1
|
Yang G, Yue Z, Pan P, Li Y. In Memory of the Virologist Jianguo Wu, 1957-2022. Viruses 2023; 15:1754. [PMID: 37632095 PMCID: PMC10457867 DOI: 10.3390/v15081754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
It is with deep sorrow that we mourn the passing of the virologist Professor Jianguo Wu [...].
Collapse
Affiliation(s)
- Ge Yang
- Foshan Institute of Medical Microbiology, Foshan 528315, China
| | - Zhaoyang Yue
- Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China
- Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China
| | - Pan Pan
- Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China
- The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Yongkui Li
- Foshan Institute of Medical Microbiology, Foshan 528315, China
- Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China
- Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China
| |
Collapse
|
2
|
Aass KR, Tryggestad SS, Mjelle R, Kastnes MH, Nedal TMV, Misund K, Standal T. IL-32 is induced by activation of toll-like receptors in multiple myeloma cells. Front Immunol 2023; 14:1107844. [PMID: 36875074 PMCID: PMC9978100 DOI: 10.3389/fimmu.2023.1107844] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Multiple myeloma (MM) is a hematological cancer characterized by accumulation of malignant plasma cells in the bone marrow. The patients are immune suppressed and suffer from recurrent and chronic infections. Interleukin-32 is a non-conventional, pro-inflammatory cytokine expressed in a subgroup of MM patients with a poor prognosis. IL-32 has also been shown to promote proliferation and survival of the cancer cells. Here we show that activation of toll-like receptors (TLRs) promotes expression of IL-32 in MM cells through NFκB activation. In patient-derived primary MM cells, IL-32 expression is positively associated with expression of TLRs. Furthermore, we found that several TLR genes are upregulated from diagnosis to relapse in individual patients, predominantly TLRs sensing bacterial components. Interestingly, upregulation of these TLRs coincides with an increase in IL-32. Taken together, these results support a role for IL-32 in microbial sensing in MM cells and suggest that infections can induce expression of this pro-tumorigenic cytokine in MM patients.
Collapse
Affiliation(s)
- Kristin Roseth Aass
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Synne Stokke Tryggestad
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Robin Mjelle
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Bioinformatics Core Facility - BioCore, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Pathology, St. Olavs University Hospital, Trondheim, Norway
| | - Martin H Kastnes
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Tonje Marie Vikene Nedal
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kristine Misund
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Therese Standal
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Hematology, St. Olavs University Hospital, Trondheim, Norway
| |
Collapse
|
3
|
Hulme KD, Noye EC, Short KR, Labzin LI. Dysregulated Inflammation During Obesity: Driving Disease Severity in Influenza Virus and SARS-CoV-2 Infections. Front Immunol 2021; 12:770066. [PMID: 34777390 PMCID: PMC8581451 DOI: 10.3389/fimmu.2021.770066] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 09/30/2021] [Indexed: 12/15/2022] Open
Abstract
Acute inflammation is a critical host defense response during viral infection. When dysregulated, inflammation drives immunopathology and tissue damage. Excessive, damaging inflammation is a hallmark of both pandemic influenza A virus (IAV) infections and Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) infections. Chronic, low-grade inflammation is also a feature of obesity. In recent years, obesity has been recognized as a growing pandemic with significant mortality and associated costs. Obesity is also an independent risk factor for increased disease severity and death during both IAV and SARS-CoV-2 infection. This review focuses on the effect of obesity on the inflammatory response in the context of viral respiratory infections and how this leads to increased viral pathology. Here, we will review the fundamentals of inflammation, how it is initiated in IAV and SARS-CoV-2 infection and its link to disease severity. We will examine how obesity drives chronic inflammation and trained immunity and how these impact the immune response to IAV and SARS-CoV-2. Finally, we review both medical and non-medical interventions for obesity, how they impact on the inflammatory response and how they could be used to prevent disease severity in obese patients. As projections of global obesity numbers show no sign of slowing down, future pandemic preparedness will require us to consider the metabolic health of the population. Furthermore, if weight-loss alone is insufficient to reduce the risk of increased respiratory virus-related mortality, closer attention must be paid to a patient’s history of health, and new therapeutic options identified.
Collapse
Affiliation(s)
- Katina D Hulme
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Ellesandra C Noye
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Kirsty R Short
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Larisa I Labzin
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia.,Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
4
|
Hatatian N, Bosstani R, Mohammadi A, Mehraban S, Mahdifar M, Zemorshidi F, Mozhgani SH, Haji Ghadimi A, Foroughipour M, Rafatpanah H. Evaluation of interleukin-32 and cyclooxygenase-2 expression in HAM/TSP patients and HTLV-1 asymptomatic carriers. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:992-996. [PMID: 34712431 PMCID: PMC8528256 DOI: 10.22038/ijbms.2021.50821.11569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 06/07/2021] [Indexed: 11/13/2022]
Abstract
Objective(s): HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP) is a neuroinflammatory disorder associated with HTLV-1. Cytokines and inflammatory mediators have a major role in forming inflammation in HAM/TSP patients. This study aimed to measure the levels of IL-32, a proinflammatory cytokine associated with autoinflammatory disorders, and also cyclooxygenase -2 (COX-2) as a key mediator of inflammatory pathways in HAM/TSP patients and HTLV-1 asymptomatic carriers (ACs). Materials and Methods: Peripheral blood monocyte cells (PBMCs) were isolated from HAM/TSP patients, ACs, and healthy controls (HCs), and DNA and RNA were extracted to evaluate HTLV-1 proviral load (PVL) and expression of IL-32 and COX-2, using real-time PCR. Serum levels of IL-32 were determined by using an ELISA assay. Results: The expression level of IL-32 was significantly higher in ACs compared with HAM/TSP patients and HCs (P<0.0001 and P>0.05, respectively). There were no statistically significant differences in the expression levels of Cox-2 and protein levels of IL-32 between the study groups. HTLV-1 PVL was higher in HAM/TSP patients compared with ACs. Conclusion: Results showed increased mRNA levels of IL-32 in ACs. Since HTLV-1 PVL in ACs is lower than in HAM/TSP patients, it could be concluded that IL-32 might be an HTLV-1 inhibitor that seems to control virus replication. Despite the difference in IL-32 mRNA levels between study groups, no statistically significant differences were observed in IL-32 serum levels. Also, there were no significant differences in COX-2 expression.
Collapse
Affiliation(s)
- Niayesh Hatatian
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Bosstani
- Department of Neurology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Asadollah Mohammadi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Saeedeh Mehraban
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Mahdifar
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fariba Zemorshidi
- Department of Neurology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sayed-Hamidreza Mozhgani
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | | | - Mohsen Foroughipour
- Department of Neurology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Houshang Rafatpanah
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Cao W, Guo Y, Cheng Z, Xu G, Zuo Q, Nie L, Huang Y, Liu S, Zhu Y. Inducible ATP1B1 Upregulates Antiviral Innate Immune Responses by the Ubiquitination of TRAF3 and TRAF6. THE JOURNAL OF IMMUNOLOGY 2021; 206:2668-2681. [PMID: 34011520 DOI: 10.4049/jimmunol.2001262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/19/2021] [Indexed: 11/19/2022]
Abstract
The antiviral innate immune responses are crucial steps during host defense and must be strictly regulated, but the molecular mechanisms of control remain unclear. In this study, we report increased expression of human ATPase Na+/K+ transporting subunit β 1(ATP1B1) after DNA and RNA virus infections. We found that the expression of ATP1B1 can inhibit viral replication and increase the levels of IFNs, IFN-stimulated genes, and inflammatory cytokines. Knockdown of ATP1B1 by specific short hairpin RNA had the opposite effects. Upon viral infection, ATP1B1 was induced, interacted with TRAF3 and TRAF6, and potentiated the ubiquitination of these proteins, leading to increased phosphorylation of downstream molecules, including TGF-β-activated kinase 1 (TAK1) and TANK-binding kinase 1 (TBK1). These results reveal a previously unrecognized role of ATP1B1 in antiviral innate immunity and suggest a novel mechanism for the induction of IFNs and proinflammatory cytokines during viral infection.
Collapse
Affiliation(s)
- Wei Cao
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yifei Guo
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhikui Cheng
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Gang Xu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Qi Zuo
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Longyu Nie
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yu Huang
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Shi Liu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ying Zhu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
6
|
El-Far M, Durand M, Turcotte I, Larouche-Anctil E, Sylla M, Zaidan S, Chartrand-Lefebvre C, Bunet R, Ramani H, Sadouni M, Boldeanu I, Chamberland A, Lesage S, Baril JG, Trottier B, Thomas R, Gonzalez E, Filali-Mouhim A, Goulet JP, Martinson JA, Kassaye S, Karim R, Kizer JR, French AL, Gange SJ, Ancuta P, Routy JP, Hanna DB, Kaplan RC, Chomont N, Landay AL, Tremblay CL. Upregulated IL-32 Expression And Reduced Gut Short Chain Fatty Acid Caproic Acid in People Living With HIV With Subclinical Atherosclerosis. Front Immunol 2021; 12:664371. [PMID: 33936102 PMCID: PMC8083984 DOI: 10.3389/fimmu.2021.664371] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/26/2021] [Indexed: 12/22/2022] Open
Abstract
Despite the success of antiretroviral therapy (ART), people living with HIV (PLWH) are still at higher risk for cardiovascular diseases (CVDs) that are mediated by chronic inflammation. Identification of novel inflammatory mediators with the inherent potential to be used as CVD biomarkers and also as therapeutic targets is critically needed for better risk stratification and disease management in PLWH. Here, we investigated the expression and potential role of the multi-isoform proinflammatory cytokine IL-32 in subclinical atherosclerosis in PLWH (n=49 with subclinical atherosclerosis and n=30 without) and HIV- controls (n=25 with subclinical atherosclerosis and n=24 without). While expression of all tested IL-32 isoforms (α, β, γ, D, ϵ, and θ) was significantly higher in peripheral blood from PLWH compared to HIV- controls, IL-32D and IL-32θ isoforms were further upregulated in HIV+ individuals with coronary artery atherosclerosis compared to their counterparts without. Upregulation of these two isoforms was associated with increased plasma levels of IL-18 and IL-1β and downregulation of the atheroprotective protein TRAIL, which together composed a unique atherosclerotic inflammatory signature specific for PLWH compared to HIV- controls. Logistic regression analysis demonstrated that modulation of these inflammatory variables was independent of age, smoking, and statin treatment. Furthermore, our in vitro functional data linked IL-32 to macrophage activation and production of IL-18 and downregulation of TRAIL, a mechanism previously shown to be associated with impaired cholesterol metabolism and atherosclerosis. Finally, increased expression of IL-32 isoforms in PLWH with subclinical atherosclerosis was associated with altered gut microbiome (increased pathogenic bacteria; Rothia and Eggerthella species) and lower abundance of the gut metabolite short-chain fatty acid (SCFA) caproic acid, measured in fecal samples from the study participants. Importantly, caproic acid diminished the production of IL-32, IL-18, and IL-1β in human PBMCs in response to bacterial LPS stimulation. In conclusion, our studies identified an HIV-specific atherosclerotic inflammatory signature including specific IL-32 isoforms, which is regulated by the SCFA caproic acid and that may lead to new potential therapies to prevent CVD in ART-treated PLWH.
