1
|
Li Y, Ren M, Wu Y, Wang L, Zhao K, Gao H, Li M, Liu Y, Zhu J, Xu J, Mo X, Wu Z, Lu C, Zheng S, Mao C. A root system architecture regulator modulates OsPIN2 polar localization in rice. Nat Commun 2025; 16:15. [PMID: 39747021 PMCID: PMC11697098 DOI: 10.1038/s41467-024-55324-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 12/09/2024] [Indexed: 01/04/2025] Open
Abstract
Ideal root system architecture (RSA) is important for efficient nutrient uptake and high yield in crops. We cloned and characterized a key RSA regulatory gene, GRAVITROPISM LOSS 1 (OsGLS1), in rice (Oryza sativa L.). The gls1 mutant displays an increased root growth angle, longer primary roots, more adventitious roots and greater nutrient uptake efficiency and grain yield in paddy fields. OsGLS1 is strongly expressed in the root tips of seedlings and in leaves at the flowering stage. OsGLS1 encodes a RING finger E3 ubiquitin ligase mainly localizing at the basal plasma membrane (PM) in several root cell types when phosphorylated on its Ser-30 residue. OsGLS1 interacts with, ubiquitinates and promotes the degradation of basally localized PIN-FORMED 2 (OsPIN2) via the 26S proteasome, thus establishing the typical apical PM localization of OsPIN2 and polar auxin transport, ultimately shaping RSA. This previously unidentified OsGLS1-OsPIN2 regulatory pathway will contribute to an optimal RSA for enhancing nutrient efficiency in rice and other crops.
Collapse
Affiliation(s)
- Yong Li
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Meiyan Ren
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yunrong Wu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya, Hainan, 572025, China
| | - Lingling Wang
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Keju Zhao
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hongsheng Gao
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Mengzhen Li
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yu Liu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jianshu Zhu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jiming Xu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaorong Mo
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhongchang Wu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chungui Lu
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Nottingham, Nottinghamshire, NG25 0QF, UK
| | - Shaojian Zheng
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chuanzao Mao
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya, Hainan, 572025, China.
| |
Collapse
|
2
|
Yan X, Liang Y, Yamashita F, Baluška F. Investigation of Arabidopsis root skototropism with different distance settings. PLANT SIGNALING & BEHAVIOR 2024; 19:2348917. [PMID: 38704856 PMCID: PMC11073417 DOI: 10.1080/15592324.2024.2348917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/22/2024] [Indexed: 05/07/2024]
Abstract
Plants can activate protective and defense mechanisms under biotic and abiotic stresses. Their roots naturally grow in the soil, but when they encounter sunlight in the top-soil layers, they may move away from the light source to seek darkness. Here we investigate the skototropic behavior of roots, which promotes their fitness and survival. Glutamate-like receptors (GLRs) of plants play roles in sensing and responding to signals, but their role in root skototropism is not yet understood. Light-induced tropisms are known to be affected by auxin distribution, mainly determined by auxin efflux proteins (PIN proteins) at the root tip. However, the role of PIN proteins in root skototropism has not been investigated yet. To better understand root skototropism and its connection to the distance between roots and light, we established five distance settings between seedlings and darkness to investigate the variations in root bending tendencies. We compared differences in root skototropic behavior across different expression lines of Arabidopsis thaliana seedlings (atglr3.7 ko, AtGLR3.7 OE, and pin2 knockout) to comprehend their functions. Our research shows that as the distance between roots and darkness increases, the root's positive skototropism noticeably weakens. Our findings highlight the involvement of GLR3.7 and PIN2 in root skototropism.
Collapse
Affiliation(s)
- Xingyu Yan
- Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| | - Yongshun Liang
- Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| | - Felipe Yamashita
- Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| | - František Baluška
- Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| |
Collapse
|
3
|
Gaddam SR, Sharma A, Bhatia C, Trivedi PK. A network comprising ELONGATED HYPOCOTYL 5, microRNA397b, and auxin-associated factors regulates root hair growth in Arabidopsis. PLANT PHYSIOLOGY 2024; 196:1460-1474. [PMID: 38820143 DOI: 10.1093/plphys/kiae301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 06/02/2024]
Abstract
ELONGATED HYPOCOTYL 5 (HY5) is a major light-associated transcription factor involved in plant growth and development. In Arabidopsis (Arabidopsis thaliana), the role of HY5 is very well defined in regulating primary root growth and lateral root formation; however, information regarding its role in root hair development is still lacking, and little is known about the genetic pathways regulating this process. In this study, we investigated the role of HY5 and its associated components in root hair development. Detailed analysis of root hair phenotype in wild-type and light signaling mutants under light and dark conditions revealed the importance of light-dependent HY5-mediated root hair initiation. Altered auxin levels in the root apex of the hy5 mutant and interaction of HY5 with promoters of root hair developmental genes were responsible for differential expression of root hair developmental genes and phenotype in the hy5 mutant. The partial complementation of root hair in the hy5 mutant after external supplementation of auxin and regaining of root hair in PIN-FORMED 2 and PIN-FORMED 2 mutants after grafting suggested that the auxin-mediated root hair development pathway requires HY5. Furthermore, miR397b overexpression (miR397bOX) and CRISPR/Cas9-based mutants (miR397bCR) indicated miR397b targets genes encoding reduced residual arabinose (RRA1/RRA2), which in turn regulate root hair growth. The regulation of the miR397b-(RRA1/RRA2) module by HY5 demonstrated its indirect role by targeting root hair cell wall genes. Together, this study demonstrated that HY5 controls root hair development by integrating auxin signaling and other miRNA-mediated pathways.
Collapse
Affiliation(s)
- Subhash Reddy Gaddam
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
- Plant Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP) P.O. CIMAP, Near Kukrail Picnic Spot, Lucknow, 226015, India
| | - Ashish Sharma
- Plant Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP) P.O. CIMAP, Near Kukrail Picnic Spot, Lucknow, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Chitra Bhatia
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Prabodh Kumar Trivedi
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
- Plant Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP) P.O. CIMAP, Near Kukrail Picnic Spot, Lucknow, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
4
|
Singh Rawat S, Laxmi A. Light at the end of the tunnel: integrating signaling pathways in the coordination of lateral root development. Biochem Soc Trans 2024; 52:1895-1908. [PMID: 39171690 DOI: 10.1042/bst20240049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/26/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024]
Abstract
Root system architecture (RSA) encompasses a range of physical root attributes, including the lateral roots (LRs), root hairs and adventitious roots, in addition to the primary or main root. This overall structure is a crucial trait for efficient water and mineral capture alongside providing anchorage to the plant in the soil and is vital for plant productivity and fitness. RSA dynamics are dependent upon various environmental cues such as light, soil pH, water, mineral nutrition and the belowground microbiome. Among these factors, light signaling through HY5 significantly influences the flexibility of RSA by controlling different signaling pathways that converge at photoreceptors-mediated signaling, also present in the 'hidden half'. Furthermore, several phytohormones also drive the formation and emergence of LRs and are critical to harmonize intra and extracellular stimuli in this regard. This review endeavors to elucidate the impact of these interactions on RSA, with particular emphasis on LR development and to enhance our understanding of the fundamental mechanisms governing the light-regulation of LR growth and physiology.
Collapse
Affiliation(s)
- Sanjay Singh Rawat
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Ashverya Laxmi
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
5
|
Maeng KH, Lee H, Cho HT. FAB1C, a phosphatidylinositol 3-phosphate 5-kinase, interacts with PIN-FORMEDs and modulates their lytic trafficking in Arabidopsis. Proc Natl Acad Sci U S A 2023; 120:e2310126120. [PMID: 37934824 PMCID: PMC10655590 DOI: 10.1073/pnas.2310126120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/10/2023] [Indexed: 11/09/2023] Open
Abstract
PIN-FORMEDs (PINs) are auxin efflux carriers that asymmetrically target the plasma membrane (PM) and are critical for forming local auxin gradients and auxin responses. While the cytoplasmic hydrophilic loop domain of PIN (PIN-HL) is known to include some molecular cues (e.g., phosphorylation) for the modulation of PIN's intracellular trafficking and activity, the complexity of auxin responses suggests that additional regulatory modules may operate in the PIN-HL domain. Here, we have identified and characterized a PIN-HL-interacting protein (PIP) called FORMATION OF APLOID AND BINUCLEATE CELL 1C (FAB1C), a phosphatidylinositol-3-phosphate 5-kinase, which modulates PIN's lytic trafficking. FAB1C directly interacts with PIN-HL and is required for the polarity establishment and vacuolar trafficking of PINs. Unphosphorylated forms of PIN2 interact more readily with FAB1C and are more susceptible to vacuolar lytic trafficking compared to phosphorylated forms. FAB1C also affected lateral root formation by modulating the abundance of periclinally localized PIN1 and auxin maximum in the growing lateral root primordium. These findings suggest that a membrane-lipid modifier can target the cargo-including vesicle by directly interacting with the cargo and modulate its trafficking depending on the cargo's phosphorylation status.
Collapse
Affiliation(s)
- Kwang-Ho Maeng
- Department of Biological Sciences, Seoul National University, Seoul08826, South Korea
| | - Hyodong Lee
- Department of Biological Sciences, Seoul National University, Seoul08826, South Korea
| | - Hyung-Taeg Cho
- Department of Biological Sciences, Seoul National University, Seoul08826, South Korea
| |
Collapse
|
6
|
Retzer K, Weckwerth W. Recent insights into metabolic and signalling events of directional root growth regulation and its implications for sustainable crop production systems. FRONTIERS IN PLANT SCIENCE 2023; 14:1154088. [PMID: 37008498 PMCID: PMC10060999 DOI: 10.3389/fpls.2023.1154088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
Roots are sensors evolved to simultaneously respond to manifold signals, which allow the plant to survive. Root growth responses, including the modulation of directional root growth, were shown to be differently regulated when the root is exposed to a combination of exogenous stimuli compared to an individual stress trigger. Several studies pointed especially to the impact of the negative phototropic response of roots, which interferes with the adaptation of directional root growth upon additional gravitropic, halotropic or mechanical triggers. This review will provide a general overview of known cellular, molecular and signalling mechanisms involved in directional root growth regulation upon exogenous stimuli. Furthermore, we summarise recent experimental approaches to dissect which root growth responses are regulated upon which individual trigger. Finally, we provide a general overview of how to implement the knowledge gained to improve plant breeding.
Collapse
Affiliation(s)
- Katarzyna Retzer
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
| | - Wolfram Weckwerth
- Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, Molecular Systems Biology (MoSys), University of Vienna, Wien, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, Wien, Austria
| |
Collapse
|
7
|
Zhang L, Guo Y, Zhang Y, Li Y, Pei Y, Zhang M. Regulation of PIN-FORMED Protein Degradation. Int J Mol Sci 2023; 24:ijms24010843. [PMID: 36614276 PMCID: PMC9821320 DOI: 10.3390/ijms24010843] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/29/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023] Open
Abstract
Auxin action largely depends on the establishment of auxin concentration gradient within plant organs, where PIN-formed (PIN) auxin transporter-mediated directional auxin movement plays an important role. Accumulating studies have revealed the need of polar plasma membrane (PM) localization of PIN proteins as well as regulation of PIN polarity in response to developmental cues and environmental stimuli, amongst which a typical example is regulation of PIN phosphorylation by AGCVIII protein kinases and type A regulatory subunits of PP2A phosphatases. Recent findings, however, highlight the importance of PIN degradation in reestablishing auxin gradient. Although the underlying mechanism is poorly understood, these findings provide a novel aspect to broaden the current knowledge on regulation of polar auxin transport. In this review, we summarize the current understanding on controlling PIN degradation by endosome-mediated vacuolar targeting, autophagy, ubiquitin modification and the related E3 ubiquitin ligases, cytoskeletons, plant hormones, environmental stimuli, and other regulators, and discuss the possible mechanisms according to recent studies.
Collapse
Affiliation(s)
- Liuqin Zhang
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China
| | - Yifan Guo
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China
| | - Yujie Zhang
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China
| | - Yuxin Li
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China
| | - Yan Pei
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
| | - Mi Zhang
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China
- Correspondence: ; Tel./Fax: +86-023-68251883
| |
Collapse
|
8
|
Stafen CF, Kleine-Vehn J, Maraschin FDS. Signaling events for photomorphogenic root development. TRENDS IN PLANT SCIENCE 2022; 27:1266-1282. [PMID: 36057533 DOI: 10.1016/j.tplants.2022.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 07/26/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
A germinating seedling incorporates environmental signals such as light into developmental outputs. Light is not only a source of energy, but also a central coordinative signal in plants. Traditionally, most research focuses on aboveground organs' response to light; therefore, our understanding of photomorphogenesis in roots is relatively scarce. However, root development underground is highly responsive to light signals from the shoot and understanding these signaling mechanisms will give a better insight into early seedling development. Here, we review the central light signaling hubs and their role in root growth promotion of Arabidopsis thaliana seedlings.
