1
|
López CM, Alseekh S, Martínez Rivas FJ, Fernie AR, Prieto P, Alamillo JM. CRISPR/Cas9 editing of two adenine phosphoribosyl transferase coding genes reveals the functional specialization of adenine salvage proteins in common bean. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:346-362. [PMID: 39387692 PMCID: PMC11714751 DOI: 10.1093/jxb/erae424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/21/2024] [Indexed: 10/15/2024]
Abstract
Adenine metabolism is important for common bean (Phaseolus vulgaris L.) productivity since this legume uses ureides derived from the oxidation of purine nucleotides as its primary nitrogen storage molecules. Purine nucleotides are produced from de novo synthesis or through salvage pathways. Adenine phosphoribosyl transferase (APRT) is the enzyme dedicated to adenine nucleobase salvage for nucleotide synthesis, but it can also convert active cytokinin bases into their inactive nucleotide forms. In common bean, APRT is encoded by four genes. Gene expression analysis, biochemical properties, and subcellular location indicated functional differences among the common bean APRT isoforms. CRISPR/Cas9 targeted down-regulation of two of the four PvAPRTs followed by metabolomic and physiological analyses of targeted hairy roots revealed that, although the two proteins have redundant functions, PvAPRT1 mostly participated in the salvage of adenine, whereas PvAPRT5 was the predominant form in the regulation of cytokinin homeostasis and stress responses with a high impact in root and nodule growth.
Collapse
Affiliation(s)
- Cristina Mª López
- Departamento de Botánica, Ecología y Fisiología Vegetal, Grupo de Fisiología Molecular y Biotecnología de Plantas, Campus de Excelencia Internacional Agroalimentario, CEIA3, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Saleh Alseekh
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Félix J Martínez Rivas
- Departamento de Botánica, Ecología y Fisiología Vegetal, Grupo de Fisiología Molecular y Biotecnología de Plantas, Campus de Excelencia Internacional Agroalimentario, CEIA3, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Pilar Prieto
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Avda. Menéndez Pidal, Campus Alameda del Obispo s/n, 14004 Córdoba, Spain
| | - Josefa M Alamillo
- Departamento de Botánica, Ecología y Fisiología Vegetal, Grupo de Fisiología Molecular y Biotecnología de Plantas, Campus de Excelencia Internacional Agroalimentario, CEIA3, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain
| |
Collapse
|
2
|
Hang R, Li H, Liu W, Wang R, Hu H, Chen M, You C, Chen X. HOT3/eIF5B1 confers Kozak motif-dependent translational control of photosynthesis-associated nuclear genes for chloroplast biogenesis. Nat Commun 2024; 15:9878. [PMID: 39543117 PMCID: PMC11564774 DOI: 10.1038/s41467-024-54194-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 10/31/2024] [Indexed: 11/17/2024] Open
Abstract
Photosynthesis requires chloroplasts, in which most proteins are nucleus-encoded and produced via cytoplasmic translation. The translation initiation factor eIF5B gates the transition from initiation (I) to elongation (E), and the Kozak motif is associated with translation efficiency, but their relationship is previously unknown. Here, with ribosome profiling, we determined the genome-wide I-E transition efficiencies. We discovered that the most prevalent Kozak motif is associated with high I-E transition efficiency in Arabidopsis, rice, and wheat, thus implicating the potential of the Kozak motif in facilitating the I-E transition. Indeed, the effects of Kozak motifs in promoting translation depend on HOT3/eIF5B1 in Arabidopsis. HOT3 preferentially promotes the translation of photosynthesis-associated nuclear genes in a Kozak motif-dependent manner, which explains the chloroplast defects and reduced photosynthesis activity of hot3 mutants. Our study linked the Kozak motif to eIF5B-mediated I-E transition during translation and uncovered the function of HOT3 in the cytoplasmic translational control of chloroplast biogenesis and photosynthesis.
Collapse
Affiliation(s)
- Runlai Hang
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Joint Center for Life Sciences, Beijing Advanced Center of RNA Biology (BEACON), School of Life Sciences, Peking University, 100871, Beijing, China.
| | - Hao Li
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Joint Center for Life Sciences, Beijing Advanced Center of RNA Biology (BEACON), School of Life Sciences, Peking University, 100871, Beijing, China
| | - Wenjing Liu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Joint Center for Life Sciences, Beijing Advanced Center of RNA Biology (BEACON), School of Life Sciences, Peking University, 100871, Beijing, China
| | - Runyu Wang
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Joint Center for Life Sciences, Beijing Advanced Center of RNA Biology (BEACON), School of Life Sciences, Peking University, 100871, Beijing, China
| | - Hao Hu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Joint Center for Life Sciences, Beijing Advanced Center of RNA Biology (BEACON), School of Life Sciences, Peking University, 100871, Beijing, China
| | - Meng Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA, 92521, USA
| | - Chenjiang You
- College of Life Sciences, Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, 510642, China.
| | - Xuemei Chen
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Joint Center for Life Sciences, Beijing Advanced Center of RNA Biology (BEACON), School of Life Sciences, Peking University, 100871, Beijing, China.
| |
Collapse
|
3
|
Adamiec M, Luciński R. The Roles of RNA Modifications in Regulating Chloroplast Performance and Photosynthesis Efficiency. Int J Mol Sci 2024; 25:11912. [PMID: 39595982 PMCID: PMC11594162 DOI: 10.3390/ijms252211912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
The regulation of gene expression is crucial for maintaining cellular activities and responding to environmental stimuli. RNA molecules are central to this regulatory network, influencing transcription, post-transcriptional processing, and translation. Recent advancements have expanded our understanding of RNA modifications beyond the nucleus, highlighting their impact on chloroplast function and photosynthesis efficiency. Chloroplasts, essential for photosynthesis, rely on precise genetic regulation to adapt to environmental changes. RNA modifications, such as methylation and pseudouridylation, are critical in regulating chloroplast RNA stability, processing, and translation. This review summarizes current knowledge of how RNA modifications affect chloroplast function and photosynthesis. It discusses the roles of specific RNA modifications occurring in chloroplast RNA, including N6-methyladenosine (m6A), 5-methylcytosine (m5C), and pseudouridylation, as well as the enzymes which are known to be involved in these processes. This review also explores extrachloroplastic RNA modifications that influence chloroplast function, emphasizing the importance of m6A and m5C modifications and their associated enzymes.
Collapse
Affiliation(s)
- Małgorzata Adamiec
- Department of Plant Physiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland;
| | | |
Collapse
|
4
|
Hancock CN, Germany T, Redd P, Timmons J, Lipford J, Burns S, Cervantes‐Perez SA, Libault M, Shen W, An YC, Kanizay L, Yerka M, Parrott WA. A strategy for identification and characterization of genic mutations using a temperature-sensitive chlorotic soybean mutant as an example. PLANT DIRECT 2024; 8:e70011. [PMID: 39513014 PMCID: PMC11539004 DOI: 10.1002/pld3.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/21/2024] [Accepted: 09/22/2024] [Indexed: 11/15/2024]
Abstract
Screening a transposon-mutagenized soybean population led to the discovery of a recessively inherited chlorotic phenotype. This "y24" phenotype results in smaller stature, weaker stems, and a smaller root system. Genome sequencing identified 15 candidate genes with mutations likely to result in a loss of function. Amplicon sequencing of a segregating population was then used to narrow the list to a single candidate mutation, a single-base change in Glyma.07G102300 that disrupts splicing of the second intron. Single cell transcriptomic profiling indicates that this gene is expressed primarily in mesophyll cells, and RNA sequencing data indicate that it is upregulated in germinating seedlings by cold stress. Previous studies have shown that mutations to Os05g34040, the rice ortholog of Glyma.07G102300, produced a chlorotic phenotype that was more pronounced in cool temperatures. Growing soybean y24 mutants at lower temperatures also resulted in a more severe phenotype. In addition, transgenic expression of wild-type Glyma.07G102300 in the knockout mutant of the Arabidopsis ortholog At4930720 rescues the chlorotic phenotype, further supporting the hypothesis that the mutation in Glyma.07G102300 is causal of the y24 phenotype. The variant analysis strategy used to identify the genes underlying this phenotype provides a template for the study of other soybean mutants.
Collapse
Affiliation(s)
- C. Nathan Hancock
- Department of Biological, Ecological, and Earth ScienceUniversity of South Carolina AikenAikenSouth CarolinaUSA
| | - Tetandianocee Germany
- Department of Biological, Ecological, and Earth ScienceUniversity of South Carolina AikenAikenSouth CarolinaUSA
| | - Priscilla Redd
- Department of Biological, Ecological, and Earth ScienceUniversity of South Carolina AikenAikenSouth CarolinaUSA
| | - Jack Timmons
- Department of Biological, Ecological, and Earth ScienceUniversity of South Carolina AikenAikenSouth CarolinaUSA
| | - Jeffery Lipford
- Department of Biological, Ecological, and Earth ScienceUniversity of South Carolina AikenAikenSouth CarolinaUSA
| | - Samantha Burns
- Department of Biological, Ecological, and Earth ScienceUniversity of South Carolina AikenAikenSouth CarolinaUSA
| | - Sergio Alan Cervantes‐Perez
- Department of Agronomy and HorticultureUniversity of Nebraska‐LincolnLincolnNebraskaUSA
- The School of Plant SciencesUniversity of ArizonaTucsonArizonaUSA
| | - Marc Libault
- Plant Science and TechnologyUniversity of MissouriColumbiaMissouriUSA
| | - Wenhao Shen
- Donald Danforth Plant Science CenterSt. LouisMissouriUSA
| | - Yong‐qiang Charles An
- USDA‐ARS Plant Genetics Research UnitDanforth Plant Science CenterSaint LouisMissouriUSA
| | - Lisa Kanizay
- Institute of Plant Breeding, Genetics & Genomics and Department of Crop and Soil SciencesUniversity of GeorgiaAthensGeorgiaUSA
- Bayer Crop ScienceSt. LouisMissouriUSA
| | - Melinda Yerka
- Institute of Plant Breeding, Genetics & Genomics and Department of Crop and Soil SciencesUniversity of GeorgiaAthensGeorgiaUSA
- Department of Agriculture, Veterinary and Rangeland SciencesUniversity of NevadaRenoNevadaUSA
| | - Wayne A. Parrott
- Institute of Plant Breeding, Genetics & Genomics and Department of Crop and Soil SciencesUniversity of GeorgiaAthensGeorgiaUSA
| |
Collapse
|
5
|
Stolle DS, Osterhoff L, Treimer P, Lambertz J, Karstens M, Keller JM, Gerlach I, Bischoff A, Dünschede B, Rödiger A, Herrmann C, Baginsky S, Hofmann E, Zoschke R, Armbruster U, Nowaczyk MM, Schünemann D. STIC2 selectively binds ribosome-nascent chain complexes in the cotranslational sorting of Arabidopsis thylakoid proteins. EMBO J 2024; 43:4699-4719. [PMID: 39192033 PMCID: PMC11480477 DOI: 10.1038/s44318-024-00211-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
Chloroplast-encoded multi-span thylakoid membrane proteins are crucial for photosynthetic complexes, yet the coordination of their biogenesis remains poorly understood. To identify factors that specifically support the cotranslational biogenesis of the reaction center protein D1 of photosystem (PS) II, we generated and affinity-purified stalled ribosome-nascent chain complexes (RNCs) bearing D1 nascent chains. Stalled RNCs translating the soluble ribosomal subunit uS2c were used for comparison. Quantitative tandem-mass spectrometry of the purified RNCs identified around 140 proteins specifically associated with D1 RNCs, mainly involved in protein and cofactor biogenesis, including chlorophyll biosynthesis, and other metabolic pathways. Functional analysis of STIC2, a newly identified D1 RNC interactor, revealed its cooperation with chloroplast protein SRP54 in the de novo biogenesis and repair of D1, and potentially other cotranslationally-targeted reaction center subunits of PSII and PSI. The primary binding interface between STIC2 and the thylakoid insertase Alb3 and its homolog Alb4 was mapped to STIC2's β-sheet region, and the conserved Motif III in the C-terminal regions of Alb3/4.