Collapse
Affiliation(s)
- Mohamed El-Far
- University of Montreal Hospital Centre (CRCHUM)-Research Centre, Montréal, QC, Canada
| | - Madeleine Durand
- University of Montreal Hospital Centre (CRCHUM)-Research Centre, Montréal, QC, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Isabelle Turcotte
- University of Montreal Hospital Centre (CRCHUM)-Research Centre, Montréal, QC, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | | | - Mohamed Sylla
- University of Montreal Hospital Centre (CRCHUM)-Research Centre, Montréal, QC, Canada
| | - Sarah Zaidan
- University of Montreal Hospital Centre (CRCHUM)-Research Centre, Montréal, QC, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Carl Chartrand-Lefebvre
- University of Montreal Hospital Centre (CRCHUM)-Research Centre, Montréal, QC, Canada.,Département de Radiologie, Radio-oncologie et Médecine Nucléaire, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Rémi Bunet
- University of Montreal Hospital Centre (CRCHUM)-Research Centre, Montréal, QC, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Hardik Ramani
- University of Montreal Hospital Centre (CRCHUM)-Research Centre, Montréal, QC, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Manel Sadouni
- University of Montreal Hospital Centre (CRCHUM)-Research Centre, Montréal, QC, Canada
| | - Irina Boldeanu
- University of Montreal Hospital Centre (CRCHUM)-Research Centre, Montréal, QC, Canada
| | - Annie Chamberland
- University of Montreal Hospital Centre (CRCHUM)-Research Centre, Montréal, QC, Canada
| | - Sylvie Lesage
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada.,Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
| | - Jean-Guy Baril
- Centre de médecine urbaine du Quartier latin, Montréal, QC, Canada
| | - Benoit Trottier
- Centre de médecine urbaine du Quartier latin, Montréal, QC, Canada
| | | | - Emmanuel Gonzalez
- Department of Human Genetics, Canadian Centre for Computational Genomics, McGill University, Montreal, QC, Canada.,Microbiome Platform Research, McGill Interdisciplinary Initiative in Infection and Immunity, McGill University, Montreal, QC, Canada
| | - Ali Filali-Mouhim
- University of Montreal Hospital Centre (CRCHUM)-Research Centre, Montréal, QC, Canada
| | | | - Jeffrey A Martinson
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Seble Kassaye
- Department of Medicine, Georgetown University, Washington, DC, United States
| | - Roksana Karim
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, United States
| | - Jorge R Kizer
- Cardiology Section, San Francisco Veterans Affairs Health Care System, San Francisco, CA, United States.,Departments of Medicine, Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, United States
| | - Audrey L French
- Division of Infectious Diseases, Stroger Hospital of Cook County, Chicago IL, United States
| | - Stephen J Gange
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Petronela Ancuta
- University of Montreal Hospital Centre (CRCHUM)-Research Centre, Montréal, QC, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Jean-Pierre Routy
- Research Institute of McGill University Health Centre, Montréal, QC, Canada
| | - David B Hanna
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Robert C Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, United States.,Divsion of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Nicolas Chomont
- University of Montreal Hospital Centre (CRCHUM)-Research Centre, Montréal, QC, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Alan L Landay
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Cécile L Tremblay
- University of Montreal Hospital Centre (CRCHUM)-Research Centre, Montréal, QC, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
7
|
BustosRivera-Bahena G, López-Guerrero DV, Márquez-Bandala AH, Esquivel-Guadarrama FR, Montiel-Hernández JL. TGF-β1 signaling inhibit the in vitro apoptotic, infection and stimulatory cell response induced by influenza H1N1 virus infection on A549 cells. Virus Res 2021; 297:198337. [PMID: 33581185 DOI: 10.1016/j.virusres.2021.198337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 01/18/2021] [Accepted: 02/02/2021] [Indexed: 12/12/2022]
Abstract
Influenza A virus (IAV) infection induces host cell responses that could derive in inflammatory and apoptotic response. In this respect, in multiple pathological situations, TGF-β1 has shown anti-inflammatory effect, but its role during IAV infection is poorly understood. Interestingly, recent profiling expression studies have suggested that the TGF-β1 pathway could be functionally related to the IAV infection's host response. To gain an understanding of the involvement of TGF-β1's signaling pathway during IAV infection, we compared different apoptotic proteins such as TNFR1, Fas ligand, XIAP, cIAP, among others proteins, and pro-inflammatory elements like IL-1β in the A549 cells during IAV infection (H1N1/NC/99), with and without 1 h of pre-treatment with TGF-β1. Pre-incubation with TGF-β1 significantly inhibited apoptosis and the presence of pro-apoptotic factors. Moreover, the relative abundance of immunodetected IAV M1 protein along 24 -h post-infection period was abridged, which correlated with a disminished infectious viral progeny Additionally, caspase 1 activation and increase of IL-1β induced by IAV infection was also reduced by TGF-β1 signaling activation. Whereas IAV infection increase of Smad-7 and, as consequence, partially inhibiting Smad2/3 phosphorylation, pre-treatment with TGF-β1 blocked IAV-dependent Smad7 induction and prevented Smad2/3 signaling shutdown. All these data suggest the role of TGF-β1 signaling pathway in the control of host cell response induced by the IAV infection and identify a potential clinical target to modulate acute cell death.
Collapse
Affiliation(s)
- Genoveva BustosRivera-Bahena
- Instituto de Biotecnología, UNAM, Cuernavaca, México; Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, México
| | - Delia Vanessa López-Guerrero
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, México; Facultad de Nutrición, Universidad Autónoma del Estado de Morelos, Cuernavaca, México
| | - Alicia Helena Márquez-Bandala
- Instituto de Biotecnología, UNAM, Cuernavaca, México; Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, México
| | | | | |
Collapse
|
8
|
Aass KR, Kastnes MH, Standal T. Molecular interactions and functions of IL-32. J Leukoc Biol 2020; 109:143-159. [PMID: 32869391 DOI: 10.1002/jlb.3mr0620-550r] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/29/2020] [Accepted: 07/28/2020] [Indexed: 12/16/2022] Open
Abstract
IL-32 is a multifaceted cytokine associated with several diseases and inflammatory conditions. Its expression is induced in response to cellular stress such as hypoxia, infections, and pro-inflammatory cytokines. IL-32 can be secreted from cells and can induce the production of pro-inflammatory cytokines from several cell types but are also described to have anti-inflammatory functions. The intracellular form of IL-32 is shown to play an important role in various cellular processes, including the defense against intracellular bacteria and viruses and in modulation of cell metabolism. In this review, we discuss current literature on molecular interactions of IL-32 with other proteins. We also review data on the role of intracellular IL-32 as a metabolic regulator and its role in antimicrobial host defense.
Collapse
Affiliation(s)
- Kristin Roseth Aass
- Department of Clinical and Molecular Medicine, Centre of Molecular Inflammation Research (CEMIR), Trondheim, Norway
| | - Martin H Kastnes
- Department of Clinical and Molecular Medicine, Centre of Molecular Inflammation Research (CEMIR), Trondheim, Norway
| | - Therese Standal
- Department of Clinical and Molecular Medicine, Centre of Molecular Inflammation Research (CEMIR), Trondheim, Norway.,Department of Hematology, St. Olavs Hospital, Trondheim, Norway
| |
Collapse
|
9
|
Bengts S, Shamoun L, Kunath A, Appelgren D, Welander M, Björck M, Wanhainen A, Wågsäter D. Altered IL-32 Signaling in Abdominal Aortic Aneurysm. J Vasc Res 2020; 57:236-244. [PMID: 32434199 DOI: 10.1159/000507667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 04/02/2020] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION AND OBJECTIVE Interleukin (IL)-32 is a pro-inflammatory cytokine not previously studied in relation to abdominal aortic aneurysm (AAA). The aim of this study was to elucidate the expression and localization of IL-32 in AAA. METHODS Expression and localization of IL-32 in human aortic tissue was studied with immunohistochemical analysis and Western blot (AAA: n = 5; controls: n = 4). ELISA was used to measure IL-32 in human plasma samples (AAA: n = 140; controls: n = 37) and in media from cultured peripheral blood mononuclear cells (PBMCs) from 3 healthy donors. IL-32 mRNA in PBMCs, endothelial cells, aortic smooth muscle cells (SMCs), and aortic tissue samples of AAA (n = 16) and control aortas (n = 9) was measured with qPCR. RESULTS IL-32 was predominantly expressed in SMCs and T-cell-rich areas. Highest mRNA expression was observed in the intima/media layer of the AAA. A weaker protein expression was detected in non-aneurysmal aortas. Expression of IL-32 was confirmed in isolated T cells, macrophages, endothelial cells, and SMCs, where expression was also inducible by cytokines such as interferon-γ. There was no difference in IL-32 expression in plasma between patients and controls. CONCLUSION IL-32 signaling is altered locally in AAA and could potentially play an important role in aneurysm development. Further studies using animal models would be helpful to study its potential role in AAA disease.
Collapse
Affiliation(s)
- Sophy Bengts
- Division of Drug Research, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Levar Shamoun
- Division of Medical Diagnostics, Department of Laboratory Medicine, Jönköping County, Jönköping, Sweden.,Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Anne Kunath
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Daniel Appelgren
- Division of Drug Research, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Martin Welander
- Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Martin Björck
- Department of Surgical Sciences, Section of Vascular Surgery, Uppsala University, Uppsala, Sweden
| | - Anders Wanhainen
- Department of Surgical Sciences, Section of Vascular Surgery, Uppsala University, Uppsala, Sweden
| | - Dick Wågsäter
- Division of Drug Research, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden, .,Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden,
| |
Collapse
|
10
|
Yin H, Wu M, Jia Y. Knockdown of IL-32 protects PC12 cells against oxygen-glucose deprivation/reoxygenation-induced injury via activation of Nrf2/NF-κB pathway. Metab Brain Dis 2020; 35:363-371. [PMID: 31916203 DOI: 10.1007/s11011-019-00530-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/16/2019] [Indexed: 10/25/2022]
Abstract
Cerebral ischemia/reperfusion injury (IRI) is one of major causes of ischemic organ damage. It is well established that inflammatory cytokines serve as regulatory factors in cerebral oxygen glucose deprivation/reoxygenation (OGD/R). However, the involving mechanism is not clear enough. OGD/R PC12 cells were used as a hypoxia/reoxygenation model. IL-32 expression and cell viability were detected by qRT-PCR and CCK-8 assay, respectively. Cell apoptosis were determined by flow cytometry and western blotting. Protein levels of inflammatory factors, and the activity of MPO, MDA and SOD were analyzed. Furthermore, western blot assay was carried out to assess protein levels of Nrf2, keap1, NQO-1, p-p65, p-IκBα, p65 and IκBα. The results revealed that IL-32 expression was significantly upregulated in PC12 cells induced by OGD/R. Nrf2, keap1 and NQO-1 level was reduced while phosphorylation level of p65 and IκBα was up-regulated in OGD/R-induced PC12 cells. Mechanism investigations found that IL-32 silence elevated the level of Nrf2, Keap1 and NQO-1, reduced p-p65 and p-IκBα level, and regulated the contents of TNF-a, IL-1β, IL-6 and MCP-1 in OGD/R PC12 cells. In addition, knockdown of IL-32 suppressed production of intracellular ROS, elevated SOD activity, reduced MPO and MDA content, and enhanced cell viability. Furthermore, cell apoptosis was induced in OGD/R PC12 cells with IL-32 silence. However, Nrf2 inhibitor reversed the effects of IL-32 knockdown on OGD/R PC12 cells. This research suggests that IL-32 silence may alleviate OGD/R and Nrf2 plays an important role in the protection by IL-32 silence on PC12 cells induced by OGD/R.
Collapse
Affiliation(s)
- Hua Yin
- School of Medicine, Yunnan University, No.2 Cuihu North Road, Kunming, 650091, People's Republic of China.
| | - Meiyu Wu
- Kunming Key Laboratory of Molecular Biology for Sinomedicine, Faculty of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, People's Republic of China
| | - Yue Jia
- School of Medicine, Yunnan University, No.2 Cuihu North Road, Kunming, 650091, People's Republic of China
| |
Collapse
|
11
|
Zhao Z, Lan M, Li J, Dong Q, Li X, Liu B, Li G, Wang H, Zhang Z, Zhu B. The proinflammatory cytokine TNFα induces DNA demethylation-dependent and -independent activation of interleukin-32 expression. J Biol Chem 2019; 294:6785-6795. [PMID: 30824537 PMCID: PMC6497958 DOI: 10.1074/jbc.ra118.006255] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/21/2019] [Indexed: 12/16/2022] Open
Abstract
IL-32 is a cytokine involved in proinflammatory immune responses to bacterial and viral infections. However, the role of epigenetic events in the regulation of IL-32 gene expression is understudied. Here we show that IL-32 is repressed by DNA methylation in HEK293 cells. Using ChIP sequencing, locus-specific methylation analysis, CRISPR/Cas9-mediated genome editing, and RT-qPCR (quantitative RT-PCR) and immunoblot assays, we found that short-term treatment (a few hours) with the proinflammatory cytokine tumor necrosis factor α (TNFα) activates IL-32 in a DNA demethylation-independent manner. In contrast, prolonged TNFα treatment (several days) induced DNA demethylation at the promoter and a CpG island in the IL-32 gene in a TET (ten-eleven translocation) family enzyme- and NF-κB-dependent manner. Notably, the hypomethylation status of transcriptional regulatory elements in IL-32 was maintained for a long time (several weeks), causing elevated IL-32 expression even in the absence of TNFα. Considering that IL-32 can, in turn, induce TNFα expression, we speculate that such feedforward events may contribute to the transition from an acute inflammatory response to chronic inflammation.
Collapse
Affiliation(s)
- Zuodong Zhao
- From the Tsinghua University-Peking University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing 100084, China
- the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- the National Institute of Biological Sciences, Beijing 102206, China
| | - Mengying Lan
- the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- the College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China, and
| | - Jingjing Li
- the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- the College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China, and
| | - Qiang Dong
- the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiang Li
- the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Baodong Liu
- the State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Gang Li
- the Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Hailin Wang
- the State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhuqiang Zhang
- the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China,
| | - Bing Zhu
- the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China,
- the College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China, and
| |
Collapse
|
12
|
Paz H, Tsoi J, Kalbasi A, Grasso CS, McBride WH, Schaue D, Butterfield LH, Maurer DM, Ribas A, Graeber TG, Economou JS. Interleukin 32 expression in human melanoma. J Transl Med 2019; 17:113. [PMID: 30953519 PMCID: PMC6449995 DOI: 10.1186/s12967-019-1862-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 03/27/2019] [Indexed: 02/06/2023] Open
Abstract
Background Various proinflammatory cytokines can be detected within the melanoma tumor microenvironment. Interleukin 32 (IL32) is produced by T cells, NK cells and monocytes/macrophages, but also by a subset of melanoma cells. We sought to better understand the biology of IL32 in human melanoma. Methods We analyzed RNA sequencing data from 53 in-house established human melanoma cell lines and 479 melanoma tumors from The Cancer Genome Atlas dataset. We evaluated global gene expression patterns associated with IL32 expression. We also evaluated the impact of proinflammatory molecules TNFα and IFNγ on IL32 expression and dedifferentiation in melanoma cell lines in vitro. In order to study the transcriptional regulation of IL32 in these cell lines, we cloned up to 10.5 kb of the 5′ upstream region of the human IL32 gene into a luciferase reporter vector. Results A significant proportion of established human melanoma cell lines express IL32, with its expression being highly correlated with a dedifferentiation genetic signature (high AXL/low MITF). Non IL32-expressing differentiated melanoma cell lines exposed to TNFα or IFNγ can be induced to express the three predominant isoforms (α, β, γ) of IL32. Cis-acting elements within this 5′ upstream region of the human IL32 gene appear to govern both induced and constitutive gene expression. In the tumor microenvironment, IL32 expression is highly correlated with genes related to T cell infiltration, and also positively correlates with high AXL/low MITF dedifferentiated gene signature. Conclusions Expression of IL32 in human melanoma can be induced by TNFα or IFNγ and correlates with a treatment-resistant dedifferentiated genetic signature. Constitutive and induced expression are regulated, in part, by cis-acting sequences within the 5′ upstream region. Electronic supplementary material The online version of this article (10.1186/s12967-019-1862-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Helicia Paz
- Department of Surgery, University of California, Los Angeles, 10833 Le Conte Ave, Los Angeles, CA, 90095, USA
| | - Jennifer Tsoi
- Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging, University of California, Los Angeles, CA, 90095, USA.,Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Anusha Kalbasi
- Department of Surgery, University of California, Los Angeles, 10833 Le Conte Ave, Los Angeles, CA, 90095, USA.,Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, 90095, USA
| | - Catherine S Grasso
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - William H McBride
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Dörthe Schaue
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Lisa H Butterfield
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, 15213, USA.,Department of Medicine, University of Pittsburgh Cancer Institute, Pittsburgh, PA, 15213, USA.,Department of Surgery, University of Pittsburgh Cancer Institute, Pittsburgh, PA, 15213, USA.,Department of Clinical and Translational Science, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Deena M Maurer
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Antoni Ribas
- Department of Surgery, University of California, Los Angeles, 10833 Le Conte Ave, Los Angeles, CA, 90095, USA.,Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, 90095, USA
| | - Thomas G Graeber
- Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging, University of California, Los Angeles, CA, 90095, USA.,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, 90095, USA
| | - James S Economou
- Department of Surgery, University of California, Los Angeles, 10833 Le Conte Ave, Los Angeles, CA, 90095, USA. .,Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA. .,Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging, University of California, Los Angeles, CA, 90095, USA. .,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
13
|
The Biology and Role of Interleukin-32 in Tuberculosis. J Immunol Res 2018; 2018:1535194. [PMID: 30426023 PMCID: PMC6217754 DOI: 10.1155/2018/1535194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/08/2018] [Accepted: 08/29/2018] [Indexed: 12/31/2022] Open
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis, remains a leading cause of morbidity and mortality globally, with nearly 10.4 million new cases of incidence and over 1.7 million deaths annually. Drug-resistant M. tuberculosis strains, especially multidrug-resistant or extensively drug-resistant strains, have further intensified the problem associated with tuberculosis control. Host-directed therapy is a promising alternative for tuberculosis control. IL-32 is increasingly recognized as an important host molecule against tuberculosis. In this review, we highlight the proinflammatory properties of IL-32 and the mode of action of IL-32 in mycobacterial infections to inspire the development of novel immunity-based countermeasures and host-directed therapies against tuberculosis.
