
| | - Andres F. Holguin-Rocha
- Department of Entomology, College of Agriculture, Kansas State University, Manhattan, KS 66506, USA;
| | - Philip Koliopoulos
- Center of Pediatric and Adolescent Medicine, University Medical Center, 55131 Mainz, Germany; (G.H.); (A.M.); (P.K.); (T.D.); (B.G.); (S.G.)
| | - Tim Daniel
- Center of Pediatric and Adolescent Medicine, University Medical Center, 55131 Mainz, Germany; (G.H.); (A.M.); (P.K.); (T.D.); (B.G.); (S.G.)
| | - Gabriel Velez
- Malaria Group, Lab 610, Faculty of Medicine, University of Antioquia, Medellin 050010, Colombia; (G.V.); (A.T.-C.)
| | - Berlin Londono-Renteria
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA;
| | - Britta Gröndahl
- Center of Pediatric and Adolescent Medicine, University Medical Center, 55131 Mainz, Germany; (G.H.); (A.M.); (P.K.); (T.D.); (B.G.); (S.G.)
| | - Alberto Tobon-Castano
- Malaria Group, Lab 610, Faculty of Medicine, University of Antioquia, Medellin 050010, Colombia; (G.V.); (A.T.-C.)
| | - Stephan Gehring
- Center of Pediatric and Adolescent Medicine, University Medical Center, 55131 Mainz, Germany; (G.H.); (A.M.); (P.K.); (T.D.); (B.G.); (S.G.)
| |
Collapse
|
15
|
Dos Santos MAM, Pavon JAR, Dias LS, Viniski AE, Souza CLC, de Oliveira EC, de Azevedo VC, da Silva SP, Cruz ACR, Medeiros DBDA, Nunes MRT, Slhessarenko RD. Dengue virus serotype 2 genotype III evolution during the 2019 outbreak in Mato Grosso, Midwestern Brazil. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 113:105487. [PMID: 37544570 DOI: 10.1016/j.meegid.2023.105487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/08/2023]
Abstract
DENV-2 was the main responsible for a 70% increase in dengue incidence in Brazil during 2019. That year, our metagenomic study by Illumina NextSeq on serum samples from acute febrile patients (n = 92) with suspected arbovirus infection, sampled in 22 cities of the state of Mato Grosso (MT), in the middle west of Brazil, revealed eight complete genomes and two near-complete sequences of DENV-2 genotype III, one Human parvovirus B19 genotype I (5,391 nt) and one Coxsackievirus A6 lineage D (4,514 nt). These DENV-2 sequences share the aminoacidic identities of BR4 lineage on E protein domains I, II and III, and were included in a clade with sequences of the same lineage circulating in the southeast of Brazil in the same year. Nevertheless, 11/34 non-synonymous mutations are unique to three strains inthis study, distributed in the E (n = 6), NS3 (n = 2) and NS5 (n = 3) proteins. Other 14 aa changes on C (n = 1), E (n = 3), NS1 (n = 2), NS2A (n = 1) and NS5 (n = 7) were first reported in a genotype III lineage, having been already reported only in other DENV-2 genotypes. All 10 sequences have mutations in the NS5 protein (14 different aa changes). Nine E protein aa changes found in two sequences, six of which are unique, are in the ectodomain; where the E:M272T change is on the hinge of the E protein at domain II, in a region critical for the anchoring to the host cell receptor. The NS5:G81R mutation, in the methyltransferase domain, was found in one strain of this study. Altogether, these data points to an important evolution of DENV-2 genotype III lineage BR4 during this outbreak in 2019 in MT. Genomic surveillance is essential to detect virus etiology and evolution, possibly related to immune evasion and viral fitness changes leading to future novel outbreaks.
Collapse
Affiliation(s)
- Marcelo Adriano Mendes Dos Santos
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil; Faculdade de Medicina, Universidade do Estado de Mato Grosso, Cáceres, MT, Brazil
| | - Janeth Aracely Ramirez Pavon
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil
| | - Lucas Silva Dias
- Curso de Graduação em Medicina, Faculdade de Medicina, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil
| | - Ana Elisa Viniski
- Laboratório Central de Saúde Pública do Estado de Mato Grosso, Secretaria de Estado da Saúde, Cuiabá, MT, Brazil
| | - Claudio Luis Campos Souza
- Laboratório Central de Saúde Pública do Estado de Mato Grosso, Secretaria de Estado da Saúde, Cuiabá, MT, Brazil
| | - Elaine Cristina de Oliveira
- Laboratório Central de Saúde Pública do Estado de Mato Grosso, Secretaria de Estado da Saúde, Cuiabá, MT, Brazil
| | - Vergínia Correa de Azevedo
- Laboratório Central de Saúde Pública do Estado de Mato Grosso, Secretaria de Estado da Saúde, Cuiabá, MT, Brazil
| | | | | | | | | | - Renata Dezengrini Slhessarenko
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil.
| |
Collapse
|
16
|
Hafsia S, Barbar T, Wilkinson DA, Atyame C, Biscornet L, Bibi J, Louange M, Gedeon J, De Santis O, Flahault A, Cabie A, Bertolotti A, Mavingui P. Genetic characterization of dengue virus serotype 1 circulating in Reunion Island, 2019-2021, and the Seychelles, 2015-2016. BMC Infect Dis 2023; 23:294. [PMID: 37147570 PMCID: PMC10161969 DOI: 10.1186/s12879-023-08125-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 02/28/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND An unprecedent increase in the number of cases and deaths reported from dengue virus (DENV) infection has occurred in the southwestern Indian ocean in recent years. From 2017 to mid-2021 more than 70,000 confirmed dengue cases were reported in Reunion Island, and 1967 cases were recorded in the Seychelles from 2015 to 2016. Both these outbreaks displayed similar trends, with the initial circulation of DENV-2 which was replaced by DENV-1. Here, we aim to determine the origin of the DENV-1 epidemic strains and to explore their genetic characteristics along the uninterrupted circulation, particularly in Reunion. METHODS Nucleic acids were extracted from blood samples collected from dengue positive patients; DENV-1 was identified by RT-qPCR. Positive samples were used to infect VERO cells. Genome sequences were obtained from either blood samples or infected-cell supernatants through a combination of both Illumina or MinION technologies. RESULTS Phylogenetic analyses of partial or whole genome sequences revealed that all DENV-1 sequences from Reunion formed a monophyletic cluster that belonged to genotype I and were closely related to one isolate from Sri Lanka (OL752439.1, 2020). Sequences from the Seychelles belonged to the same major phylogenetic branch of genotype V, but fell into two paraphyletic clusters, with greatest similarity for one cluster to 2016-2017 isolate from Bangladesh, Singapore and China, and for the other cluster to ancestral isolates from Singapore, dating back to 2012. Compared to publicly available DENV-1 genotype I sequences, fifteen non-synonymous mutations were identified in the Reunion strains, including one in the capsid and the others in nonstructural proteins (NS) (three in NS1, two in NS2B, one in NS3, one in NS4B, and seven in NS5). CONCLUSION In contrast to what was seen in previous outbreaks, recent DENV-1 outbreaks in Reunion and the Seychelles were caused by distinct genotypes, all likely originating from Asia where dengue is (hyper)endemic in many countries. Epidemic DENV-1 strains from Reunion harbored specific non-synonymous mutations whose biological significance needs to be further investigated.
Collapse
Affiliation(s)
- Sarah Hafsia
- UMR Processus Infectieux en Milieu Insulaire Tropical (PIMIT), Université de La Réunion, CNRS 9192, INSERM U1187, IRD 249, Plateforme CYROI, Sainte Clotilde, La Réunion, France
| | - Tatiana Barbar
- UMR Processus Infectieux en Milieu Insulaire Tropical (PIMIT), Université de La Réunion, CNRS 9192, INSERM U1187, IRD 249, Plateforme CYROI, Sainte Clotilde, La Réunion, France
| | - David A Wilkinson
- UMR Processus Infectieux en Milieu Insulaire Tropical (PIMIT), Université de La Réunion, CNRS 9192, INSERM U1187, IRD 249, Plateforme CYROI, Sainte Clotilde, La Réunion, France
| | - Célestine Atyame
- UMR Processus Infectieux en Milieu Insulaire Tropical (PIMIT), Université de La Réunion, CNRS 9192, INSERM U1187, IRD 249, Plateforme CYROI, Sainte Clotilde, La Réunion, France
| | - Leon Biscornet
- Public Health Authority, Ministry of Health, Victoria, Seychelles
| | - Jastin Bibi
- Disease Surveillance and Response Unit, Epidemiology and Statistics Section, Public Health Authority, Ministry of Health, Victoria, Seychelles
| | - Meggy Louange
- Public Health Authority, Ministry of Health, Victoria, Seychelles
| | - Jude Gedeon
- Public Health Authority, Ministry of Health, Victoria, Seychelles
| | - Olga De Santis
- Institute of global health, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Antoine Flahault
- Institute of global health, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - André Cabie
- CHU de Martinique, service de maladies infectieuses et tropicales, INSERM, CHU de Martinique, PCCEI, Univ Montpellier, Univ Antilles, INSERM, EFS, CIC1424, Fort-de-France, Montpellier, France
| | - Antoine Bertolotti
- Service des Maladies Infectieuses - Dermatologie, CHU Réunion, INSERM CIC1410, Saint Pierre, Saint Pierre, La Réunion, France
| | - Patrick Mavingui
- UMR Processus Infectieux en Milieu Insulaire Tropical (PIMIT), Université de La Réunion, CNRS 9192, INSERM U1187, IRD 249, Plateforme CYROI, Sainte Clotilde, La Réunion, France.
| |
Collapse
|
17
|
Franco Filho LC, Barata RR, Coelho MS, Cardoso JF, Lemos PDS, Dos Reis HS, Favacho JDFR, Faria NR, Nunes MRT. Genome sequencing of dengue virus serotype 4 in a bat brain sample (Platyrrhinus helleri) from the Brazilian Amazon. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 109:105407. [PMID: 36764633 DOI: 10.1016/j.meegid.2023.105407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 01/06/2023] [Accepted: 01/25/2023] [Indexed: 02/11/2023]
Abstract
The existence of sylvatic transmission of dengue virus in communities of neotropical bats remains uncertain. In this work we present a near-complete genome of dengue virus serotype 4 obtained from the brain sample of a bat from Platyrrhinus helleri specie collected in the Brazilian Amazon region. The presence of the virus in the brain sample may indicate a possible tropism for the central nervous system in bats, which may justify negative results in previous studies that focused on analysis of other tissues, such as liver and spleen. Besides the duration of dengue virus circulation in the Americas (circa 40 years) may be too short for an implementation of a sylvatic dengue virus cycle. Our findings suggest that continued monitoring is needed to confirm with the neotropical bats could potentially act as a natural reservoir of dengue in the region.
Collapse
|
18
|
Faisal S, Badshah SL, Kubra B, Emwas AH, Jaremko M. Alkaloids as potential antivirals. A comprehensive review. NATURAL PRODUCTS AND BIOPROSPECTING 2023; 13:4. [PMID: 36598588 PMCID: PMC9812014 DOI: 10.1007/s13659-022-00366-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/01/2022] [Indexed: 05/26/2023]
Abstract
Alkaloids are a diverse group of natural phytochemicals. These phytochemicals in plants provide them protection against pests, and herbivorous organisms and also control their development. Numerous of these alkaloids have a variety of biological effects, and some have even been developed into medications with different medicinal properties. This review aims to provide a broad overview of the numerous naturally occurring alkaloids (isolated from both terrestrial and aquatic species) along with synthetically produced alkaloid compounds having prominent antiviral properties. Previous reviews on this subject have focused on the biological actions of both natural and synthetic alkaloids, but they have not gone into comprehensive detail about their antiviral properties. We reviewed here several antiviral alkaloids that have been described in the literature in different investigational environments i.e. (in-vivo, in-ovo, in-vitro, and in-silico), and found that these alkaloid compounds have significant antiviral properties against several infectious viruses. These alkaloids repressed and targeted various important stages of viral infection at non-toxic doses while some of the alkaloids reported here also exhibited comparable inhibitory activities to commercially used drugs. Overall, these anti-viral effects of alkaloids point to a high degree of specificity, implying that they could serve as effective and safe antiviral medicines if further pursued in medicinal and pharmacological investigations.