Collapse
Affiliation(s)
- Cássia Fernanda Stafen
- PPGBM - Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - Jürgen Kleine-Vehn
- Institute of Biology II, Chair of Molecular Plant Physiology (MoPP), University of Freiburg, Freiburg, Germany; Center for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, 79104 Freiburg, Germany
| | - Felipe Dos Santos Maraschin
- PPGBM - Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil; Departamento de Botânica, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil.
| |
Collapse
|
9
|
Manna M, Rengasamy B, Ambasht NK, Sinha AK. Characterization and expression profiling of PIN auxin efflux transporters reveal their role in developmental and abiotic stress conditions in rice. FRONTIERS IN PLANT SCIENCE 2022; 13:1059559. [PMID: 36531415 PMCID: PMC9751476 DOI: 10.3389/fpls.2022.1059559] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/11/2022] [Indexed: 06/17/2023]
Abstract
The auxin efflux transporter proteins called PINs ferry auxin from its source to sinks in particular directions depending on their polar localizations in the plasma membrane, thus facilitating the development of the entire plant architecture. The rice genome has 12 PIN genes distributed over eight chromosomes. To study their roles in plant development, abiotic stress responsiveness, and shaping an auxin-dependent root architecture, a genome-wide analysis was carried out. Based on phylogeny, cellular localization, and hydrophilic loop domain size, the PINs were categorized into canonical and noncanonical PINs. PINs were found expressed in all of the organs of plants that emphasized their indispensable role throughout the plant's life cycle. We discovered that PIN5C and PIN9 were upregulated during salt and drought stress. We also found that regardless of its cellular level, auxin functioned as a molecular switch to turn on auxin biosynthesis genes. On the contrary, although PIN expression was upregulated upon initial treatment with auxin, prolonged auxin treatment not only led to their downregulation but also led to the development of auxin-dependent altered root formation in rice. Our study paves the way for developing stress-tolerant rice and plants with a desirable root architecture by genetic engineering.
Collapse
Affiliation(s)
- Mrinalini Manna
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | | | | | - Alok Krishna Sinha
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
10
|
Osorio-Navarro C, Toledo J, Norambuena L. Sucrose targets clathrin-mediated endocytosis kinetics supporting cell elongation in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 13:987191. [PMID: 36330253 PMCID: PMC9623095 DOI: 10.3389/fpls.2022.987191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Sucrose is a central regulator of plant growth and development, coordinating cell division and cell elongation according to the energy status of plants. Sucrose is known to stimulate bulk endocytosis in cultured cells; however, its physiological role has not been described to date. Our work shows that sucrose supplementation induces root cell elongation and endocytosis. Sucrose targets clathrin-mediated endocytosis (CME) in epidermal cells. Its presence decreases the abundance of both the clathrin coating complex and phosphatidylinositol 4,5-biphosphate at the plasma membrane, while increasing clathrin complex abundance in intracellular spaces. Sucrose decreases the plasma membrane residence time of the clathrin complex, indicating that it controls the kinetics of endocytic vesicle formation and internalization. CME regulation by sucrose is inducible and reversible; this on/off mechanism reveals an endocytosis-mediated mechanism for sensing plant energy status and signaling root elongation. The sucrose monosaccharide fructose also induces CME, while glucose and mannitol have no effect, demonstrating the specificity of the process. Overall, our data show that sucrose can mediate CME, which demonstrates that sucrose signaling for plant growth and development is dependent on endomembrane trafficking.
Collapse
Affiliation(s)
- Claudio Osorio-Navarro
- Department of Biology, Facultad de Ciencias, Plant Molecular Biology Centre, Universidad de Chile, Santiago, Chile
| | - Jorge Toledo
- Red de Equipamiento Científico Avanzado (REDECA), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Lorena Norambuena
- Department of Biology, Facultad de Ciencias, Plant Molecular Biology Centre, Universidad de Chile, Santiago, Chile
| |
Collapse
|
11
|
Hamon‐Josse M, Villaécija‐Aguilar JA, Ljung K, Leyser O, Gutjahr C, Bennett T. KAI2 regulates seedling development by mediating light-induced remodelling of auxin transport. THE NEW PHYTOLOGIST 2022; 235:126-140. [PMID: 35313031 PMCID: PMC9320994 DOI: 10.1111/nph.18110] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/05/2022] [Indexed: 05/13/2023]
Abstract
Photomorphogenic remodelling of seedling growth is a key developmental transition in the plant life cycle. The α/β-hydrolase signalling protein KARRIKIN-INSENSITIVE2 (KAI2), a close homologue of the strigolactone receptor DWARF14 (D14), is involved in this process, but it is unclear how the effects of KAI2 on development are mediated. Here, using a combination of physiological, pharmacological, genetic and imaging approaches in Arabidopsis thaliana (Heynh.) we show that kai2 phenotypes arise because of a failure to downregulate auxin transport from the seedling shoot apex towards the root system, rather than a failure to respond to light per se. We demonstrate that KAI2 controls the light-induced remodelling of the PIN-mediated auxin transport system in seedlings, promoting a reduction in PIN7 abundance in older tissues, and an increase of PIN1/PIN2 abundance in the root meristem. We show that removing PIN3, PIN4 and PIN7 from kai2 mutants, or pharmacological inhibition of auxin transport and synthesis, is sufficient to suppress most kai2 seedling phenotypes. We conclude that KAI2 regulates seedling morphogenesis by its effects on the auxin transport system. We propose that KAI2 is not required for the light-mediated changes in PIN gene expression but is required for the appropriate changes in PIN protein abundance within cells.
Collapse
Affiliation(s)
- Maxime Hamon‐Josse
- School of BiologyFaculty of Biological SciencesUniversity of LeedsLeedsLS2 9JTUK
| | | | - Karin Ljung
- Department of Forest Genetics and Plant PhysiologyUmeå Plant Science CentreSwedish University of Agricultural SciencesSE‐901 83UmeåSweden
| | - Ottoline Leyser
- Sainsbury Laboratory Cambridge UniversityBateman StreetCambridgeCB2 1LRUK
| | - Caroline Gutjahr
- Plant GeneticsTUM School of Life SciencesTechnical University of Munich (TUM)Emil Ramann Str. 485354FreisingGermany
- GeneticsFaculty of BiologyLMU MunichGrosshaderner St. 482152MartinsriedGermany
| | - Tom Bennett
- School of BiologyFaculty of Biological SciencesUniversity of LeedsLeedsLS2 9JTUK
- Sainsbury Laboratory Cambridge UniversityBateman StreetCambridgeCB2 1LRUK
| |
Collapse
|
12
|
Chen P, Ge Y, Chen L, Yan F, Cai L, Zhao H, Lei D, Jiang J, Wang M, Tao Y. SAV4 is required for ethylene-induced root hair growth through stabilizing PIN2 auxin transporter in Arabidopsis. THE NEW PHYTOLOGIST 2022; 234:1735-1752. [PMID: 35274300 DOI: 10.1111/nph.18079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
Root hair development is regulated by hormonal and environmental cues, such as ethylene and low phosphate. Auxin efflux carrier PIN2 (PIN-FORMED 2) plays an important role in establishing a proper auxin gradient in root tips, which is required for root hair development. Ethylene promotes root hair development through increasing PIN2 abundance in root tips, which subsequently leads to enhanced expression of auxin reporter genes. However, how PIN2 is regulated remains obscure. Here, we report that Arabidopsis thaliana sav4 (shade avoidance 4) mutant exhibits defects in ethylene-induced root hair development and in establishing a proper auxin gradient in root tips. Ethylene treatment increased SAV4 abundance in root tips. SAV4 and PIN2 co-localize to the shootward plasma membrane (PM) of root tip epidermal cells. SAV4 directly interacts with the PIN2 hydrophilic region (PIN2HL) and regulates PIN2 abundance on the PM. Vacuolar degradation of PIN2 is suppressed by ethylene, which was weakened in sav4 mutant. Furthermore, SAV4 affects the formation of PIN2 clusters and its lateral diffusion on the PM. In summary, we identified SAV4 as a novel regulator of PIN2 that enhances PIN2 membrane clustering and stability through direct protein-protein interactions. Our study revealed a new layer of regulation on PIN2 dynamics.
Collapse
Affiliation(s)
- Peirui Chen
- School of Life Sciences, Xiamen Plant Genetics Key Laboratory and State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiang'an South Road, Xiamen, Fujian Province, 361102, China
| | - Yanhua Ge
- School of Life Sciences, Xiamen Plant Genetics Key Laboratory and State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiang'an South Road, Xiamen, Fujian Province, 361102, China
| | - Liying Chen
- School of Life Sciences, Xiamen Plant Genetics Key Laboratory and State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiang'an South Road, Xiamen, Fujian Province, 361102, China
| | - Fenglian Yan
- School of Life Sciences, Xiamen Plant Genetics Key Laboratory and State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiang'an South Road, Xiamen, Fujian Province, 361102, China
| | - Lingling Cai
- School of Life Sciences, Xiamen Plant Genetics Key Laboratory and State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiang'an South Road, Xiamen, Fujian Province, 361102, China
| | - Hongli Zhao
- School of Life Sciences, Xiamen Plant Genetics Key Laboratory and State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiang'an South Road, Xiamen, Fujian Province, 361102, China
| | - Deshun Lei
- School of Life Sciences, Xiamen Plant Genetics Key Laboratory and State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiang'an South Road, Xiamen, Fujian Province, 361102, China
| | - Jinxi Jiang
- School of Life Sciences, Xiamen Plant Genetics Key Laboratory and State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiang'an South Road, Xiamen, Fujian Province, 361102, China
| | - Meiling Wang
- School of Life Sciences, Xiamen Plant Genetics Key Laboratory and State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiang'an South Road, Xiamen, Fujian Province, 361102, China
| | - Yi Tao
- School of Life Sciences, Xiamen Plant Genetics Key Laboratory and State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiang'an South Road, Xiamen, Fujian Province, 361102, China
| |
Collapse
|
13
|
Abstract
Root system architecture is an important determinant of below-ground resource capture and hence overall plant fitness. The plant hormone auxin plays a central role in almost every facet of root development from the cellular to the whole-root-system level. Here, using Arabidopsis as a model, we review the multiple gene signaling networks regulated by auxin biosynthesis, conjugation, and transport that underpin primary and lateral root development. We describe the role of auxin in establishing the root apical meristem and discuss how the tight spatiotemporal regulation of auxin distribution controls transitions between cell division, cell growth, and differentiation. This includes the localized reestablishment of mitotic activity required to elaborate the root system via the production of lateral roots. We also summarize recent discoveries on the effects of auxin and auxin signaling and transport on the control of lateral root gravitropic setpoint angle (GSA), a critical determinant of the overall shape of the root system. Finally, we discuss how environmental conditions influence root developmental plasticity by modulation of auxin biosynthesis, transport, and the canonical auxin signaling pathway.
Collapse
Affiliation(s)
- Suruchi Roychoudhry
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Stefan Kepinski
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
14
|
Zeng Y, Schotte S, Trinh HK, Verstraeten I, Li J, Van de Velde E, Vanneste S, Geelen D. Genetic Dissection of Light-Regulated Adventitious Root Induction in Arabidopsis thaliana Hypocotyls. Int J Mol Sci 2022; 23:5301. [PMID: 35628112 PMCID: PMC9140560 DOI: 10.3390/ijms23105301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 01/27/2023] Open
Abstract
Photomorphogenic responses of etiolated seedlings include the inhibition of hypocotyl elongation and opening of the apical hook. In addition, dark-grown seedlings respond to light by the formation of adventitious roots (AR) on the hypocotyl. How light signaling controls adventitious rooting is less well understood. Hereto, we analyzed adventitious rooting under different light conditions in wild type and photomorphogenesis mutants in Arabidopsis thaliana. Etiolation was not essential for AR formation but raised the competence to form AR under white and blue light. The blue light receptors CRY1 and PHOT1/PHOT2 are key elements contributing to the induction of AR formation in response to light. Furthermore, etiolation-controlled competence for AR formation depended on the COP9 signalosome, E3 ubiquitin ligase CONSTITUTIVELY PHOTOMORPHOGENIC (COP1), the COP1 interacting SUPPRESSOR OF PHYA-105 (SPA) kinase family members (SPA1,2 and 3) and Phytochrome-Interacting Factors (PIF). In contrast, ELONGATED HYPOCOTYL5 (HY5), suppressed AR formation. These findings provide a genetic framework that explains the high and low AR competence of Arabidopsis thaliana hypocotyls that were treated with dark, and light, respectively. We propose that light-induced auxin signal dissipation generates a transient auxin maximum that explains AR induction by a dark to light switch.
Collapse
Affiliation(s)
- Yinwei Zeng
- Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (Y.Z.); (S.S.); (H.K.T.); (I.V.); (J.L.); (E.V.d.V.)
| | - Sebastien Schotte
- Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (Y.Z.); (S.S.); (H.K.T.); (I.V.); (J.L.); (E.V.d.V.)
| | - Hoang Khai Trinh
- Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (Y.Z.); (S.S.); (H.K.T.); (I.V.); (J.L.); (E.V.d.V.)