Collapse
|
14
|
Zhou Y, Xia Z, Cheng Z, Xu G, Yang X, Liu S, Zhu Y. Inducible microRNA-590-5p inhibits host antiviral response by targeting the soluble interleukin-6 (IL6) receptor. J Biol Chem 2018; 293:18168-18179. [PMID: 30291142 DOI: 10.1074/jbc.ra118.005057] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/21/2018] [Indexed: 01/09/2023] Open
Abstract
MicroRNA (miR)-590-5p has been identified as an important regulator of some signaling pathways such as cell proliferation and tumorigenesis. However, little is known about its role during viral infection. Here, we report that miR-590-5p was significantly induced by various viruses and effectively potentiated virus replication in different viral infection systems. Furthermore, miR-590-5p substantially attenuated the virus-induced expression of type I and type III interferons (IFNs) and inflammatory cytokines, resulting in impaired downstream antiviral signaling. Interleukin-6 receptor (IL6R) was identified as a target of miR-590-5p. Interestingly, the role of miR-590-5p in virus-triggered signaling was abolished in IL6R knockout cells, and this could be rescued by restoring the expression of the soluble IL6R (sIL6R) but not the membrane-bound IL6R (mIL6R), suggesting that sIL6R is indispensable for miR-590-5p in modulating the host antiviral response. Furthermore, miR-590-5p down-regulated endogenous sIL6R and mIL6R expression through a translational repression mechanism. These findings thus uncover a previously uncharacterized role and the underlying mechanism of miR-590-5p in the innate immune response to viral infection.
Collapse
Affiliation(s)
- Yaqin Zhou
- From the State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Zhangchuan Xia
- From the State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Zhikui Cheng
- From the State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Gang Xu
- From the State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Xiaodan Yang
- From the State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Shi Liu
- From the State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Ying Zhu
- From the State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China.
| |
Collapse
|
15
|
Kim DH, Park ES, Lee AR, Park S, Park YK, Ahn SH, Kang HS, Won JH, Ha YN, Jae B, Kim DS, Chung WC, Song MJ, Kim KH, Park SH, Kim SH, Kim KH. Intracellular interleukin-32γ mediates antiviral activity of cytokines against hepatitis B virus. Nat Commun 2018; 9:3284. [PMID: 30115930 PMCID: PMC6095909 DOI: 10.1038/s41467-018-05782-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 07/26/2018] [Indexed: 02/07/2023] Open
Abstract
Cytokines are involved in early host defense against pathogen infections. In particular, tumor necrosis factor (TNF) and interferon-gamma (IFN-γ) have critical functions in non-cytopathic elimination of hepatitis B virus (HBV) in hepatocytes. However, the molecular mechanisms and mediator molecules are largely unknown. Here we show that interleukin-32 (IL-32) is induced by TNF and IFN-γ in hepatocytes, and inhibits the replication of HBV by acting intracellularly to suppress HBV transcription and replication. The gamma isoform of IL-32 (IL-32γ) inhibits viral enhancer activities by downregulating liver-enriched transcription factors. Our data are validated in both an in vivo HBV mouse model and primary human hepatocytes. This study thus suggests that IL-32γ functions as intracellular effector in hepatocytes for suppressing HBV replication to implicate a possible mechanism of non-cytopathic viral clearance. Cytokines such as TNF and IFN-γ are important for immunity against hepatitis B virus (HBV). Here the authors show that interleukin-32 gamma (IL-32γ) acts downstream of TNF and IFN-γ as an intracellular effector, and that IL-32γ negatively regulates host factors contributing to HBV transcription to promote HBV clearance.
Collapse
Affiliation(s)
- Doo Hyun Kim
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Eun-Sook Park
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Ah Ram Lee
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Soree Park
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Yong Kwang Park
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Sung Hyun Ahn
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Hong Seok Kang
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Ju Hee Won
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Yea Na Ha
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - ByeongJune Jae
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Dong-Sik Kim
- Division of HBP Surgery and Liver Transplantation, Department of Surgery, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Woo-Chang Chung
- Virus-Host Interactions Laboratory, Division of Biotechnology, Department of Biosystems and Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Moon Jung Song
- Virus-Host Interactions Laboratory, Division of Biotechnology, Department of Biosystems and Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Kee-Hwan Kim
- Department of Surgery, Uijeongbu St. Mary's Hospital, Catholic Central Laboratory of Surgery, College of Medicine, The Catholic University of Korea, Seoul 11765, Republic of Korea
| | - Seung Hwa Park
- Department of Anatomy, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Soo-Hyun Kim
- Laboratory of Cytokine Immunology, Veterinary School, Konkuk University, Seoul 05029, Republic of Korea
| | - Kyun-Hwan Kim
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea. .,KU Open Innovation Center, Research Institute of Medical Sciences, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
16
|
Xin T, Chen M, Duan L, Xu Y, Gao P. Interleukin-32: its role in asthma and potential as a therapeutic agent. Respir Res 2018; 19:124. [PMID: 29940981 PMCID: PMC6019726 DOI: 10.1186/s12931-018-0832-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 06/18/2018] [Indexed: 02/07/2023] Open
Abstract
Interleukin (IL)-32, also named natural killer cell transcript 4 (NK4), has increasingly been described as an immunoregulator that controls cell differentiation and cell death and is involved in the stimulation of anti−/pro-inflammatory cytokines. Abnormal presence of IL-32 has been repeatedly noticed during the pathogenesis of allergic, infectious, cancerous, and inflammatory diseases. Of particular note was the observation of the anti-inflammatory property of IL-32 in a murine ovalbumin model of allergic asthma. Compared to wild-type mice, IL-32γ transgenic mice show decreased levels of inflammatory cells, recruited eosinophils, and lymphocytes in bronchoalveolar lavage fluid in a mouse model of acute asthma. To date, the molecular mechanism underlying the role of IL-32 in asthma remains to be elucidated. This review aims to summarize recent advances in the pathophysiology of asthma and describe the links to IL-32. The possibilities of using IL-32 as an airway inflammation biomarker and an asthma therapeutic agent are also evaluated.
Collapse
Affiliation(s)
- Tong Xin
- Department of Respiratory Medicine, the Second Hospital of Jilin University, Changchun, Jilin, China
| | - Mo Chen
- Department of Respiratory Medicine, the Second Hospital of Jilin University, Changchun, Jilin, China
| | - Liwei Duan
- Department of Gastrointestinal medicine, the Second Hospital of Jilin University, Changchun, Jilin, China
| | - Yanling Xu
- Department of Geriatrics and General Medicine, the Second Hospital of Jilin University, Changchun, Jilin, China
| | - Peng Gao
- Department of Respiratory Medicine, the Second Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
17
|
Dos Santos JC, Damen MSMA, Joosten LAB, Ribeiro-Dias F. Interleukin-32: An endogenous danger signal or master regulator of intracellular pathogen infections-Focus on leishmaniases. Semin Immunol 2018; 38:15-23. [PMID: 29551246 DOI: 10.1016/j.smim.2018.02.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 02/23/2018] [Indexed: 02/07/2023]
Abstract
Interleukin 32 (IL-32) is an intracellular cytokine produced by immune and non immune cells after different stimuli. It contributes to inflammation and control of intracellular pathogens mainly by inducing proinflammatory cytokines and microbicidal molecules. Evidence is rising showing that IL-32 can be considered an endogenous danger signal after tissue injury, amplifying the inflammatory process and acquired immune responses. It seems to be a master regulator of intracellular infectious diseases. In this review, first the general properties of IL-32 are described followed by its role in the immunopathogenesis of inflammatory and infectious diseases. Roles of IL-32 in the control of infectious diseases caused by intracellular pathogens are reported, and later a focus on IL-32 in leishmaniases, diseases caused by an intracellular protozoan, is presented.
Collapse
Affiliation(s)
- Jéssica C Dos Santos
- Department of Internal Medicine, Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands; Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Michelle S M A Damen
- Department of Internal Medicine, Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine, Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands; Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Fátima Ribeiro-Dias
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
18
|
Feng J, Cao Z, Wang L, Wan Y, Peng N, Wang Q, Chen X, Zhou Y, Zhu Y. Inducible GBP5 Mediates the Antiviral Response via Interferon-Related Pathways during Influenza A Virus Infection. J Innate Immun 2017; 9:419-435. [PMID: 28376501 DOI: 10.1159/000460294] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 02/08/2017] [Indexed: 12/18/2022] Open
Abstract
Guanylate binding protein (GBP) 5 belongs to the GBP family, which is involved in important cellular processes, including signal transduction, translation, vesicle trafficking, and exocytosis. Structurally, GBPs display a high degree of homology and share highly conserved GTP-binding or hydrolysis domains. GBP5 was reported to be a critical cellular factor in inflammasome assembly. However, little is known about its role in the host antiviral innate immune response. In this study, we found that GBP5 expression was significantly elevated in influenza patients and influenza A virus-infected A549 human lung epithelial cells. The overexpression of GBP5 inhibited virus replication by enhancing the expression of virus-induced interferon (IFN) and IFN-related effectors. Knockdown of GBP5 had the opposite effect. Moreover, GBP5 enhanced endogenous IFN expression by interacting with the NF-κB-essential modulator complex and stimulating NF-κB signaling. Additionally, the expression of proinflammatory factors, such as IL-6, IL-8, tumor necrosis factor-α, cyclooxygenase-2, and inducible nitric oxide synthase, was also activated by GBP5. Taken together, our results reveal that GBP5 inhibited virus replication through the activation of IFN signaling and proinflammatory factors.
Collapse
Affiliation(s)
- Jian Feng
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Xia Z, Xu G, Yang X, Peng N, Zuo Q, Zhu S, Hao H, Liu S, Zhu Y. Inducible TAP1 Negatively Regulates the Antiviral Innate Immune Response by Targeting the TAK1 Complex. THE JOURNAL OF IMMUNOLOGY 2017; 198:3690-3704. [PMID: 28356387 DOI: 10.4049/jimmunol.1601588] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 03/03/2017] [Indexed: 12/17/2022]
Abstract
The innate immune response is critical for host defense and must be tightly controlled, but the molecular mechanisms responsible for its negative regulation are not yet completely understood. In this study, we report that transporter 1, ATP-binding cassette, subfamily B (TAP1), a virus-inducible endoplasmic reticulum-associated protein, negatively regulated the virus-triggered immune response. In this study, we observed upregulated expression of TAP1 following virus infection in human lung epithelial cells (A549), THP-1 monocytes, HeLa cells, and Vero cells. The overexpression of TAP1 enhanced virus replication by inhibiting the virus-triggered activation of NF-κB signaling and the production of IFNs, IFN-stimulated genes, and proinflammatory cytokines. TAP1 depletion had the opposite effect. In response to virus infection, TAP1 interacted with the TGF-β-activated kinase (TAK)1 complex and impaired the phosphorylation of TAK1, subsequently suppressing the phosphorylation of the IκB kinase complex and NF-κB inhibitor α (IκBα) as well as NF-κB nuclear translocation. Our findings collectively suggest that TAP1 plays a novel role in the negative regulation of virus-triggered NF-κB signaling and the innate immune response by targeting the TAK1 complex.