Collapse
Affiliation(s)
- Shah Faisal
- Department of Chemistry, Islamia College University Peshawar, Peshawar, 25120, Pakistan
| | - Syed Lal Badshah
- Department of Chemistry, Islamia College University Peshawar, Peshawar, 25120, Pakistan.
| | - Bibi Kubra
- Department of Chemistry, Islamia College University Peshawar, Peshawar, 25120, Pakistan
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
19
|
Luque N, Cilloniz C, Pons MJ, Donaires F, Albornoz R, Mendocilla-Risco M, Espinoza M. Clinical-epidemiological characteristics of deaths due to dengue during an outbreak in northern Peru. Rev Peru Med Exp Salud Publica 2023; 40:67-72. [PMID: 37377238 PMCID: PMC10953633 DOI: 10.17843/rpmesp.2023.401.12148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 03/22/2023] [Indexed: 06/29/2023] Open
Abstract
Motivation for the study. To describe the characteristics of patients who died from severe dengue fever during the 2017 El Niño in Piura. Main findings. Mortality from severe dengue was higher in adult women. First contact with healthcare took place mostly in higher level hospitals. Admission to a specialized unit was late for severe dengue cases. Implications. Control of dengue fever involves several aspects, such as, access to health, prevention, water availability, vector control and education; therefore, it is important to strengthen public health policies in this regard. In order to achieve this goal, local and central government sectors must be involved.
Collapse
Affiliation(s)
- Néstor Luque
- School of Human Medicine, Faculty of Health Sciences, Universidad Peruana Unión (UPeU), Lima, Peru.Universidad Peruana UniónSchool of Human MedicineFaculty of Health SciencesUniversidad Peruana Unión (UPeU)LimaPeru
| | - Catia Cilloniz
- Universidad Continental, Lima, Peru.Universidad ContinentalLimaPeru
| | - María J. Pons
- Re-emerging infectious diseases group, Universidad Científica del Sur, Lima, Peru.Universidad Científica del SurRe-emerging infectious diseases groupUniversidad Científica del SurLimaPeru
| | - Fernando Donaires
- Instituto Nacional de Salud, Lima, Peru.Instituto Nacional de SaludLimaPeru
| | - Roger Albornoz
- School of Human Medicine, Faculty of Health Sciences, Universidad Peruana Unión (UPeU), Lima, Peru.Universidad Peruana UniónSchool of Human MedicineFaculty of Health SciencesUniversidad Peruana Unión (UPeU)LimaPeru
| | - Moisés Mendocilla-Risco
- Universidad Nacional Mayor San Marcos, Lima, Peru.Universidad Nacional Mayor de San MarcosUniversidad Nacional Mayor San MarcosLimaPeru
| | - Manuel Espinoza
- Instituto Nacional de Salud, Lima, Peru.Instituto Nacional de SaludLimaPeru
| |
Collapse
|
20
|
Veliz-Castro TI, Valero-Cedeño NJ, Pionce-Parrales A, Torres-Portillo M. Aminotransferasas y perfil lipídico en pacientes ecuatorianos con infección activa por virus dengue. KASMERA 2022. [DOI: 10.56903/kasmera.5036015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
El dengue es la arbovirosis con mayor incidencia a nivel mundial. Aproximadamente 100 millones de casos de dengue con signos de alarma y entre 250.000 y 500.000 casos de dengue grave, se registran anualmente. En Ecuador, en los últimos cuatro años se han registrado 83.472 casos de dengue. Estudios previos evidencian un incremento de los casos que cursan con disfunción hepática. El objetivo de este estudio fue analizar la asociación entre los niveles séricos de las enzimas aspartato aminotransferasa y alanino aminotransferasa y el perfil lipídico en pacientes con infección confirmada de Dengue. Se estudiaron 110 pacientes seleccionados sin distingo de edad, género o procedencia, cuyo diagnóstico fue confirmado virológica y serológicamente. Se incluyó un grupo control seronegativo al virus. En el perfil lipídico se evidenciaron diferencias significativas (p<0,003) en los valores de colesterol total y en infecciones secundarias; mientras que la frecuencia de elevación de ambas aminotransferasas fue alta en pacientes con dengue, no obstante, al comparar cuantitativamente los valores séricos no arrojaron cambios significativos, ni asociación. Se confirma la endemicidad del dengue, los cambios en el perfil lipídico, sin embargo, es evidente la necesidad de estudios poblacionales tomando en cuenta la genética de las poblaciones
Collapse
Affiliation(s)
- Teresa Isabel Veliz-Castro
- Universidad Estatal del Sur de Manabí. Facultad de Ciencias de la Salud. Carrera de Laboratorio Clínico. Jipijapa-Manabí. Ecuador
| | - Nereida Josefina Valero-Cedeño
- Universidad Estatal del Sur de Manabí. Facultad de Ciencias de la Salud. Carrera de Laboratorio Clínico. Cátedra de Inmunología. Jipijapa-Manabí. Ecuador
| | - Alexandra Pionce-Parrales
- Universidad Estatal del Sur de Manabí. Facultad de Ciencias de la Salud. Carrera de Laboratorio Clínico. Jipijapa-Manabí. Ecuador
| | | |
Collapse
|
21
|
Gil-Mora J, Acevedo-Gutiérrez LY, Betancourt-Ruiz PL, Martínez-Diaz HC, Fernández D, Bopp NE, Olaya-Másmela LA, Bolaños E, Benavides E, Villasante-Tezanos A, Hidalgo M, Aguilar PV. Arbovirus Antibody Seroprevalence in the Human Population from Cauca, Colombia. Am J Trop Med Hyg 2022; 107:1218-1225. [PMID: 36375460 PMCID: PMC9768249 DOI: 10.4269/ajtmh.22-0120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Several arboviruses have emerged or reemerged into the New World during the past several decades, causing outbreaks of significant proportion. In particular, the outbreaks of Dengue virus (DENV), Zika virus, and Chikungunya virus (CHIKV) have been explosive and unpredictable, and have led to significant adverse health effects. These viruses are considered the leading cause of acute undifferentiated febrile illnesses in Colombia. However, Venezuelan equine encephalitis virus (VEEV) is endemic in Colombia, and arboviruses such as the Mayaro virus (MAYV) and the Oropouche virus (OROV) cause febrile illnesses in neighboring countries. Yet, evidence of human exposure to MAYV and OROV in Colombia is scarce. In this study, we conducted a serosurvey study in healthy individuals from the Cauca Department in Colombia. We assessed the seroprevalence of antibodies against multiple arboviruses, including DENV serotype 2, CHIKV, VEEV, MAYV, and OROV. Based on serological analyses, we found that the overall seroprevalence for DENV serotype 2 was 30%, 1% for MAYV, 2.6% for CHIKV, 4.4% for VEEV, and 2% for OROV. This study provides evidence about the circulation of MAYV and OROV in Colombia, and suggests that they-along with VEEV and CHIKV-might be responsible for cases of acute undifferentiated febrile illnesses that remain undiagnosed in the region. The study results also highlight the need to strengthen surveillance programs to identify outbreaks caused by these and other vector-borne pathogens.
Collapse
Affiliation(s)
| | | | | | | | - Diana Fernández
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas
| | - Nathen E. Bopp
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas
| | | | | | | | | | | | - Patricia V. Aguilar
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas
- Center for Tropical Diseases, Galveston, Texas
| |
Collapse
|
22
|
Thommes E, Coudeville L, Muhammad R, Martin M, Nelson CB, Chit A. Public health impact and cost-effectiveness of implementing a 'pre-vaccination screening' strategy with the dengue vaccine in Puerto Rico. Vaccine 2022; 40:7343-7351. [PMID: 36347720 DOI: 10.1016/j.vaccine.2022.10.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND The World Health Organization (WHO) recommended 'pre-vaccination screening' as its preferred implementation strategy when using the licensed dengue vaccine (CYD-TDV; Dengvaxia, Sanofi), so that only individuals with previous dengue infection are vaccinated. The US Centers for Disease Control and Prevention (CDC) recommended use of CYD-TDV to prevent dengue in children with previous laboratory-confirmed dengue infection in regions where dengue is endemic. Here, we evaluate the public health impact and cost-effectiveness of a 'pre-vaccination screening' strategy in Puerto Rico. METHODS The current analysis builds upon a previously published transmission model used to assess the benefits/risks associated with dengue vaccination. For 'pre-vaccination screening', three alternative testing methods were assessed: one using an immunoglobulin G (IgG) enzyme-linked immunosorbent assay (ELISA) dengue serotest, another with dengue serotesting using a rapid diagnostic test (RDT), and one using both sequentially (as recommended in Puerto Rico). The time horizon considered was 10 years. RESULTS In Puerto Rico, the disability-adjusted life years (DALYs) averted for 'pre-vaccination screening' with an ELISA-based program, RDT-based program, and both sequentially would be a median 1,192 (95% CI: 716-2,232), 2,812 (95% CI: 1,579-5,019), and 1,017 (95% CI: 561-1,738), respectively. These benefits would arise from the reduction in cases: median 24,961 (95% CI: 17,480-36,782), 58,273 (95% CI: 40,729-84,796), 20,775 (95% CI: 14,637-30,374) fewer cases, respectively. The cost per DALY averted from a payer perspective would be US$12,518 (95 %CI: US$4,749-26,922), US$10,047 (95% CI: US$3,350-23,852), and US$12,334 (95% CI: US$4,965-26,444), respectively. All three strategies would be cost saving from a societal perspective. CONCLUSIONS Our study supports the WHO and CDC 'pre-vaccination screening' guidance for CYD-TDV implementation. In Puerto Rico, regardless of the testing strategy and even with a relatively low rate of testing, it would be cost-effective from a payer perspective and cost saving from a societal perspective.
Collapse
Affiliation(s)
- Edward Thommes
- Sanofi, 1755 Steeles Avenue W, Toronto, Ontario M2R 3T4, Canada; University of Guelph, 50 Stone Road E, Guelph, Ontario N1G 2W1, Canada; York University, 4700 Keele St, Toronto, Ontario M3J 1P3, Canada.
| | | | | | - Maria Martin
- Sanofi, 1 Discovery Drive, Swiftwater, PA 18370, USA.
| | | | - Ayman Chit
- Sanofi, 1 Discovery Drive, Swiftwater, PA 18370, USA; Leslie Dan Faculty of Pharmacy, University of Toronto, Ontario, Canada.
| |
Collapse
|
23
|
León-Figueroa DA, Abanto-Urbano S, Olarte-Durand M, Nuñez-Lupaca JN, Barboza JJ, Bonilla-Aldana DK, Yrene-Cubas RA, Rodriguez-Morales AJ. COVID-19 and dengue coinfection in Latin America: A systematic review. New Microbes New Infect 2022; 49:101041. [PMID: 36320316 PMCID: PMC9613782 DOI: 10.1016/j.nmni.2022.101041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/29/2022] Open
Abstract
Introduction Coronavirus Disease 2019 (COVID-19) caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has spread globally, becoming a long-lasting pandemic. Dengue is the most common arboviral disease in tropical and subtropical regions worldwide. COVID-19 and dengue coinfections have been reported, associated with worse outcomes with significant morbidity and mortality. Therefore, this study aims to determine the epidemiological situation of COVID-19 and dengue coinfection in Latin America. Methods A systematic literature review was performed using PubMed, Scopus, Embase, Web of Science, LILACS, and BVS databases from January 1, 2020, to September 4, 2021. The key search terms used were "dengue" and "COVID-19". Results Nineteen published articles were included. The studies were case reports with a detailed description of the coinfection's clinical, laboratory, diagnostic, and treatment features. Conclusion Coinfection with SARS-CoV-2 and dengue virus is associated with worse outcomes with significant morbidity and mortality. The similar clinical and laboratory features of each infection are a challenge in accurately diagnosing and treating cases. Establishing an early diagnosis could be the answer to reducing the estimated significant burden of these conditions.