- Biotechnology Research and Development Institute, Can Tho University, Can Tho City 900000, Vietnam
| | - Inge Verstraeten
- Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (Y.Z.); (S.S.); (H.K.T.); (I.V.); (J.L.); (E.V.d.V.)
| | - Jing Li
- Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (Y.Z.); (S.S.); (H.K.T.); (I.V.); (J.L.); (E.V.d.V.)
| | - Ellen Van de Velde
- Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (Y.Z.); (S.S.); (H.K.T.); (I.V.); (J.L.); (E.V.d.V.)
| | - Steffen Vanneste
- Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (Y.Z.); (S.S.); (H.K.T.); (I.V.); (J.L.); (E.V.d.V.)
- Department of Plant Biotechnology and Bioinformatics, Faculty of Sciences, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant SystemsBiology, VIB, Technologiepark 71, 9052 Ghent, Belgium
- Lab of Plant Growth Analysis, Ghent University Global Campus, Incheon 21985, Korea
| | - Danny Geelen
- Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (Y.Z.); (S.S.); (H.K.T.); (I.V.); (J.L.); (E.V.d.V.)
| |
Collapse
|
15
|
Sharma M, Sharma M, Jamsheer K M, Laxmi A. Jasmonic acid coordinates with light, glucose and auxin signalling in regulating branching angle of Arabidopsis lateral roots. PLANT, CELL & ENVIRONMENT 2022; 45:1554-1572. [PMID: 35147228 DOI: 10.1111/pce.14290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 06/14/2023]
Abstract
The role of jasmonates (JAs) in primary root growth and development and in plant response to external stimuli is already known. However, its role in lateral root (LR) development remains to be explored. Our work identified methyl jasmonate (MeJA) as a key phytohormone in determining the branching angle of Arabidopsis LRs. MeJA inclines the LRs to a more vertical orientation, which was dependent on the canonical JAR1-COI1-MYC2,3,4 signalling. Our work also highlights the dual roles of light in governing LR angle. Light signalling enhances JA biosynthesis, leading to erect root architecture; whereas, glucose (Glc) induces wider branching angles. Combining physiological and molecular assays, we revealed that Glc antagonises the MeJA response via TARGET OF RAPAMYCIN (TOR) signalling. Moreover, physiological assays using auxin mutants, MYC2-mediated transcriptional activation of LAZY2, LAZY4 and auxin biosynthetic gene CYP79B2, and asymmetric distribution of DR5::GFP and PIN2::GFP pinpointed the role of an intact auxin machinery required by MeJA for vertical growth of LRs. We also demonstrated that light perception and signalling are indispensable for inducing vertical angles by MeJA. Thus, our investigation highlights antagonism between light and Glc signalling and how they interact with JA-auxin signals to optimise the branching angle of LRs.
Collapse
Affiliation(s)
- Manvi Sharma
- National Institute of Plant Genome Research, New Delhi, India
| | - Mohan Sharma
- National Institute of Plant Genome Research, New Delhi, India
| | | | - Ashverya Laxmi
- National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
16
|
Lacek J, García-González J, Weckwerth W, Retzer K. Lessons Learned from the Studies of Roots Shaded from Direct Root Illumination. Int J Mol Sci 2021; 22:12784. [PMID: 34884591 PMCID: PMC8657594 DOI: 10.3390/ijms222312784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022] Open
Abstract
The root is the below-ground organ of a plant, and it has evolved multiple signaling pathways that allow adaptation of architecture, growth rate, and direction to an ever-changing environment. Roots grow along the gravitropic vector towards beneficial areas in the soil to provide the plant with proper nutrients to ensure its survival and productivity. In addition, roots have developed escape mechanisms to avoid adverse environments, which include direct illumination. Standard laboratory growth conditions for basic research of plant development and stress adaptation include growing seedlings in Petri dishes on medium with roots exposed to light. Several studies have shown that direct illumination of roots alters their morphology, cellular and biochemical responses, which results in reduced nutrient uptake and adaptability upon additive stress stimuli. In this review, we summarize recent methods that allow the study of shaded roots under controlled laboratory conditions and discuss the observed changes in the results depending on the root illumination status.
Collapse
Affiliation(s)
- Jozef Lacek
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Prague, Czech Republic; (J.L.); (J.G.-G.)
- Department of Experimental Plant Biology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Judith García-González
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Prague, Czech Republic; (J.L.); (J.G.-G.)
- Department of Experimental Plant Biology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Wolfram Weckwerth
- Department of Functional and Evolutionary Ecology, Molecular Systems Biology (MoSys), Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030 Wien, Austria;
- Vienna Metabolomics Center (VIME), University of Vienna, Djerassiplatz 1, 1030 Wien, Austria
| | - Katarzyna Retzer
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Prague, Czech Republic; (J.L.); (J.G.-G.)
| |
Collapse
|
17
|
García-González J, Lacek J, Weckwerth W, Retzer K. Exogenous carbon source supplementation counteracts root and hypocotyl growth limitations under increased cotyledon shading, with glucose and sucrose differentially modulating growth curves. PLANT SIGNALING & BEHAVIOR 2021; 16:1969818. [PMID: 34429034 PMCID: PMC8526039 DOI: 10.1080/15592324.2021.1969818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
Plant growth is continuously modulated by endogenous and exogenous stimuli. By no means the only, but well described, signaling molecules produced in plants and distributed through the plant body to orchestrate efficient growth are photosynthates. Light is a potent exogenous stimulus that determines, first, the rate of photosynthesis, but also the rate of plant growth. Root meristem activity is reduced with direct illumination but enhanced with increased sugar levels. With reduced cotyledon illumination, the seedling increases hypocotyl elongation until adequate light exposure is again provided. If endogenous carbon sources are limited, this leads to a temporary inhibition of root growth. Experimental growth conditions include exogenous supplementation of sucrose or glucose in addition to culturing seedlings under light exposure in Petri dishes. We compared total root length and hypocotyl elongation of Arabidopsis thaliana wild type Col-0 in response to illumination status and carbon source in the growth medium. Overall, sucrose supplementation promoted hypocotyl and root length to a greater extent than glucose supplementation. Glucose promoted root length compared to non-supplemented seedlings especially when cotyledon illumination was greatly reduced.
Collapse
Affiliation(s)
- Judith García-González
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jozef Lacek
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czech Republic
| | - Wolfram Weckwerth
- Molecular Systems Biology (Mosys), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria
| | - Katarzyna Retzer
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
18
|
Zhang L, Ma J, Liu H, Yi Q, Wang Y, Xing J, Zhang P, Ji S, Li M, Li J, Shen J, Lin J. SNARE proteins VAMP721 and VAMP722 mediate the post-Golgi trafficking required for auxin-mediated development in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:426-440. [PMID: 34343378 DOI: 10.1111/tpj.15450] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/27/2021] [Indexed: 05/27/2023]
Abstract
The plant hormone auxin controls many aspects of plant development. Membrane trafficking processes, such as secretion, endocytosis and recycling, regulate the polar localization of auxin transporters in order to establish an auxin concentration gradient. Here, we investigate the function of the Arabidopsis thaliana R-SNAREs VESICLE-ASSOCIATED MEMBRANE PROTEIN 721 (VAMP721) and VAMP722 in the post-Golgi trafficking required for proper auxin distribution and seedling growth. We show that multiple growth phenotypes, such as cotyledon development, vein patterning and lateral root growth, were defective in the double homozygous vamp721 vamp722 mutant. Abnormal auxin distribution and root patterning were also observed in the mutant seedlings. Fluorescence imaging revealed that three auxin transporters, PIN-FORMED 1 (PIN1), PIN2 and AUXIN RESISTANT 1 (AUX1), aberrantly accumulate within the cytoplasm of the double mutant, impairing the polar localization at the plasma membrane (PM). Analysis of intracellular trafficking demonstrated the involvement of VAMP721 and VAMP722 in the endocytosis of FM4-64 and the secretion and recycling of the PIN2 transporter protein to the PM, but not its trafficking to the vacuole. Furthermore, vamp721 vamp722 mutant roots display enlarged trans-Golgi network (TGN) structures, as indicated by the subcellular localization of a variety of marker proteins and the ultrastructure observed using transmission electron microscopy. Thus, our results suggest that the R-SNAREs VAMP721 and VAMP722 mediate the post-Golgi trafficking of auxin transporters to the PM from the TGN subdomains, substantially contributing to plant growth.
Collapse
Affiliation(s)
- Liang Zhang
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Jingwen Ma
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Huan Liu
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Qian Yi
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Yanan Wang
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Jingjing Xing
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, 457001, China
| | - Peipei Zhang
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Shengdong Ji
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Mingjun Li
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Jingyuan Li
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Jinbo Shen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Jinxing Lin
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
19
|
Narasimhan M, Gallei M, Tan S, Johnson A, Verstraeten I, Li L, Rodriguez L, Han H, Himschoot E, Wang R, Vanneste S, Sánchez-Simarro J, Aniento F, Adamowski M, Friml J. Systematic analysis of specific and nonspecific auxin effects on endocytosis and trafficking. PLANT PHYSIOLOGY 2021; 186:1122-1142. [PMID: 33734402 PMCID: PMC8195513 DOI: 10.1093/plphys/kiab134] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 01/23/2021] [Indexed: 05/08/2023]
Abstract
The phytohormone auxin and its directional transport through tissues are intensively studied. However, a mechanistic understanding of auxin-mediated feedback on endocytosis and polar distribution of PIN auxin transporters remains limited due to contradictory observations and interpretations. Here, we used state-of-the-art methods to reexamine the auxin effects on PIN endocytic trafficking. We used high auxin concentrations or longer treatments versus lower concentrations and shorter treatments of natural indole-3-acetic acid (IAA) and synthetic naphthalene acetic acid (NAA) auxins to distinguish between specific and nonspecific effects. Longer treatments of both auxins interfere with Brefeldin A-mediated intracellular PIN2 accumulation and also with general aggregation of endomembrane compartments. NAA treatment decreased the internalization of the endocytic tracer dye, FM4-64; however, NAA treatment also affected the number, distribution, and compartment identity of the early endosome/trans-Golgi network, rendering the FM4-64 endocytic assays at high NAA concentrations unreliable. To circumvent these nonspecific effects of NAA and IAA affecting the endomembrane system, we opted for alternative approaches visualizing the endocytic events directly at the plasma membrane (PM). Using total internal reflection fluorescence microscopy, we saw no significant effects of IAA or NAA treatments on the incidence and dynamics of clathrin foci, implying that these treatments do not affect the overall endocytosis rate. However, both NAA and IAA at low concentrations rapidly and specifically promoted endocytosis of photo-converted PIN2 from the PM. These analyses identify a specific effect of NAA and IAA on PIN2 endocytosis, thus, contributing to its polarity maintenance and furthermore illustrate that high auxin levels have nonspecific effects on trafficking and endomembrane compartments.
Collapse
Affiliation(s)
| | - Michelle Gallei
- Institute of Science and Technology (IST), Klosterneuburg 3400, Austria
| | - Shutang Tan
- Institute of Science and Technology (IST), Klosterneuburg 3400, Austria
| | - Alexander Johnson
- Institute of Science and Technology (IST), Klosterneuburg 3400, Austria
| | - Inge Verstraeten
- Institute of Science and Technology (IST), Klosterneuburg 3400, Austria
| | - Lanxin Li
- Institute of Science and Technology (IST), Klosterneuburg 3400, Austria
| | - Lesia Rodriguez
- Institute of Science and Technology (IST), Klosterneuburg 3400, Austria
| | - Huibin Han
- Institute of Science and Technology (IST), Klosterneuburg 3400, Austria
| | - Ellie Himschoot
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | - Ren Wang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | - Steffen Vanneste
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Judit Sánchez-Simarro
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universitat de Valencia, 46100 Burjassot, Spain
| | - Fernando Aniento
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universitat de Valencia, 46100 Burjassot, Spain
| | - Maciek Adamowski
- Institute of Science and Technology (IST), Klosterneuburg 3400, Austria
| | - Jiří Friml
- Institute of Science and Technology (IST), Klosterneuburg 3400, Austria
| |
Collapse
|
20
|
Konstantinova N, Korbei B, Luschnig C. Auxin and Root Gravitropism: Addressing Basic Cellular Processes by Exploiting a Defined Growth Response. Int J Mol Sci 2021; 22:2749. [PMID: 33803128 PMCID: PMC7963156 DOI: 10.3390/ijms22052749] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/04/2021] [Accepted: 03/06/2021] [Indexed: 12/14/2022] Open
Abstract
Root architecture and growth are decisive for crop performance and yield, and thus a highly topical research field in plant sciences. The root system of the model plant Arabidopsis thaliana is the ideal system to obtain insights into fundamental key parameters and molecular players involved in underlying regulatory circuits of root growth, particularly in responses to environmental stimuli. Root gravitropism, directional growth along the gravity, in particular represents a highly sensitive readout, suitable to study adjustments in polar auxin transport and to identify molecular determinants involved. This review strives to summarize and give an overview into the function of PIN-FORMED auxin transport proteins, emphasizing on their sorting and polarity control. As there already is an abundance of information, the focus lies in integrating this wealth of information on mechanisms and pathways. This overview of a highly dynamic and complex field highlights recent developments in understanding the role of auxin in higher plants. Specifically, it exemplifies, how analysis of a single, defined growth response contributes to our understanding of basic cellular processes in general.