Collapse
Affiliation(s)
- Zhangchuan Xia
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Gang Xu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaodan Yang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Nanfang Peng
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Qi Zuo
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Shengli Zhu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Hua Hao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Shi Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ying Zhu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
20
|
dos Santos JC, Heinhuis B, Gomes RS, Damen MSMA, Real F, Mortara RA, Keating ST, Dinarello CA, Joosten LAB, Ribeiro-Dias F. Cytokines and microbicidal molecules regulated by IL-32 in THP-1-derived human macrophages infected with New World Leishmania species. PLoS Negl Trop Dis 2017; 11:e0005413. [PMID: 28241012 PMCID: PMC5344527 DOI: 10.1371/journal.pntd.0005413] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 03/09/2017] [Accepted: 02/15/2017] [Indexed: 01/08/2023] Open
Abstract
Background Interleukin-32 (IL-32) is expressed in lesions of patients with American Tegumentary Leishmaniasis (ATL), but its precise role in the disease remains unknown. Methodology/Principal findings In the present study, silencing and overexpression of IL-32 was performed in THP-1-derived macrophages infected with Leishmania (Viannia) braziliensis or L. (Leishmania) amazonensis to investigate the role of IL-32 in infection. We report that Leishmania species induces IL-32γ, and show that intracellular IL-32γ protein production is dependent on endogenous TNFα. Silencing or overexpression of IL-32 demonstrated that this cytokine is closely related to TNFα and IL-8. Remarkably, the infection index was augmented in the absence of IL-32 and decreased in cells overexpressing this cytokine. Mechanistically, these effects can be explained by nitric oxide cathelicidin and β-defensin 2 production regulated by IL-32. Conclusions Thus, endogenous IL-32 is a crucial cytokine involved in the host defense against Leishmania parasites. Leishmania (V.) braziliensis and L. (L.) amazonensis are protozoa that infect macrophages and cause cutaneous and mucosal leishmaniasis. Here we showed that both Leishmania species induce the production of IL-32γ in human macrophages. This intracellular and pro-inflammatory cytokine mediates the production of cytokines, especially TNFα and IL-8, in Leishmania-infected macrophages. Differential effects of IL-32γ on TNFα, IL-10 and IL-1Ra production after infection with distinct Leishmania species were detected, consistent with the concept that IL-32γ can differently influence the outcome of inflammatory process in leishmaniasis lesions. Moreover, IL-32γ upregulates microbicidal molecules, antimicrobial peptides, as well as NO, which are known as important factors in parasite control. These results underscore IL-32γ as a crucial cytokine to host defense against leishmaniasis.
Collapse
Affiliation(s)
- Jéssica Cristina dos Santos
- Department of Internal Medicine and Radboud Center of Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brazil
| | - Bas Heinhuis
- Department of Internal Medicine and Radboud Center of Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rodrigo Saar Gomes
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brazil
| | - Michelle S. M. A. Damen
- Department of Internal Medicine and Radboud Center of Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Fernando Real
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, Brazil
| | - Renato A. Mortara
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, Brazil
| | - Samuel T. Keating
- Department of Internal Medicine and Radboud Center of Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Charles A. Dinarello
- Department of Internal Medicine and Radboud Center of Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
- School of Medicine, Division of infectious diseases, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Leo A. B. Joosten
- Department of Internal Medicine and Radboud Center of Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Fátima Ribeiro-Dias
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brazil
- * E-mail:
| |
Collapse
|
21
|
Yang CH, Li HC, Shiu YL, Ku TS, Wang CW, Tu YS, Chen HL, Wu CH, Lo SY. Influenza A virus upregulates PRPF8 gene expression to increase virus production. Arch Virol 2017; 162:1223-1235. [PMID: 28110426 DOI: 10.1007/s00705-016-3210-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 12/19/2016] [Indexed: 01/08/2023]
Abstract
A ddRT-PCR analysis was performed to detect cellular genes that are differentially expressed after influenza A virus (H1N1) infection of A549 cells. After ddRT-PCR, eight DNA fragments were identified. PRPF8, one of the cellular genes that were upregulated after virus infection, was further analyzed since it has previously been identified as a cellular factor required for influenza virus replication. The upregulation of PRPF8 gene expression after viral infection was confirmed using real-time RT-PCR for mRNA detection and Western blot analysis for protein detection. Influenza A virus also upregulated the PRPF8 promoter in a reporter assay. In addition to H1N1, influenza A virus H3N2 and influenza B virus could also activate PRPF8 expression. Therefore, upregulation of PRPF8 expression might be important for the replication of different influenza viruses. Indeed, overexpression of PRPF8 gene enhanced virus production, while knockdown of expression of this gene reduced viral production significantly. To determine which viral protein could enhance PRPF8 gene expression, individual viral genes were cloned and expressed. Among the different viral proteins, expression of either the viral NS1 or PB1 gene could upregulate the PRPF8 expression. Our results from this study indicate that influenza A virus upregulates cellular PRPF8 gene expression through viral NS1 and PB1 proteins to increase virus production.
Collapse
Affiliation(s)
- Chee-Hing Yang
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Hui-Chun Li
- Department of Biochemistry, School of Medicine, Tzu Chi University, 701, Section 3, Chung Yang Road, Hualien, Taiwan
| | - Yu-Ling Shiu
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien, Taiwan
| | - Tzu-Shan Ku
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien, Taiwan
| | - Chia-Wen Wang
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien, Taiwan
| | - Yi-Shuan Tu
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien, Taiwan
| | - Hung-Ling Chen
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien, Taiwan
| | - Cheng-Hao Wu
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien, Taiwan
| | - Shih-Yen Lo
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan. .,Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien, Taiwan. .,Department of Laboratory Medicine, Buddhist Tzu Chi General Hospital, Hualien, Taiwan.
| |
Collapse
|
22
|
Lopes MR, Pereira JKN, de Melo Campos P, Machado-Neto JA, Traina F, Saad STO, Favaro P. De novo AML exhibits greater microenvironment dysregulation compared to AML with myelodysplasia-related changes. Sci Rep 2017; 7:40707. [PMID: 28084439 PMCID: PMC5234038 DOI: 10.1038/srep40707] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 12/09/2016] [Indexed: 12/11/2022] Open
Abstract
The interaction between the bone marrow microenvironment and malignant hematopoietic cells can result in the protection of leukemia cells from chemotherapy in both myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML). We, herein, characterized the changes in cytokine expression and the function of mesenchymal stromal cells (MSC) in patients with MDS, AML with myelodysplasia-related changes (MRC), a well-recognized clinical subtype of secondary AML, and de novo AML. We observed a significant inhibitory effect of MDS-MSC on T lymphocyte proliferation and no significant differences in any of the cytokines tested. AML-MSC inhibited T-cell proliferation only at a very low MSC/T cell ratio. When compared to the control, AML-MRCderived MSC presented a significant increase in IL6 expression, whereas de novo AML MSC presented a significant increase in the expression levels of VEGFA, CXCL12, RPGE2, IDO, IL1β, IL6 and IL32, followed by a decrease in IL10 expression. Furthermore, data indicate that IL-32 regulates stromal cell proliferation, has a chemotactic potential and participates in stromal cell crosstalk with leukemia cells, which could result in chemoresistance. Our results suggest that the differences between AML-MRC and de novo AML also extend into the leukemic stem cell niche and that IL-32 can participate in the regulation of the bone marrow cytokine milieu.
Collapse
Affiliation(s)
- Matheus Rodrigues Lopes
- Hematology and Transfusion Medicine Center - University of Campinas/Hemocentro - Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, São Paulo, Brazil
| | - João Kleber Novais Pereira
- Hematology and Transfusion Medicine Center - University of Campinas/Hemocentro - Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, São Paulo, Brazil
| | - Paula de Melo Campos
- Hematology and Transfusion Medicine Center - University of Campinas/Hemocentro - Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, São Paulo, Brazil
| | - João Agostinho Machado-Neto
- Hematology and Transfusion Medicine Center - University of Campinas/Hemocentro - Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, São Paulo, Brazil
| | - Fabiola Traina
- Hematology and Transfusion Medicine Center - University of Campinas/Hemocentro - Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, São Paulo, Brazil.,Department of Internal Medicine, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto, São Paulo, Brazil
| | - Sara T Olalla Saad
- Hematology and Transfusion Medicine Center - University of Campinas/Hemocentro - Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, São Paulo, Brazil
| | - Patricia Favaro
- Hematology and Transfusion Medicine Center - University of Campinas/Hemocentro - Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, São Paulo, Brazil.,Department of Biological Sciences, Federal University of São Paulo, Diadema, São Paulo, Brazil
| |
Collapse
|
23
|
Lee EJ, Choi B, Hwang ES, Chang EJ. Interleukin-32 Gamma as a New Face in Inflammatory Bone Diseases. JOURNAL OF RHEUMATIC DISEASES 2017. [DOI: 10.4078/jrd.2017.24.1.14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Eun-Jin Lee
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Bongkun Choi
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Eui-Seung Hwang
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Eun-Ju Chang
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
24
|
Zhu C, Gao G, Song H, Xu F, Wu K, Liu X. Hepatitis B virus inhibits apolipoprotein A5 expression through its core gene. Lipids Health Dis 2016; 15:178. [PMID: 27724895 PMCID: PMC5057420 DOI: 10.1186/s12944-016-0340-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 09/20/2016] [Indexed: 02/08/2023] Open
Abstract
Background Hepatitis B virus (HBV) infection causes lipid metabolism disorders. Apolipoprotein A5 (ApoA5) is a new apolipoprotein family member that plays an important role in the regulation of lipid metabolism. The present study was to investigate the impact of HBV on ApoA5 expression and its regulatory mechanism. Methods Reverse transcription polymerase chain reaction (RT-PCR) and western blotting were used to measure ApoA5 mRNA and protein expression in HepG2 and HepG2.2.15 cells. Enzyme-linked immunosorbent assay (ELISA) was used to measure the serum ApoA5 levels in healthy individuals and HBV patients. HBV infectious clone pHBV1.3 or individual plasmids expressing the HBV genome was cotransfected with the ApoA5 promoter pGL3-Apo5-LUC plasmid into HepG2 cells to assess the luciferase activity. RT-PCR and western blotting methods were used to detect Apo5 mRNA and protein expression, respectively. Results The ApoA5 mRNA and protein expression levels were decreased in HepG2.2.15 cells compared with the control HepG2 cells. The serum ApoA5 levels were 196.4 ± 28.7 μg/L in the healthy individuals and 104.5 ± 18.3 μg/L in the HBV patients, statistical analysis showed that the ApoA5 levels were significantly lower in HBV patients than in the healthy individuals (P < 0.05). pHBV1.3 and its core gene inhibited ApoA5 promoter activity and mRNA and protein expression in HepG2 cells. Conclusion HBV inhibits ApoA5 expression at both the transcriptional and translational levels through its core gene.
Collapse
Affiliation(s)
- Chengliang Zhu
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
| | - Guosheng Gao
- Department of Clinical Laboratory, Ningbo NO. 2 Hospital, Ningbo, 315010, People's Republic of China
| | - Hui Song
- Department of Clinical Laboratory, Gongli Hospital, Second Military Medicine University, Pudong New Area, Shanghai, 200135, People's Republic of China
| | - Fengxia Xu
- Department of Clinical Laboratory, Gongli Hospital, Second Military Medicine University, Pudong New Area, Shanghai, 200135, People's Republic of China
| | - Kailang Wu
- The State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, People's Republic of China
| | - Xinghui Liu
- Department of Clinical Laboratory, Gongli Hospital, Second Military Medicine University, Pudong New Area, Shanghai, 200135, People's Republic of China.
| |
Collapse
|
25
|
Differential transcriptional responses to Ebola and Marburg virus infection in bat and human cells. Sci Rep 2016; 6:34589. [PMID: 27713552 PMCID: PMC5054393 DOI: 10.1038/srep34589] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 09/15/2016] [Indexed: 01/04/2023] Open
Abstract
The unprecedented outbreak of Ebola in West Africa resulted in over 28,000 cases and 11,000 deaths, underlining the need for a better understanding of the biology of this highly pathogenic virus to develop specific counter strategies. Two filoviruses, the Ebola and Marburg viruses, result in a severe and often fatal infection in humans. However, bats are natural hosts and survive filovirus infections without obvious symptoms. The molecular basis of this striking difference in the response to filovirus infections is not well understood. We report a systematic overview of differentially expressed genes, activity motifs and pathways in human and bat cells infected with the Ebola and Marburg viruses, and we demonstrate that the replication of filoviruses is more rapid in human cells than in bat cells. We also found that the most strongly regulated genes upon filovirus infection are chemokine ligands and transcription factors. We observed a strong induction of the JAK/STAT pathway, of several genes encoding inhibitors of MAP kinases (DUSP genes) and of PPP1R15A, which is involved in ER stress-induced cell death. We used comparative transcriptomics to provide a data resource that can be used to identify cellular responses that might allow bats to survive filovirus infections.
Collapse
|
26
|
Cao Z, Xia Z, Zhou Y, Yang X, Hao H, Peng N, Liu S, Zhu Y. Methylcrotonoyl-CoA carboxylase 1 potentiates RLR-induced NF-κB signaling by targeting MAVS complex. Sci Rep 2016; 6:33557. [PMID: 27629939 PMCID: PMC5024325 DOI: 10.1038/srep33557] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/30/2016] [Indexed: 02/07/2023] Open
Abstract
RNA virus infections are detected by the RIG-I family of receptors, which signal through the adaptor molecule mitochondrial antiviral signaling (MAVS). MAVS then recruits the adaptor’s tumor necrosis factor receptor-associated factor (TRAF) 3 and TRAF6, which in turn activate IRF3 and NF-κB, respectively, to induce interferons (IFNs) and inflammatory responses. Here we show that the biotin-containing enzyme methylcrotonoyl-CoA carboxylase 1 (MCCC1) enhances virus-induced, MAVS-mediated IFN and inflammatory cytokine expression through the NF-κB signaling pathway. MCCC1 knockdown strongly inhibits induction of IFNs and inflammatory cytokines. Furthermore, MCCC1 shows extensive antiviral activity toward RNA viruses, including influenza A virus, human enterovirus 71, and vesicular stomatitis virus. Here, we have elucidated the mechanism underlying MCCC1-mediated inhibition of viral replication. MCCC1 interacts with MAVS and components of the MAVS signalosome and contributes to enhanced production of type I IFNs and pro-inflammatory cytokines by promoting phosphorylation of the IκB kinase (IKK) complex and NF-κB inhibitor-α (IκBα), as well as NF-κB nuclear translocation. This process leads to activation of IFNs and cytokine expression and subsequent activation of IFN-stimulated genes, including double-stranded RNA-dependent protein kinase PKR and myxovirus resistance protein 1. These findings demonstrate that MCCC1 plays an essential role in virus-triggered, MAVS-mediated activation of NF-κB signaling.