Collapse
Affiliation(s)
- Darwin A. León-Figueroa
- Facultad de Medicina Humana, Universidad de San Martín de Porres, Chiclayo, Peru
- Unidad de Revisiones Sistemáticas y Meta-análisis, Tau-Relaped Group, Trujillo, Peru
| | - Sebastian Abanto-Urbano
- Sociedad Científica de Estudiantes de Medicina Villarrealinos (SOCEMVI), Lima, Peru
- Facultad de Medicina, Universidad Nacional Federico Villarreal, Lima, Peru
| | - Mely Olarte-Durand
- Facultad de Medicina Humana, Sociedad Científica de Estudiantes de Medicina (SOCEM UPEU), Lima, Peru
- Universidad Peruana Unión, Lima, Peru
| | - Janeth N. Nuñez-Lupaca
- Centro Científico Basadrino de Estudiantes de Medicina (CECIBEM), Tacna, Peru
- Escuela Profesional de Medicina Humana, Universidad Nacional Jorge Basadre Grohmann, Tacna, Peru
| | | | | | - Robinson A. Yrene-Cubas
- Sociedad Científica de Estudiantes de Medicina de la Universidad Científica del Sur (SCIEM UCSUR), Lima, Peru
- Facultad de Medicina Humana, Universidad Científica del Sur, Lima, Peru
| | - Alfonso J. Rodriguez-Morales
- Grupo de Investigación Biomedicina, Faculty of Medicine, Fundacion Universitaria Autonoma de las Americas, Pereira, Risaralda, Colombia
- Latin American Network of COVID-19 Research (LANCOVID), Pereira, Risaralda, Colombia
- Clinical Epidemiology and Biostatistics, Universidad Cientifica del Sur, Lima, Peru
| |
Collapse
|
24
|
Delai RM, Leandro ADS, Martins CA, Fitz AFR, Rivas AV, Batista ACCA, Santos ICD, Fruehwirth M, Ferreira L, Rampazzo RDCP, Ferreira LRDP, Gonçalves DD. Adaptation of a Human Diagnostic Kit to Detect Dengue, Zika, and Chikungunya Viruses in Mosquito Samples ( Aedes aegypti and Aedes albopictus): A Contribution to Public Health in the International Triple Border (Brazil, Paraguay, and Argentina). Vector Borne Zoonotic Dis 2022; 22:520-526. [PMID: 36255416 DOI: 10.1089/vbz.2022.0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023] Open
Abstract
Objective: The objective of this work was to adapt a diagnostic kit developed for humans to identify Dengue (DENV1, DENV2, DENV3, DENV4), Zika (ZIKV) and Chikungunya virus (CHIKV) in females of Aedes aegypti and Aedes albopictus and to verify if the occurrence of mosquitoes infected with these three arboviruses are being found in regions with high occurrence of these diseases in humans. Materials and Methods: For this purpose, live mosquitoes were captured between January and June 2020 using 3,476 traps permanently installed in the field were used. After capture, the species were identified, then the females were placed in a pool of 2 to 10 specimens and sent to the laboratory for detection of DENV1, DENV2, DENV3, DENV4, ZIKV and CHIKV by RT-PCR using a commercial human kit for arboviruses. Results: Of the 76 mosquito pools collected, six (7.9%) pools tested positive for the DENV2 virus. The DENV-positive mosquitoes were collected in regions with a high incidence of reported cases of Dengue or in adjacent areas. Conclusion: The absence of kits for the detection of these arboviruses in Aedes is a limiting factor and the adequacy of commercial kits, already used for the diagnosis of arboviruses in humans, the results presented demonstrate that it is possible to identify the presence of DENV2 in mosquitoes with the respective kit, reinforcing the use of RT-qPCR as a robust diagnostic tool for epidemiological surveillance allowing managers to receive timely results for decision-making regarding prevention and control actions.
Collapse
Affiliation(s)
- Robson Michael Delai
- One Health Laboratory, Three-Border Tropical Medicine Center, Institute of Teaching and Research, Itaiguapy Foundation, Foz do Iguaçu, Brazil
- Postgraduate Program in Animal Science with Emphasis on Bioactive Products, Universidade Paranaense, Umuarama, Brazil
| | - André de Souza Leandro
- Zoonoses Surveillance Unit, Municipal Secretary of Health, Foz do Iguaçu, Brazil
- Laboratory of Hematozoan Transmitters, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| | | | - Andressa Faria Rahyn Fitz
- One Health Laboratory, Three-Border Tropical Medicine Center, Institute of Teaching and Research, Itaiguapy Foundation, Foz do Iguaçu, Brazil
| | - Açucena Veleh Rivas
- One Health Laboratory, Three-Border Tropical Medicine Center, Institute of Teaching and Research, Itaiguapy Foundation, Foz do Iguaçu, Brazil
- Postgraduate Program in Experimental Pathology, Department of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Aline Cristiane Cechinel Assing Batista
- One Health Laboratory, Three-Border Tropical Medicine Center, Institute of Teaching and Research, Itaiguapy Foundation, Foz do Iguaçu, Brazil
- Postgraduate Program in Animal Science with Emphasis on Bioactive Products, Universidade Paranaense, Umuarama, Brazil
| | - Isabela Carvalho Dos Santos
- Postgraduate Program in Animal Science with Emphasis on Bioactive Products, Universidade Paranaense, Umuarama, Brazil
| | - Marcelo Fruehwirth
- One Health Laboratory, Three-Border Tropical Medicine Center, Institute of Teaching and Research, Itaiguapy Foundation, Foz do Iguaçu, Brazil
| | - Leonardo Ferreira
- One Health Laboratory, Three-Border Tropical Medicine Center, Institute of Teaching and Research, Itaiguapy Foundation, Foz do Iguaçu, Brazil
| | | | | | - Daniela Dib Gonçalves
- Postgraduate Program in Animal Science with Emphasis on Bioactive Products, Universidade Paranaense, Umuarama, Brazil
| |
Collapse
|
25
|
Gómez M, Martínez D, Hernández C, Luna N, Patiño LH, Bohórquez Melo R, Suarez LA, Palma-Cuero M, Murcia LM, González Páez L, Estrada Bustos L, Medina MA, Ariza Campo K, Padilla HD, Zamora Flórez A, De las Salas JL, Muñoz M, Ramírez JD. Arbovirus infection in Aedes aegypti from different departments of Colombia. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.999169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The lack of precise and timely knowledge about the molecular epidemiology of arboviruses of public health importance, particularly in the vector, has limited the comprehensive control of arboviruses. In Colombia and the Americas, entomovirological studies are scarce. Therefore, this study aimed to describe the frequency of natural infection and/or co-infection by Dengue (DENV), Zika (ZIKV), and Chikungunya (CHIKV) in Aedes spp. circulating in different departments of Colombia (Amazonas, Boyacá, Magdalena, and Vichada) and identifying vector species by barcoding. Aedes mosquitoes were collected in departments with reported prevalence or incidence of arbovirus cases during 2020–2021, located in different biogeographic zones of the country: Amazonas, Boyacá, Magdalena, and Vichada. The insects were processed individually for RNA extraction, cDNA synthesis, and subsequent detection of DENV (serotypes DENV1-4 by multiplex PCR), CHIKV, and ZIKV (qRT-PCR). The positive mosquitoes for arboviruses were sequenced (Sanger method) using the subunit I of the cytochrome oxidase (COI) gene for species-level identification. In total, 558 Aedes mosquitoes were captured, 28.1% (n = 157) predominantly infected by DENV in all departments. The serotypes with the highest frequency of infection were DENV-1 and DENV-2 with 10.7% (n = 58) and 14.5% (n = 81), respectively. Coinfections between serotypes represented 3.9% (n = 22). CHIKV infection was detected in one individual (0.2%), and ZIKV infections were not detected. All infected samples were identified as A. aegypti (100%). From the COI dataset (593 bp), high levels of haplotype diversity (H = 0.948 ± 0.012) and moderate nucleotide diversity (π = 0.0225 ± 0.003) were identified, suggesting recent population expansions. Constructed phylogenetic analyses showed our COI sequences’ association with lineage I, which was reported widespread and related to a West African conspecific. We conclude that natural infection in A. aegypti by arbovirus might reflect the country’s epidemiological behavior, with a higher incidence of serotypes DENV-1 and DENV-2, which may be associated with high seroprevalence and asymptomatic infections in humans. This study demonstrates the high susceptibility of this species to arbovirus infection and confirms that A. aegypti is the main vector in Colombia. The importance of including entomovirological surveillance strategy within public health systems to understand transmission dynamics and the potential risk to the population is highlighted herein.
Collapse
|
26
|
Tello KT, Hughey SM, Porto SC, Hart M, Benson A. Interventions to Improve Pedestrian and Cyclist Safety in Latin America: a Systematic Review and Metasummary. JOURNAL OF HEALTHY EATING AND ACTIVE LIVING 2022; 2:45-59. [PMID: 37772071 PMCID: PMC10521994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Road user fatalities account for a leading cause of preventable death in Latin America with pedestrians and bicyclists at higher risk for more extensive injuries as compared to other road users. Despite these vulnerable road user (VRU) risks, encouraging individuals to walk and cycle is an important public health strategy for addressing the region's obesity epidemic through promoting physical activity via active transportation (AT). However, in order to promote AT as a viable source of physical activity, safety of the VRU must be considered. The purpose of this systematic review and metasummary is to describe the effectiveness of interventions that have been implemented in Latin America to improve pedestrian and bicyclist safety. A systematic search of public health, policy, and engineering databases was completed using terms generated through the PICO method. The PRISMA framework was used for article screening. Eight articles detailing nine interventions across four countries were included for final synthesis and organized according to the Three E's Model of Injury Prevention, including three education-based interventions, two engineering, three enforcements, and one utilizing all Three E's. VRU outcomes assessed ranged from attitudes and behaviors to fatal injuries, with only enforcement-based interventions reporting on the latter. No interventions reported on non-fatal injury outcomes. Interventions rooted in each arm of the Three E's demonstrated limited ability to improve VRU outcomes, with enforcement-based interventions providing the strongest body of evidence. Findings demonstrate the limited research on VRU safety in Latin America, and further efforts should be of urgent public health priority.