Collapse
Affiliation(s)
- Dominique S Stolle
- Molecular Biology of Plant Organelles, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Lena Osterhoff
- Molecular Biology of Plant Organelles, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Paul Treimer
- Molecular Biology of Plant Organelles, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Jan Lambertz
- Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Marie Karstens
- Molecular Biology of Plant Organelles, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | | | - Ines Gerlach
- Max Planck Institute of Molecular Plant Physiology, Potsdam Science Park, Potsdam, Germany
| | - Annika Bischoff
- Molecular Biology of Plant Organelles, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Beatrix Dünschede
- Molecular Biology of Plant Organelles, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Anja Rödiger
- Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Christian Herrmann
- Physical Chemistry I, Faculty for Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Sacha Baginsky
- Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Eckhard Hofmann
- Protein Crystallography, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Reimo Zoschke
- Max Planck Institute of Molecular Plant Physiology, Potsdam Science Park, Potsdam, Germany
| | - Ute Armbruster
- Max Planck Institute of Molecular Plant Physiology, Potsdam Science Park, Potsdam, Germany
- Molecular Photosynthesis, Faculty of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Marc M Nowaczyk
- Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Danja Schünemann
- Molecular Biology of Plant Organelles, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany.
| |
Collapse
|
6
|
Chen T, Xu T, Wang J, Zhang T, Yang J, Feng L, Song T, Yang J, Wu Y. Transcriptomic and free monoterpene analyses of aroma reveal that isopentenyl diphosphate isomerase inhibits monoterpene biosynthesis in grape (Vitis vinifera L.). BMC PLANT BIOLOGY 2024; 24:595. [PMID: 38914931 PMCID: PMC11197285 DOI: 10.1186/s12870-024-05306-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/18/2024] [Indexed: 06/26/2024]
Abstract
BACKGROUND Monoterpenes are among the most important volatile aromatic compounds contributing to the flavor and aroma of grapes and wine. However, the molecular basis of monoterpene biosynthesis has not yet been fully elucidated. RESULTS In our study, transcriptomics and gas chromatography-mass spectrometry (GC-MS) were used to mine candidate genes and transcription factors involved in monoterpene biosynthesis between high-monoterpene and zero-monoterpene table grape cultivars. We found that monoterpene biosynthesis was positively correlated by the expression of five genes encoding 1-deoxy-D-xylulose-5-phosphate synthase (VvDXSs), one encoding 4-hydroxy-3-methylbut-2-enyl diphosphate reductase (VvHDR), three hydroxy-3-methylglutaryl-CoA synthases (VvHMGSs) and one mevalonate kinase (VvMVK), whereas the expression of one isopentenyl diphosphate isomerase (VvIDI) and one 3-hydroxy-3-methylglutaryl-CoA reductase (VvHMGR) negatively correlated monoterpene biosynthesis. Of these genes, VvIDI was selected to validate its function in monoterpene accumulation through a transient overexpression experiment, and was shown to inhibit the biosynthesis of grape linalool and α-terpineol. Meanwhile, we found that a 64-amino acid extension sequence at the N-terminus can guide the VvIDI protein to target the chloroplast. CONCLUSIONS The findings of this study should help to guide future functional analysis of key genes as well as mining the potential regulatory mechanism of monoterpene biosynthesis in grapes and grape products.
Collapse
Affiliation(s)
- Tianchi Chen
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Tao Xu
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China
| | - Jinnan Wang
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Tianye Zhang
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jin Yang
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Lixiao Feng
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Tiefeng Song
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jian Yang
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| | - Yueyan Wu
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China.
| |
Collapse
|
7
|
Schmid LM, Manavski N, Chi W, Meurer J. Chloroplast Ribosome Biogenesis Factors. PLANT & CELL PHYSIOLOGY 2024; 65:516-536. [PMID: 37498958 DOI: 10.1093/pcp/pcad082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/13/2023] [Accepted: 07/25/2023] [Indexed: 07/29/2023]
Abstract
The formation of chloroplasts can be traced back to an ancient event in which a eukaryotic host cell containing mitochondria ingested a cyanobacterium. Since then, chloroplasts have retained many characteristics of their bacterial ancestor, including their transcription and translation machinery. In this review, recent research on the maturation of rRNA and ribosome assembly in chloroplasts is explored, along with their crucial role in plant survival and their implications for plant acclimation to changing environments. A comparison is made between the ribosome composition and auxiliary factors of ancient and modern chloroplasts, providing insights into the evolution of ribosome assembly factors. Although the chloroplast contains ancient proteins with conserved functions in ribosome assembly, newly evolved factors have also emerged to help plants acclimate to changes in their environment and internal signals. Overall, this review offers a comprehensive analysis of the molecular mechanisms underlying chloroplast ribosome assembly and highlights the importance of this process in plant survival, acclimation and adaptation.
Collapse
Affiliation(s)
- Lisa-Marie Schmid
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, Planegg-Martinsried 82152, Germany
| | - Nikolay Manavski
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, Planegg-Martinsried 82152, Germany
| | - Wei Chi
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jörg Meurer
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, Planegg-Martinsried 82152, Germany
| |
Collapse
|
8
|
Xu Y, Hong Z, Yu S, Huang R, Li K, Li M, Xie S, Zhu L. Fresh Insights Into SLC25A26: Potential New Therapeutic Target for Cancers: A Review. Oncol Rev 2024; 18:1379323. [PMID: 38745827 PMCID: PMC11091378 DOI: 10.3389/or.2024.1379323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/02/2024] [Indexed: 05/16/2024] Open
Abstract
SLC25A26 is the only known human mitochondrial S-adenosylmethionine carrier encoding gene. Recent studies have shown that SLC25A26 is abnormally expressed in some cancers, such as cervical cancer, low-grade glioma, non-small cell lung cancer, and liver cancer, which suggests SLC25A26 can affect the occurrence and development of some cancers. This article in brief briefly reviewed mitochondrial S-adenosylmethionine carrier in different species and its encoding gene, focused on the association of SLC25A26 aberrant expression and some cancers as well as potential mechanisms, summarized its potential for cancer prognosis, and characteristics of mitochondrial diseases caused by SLC25A26 mutation. Finally, we provide a brief expectation that needs to be further investigated. We speculate that SLC25A26 will be a potential new therapeutic target for some cancers.
Collapse
Affiliation(s)
- Yangheng Xu
- Science and Engineering, National University of Defense Technology, Changsha, China
| | - Zhisheng Hong
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Sheng Yu
- Science and Engineering, National University of Defense Technology, Changsha, China
| | - Ronghan Huang
- Science and Engineering, National University of Defense Technology, Changsha, China
| | - Kunqi Li
- Science and Engineering, National University of Defense Technology, Changsha, China
| | - Ming Li
- Department of Biology and Chemistry, College of Sciences, National University of Defense Technology, Changsha, China
| | - Sisi Xie
- Department of Biology and Chemistry, College of Sciences, National University of Defense Technology, Changsha, China
| | - Lvyun Zhu
- Department of Biology and Chemistry, College of Sciences, National University of Defense Technology, Changsha, China
| |
Collapse
|
9
|
Romer J, Gutbrod K, Schuppener A, Melzer M, Müller-Schüssele SJ, Meyer AJ, Dörmann P. Tocopherol and phylloquinone biosynthesis in chloroplasts requires the phytol kinase VITAMIN E PATHWAY GENE5 (VTE5) and the farnesol kinase (FOLK). THE PLANT CELL 2024; 36:1140-1158. [PMID: 38124486 PMCID: PMC10980339 DOI: 10.1093/plcell/koad316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023]
Abstract
Chlorophyll degradation causes the release of phytol, which is converted into phytyl diphosphate (phytyl-PP) by phytol kinase (VITAMIN E PATHWAY GENE5 [VTE5]) and phytyl phosphate (phytyl-P) kinase (VTE6). The kinase pathway is important for tocopherol synthesis, as the Arabidopsis (Arabidopsis thaliana) vte5 mutant contains reduced levels of tocopherol. Arabidopsis harbors one paralog of VTE5, farnesol kinase (FOLK) involved in farnesol phosphorylation. Here, we demonstrate that VTE5 and FOLK harbor kinase activities for phytol, geranylgeraniol, and farnesol with different specificities. While the tocopherol content of the folk mutant is unchanged, vte5-2 folk plants completely lack tocopherol. Tocopherol deficiency in vte5-2 plants can be complemented by overexpression of FOLK, indicating that FOLK is an authentic gene of tocopherol synthesis. The vte5-2 folk plants contain only ∼40% of wild-type amounts of phylloquinone, demonstrating that VTE5 and FOLK both contribute in part to phylloquinone synthesis. Tocotrienol and menaquinone-4 were produced in vte5-2 folk plants after supplementation with homogentisate or 1,4-dihydroxy-2-naphthoic acid, respectively, indicating that their synthesis is independent of the VTE5/FOLK pathway. These results show that phytyl moieties for tocopherol synthesis are completely but, for phylloquinone production, only partially derived from geranylgeranyl-chlorophyll and phytol phosphorylation by VTE5 and FOLK.
Collapse
Affiliation(s)
- Jill Romer
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, 53115 Bonn, Germany
| | - Katharina Gutbrod
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, 53115 Bonn, Germany
| | - Antonia Schuppener
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, 53115 Bonn, Germany
| | - Michael Melzer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department Physiology and Cell Biology, 06466 Seeland, OT Gatersleben, Germany
| | | | - Andreas J Meyer
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, 53113 Bonn, Germany
| | - Peter Dörmann
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, 53115 Bonn, Germany
| |
Collapse
|
10
|
Ciesielska M, Adamiec M, Luciński R. S2P2-the chloroplast-located intramembrane protease and its impact on the stoichiometry and functioning of the photosynthetic apparatus of A. thaliana. FRONTIERS IN PLANT SCIENCE 2024; 15:1372318. [PMID: 38559762 PMCID: PMC10978774 DOI: 10.3389/fpls.2024.1372318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/26/2024] [Indexed: 04/04/2024]
Abstract
S2P2 is a nuclear-encoded protease, potentially located in chloroplasts, which belongs to the zinc-containing, intramembrane, site-2 protease (S2P) family. In A. thaliana cells, most of the S2P proteases are located within the chloroplasts, where they play an important role in the development of chloroplasts, maintaining proper stoichiometric relations between polypeptides building photosynthetic complexes and influencing the sensitivity of plants to photoinhibitory conditions. Among the known chloroplast S2P proteases, S2P2 protease is one of the least known. Its exact location within the chloroplast is not known, nor is anything known about its possible physiological functions. Therefore, we decided to investigate an intra-chloroplast localization and the possible physiological role of S2P2. To study the intra-chloroplast localization of S2P2, we used specific anti-S2P2 antibodies and highly purified chloroplast fractions containing envelope, stroma, and thylakoid proteins. To study the physiological role of the protease, we used two lines of insertion mutants lacking the S2P2 protease protein. Here, we present results demonstrating the thylakoid localization of S2P2. Moreover, we present experimental evidence indicating that the lack of S2P2 in A. thaliana chloroplasts leads to a significant decrease in the level of photosystem I and photosystem II core proteins: PsaB, PsbA, PsbD, and PsbC, as well as polypeptides building both the main light-harvesting antenna (LHC II), Lhcb1 and Lhcb2, as well as Lhcb4 and Lhcb5 polypeptides, constituting elements of the minor, peripheral antenna system. These changes are associated with a decrease in the number of PS II-LHC II supercomplexes. The consequence of these disorders is a greater sensitivity of s2p2 mutants to photoinhibition. The obtained results clearly indicate that the S2P2 protease is another thylakoid protein that plays an important role in the proper functioning of A. thaliana chloroplasts, especially in high-light-intensity conditions.
Collapse
Affiliation(s)
| | | | - Robert Luciński
- Department of Plant Physiology, Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| |
Collapse
|
11
|
Taghvimi P, Mohsenzadeh Golfazani M, Taghvaei MM, Samizadeh Lahiji H. Investigating the effect of drought stress and methanol spraying on the influential genes in the Calvin cycle and photorespiration of rapeseed ( Brassica napus). FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23280. [PMID: 38467163 DOI: 10.1071/fp23280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/21/2024] [Indexed: 03/13/2024]
Abstract
Due to global warming and changes in precipitation patterns, many regions are prone to permanent drought. Rapeseed (Brassica napus ) is one of the main sources of edible oils worldwide, and its production and yield are affected by drought. In this study, gene expression alterations under drought stress are investigated with bioinformatics studies to examine evolutionary relations of conserved motifs structure and interactions among Calvin cycle and photorespiration pathways key genes in drought-tolerant (SLM046) and drought-sensitive (Hayola308) genotypes of rapeseed. Investigating the conservation and evolutionary relationships revealed high conservation in motifs of FBPase, PRK, GlyK and NADP-ME enzymes. The analysis of protein interactions showed the correlation between FTRC, FBPase1, PRKX1, GlyKX2 and NADP-ME4 genes. Furthermore, in rapeseed, for the GlyKX2 and NADP-ME4 genes, four microRNAs of the miR172 family and four members of the miR167 family were identified as post-transcriptional regulators, respectively. The expression of ferredoxin thioredoxin reductase, fructose-1,6-bisphosphatase genes, phosphoribulokinase, glycerate kinase and malic enzyme 4 genes in the two rapeseed genotypes were evaluated by real-time qPCR method under 72h of drought stress and methanol foliar application. As a result, the highest expression levels of FTRC, PRKX1, GlyKX2, NADP-ME4 and FBPase1 were observed in methanol foliar application on the SLM046 genotype at 24h. In contrast, in methanol foliar application on the Hayola308 genotype, the highest expression levels of FTRC, PRKX1, GlyKX2, NADP-ME4 and FBPase1 were observed 8h after the treatment. Our study illustrated that methanol foliar application enhanced plant tolerance under drought stress.