Collapse
Affiliation(s)
| | | | - Christian Luschnig
- Department of Applied Genetics and Cell Biology, Institute of Molecular Plant Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Wien, Austria; (N.K.); (B.K.)
| |
Collapse
|
21
|
García-González J, Lacek J, Retzer K. Dissecting Hierarchies between Light, Sugar and Auxin Action Underpinning Root and Root Hair Growth. PLANTS (BASEL, SWITZERLAND) 2021; 10:111. [PMID: 33430437 PMCID: PMC7826589 DOI: 10.3390/plants10010111] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/01/2021] [Accepted: 01/05/2021] [Indexed: 11/16/2022]
Abstract
Plant roots are very plastic and can adjust their tissue organization and cell appearance during abiotic stress responses. Previous studies showed that direct root illumination and sugar supplementation mask root growth phenotypes and traits. Sugar and light signaling where further connected to changes in auxin biosynthesis and distribution along the root. Auxin signaling underpins almost all processes involved in the establishment of root traits, including total root length, gravitropic growth, root hair initiation and elongation. Root hair plasticity allows maximized nutrient uptake and therefore plant productivity, and root hair priming and elongation require proper auxin availability. In the presence of sucrose in the growth medium, root hair emergence is partially rescued, but the full potential of root hair elongation is lost. With our work we describe a combinatory study showing to which extent light and sucrose are antagonistically influencing root length, but additively affecting root hair emergence and elongation. Furthermore, we investigated the impact of the loss of PIN-FORMED2, an auxin efflux carrier mediating shootward auxin transporter, on the establishment of root traits in combination with all growth conditions.
Collapse
Affiliation(s)
- Judith García-González
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Prague, Czech Republic; (J.G.-G.); (J.L.)
- Department of Experimental Plant Biology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Jozef Lacek
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Prague, Czech Republic; (J.G.-G.); (J.L.)
| | - Katarzyna Retzer
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Prague, Czech Republic; (J.G.-G.); (J.L.)
| |
Collapse
|
22
|
Miotto YE, da Costa CT, Offringa R, Kleine-Vehn J, Maraschin FDS. Effects of Light Intensity on Root Development in a D-Root Growth System. FRONTIERS IN PLANT SCIENCE 2021; 12:778382. [PMID: 34975962 PMCID: PMC8715079 DOI: 10.3389/fpls.2021.778382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/08/2021] [Indexed: 05/10/2023]
Abstract
Plant development is highly affected by light quality, direction, and intensity. Under natural growth conditions, shoots are directly exposed to light whereas roots develop underground shielded from direct illumination. The photomorphogenic development strongly represses shoot elongation whereas promotes root growth. Over the years, several studies helped the elucidation of signaling elements that coordinate light perception and underlying developmental outputs. Light exposure of the shoots has diverse effects on main root growth and lateral root (LR) formation. In this study, we evaluated the phenotypic root responses of wild-type Arabidopsis plants, as well as several mutants, grown in a D-Root system. We observed that sucrose and light act synergistically to promote root growth and that sucrose alone cannot overcome the light requirement for root growth. We also have shown that roots respond to the light intensity applied to the shoot by changes in primary and LR development. Loss-of-function mutants for several root light-response genes display varying phenotypes according to the light intensity to which shoots are exposed. Low light intensity strongly impaired LR development for most genotypes. Only vid-27 and pils4 mutants showed higher LR density at 40 μmol m-2 s-1 than at 80 μmol m-2 s-1 whereas yuc3 and shy2-2 presented no LR development in any light condition, reinforcing the importance of auxin signaling in light-dependent root development. Our results support the use of D-Root systems to avoid the effects of direct root illumination that might lead to artifacts and unnatural phenotypic outputs.
Collapse
Affiliation(s)
- Yohanna Evelyn Miotto
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Cibele Tesser da Costa
- Departamento de Botânica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Remko Offringa
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Jürgen Kleine-Vehn
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
- Department of Molecular Plant Physiology, Institute of Biology, University of Freiburg, Freiburg, Germany
- Center for Integrative Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Felipe dos Santos Maraschin
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Departamento de Botânica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- *Correspondence: Felipe dos Santos Maraschin,
| |
Collapse
|
23
|
Halat L, Gyte K, Wasteneys G. The Microtubule-Associated Protein CLASP Is Translationally Regulated in Light-Dependent Root Apical Meristem Growth. PLANT PHYSIOLOGY 2020; 184:2154-2167. [PMID: 33023938 PMCID: PMC7723079 DOI: 10.1104/pp.20.00474] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 09/30/2020] [Indexed: 05/23/2023]
Abstract
The ability for plant growth to be optimized, either in the light or dark, depends on the intricate balance between cell division and differentiation in specialized regions called meristems. When Arabidopsis (Arabidopsis thaliana) seedlings are grown in the dark, hypocotyl elongation is promoted, whereas root growth is greatly reduced as a result of changes in hormone transport and a reduction in meristematic cell proliferation. Previous work showed that the microtubule-associated protein CLASP sustains root apical meristem size by influencing microtubule organization and by modulating the brassinosteroid signaling pathway. Here, we investigated whether CLASP is involved in light-dependent root growth promotion, since dark-grown seedlings have reduced root apical meristem activity, as observed in the clasp-1 null mutant. We showed that CLASP protein levels were greatly reduced in the root tips of dark-grown seedlings, which could be reversed by exposing plants to light. We confirmed that removing seedlings from the light led to a discernible shift in microtubule organization from bundled arrays, which are prominent in dividing cells, to transverse orientations typically observed in cells that have exited the meristem. Brassinosteroid receptors and auxin transporters, both of which are sustained by CLASP, were largely degraded in the dark. Interestingly, we found that despite the lack of protein, CLASP transcript levels were higher in dark-grown root tips. Together, these findings uncover a mechanism that sustains meristem homeostasis through CLASP, and they advance our understanding of how roots modulate their growth according to the amount of light and nutrients perceived by the plant.
Collapse
Affiliation(s)
- Laryssa Halat
- Department of Botany, The University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Katherine Gyte
- Department of Botany, The University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Geoffrey Wasteneys
- Department of Botany, The University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| |
Collapse
|
24
|
Li Y, Yuan W, Li L, Miao R, Dai H, Zhang J, Xu W. Light-Dark Modulates Root Hydrotropism Associated with Gravitropism by Involving Amyloplast Response in Arabidopsis. Cell Rep 2020; 32:108198. [PMID: 32997985 DOI: 10.1016/j.celrep.2020.108198] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/28/2020] [Accepted: 09/03/2020] [Indexed: 12/13/2022] Open
Abstract
The role of amyloplasts in the interactions between hydrotropism and gravitropism has been previously described. However, the effect of light-dark on the interactions between the two tropisms remains unclear. Here, by developing a method that makes it possible to mimic natural conditions more closely than the conventional lab conditions, we show that hydrotropism is higher in wild-type Arabidopsis seedlings whose shoots are illuminated but whose roots are grown in the dark compared with seedlings that are fully exposed to light. Root gravitropism is substantially decreased because of the reduction of amyloplast content in the root tip with decreased gene expression in PGM1 (a key starch biosynthesis gene), which may contribute to enhanced root hydrotropism under darkness. Furthermore, the starch-deficient mutant pgm1-1 exhibits greater hydrotropism compared with wild-type. Our results suggest that amyloplast response and starch reduction occur under light-dark modulation, followed by decreased gravitropism and enhanced hydrotropism in Arabidopsis root.
Collapse
Affiliation(s)
- Ying Li
- Center for Plant Water-Use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop and College of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China
| | - Wei Yuan
- Center for Plant Water-Use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop and College of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China
| | - Luocheng Li
- Center for Plant Water-Use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop and College of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China
| | - Rui Miao
- Center for Plant Water-Use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop and College of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China
| | - Hui Dai
- Center for Plant Water-Use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop and College of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Weifeng Xu
- Center for Plant Water-Use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop and College of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China.
| |
Collapse
|
25
|
Endosidin 2 accelerates PIN2 endocytosis and disturbs intracellular trafficking of PIN2, PIN3, and PIN4 but not of SYT1. PLoS One 2020; 15:e0237448. [PMID: 32790800 PMCID: PMC7425933 DOI: 10.1371/journal.pone.0237448] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 07/27/2020] [Indexed: 11/29/2022] Open
Abstract
We established that Endosidin2 (ES2) affected the trafficking routes of both newly synthesized and endocytic pools of PIN-FORMED2 (PIN2) in Arabidopsis root epidermal cells. PIN2 populations accumulated in separated patches, which gradually merged into large and compact ES2 aggregates (ES2As). FM4-64 endocytic tracer labeled ES2As as well. Both PIN2 pools also appeared in vacuoles. Accelerated endocytosis of PIN2, its aggregation in the cytoplasm, and redirection of PIN2 flows to vacuoles led to a substantial reduction of the abundance of this protein in the plasma membrane. Whereas PIN-FORMED3 and PIN-FORMED4 also aggregated in the cytoplasm, SYT1 was not sensitive to ES2 treatment and did not appear either in the cytoplasmic aggregates or vacuoles. Ultrastructural analysis revealed that ES2 affects the Golgi apparatus so that stacks acquired cup-shape and even circular shape surrounded by several vesicles. Abnormally shaped Golgi stacks, stack remnants, multi-lamellar structures, separated Golgi cisterna rings, tubular structures, and vesicles formed discrete clusters.
Collapse
|
26
|
Ashraf MA, Umetsu K, Ponomarenko O, Saito M, Aslam M, Antipova O, Dolgova N, Kiani CD, Nehzati S, Tanoi K, Minegishi K, Nagatsu K, Kamiya T, Fujiwara T, Luschnig C, Tanino K, Pickering I, George GN, Rahman A. PIN FORMED 2 Modulates the Transport of Arsenite in Arabidopsis thaliana. PLANT COMMUNICATIONS 2020; 1:100009. [PMID: 33404549 PMCID: PMC7747963 DOI: 10.1016/j.xplc.2019.100009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 10/15/2019] [Accepted: 11/18/2019] [Indexed: 05/23/2023]
Abstract
Arsenic contamination is a major environmental issue, as it may lead to serious health hazard. The reduced trivalent form of inorganic arsenic, arsenite, is in general more toxic to plants compared with the fully oxidized pentavalent arsenate. The uptake of arsenite in plants has been shown to be mediated through a large subfamily of plant aquaglyceroporins, nodulin 26-like intrinsic proteins (NIPs). However, the efflux mechanisms, as well as the mechanism of arsenite-induced root growth inhibition, remain poorly understood. Using molecular physiology, synchrotron imaging, and root transport assay approaches, we show that the cellular transport of trivalent arsenicals in Arabidopsis thaliana is strongly modulated by PIN FORMED 2 (PIN2) auxin efflux transporter. Root transport assay using radioactive arsenite, X-ray fluorescence imaging (XFI) coupled with X-ray absorption spectroscopy (XAS), and inductively coupled plasma mass spectrometry analysis revealed that pin2 plants accumulate higher concentrations of arsenite in roots compared with the wild-type. At the cellular level, arsenite specifically targets intracellular sorting of PIN2 and thereby alters the cellular auxin homeostasis. Consistently, loss of PIN2 function results in arsenite hypersensitivity in roots. XFI coupled with XAS further revealed that loss of PIN2 function results in specific accumulation of arsenical species, but not the other metals such as iron, zinc, or calcium in the root tip. Collectively, these results suggest that PIN2 likely functions as an arsenite efflux transporter for the distribution of arsenical species in planta.