Collapse
Affiliation(s)
- Kathleen Trejo Tello
- College of Charleston, School of Education, Health, and Human Performance, Department of Health and Human Performance, Charleston, South Carolina,
United States
| | - Sarah M. Hughey
- College of Charleston, School of Education, Health, and Human Performance, Department of Health and Human Performance, Charleston, South Carolina,
United States
| | - Sarah C. Porto
- College of Charleston, School of Education, Health, and Human Performance, Department of Health and Human Performance, Charleston, South Carolina,
United States
| | - Molly Hart
- College of Charleston, School of Education, Health, and Human Performance, Department of Health and Human Performance, Charleston, South Carolina,
United States
| | - Anna Benson
- College of Charleston, School of Education, Health, and Human Performance, Department of Health and Human Performance, Charleston, South Carolina,
United States
| |
Collapse
|
27
|
Endothelial Dysfunction, HMGB1, and Dengue: An Enigma to Solve. Viruses 2022; 14:v14081765. [PMID: 36016387 PMCID: PMC9414358 DOI: 10.3390/v14081765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Dengue is a viral infection caused by dengue virus (DENV), which has a significant impact on public health worldwide. Although most infections are asymptomatic, a series of severe clinical manifestations such as hemorrhage and plasma leakage can occur during the severe presentation of the disease. This suggests that the virus or host immune response may affect the protective function of endothelial barriers, ultimately being considered the most relevant event in severe and fatal dengue pathogenesis. The mechanisms that induce these alterations are diverse. It has been suggested that the high mobility group box 1 protein (HMGB1) may be involved in endothelial dysfunction. This non-histone nuclear protein has different immunomodulatory activities and belongs to the alarmin group. High concentrations of HMGB1 have been detected in patients with several infectious diseases, including dengue, and it could be considered as a biomarker for the early diagnosis of dengue and a predictor of complications of the disease. This review summarizes the main features of dengue infection and describes the known causes associated with endothelial dysfunction, highlighting the involvement and possible relationship between HMGB1 and DENV.
Collapse
|
28
|
Rodríguez Madera SL. From Necropraxis to Necroresistance: Transgender Experiences in Latin America. JOURNAL OF INTERPERSONAL VIOLENCE 2022; 37:NP9115-NP9143. [PMID: 33319607 DOI: 10.1177/0886260520980393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Latin America is one of the deadliest regions for trans communities. Scientific research generated in the region has reported that trans people live through a complicated panorama shaped by multiple forms of oppression, extreme violence, and micro-aggressions. Although necropolitics, as a theoretical approach, has been useful to understand how State policies negatively affect trans individuals, it does not fully account for informal dynamics within groups and among individuals that are potentially lethal for this population in Latin America. To account for this gap, the author proposes two novel concepts: necropraxis (a pattern that manifest itself in everyday social interactions, through which gradual small doses of death are delivered to eliminate, symbolically and/or literally, trans people); and necroresistance (the ways in which trans people defy the threats imposed by necropraxis through "ordinary" acts manifested in their everyday life). The main objective of this article is to put forth definitions for these two concepts and identify how they apply in the context of trans communities in three countries of the region: Guatemala, Argentina, and Chile. To achieve the latter, the author relies on her ethnographic work in these contexts. Data were gathered through parcipant observation, in-depth interviews with trans persons (N = 11) and informal conversations with individuals during the site visits. A deductive qualitative analysis was conducted. Results evidence how the manifestation of necropraxis and necroresistance were highly influenced by the historical, political, economic and sociocultural context of each country. This study provides valuable information to help both policymakers and other stakeholders understand the problem's magnitude in the region and the ways necropraxis is experienced in everyday relations between trans individuals and others. Similarly, through the understanding of what constitutes necroresistance and its value, the proposed framework could help them outline prevention and management strategies to strengthen trans communities in different countries.
Collapse
|
29
|
Fierro NA, Rivera-Toledo E, Ávila-Horta F, Anaya-Covarrubias JY, Mendlovic F. Scavenger Receptors in the Pathogenesis of Viral Infections. Viral Immunol 2022; 35:175-191. [PMID: 35319302 DOI: 10.1089/vim.2021.0167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Scavenger receptors (SR) are not only pattern recognition receptors involved in the immune response against pathogens but are also important receptors exploited by different virus to enter host cells, and thus represent targets for antiviral therapy. The high mutation rates of viruses, as well as their small genomes are partly responsible for the high rates of virus resistance and effective treatments remain a challenge. Most currently approved formulations target viral-encoded factors. Nevertheless, host proteins may function as additional targets. Thus, there is a need to explore and develop new strategies aiming at cellular factors involved in virus replication and host cell entry. SR-virus interactions have implications in the pathogenesis of several viral diseases and in adenovirus-based vaccination and gene transfer technologies, and may function as markers of severe progression. Inhibition of SR could reduce adenoviral uptake and improve gene therapy and vaccination, as well as reduce pathogenesis. In this review, we will examine the crucial role of SR play in cell entry of different types of human virus, which will allow us to further understand their role in protection and pathogenesis and its potential as antiviral molecules. The recent discovery of SR-B1 as co-factor of SARS-Cov-2 (severe acute respiratory syndrome coronavirus 2) entry is also discussed. Further fundamental research is essential to understand molecular interactions in the dynamic virus-host cell interplay through SR for rational design of therapeutic strategies.
Collapse
Affiliation(s)
- Nora A Fierro
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Evelyn Rivera-Toledo
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Fernanda Ávila-Horta
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Fela Mendlovic
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Facultad de Ciencias de la Salud, Universidad Anáhuac México Norte, Huixquilucan, Estado de México, Mexico
| |
Collapse
|
30
|
A versatile inhibitor of digestive enzymes in Aedes aegypti larvae selected from a pacifastin (TiPI) phage display library. Biochem Biophys Res Commun 2022; 590:139-144. [PMID: 34974302 DOI: 10.1016/j.bbrc.2021.12.087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/23/2021] [Indexed: 11/20/2022]
Abstract
In Brazil, the major vector of arboviruses is Aedes aegypti, which can transmit several alpha and flaviviruses. In this work, a pacifastin protease inhibitor library was constructed and used to select mutants for Ae. aegypti larvae digestive enzymes. The library contained a total of 3.25 × 105 cfu with random mutations in the reactive site (P2-P2'). The most successfully selected mutant, TiPI6, a versatile inhibitor, was able to inhibit all three Ae. aegypti larvae proteolytic activities, trypsin-like, chymotrypsin-like and elastase-like activities, with IC50 values of 0.212 nM, 0.107 nM and 0.109 nM, respectively. In conclusion, the TiPI mutated phage display library was shown to be a useful tool for the selection of an inhibitor of proteolytic activities combined in a mix. TiPI6 is capable of controlling all three digestive enzyme activities present in the larval midgut extract. To our knowledge, this is the first time that one inhibitor containing a Gln at the P1 position showed inhibitory activity against trypsin, chymotrypsin, and elastase-like activities. TiPI6 can be a candidate for further larvicidal studies.
Collapse
|
31
|
Data-driven methods for dengue prediction and surveillance using real-world and Big Data: A systematic review. PLoS Negl Trop Dis 2022; 16:e0010056. [PMID: 34995281 PMCID: PMC8740963 DOI: 10.1371/journal.pntd.0010056] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 12/06/2021] [Indexed: 12/23/2022] Open
Abstract
Background Traditionally, dengue surveillance is based on case reporting to a central health agency. However, the delay between a case and its notification can limit the system responsiveness. Machine learning methods have been developed to reduce the reporting delays and to predict outbreaks, based on non-traditional and non-clinical data sources. The aim of this systematic review was to identify studies that used real-world data, Big Data and/or machine learning methods to monitor and predict dengue-related outcomes. Methodology/Principal findings We performed a search in PubMed, Scopus, Web of Science and grey literature between January 1, 2000 and August 31, 2020. The review (ID: CRD42020172472) focused on data-driven studies. Reviews, randomized control trials and descriptive studies were not included. Among the 119 studies included, 67% were published between 2016 and 2020, and 39% used at least one novel data stream. The aim of the included studies was to predict a dengue-related outcome (55%), assess the validity of data sources for dengue surveillance (23%), or both (22%). Most studies (60%) used a machine learning approach. Studies on dengue prediction compared different prediction models, or identified significant predictors among several covariates in a model. The most significant predictors were rainfall (43%), temperature (41%), and humidity (25%). The two models with the highest performances were Neural Networks and Decision Trees (52%), followed by Support Vector Machine (17%). We cannot rule out a selection bias in our study because of our two main limitations: we did not include preprints and could not obtain the opinion of other international experts. Conclusions/Significance Combining real-world data and Big Data with machine learning methods is a promising approach to improve dengue prediction and monitoring. Future studies should focus on how to better integrate all available data sources and methods to improve the response and dengue management by stakeholders. Dengue is one of the most important arbovirus infections in the world and its public health, societal and economic burden is increasing. Although the majority of dengue cases are asymptomatic or mild, severe disease forms can lead to death. For this reason, early diagnosis and monitoring of dengue are crucial to decrease mortality. However, most endemic regions still rely on traditional monitoring methods, despite the growing availability of novel data sources and data-driven methods based on real-world data, Big Data, and machine learning algorithms. In this systematic review, we identified and analyzed studies that used these novel approaches for dengue monitoring and/or prediction. We found that novel data streams, such as Internet search engines and social media platforms, and machine learning methods can be successfully used to improve dengue management, but are still vastly ignored in real life. These approaches should be combined with traditional methods to help stakeholders better prepare for each outbreak and improve early responsiveness.
Collapse
|
32
|
Ortiz DI, Piche-Ovares M, Romero-Vega LM, Wagman J, Troyo A. The Impact of Deforestation, Urbanization, and Changing Land Use Patterns on the Ecology of Mosquito and Tick-Borne Diseases in Central America. INSECTS 2021; 13:20. [PMID: 35055864 PMCID: PMC8781098 DOI: 10.3390/insects13010020] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 11/29/2022]
Abstract
Central America is a unique geographical region that connects North and South America, enclosed by the Caribbean Sea to the East, and the Pacific Ocean to the West. This region, encompassing Belize, Costa Rica, Guatemala, El Salvador, Honduras, Panama, and Nicaragua, is highly vulnerable to the emergence or resurgence of mosquito-borne and tick-borne diseases due to a combination of key ecological and socioeconomic determinants acting together, often in a synergistic fashion. Of particular interest are the effects of land use changes, such as deforestation-driven urbanization and forest degradation, on the incidence and prevalence of these diseases, which are not well understood. In recent years, parts of Central America have experienced social and economic improvements; however, the region still faces major challenges in developing effective strategies and significant investments in public health infrastructure to prevent and control these diseases. In this article, we review the current knowledge and potential impacts of deforestation, urbanization, and other land use changes on mosquito-borne and tick-borne disease transmission in Central America and how these anthropogenic drivers could affect the risk for disease emergence and resurgence in the region. These issues are addressed in the context of other interconnected environmental and social challenges.
Collapse
Affiliation(s)
- Diana I. Ortiz
- Biology Program, Westminster College, New Wilmington, PA 16172, USA
| | - Marta Piche-Ovares
- Laboratorio de Virología, Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San José 11501, Costa Rica;
- Departamento de Virología, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia 40104, Costa Rica
| | - Luis M. Romero-Vega
- Departamento de Patología, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia 40104, Costa Rica;
- Laboratorio de Investigación en Vectores (LIVe), Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San José 11501, Costa Rica;
| | - Joseph Wagman
- Malaria and Neglected Tropical Diseases Program, Center for Malaria Control and Elimination, PATH, Washington, DC 20001, USA;
| | - Adriana Troyo
- Laboratorio de Investigación en Vectores (LIVe), Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San José 11501, Costa Rica;
- Departamento de Parasitología, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica
| |
Collapse
|
33
|
Sheng ZY, Li M, Yang R, Liu YH, Yin XX, Mao JR, Brown HE, Zhou HN, Wang PG, An J. COVID-19 prevention measures reduce dengue spread in Yunnan Province, China, but do not reduce established outbreak. Emerg Microbes Infect 2021; 11:240-249. [PMID: 34935597 PMCID: PMC8745368 DOI: 10.1080/22221751.2021.2022438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The COVID-19 pandemic and measures against it provided a unique opportunity to understand the transmission of other infectious diseases and to evaluate the efficacy of COVID-19 prevention measures on them. Here we show a dengue epidemic in Yunnan, China, during the pandemic of COVID-19 was dramatically reduced compared to non-pandemic years and, importantly, spread was confined to only one city, Ruili. Three key features characterized this dengue outbreak: (i) the urban-to-suburban spread was efficiently blocked; (ii) the scale of epidemic in urban region was less affected; (iii) co-circulation of multiple strains was attenuated. These results suggested that countermeasures taken during COVID-19 pandemic are efficient to prevent dengue transmission between cities and from urban to suburban, as well to reduce the co-circulation of multiple serotypes or genotypes. Nevertheless, as revealed by the spatial analysis, once the dengue outbreak was established, its distribution was very stable and resistant to measures against COVID-19, implying the possibility to develop a precise prediction method.