Collapse
Affiliation(s)
- Zhongying Cao
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhangchuan Xia
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yaqin Zhou
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaodan Yang
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Hua Hao
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Nanfang Peng
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Shi Liu
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ying Zhu
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
27
|
Yang X, Hao H, Xia Z, Xu G, Cao Z, Chen X, Liu S, Zhu Y. Soluble IL-6 Receptor and IL-27 Subunit p28 Protein Complex Mediate the Antiviral Response through the Type III IFN Pathway. THE JOURNAL OF IMMUNOLOGY 2016; 197:2369-81. [PMID: 27527594 DOI: 10.4049/jimmunol.1600627] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/13/2016] [Indexed: 02/07/2023]
Abstract
Previously, we demonstrated that the soluble IL-6R (sIL-6R) plays an important role in the host antiviral response through induction of type I IFN and sIL-6R-mediated antiviral action via the IL-27 subunit p28; however, the mechanism that underlies sIL-6R and p28 antiviral action and whether type III IFN is involved remain unknown. In this study, we constructed a sIL-6R and p28 fusion protein (sIL-6R/p28 FP) and demonstrated that the fusion protein has stronger antiviral activity than sIL-6R alone. Consequently, knockout of sIL-6R inhibited virus-triggered IFN-λ1 expression. In addition, sIL-6R/p28 FP associated with mitochondrial antiviral signaling protein and TNFR-associated factor 6, the retinoic acid-inducible gene I adapter complex, and the antiviral activity mediated by sIL-6R/p28 FP was dependent on mitochondrial antiviral signaling protein. Furthermore, significantly reduced binding of p50/p65 and IFN regulatory factor 3 to the IFN-λ1 promoter was observed in sIL-6R knockout cells compared with the control cells. Interestingly, a novel heterodimer of c-Fos and activating transcription factor 1 was identified as a crucial transcriptional activator of IFN-λ1 The sIL-6R/p28 FP upregulated IFN-λ1 expression by increasing the binding abilities of c-Fos and activating transcription factor 1 to the IFN-λ1 promoter via the p38 MAPK signaling pathway. In conclusion, these results demonstrate the important role of sIL-6R/p28 FP in mediating virus-induced type III IFN production.
Collapse
Affiliation(s)
- Xiaodan Yang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Hua Hao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhangchuan Xia
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Gang Xu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhongying Cao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xueyuan Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Shi Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ying Zhu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
28
|
Wang L, Zhu S, Xu G, Feng J, Han T, Zhao F, She YL, Liu S, Ye L, Zhu Y. Gene Expression and Antiviral Activity of Interleukin-35 in Response to Influenza A Virus Infection. J Biol Chem 2016; 291:16863-76. [PMID: 27307042 DOI: 10.1074/jbc.m115.693101] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Indexed: 01/22/2023] Open
Abstract
Interleukin-35 (IL-35) is a newly described member of the IL-12 family. It has been reported to inhibit inflammation and autoimmune inflammatory disease and can increase apoptotic sensitivity. Little is known about the role of IL-35 during viral infection. Herein, high levels of IL-35 were found in peripheral blood mononuclear cells and throat swabs from patients with seasonal influenza A virus (IAV) relative to healthy individuals. IAV infection of human lung epithelial and primary cells increased levels of IL-35 mRNA and protein. Further studies demonstrated that IAV-induced IL-35 transcription is regulated by NF-κB. IL-35 expression was significantly suppressed by selective inhibitors of cyclooxygenase-2 (COX-2) and inducible nitric-oxide synthase, indicating their involvement in IL-35 expression. Interestingly, IL-35 production may have suppressed IAV RNA replication and viral protein synthesis via induction of type I and III interferons (IFN), leading to activation of downstream IFN effectors, including double-stranded RNA-dependent protein kinase, 2',5'-oligoadenylate synthetase, and myxovirus resistance protein. IL-35 exhibited extensive antiviral activity against the hepatitis B virus, enterovirus 71, and vesicular stomatitis virus. Our results demonstrate that IL-35 is a novel IAV-inducible cytokine, and its production elicits antiviral activity.
Collapse
Affiliation(s)
- Li Wang
- From the The State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Shengli Zhu
- From the The State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Gang Xu
- From the The State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Jian Feng
- From the The State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Tao Han
- From the The State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Fanpeng Zhao
- From the The State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Ying-Long She
- From the The State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Shi Liu
- From the The State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Linbai Ye
- From the The State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Ying Zhu
- From the The State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
29
|
Dudek SE, Nitzsche K, Ludwig S, Ehrhardt C. Influenza A viruses suppress cyclooxygenase-2 expression by affecting its mRNA stability. Sci Rep 2016; 6:27275. [PMID: 27265729 PMCID: PMC4893666 DOI: 10.1038/srep27275] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/13/2016] [Indexed: 02/04/2023] Open
Abstract
Infection with influenza A viruses (IAV) provokes activation of cellular defence mechanisms contributing to the innate immune and inflammatory response. In this process the cyclooxygenase-2 (COX-2) plays an important role in the induction of prostaglandin-dependent inflammation. While it has been reported that COX-2 is induced upon IAV infection, in the present study we observed a down-regulation at later stages of infection suggesting a tight regulation of COX-2 by IAV. Our data indicate the pattern-recognition receptor RIG-I as mediator of the initial IAV-induced COX-2 synthesis. Nonetheless, during on-going IAV replication substantial suppression of COX-2 mRNA and protein synthesis could be detected, accompanied by a decrease in mRNA half-life. Interestingly, COX-2 mRNA stability was not only imbalanced by IAV replication but also by stimulation of cells with viral RNA. Our results reveal tristetraprolin (TTP), which is known to bind COX-2 mRNA and promote its rapid degradation, as regulator of COX-2 expression in IAV infection. During IAV replication and viral RNA accumulation TTP mRNA synthesis was induced, resulting in reduced COX-2 levels. Accordingly, the down-regulation of TTP resulted in increased COX-2 protein expression after IAV infection. These findings indicate a novel IAV-regulated cellular mechanism, contributing to the repression of host defence and therefore facilitating viral replication.
Collapse
Affiliation(s)
- Sabine Eva Dudek
- Institute of Molecular Virology (IMV), Centre for Molecular Biology of Inflammation (ZMBE), Westfaelische Wilhelms-University Muenster, Von-Esmarch-Str. 56, D-48149 Muenster, Germany
| | - Katja Nitzsche
- Institute of Molecular Virology (IMV), Centre for Molecular Biology of Inflammation (ZMBE), Westfaelische Wilhelms-University Muenster, Von-Esmarch-Str. 56, D-48149 Muenster, Germany
| | - Stephan Ludwig
- Institute of Molecular Virology (IMV), Centre for Molecular Biology of Inflammation (ZMBE), Westfaelische Wilhelms-University Muenster, Von-Esmarch-Str. 56, D-48149 Muenster, Germany
- Cluster of Excellence Cells in Motion, University of Muenster, Muenster, Germany
| | - Christina Ehrhardt
- Institute of Molecular Virology (IMV), Centre for Molecular Biology of Inflammation (ZMBE), Westfaelische Wilhelms-University Muenster, Von-Esmarch-Str. 56, D-48149 Muenster, Germany
- Cluster of Excellence Cells in Motion, University of Muenster, Muenster, Germany
| |
Collapse
|
30
|
Asif AR, Qadri S, Ijaz N, Javed R, Ansari AR, Awais M, Younus M, Riaz H, Du X. Genetic signature of strong recent positive selection at interleukin-32 gene in goat. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2016; 30:912-919. [PMID: 27165029 PMCID: PMC5495668 DOI: 10.5713/ajas.15.0941] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/06/2016] [Accepted: 03/25/2016] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Identification of the candidate genes that play key roles in phenotypic variations can provide new information about evolution and positive selection. Interleukin (IL)-32 is involved in many biological processes, however, its role for the immune response against various diseases in mammals is poorly understood. Therefore, the current investigation was performed for the better understanding of the molecular evolution and the positive selection of single nucleotide polymorphisms in IL-32 gene. METHODS By using fixation index (FST ) based method, IL-32 (9375) gene was found to be outlier and under significant positive selection with the provisional combined allocation of mean heterozygosity and FST . Using nucleotide sequences of 11 mammalian species from National Center for Biotechnology Information database, the evolutionary selection of IL-32 gene was determined using Maximum likelihood model method, through four models (M1a, M2a, M7, and M8) in Codeml program of phylogenetic analysis by maximum liklihood. RESULTS IL-32 is detected under positive selection using the FST simulations method. The phylogenetic tree revealed that goat IL-32 was in close resemblance with sheep IL-32. The coding nucleotide sequences were compared among 11 species and it was found that the goat IL-32 gene shared identity with sheep (96.54%), bison (91.97%), camel (58.39%), cat (56.59%), buffalo (56.50%), human (56.13%), dog (50.97%), horse (54.04%), and rabbit (53.41%) respectively. CONCLUSION This study provides evidence for IL-32 gene as under significant positive selection in goat.
Collapse
Affiliation(s)
- Akhtar Rasool Asif
- Key Lab of Animal Genetics, Breeding and Reproduction of Ministry Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.,Theriogenology Department, College of Veterinary and Animal Science, Jhang, Sub campus of University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Sumayyah Qadri
- Theriogenology Department, College of Veterinary and Animal Science, Jhang, Sub campus of University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Nabeel Ijaz
- Key Lab of Animal Genetics, Breeding and Reproduction of Ministry Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ruheena Javed
- Key Lab of Animal Genetics, Breeding and Reproduction of Ministry Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Abdur Rahman Ansari
- Theriogenology Department, College of Veterinary and Animal Science, Jhang, Sub campus of University of Veterinary and Animal Sciences, Lahore 54000, Pakistan.,Department of Anatomy, Histology and Embryology, College of Animal and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Muhammd Awais
- Key Lab of Animal Genetics, Breeding and Reproduction of Ministry Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Muhammad Younus
- Theriogenology Department, College of Veterinary and Animal Science, Jhang, Sub campus of University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Hasan Riaz
- Department of Biosciences, COMSATS Institute of Information Technology, Sahiwal 57000, Pakistan
| | - Xiaoyong Du
- Key Lab of Animal Genetics, Breeding and Reproduction of Ministry Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.,Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan China
| |
Collapse
|
31
|
IL-32: A Novel Pluripotent Inflammatory Interleukin, towards Gastric Inflammation, Gastric Cancer, and Chronic Rhino Sinusitis. Mediators Inflamm 2016; 2016:8413768. [PMID: 27143819 PMCID: PMC4837279 DOI: 10.1155/2016/8413768] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 02/23/2016] [Accepted: 03/20/2016] [Indexed: 12/15/2022] Open
Abstract
A vast variety of nonstructural proteins have been studied for their key roles and involvement in a number of biological phenomenona. Interleukin-32 is a novel cytokine whose presence has been confirmed in most of the mammals except rodents. The IL-32 gene was identified on human chromosome 16 p13.3. The gene has eight exons and nine splice variants, namely, IL-32α, IL-32β, IL-32γ, IL-32δ, IL-32ε, IL-32ζ, IL-32η, IL-32θ, and IL-32s. It was found to induce the expression of various inflammatory cytokines including TNF-α, IL-6, and IL-1β as well as macrophage inflammatory protein-2 (MIP-2) and has been reported previously to be involved in the pathogenesis and progression of a number of inflammatory disorders, namely, inflammatory bowel disease (IBD), gastric inflammation and cancer, rheumatoid arthritis, and chronic obstructive pulmonary disease (COPD). In the current review, we have highlighted the involvement of IL-32 in gastric cancer, gastric inflammation, and chronic rhinosinusitis. We have also tried to explore various mechanisms suspected to induce the expression of this extraordinary cytokine as well as various mechanisms of action employed by IL-32 during the mediation and progression of the above said problems.