Collapse
Affiliation(s)
- Parisa Taghvimi
- Department of Agricultural Biotechnology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | | | - Mohammad Mahdi Taghvaei
- Department of Agricultural Biotechnology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - Habibollah Samizadeh Lahiji
- Department of Agricultural Biotechnology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| |
Collapse
|
12
|
van Wijk KJ, Bentolila S, Leppert T, Sun Q, Sun Z, Mendoza L, Li M, Deutsch EW. Detection and editing of the updated Arabidopsis plastid- and mitochondrial-encoded proteomes through PeptideAtlas. PLANT PHYSIOLOGY 2024; 194:1411-1430. [PMID: 37879112 DOI: 10.1093/plphys/kiad572] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/12/2023] [Accepted: 09/23/2023] [Indexed: 10/27/2023]
Abstract
Arabidopsis (Arabidopsis thaliana) ecotype Col-0 has plastid and mitochondrial genomes encoding over 100 proteins. Public databases (e.g. Araport11) have redundancy and discrepancies in gene identifiers for these organelle-encoded proteins. RNA editing results in changes to specific amino acid residues or creation of start and stop codons for many of these proteins, but the impact of RNA editing at the protein level is largely unexplored due to the complexities of detection. Here, we assembled the nonredundant set of identifiers, their correct protein sequences, and 452 predicted nonsynonymous editing sites of which 56 are edited at lower frequency. We then determined accumulation of edited and/or unedited proteoforms by searching ∼259 million raw tandem MS spectra from ProteomeXchange, which is part of PeptideAtlas (www.peptideatlas.org/builds/arabidopsis/). We identified all mitochondrial proteins and all except 3 plastid-encoded proteins (NdhG/Ndh6, PsbM, and Rps16), but no proteins predicted from the 4 ORFs were identified. We suggest that Rps16 and 3 of the ORFs are pseudogenes. Detection frequencies for each edit site and type of edit (e.g. S to L/F) were determined at the protein level, cross-referenced against the metadata (e.g. tissue), and evaluated for technical detection challenges. We detected 167 predicted edit sites at the proteome level. Minor frequency sites were edited at low frequency at the protein level except for cytochrome C biogenesis 382 at residue 124 (Ccb382-124). Major frequency sites (>50% editing of RNA) only accumulated in edited form (>98% to 100% edited) at the protein level, with the exception of Rpl5-22. We conclude that RNA editing for major editing sites is required for stable protein accumulation.
Collapse
Affiliation(s)
- Klaas J van Wijk
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY 14853, USA
| | - Stephane Bentolila
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Tami Leppert
- Institute for Systems Biology (ISB), Seattle, WA 98109, USA
| | - Qi Sun
- Computational Biology Service Unit, Cornell University, Ithaca, NY 14853, USA
| | - Zhi Sun
- Institute for Systems Biology (ISB), Seattle, WA 98109, USA
| | - Luis Mendoza
- Institute for Systems Biology (ISB), Seattle, WA 98109, USA
| | - Margaret Li
- Institute for Systems Biology (ISB), Seattle, WA 98109, USA
| | - Eric W Deutsch
- Institute for Systems Biology (ISB), Seattle, WA 98109, USA
| |
Collapse
|
13
|
Kumari N, Mishra GP, Dikshit HK, Gupta S, Roy A, Sinha SK, Mishra DC, Das S, Kumar RR, Nair RM, Aski M. Identification of quantitative trait loci (QTLs) regulating leaf SPAD value and trichome density in mungbean ( Vigna radiata L.) using genotyping-by-sequencing (GBS) approach. PeerJ 2024; 12:e16722. [PMID: 38406271 PMCID: PMC10893866 DOI: 10.7717/peerj.16722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/04/2023] [Indexed: 02/27/2024] Open
Abstract
Quantitative trait loci (QTL) mapping is used for the precise localization of genomic regions regulating various traits in plants. Two major QTLs regulating Soil Plant Analysis Development (SPAD) value (qSPAD-7-1) and trichome density (qTric-7-2) in mungbean were identified using recombinant inbred line (RIL) populations (PMR-1×Pusa Baisakhi) on chromosome 7. Functional analysis of QTL region identified 35 candidate genes for SPAD value (16 No) and trichome (19 No) traits. The candidate genes regulating trichome density on the dorsal leaf surface of the mungbean include VRADI07G24840, VRADI07G17780, and VRADI07G15650, which encodes for ZFP6, TFs bHLH DNA-binding superfamily protein, and MYB102, respectively. Also, candidate genes having vital roles in chlorophyll biosynthesis are VRADIO7G29860, VRADIO7G29450, and VRADIO7G28520, which encodes for s-adenosyl-L-methionine, FTSHI1 protein, and CRS2-associated factor, respectively. The findings unfolded the opportunity for the development of customized genotypes having high SPAD value and high trichome density having a possible role in yield and mungbean yellow vein mosaic India virus (MYMIV) resistance in mungbean.
Collapse
Affiliation(s)
- Nikki Kumari
- Genetics, Indian Agricultural Research Institute, New Delhi, Delhi, India
| | | | | | - Soma Gupta
- Genetics, Indian Agricultural Research Institute, New Delhi, Delhi, India
| | - Anirban Roy
- Plant Pathology, Indian Agricultural Research Institute, New Delhi, Delhi, India
| | - Subodh Kumar Sinha
- Biotechnology, National Institute of Plant Biotechnology, New Delhi, Delhi, India
| | - Dwijesh C. Mishra
- Agricultural Bioinformatics, Indian Agricultural Statistics Research Institute, New Delhi, Delhi, India
| | - Shouvik Das
- Genetics, Indian Agricultural Research Institute, New Delhi, Delhi, India
| | - Ranjeet R. Kumar
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi, Delhi, India
| | | | - Muraleedhar Aski
- Genetics, Indian Agricultural Research Institute, New Delhi, Delhi, India
| |
Collapse
|
14
|
Hancock CN, Germany T, Redd P, Timmons J, Lipford J, Burns S, Cervantes-Perez SA, Libault M, Shen W, An YQC, Kanizay L, Yerka M, Parrott WA. Identification and characterization of a temperature sensitive chlorotic soybean mutant. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.02.578604. [PMID: 38352530 PMCID: PMC10862810 DOI: 10.1101/2024.02.02.578604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Screening a transposon-mutagenized soybean population led to the discovery of a recessively inherited chlorotic phenotype. This "vir1" phenotype results in smaller stature, weaker stems, and a smaller root system with smaller nodules. Genome sequencing identified 15 candidate genes with mutations likely to result in a loss of function. Amplicon sequencing of a segregating population was then used to narrow the list to a single candidate mutation, a single-base change in Glyma.07G102300 that disrupts splicing of the second intron. Single cell transcriptomic profiling indicates that this gene is expressed primarily in mesophyll cells and RNA sequencing data indicates it is upregulated in germinating seedlings by cold stress. Previous studies have shown that mutations to Os05g34040, the rice homolog of Glyma.07G102300, produced a chlorotic phenotype that was more pronounced in cool temperatures. Growing soybean vir1 mutants at lower temperatures also resulted in a more severe phenotype. In addition, transgenic expression of wild type Glyma.07G102300 in the knockout mutant of the Arabidopsis homolog At4930720 rescues the chlorotic phenotype, further supporting the hypothesis that the mutation in Glyma.07G102300 is causal of the vir1 phenotype.
Collapse
Affiliation(s)
- C. Nathan Hancock
- Department of Biology and Geology, University of South Carolina Aiken, Aiken, SC
| | | | - Priscilla Redd
- Department of Biology and Geology, University of South Carolina Aiken, Aiken, SC
| | - Jack Timmons
- Department of Biology and Geology, University of South Carolina Aiken, Aiken, SC
| | - Jeffery Lipford
- Department of Biology and Geology, University of South Carolina Aiken, Aiken, SC
| | - Samantha Burns
- Department of Biology and Geology, University of South Carolina Aiken, Aiken, SC
| | | | - Marc Libault
- Plant Science and Technology, University of Missouri, Columbia, MO
| | - Wenhao Shen
- Donald Danforth Plant Science Center, St. Louis, MO
| | - Yong-qiang Charles An
- USDA-ARS Plant Genetics Research Unit, Danforth Plant Science Center, Saint Louis, MO
| | - Lisa Kanizay
- Center for Applied Genetic Technology, University of Georgia, Athens, GA
| | - Melinda Yerka
- Center for Applied Genetic Technology, University of Georgia, Athens, GA
- Department of Agriculture, Veterinary and Rangeland Sciences, University of Nevada, Reno, NV
| | - Wayne A. Parrott
- Center for Applied Genetic Technology, University of Georgia, Athens, GA
| |
Collapse
|
15
|
Wang T, Wang Z, Wang R, Zhang L, Zhang Y, Lu H. Highly efficient and chemoselective blocking of free amino group by ortho-phthalaldehyde (OPA) for comprehensive analysis of protein terminome. Talanta 2024; 267:125262. [PMID: 37804787 DOI: 10.1016/j.talanta.2023.125262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/24/2023] [Accepted: 09/30/2023] [Indexed: 10/09/2023]
Abstract
Herein, we introduced ortho-phthalaldehyde (OPA) for blocking free amino groups and established a simple and robust method for comprehensive profiling of protein terminome based on strong cation exchange chromatography (SCX) fractionation. With the highly efficient and chemoseletive amine-group blocking, we identified 2271 canonical human protein N-termini, 1650 canonical human protein C-termini, as well as 645 protein neo-N-termini from HeLa cells.
Collapse
Affiliation(s)
- Ting Wang
- Department of Chemistry and Liver Cancer Institute of Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhongjie Wang
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, 200032, China
| | - Rui Wang
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, 200032, China
| | - Lei Zhang
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, 200032, China
| | - Ying Zhang
- Department of Chemistry and Liver Cancer Institute of Zhongshan Hospital, Fudan University, Shanghai, 200032, China; Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, 200032, China.
| | - Haojie Lu
- Department of Chemistry and Liver Cancer Institute of Zhongshan Hospital, Fudan University, Shanghai, 200032, China; Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
16
|
Wu G, Tian N, She F, Cao A, Wu W, Zheng S, Yang N. Characteristics analysis of Early Responsive to Dehydration genes in Arabidopsis thaliana ( AtERD). PLANT SIGNALING & BEHAVIOR 2023; 18:2105021. [PMID: 35916255 PMCID: PMC10730211 DOI: 10.1080/15592324.2022.2105021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Early Responsive to Dehydration (ERD) genes are rapidly induced in response to various biotic and abiotic stresses, such as bacteria, drought, light, temperature and high salt in Arabidopsis thaliana. Sixteen ERD of Arabidopsis thaliana (AtERD) genes have been previously identified. The lengths of the coding region of the genes are 504-2838 bp. They encode 137-745 amino acids. In this study, the AtERD genes structure and promoter are analyzed through bioinformatics, and a overall function is summarized and a systematic signal pathway involving AtERD genes is mapped. AtERD9, AtERD11 and AtERD13 have the GST domain. AtERD10 and AtERD14 have the Dehyd domain. The promoters regions contain 32 light responsive elements, 23 ABA responsive elements, 5 drought responsive elements, 5 meristem expression related elements and 132 core promoter elements. The study provides a theoretical guidance for subsequent studies of AtERD genes.
Collapse
Affiliation(s)
- Guofan Wu
- Laboratory of the Research for Molecular Mechanism and Functional Genes of Plant Stress Adaptation, College of Life Sciences, Northwest Normal University, Lanzhou, China
| | - Nongfu Tian
- Laboratory of the Research for Molecular Mechanism and Functional Genes of Plant Stress Adaptation, College of Life Sciences, Northwest Normal University, Lanzhou, China
| | - Fawen She
- Laboratory of the Research for Molecular Mechanism and Functional Genes of Plant Stress Adaptation, College of Life Sciences, Northwest Normal University, Lanzhou, China
| | - Aohua Cao
- Laboratory of the Research for Molecular Mechanism and Functional Genes of Plant Stress Adaptation, College of Life Sciences, Northwest Normal University, Lanzhou, China
| | - Wangze Wu
- Laboratory of the Research for Molecular Mechanism and Functional Genes of Plant Stress Adaptation, College of Life Sciences, Northwest Normal University, Lanzhou, China
| | - Sheng Zheng
- Laboratory of the Research for Molecular Mechanism and Functional Genes of Plant Stress Adaptation, College of Life Sciences, Northwest Normal University, Lanzhou, China
| | - Ning Yang
- Laboratory of the Research for Molecular Mechanism and Functional Genes of Plant Stress Adaptation, College of Life Sciences, Northwest Normal University, Lanzhou, China
| |
Collapse
|
17
|
Sidorczuk K, Mackiewicz P, Pietluch F, Gagat P. Characterization of signal and transit peptides based on motif composition and taxon-specific patterns. Sci Rep 2023; 13:15751. [PMID: 37735485 PMCID: PMC10514287 DOI: 10.1038/s41598-023-42987-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/17/2023] [Indexed: 09/23/2023] Open
Abstract
Targeting peptides or presequences are N-terminal extensions of proteins that encode information about their cellular localization. They include signal peptides (SP), which target proteins to the endoplasmic reticulum, and transit peptides (TP) directing proteins to the organelles of endosymbiotic origin: chloroplasts and mitochondria. TPs were hypothesized to have evolved from antimicrobial peptides (AMPs), which are responsible for the host defence against microorganisms, including bacteria, fungi and viruses. In this study, we performed comprehensive bioinformatic analyses of amino acid motifs of targeting peptides and AMPs using a curated set of experimentally verified proteins. We identified motifs frequently occurring in each type of presequence showing specific patterns associated with their amino acid composition, and investigated their position within the presequence. We also compared motif patterns among different taxonomic groups and identified taxon-specific features, providing some evolutionary insights. Considering the functional relevance and many practical applications of targeting peptides and AMPs, we believe that our analyses will prove useful for their design, and better understanding of protein import mechanism and presequence evolution.