Collapse
Affiliation(s)
- Mohammad Arif Ashraf
- United Graduate School of Agricultural Sciences, Iwate University, Morioka, Iwate, Japan
| | - Kana Umetsu
- Department of Plant Bio Sciences, Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan
| | - Olena Ponomarenko
- Molecular and Environmental Science Research Group, Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Michiko Saito
- Department of Plant Bio Sciences, Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan
| | - Mohammad Aslam
- Department of Plant Bio Sciences, Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan
| | - Olga Antipova
- Argonne National Lab, Advanced Photon Source, XSD-MIC, Lemont, IL, USA
| | - Natalia Dolgova
- Molecular and Environmental Science Research Group, Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Cheyenne D. Kiani
- Molecular and Environmental Science Research Group, Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Susan Nehzati
- Molecular and Environmental Science Research Group, Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Keitaro Tanoi
- Isotope Facility for Agricultural Education and Research, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Katsuyuki Minegishi
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Inage, Chiba, Japan
| | - Kotaro Nagatsu
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Inage, Chiba, Japan
| | - Takehiro Kamiya
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Toru Fujiwara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Christian Luschnig
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1180 Wien, Austria
| | - Karen Tanino
- Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ingrid Pickering
- Molecular and Environmental Science Research Group, Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Graham N. George
- Molecular and Environmental Science Research Group, Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Abidur Rahman
- United Graduate School of Agricultural Sciences, Iwate University, Morioka, Iwate, Japan
- Department of Plant Bio Sciences, Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan
- Agri-Innovation Center, Iwate University, Morioka, Iwate, Japan
| |
Collapse
|
27
|
García-González J, Kebrlová Š, Semerák M, Lacek J, Kotannal Baby I, Petrášek J, Schwarzerová K. Arp2/3 Complex Is Required for Auxin-Driven Cell Expansion Through Regulation of Auxin Transporter Homeostasis. FRONTIERS IN PLANT SCIENCE 2020; 11:486. [PMID: 32425966 PMCID: PMC7212389 DOI: 10.3389/fpls.2020.00486] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/31/2020] [Indexed: 05/29/2023]
Abstract
The Arp2/3 complex is an actin nucleator shown to be required throughout plant morphogenesis, contributing to processes such as cell expansion, tissue differentiation or cell wall assembly. A recent publication demonstrated that plants lacking functional Arp2/3 complex also present defects in auxin distribution and transport. This work shows that Arp2/3 complex subunits are predominantly expressed in the provasculature, although other plant tissues also show promoter activity (e.g., cotyledons, apical meristems, or root tip). Moreover, auxin can trigger subunit expression, indicating a role of this phytohormone in mediating the complex activity. Further investigation of the functional interaction between Arp2/3 complex and auxin signaling also reveals their cooperation in determining pavement cell shape, presumably through the role of Arp2/3 complex in the correct auxin carrier trafficking. Young seedlings of arpc5 mutants show increased auxin-triggered proteasomal degradation of DII-VENUS and altered PIN3 distribution, with higher levels of the protein in the vacuole. Closer observation of vacuolar morphology revealed the presence of a more fragmented vacuolar compartment when Arp2/3 function is abolished, hinting a generalized role of Arp2/3 complex in endomembrane function and protein trafficking.
Collapse
Affiliation(s)
- Judith García-González
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Štépánka Kebrlová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Matěj Semerák
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Jozef Lacek
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
- Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
| | - Innu Kotannal Baby
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Jan Petrášek
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Kateřina Schwarzerová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
28
|
González-García MP, Bustillo-Avendaño E, Sanchez-Corrionero A, del Pozo JC, Moreno-Risueno MA. Fluorescence-Activated Cell Sorting Using the D-Root Device and Optimization for Scarce and/or Non-Accessible Root Cell Populations. PLANTS 2020; 9:plants9040499. [PMID: 32295129 PMCID: PMC7238278 DOI: 10.3390/plants9040499] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/11/2020] [Indexed: 01/18/2023]
Abstract
Fluorescence-activated cell sorting (FACS) is a technique used to isolate specific cell populations based on characteristics detected by flow cytometry. FACS has been broadly used in transcriptomic analyses of individual cell types during development or under different environmental conditions. Different protoplast extraction protocols are available for plant roots; however, they were designed for accessible cell populations, which normally were grown in the presence of light, a non-natural and stressful environment for roots. Here, we report a protocol using FACS to isolate root protoplasts from Arabidopsis green fluorescent protein (GFP)-marked lines using the minimum number of enzymes necessary for an optimal yield, and with the root system grown in darkness in the D-Root device. This device mimics natural conditions as the shoot grows in the presence of light while the roots grow in darkness. In addition, we optimized this protocol for specific patterns of scarce cell types inside more differentiated tissues using the mCherry fluorescent protein. We provide detailed experimental protocols for effective protoplasting, subsequent purification through FACS, and RNA extraction. Using this RNA, we generated cDNA and sequencing libraries, proving that our methods can be used for genome-wide transcriptomic analyses of any cell-type from roots grown in darkness.
Collapse
|
29
|
Lin D, Yao H, Jia L, Tan J, Xu Z, Zheng W, Xue H. Phospholipase D-derived phosphatidic acid promotes root hair development under phosphorus deficiency by suppressing vacuolar degradation of PIN-FORMED2. THE NEW PHYTOLOGIST 2020; 226:142-155. [PMID: 31745997 PMCID: PMC7065129 DOI: 10.1111/nph.16330] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 11/10/2019] [Indexed: 05/03/2023]
Abstract
Root hair development is crucial for phosphate absorption, but how phosphorus deficiency affects root hair initiation and elongation remains unclear. We demonstrated the roles of auxin efflux carrier PIN-FORMED2 (PIN2) and phospholipase D (PLD)-derived phosphatidic acid (PA), a key signaling molecule, in promoting root hair development in Arabidopsis thaliana under a low phosphate (LP) condition. Root hair elongation under LP conditions was greatly suppressed in pin2 mutant or under treatment with a PLDζ2-specific inhibitor, revealing that PIN2 and polar auxin transport and PLDζ2-PA are crucial in LP responses. PIN2 was accumulated and degraded in the vacuole under a normal phosphate (NP) condition, whereas its vacuolar accumulation was suppressed under the LP or NP plus PA conditions. Vacuolar accumulation of PIN2 was increased in pldζ2 mutants under LP conditions. Increased or decreased PIN2 vacuolar accumulation is not observed in sorting nexin1 (snx1) mutant, indicating that vacuolar accumulation of PIN2 is mediated by SNX1 and the relevant trafficking process. PA binds to SNX1 and promotes its accumulation at the plasma membrane, especially under LP conditions, and hence promotes root hair development by suppressing the vacuolar degradation of PIN2. We uncovered a link between PLD-derived PA and SNX1-dependent vacuolar degradation of PIN2 in regulating root hair development under phosphorus deficiency.
Collapse
Affiliation(s)
- De‐Li Lin
- Collaborative Innovation Center of Henan Grain Crops/State Key Laboratory of Wheat and Maize Crop ScienceCollege of Life SciencesHenan Agricultural University450002ZhengzhouChina
| | - Hong‐Yan Yao
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese academy of Sciences200032ShanghaiChina
| | - Li‐Hua Jia
- Collaborative Innovation Center of Henan Grain Crops/State Key Laboratory of Wheat and Maize Crop ScienceCollege of Life SciencesHenan Agricultural University450002ZhengzhouChina
| | - Jin‐Fang Tan
- College of Resource and EnvironmentHenan Agricultural University450002ZhengzhouChina
| | - Zhi‐Hong Xu
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese academy of Sciences200032ShanghaiChina
| | - Wen‐Ming Zheng
- Collaborative Innovation Center of Henan Grain Crops/State Key Laboratory of Wheat and Maize Crop ScienceCollege of Life SciencesHenan Agricultural University450002ZhengzhouChina
| | - Hong‐Wei Xue
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese academy of Sciences200032ShanghaiChina
- Joint Center for Single Cell BiologySchool of Agriculture and BiologyShanghai Jiao Tong University200240ShanghaiChina
| |
Collapse
|
30
|
Jiang YT, Tang RJ, Zhang YJ, Xue HW, Ferjani A, Luan S, Lin WH. Two tonoplast proton pumps function in Arabidopsis embryo development. THE NEW PHYTOLOGIST 2020; 225:1606-1617. [PMID: 31569267 DOI: 10.1111/nph.16231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/22/2019] [Indexed: 06/10/2023]
Abstract
Two types of tonoplast proton pumps, H+ -pyrophosphatase (V-PPase) and the H+ -ATPase (V-ATPase), establish the proton gradient that powers molecular traffic across the tonoplast thereby facilitating turgor regulation and nutrient homeostasis. However, how proton pumps regulate development remains unclear. In this study, we investigated the function of two types of proton pumps in Arabidopsis embryo development and pattern formation. While disruption of either V-PPase or V-ATPase had no obvious effect on plant embryo development, knocking out both resulted in severe defects in embryo pattern formation from the early stage. While the first division in wild-type zygote was asymmetrical, a nearly symmetrical division occurred in the mutant, followed by abnormal pattern formation at all stages of embryo development. The embryonic defects were accompanied by dramatic differences in vacuole morphology and distribution, as well as disturbed localisation of PIN1. The development of mutant cotyledons and root, and the auxin response of mutant seedlings supported the hypothesis that mutants lacking tonoplast proton pumps were defective in auxin transport and distribution. Taking together, we proposed that two tonoplast proton pumps are required for vacuole morphology and PIN1 localisation, thereby controlling vacuole and auxin-related developmental processes in Arabidopsis embryos and seedlings.
Collapse
Affiliation(s)
- Yu-Tong Jiang
- School of Life Sciences and Biotechnology, The Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Ren-Jie Tang
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Yan-Jie Zhang
- School of Life Sciences and Biotechnology, The Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Hong-Wei Xue
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Ali Ferjani
- Department of Biology, Tokyo Gakugei University, 184-8501, Koganei-shi, Japan
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Wen-Hui Lin
- School of Life Sciences and Biotechnology, The Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, 200240, Shanghai, China
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| |
Collapse
|
31
|
Huang JB, Zou Y, Zhang X, Wang M, Dong Q, Tao LZ. RIBOSE PHOSPHATE ISOMERSASE 1 Influences Root Development by Acting on Cell Wall Biosynthesis, Actin Organization, and Auxin Transport in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2020; 10:1641. [PMID: 31969892 PMCID: PMC6960261 DOI: 10.3389/fpls.2019.01641] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/21/2019] [Indexed: 05/29/2023]
Abstract
Cell wall biosynthesis plays essential roles in cell division and expansion and thus is fundamental to plant growth and development. In this work, we show that an Arabidopsis mutant dpr3, isolated by a forward genetic screen, displays embryo defects and short, swelling primary root with the failure of maintenance of root apical meristem reminiscent to several cell wall-deficient mutants. Map-based cloning identified dpr3 is a mutant allele of RIBOSE PHOSPHATE ISOMERSASE 1 (RPI1), an enzyme involved in cellulose synthesis. Cellulose content in the mutant was dramatically decreased. Moreover, dpr3 (rpi1 from hereon) caused aberrant auxin distribution, as well as defective accumulation of root master regulators PLETHORA (PLT1 and PLT2) and misexpression of auxin response factor 5 (MONOPTEROS, MP). The abnormal auxin distribution is likely due to the reduced accumulation of auxin efflux transporters PIN-FORMED (PIN1 and PIN3). Surprisingly, we found that the orientation of actin microfilaments was severely altered in rpi1 root cells, whereas the cortical microtubules stay normal. Our study provides evidence that the defects in cellulose synthesis in rpi1 affect polar auxin transport possibly connected with altered F-actin organization, which is critically important for vesicle trafficking, thus exerting effects on auxin distribution, signaling, and auxin-mediated plant development.
Collapse
Affiliation(s)
- Jia-Bao Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
| | - Yi Zou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Xiaojing Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Mingyan Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Qingkun Dong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Li-Zhen Tao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| |
Collapse
|
32
|
Miotto YE, Tesser da Costa C, de Oliveira BH, Guzman F, Margis R, de Almeida RMC, Offringa R, Dos Santos Maraschin F. Identification of root transcriptional responses to shoot illumination in Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2019; 101:487-498. [PMID: 31560104 DOI: 10.1007/s11103-019-00918-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 09/21/2019] [Indexed: 05/25/2023]
Abstract
The transcriptional profile of roots is highly affected by shoot illumination. Transcriptogram analysis allows the identification of cellular processes that are not detected by DESeq. Light is a key environmental factor regulating plant growth and development. Arabidopsis thaliana seedlings grown under light display a photomorphogenic development pattern, showing short hypocotyl and long roots. On the other hand, when grown in darkness, they display skotomorphogenic development, with long hypocotyls and short roots. Although many signals from shoots might be important for triggering root growth, the early transcriptional responses that stimulate primary root elongation are still unknown. Here, we aimed to investigate which genes are involved in the early photomorphogenic root development of dark grown roots. We found that 1616 genes 4 days after germination (days-old), and 3920 genes 7 days-old were differently expressed in roots when the shoot was exposed to light. Of these genes, 979 were up regulated in 4 days and 2784 at 7 days-old. We compared the functional categorization of differentially regulated processes by two methods: GO term enrichment and transcriptogram analysis. Expression analysis of nine selected candidate genes in roots confirmed the data observed in the RNA-seq analysis. Loss-of-function mutants of these selected differentially expressed genes suggest the involvement of these genes in root development in response to shoot illumination. Our findings are consistent with the observation that dark grown roots respond to the shoot-perceived aboveground light environment.