Collapse
Affiliation(s)
- Z Y Sheng
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, PR China
| | - M Li
- Yunnan Provincial Key Laboratory of Vector-borne Disease Control and Research, Yunnan Institute of Parasitic Diseases, Simao Pu'er, Yunnan, PR China
| | - R Yang
- Yunnan Provincial Key Laboratory of Vector-borne Disease Control and Research, Yunnan Institute of Parasitic Diseases, Simao Pu'er, Yunnan, PR China
| | - Y H Liu
- Ruili Center of Disease Prevention and Control, Ruili, Yunnan, PR China
| | - X X Yin
- Ruili Center of Disease Prevention and Control, Ruili, Yunnan, PR China
| | - J R Mao
- Ruili People's Hospital, Ruili, Yunnan, PR China
| | - Heidi E Brown
- Department of Epidemiology and Biostatistics, College of Public Health, University of Arizona
| | - H N Zhou
- Yunnan Provincial Key Laboratory of Vector-borne Disease Control and Research, Yunnan Institute of Parasitic Diseases, Simao Pu'er, Yunnan, PR China
| | - P G Wang
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, PR China
| | - J An
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, PR China.,Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
34
|
Fernandes-Matano L, Monroy-Muñoz IE, Pardavé-Alejandre HD, Uribe-Noguez LA, Hernández-Cueto MDLA, Rojas-Mendoza T, Santacruz-Tinoco CE, Grajales-Muñiz C, Muñoz-Medina JE. Impact of the introduction of chikungunya and zika viruses on the incidence of dengue in endemic zones of Mexico. PLoS Negl Trop Dis 2021; 15:e0009922. [PMID: 34855759 PMCID: PMC8638990 DOI: 10.1371/journal.pntd.0009922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 10/18/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND With the arrival of chikungunya (CHIKV) and zika (ZIKV) viruses in Mexico, there was a decrease in diagnosed dengue virus (DENV) cases. During the first years of cocirculation (2015-2017), the algorithms established by epidemiological surveillance systems and the installed capacity limited us to one diagnostic test per sample, so there was an underestimation of cases until September 2017, when a multiplex algorithm was implemented. Therefore, the objective of this study was determine the impact of the introduction of CHIKV and ZIKV on the incidence of diagnosed DENV in endemic areas of Mexico, when performing the rediagnosis, using the multiplex algorithm, in samples from the first three years of co-circulation of these arboviruses. METHODOLOGY AND PRINCIPAL FINDINGS For this, 1038 samples received by the Central Laboratory of Epidemiology between 2015 and 2017 were selected for this work. Viruses were identified by multiplex RT-qPCR, and the χ2 test was used to compare categorical variables. With the new multiplex algorithm, we identified 2.4 times the rate of arbovirosis as originally reported, evidencing an underestimation of the incidence of the three viruses. Even so, significantly less dengue was observed than in previous years. The high incidence rates of chikungunya and Zika coincided with periods of dengue decline. The endemic channel showed that the cases caused by DENV rose again after the circulation of CHIKV and ZIKV decreased. In addition, 23 cases of coinfection were identified, with combinations between all viruses. CONCLUSIONS AND SIGNIFICANCE The results obtained in this study show for the first time the real impact on the detected incidence of dengue after the introduction of CHIKV and ZIKV in Mexico, the degree of underestimation of these arboviruses in the country, as well as the co-infections between these viruses, whose importance clinical and epidemiological are still unknown.
Collapse
Affiliation(s)
- Larissa Fernandes-Matano
- Laboratorio Central de Epidemiología, Instituto Mexicano del Seguro Social, Mexico City, Mexico
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Irma Eloisa Monroy-Muñoz
- Laboratorio de Genómica, Departamento de Genética y Genómica Humana, Instituto Nacional de Perinatología “Isidro Espinosa de los Reyes”, Mexico City, Mexico
| | | | | | | | - Teresita Rojas-Mendoza
- Coordinación de Control Técnico de Insumos, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | | | - Concepción Grajales-Muñiz
- Coordinación de Control Técnico de Insumos, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - José Esteban Muñoz-Medina
- Laboratorio Central de Epidemiología, Instituto Mexicano del Seguro Social, Mexico City, Mexico
- * E-mail:
| |
Collapse
|
35
|
Bentes AA, Maia De Castro Romanelli R, Crispim APC, Marinho PES, Loutfi KS, Araujo ST, Campos E Silva LM, Guedes I, Martins Alvarenga A, Santos MA, Geessien Kroon E. Neurological manifestations due to dengue virus infection in children: clinical follow-up. Pathog Glob Health 2021; 115:476-482. [PMID: 34223795 PMCID: PMC8635603 DOI: 10.1080/20477724.2021.1942680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
The aim was to assess neurological complications in children with an invasive neurological disease by dengue virus (DENV) and the time to resolve symptoms after hospital discharge. A prospective study was conducted at a referral hospital for infectious diseases in Brazil between March 2014 and July 2019. All children hospitalized with neurologic manifestations and DENV RNA detected by real-time reverse transcription-polymerase chain reaction (RT-qPCR) in cerebrospinal fluid (CSF) were followed up until complete resolution of neurological complications. On average, they were followed up for 16 months. Among 56 DENV-positive children, 39% had some neurologic complications after hospital discharge and found that 19.6% were discharged with anticonvulsants due to seizures, 10.7% developed motor complications (e.g. muscle weakness, paresis, ataxia, and walking disability), 5.4% had headaches, and 14.3% had sleep disorders. Among the 56 children, only three had a clinical diagnosis of dengue because the symptoms are nonspecific and 35% showed no change in cerebrospinal fluid (CSF). The average time to resolve complications was 5.9 months (ranging from 1 m to 32 m). These results should alert physicians to the difficulties of a clinical diagnosis of an infection that causes neurological complications after discharge in a significant number of children. RT-qPCR's etiological diagnosis of DENV infection enabled better clinical follow-up for early intervention in children with neurological complications.
Collapse
Affiliation(s)
- Aline Almeida Bentes
- Departamento De Pediatria, Universidade Federal De Minas Gerais, Minas Gerais, Brazil
- Hospital Infantil João Paulo II, FHEMIG, Minas Gerais, Brazil
| | | | - Ana Paula Correa Crispim
- Laboratório De Vírus, Departamento De Microbiologia, Universidade Federal De Minas Gerais, Minas Gerais, Brazil
| | | | | | - Sara Tavares Araujo
- Faculdade De Medicina, Universidade Federal De Minas Gerais, Minas Gerais, Brazil
| | | | - Isabela Guedes
- Faculdade De Medicina, Universidade Federal De Minas Gerais, Minas Gerais, Brazil
| | | | | | - Erna Geessien Kroon
- Laboratório De Vírus, Departamento De Microbiologia, Universidade Federal De Minas Gerais, Minas Gerais, Brazil
| |
Collapse
|
36
|
Kann S, Blessmann J, Winkelmann Y, Hansen J, Maya Amaya LJ, Rivera Salcedo GE, Halas HE, Schmidt-Chanasit J, Keoviengkhone L, Sopraseuth V, Deschermeier C, Mika A. Dengue virus detection in Lao PDR and Colombia: Comparative evaluation of PCR tests. Trop Med Int Health 2021; 26:1296-1302. [PMID: 34449967 DOI: 10.1111/tmi.13670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Dengue virus (DENV) detection by polymerase chain reaction (PCR) facilitates diagnosis of dengue fever, which is the most frequent arboviral disease globally. Two studies were performed in countries with high dengue incidence, to assess the diagnostic performance of different PCR techniques. METHODS/RESULTS Two hundred and seventy-nine acute phase blood samples from febrile patients were analyzed for DENV by the RealStar Dengue RT-PCR kit (Altona Diagnostics) as gold standard in comparison with the Tropical Fever Core multiplex PCR (Fast Track Diagnostics). In total, 102 samples collected in Savannakhet Province (Lao PDR, Southeast Asia) in 2013 and 35 samples from Valledupar (Colombia, South America) tested positive for DENV by RealStar RT-PCR. In comparison, the Tropical Fever Core multiplex PCR detected 65.0% (65/102) and 68.6% (24/35) of these samples as positive for DENV in Savannakhet and Valledupar, respectively. Diagnostic sensitivity of the multiplex PCR strongly correlated with viral load. A subset of DENV PCR-confirmed samples was additionally tested by BNITM in house Dengue Type RT-PCR in comparison with two commercial test kits (RealStar Dengue Type RT-PCR [Altona Diagnostics], Dengue differentiation PCR [Fast Track Diagnostics]). The leading dengue serotype in Savannakhet was DENV-3 (58% [29/50]), while DENV-1 (53.8% [14/26]) was the predominant serotype found in samples collected in Valledupar by BNITM-type PCR. However, three DENV serotypes were circulating in Valledupar and in Savannakhet. In 2015, additional studies found predominantly DENV-4 (71% [12/17]) in Savannakhet. CONCLUSIONS Both studies emphasized that routine diagnostics in both regions will benefit from an expanded use of highly sensitive pan-dengue PCRs.
Collapse
Affiliation(s)
- Simone Kann
- Medical Mission Institute, Würzburg, Germany
| | - Joerg Blessmann
- Department for Implementation Research, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Yvonne Winkelmann
- Diagnostics Development Laboratory, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Jessica Hansen
- Diagnostics Development Laboratory, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | | | | | - Jonas Schmidt-Chanasit
- Department of Arbovirology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | | | - Christina Deschermeier
- Diagnostics Development Laboratory, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Angela Mika
- Diagnostics Development Laboratory, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| |
Collapse
|
37
|
Belaunzarán-Zamudio PF, Rincón León HA, Caballero Sosa S, Ruiz E, Nájera Cancino JG, de La Rosa PR, Guerrero Almeida MDL, Powers JH, Beigel JH, Hunsberger S, Trujillo K, Ramos P, Arteaga-Cabello FJ, López-Roblero A, Valdés-Salgado R, Arroyo-Figueroa H, Becerril E, Ruiz-Palacios G. Different epidemiological profiles in patients with Zika and dengue infection in Tapachula, Chiapas in Mexico (2016-2018): an observational, prospective cohort study. BMC Infect Dis 2021; 21:881. [PMID: 34454432 PMCID: PMC8397877 DOI: 10.1186/s12879-021-06520-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 08/02/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The introduction of Zika and chikungunya to dengue hyperendemic regions increased interest in better understanding characteristics of these infections. We conducted a cohort study in Mexico to evaluate the natural history of Zika infection. We describe here the frequency of Zika, chikungunya and dengue virus infections immediately after Zika introduction in Mexico, and baseline characteristics of participants for each type of infection. METHODS Prospective, observational cohort evaluating the natural history of Zika virus infection in the Mexico-Guatemala border area. Patients with fever, rash or both, meeting the modified criteria of PAHO for probable Zika cases were enrolled (June 2016-July 2018) and followed-up for 6 months. We collected data on sociodemographic, environmental exposure, clinical and laboratory characteristics. Diagnosis was established based on viral RNA identification in serum and urine samples using RT-PCR for Zika, chikungunya, and dengue. We describe the baseline sociodemographic and environmental exposure characteristics of participants according to diagnosis, and the frequency of these infections over a two-year period immediately after Zika introduction in Mexico. RESULTS We enrolled 427 participants. Most patients (n = 307, 65.7%) had an acute illness episode with no identified pathogen (UIE), 37 (8%) Zika, 82 (17.6%) dengue, and 1 (0.2%) chikungunya. In 2016 Zika predominated, declined in 2017 and disappeared in 2018; while dengue increased after 2017. Patients with dengue were more likely to be men, younger, and with lower education than those with Zika and UIE. They also reported closer contact with water sources, and with other people diagnosed with dengue. Participants with Zika reported sexual exposure more frequently than people with dengue and UIE. Zika was more likely to be identified in urine while dengue was more likely found in blood in the first seven days of symptoms; but PCR results for both were similar at day 7-14 after symptom onset. CONCLUSIONS During the first 2 years of Zika introduction to this dengue hyper-endemic region, frequency of Zika peaked and fell over a two-year period; while dengue progressively increased with a predominance in 2018. Different epidemiologic patterns between Zika, dengue and UIE were observed. Trial registration Clinical.Trials.gov (NCT02831699).