Collapse
Affiliation(s)
- Katarzyna Sidorczuk
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Paweł Mackiewicz
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Filip Pietluch
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Przemysław Gagat
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland.
| |
Collapse
|
18
|
Luo P, Shi C, Zhou Y, Zhou J, Zhang X, Wang Y, Yang Y, Peng X, Xie T, Tang X. The nuclear-localized RNA helicase 13 is essential for chloroplast development in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5057-5071. [PMID: 37310806 DOI: 10.1093/jxb/erad225] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/12/2023] [Indexed: 06/15/2023]
Abstract
The chloroplast is a semi-autonomous organelle with a double membrane structure, and its structural stability is a prerequisite for its correct function. Chloroplast development is regulated by known nuclear-encoded chloroplast proteins or proteins encoded within the chloroplast itself. However, the mechanism of chloroplast development regulated by other organelles remains largely unknown. Here, we report that the nuclear-localized DEAD-box RNA helicase 13 (RH13) is essential for chloroplast development in Arabidopsis thaliana. RH13 is widely expressed in tissues and localized to the nucleolus. A homozygous rh13 mutant shows abnormal chloroplast structure and leaf morphogenesis. Proteomic analysis showed that the expression levels of photosynthesis-related proteins in chloroplasts were reduced due to loss of RH13. Furthermore, RNA-sequencing and proteomics data revealed decreases in the expression levels of these chloroplast-related genes, which undergo alternative splicing events in the rh13 mutant. Taken together, we propose that nucleolus-localized RH13 is critical for chloroplast development in Arabidopsis.
Collapse
Affiliation(s)
- Pan Luo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Science, Hubei University, Wuhan 430062, China
| | - Ce Shi
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yi Zhou
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Science, Hubei University, Wuhan 430062, China
| | - Jiao Zhou
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xuecheng Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yukun Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yong Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Science, Hubei University, Wuhan 430062, China
| | - Xiongbo Peng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Tingting Xie
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Xingchun Tang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Science, Hubei University, Wuhan 430062, China
| |
Collapse
|
19
|
Bhattacharya O, Ortiz I, Hendricks N, Walling LL. The tomato chloroplast stromal proteome compendium elucidated by leveraging a plastid protein-localization prediction Atlas. FRONTIERS IN PLANT SCIENCE 2023; 14:1020275. [PMID: 37701797 PMCID: PMC10493611 DOI: 10.3389/fpls.2023.1020275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 06/22/2023] [Indexed: 09/14/2023]
Abstract
Tomato (Solanum lycopersicum) is a model species for studying fruit development, wounding, herbivory, and pathogen attack. Despite tomato's world-wide economic importance and the role of chloroplasts as metabolic hubs and integrators of environmental cues, little is known about the stromal proteome of tomato. Using a high-yielding protocol for chloroplast and stromal protein isolation, MudPIT nano-LC-MS/MS analyses, a robust in-house protein database (the Atlas) for predicting the plastid localization of tomato proteins, and rigorous selection criteria for inclusion/exclusion in the stromal proteome, we identified 1,278 proteins of the tomato stromal proteome. We provide one of the most robust stromal proteomes available to date with empirical evidence for 545 and 92 proteins not previously described for tomato plastids and the Arabidopsis stroma, respectively. The relative abundance of tomato stromal proteins was determined using the exponentially modified protein abundance index (emPAI). Comparison of the abundance of tomato and Arabidopsis stromal proteomes provided evidence for the species-specific nature of stromal protein homeostasis. The manual curation of the tomato stromal proteome classified proteins into ten functional categories resulting in an accessible compendium of tomato chloroplast proteins. After curation, only 91 proteins remained as unknown, uncharacterized or as enzymes with unknown functions. The curation of the tomato stromal proteins also indicated that tomato has a number of paralogous proteins, not present in Arabidopsis, which accumulated to different levels in chloroplasts. As some of these proteins function in key metabolic pathways or in perceiving or transmitting signals critical for plant adaptation to biotic and abiotic stress, these data suggest that tomato may modulate the bidirectional communication between chloroplasts and nuclei in a novel manner. The stromal proteome provides a fertile ground for future mechanistic studies in the field of tomato chloroplast-nuclear signaling and are foundational for our goal of elucidating the dynamics of the stromal proteome controlled by the solanaceous-specific, stromal, and wound-inducible leucine aminopeptidase A of tomato.
Collapse
Affiliation(s)
- Oindrila Bhattacharya
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
| | - Irma Ortiz
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
| | - Nathan Hendricks
- Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA, United States
| | - Linda L. Walling
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
- Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
20
|
Jeh HE, Sanchez R, Beltrán J, Yang X, Kundariya H, Wamboldt Y, Dopp I, Hafner A, Mackenzie SA. Sensory plastid-associated PsbP DOMAIN-CONTAINING PROTEIN 3 triggers plant growth- and defense-related epigenetic responses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:414-433. [PMID: 37036138 PMCID: PMC10525003 DOI: 10.1111/tpj.16233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 05/14/2023]
Abstract
Sensory plastids are important in plant responses to environmental changes. Previous studies show that MutS HOMOLOG 1 (MSH1) perturbation in sensory plastids induces heritable epigenetic phenotype adjustment. Previously, the PsbP homolog DOMAIN-CONTAINING PROTEIN 3 (PPD3), a protein of unknown function, was postulated to be an interactor with MSH1. This study investigates the relationship of PPD3 with MSH1 and with plant environmental sensing. The ppd3 mutant displays a whole-plant phenotype variably altered in growth rate, flowering time, reactive oxygen species (ROS) modulation and response to salt, with effects on meristem growth. Present in both chloroplasts and sensory plastids, PPD3 colocalized with MSH1 in root tips but not in leaf tissues. The suppression or overexpression of PPD3 affected the plant growth rate and stress tolerance, and led to a heritable, heterogenous 'memory' state with both dwarfed and vigorous growth phenotypes. Gene expression and DNA methylome data sets from PPD3-OX and derived memory states showed enrichment in growth versus defense networks and meristem effects. Our results support a model of sensory plastid influence on nuclear epigenetic behavior and ppd3 as a second trigger, functioning within meristem plastids to recalibrate growth plasticity.
Collapse
Affiliation(s)
- Ha Eun Jeh
- Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, PA 16802
- Departments of Biology and Plant Science, The Pennsylvania State University, University Park, PA 16802
| | - Robersy Sanchez
- Departments of Biology and Plant Science, The Pennsylvania State University, University Park, PA 16802
| | - Jesús Beltrán
- Departments of Biology and Plant Science, The Pennsylvania State University, University Park, PA 16802
- Current Address: Department of Botany and Plant Sciences, University of California, Riverside, Riverside CA 92521
| | - Xiaodong Yang
- Departments of Biology and Plant Science, The Pennsylvania State University, University Park, PA 16802
- Current Address: School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Hardik Kundariya
- Departments of Biology and Plant Science, The Pennsylvania State University, University Park, PA 16802
| | - Yashitola Wamboldt
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588
- Current Address: MatMaCorp, Lincoln, NE
| | - Isaac Dopp
- Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, PA 16802
- Departments of Biology and Plant Science, The Pennsylvania State University, University Park, PA 16802
| | - Alenka Hafner
- Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, PA 16802
- Departments of Biology and Plant Science, The Pennsylvania State University, University Park, PA 16802
| | - Sally A. Mackenzie
- Departments of Biology and Plant Science, The Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
21
|
Hanna R, Rozenberg A, Saied L, Ben-Yosef D, Lavy T, Kleifeld O. In-Depth Characterization of Apoptosis N-terminome Reveals a Link Between Caspase-3 Cleavage and Post-Translational N-terminal Acetylation. Mol Cell Proteomics 2023:100584. [PMID: 37236440 PMCID: PMC10362333 DOI: 10.1016/j.mcpro.2023.100584] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 05/28/2023] Open
Abstract
The N-termini of proteins contain information about their biochemical properties and functions. These N-termini can be processed by proteases, and can undergo other co- or post-translational modifications. We have developed LATE (LysN Amino Terminal Enrichment), a method that uses selective chemical derivatization of α-amines to isolate the N-terminal peptides, in order to improve N-terminome identification in conjunction with other enrichment strategies. We applied LATE alongside another N-terminomic method to study caspase-3 mediated proteolysis both in vitro and during apoptosis in cells. This has enabled us to identify many unreported caspase-3 cleavages, some of which cannot be identified by other methods. Moreover, we have found direct evidence that neo-N-termini generated by caspase-3 cleavage can be further modified by Nt-acetylation. Some of these neo-Nt-acetylation events occur in the early phase of the apoptotic process and may have a role in translation inhibition. This has provided a comprehensive overview of the caspase-3 degradome and has uncovered previously unrecognized crosstalk between post-translational Nt-acetylation and caspase proteolytic pathways.
Collapse
Affiliation(s)
- Rawad Hanna
- Faculty of Biology, Technion-Israel Institute of Technology, Technion City, Haifa 3200003, Israel
| | - Andrey Rozenberg
- Faculty of Biology, Technion-Israel Institute of Technology, Technion City, Haifa 3200003, Israel
| | - Layla Saied
- Faculty of Biology, Technion-Israel Institute of Technology, Technion City, Haifa 3200003, Israel
| | - Daniel Ben-Yosef
- Faculty of Biology, Technion-Israel Institute of Technology, Technion City, Haifa 3200003, Israel
| | - Tali Lavy
- Faculty of Biology, Technion-Israel Institute of Technology, Technion City, Haifa 3200003, Israel
| | - Oded Kleifeld
- Faculty of Biology, Technion-Israel Institute of Technology, Technion City, Haifa 3200003, Israel.
| |
Collapse
|
22
|
Rasmussen T. The Potassium Efflux System Kef: Bacterial Protection against Toxic Electrophilic Compounds. MEMBRANES 2023; 13:465. [PMID: 37233526 PMCID: PMC10224563 DOI: 10.3390/membranes13050465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 05/27/2023]
Abstract
Kef couples the potassium efflux with proton influx in gram-negative bacteria. The resulting acidification of the cytosol efficiently prevents the killing of the bacteria by reactive electrophilic compounds. While other degradation pathways for electrophiles exist, Kef is a short-term response that is crucial for survival. It requires tight regulation since its activation comes with the burden of disturbed homeostasis. Electrophiles, entering the cell, react spontaneously or catalytically with glutathione, which is present at high concentrations in the cytosol. The resulting glutathione conjugates bind to the cytosolic regulatory domain of Kef and trigger activation while the binding of glutathione keeps the system closed. Furthermore, nucleotides can bind to this domain for stabilization or inhibition. The binding of an additional ancillary subunit, called KefF or KefG, to the cytosolic domain is required for full activation. The regulatory domain is termed K+ transport-nucleotide binding (KTN) or regulator of potassium conductance (RCK) domain, and it is also found in potassium uptake systems or channels in other oligomeric arrangements. Bacterial RosB-like transporters and K+ efflux antiporters (KEA) of plants are homologs of Kef but fulfill different functions. In summary, Kef provides an interesting and well-studied example of a highly regulated bacterial transport system.
Collapse
Affiliation(s)
- Tim Rasmussen
- Rudolf Virchow Center and Biocenter, Institute of Biochemistry II, Julius-Maximilians-Universität Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| |
Collapse
|
23
|
Winckler LI, Dissmeyer N. Molecular determinants of protein half-life in chloroplasts with focus on the Clp protease system. Biol Chem 2023; 404:499-511. [PMID: 36972025 DOI: 10.1515/hsz-2022-0320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/09/2023] [Indexed: 03/29/2023]
Abstract
Abstract
Proteolysis is an essential process to maintain cellular homeostasis. One pathway that mediates selective protein degradation and which is in principle conserved throughout the kingdoms of life is the N-degron pathway, formerly called the ‘N-end rule’. In the cytosol of eukaryotes and prokaryotes, N-terminal residues can be major determinants of protein stability. While the eukaryotic N-degron pathway depends on the ubiquitin proteasome system, the prokaryotic counterpart is driven by the Clp protease system. Plant chloroplasts also contain such a protease network, which suggests that they might harbor an organelle specific N-degron pathway similar to the prokaryotic one. Recent discoveries indicate that the N-terminal region of proteins affects their stability in chloroplasts and provides support for a Clp-mediated entry point in an N-degron pathway in plastids. This review discusses structure, function and specificity of the chloroplast Clp system, outlines experimental approaches to test for an N-degron pathway in chloroplasts, relates these aspects into general plastid proteostasis and highlights the importance of an understanding of plastid protein turnover.
Collapse
Affiliation(s)
- Lioba Inken Winckler
- Department of Plant Physiology and Protein Metabolism Laboratory, University of Osnabruck, Barbarastrasse 11, D-49076 Osnabruck, Germany
- Center of Cellular Nanoanalytics (CellNanOs), Barbarastrasse 11, D-49076 Osnabruck, Germany
- Faculty of Biology, University of Osnabruck, Barbarastrasse 11, D-49076 Osnabruck, Germany
| | - Nico Dissmeyer
- Department of Plant Physiology and Protein Metabolism Laboratory, University of Osnabruck, Barbarastrasse 11, D-49076 Osnabruck, Germany
- Center of Cellular Nanoanalytics (CellNanOs), Barbarastrasse 11, D-49076 Osnabruck, Germany
- Faculty of Biology, University of Osnabruck, Barbarastrasse 11, D-49076 Osnabruck, Germany
| |
Collapse
|
24
|
Christian R, Labbancz J, Usadel B, Dhingra A. Understanding protein import in diverse non-green plastids. Front Genet 2023; 14:969931. [PMID: 37007964 PMCID: PMC10063809 DOI: 10.3389/fgene.2023.969931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 02/24/2023] [Indexed: 03/19/2023] Open
Abstract
The spectacular diversity of plastids in non-green organs such as flowers, fruits, roots, tubers, and senescing leaves represents a Universe of metabolic processes in higher plants that remain to be completely characterized. The endosymbiosis of the plastid and the subsequent export of the ancestral cyanobacterial genome to the nuclear genome, and adaptation of the plants to all types of environments has resulted in the emergence of diverse and a highly orchestrated metabolism across the plant kingdom that is entirely reliant on a complex protein import and translocation system. The TOC and TIC translocons, critical for importing nuclear-encoded proteins into the plastid stroma, remain poorly resolved, especially in the case of TIC. From the stroma, three core pathways (cpTat, cpSec, and cpSRP) may localize imported proteins to the thylakoid. Non-canonical routes only utilizing TOC also exist for the insertion of many inner and outer membrane proteins, or in the case of some modified proteins, a vesicular import route. Understanding this complex protein import system is further compounded by the highly heterogeneous nature of transit peptides, and the varying transit peptide specificity of plastids depending on species and the developmental and trophic stage of the plant organs. Computational tools provide an increasingly sophisticated means of predicting protein import into highly diverse non-green plastids across higher plants, which need to be validated using proteomics and metabolic approaches. The myriad plastid functions enable higher plants to interact and respond to all kinds of environments. Unraveling the diversity of non-green plastid functions across the higher plants has the potential to provide knowledge that will help in developing climate resilient crops.