Collapse
|
32
|
Cao Z, Zhou Y, Zhu S, Feng J, Chen X, Liu S, Peng N, Yang X, Xu G, Zhu Y. Pyruvate Carboxylase Activates the RIG-I-like Receptor-Mediated Antiviral Immune Response by Targeting the MAVS signalosome. Sci Rep 2016; 6:22002. [PMID: 26906558 PMCID: PMC4764940 DOI: 10.1038/srep22002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 02/05/2016] [Indexed: 02/07/2023] Open
Abstract
When retinoic acid-inducible gene 1 protein (RIG-I)-like receptors sense viral dsRNA in the cytosol, RIG-I and melanoma differentiation-associated gene 5 (MDA5) are recruited to the mitochondria to interact with mitochondrial antiviral signaling protein (MAVS) and initiate antiviral immune responses. In this study, we demonstrate that the biotin-containing enzyme pyruvate carboxylase (PC) plays an essential role in the virus-triggered activation of nuclear factor kappa B (NF-κB) signaling mediated by MAVS. PC contributes to the enhanced production of type I interferons (IFNs) and pro-inflammatory cytokines, and PC knockdown inhibits the virus-triggered innate immune response. In addition, PC shows extensive antiviral activity against RNA viruses, including influenza A virus (IAV), human enterovirus 71 (EV71), and vesicular stomatitis virus (VSV). Furthermore, PC mediates antiviral action by targeting the MAVS signalosome and induces IFNs and pro-inflammatory cytokines by promoting phosphorylation of NF-κB inhibitor-α (IκBα) and the IκB kinase (IKK) complex, as well as NF-κB nuclear translocation, which leads to activation of interferon-stimulated genes (ISGs), including double-stranded RNA-dependent protein kinase (PKR) and myxovirus resistance protein 1 (Mx1). Our findings suggest that PC is an important player in host antiviral signaling.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/immunology
- Animals
- Cell Line, Tumor
- Cytokines/genetics
- Cytokines/immunology
- DEAD Box Protein 58/genetics
- DEAD Box Protein 58/immunology
- Enterovirus A, Human/genetics
- Enterovirus A, Human/immunology
- Gene Expression Regulation
- Genes, Reporter
- HEK293 Cells
- Hepatocytes/immunology
- Hepatocytes/virology
- Humans
- Immunity, Innate
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/immunology
- Interferon Type I/genetics
- Interferon Type I/immunology
- Interferon-Induced Helicase, IFIH1/genetics
- Interferon-Induced Helicase, IFIH1/immunology
- Luciferases/genetics
- Luciferases/immunology
- NF-KappaB Inhibitor alpha/genetics
- NF-KappaB Inhibitor alpha/immunology
- NF-kappa B/genetics
- NF-kappa B/immunology
- Pyruvate Carboxylase/antagonists & inhibitors
- Pyruvate Carboxylase/genetics
- Pyruvate Carboxylase/immunology
- RNA, Small Interfering/genetics
- RNA, Small Interfering/immunology
- RNA, Viral/genetics
- RNA, Viral/immunology
- Receptors, Immunologic
- Signal Transduction
- Vesiculovirus/genetics
- Vesiculovirus/immunology
- eIF-2 Kinase/genetics
- eIF-2 Kinase/immunology
Collapse
Affiliation(s)
- Zhongying Cao
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yaqin Zhou
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Shengli Zhu
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jian Feng
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xueyuan Chen
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Shi Liu
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Nanfang Peng
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaodan Yang
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Gang Xu
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ying Zhu
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
33
|
Cui Y, Sun Z, Li X, Leng C, Zhang L, Fu X, Li L, Zhang X, Chang YU, Nan F, Li Z, Yan J, Zhang M, Li W, Wang G, Zhang D, Ma Y. Expression and clinical significance of cyclooxygenase-2 and interleukin-32 in primary gastric B-cell lymphoma. Oncol Lett 2015; 11:693-698. [PMID: 26870269 DOI: 10.3892/ol.2015.3950] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 05/22/2015] [Indexed: 12/18/2022] Open
Abstract
Cyclooxygenase-2 (COX-2) and interleukin-32 (IL-32) expression has been examined in various carcinomas and inflammations, and has been suggested to be significant in tumor progression and prognosis. The present study was conducted to investigate the expression of COX-2 and IL-32 in primary gastric B-cell lymphoma in order to define their clinical significance and their association with Helicobacter pylori (Hp) infection. COX-2 and IL-32 protein expression was detected in 31 primary gastric B-cell lymphoma patients and 19 chronic gastritis patients with immunohistochemistry. COX-2 and IL-32 expression was significantly higher in primary gastric lymphoma (PGL) tissues compared with gastritis tissues (51.6 vs. 21.1% for COX-2, P=0.032; and 58.1 vs. 26.3% for IL-32, P=0.029) and was significantly higher in Hp+ lymphoma tissues compared with Hp- lymphoma tissues (66.7 vs. 20% for COX-2, P=0.015; and 71.4 vs. 30% for IL-32, P=0.029). In the PGL tissues, the expression level of COX-2 was positively correlated with the expression level of IL-32, and the two were each positively correlated with Hp infection (P=0.004 for COX-2 and IL-32; P=0.01 for COX-2 and Hp infection; and P=0.003 for IL-32 and Hp infection). COX-2 expression was found to be significantly associated (P<0.05) with an aggressive tumor type, higher expression of Ki-67, frequent lymph node metastasis and advanced stage. IL-32 expression was found to be significantly correlated (P<0.05) with frequent lymph node metastasis and an advanced stage. The survival time was longer in the COX-2- and IL-32- lymphoma patients compared with the COX-2+ and IL-32+ lymphoma patients, but these differences were not statistically significant. These results suggested that Hp infection and the expression of COX-2 and IL-32 were closely linked with each other, and that the overexpression of COX-2 and IL-32 was correlated with tumor progression in primary gastric B-cell lymphoma, thus indicating potential novel therapeutic target.
Collapse
Affiliation(s)
- Yingying Cui
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Zhenchang Sun
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xin Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Changsen Leng
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan 450008, P.R. China
| | - Lei Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xiaorui Fu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Ling Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xudong Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Y U Chang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Feifei Nan
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Zhaoming Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Jiaqin Yan
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Wencai Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Guannan Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Dandan Zhang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yaozhen Ma
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
34
|
Rose JJ, Voora D, Cyr DD, Lucas JE, Zaas AK, Woods CW, Newby LK, Kraus WE, Ginsburg GS. Gene Expression Profiles Link Respiratory Viral Infection, Platelet Response to Aspirin, and Acute Myocardial Infarction. PLoS One 2015; 10:e0132259. [PMID: 26193668 PMCID: PMC4507878 DOI: 10.1371/journal.pone.0132259] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 06/12/2015] [Indexed: 01/09/2023] Open
Abstract
Background Influenza infection is associated with myocardial infarction (MI), suggesting that respiratory viral infection may induce biologic pathways that contribute to MI. We tested the hypotheses that 1) a validated blood gene expression signature of respiratory viral infection (viral GES) was associated with MI and 2) respiratory viral exposure changes levels of a validated platelet gene expression signature (platelet GES) of platelet function in response to aspirin that is associated with MI. Methods A previously defined viral GES was projected into blood RNA data from 594 patients undergoing elective cardiac catheterization and used to classify patients as having evidence of viral infection or not and tested for association with acute MI using logistic regression. A previously defined platelet GES was projected into blood RNA data from 81 healthy subjects before and after exposure to four respiratory viruses: Respiratory Syncytial Virus (RSV) (n=20), Human Rhinovirus (HRV) (n=20), Influenza A virus subtype H1N1 (H1N1) (n=24), Influenza A Virus subtype H3N2 (H3N2) (n=17). We tested for the change in platelet GES with viral exposure using linear mixed-effects regression and by symptom status. Results In the catheterization cohort, 32 patients had evidence of viral infection based upon the viral GES, of which 25% (8/32) had MI versus 12.2% (69/567) among those without evidence of viral infection (OR 2.3; CI [1.03-5.5], p=0.04). In the infection cohorts, only H1N1 exposure increased platelet GES over time (time course p-value = 1e-04). Conclusions A viral GES of non-specific, respiratory viral infection was associated with acute MI; 18% of the top 49 genes in the viral GES are involved with hemostasis and/or platelet aggregation. Separately, H1N1 exposure, but not exposure to other respiratory viruses, increased a platelet GES previously shown to be associated with MI. Together, these results highlight specific genes and pathways that link viral infection, platelet activation, and MI especially in the case of H1N1 influenza infection.
Collapse
Affiliation(s)
- Jason J. Rose
- Center for Applied Genomics and Precision Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Deepak Voora
- Center for Applied Genomics and Precision Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Derek D. Cyr
- Center for Applied Genomics and Precision Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Joseph E. Lucas
- Center for Applied Genomics and Precision Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Aimee K. Zaas
- Center for Applied Genomics and Precision Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Christopher W. Woods
- Center for Applied Genomics and Precision Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - L. Kristin Newby
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - William E. Kraus
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Geoffrey S. Ginsburg
- Center for Applied Genomics and Precision Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
35
|
Ota K, Kawaguchi M, Fujita J, Kokubu F, Huang SK, Morishima Y, Matsukura S, Kurokawa M, Ishii Y, Satoh H, Sakamoto T, Hizawa N. Synthetic double-stranded RNA induces interleukin-32 in bronchial epithelial cells. Exp Lung Res 2015; 41:335-43. [DOI: 10.3109/01902148.2015.1033569] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
36
|
Important Role of the IL-32 Inflammatory Network in the Host Response against Viral Infection. Viruses 2015; 7:3116-29. [PMID: 26087456 PMCID: PMC4488729 DOI: 10.3390/v7062762] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 06/11/2015] [Indexed: 12/11/2022] Open
Abstract
The pro-inflammatory cytokine interleukin (IL)-32 has gained much attention recently because of its important role in the inflammatory network. Since the discovery of IL-32 in 2005, our appreciation for its diverse roles continues to grow. Recent studies have discovered the antiviral effects induced by IL-32 and its associated regulatory mechanisms. The interactions between IL-32 and various cytokines including cyclooxygenase 2 (COX-2), inducible nitric oxide synthase (iNOS), interferon (IFN)-λ1, interleukin (IL)-6, and soluble IL-6 receptor have been described. This review aims to integrate these new findings into explicit concepts and raises the intriguing possibility of IL-32 as a therapeutic target.
Collapse
|
37
|
Maintenance of Epstein-Barr Virus Latent Status by a Novel Mechanism, Latent Membrane Protein 1-Induced Interleukin-32, via the Protein Kinase Cδ Pathway. J Virol 2015; 89:5968-80. [PMID: 25810549 DOI: 10.1128/jvi.00168-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 03/16/2015] [Indexed: 01/14/2023] Open
Abstract
UNLABELLED Epstein-Barr virus (EBV), an oncogenic herpesvirus, has the potential to immortalize primary B cells into lymphoblastoid cell lines (LCLs) in vitro. During immortalization, several EBV products induce cytokines or chemokines, and most of these are required for the proliferation of LCLs. Interleukin-32 (IL-32), a recently discovered proinflammatory cytokine, is upregulated after EBV infection, and this upregulation is detectable in all LCLs tested. EBV latent membrane protein 1 (LMP1) is responsible for inducing IL-32 expression at the mRNA and protein levels. Mechanistically, we showed that this LMP1 induction is provided by the p65 subunit of NF-κB, which binds to and activates the IL-32 promoter. Furthermore, the short hairpin RNA (shRNA)-mediated depletion of endogenous LMP1 and p65 in LCLs suppressed IL-32 expression, further suggesting that LMP1 is the key factor that stimulates IL-32 in LCLs via the NF-κB p65 pathway. Functionally, knockdown of IL-32 in LCLs elicits viral reactivation and affects cytokine expression, but it has no impact on cell proliferation and apoptosis. Of note, we reveal the mechanism whereby IL-32 is involved in the maintenance of EBV viral latency by inactivation of Zta promoter activity. This atypical cytoplasmic IL-32 hijacks the Zta activator protein kinase Cδ (PKCδ) and inhibits its translocation from the cytoplasm to the nucleus, where PKCδ binds to the Zta promoter and activates lytic cycle progression. These novel findings reveal that IL-32 is involved in the maintenance of EBV latency in LCLs. This finding may provide new information to explain how EBV maintains latency, in addition to viral chromatin structure and epigenetic modification. IMPORTANCE EBV persists in two states, latency and lytic replication, which is a unique characteristic of human infections. So far, little is known about how herpesviruses maintain latency in particular tissues or cell types. EBV is an excellent model to study this question because more than 90% of people are latently infected. EBV can immortalize primary B cells into lymphoblastoid cell lines in vitro. Expression of IL-32, a novel atypical cytoplasmic proinflammatory cytokine, increased after infection. The expression of IL-32 was controlled by LMP1. In investigating the regulatory mechanism, we demonstrated that the p65 subunit of NF-κB is required for this upregulation. Of note, the important biological activity of IL-32 was to trap protein kinase Cδ in the cytoplasm and prevent it from binding to the Zta promoter, which is the key event for EBV reaction. So, the expression of LMP1-induced IL-32 plays a role in the maintenance of EBV latency.
Collapse
|
38
|
Bian JR, Nie W, Zang YS, Fang Z, Xiu QY, Xu XX. Clinical aspects and cytokine response in adults with seasonal influenza infection. Int J Clin Exp Med 2014; 7:5593-5602. [PMID: 25664078 PMCID: PMC4307525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 11/25/2014] [Indexed: 06/04/2023]
Abstract
Cytokine responses play an important role in the pathogenesis of influenza infection. Previous studies found that cytokine expressions in patients infected with the novel A (H1N1) influenza virus (nvA (H1N1)) could reflect the severity of the disease. But the patterns of cytokine response in patients infected with seasonal influenza virus and the correlations between cytokine responses and clinical data are still unknown. Seventy-two outpatients for laboratory-confirmed seasonal influenza infection were studied: twenty-four seasonal influenza A patients and forty-eight seasonal influenza B patients. Thirty healthy volunteers were enrolled as a control group. Serum samples from influenza patients obtained on the admission day and 6 days later were measured for eight cytokines using enzyme-linked immunosorbent assay (ELISA). The clinical variables were recorded prospectively. The levels of interleukin (IL)-6, IL-33 and tumor necrosis factor (TNF)-α were significantly higher in influenza A patients than those in the control group while IL-6, IL-17A, IL-29, interferon (IFN)-γ and interferon gamma-induced protein (IP)-10 were significantly higher in influenza B patients than those in the control group. Furthermore, IL-17A, IL-29 and IP-10 were increased in seasonal influenza B patients when comparing with those in the seasonal influenza A patients. A positive correlation of IL-29 levels with fever (Spearman's rho, P-values < 0.05) and a negative correlation of IFN-γ and IP-10 levels with lymphocyte count (Spearman's rho, P-values < 0.05) were found in seasonal influenza infection. While a hyperactivated proinflammatory cytokine responses were found in seasonal influenza infection, a higher elevation of cytokines (IL-17A, IL-29 and IP-10) were found in seasonal influenza B infection versus influenza A. IL-29, IFN-γ and IP-10 were important hallmarks in seasonal influenza infection, which can help clinicians make timely treatment decision for severe patients.