Collapse
Affiliation(s)
- Yohanna Evelyn Miotto
- PPGBM - Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - Cibele Tesser da Costa
- PPGBM - Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
- PPGBOT - Programa de Pós-Graduação em Botânica, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - Ben Hur de Oliveira
- PPGBCM - Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - Frank Guzman
- PPGBCM - Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - Rogério Margis
- PPGBCM - Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - Rita Maria Cunha de Almeida
- Instituto de Física and Instituto Nacional de Ciência e Tecnologia: Sistemas Complexos, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Pós Graduação em Bioinformática, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Remko Offringa
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Felipe Dos Santos Maraschin
- PPGBM - Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil.
- PPGBOT - Programa de Pós-Graduação em Botânica, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil.
- Departamento de Botânica, Universidade Federal do Rio Grande do Sul - UFRGS, Av. Bento Gonçalves 9500, Prédio 43.423, sala 216, Porto Alegre, RS, CEP 91501-970, Brazil.
| |
Collapse
|
33
|
Vandenbrink JP, Herranz R, Poehlman WL, Alex Feltus F, Villacampa A, Ciska M, Javier Medina F, Kiss JZ. RNA-seq analyses of Arabidopsis thaliana seedlings after exposure to blue-light phototropic stimuli in microgravity. AMERICAN JOURNAL OF BOTANY 2019; 106:1466-1476. [PMID: 31709515 DOI: 10.1002/ajb2.1384] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 09/17/2019] [Indexed: 05/04/2023]
Abstract
PREMISE Plants synthesize information from multiple environmental stimuli when determining their direction of growth. Gravity, being ubiquitous on Earth, plays a major role in determining the direction of growth and overall architecture of the plant. Here, we utilized the microgravity environment on board the International Space Station (ISS) to identify genes involved influencing growth and development of phototropically stimulated seedlings of Arabidopsis thaliana. METHODS Seedlings were grown on the ISS, and RNA was extracted from 7 samples (pools of 10-15 plants) grown in microgravity (μg) or Earth gravity conditions (1-g). Transcriptomic analyses via RNA sequencing (RNA-seq) of differential gene expression was performed using the HISAT2-Stringtie-DESeq2 RNASeq pipeline. Differentially expressed genes were further characterized by using Pathway Analysis and enrichment for Gene Ontology classifications. RESULTS For 296 genes that were found significantly differentially expressed between plants in microgravity compared to 1-g controls, Pathway Analysis identified eight molecular pathways that were significantly affected by reduced gravity conditions. Specifically, light-associated pathways (e.g., photosynthesis-antenna proteins, photosynthesis, porphyrin, and chlorophyll metabolism) were significantly downregulated in microgravity. CONCLUSIONS Gene expression in A. thaliana seedlings grown in microgravity was significantly altered compared to that of the 1-g control. Understanding how plants grow in conditions of microgravity not only aids in our understanding of how plants grow and respond to the environment but will also help to efficiently grow plants during long-range space missions.
Collapse
Affiliation(s)
- Joshua P Vandenbrink
- School of Biological Sciences, Louisiana Tech University, Ruston, LA, 71272, USA
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, 27402, USA
| | - Raul Herranz
- Centro de Investigaciones Biológicas (CSIC), Madrid, E28040, Spain
| | - William L Poehlman
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, 29634, USA
| | - F Alex Feltus
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, 29634, USA
| | | | - Malgorzata Ciska
- Centro de Investigaciones Biológicas (CSIC), Madrid, E28040, Spain
| | - F Javier Medina
- Centro de Investigaciones Biológicas (CSIC), Madrid, E28040, Spain
| | - John Z Kiss
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, 27402, USA
| |
Collapse
|
34
|
Zhang X, Cui Y, Yu M, Su B, Gong W, Baluška F, Komis G, Šamaj J, Shan X, Lin J. Phosphorylation-Mediated Dynamics of Nitrate Transceptor NRT1.1 Regulate Auxin Flux and Nitrate Signaling in Lateral Root Growth. PLANT PHYSIOLOGY 2019; 181:480-498. [PMID: 31431511 PMCID: PMC6776865 DOI: 10.1104/pp.19.00346] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 08/09/2019] [Indexed: 05/22/2023]
Abstract
The dual-affinity nitrate transceptor NITRATE TRANSPORTER1.1 (NRT1.1) has two modes of transport and signaling, governed by Thr-101 (T101) phosphorylation. NRT1.1 regulates lateral root (LR) development by modulating nitrate-dependent basipetal auxin export and nitrate-mediated signal transduction. Here, using the Arabidopsis (Arabidopsis thaliana) NRT1.1T101D phosphomimetic and NRT1.1T101A nonphosphorylatable mutants, we found that the phosphorylation state of NRT1.1 plays a key role in NRT1.1 function during LR development. Single-particle tracking revealed that phosphorylation affected NRT1.1 spatiotemporal dynamics. The phosphomimetic NRT1.1T101D form showed fast lateral mobility and membrane partitioning that facilitated auxin flux under low-nitrate conditions. By contrast, nonphosphorylatable NRT1.1T101A showed low lateral mobility and oligomerized at the plasma membrane (PM), where it induced endocytosis via the clathrin-mediated endocytosis and microdomain-mediated endocytosis pathways under high-nitrate conditions. These behaviors promoted LR development by suppressing NRT1.1-controlled auxin transport on the PM and stimulating Ca2+-ARABIDOPSIS NITRATE REGULATED1 signaling from the endosome.
Collapse
Affiliation(s)
- Xi Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 10083, China
- College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing 10083, China
| | - Yaning Cui
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 10083, China
- College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing 10083, China
| | - Meng Yu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 10083, China
- College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing 10083, China
| | - Bodan Su
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 10083, China
- College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing 10083, China
| | - Wei Gong
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 10083, China
- College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing 10083, China
| | - František Baluška
- Institute of Cellular and Molecular Botany, University of Bonn, Bonn, D-53115, Germany
| | - George Komis
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc 78301, Czech Republic
| | - Jozef Šamaj
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc 78301, Czech Republic
| | - Xiaoyi Shan
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 10083, China
- College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing 10083, China
| | - Jinxing Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 10083, China
- College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing 10083, China
| |
Collapse
|
35
|
Zou M, Ren H, Li J. An Auxin Transport Inhibitor Targets Villin-Mediated Actin Dynamics to Regulate Polar Auxin Transport. PLANT PHYSIOLOGY 2019; 181:161-178. [PMID: 31311831 PMCID: PMC6716258 DOI: 10.1104/pp.19.00064] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 06/25/2019] [Indexed: 05/14/2023]
Abstract
Auxin transport inhibitors are essential tools for understanding auxin-dependent plant development. One mode of inhibition affects actin dynamics; however, the underlying mechanisms remain unclear. In this study, we characterized the action of 2,3,5-triiodobenzoic acid (TIBA) on actin dynamics in greater mechanistic detail. By surveying mutants for candidate actin-binding proteins with reduced TIBA sensitivity, we determined that Arabidopsis (Arabidopsis thaliana) villins contribute to TIBA action. By directly interacting with the C-terminal headpiece domain of villins, TIBA causes villin to oligomerize, driving excessive bundling of actin filaments. The resulting changes in actin dynamics impair auxin transport by disrupting the trafficking of PIN-FORMED auxin efflux carriers and reducing their levels at the plasma membrane. Collectively, our study provides mechanistic insight into the link between the actin cytoskeleton, vesicle trafficking, and auxin transport.
Collapse
Affiliation(s)
- Minxia Zou
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Science, Beijing Normal University, Beijing 100875, China
| | - Haiyun Ren
- Key Laboratory of Cell Proliferation and Regulation of Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, China
| | - Jiejie Li
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Science, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
36
|
Santos Teixeira JA, Ten Tusscher KH. The Systems Biology of Lateral Root Formation: Connecting the Dots. MOLECULAR PLANT 2019; 12:784-803. [PMID: 30953788 DOI: 10.1016/j.molp.2019.03.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 03/20/2019] [Accepted: 03/26/2019] [Indexed: 05/29/2023]
Abstract
The root system is a major determinant of a plant's access to water and nutrients. The architecture of the root system to a large extent depends on the repeated formation of new lateral roots. In this review, we discuss lateral root development from a systems biology perspective. We focus on studies combining experiments with computational modeling that have advanced our understanding of how the auxin-centered regulatory modules involved in different stages of lateral root development exert their specific functions. Moreover, we discuss how these regulatory networks may enable robust transitions from one developmental stage to the next, a subject that thus far has received limited attention. In addition, we analyze how environmental factors impinge on these modules, and the different manners in which these environmental signals are being integrated to enable coordinated developmental decision making. Finally, we provide some suggestions for extending current models of lateral root development to incorporate multiple processes and stages. Only through more comprehensive models we can fully elucidate the cooperative effects of multiple processes on later root formation, and how one stage drives the transition to the next.
Collapse
Affiliation(s)
- J A Santos Teixeira
- Computational Developmental Biology Group, Department of Biology, Utrecht University, Utrecht, the Netherlands
| | - K H Ten Tusscher
- Computational Developmental Biology Group, Department of Biology, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
37
|
Sakaguchi J, Matsushita T, Watanabe Y. DWARF4 accumulation in root tips is enhanced via blue light perception by cryptochromes. PLANT, CELL & ENVIRONMENT 2019; 42:1615-1629. [PMID: 30620085 DOI: 10.1111/pce.13510] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 09/20/2018] [Accepted: 12/12/2018] [Indexed: 05/20/2023]
Abstract
Brassinosteroid (BR) signalling is known to be coordinated with light signalling in above ground tissue. Many studies focusing on the shade avoidance response in above ground tissue or hypocotyl elongation in darkness have revealed the contribution of the BR signalling pathway to these processes. We previously analysed the expression of DWARF 4 (DWF4), a key BR biosynthesis enzyme, and revealed that light perception in above ground tissues triggered DWF4 accumulation in root tips. To determine the required wavelength of light and photoreceptors responsible for this regulation, we studied DWF4-GUS marker plants grown in several monochromatic light conditions. We revealed that monochromatic blue LED light could induce DWF4 accumulation in primary root tips and root growth as much as white light, whereas monochromatic red LED could not. Consistent with this, a cryptochrome1/2 double mutant showed retarded root growth under white light whereas a phytochromeA/B double mutant did not. Taken together, our data strongly indicated that blue light signalling was important for DWF4 accumulation in root tips and root growth. Furthermore, DWF4 accumulation patterns in primary root tips were not altered by auxin or sugar treatment. Therefore, we hypothesize that blue light signalling from the shoot tissue is different from auxin and sugar signalling.
Collapse
Affiliation(s)
- Jun Sakaguchi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan
| | | | - Yuichiro Watanabe
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan
| |
Collapse
|
38
|
Oliveira PMR, Rodrigues MA, Gonçalves AZ, Kerbauy GB. Exposure of Catasetum fimbriatum aerial roots to light coordinates carbon partitioning between source and sink organs in an auxin dependent manner. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 135:341-347. [PMID: 30605871 DOI: 10.1016/j.plaphy.2018.12.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 12/21/2018] [Accepted: 12/21/2018] [Indexed: 06/09/2023]
Abstract
Light energy is essential for carbon metabolism in plants, as well as controlling the transport of metabolites between the organs. While terrestrial plants have a distinct structural and functional separation between the light exposed aerial parts and the non-exposed roots, epiphytic plants, such as orchids, have shoots and roots simultaneously fully exposed to light. The roots of orchids differ mainly from non-orchidaceous plants in their ability to photosynthesize. Since the roots of Catasetum fimbriatum can synthesize auxin which is acropetally transported to the shoot region, we decided to investigate whether: (1) light treatment of C. fimbriatum roots raises the auxin levels in the plant; and (2) distinct auxin concentrations can change the source-sink relationships, altering the amounts of sugars and organic acids in leaves, pseudobulbs and roots. Among the organs studied, the roots accumulated the highest concentrations of indole-3-acetic-acid (IAA); and when roots were exposed to light, IAA accumulated in the leaves. However, when polar auxin transport (PAT) was blocked with N-(1-Naphthyl)phthalamic acid (NPA) treatment, a significant accumulation of sugars and organic acids occurred in the pseudobulbs and leaves, respectively, suggesting that auxin flux from roots to shoots was involved in carbon partitioning of the aerial organs. Considering that C. fimbriatum plants lose all their leaves seasonally, it is possible the roots are a substituting influence on the growth and development of this orchid during its leafless period.