Collapse
Affiliation(s)
- Ryan Christian
- Department of Horticulture, Washington State University, Pullman, WA, United States
| | - June Labbancz
- Department of Horticulture, Washington State University, Pullman, WA, United States
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | | | - Amit Dhingra
- Department of Horticulture, Washington State University, Pullman, WA, United States
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
- *Correspondence: Amit Dhingra,
| |
Collapse
|
25
|
Wang R, Wang Z, Lu H. Separation methods for system-wide profiling of protein terminome. Proteomics 2023; 23:e2100374. [PMID: 35997653 DOI: 10.1002/pmic.202100374] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 11/10/2022]
Abstract
Protein N- and C-termini have specific biochemical properties and functions. They play vital roles in various biological processes, such as protein stability and localization. In addition, post-translational modifications and proteolytic processing generate different proteoforms at protein termini. In recent years, terminomics has attracted significant attention, and numerous strategies have been developed to achieve high-throughput and global terminomics analysis. This review summarizes the recent protein N-termini and C-termini enrichment methods and their application in different samples. We also look ahead further application of terminomics in profiling protease substrates and discovery of disease biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Rui Wang
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Zhongjie Wang
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Haojie Lu
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China.,Department of Chemistry and Key Laboratory of Glycoconjugates Research Ministry of Public Health, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
26
|
Wang Q, Sun L, Knut Lundquist P. Large-scale top-down proteomics of the Arabidopsis thaliana leaf and chloroplast proteomes. Proteomics 2023; 23:e2100377. [PMID: 36070201 PMCID: PMC9957804 DOI: 10.1002/pmic.202100377] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/16/2022] [Accepted: 08/23/2022] [Indexed: 11/11/2022]
Abstract
We present a large-scale top-down proteomics (TDP) study of plant leaf and chloroplast proteins, achieving the identification of over 4700 unique proteoforms. Using capillary zone electrophoresis coupled with tandem mass spectrometry analysis of offline size-exclusion chromatography fractions, we identify 3198 proteoforms for total leaf and 1836 proteoforms for chloroplast, with 1024 and 363 proteoforms having post-translational modifications, respectively. The electrophoretic mobility prediction of capillary zone electrophoresis allowed us to validate post-translational modifications that impact the charge state such as acetylation and phosphorylation. Identified modifications included Trp (di)oxidation events on six chloroplast proteins that may represent novel targets of singlet oxygen sensing. Furthermore, our TDP data provides direct experimental evidence of the N- and C-terminal residues of numerous mature proteoforms from chloroplast, mitochondria, endoplasmic reticulum, and other sub-cellular localizations. With this information, we suggest true transit peptide cleavage sites and correct sub-cellular localization signal predictions. This large-scale analysis illustrates the power of top-down proteoform identification of post-translational modifications and intact sequences that can benefit our understanding of both the structure and function of hundreds of plant proteins.
Collapse
Affiliation(s)
- Qianjie Wang
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan, USA
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA
| | - Peter Knut Lundquist
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
27
|
Kgang IE, Klein A, Mohamed GG, Mathabe PMK, Belay ZA, Caleb OJ. Enzymatic and proteomic exploration into the inhibitory activities of lemongrass and lemon essential oils against Botrytis cinerea (causative pathogen of gray mold). Front Microbiol 2023; 13:1101539. [PMID: 36741895 PMCID: PMC9890175 DOI: 10.3389/fmicb.2022.1101539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/28/2022] [Indexed: 01/19/2023] Open
Abstract
Introduction Essential oils (EOs) have been demonstrated as efficacious against B. cinerea. However, the underpinning enzymatic and proteomic mechanism for these inhibitory effects is not entirely clear. Methods Thus, this study examined the effects of lemon (Le) and lemongrass (Lg) EOs (individually and in combination) against B. cinerea based on enzymatic and proteomic analyses. Proteomics data are available via ProteomeXchange with identifier PXD038894. Results and discussion Both EOs (individually and in combination) displayed abilities to induce scavenging as observed with the reduction of H2O2. Measured malondialdehyde (MDA) and superoxide dismutase (SOD) activity were increased in all EOs treated B. cinerea mycelia compared to the control. Ascorbate peroxidase (APX) activity was highest in Lg treated B. cinerea (206% increase), followed by combined (Le + Lg) treatment with 73% compared to the untreated control. Based on GC-MS analysis, the number of volatile compounds identified in lemon and lemongrass EOs were 7 and 10, respectively. Major chemical constituent of lemon EO was d-limonene (71%), while lemongrass EO was a-citral (50.1%). Based on the interrogated LC-MS data, 42 distinct proteins were identified, and 13 of these proteins were unique with 1, 8, and 4 found in Le-, Lg-, and (Le + Lg) EOs treated B. cinerea, respectively, and none in control. Overall, 72% of identified proteins were localized within cellular anatomical entity, and 28% in protein-complexes. Proteins involved in translation initiation, antioxidant activity, protein macromolecule adaptor activity and microtubule motor activity were only identified in the Lg and (Le + Lg) EOs treated B. cinerea mycelia, which was consistent with their APX activities.
Collapse
Affiliation(s)
- Itumeleng E. Kgang
- Department of Biotechnology, University of the Western Cape, Western Cape, South Africa
- Post-Harvest and Agro-Processing Technologies (PHATs), Agricultural Research Council (ARC) Infruitec-Nietvoorbij, Stellenbosch, South Africa
| | - Ashwil Klein
- Department of Biotechnology, University of the Western Cape, Western Cape, South Africa
| | - Gadija G. Mohamed
- Department of Biotechnology, University of the Western Cape, Western Cape, South Africa
| | - Patricia M. K. Mathabe
- School of Agriculture, Food & the Environment, Royal Agricultural University, Cirencester, United Kingdom
| | - Zinash A. Belay
- Post-Harvest and Agro-Processing Technologies (PHATs), Agricultural Research Council (ARC) Infruitec-Nietvoorbij, Stellenbosch, South Africa
| | - Oluwafemi James Caleb
- Department of Food Science, Faculty of AgriSciences, Stellenbosch University, Stellenbosch, South Africa
- African Institute for Postharvest Technology, Faculty of AgriSciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
28
|
Hoernstein SNW, Özdemir B, van Gessel N, Miniera AA, Rogalla von Bieberstein B, Nilges L, Schweikert Farinha J, Komoll R, Glauz S, Weckerle T, Scherzinger F, Rodriguez-Franco M, Müller-Schüssele SJ, Reski R. A deeply conserved protease, acylamino acid-releasing enzyme (AARE), acts in ageing in Physcomitrella and Arabidopsis. Commun Biol 2023; 6:61. [PMID: 36650210 PMCID: PMC9845386 DOI: 10.1038/s42003-023-04428-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/05/2023] [Indexed: 01/18/2023] Open
Abstract
Reactive oxygen species (ROS) are constant by-products of aerobic life. In excess, ROS lead to cytotoxic protein aggregates, which are a hallmark of ageing in animals and linked to age-related pathologies in humans. Acylamino acid-releasing enzymes (AARE) are bifunctional serine proteases, acting on oxidized proteins. AARE are found in all domains of life, albeit under different names, such as acylpeptide hydrolase (APEH/ACPH), acylaminoacyl peptidase (AAP), or oxidized protein hydrolase (OPH). In humans, AARE malfunction is associated with age-related pathologies, while their function in plants is less clear. Here, we provide a detailed analysis of AARE genes in the plant lineage and an in-depth analysis of AARE localization and function in the moss Physcomitrella and the angiosperm Arabidopsis. AARE loss-of-function mutants have not been described for any organism so far. We generated and analysed such mutants and describe a connection between AARE function, aggregation of oxidized proteins and plant ageing, including accelerated developmental progression and reduced life span. Our findings complement similar findings in animals and humans, and suggest a unified concept of ageing may exist in different life forms.
Collapse
Affiliation(s)
- Sebastian N W Hoernstein
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104, Freiburg, Germany
| | - Buğra Özdemir
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104, Freiburg, Germany
- Euro-BioImaging Bio-Hub, EMBL Heidelberg, Meyerhofstraße 1, 69117, Heidelberg, Germany
| | - Nico van Gessel
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104, Freiburg, Germany
| | - Alessandra A Miniera
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104, Freiburg, Germany
| | - Bruno Rogalla von Bieberstein
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104, Freiburg, Germany
- Department of Anesthesiology, University Hospital Würzburg, Oberduerrbacher Strasse 6, 97072, Würzburg, Germany
| | - Lars Nilges
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104, Freiburg, Germany
| | - Joana Schweikert Farinha
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104, Freiburg, Germany
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
| | - Ramona Komoll
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104, Freiburg, Germany
- Heraeus Medical GmbH, Philipp-Reis-Straße 8-13, 61273, Wehrheim, Germany
| | - Stella Glauz
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104, Freiburg, Germany
| | - Tim Weckerle
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104, Freiburg, Germany
- Zymo Research Europe GmbH, Muelhauser Strasse 9, 79110, Freiburg, Germany
| | - Friedrich Scherzinger
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104, Freiburg, Germany
- Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany
| | - Marta Rodriguez-Franco
- Cell Biology, Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104, Freiburg, Germany
| | - Stefanie J Müller-Schüssele
- Molecular Botany, Department of Biology, Technical University of Kaiserslautern, Erwin-Schrödinger-Strasse 70, 67663, Kaiserslautern, Germany
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104, Freiburg, Germany.
- Signalling Research Centres BIOSS and CIBSS, Schaenzlestrasse 18, 79104, Freiburg, Germany.
| |
Collapse
|
29
|
Gao LL, Hong ZH, Wang Y, Wu GZ. Chloroplast proteostasis: A story of birth, life, and death. PLANT COMMUNICATIONS 2023; 4:100424. [PMID: 35964157 PMCID: PMC9860172 DOI: 10.1016/j.xplc.2022.100424] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/02/2022] [Accepted: 08/10/2022] [Indexed: 06/02/2023]
Abstract
Protein homeostasis (proteostasis) is a dynamic balance of protein synthesis and degradation. Because of the endosymbiotic origin of chloroplasts and the massive transfer of their genetic information to the nucleus of the host cell, many protein complexes in the chloroplasts are constituted from subunits encoded by both genomes. Hence, the proper function of chloroplasts relies on the coordinated expression of chloroplast- and nucleus-encoded genes. The biogenesis and maintenance of chloroplast proteostasis are dependent on synthesis of chloroplast-encoded proteins, import of nucleus-encoded chloroplast proteins from the cytosol, and clearance of damaged or otherwise undesired "old" proteins. This review focuses on the regulation of chloroplast proteostasis, its interaction with proteostasis of the cytosol, and its retrograde control over nuclear gene expression. We also discuss significant issues and perspectives for future studies and potential applications for improving the photosynthetic performance and stress tolerance of crops.
Collapse
Affiliation(s)
- Lin-Lin Gao
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zheng-Hui Hong
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yinsong Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Guo-Zhang Wu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
30
|
Pożoga M, Armbruster L, Wirtz M. From Nucleus to Membrane: A Subcellular Map of the N-Acetylation Machinery in Plants. Int J Mol Sci 2022; 23:ijms232214492. [PMID: 36430970 PMCID: PMC9692967 DOI: 10.3390/ijms232214492] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
N-terminal acetylation (NTA) is an ancient protein modification conserved throughout all domains of life. N-terminally acetylated proteins are present in the cytosol, the nucleus, the plastids, mitochondria and the plasma membrane of plants. The frequency of NTA differs greatly between these subcellular compartments. While up to 80% of cytosolic and 20-30% of plastidic proteins are subject to NTA, NTA of mitochondrial proteins is rare. NTA alters key characteristics of proteins such as their three-dimensional structure, binding properties and lifetime. Since the majority of proteins is acetylated by five ribosome-bound N-terminal acetyltransferases (Nats) in yeast and humans, NTA was long perceived as an exclusively co-translational process in eukaryotes. The recent characterization of post-translationally acting plant Nats, which localize to the plasma membrane and the plastids, has challenged this view. Moreover, findings in humans, yeast, green algae and higher plants uncover differences in the cytosolic Nat machinery of photosynthetic and non-photosynthetic eukaryotes. These distinctive features of the plant Nat machinery might constitute adaptations to the sessile lifestyle of plants. This review sheds light on the unique role of plant N-acetyltransferases in development and stress responses as well as their evolution-driven adaptation to function in different cellular compartments.