Collapse
Affiliation(s)
- Jia-Rong Bian
- Department of Respiratory Medicine, Subei People's Hospital of Jiangsu Province, Clinical Medical School of Yangzhou University Yangzhou 225001, China ; Department of Respiratory Medicine, Shanghai Changzheng Hospital, Second Military Medical University Shanghai 200003, China
| | - Wei Nie
- Department of Respiratory Medicine, Shanghai Changzheng Hospital, Second Military Medical University Shanghai 200003, China
| | - Yuan-Sheng Zang
- Department of Respiratory Medicine, Shanghai Changzheng Hospital, Second Military Medical University Shanghai 200003, China
| | - Zheng Fang
- Department of Respiratory Medicine, Shanghai Changzheng Hospital, Second Military Medical University Shanghai 200003, China
| | - Qing-Yu Xiu
- Department of Respiratory Medicine, Shanghai Changzheng Hospital, Second Military Medical University Shanghai 200003, China
| | - Xing-Xiang Xu
- Department of Respiratory Medicine, Subei People's Hospital of Jiangsu Province, Clinical Medical School of Yangzhou University Yangzhou 225001, China
| |
Collapse
|
39
|
IL-32θ downregulates CCL5 expression through its interaction with PKCδ and STAT3. Cell Signal 2014; 26:3007-15. [PMID: 25280942 DOI: 10.1016/j.cellsig.2014.09.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 08/15/2014] [Accepted: 09/15/2014] [Indexed: 01/11/2023]
Abstract
Interleukin-32 (IL-32) exists in several isoforms and plays an important role in inflammatory response. Recently, we identified a new isoform, IL-32θ, and performed a microarray analysis to identify IL-32θ-regulated genes in THP-1 myelomonocytic cells. Upon stimulating IL-32θ-expressing THP-1 cells with phorbol myristate acetate (PMA), we found that the CCL5 transcript level was significantly reduced. We confirmed the downregulation of CCL5 protein expression by using an enzyme-linked immunosorbent assay (ELISA). Because STAT3 phosphorylation on Ser727 by PKCδ is reported to suppress CCL5 protein expression, we examined whether IL-32θ-mediated STAT3 Ser727 phosphorylation occurs through an interaction with PKCδ. In this study, we first demonstrate that IL-32θ interacts with PKCδ and STAT3 using co-immunoprecipitation (Co-IP) and pulldown assay. Moreover, STAT3 was rarely phosphorylated on Ser727 in the absence of IL-32θ, leading to the binding of STAT3 to the CCL5 promoter. These results indicate that IL-32θ, through its interaction with PKCδ, downregulates CCL5 expression by mediating the phosphorylation of STAT3 on Ser727 to render it transcriptionally inactive. Therefore, similar to what we have reported for IL-32α and IL-32β, our data from this study suggests that the newly identified IL-32θ isoform also acts as an intracellular modulator of inflammation.
Collapse
|
40
|
Park YS, Kang JW, Lee DH, Kim MS, Bak Y, Yang Y, Lee HG, Hong J, Yoon DY. Interleukin-32α downregulates the activity of the B-cell CLL/lymphoma 6 protein by inhibiting protein kinase Cε-dependent SUMO-2 modification. Oncotarget 2014; 5:8765-77. [PMID: 25245533 PMCID: PMC4226720 DOI: 10.18632/oncotarget.2364] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 08/14/2014] [Indexed: 11/25/2022] Open
Abstract
A proinflammatory cytokine IL-32 acts as an intracellular mediator. IL-32α interacts with many intracellular molecules, but there are no reports of interaction with a transcriptional repressor BCL6. In this study, we showed that PMA induces an interaction between IL-32α, PKCε, and BCL6, forming a trimer. To identify the mechanism of the interaction, we treated cells with various inhibitors. In HEK293 and THP-1 cell lines, treatment with a pan-PKC inhibitor, PKCε inhibitor, and PKCδ inhibitor decreased BCL6 and IL-32α protein expression. MAPK inhibitors and classical PKC inhibitor did not decrease PMA-induced BCL6 and IL-32α protein expression. Further, the pan-PKC inhibitor and PKCε inhibitor disrupted PMA-induced interaction between IL-32α and BCL6. These data demonstrate that the intracellular interaction between IL-32α and BCL6 is induced by PMA-activated PKCε. PMA induces post-translational modification of BCL6 by conjugation to SUMO-2, while IL-32α inhibits. PKCε inhibition eliminated PMA-induced SUMOylation of BCL6. Inhibition of BCL6 SUMOylation by IL-32α affected the cellular function and activity of the transcriptional repressor BCL6 in THP-1 cells. Thus, we showed that IL-32α is a negative regulator of the transcriptional repressor BCL6. IL-32α inhibits BCL6 SUMOylation by activating PKCε, resulting in the modulation of BCL6 target genes and cellular functions of BCL6.
Collapse
Affiliation(s)
- Yun Sun Park
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, South Korea
| | - Jeong-Woo Kang
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, South Korea
| | - Dong Hun Lee
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, South Korea
| | - Man Sub Kim
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, South Korea
| | - Yesol Bak
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, South Korea
| | - Young Yang
- Research Center for Women's Disease, Department of Life Systems, Sookmyung Women's University, Seoul, South Korea
| | - Hee Gu Lee
- Medical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - JinTae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, South Korea
| | - Do-Young Yoon
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, South Korea
| |
Collapse
|
41
|
Soluble interleukin-6 receptor is elevated during influenza A virus infection and mediates the IL-6 and IL-32 inflammatory cytokine burst. Cell Mol Immunol 2014; 12:633-44. [PMID: 25176527 DOI: 10.1038/cmi.2014.80] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 07/29/2014] [Accepted: 07/30/2014] [Indexed: 02/07/2023] Open
Abstract
Influenza A virus (IAV) infection is a major worldwide public health problem. However, the factors involved in mediating the inflammatory response to this infection and their relationships remain poorly understood. Here, we show that IAV infection stimulates the expression of the soluble IL-6 receptor (sIL-6R), a multifunctional protein involved in IL-6 signaling. Interestingly, sIL-6R expression upregulated the levels of its own ligand, IL-6 and those of the pro-inflammatory cytokine IL-32. shRNA-mediated knockdown of sIL-6R suppressed IL-6 and IL-32, indicating that this regulation is dependent on sIL-6R during IAV infection. Furthermore, our results demonstrate that IL-32 participates in a negative feedback loop that inhibits sIL-6R while upregulating IL-6 expression during IAV infection. Therefore, we show that sIL-6R is a critical cellular factor involved in the acute inflammatory response to viral infection.
Collapse
|
42
|
Montoya D, Inkeles MS, Liu PT, Realegeno S, Teles RMB, Vaidya P, Munoz MA, Schenk M, Swindell WR, Chun R, Zavala K, Hewison M, Adams JS, Horvath S, Pellegrini M, Bloom BR, Modlin RL. IL-32 is a molecular marker of a host defense network in human tuberculosis. Sci Transl Med 2014; 6:250ra114. [PMID: 25143364 PMCID: PMC4175914 DOI: 10.1126/scitranslmed.3009546] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Tuberculosis is a leading cause of infectious disease-related death worldwide; however, only 10% of people infected with Mycobacterium tuberculosis develop disease. Factors that contribute to protection could prove to be promising targets for M. tuberculosis therapies. Analysis of peripheral blood gene expression profiles of active tuberculosis patients has identified correlates of risk for disease or pathogenesis. We sought to identify potential human candidate markers of host defense by studying gene expression profiles of macrophages, cells that, upon infection by M. tuberculosis, can mount an antimicrobial response. Weighted gene coexpression network analysis revealed an association between the cytokine interleukin-32 (IL-32) and the vitamin D antimicrobial pathway in a network of interferon-γ- and IL-15-induced "defense response" genes. IL-32 induced the vitamin D-dependent antimicrobial peptides cathelicidin and DEFB4 and to generate antimicrobial activity in vitro, dependent on the presence of adequate 25-hydroxyvitamin D. In addition, the IL-15-induced defense response macrophage gene network was integrated with ranked pairwise comparisons of gene expression from five different clinical data sets of latent compared with active tuberculosis or healthy controls and a coexpression network derived from gene expression in patients with tuberculosis undergoing chemotherapy. Together, these analyses identified eight common genes, including IL-32, as molecular markers of latent tuberculosis and the IL-15-induced gene network. As maintaining M. tuberculosis in a latent state and preventing transition to active disease may represent a form of host resistance, these results identify IL-32 as one functional marker and potential correlate of protection against active tuberculosis.
Collapse
Affiliation(s)
- Dennis Montoya
- Division of Dermatology, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Megan S Inkeles
- Department of Molecular, Cell, and Developmental Biology, UCLA, Los Angeles, CA 90095, USA
| | - Phillip T Liu
- Division of Dermatology, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA. UCLA/Orthopaedic Hospital, Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Susan Realegeno
- Division of Dermatology, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA. Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, CA 90095 USA
| | - Rosane M B Teles
- Division of Dermatology, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Poorva Vaidya
- Division of Dermatology, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Marcos A Munoz
- Division of Dermatology, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Mirjam Schenk
- Division of Dermatology, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - William R Swindell
- Department of Dermatology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Rene Chun
- UCLA/Orthopaedic Hospital, Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Kathryn Zavala
- UCLA/Orthopaedic Hospital, Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Martin Hewison
- UCLA/Orthopaedic Hospital, Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - John S Adams
- UCLA/Orthopaedic Hospital, Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Steve Horvath
- Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA. Biostatistics, School of Public Health, UCLA, Los Angeles, CA 90095, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell, and Developmental Biology, UCLA, Los Angeles, CA 90095, USA
| | - Barry R Bloom
- Harvard School of Public Health, Boston, MA 02115, USA
| | - Robert L Modlin
- Division of Dermatology, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA. Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, CA 90095 USA.
| |
Collapse
|
43
|
Nam SY, Oh HA, Choi Y, Park KY, Kim HM, Jeong HJ. Inhibition of IL-32 signaling by bamboo salt decreases pro-inflammatory responses in cellular models of allergic rhinitis. J Med Food 2014; 17:939-48. [PMID: 25089715 DOI: 10.1089/jmf.2013.2996] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Previously, we showed the antiallergic effect of bamboo salt (BS) in allergic rhinitis (AR). We also demonstrated that interleukin (IL)-32 is an important mediator of AR. The aim of this study was to evaluate the effect and specific underlying mechanism of BS, NaCl, and the mineral mixture (components of BS other than NaCl, including zinc, magnesium, and potassium, Mix) on IL-32 signaling using the human monocyte cell line, THP-1. Here, we documented for the first time that BS significantly decreased IL-32-induced thymic stromal lymphopoietin protein and mRNA expression in THP-1 cells. BS treatment significantly inhibited IL-32-induced proinflammatory cytokine production including IL-1β, IL-8, and tumor necrosis factor (TNF)-α by suppressing nuclear factor-κB, p38 mitogen-activated kinase, and caspase-1 pathways. The presence of BS or Mix effectively suppressed IL-32-induced macrophage-like cell differentiation but NaCl exhibited no effect on monocyte-to-macrophage-like cell differentiation. In IL-32-induced macrophages, the production of IL-1β, IL-6, IL-8, and TNF-α, and expression of inducible nitric oxide synthase and cyclooxygenase-2, induced by lipopolysaccharide was dramatically decreased in a dose-dependent manner after BS treatment. BS also significantly decreased IL-32-induced nitric oxide, IL-8, and TNF-α production. Furthermore, BS inhibited granulocyte-macrophage colony-stimulating factor-induced IL-32 and IL-8 protein and mRNA expression in EOL-1 cells. Taken together, BS suppressed inflammatory activity by inhibiting the IL-32 signaling pathway in AR.