Collapse
Affiliation(s)
- Pablo F Belaunzarán-Zamudio
- Departamento de Infectología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.
- National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA.
| | | | - Sandra Caballero Sosa
- Clínica Hospital Dr. Roberto Nettel Flores, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Tapachula, Chiapas, Mexico
| | - Emilia Ruiz
- Hospital General de Tapachula, Tapachula, Chiapas, Mexico
| | | | | | | | - John H Powers
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - John H Beigel
- National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Sally Hunsberger
- National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Karina Trujillo
- Hospital Regional de Alta Especialidad Ciudad Salud, Tapachula, Chiapas, Mexico
| | - Pilar Ramos
- Departamento de Infectología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Fernando J Arteaga-Cabello
- Departamento de Infectología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | | | | | - Hugo Arroyo-Figueroa
- Mexican Emerging Infectious Diseases Clinical Research Network (La Red), Mexico City, Mexico
| | - Eli Becerril
- Mexican Emerging Infectious Diseases Clinical Research Network (La Red), Mexico City, Mexico
| | - Guillermo Ruiz-Palacios
- Departamento de Infectología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
38
|
Long H, Zhang C, Chen C, Tang J, Zhang B, Wang Y, Pang J, Su W, Li K, Di B, Chen YQ, Shu Y, Du X. Assessment of the global circulation and endemicity of dengue. Transbound Emerg Dis 2021; 69:2148-2155. [PMID: 34197697 DOI: 10.1111/tbed.14211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/27/2021] [Indexed: 11/30/2022]
Abstract
Dengue is a significant public health issue, affecting hundreds of millions of people worldwide. As it is spreading from tropical and subtropical zones, some regions previously recognised as non-endemic are at risk of becoming endemic. However, the global circulation of dengue is not fully understood and quantitative measurements of endemicity levels are lacking, posing an obstacle in the precise control of dengue spread. In this study, a sequence-based pipeline was designed based on random sampling to study the transmission of dengue. The limited intercontinental transmission was identified, while regional circulation of dengue was quantified in terms of importation, local circulation and exportation. Additionally, hypo- and hyper-endemic regions were identified using a new metric, with the former characterised by low local circulation and increased importation, whereas the latter by high local circulation and reduced importation. In this study, the global circulation pattern of dengue was examined and a sequence-based endemicity measurement was proposed, which will be helpful for future surveillance and targeted control of dengue.
Collapse
Affiliation(s)
- Haoyu Long
- School of Public Health (Shenzhen), Sun Yat-Sen University, Guangzhou, China
| | - Chi Zhang
- School of Public Health (Shenzhen), Sun Yat-Sen University, Guangzhou, China
| | - Cai Chen
- School of Public Health (Shenzhen), Sun Yat-Sen University, Guangzhou, China
| | - Jing Tang
- School of Public Health (Shenzhen), Sun Yat-Sen University, Guangzhou, China
| | - Bing Zhang
- School of Public Health (Shenzhen), Sun Yat-Sen University, Guangzhou, China
| | - Yinghan Wang
- School of Public Health (Shenzhen), Sun Yat-Sen University, Guangzhou, China
| | - Jiali Pang
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Wenzhe Su
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Kuibiao Li
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Biao Di
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Yao-Qing Chen
- School of Public Health (Shenzhen), Sun Yat-Sen University, Guangzhou, China
| | - Yuelong Shu
- School of Public Health (Shenzhen), Sun Yat-Sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Xiangjun Du
- School of Public Health (Shenzhen), Sun Yat-Sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
39
|
O'Connor O, Ou TP, Aubry F, Dabo S, Russet S, Girault D, In S, Minier M, Lequime S, Hoem T, Boyer S, Dussart P, Pocquet N, Burtet-Sarramegna V, Lambrechts L, Duong V, Dupont-Rouzeyrol M. Potential role of vector-mediated natural selection in dengue virus genotype/lineage replacements in two epidemiologically contrasted settings. Emerg Microbes Infect 2021; 10:1346-1357. [PMID: 34139961 PMCID: PMC8259877 DOI: 10.1080/22221751.2021.1944789] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Dengue virus (DENV) evolutionary dynamics are characterized by frequent DENV genotype/lineage replacements, potentially associated with changes in disease severity and human immunity. New Caledonia (NC) and Cambodia, two contrasted epidemiological settings, respectively experienced a DENV-1 genotype IV to I replacement in 2012 and a DENV-1 genotype I lineage 3–4 replacement in 2005–2007, both followed by a massive dengue outbreak. However, their underlying evolutionary drivers have not been elucidated. Here, we tested the hypothesis that these genotype/lineage switches reflected a higher transmission fitness of the replacing DENV genotype/lineage in the mosquito vector using in vivo competition experiments. For this purpose, field-derived Aedes aegypti from NC and Cambodia were orally challenged with epidemiologically relevant pairs of four DENV-1 genotype I and IV strains from NC or four DENV-1 genotype I lineage 3 and 4 strains from Cambodia, respectively. The relative transmission fitness of each DENV-1 genotype/lineage was measured by quantitative RT–PCR for infection, dissemination, and transmission rates. Results showed a clear transmission fitness advantage of the replacing DENV-1 genotype I from NC within the vector. A similar but more subtle pattern was observed for the DENV-1 lineage 4 replacement in Cambodia. Our results support the hypothesis that vector-driven selection contributed to the DENV-1 genotype/lineage replacements in these two contrasted epidemiological settings, and reinforce the idea that natural selection taking place within the mosquito vector plays an important role in DENV short-term evolutionary dynamics.
Collapse
Affiliation(s)
- Olivia O'Connor
- Dengue and Arboviruses Research and Expertise Unit, Institut Pasteur de Nouvelle-Calédonie, Institut Pasteur International Network, Noumea, New Caledonia
| | - Tey Putita Ou
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
| | - Fabien Aubry
- Insect-Virus Interactions Unit, Institut Pasteur, UMR2000, CNRS, Paris, France
| | - Stéphanie Dabo
- Insect-Virus Interactions Unit, Institut Pasteur, UMR2000, CNRS, Paris, France
| | - Sylvie Russet
- Dengue and Arboviruses Research and Expertise Unit, Institut Pasteur de Nouvelle-Calédonie, Institut Pasteur International Network, Noumea, New Caledonia
| | - Dominique Girault
- Dengue and Arboviruses Research and Expertise Unit, Institut Pasteur de Nouvelle-Calédonie, Institut Pasteur International Network, Noumea, New Caledonia
| | - Saraden In
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
| | - Marine Minier
- Medical Entomology Research and Expertise Unit, Institut Pasteur de Nouvelle-Calédonie, Institut Pasteur International Network, Noumea, New Caledonia
| | - Sebastian Lequime
- Insect-Virus Interactions Unit, Institut Pasteur, UMR2000, CNRS, Paris, France
| | - Thavry Hoem
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
| | - Sébastien Boyer
- Medical Entomology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
| | - Philippe Dussart
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
| | - Nicolas Pocquet
- Medical Entomology Research and Expertise Unit, Institut Pasteur de Nouvelle-Calédonie, Institut Pasteur International Network, Noumea, New Caledonia
| | - Valérie Burtet-Sarramegna
- Institute For Exact and Applied Sciences, Université de la Nouvelle-Calédonie, Noumea, New Caledonia
| | - Louis Lambrechts
- Insect-Virus Interactions Unit, Institut Pasteur, UMR2000, CNRS, Paris, France
| | - Veasna Duong
- Medical Entomology Research and Expertise Unit, Institut Pasteur de Nouvelle-Calédonie, Institut Pasteur International Network, Noumea, New Caledonia
| | - Myrielle Dupont-Rouzeyrol
- Dengue and Arboviruses Research and Expertise Unit, Institut Pasteur de Nouvelle-Calédonie, Institut Pasteur International Network, Noumea, New Caledonia
| |
Collapse
|
40
|
Sirisena P, Mahilkar S, Sharma C, Jain J, Sunil S. Concurrent dengue infections: Epidemiology & clinical implications. Indian J Med Res 2021; 154:669-679. [PMID: 35532585 PMCID: PMC9210535 DOI: 10.4103/ijmr.ijmr_1219_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Indexed: 01/09/2023] Open
Abstract
Multiple dengue virus (DENV) serotypes circulating in a geographical area most often lead to simultaneous infection of two or more serotypes in a single individual. The occurrence of such concurrent infections ranges from 2.5 to 30 per cent, reaching as high as 40-50 per cent in certain dengue hyper-endemic areas. Concurrent dengue manifests itself differently than mono-infected patients, and it becomes even more important to understand the effects of co-infecting serotypes in concurrent infections to ascertain the clinical outcomes of the disease progression and transmission. In addition, there have also been reports of concurrent DENV infections in the presence of other arboviral infections. In this review, we provide a comprehensive breakdown of concurrent dengue infections globally. Furthermore, this review also touches upon the clinical presentations during those concurrent infections categorized as mild or severe forms of disease presentation. Another aspect of this review was aimed at providing insight into the concurrent dengue incidences in the presence of other arboviruses.
Collapse
Affiliation(s)
- P.D.N.N. Sirisena
- ImmunifyMe Healthcare Technologies Pvt. Ltd., Altrade Business Centre, Gurugram, Haryana, India
| | - Shakuntala Mahilkar
- Vector Borne Diseases Group, International Centre for Genetic Engineering & Biotechnology, New Delhi, India
| | - Chetan Sharma
- Vector Borne Diseases Group, International Centre for Genetic Engineering & Biotechnology, New Delhi, India
| | - Jaspreet Jain
- Human Retrovirology Laboratory, Montreal Clinical Research Institute (IRCM), Montreal, Quebec H2W 1R7, Canada
| | - Sujatha Sunil
- Vector Borne Diseases Group, International Centre for Genetic Engineering & Biotechnology, New Delhi, India
| |
Collapse
|
41
|
Nunez-Avellaneda D, Tangudu C, Barrios-Palacios J, Machain-Williams C, Alarcón-Romero LDC, Zubillaga-Guerrero MI, Nunez-Avellaneda S, McKeen LA, Canche-Aguilar I, Loaeza-Díaz L, Blitvich BJ. Co-Circulation of All Four Dengue Viruses and Zika Virus in Guerrero, Mexico, 2019. Vector Borne Zoonotic Dis 2021; 21:458-465. [PMID: 33944623 DOI: 10.1089/vbz.2020.2742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A clinical and entomological investigation was performed to identify flavivirus infections in humans and mosquitoes in impoverished areas of Guerrero, a coastal state in southwestern Mexico. A total of 639 patients with acute febrile illness and 830 resting female mosquitoes in low-income communities of Guerrero in 2019 were tested for evidence of flavivirus infection. Sera were collected from all patients and screened at a dilution of 1:20 by plaque reduction neutralization test (PRNT) using dengue virus (DENV)2. A total of 431 (67.4%) patients were seropositive. Sera from a subset of seropositive patients (n = 263) were tested for flavivirus NS1 by enzyme-linked immunosorbent assay. Forty-eight (18.3%) sera contained viral antigen. All NS1-positive sera were titrated and further tested by PRNT using DENV-1 to -4, St. Louis encephalitis virus, West Nile virus, and Zika virus (ZIKV). Seven patients were seropositive for DENV-1, five patients were seropositive for DENV-2, one patient was seropositive for DENV-3, and two patients each were seropositive for DENV-4 and ZIKV. The remainder had secondary flavivirus infections or antibodies to an undetermined flavivirus. Comparative PRNTs were also performed on 60 randomly selected NS1-negative sera, identifying patients seropositive for DENV-2, DENV-3, and ZIKV. The entomological investigation yielded 736 Aedes aegypti and 94 Culex quinquefasciatus that were sorted into 183 pools and 20 pools, respectively. Mosquitoes were assayed for flavivirus RNA by RT-PCR and Sanger sequencing. DENV-2 RNA was detected in three pools of A. aegypti. In summary, we provide evidence for the concurrent circulation of all four DENVs and ZIKV in Guerrero, Mexico. The public health authorities reported no cases of DENV-3, DENV-4, and ZIKV in Guerrero in 2019 and thus, we provide evidence of under-reporting in the region.