Collapse
|
31
|
Liebers M, Cozzi C, Uecker F, Chambon L, Blanvillain R, Pfannschmidt T. Biogenic signals from plastids and their role in chloroplast development. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7105-7125. [PMID: 36002302 DOI: 10.1093/jxb/erac344] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Plant seeds do not contain differentiated chloroplasts. Upon germination, the seedlings thus need to gain photoautotrophy before storage energies are depleted. This requires the coordinated expression of photosynthesis genes encoded in nuclear and plastid genomes. Chloroplast biogenesis needs to be additionally coordinated with the light regulation network that controls seedling development. This coordination is achieved by nucleus to plastid signals called anterograde and plastid to nucleus signals termed retrograde. Retrograde signals sent from plastids during initial chloroplast biogenesis are also called biogenic signals. They have been recognized as highly important for proper chloroplast biogenesis and for seedling development. The molecular nature, transport, targets, and signalling function of biogenic signals are, however, under debate. Several studies disproved the involvement of a number of key components that were at the base of initial models of retrograde signalling. New models now propose major roles for a functional feedback between plastid and cytosolic protein homeostasis in signalling plastid dysfunction as well as the action of dually localized nucleo-plastidic proteins that coordinate chloroplast biogenesis with light-dependent control of seedling development. This review provides a survey of the developments in this research field, summarizes the unsolved questions, highlights several recent advances, and discusses potential new working modes.
Collapse
Affiliation(s)
- Monique Liebers
- Gottfried-Wilhelm-Leibniz-Universität Hannover, Naturwissenschaftliche Fakultät, Institut für Botanik, Pflanzenphysiologie, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| | - Carolina Cozzi
- Gottfried-Wilhelm-Leibniz-Universität Hannover, Naturwissenschaftliche Fakultät, Institut für Botanik, Pflanzenphysiologie, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| | - Finia Uecker
- Gottfried-Wilhelm-Leibniz-Universität Hannover, Naturwissenschaftliche Fakultät, Institut für Botanik, Pflanzenphysiologie, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| | - Louise Chambon
- Université Grenoble-Alpes, CNRS, CEA, INRA, IRIG-LPCV, F-38000 Grenoble, France
| | - Robert Blanvillain
- Université Grenoble-Alpes, CNRS, CEA, INRA, IRIG-LPCV, F-38000 Grenoble, France
| | - Thomas Pfannschmidt
- Gottfried-Wilhelm-Leibniz-Universität Hannover, Naturwissenschaftliche Fakultät, Institut für Botanik, Pflanzenphysiologie, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| |
Collapse
|
32
|
Meinnel T, Giglione C. N-terminal modifications, the associated processing machinery, and their evolution in plastid-containing organisms. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6013-6033. [PMID: 35768189 DOI: 10.1093/jxb/erac290] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
The N-terminus is a frequent site of protein modifications. Referring primarily to knowledge gained from land plants, here we review the modifications that change protein N-terminal residues and provide updated information about the associated machinery, including that in Archaeplastida. These N-terminal modifications include many proteolytic events as well as small group additions such as acylation or arginylation and oxidation. Compared with that of the mitochondrion, the plastid-dedicated N-terminal modification landscape is far more complex. In parallel, we extend this review to plastid-containing Chromalveolata including Stramenopiles, Apicomplexa, and Rhizaria. We report a well-conserved machinery, especially in the plastid. Consideration of the two most abundant proteins on Earth-Rubisco and actin-reveals the complexity of N-terminal modification processes. The progressive gene transfer from the plastid to the nuclear genome during evolution is exemplified by the N-terminus modification machinery, which appears to be one of the latest to have been transferred to the nuclear genome together with crucial major photosynthetic landmarks. This is evidenced by the greater number of plastid genes in Paulinellidae and red algae, the most recent and fossil recipients of primary endosymbiosis.
Collapse
Affiliation(s)
- Thierry Meinnel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Carmela Giglione
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| |
Collapse
|
33
|
Barreto P, Koltun A, Nonato J, Yassitepe J, Maia IDG, Arruda P. Metabolism and Signaling of Plant Mitochondria in Adaptation to Environmental Stresses. Int J Mol Sci 2022; 23:ijms231911176. [PMID: 36232478 PMCID: PMC9570015 DOI: 10.3390/ijms231911176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
The interaction of mitochondria with cellular components evolved differently in plants and mammals; in plants, the organelle contains proteins such as ALTERNATIVE OXIDASES (AOXs), which, in conjunction with internal and external ALTERNATIVE NAD(P)H DEHYDROGENASES, allow canonical oxidative phosphorylation (OXPHOS) to be bypassed. Plant mitochondria also contain UNCOUPLING PROTEINS (UCPs) that bypass OXPHOS. Recent work revealed that OXPHOS bypass performed by AOXs and UCPs is linked with new mechanisms of mitochondrial retrograde signaling. AOX is functionally associated with the NO APICAL MERISTEM transcription factors, which mediate mitochondrial retrograde signaling, while UCP1 can regulate the plant oxygen-sensing mechanism via the PRT6 N-Degron. Here, we discuss the crosstalk or the independent action of AOXs and UCPs on mitochondrial retrograde signaling associated with abiotic stress responses. We also discuss how mitochondrial function and retrograde signaling mechanisms affect chloroplast function. Additionally, we discuss how mitochondrial inner membrane transporters can mediate mitochondrial communication with other organelles. Lastly, we review how mitochondrial metabolism can be used to improve crop resilience to environmental stresses. In this respect, we particularly focus on the contribution of Brazilian research groups to advances in the topic of mitochondrial metabolism and signaling.
Collapse
Affiliation(s)
- Pedro Barreto
- Departamento de Ciências Químicas e Biológicas, Instituto de Biociências, Universidade Estadual Paulista, Botucatu 18618-970, Brazil
| | - Alessandra Koltun
- Genomics for Climate Change Research Center, Universidade Estadual de Campinas, Campinas 13083-875, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas 13083-862, Brazil
| | - Juliana Nonato
- Genomics for Climate Change Research Center, Universidade Estadual de Campinas, Campinas 13083-875, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas 13083-862, Brazil
| | - Juliana Yassitepe
- Genomics for Climate Change Research Center, Universidade Estadual de Campinas, Campinas 13083-875, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas 13083-862, Brazil
- Embrapa Agricultura Digital, Campinas 13083-886, Brazil
| | - Ivan de Godoy Maia
- Departamento de Ciências Químicas e Biológicas, Instituto de Biociências, Universidade Estadual Paulista, Botucatu 18618-970, Brazil
| | - Paulo Arruda
- Genomics for Climate Change Research Center, Universidade Estadual de Campinas, Campinas 13083-875, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas 13083-862, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas 13083-875, Brazil
- Correspondence:
| |
Collapse
|
34
|
Dupouy G, McDermott E, Cashell R, Scian A, McHale M, Ryder P, de Groot J, Lucca N, Brychkova G, McKeown PC, Spillane C. Plastid ribosome protein L5 is essential for post-globular embryo development in Arabidopsis thaliana. PLANT REPRODUCTION 2022; 35:189-204. [PMID: 35247095 PMCID: PMC9352626 DOI: 10.1007/s00497-022-00440-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Plastid ribosomal proteins (PRPs) can play essential roles in plastid ribosome functioning that affect plant function and development. However, the roles of many PRPs remain unknown, including elucidation of which PRPs are essential or display redundancy. Here, we report that the nuclear-encoded PLASTID RIBOSOMAL PROTEIN L5 (PRPL5) is essential for early embryo development in A. thaliana, as homozygous loss-of-function mutations in the PRPL5 gene impairs chloroplast development and leads to embryo failure to develop past the globular stage. We confirmed the prpl5 embryo-lethal phenotype by generating a mutant CRISPR/Cas9 line and by genetic complementation. As PRPL5 underwent transfer to the nuclear genome early in the evolution of Embryophyta, PRPL5 can be expected to have acquired a chloroplast transit peptide. We identify and validate the presence of an N-terminal chloroplast transit peptide, but unexpectedly also confirm the presence of a conserved and functional Nuclear Localization Signal on the protein C-terminal end. This study highlights the fundamental role of the plastid translation machinery during the early stages of embryo development in plants and raises the possibility of additional roles of plastid ribosomal proteins in the nucleus.
Collapse
Affiliation(s)
- Gilles Dupouy
- Genetics and Biotechnology Lab, Plant and AgriBiosciences Research Centre (PABC), Ryan Institute, Aras de Brun, National University of Ireland Galway, University Road, Galway, H91 REW4, Ireland
| | - Emma McDermott
- Genetics and Biotechnology Lab, Plant and AgriBiosciences Research Centre (PABC), Ryan Institute, Aras de Brun, National University of Ireland Galway, University Road, Galway, H91 REW4, Ireland
| | - Ronan Cashell
- Genetics and Biotechnology Lab, Plant and AgriBiosciences Research Centre (PABC), Ryan Institute, Aras de Brun, National University of Ireland Galway, University Road, Galway, H91 REW4, Ireland
| | - Anna Scian
- Genetics and Biotechnology Lab, Plant and AgriBiosciences Research Centre (PABC), Ryan Institute, Aras de Brun, National University of Ireland Galway, University Road, Galway, H91 REW4, Ireland
| | - Marcus McHale
- Genetics and Biotechnology Lab, Plant and AgriBiosciences Research Centre (PABC), Ryan Institute, Aras de Brun, National University of Ireland Galway, University Road, Galway, H91 REW4, Ireland
| | - Peter Ryder
- Genetics and Biotechnology Lab, Plant and AgriBiosciences Research Centre (PABC), Ryan Institute, Aras de Brun, National University of Ireland Galway, University Road, Galway, H91 REW4, Ireland
| | - Joelle de Groot
- Genetics and Biotechnology Lab, Plant and AgriBiosciences Research Centre (PABC), Ryan Institute, Aras de Brun, National University of Ireland Galway, University Road, Galway, H91 REW4, Ireland
| | - Noel Lucca
- Genetics and Biotechnology Lab, Plant and AgriBiosciences Research Centre (PABC), Ryan Institute, Aras de Brun, National University of Ireland Galway, University Road, Galway, H91 REW4, Ireland
| | - Galina Brychkova
- Genetics and Biotechnology Lab, Plant and AgriBiosciences Research Centre (PABC), Ryan Institute, Aras de Brun, National University of Ireland Galway, University Road, Galway, H91 REW4, Ireland
| | - Peter C McKeown
- Genetics and Biotechnology Lab, Plant and AgriBiosciences Research Centre (PABC), Ryan Institute, Aras de Brun, National University of Ireland Galway, University Road, Galway, H91 REW4, Ireland
| | - Charles Spillane
- Genetics and Biotechnology Lab, Plant and AgriBiosciences Research Centre (PABC), Ryan Institute, Aras de Brun, National University of Ireland Galway, University Road, Galway, H91 REW4, Ireland.
| |
Collapse
|
35
|
Three-Dimensional Envelope and Subunit Interactions of the Plastid-Encoded RNA Polymerase from Sinapis alba. Int J Mol Sci 2022; 23:ijms23179922. [PMID: 36077319 PMCID: PMC9456514 DOI: 10.3390/ijms23179922] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
RNA polymerases (RNAPs) are found in all living organisms. In the chloroplasts, the plastid-encoded RNA polymerase (PEP) is a prokaryotic-type multimeric RNAP involved in the selective transcription of the plastid genome. One of its active states requires the assembly of nuclear-encoded PEP-Associated Proteins (PAPs) on the catalytic core, producing a complex of more than 900 kDa, regarded as essential for chloroplast biogenesis. In this study, sequence alignments of the catalytic core subunits across various chloroplasts of the green lineage and prokaryotes combined with structural data show that variations are observed at the surface of the core, whereas internal amino acids associated with the catalytic activity are conserved. A purification procedure compatible with a structural analysis was used to enrich the native PEP from Sinapis alba chloroplasts. A mass spectrometry (MS)-based proteomic analysis revealed the core components, the PAPs and additional proteins, such as FLN2 and pTAC18. MS coupled with crosslinking (XL-MS) provided the initial structural information in the form of protein clusters, highlighting the relative position of some subunits with the surfaces of their interactions. Using negative stain electron microscopy, the PEP three-dimensional envelope was calculated. Particles classification shows that the protrusions are very well-conserved, offering a framework for the future positioning of all the PAPs. Overall, the results show that PEP-associated proteins are firmly and specifically associated with the catalytic core, giving to the plastid transcriptional complex a singular structure compared to other RNAPs.
Collapse
|
36
|
Sun F, Palayam M, Shabek N. Structure of maize BZR1-type β-amylase BAM8 provides new insights into its noncatalytic adaptation. J Struct Biol 2022; 214:107885. [PMID: 35961473 DOI: 10.1016/j.jsb.2022.107885] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 11/28/2022]
Abstract
Plant β-amylase (BAM) proteins play an essential role in growth, development, stress response, and hormone regulation. Despite their typical (β/α)8 barrel structure as active catalysts in starch breakdown, catalytically inactive BAMs are implicated in diverse yet elusive functions in plants. The noncatalytic BAM7/8 contain N-terminal BZR1 domains and were shown to be involved in the regulation of brassinosteroid signaling and possibly serve as sensors of yet an uncharacterized metabolic signal. While the structures of several catalytically active BAMs have been reported, structural characterization of the catalytically inactive BZR1-type BAMs remain unknown. Here, we determine the crystal structure of β-amylase domain of Zea mays BAM8/BES1/BZR1-5 and provide comprehensive insights into its noncatalytic adaptation. Using structural-guided comparison combined with biochemical analysis and molecular dynamics simulations, we revealed conformational changes in multiple distinct highly conserved regions resulting in rearrangement of the binding pocket. Altogether, this study adds a new layer of understanding to starch breakdown mechanism and elucidates the acquired adjustments of noncatalytic BZR1-type BAMs as putative regulatory domains and/or metabolic sensors in plants.