Collapse
Affiliation(s)
| | - Maria Aurineide Rodrigues
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-900, São Paulo, SP, Brazil
| | - Ana Zangirolame Gonçalves
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-900, São Paulo, SP, Brazil
| | - Gilberto Barbante Kerbauy
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-900, São Paulo, SP, Brazil
| |
Collapse
|
39
|
Zwiewka M, Bielach A, Tamizhselvan P, Madhavan S, Ryad EE, Tan S, Hrtyan MN, Dobrev P, Vankovï R, Friml J, Tognetti VB. Root Adaptation to H2O2-Induced Oxidative Stress by ARF-GEF BEN1- and Cytoskeleton-Mediated PIN2 Trafficking. PLANT & CELL PHYSIOLOGY 2019; 60:255-273. [PMID: 30668780 DOI: 10.1093/pcp/pcz001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 01/03/2019] [Indexed: 05/12/2023]
Abstract
Abiotic stress poses constant challenges for plant survival and is a serious problem for global agricultural productivity. On a molecular level, stress conditions result in elevation of reactive oxygen species (ROS) production causing oxidative stress associated with oxidation of proteins and nucleic acids as well as impairment of membrane functions. Adaptation of root growth to ROS accumulation is facilitated through modification of auxin and cytokinin hormone homeostasis. Here, we report that in Arabidopsis root meristem, ROS-induced changes of auxin levels correspond to decreased abundance of PIN auxin efflux carriers at the plasma membrane (PM). Specifically, increase in H2O2 levels affects PIN2 endocytic recycling. We show that the PIN2 intracellular trafficking during adaptation to oxidative stress requires the function of the ADP-ribosylation factor (ARF)-guanine-nucleotide exchange factor (GEF) BEN1, an actin-associated regulator of the trafficking from the PM to early endosomes and, presumably, indirectly, trafficking to the vacuoles. We propose that H2O2 levels affect the actin dynamics thus modulating ARF-GEF-dependent trafficking of PIN2. This mechanism provides a way how root growth acclimates to stress and adapts to a changing environment.
Collapse
Affiliation(s)
- Marta Zwiewka
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno, Czech Republic
| | - Agnieszka Bielach
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno, Czech Republic
| | - Prashanth Tamizhselvan
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno, Czech Republic
| | - Sharmila Madhavan
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno, Czech Republic
| | - Eman Elrefaay Ryad
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno, Czech Republic
| | - Shutang Tan
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno, Czech Republic
| | - Mï Nika Hrtyan
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno, Czech Republic
| | - Petre Dobrev
- Institute of Experimental Botany Czech Acad. Sci, Laboratory of Hormonal Regulations in Plants, Rozvojov� 263, Prague 6, Czech Republic
| | - Radomira Vankovï
- Institute of Experimental Botany Czech Acad. Sci, Laboratory of Hormonal Regulations in Plants, Rozvojov� 263, Prague 6, Czech Republic
| | - Jiřï Friml
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Vanesa B Tognetti
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno, Czech Republic
| |
Collapse
|
40
|
Zhang Y, Wang C, Xu H, Shi X, Zhen W, Hu Z, Huang J, Zheng Y, Huang P, Zhang KX, Xiao X, Hao X, Wang X, Zhou C, Wang G, Li C, Zheng L. HY5 Contributes to Light-Regulated Root System Architecture Under a Root-Covered Culture System. FRONTIERS IN PLANT SCIENCE 2019; 10:1490. [PMID: 31850011 PMCID: PMC6892842 DOI: 10.3389/fpls.2019.01490] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 10/28/2019] [Indexed: 05/05/2023]
Abstract
Light is essential for plant organogenesis and development. Light-regulated shoot morphogenesis has been extensively studied; however, the mechanisms by which plant roots perceive and respond to aboveground light are largely unknown, particularly because the roots of most terrestrial plants are usually located underground in darkness. To mimic natural root growth conditions, we developed a root-covered system (RCS) in which the shoots were illuminated and the plant roots could be either exposed to light or cultivated in darkness. Using the RCS, we observed that root growth of wild-type plants was significantly promoted when the roots were in darkness, whereas it was inhibited by direct light exposure. This growth change seems to be regulated by ELONGATED HYPOCOTYL 5 (HY5), a master regulator of photomorphogenesis. Light was found to regulate HY5 expression in the roots, while a HY5 deficiency partially abolished the inhibition of growth in roots directly exposed to light, suggesting that HY5 expression is induced by direct light exposure and inhibits root growth. However, no differences in HY5 expression were observed between illuminated and dark-grown cop1 roots, indicating that HY5 may be regulated by COP1-mediated proteasome degradation. We confirmed the crucial role of HY5 in regulating root development in response to light under soil-grown conditions. A transcriptomic analysis revealed that light controls the expression of numerous genes involved in phytohormone signaling, stress adaptation, and metabolic processes in a HY5-dependent manner. In combination with the results of the flavonol quantification and exogenous quercetin application, these findings suggested that HY5 regulates the root response to light through a complex network that integrates flavonol biosynthesis and reactive oxygen species signaling. Collectively, our results indicate that HY5 is a master regulator of root photomorphogenesis.
Collapse
Affiliation(s)
- Yonghong Zhang
- Laboratory of Medicinal Plant, Institute of Basic Medical Sciences, School of Basic Medicine, Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Chunfei Wang
- Center for Multi-omics Research, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Hui Xu
- Center for Multi-omics Research, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xiong Shi
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Weibo Zhen
- Center for Multi-omics Research, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Zhubing Hu
- Center for Multi-omics Research, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Ji Huang
- Department of Biological Science, Florida State University, Tallahassee, FL, United States
| | - Yan Zheng
- Laboratory of Medicinal Plant, Institute of Basic Medical Sciences, School of Basic Medicine, Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Ping Huang
- Laboratory of Medicinal Plant, Institute of Basic Medical Sciences, School of Basic Medicine, Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Kun-Xiao Zhang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Xiao Xiao
- Laboratory of Medicinal Plant, Institute of Basic Medical Sciences, School of Basic Medicine, Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Xincai Hao
- Laboratory of Medicinal Plant, Institute of Basic Medical Sciences, School of Basic Medicine, Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Xuanbin Wang
- Laboratory of Medicinal Plant, Institute of Basic Medical Sciences, School of Basic Medicine, Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Chao Zhou
- Key Laboratory of Three Gorges Regional Plant Genetics & Germplasm Enhancement (CTGU)/Biotechnology Research Center, China Three Gorges University, Yichang, China
| | - Guodong Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
- *Correspondence: Guodong Wang, ; Chen Li, ; Lanlan Zheng,
| | - Chen Li
- Laboratory of Medicinal Plant, Institute of Basic Medical Sciences, School of Basic Medicine, Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
- *Correspondence: Guodong Wang, ; Chen Li, ; Lanlan Zheng,
| | - Lanlan Zheng
- Laboratory of Medicinal Plant, Institute of Basic Medical Sciences, School of Basic Medicine, Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
- *Correspondence: Guodong Wang, ; Chen Li, ; Lanlan Zheng,
| |
Collapse
|
41
|
Inahashi H, Shelley IJ, Yamauchi T, Nishiuchi S, Takahashi-Nosaka M, Matsunami M, Ogawa A, Noda Y, Inukai Y. OsPIN2, which encodes a member of the auxin efflux carrier proteins, is involved in root elongation growth and lateral root formation patterns via the regulation of auxin distribution in rice. PHYSIOLOGIA PLANTARUM 2018; 164:216-225. [PMID: 29446441 DOI: 10.1111/ppl.12707] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 05/07/2023]
Abstract
Auxin flow is important for different root developmental processes such as root formation, emergence, elongation and gravitropism. However, the detailed information about the mechanisms regulating the auxin flow is less well understood in rice. We characterized the auxin transport-related mutants, Ospin-formed2-1 (Ospin2-1) and Ospin2-2, which exhibited curly root phenotypes and altered lateral root formation patterns in rice. The OsPIN2 gene encodes a member of the auxin efflux carrier proteins that possibly regulates the basipetal auxin flow from the root tip toward the root elongation zone. According to DR5-driven GUS expression, there is an asymmetric auxin distribution in the mutants that corresponded with the asymmetric cell elongation pattern in the mutant root tip. Auxin transport inhibitor, N-1-naphthylphthalamic acid and Ospin2-1 Osiaa13 double mutant rescued the curly root phenotype indicating that this phenotype results from a defect in proper auxin distribution. The typical curly root phenotype was not observed when Ospin2-1 was grown in distilled water as an alternative to tap water, although higher auxin levels were found at the root tip region of the mutant than that of the wild-type. Therefore, the lateral root formation zone in the mutant was shifted basipetally compared with the wild-type. These results reflect that an altered auxin flow in the root tip region is responsible for root elongation growth and lateral root formation patterns in rice.
Collapse
Affiliation(s)
- Hiroki Inahashi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Israt J Shelley
- International Cooperation Center for Agricultural Education, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Takaki Yamauchi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Shunsaku Nishiuchi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Misuzu Takahashi-Nosaka
- International Cooperation Center for Agricultural Education, Nagoya University, Nagoya, Aichi, 464-8601, Japan
- National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | - Maya Matsunami
- Faculty of Agriculture, Iwate University, Morioka, Iwate, 020-8550, Japan
| | - Atsushi Ogawa
- Department of Biological Production, Akita Prefectural University, Akita, Akita, 010-0146, Japan
| | - Yusaku Noda
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Yoshiaki Inukai
- International Cooperation Center for Agricultural Education, Nagoya University, Nagoya, Aichi, 464-8601, Japan
- PRESTO, JST, Kawaguchi, Saitama, 332-0012, Japan
| |
Collapse
|
42
|
Valbuena MA, Manzano A, Vandenbrink JP, Pereda-Loth V, Carnero-Diaz E, Edelmann RE, Kiss JZ, Herranz R, Medina FJ. The combined effects of real or simulated microgravity and red-light photoactivation on plant root meristematic cells. PLANTA 2018; 248:691-704. [PMID: 29948124 DOI: 10.1007/s00425-018-2930-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/29/2018] [Indexed: 05/04/2023]
Abstract
Red light is able to compensate for deleterious effects of microgravity on root cell growth and proliferation. Partial gravity combined with red light produces differential signals during the early plant development. Light and gravity are environmental cues used by plants throughout evolution to guide their development. We have investigated the cross-talk between phototropism and gravitropism under altered gravity in space. The focus was on the effects on the meristematic balance between cell growth and proliferation, which is disrupted under microgravity in the dark. In our spaceflight experiments, seedlings of three Arabidopsis thaliana genotypes, namely the wild type and mutants of phytochrome A and B, were grown for 6 days, including red-light photoactivation for the last 2 days. Apart from the microgravity and the 1g on-board control conditions, fractional gravity (nominally 0.1g, 0.3g, and 0.5g) was created with on-board centrifuges. In addition, a simulated microgravity (random positioning machine, RPM) experiment was performed on ground, including both dark-grown and photostimulated samples. Photoactivated samples in spaceflight and RPM experiments showed an increase in the root length consistent with phototropic response to red light, but, as gravity increased, a gradual decrease in this response was observed. Uncoupling of cell growth and proliferation was detected under microgravity in darkness by transcriptomic and microscopic methods, but red-light photoactivation produced a significant reversion. In contrast, the combination of red light and partial gravity produced small but consistent variations in the molecular markers of cell growth and proliferation, suggesting an antagonistic effect between light and gravity signals at the early plant development. Understanding these parameters of plant growth and development in microgravity will be important as bioregenerative life support systems for the colonization of the Moon and Mars.
Collapse
Affiliation(s)
- Miguel A Valbuena
- Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu, 9, 28040, Madrid, Spain
- Institut Systématique, Evolution, Biodiversité (ISYEB), Museum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE.57 rue Cuvier CP39, 75005, Paris, France
| | - Aránzazu Manzano
- Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu, 9, 28040, Madrid, Spain
| | - Joshua P Vandenbrink
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, 27402, USA
| | - Veronica Pereda-Loth
- Faculté de Médécine Rangeuil, Université de Toulouse III UPS, GSBMS-AMIS, Toulouse, France
| | - Eugénie Carnero-Diaz
- Institut Systématique, Evolution, Biodiversité (ISYEB), Museum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE.57 rue Cuvier CP39, 75005, Paris, France
| | | | - John Z Kiss
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, 27402, USA
| | - Raúl Herranz
- Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu, 9, 28040, Madrid, Spain.
| | - F Javier Medina
- Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu, 9, 28040, Madrid, Spain.
| |
Collapse
|
43
|
van Gelderen K, Kang C, Pierik R. Light Signaling, Root Development, and Plasticity. PLANT PHYSIOLOGY 2018; 176:1049-1060. [PMID: 28939624 PMCID: PMC5813542 DOI: 10.1104/pp.17.01079] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/19/2017] [Indexed: 05/20/2023]
Abstract
Light signaling can affect root development and plasticity, either directly or through shoot-root communication via sugars, hormones, light, or other mobile factors.