Collapse
Affiliation(s)
| | - Chandra Tangudu
- College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Jacqueline Barrios-Palacios
- Experimental Pathology Section, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Ciudad de México, México
| | - Carlos Machain-Williams
- Laboratorio de Arbovirologia, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi," Universidad Autónoma de Yucatan, Merida, Mexico
| | - Luz Del Carmen Alarcón-Romero
- Laboratorio de Investigación en Citopatología e Histoquímica, Facultad de Ciencias Químico Biologicas, Universidad Autónoma de Guerrero, Chilpancingo, México
| | - Ma Isabel Zubillaga-Guerrero
- Laboratorio de Investigación en Citopatología e Histoquímica, Facultad de Ciencias Químico Biologicas, Universidad Autónoma de Guerrero, Chilpancingo, México
| | | | - Lauren A McKeen
- College of Liberal Arts and Sciences, Iowa State University, Ames, Iowa, USA
| | - Israel Canche-Aguilar
- Departamento de Prevención y Control de Enfermedades Transmitidas por Vector en el Estado de Guerrero, Chilpancingo, Mexico
| | - Laura Loaeza-Díaz
- Laboratorio de Analisis Clínicos, Hospital General Raymundo Abarca Alarcón, Chilpancingo, Mexico
| | | |
Collapse
|
42
|
Bezerra JMT, Sousa SCD, Tauil PL, Carneiro M, Barbosa DS. Entry of dengue virus serotypes and their geographic distribution in Brazilian federative units: a systematic review. REVISTA BRASILEIRA DE EPIDEMIOLOGIA 2021; 24:e210020. [PMID: 33825776 DOI: 10.1590/1980-549720210020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/09/2020] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE To describe the entry of Dengue virus (DENV) serotypes in Brazil and its federative units. METHODS A systematic review of studies published between 1980 and 2018 in databases and in the gray literature was performed using descriptors related to the years of entry of the DENV serotypes. Additionally, experts and official sources of information (Brazilian Ministry of Health) were consulted. RESULTS From 100 publications selected for the systematic review, 26 addressed the entry of DENV serotypes in the North region of the country, 33 in the Northeast, 24 in the Southeast, 14 in the Central-West, and five in the South. DENV-1 and DENV-4 were introduced in the North region in 1981. DENV-2 was introduced in the Southeast in 1990. DENV-3 was introduced in the North in 1999. CONCLUSION The rapid expansion of dengue throughout the Brazilian territory was verified from the second half of the 1980s, with the gradual entry of the four serotypes, which resulted in the emergence of epidemics of arbovirus, which are currently verified in the country. Considering the epidemiology of the disease, more information should be disseminated and published in the wide-ranging scientific literature for a better understanding of the spread and circulation of DENV serotypes.
Collapse
Affiliation(s)
| | - Selma Costa de Sousa
- Department of Occupational Health Care, Universidade Federal de Minas Gerais - Belo Horizonte (MG), Brazil.,Laboratory of Epidemiology of Infectious and Parasitic Diseases, Department of Parasitology, Biological Sciences Institute, Universidade Federal de Minas Gerais - Belo Horizonte (MG), Brazil
| | - Pedro Luiz Tauil
- School of Medicine, Graduate Program in Tropical Medicine, Universidade de Brasília - Brasília (DF), Brazil
| | - Mariângela Carneiro
- Laboratory of Epidemiology of Infectious and Parasitic Diseases, Department of Parasitology, Biological Sciences Institute, Universidade Federal de Minas Gerais - Belo Horizonte (MG), Brazil.,Graduate Program in Health Sciences, Infectious Disease and Tropical Medicine, Universidade Federal de Minas Gerais - Belo Horizonte (MG), Brazil
| | - David Soeiro Barbosa
- Laboratory of Epidemiology of Infectious and Parasitic Diseases, Department of Parasitology, Biological Sciences Institute, Universidade Federal de Minas Gerais - Belo Horizonte (MG), Brazil
| |
Collapse
|
43
|
Campos NBD, Morais MHF, Ceolin APR, Cunha MDCM, Nicolino RR, Schultes OL, Friche AADL, Caiaffa WT. Twenty-Two years of dengue fever (1996-2017): an epidemiological study in a Brazilian city. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2021; 31:315-324. [PMID: 31468989 DOI: 10.1080/09603123.2019.1656801] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
This ecological study analyzed the temporal pattern of clinically diagnosed and laboratory confirmed dengue cases in Belo Horizonte, Minas Gerais, Brazil from 1996 to 2017. The study was divided into two analytical parts, the first of which evaluated the association between dengue incidence and host and climatic factors. The second part encompassed data from 2002 to 2017 and examined dengue incidence in relation to virus serotype and an intra-urban socioeconomic index. Over 22 years there were 469,171 cases and four epidemic peaks. There was an increase in the number, severity, and lethality of cases over the last 10 years of the study period. Biological and environmental factors appear to modulate the behavior of dengue in a large urban center.
Collapse
Affiliation(s)
- Natalia Bruna Dias Campos
- Municipal Health Department, Belo Horizonte, Minas Gerais
- Urban Health Observatory of Belo Horizonte (OSUBH in Portuguese), School of Medicine, Federal University of Minas Gerais
| | | | - Ana Paula Romanelli Ceolin
- Urban Health Observatory of Belo Horizonte (OSUBH in Portuguese), School of Medicine, Federal University of Minas Gerais
| | | | | | - Olívia Lang Schultes
- Urban Health Observatory of Belo Horizonte (OSUBH in Portuguese), School of Medicine, Federal University of Minas Gerais
| | - Amélia Augusta de Lima Friche
- Urban Health Observatory of Belo Horizonte (OSUBH in Portuguese), School of Medicine, Federal University of Minas Gerais
| | - Waleska Teixeira Caiaffa
- Urban Health Observatory of Belo Horizonte (OSUBH in Portuguese), School of Medicine, Federal University of Minas Gerais
| |
Collapse
|
44
|
Inhibition of defensin A and cecropin A responses to dengue virus 1 infection in Aedes aegypti. ACTA ACUST UNITED AC 2021; 41:161-167. [PMID: 33761199 PMCID: PMC8055593 DOI: 10.7705/biomedica.5491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Indexed: 11/21/2022]
Abstract
Introduction It is essential to determine the interactions between viruses and mosquitoes to diminish dengue viral transmission. These interactions constitute a very complex system of highly regulated pathways known as the innate immune system of the mosquito, which produces antimicrobial peptides that act as effector molecules against bacterial and fungal infections. There is less information about such effects on virus infections. Objective To determine the expression of two antimicrobial peptide genes, defensin A and cecropin A, in Aedes aegypti mosquitoes infected with DENV-1. Materials and methods We used the F1 generation of mosquitoes orally infected with DENV-1 and real-time PCR analysis to determine whether the defensin A and cecropin A genes played a role in controlling DENV-1 replication in Ae. aegypti. As a reference, we conducted similar experiments with the bacteria Escherichia coli. Results Basal levels of defensin A and cecropin A mRNA were expressed in uninfected mosquitoes at different times post-blood feeding. The infected mosquitoes experienced reduced expression of these mRNA by at least eightfold when compared to uninfected control mosquitoes at all times post-infection. In contrast with the behavior of DENV-1, results showed that bacterial infection produced up-regulation of defensin and cecropin genes; however, the induction of transcripts occurred at later times (15 days). Conclusion: DENV-1 virus inhibited the expression of defensin A and cecropin A genes in a wild Ae. aegypti population from Venezuela.
Collapse
|
45
|
Hwang EH, Kim G, Chung H, Oh H, Park JH, Hur GH, Hong J, Koo BS. Molecular evolution of dengue virus types 1 and 4 in Korean travelers. Arch Virol 2021; 166:1103-1112. [PMID: 33575893 PMCID: PMC7952331 DOI: 10.1007/s00705-021-04973-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/08/2020] [Indexed: 01/04/2023]
Abstract
Dengue virus (DV) is a mosquito-borne virus that is endemic to many tropical and subtropical areas. Recently, the annual incidence of DV infection has increased worldwide, including in Korea, due to global warming and increased global travel. We therefore sought to characterize the molecular and evolutionary features of DV-1 and DV-4 isolated from Korean overseas travelers. We used phylogenetic analysis based on the full coding region to classify isolates of DV-1 in Korea into genotype I (43251, KP406802), genotype IV (KP406803), and genotype V (KP406801). In addition, we found that strains of DV-4 belonged to genotype I (KP406806) and genotype II (43257). Evidence of positive selection in DV-1 strains was identified in the C, prM, NS2A, and NS5 proteins, whereas DV-4 showed positive selection only in the non-structural proteins NS2A, NS3, and NS5. The substitution rates per site per year were 5.58 × 10-4 and 6.72 × 10-4 for DV-1 and DV-4, respectively, and the time of the most recent common ancestor was determined using the Bayesian skyline coalescent method. In this study, the molecular, phylogenetic, and evolutionary characteristics of Korean DV-1 and DV-4 isolates were evaluated for the first time.
Collapse
Affiliation(s)
- Eun-Ha Hwang
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea.,Laboratory of Animal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Green Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea.,Laboratory of Animal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Hoyin Chung
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea.,Department of Microbiology, College of Natural Sciences, Chungbuk National University, Cheongju, Republic of Korea
| | - Hanseul Oh
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
| | - Jong-Hwan Park
- Laboratory of Animal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | | | - JungJoo Hong
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea.
| | - Bon-Sang Koo
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea.
| |
Collapse
|
46
|
Allicock OM, Sahadeo N, Lemey P, Auguste AJ, Suchard MA, Rambaut A, Carrington CVF. Determinants of dengue virus dispersal in the Americas. Virus Evol 2021; 6:veaa074. [PMID: 33408877 PMCID: PMC7772473 DOI: 10.1093/ve/veaa074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Dengue viruses (DENVs) are classified into four serotypes, each of which contains multiple genotypes. DENV genotypes introduced into the Americas over the past five decades have exhibited different rates and patterns of spatial dispersal. In order to understand factors underlying these patterns, we utilized a statistical framework that allows for the integration of ecological, socioeconomic, and air transport mobility data as predictors of viral diffusion while inferring the phylogeographic history. Predictors describing spatial diffusion based on several covariates were compared using a generalized linear model approach, where the support for each scenario and its contribution is estimated simultaneously from the data set. Although different predictors were identified for different serotypes, our analysis suggests that overall diffusion of DENV-1, -2, and -3 in the Americas was associated with airline traffic. The other significant predictors included human population size, the geographical distance between countries and between urban centers and the density of people living in urban environments.