Collapse
Affiliation(s)
- Fuai Sun
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Malathy Palayam
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Nitzan Shabek
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA.
| |
Collapse
|
37
|
Dissecting the Chloroplast Proteome of the Potato (Solanum Tuberosum L.) and Its Comparison with the Tuber Amyloplast Proteome. PLANTS 2022; 11:plants11151915. [PMID: 35893618 PMCID: PMC9332351 DOI: 10.3390/plants11151915] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/02/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022]
Abstract
The chloroplast, the energy organelle unique to plants and green algae, performs many functions, including photosynthesis and biosynthesis of metabolites. However, as the most critical tuber crop worldwide, the chloroplast proteome of potato (Solanum tuberosum) has not been explored. Here, we use Percoll density gradient centrifugation to isolate intact chloroplasts from leaves of potato cultivar E3 and establish a reference proteome map of potato chloroplast by bottom-up proteomics. A total of 1834 non-redundant proteins were identified in the chloroplast proteome, including 51 proteins encoded by the chloroplast genome. Extensive sequence-based localization prediction revealed over 62% of proteins to be chloroplast resident by at least one algorithm. Sixteen proteins were selected to evaluate the prediction result by transient fluorescence assay, which confirmed that 14 were distributed in distinct internal compartments of the chloroplast. In addition, we identified 136 phosphorylation sites in 61 proteins encoded by chloroplast proteome. Furthermore, we reconstruct the snapshots along starch metabolic pathways in the two different types of plastids by a comparative analysis between chloroplast and previously reported amyloplast proteomes. Altogether, our results establish a comprehensive proteome map with post-translationally modified sites of potato chloroplast, which would provide the theoretical principle for the research of the photosynthesis pathway and starch metabolism.
Collapse
|
38
|
Adamiec M, Dobrogojski J, Wojtyla Ł, Luciński R. Stress-related expression of the chloroplast EGY3 pseudoprotease and its possible impact on chloroplasts' proteome composition. FRONTIERS IN PLANT SCIENCE 2022; 13:965143. [PMID: 35937369 PMCID: PMC9355673 DOI: 10.3389/fpls.2022.965143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
The EGY3 is a pseudoprotease, located in the thylakoid membrane, that shares homology with the family of site-2-proteases (S2P). Although S2P proteases are present in the cells of all living organisms, the EGY3 was found only in plant cells. The sequence of the pseudoprotease is highly conserved in the plant kingdom; however, little is known about its physiological importance. Results obtained with real-time PCR indicated that the expression of the EGY3 gene is dramatically induced during the first few hours of exposure to high light and high-temperature stress. The observed increase in transcript abundance correlates with protein accumulation level, which indicates that EGY3 participates in response to both high-temperature and high light stresses. The lack of the pseudoprotease leads, in both stresses, to lower concentrations of hydrogen peroxide. However, the decrease of chloroplast copper/zinc superoxide dismutase 2 level was observed only during the high light stress. In both analyzed stressful conditions, proteins related to RubisCO folding, glycine metabolism, and photosystem I were identified as differently accumulating in egy3 mutant lines and WT plants; however, the functional status of PSII during analyzed stressful conditions remains very similar. Our results lead to a conclusion that EGY3 pseudoprotease participates in response to high light and high-temperature stress; however, its role is associated rather with photosystem I and light-independent reactions of photosynthesis.
Collapse
Affiliation(s)
- Małgorzata Adamiec
- Department of Plant Physiology, Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Jędrzej Dobrogojski
- Department of Biochemistry and Biotechnology, Faculty of Agronomy, Horticulture and Bioengineering, University of Life Sciences, Poznań, Poland
| | - Łukasz Wojtyla
- Department of Plant Physiology, Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Robert Luciński
- Department of Plant Physiology, Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| |
Collapse
|
39
|
Monné M, Marobbio CMT, Agrimi G, Palmieri L, Palmieri F. Mitochondrial transport and metabolism of the major methyl donor and versatile cofactor S-adenosylmethionine, and related diseases: A review †. IUBMB Life 2022; 74:573-591. [PMID: 35730628 DOI: 10.1002/iub.2658] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/19/2022] [Indexed: 11/08/2022]
Abstract
S-adenosyl-L-methionine (SAM) is a coenzyme and the most commonly used methyl-group donor for the modification of metabolites, DNA, RNA and proteins. SAM biosynthesis and SAM regeneration from the methylation reaction product S-adenosyl-L-homocysteine (SAH) take place in the cytoplasm. Therefore, the intramitochondrial SAM-dependent methyltransferases require the import of SAM and export of SAH for recycling. Orthologous mitochondrial transporters belonging to the mitochondrial carrier family have been identified to catalyze this antiport transport step: Sam5p in yeast, SLC25A26 (SAMC) in humans, and SAMC1-2 in plants. In mitochondria SAM is used by a vast number of enzymes implicated in the following processes: the regulation of replication, transcription, translation, and enzymatic activities; the maturation and assembly of mitochondrial tRNAs, ribosomes and protein complexes; and the biosynthesis of cofactors, such as ubiquinone, lipoate, and molybdopterin. Mutations in SLC25A26 and mitochondrial SAM-dependent enzymes have been found to cause human diseases, which emphasizes the physiological importance of these proteins.
Collapse
Affiliation(s)
- Magnus Monné
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy.,Department of Sciences, University of Basilicata, Potenza, Italy
| | - Carlo M T Marobbio
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Gennaro Agrimi
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Luigi Palmieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy.,CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Bari, Italy
| | - Ferdinando Palmieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy.,CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Bari, Italy
| |
Collapse
|
40
|
Goussé M, Dell'Aglio E, Curien G, Borland S, Renoud S, Ranquet C, Chandor-Proust A. E. coli chromosomal-driven expression of NADK2 from A. thaliana: A preferable alternative to plasmid-driven expression for challenging proteins. Protein Expr Purif 2022; 195-196:106090. [PMID: 35346853 DOI: 10.1016/j.pep.2022.106090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 11/25/2022]
Abstract
The expression and purification of large recombinant proteins or protein complexes is problematic for some biotechnology laboratories. Indeed, it is often difficult to obtain enough active proteins to perform biological characterization or reach commercialization, when large proteins or protein complexes are expressed in E. coli via the popular T7-based plasmid-driven expression system. There is also an industrial demand to decrease our dependence on plasmid-driven expression, because of its drawbacks, such as: i) the common use of antibiotics to maintain the plasmid, ii) the issue of plasmid copy number, and iii) the risk of overloading the expression system. Despite all these issues, alternative solutions, such as gene integration in the bacterial chromosome, are rarely employed and their advantages are still a matter of debate. Plant plastidial NAD kinases (NADK; ATP:NAD 2'-phosphotransferase, EC 2.7.1.23) are a classic example of proteins with high molecular weight, that are difficult to express and purify with traditional T7-based technology. We therefore compared plasmid-driven and chromosomal-driven expression of the Arabidopsis thaliana NADK2 protein, using a proprietary counter-selection tool, COLIBELT®, that allows scar-free and marker-free chromosomal modifications. Here we show that chromosomal-driven expression allowed recovery of more active NADK2 protein than classic T7 expression systems, as well as better production, thus confirming that expression from one single chromosomal copy is preferable to plasmid-driven expression and might be appealing for both basic and applied research.
Collapse
Affiliation(s)
| | - Elisa Dell'Aglio
- Univ. Grenoble Alpes, CNRS, CEA, INRAe, IRIG-LPCV, Grenoble, France
| | - Gilles Curien
- Univ. Grenoble Alpes, CNRS, CEA, INRAe, IRIG-LPCV, Grenoble, France
| | | | | | | | | |
Collapse
|
41
|
Ohta J. A novel variant of the Calvin-Benson cycle bypassing fructose bisphosphate. Sci Rep 2022; 12:3984. [PMID: 35296702 PMCID: PMC8927339 DOI: 10.1038/s41598-022-07836-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 02/25/2022] [Indexed: 11/16/2022] Open
Abstract
The Calvin–Benson cycle (CB cycle) is quantitatively the most important metabolic pathway for CO2 fixation. In the canonical CB cycle, fructose 6-phosphate (F6P), fructose 1,6-bisphosphate (FBP), sedoheptulose 7-phosphate (S7P), and sedoheptulose 1,7-bisphosphate (SBP) appear as essential intermediates, where F6P is formed from FBP by the fructose 1,6-bisphosphatase (FBPase) reaction, and S7P is formed from SBP by the sedoheptulose 1,7-bisphosphatase (SBPase) reaction. Although the involvement of SBP and SBPase in the canonical CB cycle is consistent with the reported dependency of photosynthetic carbon metabolism on SBPase, the involvement of FBP and FBPase is not completely consistent with the reported FBP- or FBPase-related findings such as, although with a diminished growth rate, an Arabidopsis mutant lacking FBPase grew photoautotrophically in soil. Here, we show a novel variant of the CB cycle involving SBP, SBPase, and transaldolase, but neither FBP nor FBPase. This novel variant, named the S7P-removing transaldolase variant, bypasses FBP. This variant explains the FBP- or FBPase-related findings more easily than the canonical CB cycle as well as the dependency of photosynthetic carbon metabolism on SBPase and further suggests that co-overexpression of SBPase and transaldolase can be a strategy for enhancing photosynthetic carbon metabolism, which is important for the global environment.
Collapse
Affiliation(s)
- Jun Ohta
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kita-ku, Okayama, 700-8558, Japan.
| |
Collapse
|
42
|
Hooper CM, Castleden IR, Tanz SK, Grasso SV, Millar AH. Subcellular Proteomics as a Unified Approach of Experimental Localizations and Computed Prediction Data for Arabidopsis and Crop Plants. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1346:67-89. [PMID: 35113396 DOI: 10.1007/978-3-030-80352-0_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In eukaryotic organisms, subcellular protein location is critical in defining protein function and understanding sub-functionalization of gene families. Some proteins have defined locations, whereas others have low specificity targeting and complex accumulation patterns. There is no single approach that can be considered entirely adequate for defining the in vivo location of all proteins. By combining evidence from different approaches, the strengths and weaknesses of different technologies can be estimated, and a location consensus can be built. The Subcellular Location of Proteins in Arabidopsis database ( http://suba.live/ ) combines experimental data sets that have been reported in the literature and is analyzing these data to provide useful tools for biologists to interpret their own data. Foremost among these tools is a consensus classifier (SUBAcon) that computes a proposed location for all proteins based on balancing the experimental evidence and predictions. Further tools analyze sets of proteins to define the abundance of cellular structures. Extending these types of resources to plant crop species has been complex due to polyploidy, gene family expansion and contraction, and the movement of pathways and processes within cells across the plant kingdom. The Crop Proteins of Annotated Location database ( http://crop-pal.org/ ) has developed a range of subcellular location resources including a species-specific voting consensus for 12 plant crop species that offers collated evidence and filters for current crop proteomes akin to SUBA. Comprehensive cross-species comparison of these data shows that the sub-cellular proteomes (subcellulomes) depend only to some degree on phylogenetic relationship and are more conserved in major biosynthesis than in metabolic pathways. Together SUBA and cropPAL created reference subcellulomes for plants as well as species-specific subcellulomes for cross-species data mining. These data collections are increasingly used by the research community to provide a subcellular protein location layer, inform models of compartmented cell function and protein-protein interaction network, guide future molecular crop breeding strategies, or simply answer a specific question-where is my protein of interest inside the cell?
Collapse
Affiliation(s)
- Cornelia M Hooper
- The Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, WA, Australia
| | - Ian R Castleden
- The Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, WA, Australia
| | - Sandra K Tanz
- The Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, WA, Australia
| | - Sally V Grasso
- The Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, WA, Australia
| | - A Harvey Millar
- The Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, WA, Australia.
| |
Collapse
|
43
|
New Insights into the Chloroplast Outer Membrane Proteome and Associated Targeting Pathways. Int J Mol Sci 2022; 23:ijms23031571. [PMID: 35163495 PMCID: PMC8836251 DOI: 10.3390/ijms23031571] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 12/04/2022] Open
Abstract
Plastids are a dynamic class of organelle in plant cells that arose from an ancient cyanobacterial endosymbiont. Over the course of evolution, most genes encoding plastid proteins were transferred to the nuclear genome. In parallel, eukaryotic cells evolved a series of targeting pathways and complex proteinaceous machinery at the plastid surface to direct these proteins back to their target organelle. Chloroplasts are the most well-characterized plastids, responsible for photosynthesis and other important metabolic functions. The biogenesis and function of chloroplasts rely heavily on the fidelity of intracellular protein trafficking pathways. Therefore, understanding these pathways and their regulation is essential. Furthermore, the chloroplast outer membrane proteome remains relatively uncharted territory in our understanding of protein targeting. Many key players in the cytosol, receptors at the organelle surface, and insertases that facilitate insertion into the chloroplast outer membrane remain elusive for this group of proteins. In this review, we summarize recent advances in the understanding of well-characterized chloroplast outer membrane protein targeting pathways as well as provide new insights into novel targeting signals and pathways more recently identified using a bioinformatic approach. As a result of our analyses, we expand the known number of chloroplast outer membrane proteins from 117 to 138.