Collapse
Affiliation(s)
| | - Chiakai Kang
- Plant Ecophysiology, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Ronald Pierik
- Plant Ecophysiology, Utrecht University, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
44
|
SlPIN1 regulates auxin efflux to affect flower abscission process. Sci Rep 2017; 7:14919. [PMID: 29097804 PMCID: PMC5668252 DOI: 10.1038/s41598-017-15072-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 10/19/2017] [Indexed: 11/11/2022] Open
Abstract
Solanum lycopersicum PIN-FORMED1 (SlPIN1), a major auxin efflux facilitator, contributes to the establishment of auxin maxima during organ initiation and development in tomato. However, the functions of SlPIN1 during organ abscission remain unclear. In our study, SlPIN1 expression decreased immediately after flower removal and increased following IAA treatment, indicating a high sensitivity to auxin depletion. 1-MCP (an ethylene inhibitor) delayed abscission and down-regulated SlPIN1, indicating that ethylene may positively regulate SlPIN1 and that low expression levels of SlPIN1 may delay abscission. The SlPIN1 protein levels were not consistent with the expression pattern, implying that in addition to transcription, protein degradation also affects SlPIN1 levels during abscission. The phosphorylation of SlPIN1 at Ser418, which significantly declined during abscission, was found to play roles in SlPIN1 localization and auxin transport. We also identified the interaction proteins of SlPIN1, which were involved in phosphorylation and ubiquitylation. Therefore, complex mechanisms mediate SlPIN1 auxin transport capability during abscission. The silencing of SlPIN1 expression accelerated abscission by increasing auxin accumulation in the ovary and decreasing the auxin content in the abscission zone (AZ), indicating that SlPIN1 plays a major role in mediating auxin source-sink transport and the establishment and maintenance of auxin maxima in the AZ.
Collapse
|
45
|
|
46
|
Yu M, Liu H, Dong Z, Xiao J, Su B, Fan L, Komis G, Šamaj J, Lin J, Li R. The dynamics and endocytosis of Flot1 protein in response to flg22 in Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2017; 215:73-84. [PMID: 28582732 DOI: 10.1016/j.jplph.2017.05.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 05/16/2017] [Accepted: 05/16/2017] [Indexed: 05/14/2023]
Abstract
Membrane microdomains play vital roles in the process of bacterial infection. The membrane microdomain-associated protein Flot1 acts in an endocytic pathway and is required for seedling development, however, whether Flot1 is a part of host defense mechanisms remains unknown. During an analysis of callose deposition, we found that Flot1 amiRNAi mutants exhibited defects in response to flg22. Using variable-angle total internal reflection fluorescence microscopy (VA-TIRFM), structured illumination microscopy (SIM) and fluorescence cross spectroscopy (FCS), we determined that the dynamic behavior of GFP-Flot1 in Arabidopsis thaliana cotyledon epidermal cells changed significantly in plants treated with the elicitor flg22. Moreover, we found that Flot1 was constitutively recycled via an endocytic pathway and that flg22 could promote endocytosis. Importantly, targeting of Flot1 to the late endosome/vacuole for degradation increased in response to flg22 treatment; immunoblot analysis showed that when triggered by flg22, GFP-Flot1 was gradually degraded in a time-dependent manner. Taken together, these findings support the hypothesis that the changing of dynamics and oligomeric states can promote the endocytosis and degradation of Flot1 under flg22 treatment in plant cells.
Collapse
Affiliation(s)
- Meng Yu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Haijiao Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Ziyi Dong
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Jianwei Xiao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Bodan Su
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Lusheng Fan
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - George Komis
- Centre of the Region Hana for Biotechnological and Agricultural Research, Faculty of Science, Palacky University, 78301, Olomouc, Czech Republic
| | - Jozef Šamaj
- Centre of the Region Hana for Biotechnological and Agricultural Research, Faculty of Science, Palacky University, 78301, Olomouc, Czech Republic
| | - Jinxing Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Ruili Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
47
|
Zhang Y, Li C, Zhang J, Wang J, Yang J, Lv Y, Yang N, Liu J, Wang X, Palfalvi G, Wang G, Zheng L. Dissection of HY5/HYH expression in Arabidopsis reveals a root-autonomous HY5-mediated photomorphogenic pathway. PLoS One 2017; 12:e0180449. [PMID: 28683099 PMCID: PMC5500333 DOI: 10.1371/journal.pone.0180449] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 06/15/2017] [Indexed: 12/30/2022] Open
Abstract
ELONGATED HYPOCOTYL 5 (HY5), a member of the bZIP gene family, is a positive regulator of the light signaling pathway in Arabidopsis thaliana. Whereas the hy5 mutant exhibits an elongated hypocotyl when grown in the light, the hy5 homolog (hyh) mutant does not. Although the functions of HY5 and HYH in light-mediated seedling development have been revealed, the tissue-specific expression patterns of HY5 and HYH and their interconnected regulation are largely unknown. Here, we report that HY5 regulates HYH expression in roots and contributes to root growth under different light conditions. We generated HY5 and HYH transcriptional and translational fusion reporter lines to investigate their expression patterns. HY5 was constitutively expressed in all root tissues, while HYH was predominantly expressed in root xylem cells. Root growth after a dark-to-light transition was perturbed in the hy5 and hy5hyh mutant lines, but not in the hyh mutant line, indicating that HY5 plays a major role in light-regulated root growth. Light-induced HY5/HYH expression occurred autonomously in roots. HYH expression in roots was decreased in the hy5 mutant, suggesting that HY5 regulates HYH expression. Collectively, these results indicate that an organ-specific HY5-mediated pathway controls root photomorphogenic development independently of light signaling in the shoot.
Collapse
Affiliation(s)
- Yonghong Zhang
- Laboratory of Medicinal Plant, School of Basic Medicine, Hubei University of Medicine, Shiyan, China
| | - Chen Li
- Laboratory of Medicinal Plant, School of Basic Medicine, Hubei University of Medicine, Shiyan, China
- Laboratory of Chinese Herbal Pharmacology, Oncology Center, Renmin Hospital, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| | - Jingxuan Zhang
- Laboratory of Medicinal Plant, School of Basic Medicine, Hubei University of Medicine, Shiyan, China
| | - Jiajing Wang
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Jingwei Yang
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yanxia Lv
- Laboratory of Medicinal Plant, School of Basic Medicine, Hubei University of Medicine, Shiyan, China
| | - Nian Yang
- Laboratory of Medicinal Plant, School of Basic Medicine, Hubei University of Medicine, Shiyan, China
- Laboratory of Chinese Herbal Pharmacology, Oncology Center, Renmin Hospital, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| | - Jianping Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong, China
| | - Xuanbin Wang
- Laboratory of Chinese Herbal Pharmacology, Oncology Center, Renmin Hospital, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| | - Gergo Palfalvi
- Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Guodong Wang
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
- * E-mail: (GW); (LZ)
| | - Lanlan Zheng
- Laboratory of Medicinal Plant, School of Basic Medicine, Hubei University of Medicine, Shiyan, China
- * E-mail: (GW); (LZ)
| |
Collapse
|
48
|
Abstract
The plant endomembrane system is an extensively connected functional unit for exchanging material between compartments. Secretory and endocytic pathways allow dynamic trafficking of proteins, lipids, and other molecules, regulating a myriad of biological processes. Chemical genetics-the use of compounds to perturb biological processes in a fast, tunable, and transient manner-provides elegant tools for investigating this system. Here, we review how chemical genetics has helped to elucidate different aspects of membrane trafficking. We discuss different strategies for uncovering the modes of action of such compounds and their use in unraveling membrane trafficking regulators. We also discuss how the bioactive chemicals that are currently used as probes to interrogate endomembrane trafficking were discovered and analyze the results regarding membrane trafficking and pathway crosstalk. The integration of different expertises and the rational implementation of chemical genetic strategies will improve the identification of molecular mechanisms that drive intracellular trafficking and our understanding of how trafficking interfaces with plant physiology and development.
Collapse
Affiliation(s)
- Lorena Norambuena
- Plant Molecular Biology Centre, Department of Biology, Faculty of Sciences, Universidad de Chile, 7800024 Santiago, Chile;
| | - Ricardo Tejos
- Plant Molecular Biology Centre, Department of Biology, Faculty of Sciences, Universidad de Chile, 7800024 Santiago, Chile;
- Facultad de Recursos Naturales Renovables, Universidad Arturo Prat, 111093 Iquique, Chile
| |
Collapse
|
49
|
Majidnia Z, Fulazzaky MA. Photocatalytic reduction of Cs(I) ions removed by combined maghemite-titania PVA-alginate beads from aqueous solution. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 191:219-227. [PMID: 28107756 DOI: 10.1016/j.jenvman.2017.01.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 01/04/2017] [Accepted: 01/10/2017] [Indexed: 06/06/2023]
Abstract
The presence of Cs(I) ions in nuclear wastewater becomes an important issue for the reason of its high toxicity. The development of adsorbent embedded metal-based catalysts that has sufficient adsorption capacity is expected for the removal of Cs(I) ions from contaminated water. This study tested the use of maghemite, titania and combined maghemite-titania polyvinyl alcohol (PVA)-alginate beads as an adsorbent to remove Cs(I) ions from aqueous solution with the variables of pH and initial concentration using batch experiments under sunlight. The results showed that the use of combined maghemite-titania PVA-alginate beads can have an efficiency of 93.1% better than the use of either maghemite PVA-alginate beads with an efficiency of 91.8% or titania PVA-alginate beads with an efficiency of 90.1%. The experimental data for adsorption of Cs(I) ions from aqueous solution with the initial concentrations of 50, 100 and 200 mg L-1 on the surface of combined maghemite-titania PVA-alginate beads were well fit by the pseudo-second-order and Langmuir models. The optimal adsorption of Cs(I) ions from aqueous solution by combined maghemite-titania PVA-alginate beads under sunlight occurs at pH 8 with an initial Cs(I) ion concentration of 50 mg L-1. The combined maghemite-titania PVA-alginate beads can be recycled at least five times with a slight loss of their original properties.
Collapse
Affiliation(s)
- Zohreh Majidnia
- Centre for Environmental Sustainability and Water Security, Research Institute for Sustainable Environment, Faculty of Civil Engineering, Universiti Teknologi Malaysia, UTM Skudai, 81310, Johor Bahru, Malaysia
| | - Mohamad Ali Fulazzaky
- Centre for Environmental Sustainability and Water Security, Research Institute for Sustainable Environment, Faculty of Civil Engineering, Universiti Teknologi Malaysia, UTM Skudai, 81310, Johor Bahru, Malaysia; Directorate General of Water Resources, Ministry of Public Works and Housing, Jalan Pattimura No. 20, Jakarta, 12110, Indonesia; Islamic Science Research Network, Muhammadiyah University of Hamka, Jalan Limau No. 2, Kabayoran Baru, Jakarta, 12130, Indonesia.
| |
Collapse
|
50
|
Pacurar DI, Pacurar ML, Lakehal A, Pacurar AM, Ranjan A, Bellini C. The Arabidopsis Cop9 signalosome subunit 4 (CNS4) is involved in adventitious root formation. Sci Rep 2017; 7:628. [PMID: 28377589 PMCID: PMC5429640 DOI: 10.1038/s41598-017-00744-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 03/14/2017] [Indexed: 11/09/2022] Open
Abstract
The COP9 signalosome (CSN) is an evolutionary conserved multiprotein complex that regulates many aspects of plant development by controlling the activity of CULLIN-RING E3 ubiquitin ligases (CRLs). CRLs ubiquitinate and target for proteasomal degradation a vast number of specific substrate proteins involved in many developmental and physiological processes, including light and hormone signaling and cell division. As a consequence of CSN pleiotropic function, complete loss of CSN activity results in seedling lethality. Therefore, a detailed analysis of CSN physiological functions in adult Arabidopsis plants has been hampered by the early seedling lethality of csn null mutants. Here we report the identification and characterization of a viable allele of the Arabidopsis COP9 signalosome subunit 4 (CSN4). The allele, designated csn4-2035, suppresses the adventitious root (AR) phenotype of the Arabidopsis superroot2-1 mutant, potentially by altering its auxin signaling. Furthermore, we show that although the csn4-2035 mutation affects primary and lateral root (LR) formation in the 2035 suppressor mutant, CSN4 and other subunits of the COP9 complex seem to differentially control AR and LR development.
Collapse
Affiliation(s)
- Daniel Ioan Pacurar
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-90187, Umeå, Sweden. .,SweTree Technologies AB, P.O. Box 4095, SE-904 03, Umeå, Sweden.
| | - Monica Lacramioara Pacurar
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-90187, Umeå, Sweden.,University of Agricultural Sciences and Veterinary Medicine, 400372, Cluj Napoca, Romania.,SweTree Technologies AB, P.O. Box 4095, SE-904 03, Umeå, Sweden
| | - Abdellah Lakehal
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-90187, Umeå, Sweden
| | - Andrea Mariana Pacurar
- University of Agricultural Sciences and Veterinary Medicine, 400372, Cluj Napoca, Romania
| | - Alok Ranjan
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-90187, Umeå, Sweden
| | - Catherine Bellini
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-90187, Umeå, Sweden. .,Institut National de la Research Agronomic, UMR1318 INRA-AgroParisTech, Institut Jean-Pierre Bourgin, Univ. Paris-Sud, F-78000, Versailles, France.
| |
Collapse
|