Collapse
Affiliation(s)
- Orchid M Allicock
- Department of Preclinical Sciences, Faculty of Medical Sciences, University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Nikita Sahadeo
- Department of Preclinical Sciences, Faculty of Medical Sciences, University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Philippe Lemey
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory for Clinical and Epidemiological Virology, Leuven, Belgium
| | - Albert J Auguste
- Department of Entomology, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Marc A Suchard
- Department of Biomathematics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Andrew Rambaut
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, The Kings Buildings, Edinburgh, EH9 3FL, UK
| | - Christine V F Carrington
- Department of Preclinical Sciences, Faculty of Medical Sciences, University of the West Indies, St. Augustine, Trinidad and Tobago
| |
Collapse
|
47
|
Evolution and epidemiologic dynamics of dengue virus in Nicaragua during the emergence of chikungunya and Zika viruses. INFECTION GENETICS AND EVOLUTION 2020; 92:104680. [PMID: 33326875 DOI: 10.1016/j.meegid.2020.104680] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 11/19/2020] [Accepted: 12/10/2020] [Indexed: 11/23/2022]
Abstract
Arthropod-borne viruses (arboviruses) comprise a significant and ongoing threat to human health, infecting hundreds of millions annually. Three such arboviruses include circumtropical dengue, Zika, and chikungunya viruses, exhibiting continuous emergence primarily via Aedes mosquito vectors. Nicaragua has experienced endemic dengue virus (DENV) transmission involving multiple serotypes since 1985, with chikungunya virus (CHIKV) reported in 2014-2015, followed by Zika virus (ZIKV) first reported in 2016. In order to identify patterns of genetic variation and selection pressures shaping the evolution of co-circulating DENV serotypes in light of the arrival of CHIKV and ZIKV, we employed whole-genome sequencing on an Illumina MiSeq platform of random-amplified total RNA libraries to characterize 42 DENV low-passage isolates, derived from viremic patients in Nicaragua between 2013 and 2016. Our approach also revealed clinically undetected co-infections with CHIKV. Of the three DENV serotypes (1, 2, and 3) co-circulating during our study, we uncovered distinct patterns of evolution using comparative phylogenetic inference. DENV-1 genetic variation was structured into two distinct co-circulating lineages with no evidence of positive selection in the origins of either lineage, suggesting they are equally fit. In contrast, the evolutionary history of DENV-2 was marked by positive selection, and a unique, divergent lineage correlated with high epidemic potential emerged in 2015 to drive an outbreak in 2016. DENV-3 genetic variation remained unstructured into lineages throughout the period of study. Thus, this study reveals insights into evolutionary and epidemiologic trends exhibited during the circulation of multiple arboviruses in Nicaragua.
Collapse
|
48
|
Chis Ster I, Rodriguez A, Romero NC, Lopez A, Chico M, Montgomery J, Cooper P. Age-dependent seroprevalence of dengue and chikungunya: inference from a cross-sectional analysis in Esmeraldas Province in coastal Ecuador. BMJ Open 2020; 10:e040735. [PMID: 33067302 PMCID: PMC7569951 DOI: 10.1136/bmjopen-2020-040735] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES There are few population-based estimates for prevalence of past exposure to dengue and chikungunya viruses despite common epidemiological features. Here, we have developed a novel statistical method to study patterns of age-dependent prevalence of immunity in a population following exposures to two viruses which share similar epidemiological features including mode of transmission and induction of long-lasting immunity. This statistical technique accounted for sociodemographic characteristics associated with individuals and households. SETTINGS The data consist of a representative sample from an ongoing longitudinal birth cohort set-up in a tropical district in coastal Ecuador (Esmeraldas). PARTICIPANTS We collected data and blood samples from 319 individuals belonging to 152 households following epidemics of the infections in 2015 in Latin America. PRIMARY OUTCOME Plasma was tested for the presence of specific IgG antibodies to dengue and chikungunya viruses by commercial ELISA and defined a bivariate binary outcome indicating individuals' past exposure status to dengue and chikungunya (ie, presence/absence of IgG antibodies to dengue or chikungunya or both). RESULTS Dengue seroprevalence increased rapidly with age reaching 97% (95% credible interval (CrI): 93%-99%) by 60 years. Chikungunya seroprevalence peaked at 42% (95% CrI: 18%-66%) around 9 years of age and averaged 27% (95% CrI: 8.7%-51.6%) for all ages. Rural areas were more likely to be associated with dengue-only exposure while urban areas and shorter distance to the nearest household were associated with exposures to both. Women living in urban settings were more likely to be chikungunya seropositive while rural men were more likely to be dengue seropositive. CONCLUSION Dengue seroprevalence was strongly age dependent consistent with endemic exposure while that of chikungunya peaked in childhood consistent with the recent emergence of the virus in the study area. Our findings will inform control strategies for the two arboviruses in Ecuador including recommendations by the WHO on dengue vaccination.
Collapse
Affiliation(s)
- Irina Chis Ster
- Institute of Infection and Immunity, St George's University of London, London, UK
| | | | | | - Andrea Lopez
- International University of Ecuador, Quito, Ecuador
| | - Martha Chico
- International University of Ecuador, Quito, Ecuador
| | | | - Philip Cooper
- Institute of Infection and Immunity, St George's University of London, London, UK
- International University of Ecuador, Quito, Ecuador
| |
Collapse
|
49
|
Del Valle-Mendoza J, Vasquez-Achaya F, Aguilar-Luis MA, Martins-Luna J, Bazán-Mayra J, Zavaleta-Gavidia V, Silva-Caso W, Carrillo-Ng H, Tarazona-Castro Y, Aquino-Ortega R, Del Valle LJ. Unidentified dengue serotypes in DENV positive samples and detection of other pathogens responsible for an acute febrile illness outbreak 2016 in Cajamarca, Peru. BMC Res Notes 2020; 13:467. [PMID: 33023645 PMCID: PMC7541171 DOI: 10.1186/s13104-020-05318-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 09/28/2020] [Indexed: 02/07/2023] Open
Abstract
Objective To describe the prevalence of dengue virus serotypes, as well as other viral and bacterial pathogens that cause acute febrile illness during an outbreak in Cajamarca in 2016. Results Dengue virus (DENV) was the most frequent etiologic agent detected in 25.8% of samples (32/124), followed by Rickettsia spp. in 8.1% (10/124), Zika virus in 4.8% (6/124), Chikungunya virus 2.4% (3/124) and Bartonella bacilliformis 1.6% (2/124) cases. No positive cases were detected of Oropouche virus and Leptospira spp. DENV serotypes identification was only achieved in 23% of the total positive for DENV, two samples for DENV-2 and four samples for DENV-4. During the 2016 outbreak in Cajamarca—Peru, it was observed that in a large percentage of positive samples for DENV, the infecting serotype could not be determined by conventional detection assays. This represents a problem for the national surveillance system and for public health due to its epidemiological and clinical implications. Other viral and bacterial pathogens responsible for acute febrile syndrome were less frequently identified.
Collapse
Affiliation(s)
- Juana Del Valle-Mendoza
- School of Medicine, Research and Innovation Center of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Av. San Marcos cuadra 2, Chorrillos, Lima, Peru. .,Laboratorio de Biologia Molecular, Instituto de Investigación Nutricional, Lima, Peru.
| | - Fernando Vasquez-Achaya
- School of Medicine, Research and Innovation Center of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Av. San Marcos cuadra 2, Chorrillos, Lima, Peru
| | - Miguel Angel Aguilar-Luis
- School of Medicine, Research and Innovation Center of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Av. San Marcos cuadra 2, Chorrillos, Lima, Peru.,Laboratorio de Biologia Molecular, Instituto de Investigación Nutricional, Lima, Peru
| | - Johanna Martins-Luna
- School of Medicine, Research and Innovation Center of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Av. San Marcos cuadra 2, Chorrillos, Lima, Peru.,Laboratorio de Biologia Molecular, Instituto de Investigación Nutricional, Lima, Peru
| | - Jorge Bazán-Mayra
- Laboratorio Regional de Cajamarca, Dirección Regional de Salud de Cajamarca (DIRESA), Cajamarca, Peru
| | - Victor Zavaleta-Gavidia
- Laboratorio Regional de Cajamarca, Dirección Regional de Salud de Cajamarca (DIRESA), Cajamarca, Peru
| | - Wilmer Silva-Caso
- School of Medicine, Research and Innovation Center of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Av. San Marcos cuadra 2, Chorrillos, Lima, Peru.,Laboratorio de Biologia Molecular, Instituto de Investigación Nutricional, Lima, Peru
| | - Hugo Carrillo-Ng
- School of Medicine, Research and Innovation Center of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Av. San Marcos cuadra 2, Chorrillos, Lima, Peru.,Laboratorio de Biologia Molecular, Instituto de Investigación Nutricional, Lima, Peru
| | - Yordi Tarazona-Castro
- Laboratorio de Biologia Molecular, Instituto de Investigación Nutricional, Lima, Peru.,Escuela Profesional de Genética y Biotecnología. Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Ronald Aquino-Ortega
- School of Medicine, Research and Innovation Center of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Av. San Marcos cuadra 2, Chorrillos, Lima, Peru.,Laboratorio de Biologia Molecular, Instituto de Investigación Nutricional, Lima, Peru
| | - Luis J Del Valle
- Barcelona Research Center for Multiscale Science and Engineering, Departament D'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain.
| |
Collapse
|
50
|
Immune Response Persistence and Safety of a Booster Dose of the Tetravalent Dengue Vaccine in Adolescents and Adults Who Previously Completed the 3-dose Schedule 4-5 Years Earlier in Latin America: A Randomized Placebo-controlled Trial. Pediatr Infect Dis J 2020; 39:961-968. [PMID: 32932330 DOI: 10.1097/inf.0000000000002830] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND We previously described an increased immune response 28 days after a booster dose of the live, attenuated, tetravalent dengue vaccine (CYD-TDV) in healthy adolescents and adults in Latin America (CYD64, NCT02623725). This follow-up study evaluated immune response persistence and safety of a CYD-TDV booster dose up to Month (M) 24 post-booster. METHODS This study included 250 participants who previously received 3 primary doses of CYD-TDV in the CYD13 (NCT00993447) and CYD30 (NCT01187433) studies, and who were randomized 4-5 years later to receive a CYD-TDV booster or placebo (3:1). Dengue neutralizing antibodies against the parental dengue virus strains were assessed using the plaque reduction neutralization test (PRNT50) at M6, M12, and M24 post-booster. Post-booster memory B-cell responses were assessed in a subset of participants using the FluoroSpot assay up to M12 post-booster. RESULTS In the CYD-TDV group (n = 187), dengue neutralizing antibody geometric mean titers (GMTs) declined from the peak at day 28 through to M24 for all serotypes. GMTs at M24 were similar to those at pre-booster among baseline dengue seropositives. A similar trend was observed for baseline dengue seronegatives, albeit at a lower magnitude. Previous vaccination-induced detectable B-cell memory responses in seropositives and seronegatives that decreased to pre-booster levels at M12 post-booster. The CYD-TDV booster dose was well-tolerated. CONCLUSIONS In baseline dengue seropositives, following a CYD-TDV booster dose administered 4-5 years after primary immunization, dengue neutralizing antibody GMTs and B-cell memory responses peaked in the short-term before gradually decreasing over time. A CYD-TDV booster dose could improve protection against dengue during outbreak periods.
Collapse
|