Collapse
|
44
|
Willems P, Ndah E, Jonckheere V, Van Breusegem F, Van Damme P. To New Beginnings: Riboproteogenomics Discovery of N-Terminal Proteoforms in Arabidopsis Thaliana. FRONTIERS IN PLANT SCIENCE 2022; 12:778804. [PMID: 35069635 PMCID: PMC8770321 DOI: 10.3389/fpls.2021.778804] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/18/2021] [Indexed: 06/14/2023]
Abstract
Alternative translation initiation is a widespread event in biology that can shape multiple protein forms or proteoforms from a single gene. However, the respective contribution of alternative translation to protein complexity remains largely enigmatic. By complementary ribosome profiling and N-terminal proteomics (i.e., riboproteogenomics), we provide clear-cut evidence for ~90 N-terminal proteoform pairs shaped by (alternative) translation initiation in Arabidopsis thaliana. Next to several cases additionally confirmed by directed mutagenesis, identified alternative protein N-termini follow the enzymatic rules of co-translational N-terminal protein acetylation and initiator methionine removal. In contrast to other eukaryotic models, N-terminal acetylation in plants cannot generally be considered as a proxy of translation initiation because of its posttranslational occurrence on mature proteolytic neo-termini (N-termini) localized in the chloroplast stroma. Quantification of N-terminal acetylation revealed differing co- vs. posttranslational N-terminal acetylation patterns. Intriguingly, our data additionally hints to alternative translation initiation serving as a common mechanism to supply protein copies in multiple cellular compartments, as alternative translation sites are often in close proximity to cleavage sites of N-terminal transit sequences of nuclear-encoded chloroplastic and mitochondrial proteins. Overall, riboproteogenomics screening enables the identification of (differential localized) N-terminal proteoforms raised upon alternative translation.
Collapse
Affiliation(s)
- Patrick Willems
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Vlaams Instituut voor Biotechnologie (VIB)-Center for Plant Systems Biology, Ghent, Belgium
| | - Elvis Ndah
- integrative Riboproteogenomics, Interactomics and Proteomics Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Veronique Jonckheere
- integrative Riboproteogenomics, Interactomics and Proteomics Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Vlaams Instituut voor Biotechnologie (VIB)-Center for Plant Systems Biology, Ghent, Belgium
| | - Petra Van Damme
- integrative Riboproteogenomics, Interactomics and Proteomics Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
45
|
Ghifari AS, Teixeira PF, Kmiec B, Singh N, Glaser E, Murcha MW. The dual-targeted prolyl aminopeptidase PAP1 is involved in proline accumulation in response to stress and during pollen development. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:78-93. [PMID: 34460901 DOI: 10.1093/jxb/erab397] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Plant endosymbiotic organelles such as mitochondria and chloroplasts harbour a wide array of biochemical reactions. As a part of protein homeostasis to maintain organellar activity and stability, unwanted proteins and peptides need to be completely degraded in a stepwise mechanism termed the processing pathway, where at the last stage single amino acids are released by aminopeptidases. Here, we determined the molecular and physiological functions of a prolyl aminopeptidase homologue PAP1 (At2g14260) that is able to release N-terminal proline. Transcript analyses demonstrate that an alternative transcription start site gives rise to two alternative transcripts, generating two in-frame proteins PAP1.1 and PAP1.2. Subcellular localization studies revealed that the longer isoform PAP1.1, which contains a 51 residue N-terminal extension, is exclusively targeted to chloroplasts, while the truncated isoform PAP1.2 is located in the cytosol. Distinct expression patterns in different tissues and developmental stages were observed. Investigations into the physiological role of PAP1 using loss-of-function mutants revealed that PAP1 activity may be involved in proline homeostasis and accumulation, required for pollen development and tolerance to osmotic stress. Enzymatic activity, subcellular location, and expression patterns of PAP1 suggest a role in the chloroplastic peptide processing pathway and proline homeostasis.
Collapse
Affiliation(s)
- Abi S Ghifari
- School of Molecular Sciences, The University of Western Australia, Crawley, Perth WA, Australia
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Perth WA, Australia
| | - Pedro F Teixeira
- Department of Biochemistry and Biophysics, Arrhenius Laboratory for Natural Sciences, Stockholm University, Stockholm, Sweden
| | - Beata Kmiec
- Department of Biochemistry and Biophysics, Arrhenius Laboratory for Natural Sciences, Stockholm University, Stockholm, Sweden
| | - Neha Singh
- School of Molecular Sciences, The University of Western Australia, Crawley, Perth WA, Australia
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Perth WA, Australia
| | - Elzbieta Glaser
- Department of Biochemistry and Biophysics, Arrhenius Laboratory for Natural Sciences, Stockholm University, Stockholm, Sweden
| | - Monika W Murcha
- School of Molecular Sciences, The University of Western Australia, Crawley, Perth WA, Australia
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Perth WA, Australia
| |
Collapse
|
46
|
Identification of (-)-bornyl diphosphate synthase from Blumea balsamifera and its application for (-)-borneol biosynthesis in Saccharomyces cerevisiae. Synth Syst Biotechnol 2022; 7:490-497. [PMID: 34977393 PMCID: PMC8671873 DOI: 10.1016/j.synbio.2021.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/19/2021] [Accepted: 12/06/2021] [Indexed: 11/22/2022] Open
Abstract
Borneol is a precious monoterpenoid with two chiral structures, (-)-borneol and (+)-borneol. Bornyl diphosphate synthase is the key enzyme in the borneol biosynthesis pathway. Many (+)-bornyl diphosphate synthases have been reported, but no (-)-bornyl diphosphate synthases have been identified. Blumea balsamifera leaves are rich in borneol, almost all of which is (-)-borneol. In this study, we identified a high-efficiency (-)-bornyl diphosphate synthase (BbTPS3) from B. balsamifera that converts geranyl diphosphate (GPP) to (-)-bornyl diphosphate, which is then converted to (-)-borneol after dephosphorylation in vitro. BbTPS3 exhibited a Km value of 4.93 ± 1.38 μM for GPP, and the corresponding kcat value was 1.49 s−1. Multiple strategies were applied to obtain a high-yielding (-)-borneol producing yeast strain. A codon-optimized BbTPS3 protein was introduced into the GPP high-yield strain MD, and the resulting MD-B1 strain produced 1.24 mg·L-1 (-)-borneol. After truncating the N-terminus of BbTPS3 and adding a Kozak sequence, the (-)-borneol yield was further improved by 4-fold to 4.87 mg·L-1. Moreover, the (-)-borneol yield was improved by expressing the fusion protein module of ERG20F96W-N127W-YRSQI-t14-BbTPS3K2, resulting in a final yield of 12.68 mg·L-1 in shake flasks and 148.59 mg·L-1 in a 5-L bioreactor. This work is the first reported attempt to produce (-)-borneol by microbial fermentation.
Collapse
|
47
|
Deep N-terminomics of Mycobacterium tuberculosis H37Rv extensively correct annotated encoding genes. Genomics 2021; 114:292-304. [PMID: 34915127 DOI: 10.1016/j.ygeno.2021.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/28/2021] [Accepted: 12/09/2021] [Indexed: 11/24/2022]
Abstract
Mycobacterium tuberculosis (MTB) is a severe causing agent of tuberculosis (TB). Although H37Rv, the type strain of M. tuberculosis was sequenced in 1998, annotation errors of encoding genes have been frequently reported in hundreds of papers. This phenomenon is particularly severe at the 5' end of the genes. Here, we applied a TMPP [(N-Succinimidyloxycarbonylmethyl) tris (2,4,6-trimethoxyphenyl) phosphonium bromide] labeling combined with StageTip separating strategy on M. tuberculosis H37Rv to characterize the N-terminal start sites of its annotated encoding genes. Totally, 1047 proteins were identified with 2058 TMPP labeled N-terminal peptides from all the 2625 mass spectrometer (MS) sequenced proteins. Comparative genomics analysis allowed the re-annotation of 43 proteins' N-termini in H37Rv and 762 proteins in Mycobacteriaceae. All revised N-termini start sites were distributed in 5'-UTR of annotated genes due to over-annotation of previous N-terminal initiation codon, especially the ATG. In addition, we identified and verified a novel gene Rv1078A in +3 frame different from the annotated gene Rv1078 in +2 frame. Altogether, our findings contribute to the better understanding of N-terminal of H37Rv and other species from Mycobacteriaceae that can assist future studies on biological study.
Collapse
|
48
|
Jeong J, Hwang I, Lee DW. Functional Organization of Sequence Motifs in Diverse Transit Peptides of Chloroplast Proteins. Front Physiol 2021; 12:795156. [PMID: 34880786 PMCID: PMC8645953 DOI: 10.3389/fphys.2021.795156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 10/28/2021] [Indexed: 11/17/2022] Open
Abstract
Although the chloroplasts in plants are characterized by an inherent genome, the chloroplast proteome is composed of proteins encoded by not only the chloroplast genome but also the nuclear genome. Nuclear-encoded chloroplast proteins are synthesized on cytosolic ribosomes and post-translationally targeted to the chloroplasts. In the latter process, an N-terminal cleavable transit peptide serves as a targeting signal required for the import of nuclear-encoded chloroplast interior proteins. This import process is mediated via an interaction between the sequence motifs in transit peptides and the components of the TOC/TIC (translocon at the outer/inner envelope of chloroplasts) translocons. Despite a considerable diversity in primary structures, several common features have been identified among transit peptides, including N-terminal moderate hydrophobicity, multiple proline residues dispersed throughout the transit peptide, preferential usage of basic residues over acidic residues, and an absence of N-terminal arginine residues. In this review, we will recapitulate and discuss recent progress in our current understanding of the functional organization of sequence elements commonly present in diverse transit peptides, which are essential for the multi-step import of chloroplast proteins.
Collapse
Affiliation(s)
- Jinseung Jeong
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, South Korea
| | - Inhwan Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | - Dong Wook Lee
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, South Korea.,Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
49
|
Manduzio S, Kang H. RNA methylation in chloroplasts or mitochondria in plants. RNA Biol 2021; 18:2127-2135. [PMID: 33779501 PMCID: PMC8632092 DOI: 10.1080/15476286.2021.1909321] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 03/23/2021] [Indexed: 12/14/2022] Open
Abstract
Recent advances in our understanding of epitranscriptomic RNA methylation have expanded the complexity of gene expression regulation beyond epigenetic regulation involving DNA methylation and histone modifications. The instalment, removal, and interpretation of methylation marks on RNAs are carried out by writers (methyltransferases), erasers (demethylases), and readers (RNA-binding proteins), respectively. Contrary to an emerging body of evidence demonstrating the importance of RNA methylation in the diverse fates of RNA molecules, including splicing, export, translation, and decay in the nucleus and cytoplasm, their roles in plant organelles remain largely unclear and are only now being discovered. In particular, extremely high levels of methylation marks in chloroplast and mitochondrial RNAs suggest that RNA methylation plays essential roles in organellar biogenesis and functions in plants that are crucial for plant development and responses to environmental stimuli. Thus, unveiling the cellular components involved in RNA methylation in cell organelles is essential to better understand plant biology.
Collapse
Affiliation(s)
- Stefano Manduzio
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
| | - Hunseung Kang
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
50
|
van Wijk KJ, Leppert T, Sun Q, Boguraev SS, Sun Z, Mendoza L, Deutsch EW. The Arabidopsis PeptideAtlas: Harnessing worldwide proteomics data to create a comprehensive community proteomics resource. THE PLANT CELL 2021; 33:3421-3453. [PMID: 34411258 PMCID: PMC8566204 DOI: 10.1093/plcell/koab211] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/13/2021] [Indexed: 05/02/2023]
Abstract
We developed a resource, the Arabidopsis PeptideAtlas (www.peptideatlas.org/builds/arabidopsis/), to solve central questions about the Arabidopsis thaliana proteome, such as the significance of protein splice forms and post-translational modifications (PTMs), or simply to obtain reliable information about specific proteins. PeptideAtlas is based on published mass spectrometry (MS) data collected through ProteomeXchange and reanalyzed through a uniform processing and metadata annotation pipeline. All matched MS-derived peptide data are linked to spectral, technical, and biological metadata. Nearly 40 million out of ∼143 million MS/MS (tandem MS) spectra were matched to the reference genome Araport11, identifying ∼0.5 million unique peptides and 17,858 uniquely identified proteins (only isoform per gene) at the highest confidence level (false discovery rate 0.0004; 2 non-nested peptides ≥9 amino acid each), assigned canonical proteins, and 3,543 lower-confidence proteins. Physicochemical protein properties were evaluated for targeted identification of unobserved proteins. Additional proteins and isoforms currently not in Araport11 were identified that were generated from pseudogenes, alternative start, stops, and/or splice variants, and small Open Reading Frames; these features should be considered when updating the Arabidopsis genome. Phosphorylation can be inspected through a sophisticated PTM viewer. PeptideAtlas is integrated with community resources including TAIR, tracks in JBrowse, PPDB, and UniProtKB. Subsequent PeptideAtlas builds will incorporate millions more MS/MS data.
Collapse
Affiliation(s)
- Klaas J van Wijk
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, New York 14853, USA
- Authors for correspondence: (K.J.V.W.), (E.W.D.)
| | - Tami Leppert
- Institute for Systems Biology (ISB), Seattle, Washington 98109, USA
| | - Qi Sun
- Computational Biology Service Unit, Cornell University, Ithaca, New York 14853, USA
| | - Sascha S Boguraev
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, New York 14853, USA
| | - Zhi Sun
- Institute for Systems Biology (ISB), Seattle, Washington 98109, USA
| | - Luis Mendoza
- Institute for Systems Biology (ISB), Seattle, Washington 98109, USA
| | - Eric W Deutsch
- Institute for Systems Biology (ISB), Seattle, Washington 98109, USA
- Authors for correspondence: (K.J.V.W.), (E.W.D.)
| |
Collapse
|