Collapse
Affiliation(s)
- Sun-Young Nam
- 1 Department of Pharmacology, College of Korean Medicine, Kyung Hee University , Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
44
|
Galdino H, Maldaner AE, Pessoni LL, Soriani FM, Pereira LIDA, Pinto SA, Duarte FB, Gomes CM, Fleuri AKA, Dorta ML, de Oliveira MAP, Teixeira MM, Batista AC, Joosten LAB, Vieira LQ, Ribeiro-Dias F. Interleukin 32γ (IL-32γ) is highly expressed in cutaneous and mucosal lesions of American Tegumentary Leishmaniasis patients: association with tumor necrosis factor (TNF) and IL-10. BMC Infect Dis 2014; 14:249. [PMID: 24884781 PMCID: PMC4026597 DOI: 10.1186/1471-2334-14-249] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 04/14/2014] [Indexed: 11/10/2022] Open
Abstract
Background The interleukin 32 (IL-32) is a proinflammatory cytokine produced by immune and non-immune cells. It can be induced during bacterial and viral infections, but its production was never investigated in protozoan infections. American Tegumentary Leishmaniasis (ATL) is caused by Leishmania protozoan leading to cutaneous, nasal or oral lesions. The aim of this study was to evaluate the expression of IL-32 in cutaneous and mucosal lesions as well as in peripheral blood mononuclear cells (PBMC) exposed to Leishmania (Viannia) braziliensis. Methods IL-32, tumour necrosis factor (TNF) and IL-10 protein expression was evaluated by immunohistochemistry in cutaneous, mucosal lesions and compared to healthy specimens. The isoforms of IL-32α, β, δ, γ mRNA, TNF mRNA and IL-10 mRNA were assessed by qPCR in tissue biopsies of lesions and healthy skin and mucosa. In addition, PBMC from healthy donors were cultured with amastigotes of L. (V.) braziliensis. In lesions, the parasite subgenus was identified by PCR-RFLP. Results We showed that the mRNA expression of IL-32, in particular IL-32γ was similarly up-regulated in lesions of cutaneous (CL) or mucosal (ML) leishmaniasis patients. IL-32 protein was produced by epithelial, endothelial, mononuclear cells and giant cells. The IL-32 protein expression was associated with TNF in ML but not in CL. IL-32 was not associated with IL-10 in both CL and ML. Expression of TNF mRNA was higher in ML than in CL lesions, however levels of IL-10 mRNA were similar in both clinical forms. In all lesions in which the parasite was detected, L. (Viannia) subgenus was identified. Interestingly, L. (V.) braziliensis induced only IL-32γ mRNA expression in PBMC from healthy individuals. Conclusions These data suggest that IL-32 plays a major role in the inflammatory process caused by L. (Viannia) sp or that IL-32 is crucial for controlling the L. (Viannia) sp infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Fátima Ribeiro-Dias
- Institute of Tropical Pathology and Public Healthy, Universidade Federal de Goiás, Rua 235 S/N - Setor Universitário, Goiânia 74605-050, Goiás, Brazil.
| |
Collapse
|
45
|
Zeng Q, Li S, Zhou Y, Ou W, Cai X, Zhang L, Huang W, Huang L, Wang Q. Interleukin-32 contributes to invasion and metastasis of primary lung adenocarcinoma via NF-kappaB induced matrix metalloproteinases 2 and 9 expression. Cytokine 2014; 65:24-32. [DOI: 10.1016/j.cyto.2013.09.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 09/08/2013] [Accepted: 09/23/2013] [Indexed: 02/03/2023]
|
46
|
Jin S, Zou X. Construction of the influenza A virus infection-induced cell-specific inflammatory regulatory network based on mutual information and optimization. BMC SYSTEMS BIOLOGY 2013; 7:105. [PMID: 24138989 PMCID: PMC4016583 DOI: 10.1186/1752-0509-7-105] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Accepted: 09/20/2013] [Indexed: 12/21/2022]
Abstract
Background Influenza A virus (IAV) infection-induced inflammatory regulatory networks (IRNs) are extremely complex and dynamic. Specific biological experiments for investigating the interactions between individual inflammatory factors cannot provide a detailed and insightful multidimensional view of IRNs. Recently, data from high-throughput technologies have permitted system-level analyses. The construction of large and cell-specific IRNs from high-throughput data is essential to understanding the pathogenesis of IAV infection. Results In this study, we proposed a computational method, which combines nonlinear ordinary differential equation (ODE)-based optimization with mutual information, to construct a cell-specific optimized IRN during IAV infection by integrating gene expression data with a prior knowledge of network topology. Moreover, we used the average relative error and sensitivity analysis to evaluate the effectiveness of our proposed approach. Furthermore, from the optimized IRN, we confirmed 45 interactions between proteins in biological experiments and identified 37 new regulatory interactions and 8 false positive interactions, including the following interactions: IL1β regulates TLR3, TLR3 regulates IFN-β and TNF regulates IL6. Most of these regulatory interactions are statistically significant by Z-statistic. The functional annotations of the optimized IRN demonstrated clearly that the defense response, immune response, response to wounding and regulation of cytokine production are the pivotal processes of IAV-induced inflammatory response. The pathway analysis results from the Kyoto Encyclopaedia of Genes and Genomes (KEGG) showed that 8 pathways are enriched significantly. The 5 pathways were validated by experiments, and 3 other pathways, including the intestinal immune network for IgA production, the cytosolic DNA-sensing pathway and the allograft rejection pathway, are the predicted novel pathways involved in the inflammatory response. Conclusions Integration of knowledge-driven and data-driven methods allows us to construct an effective IRN during IAV infection. Based on the constructed network, we have identified new interactions among inflammatory factors and biological pathways. These findings provide new insight into our understanding of the molecular mechanisms in the inflammatory network in response to IAV infection. Further characterization and experimental validation of the interaction mechanisms identified from this study may lead to a novel therapeutic strategy for the control of infections and inflammatory responses.
Collapse
Affiliation(s)
| | - Xiufen Zou
- School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
47
|
Joosten LAB, Heinhuis B, Netea MG, Dinarello CA. Novel insights into the biology of interleukin-32. Cell Mol Life Sci 2013; 70:3883-92. [PMID: 23463238 PMCID: PMC11113358 DOI: 10.1007/s00018-013-1301-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 02/11/2013] [Accepted: 02/14/2013] [Indexed: 01/25/2023]
Abstract
Interleukin (IL)-32 is known as a proinflammatory cytokine that is likely involved in several diseases, including infections, chronic inflammation, and cancer. Since the first report in 2005, IL-32 has been the subject of numerous studies to unravel the biological function of this molecule. For example, silencing of endogenous IL-32 in primary or cell lines of human origin consistently suppressed responses to Toll-like receptors. The protein folding structure of the six isoforms of IL-32 does not resemble that of any classical cytokine and as of this writing, a specific IL-32 receptor has not been identified. Instead, we propose a mechanism by which exposure to extracellular IL-32 or overexpression of the molecule results in binding to intracellular partners that influences functions such as gene expression, cell death, or survival. As such, this review offers insights into the role of IL-32 in several diseases, host defense, inflammation, immune function, and cancer. Finally, possibilities to target IL-32 in several diseases are proposed.
Collapse
Affiliation(s)
- Leo A B Joosten
- Department of Medicine (463), Radboud University Nijmegen Medical Centre, Geert Grooteplein zuid 8, 6525 GA, Nijmegen, The Netherlands,
| | | | | | | |
Collapse
|
48
|
Soluble interleukin-6 receptor-mediated innate immune response to DNA and RNA viruses. J Virol 2013; 87:11244-54. [PMID: 23946454 DOI: 10.1128/jvi.01248-13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The interleukin-6 (IL-6) receptor, which exists as membrane-bound and soluble forms, plays critical roles in the immune response. The soluble IL-6 receptor (sIL6R) has been identified as a potential therapeutic target for preventing coronary heart disease. However, little is known about the role of this receptor during viral infection. In this study, we show that sIL6R, but not IL-6, is induced by viral infection via the cyclooxygenase-2 pathway. Interestingly, sIL6R, but not IL-6, exhibited extensive antiviral activity against DNA and RNA viruses, including hepatitis B virus, influenza virus, human enterovirus 71, and vesicular stomatitis virus. No synergistic effects on antiviral action were observed by combining sIL6R and IL-6. Furthermore, sIL6R mediated antiviral action via the p28 pathway and induced alpha interferon (IFN-α) by promoting the nuclear translocation of IFN regulatory factor 3 (IRF3) and NF-κB, which led to the activation of downstream IFN effectors, including 2',5'-oligoadenylate synthetase (OAS), double-stranded RNA-dependent protein kinase (PKR), and myxovirus resistance protein (Mx). Thus, our results demonstrate that sIL6R, but not IL-6, plays an important role in the host antiviral response.
Collapse
|
49
|
Li Y, Xie J, Xu X, Liu L, Wan Y, Liu Y, Zhu C, Zhu Y. Inducible interleukin 32 (IL-32) exerts extensive antiviral function via selective stimulation of interferon λ1 (IFN-λ1). J Biol Chem 2013; 288:20927-20941. [PMID: 23729669 PMCID: PMC3774363 DOI: 10.1074/jbc.m112.440115] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 05/15/2013] [Indexed: 01/05/2023] Open
Abstract
Interleukin (IL)-32 has been recognized as a proinflammatory cytokine that participates in responses to viral infection. However, little is known about how IL-32 is induced in response to viral infection and the mechanisms of IL-32-mediated antiviral activities. We discovered that IL-32 is elevated by hepatitis B virus (HBV) infection both in vitro and in vivo and that HBV induced IL-32 expression at the level of both transcription and post-transcription. Furthermore, microRNA-29b was found to be a key factor in HBV-regulated IL-32 expression by directly targeting the mRNA 3'-untranslated region of IL-32. Antiviral analysis showed that IL-32 was not sufficient to alter HBV replication in HepG2.2.15 cells. To mimic the viremic phase of viral infection, freshly isolated peripheral blood mononuclear cells were treated with IL-32γ, the secretory isoform, and the supernatants were used for antiviral assays. Surprisingly, these supernatants exhibited extensive antiviral activity against multiplex viruses besides HBV. Thus, we speculated that the IL-32γ-treated peripheral blood mononuclear cells produced and secreted an unknown antiviral factor. Using antibody neutralization assays, we identified the factor as interferon (IFN)-λ1 and not IFN-α. Further studies indicated that IL-32γ effectively inhibited HBV replication in a hydrodynamic injection mouse model. Clinical data showed that elevated levels of IFN-λ1 both in serum and liver tissue of HBV patients were positively correlated to the increased levels of IL-32. Our results demonstrate that elevated IL-32 levels during viral infection mediate antiviral effects by stimulating the expression of IFN-λ1.
Collapse
Affiliation(s)
- Yongkui Li
- From The State Key Laboratory of Virology, College of Life Sciences, and Chinese-French Liver Disease Research Institute at Zhongnan Hospital, Wuhan University, Wuhan 430072, China and; the Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jiajia Xie
- From The State Key Laboratory of Virology, College of Life Sciences, and Chinese-French Liver Disease Research Institute at Zhongnan Hospital, Wuhan University, Wuhan 430072, China and
| | - Xiupeng Xu
- From The State Key Laboratory of Virology, College of Life Sciences, and Chinese-French Liver Disease Research Institute at Zhongnan Hospital, Wuhan University, Wuhan 430072, China and
| | - Li Liu
- From The State Key Laboratory of Virology, College of Life Sciences, and Chinese-French Liver Disease Research Institute at Zhongnan Hospital, Wuhan University, Wuhan 430072, China and
| | - Yushun Wan
- From The State Key Laboratory of Virology, College of Life Sciences, and Chinese-French Liver Disease Research Institute at Zhongnan Hospital, Wuhan University, Wuhan 430072, China and
| | - Yingle Liu
- From The State Key Laboratory of Virology, College of Life Sciences, and Chinese-French Liver Disease Research Institute at Zhongnan Hospital, Wuhan University, Wuhan 430072, China and
| | - Chengliang Zhu
- From The State Key Laboratory of Virology, College of Life Sciences, and Chinese-French Liver Disease Research Institute at Zhongnan Hospital, Wuhan University, Wuhan 430072, China and
| | - Ying Zhu
- From The State Key Laboratory of Virology, College of Life Sciences, and Chinese-French Liver Disease Research Institute at Zhongnan Hospital, Wuhan University, Wuhan 430072, China and.
| |
Collapse
|
50
|
Huang Y, Qi Y, Ma Y, He R, Ji Y, Sun Z, Ruan Q. The expression of interleukin-32 is activated by human cytomegalovirus infection and down regulated by hcmv-miR-UL112-1. Virol J 2013; 10:51. [PMID: 23402302 PMCID: PMC3598236 DOI: 10.1186/1743-422x-10-51] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 01/28/2013] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Interleukin-32 (IL-32) is an important factor in innate and adaptive immune responses, which activates the p38MAPK, NF-kappa B and AP-1 signaling pathways. Recent reports have highlighted that IL-32 is regulated during viral infection in humans. METHODS Enzyme-linked immunosorbent assays (ELISA) were carried out to detect IL-32 levels in serum samples. Detailed kinetics of the transcription of IL-32 mRNA and expression of IL-32 protein during human cytomegalovirus (HCMV) infection were determined by semi-quantitative RT-PCR and western blot, respectively. The expression levels of hcmv-miR-UL112-1 were detected using TaqMan® miRNA assays during a time course of 96 hours. The effects of hcmv-miR-UL112-1 on IL-32 expression were demonstrated by luciferase assay and western blot, respectively. RESULTS Serum levels of IL-32 in HCMV-IgM positive patients (indicating an active HCMV infection) were significantly higher than those in HCMV-IgM negative controls. HCMV infection activated cellular IL-32 transcription mainly in the immediately early (IE) phase and elevated IL-32 protein levels between 6 and 72 hours post infection (hpi) in the human embryonic lung fibroblast cell line, MRC-5. The expression of hcmv-miR-UL112-1 was detected at 24 hpi and increased gradually as the HCMV-infection process was prolonged. In addition, it was demonstrated that hcmv-miR-UL112-1 targets a sequence in the IL-32 3'-UTR. The protein level of IL-32 in HEK293 cells could be functionally down-regulated by transfected hcmv-miR-UL112-1. CONCLUSIONS IL-32 expression was induced by active HCMV infection and could be functionally down-regulated by ectopically expressed hcmv-miR-UL112-1. Our data may indicate a new strategy of immune evasion by HCMV through post-transcriptional regulation.
Collapse
Affiliation(s)
- Yujing Huang
- Virus Laboratory, the Affiliated Shengjing Hospital, China Medical University, 110004, Shenyang, Liaoning, People’s Republic of China
| | - Ying Qi
- Virus Laboratory, the Affiliated Shengjing Hospital, China Medical University, 110004, Shenyang, Liaoning, People’s Republic of China
| | - Yanping Ma
- Virus Laboratory, the Affiliated Shengjing Hospital, China Medical University, 110004, Shenyang, Liaoning, People’s Republic of China
| | - Rong He
- Virus Laboratory, the Affiliated Shengjing Hospital, China Medical University, 110004, Shenyang, Liaoning, People’s Republic of China
| | - Yaohua Ji
- Virus Laboratory, the Affiliated Shengjing Hospital, China Medical University, 110004, Shenyang, Liaoning, People’s Republic of China
| | - Zhengrong Sun
- Virus Laboratory, the Affiliated Shengjing Hospital, China Medical University, 110004, Shenyang, Liaoning, People’s Republic of China
| | - Qiang Ruan
- Virus Laboratory, the Affiliated Shengjing Hospital, China Medical University, 110004, Shenyang, Liaoning, People’s Republic of China
| |
Collapse
|