1
|
Ersoy U, Altinpinar AE, Kanakis I, Alameddine M, Gioran A, Chondrogianni N, Ozanne SE, Peffers MJ, Jackson MJ, Goljanek-Whysall K, Vasilaki A. Lifelong dietary protein restriction induces denervation and skeletal muscle atrophy in mice. Free Radic Biol Med 2024; 224:457-469. [PMID: 39245354 DOI: 10.1016/j.freeradbiomed.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
As a widespread global issue, protein deficiency hinders development and optimal growth in offspring. Maternal low-protein diet influences the development of age-related diseases, including sarcopenia, by altering the epigenome and organ structure through potential increase in oxidative stress. However, the long-term effects of lactational protein restriction or postnatal lifelong protein restriction on the neuromuscular system have yet to be elucidated. Our results demonstrated that feeding a normal protein diet after lactational protein restriction did not have significant impacts on the neuromuscular system in later life. In contrast, a lifelong low-protein diet induced a denervation phenotype and led to demyelination in the sciatic nerve, along with an increase in the number of centralised nuclei and in the gene expression of atrogenes at 18 months of age, indicating an induced skeletal muscle atrophy. These changes were accompanied by an increase in proteasome activity in skeletal muscle, with no significant alterations in oxidative stress or mitochondrial dynamics markers in skeletal muscle later in life. Thus, lifelong protein restriction may induce skeletal muscle atrophy through changes in peripheral nerves and neuromuscular junctions, potentially contributing to the early onset or exaggeration of sarcopenia.
Collapse
Affiliation(s)
- Ufuk Ersoy
- Department of Musculoskeletal and Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), The MRC - Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK.
| | - Atilla Emre Altinpinar
- Department of Musculoskeletal and Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), The MRC - Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK.
| | - Ioannis Kanakis
- Department of Musculoskeletal and Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), The MRC - Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK; Chester Medical School, Faculty of Medicine and Life Sciences, University of Chester, Chester, UK.
| | - Moussira Alameddine
- Department of Musculoskeletal and Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), The MRC - Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK.
| | - Anna Gioran
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece.
| | - Niki Chondrogianni
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece.
| | - Susan E Ozanne
- MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, University of Cambridge Metabolic Research Laboratories, Cambridge, UK.
| | - Mandy Jayne Peffers
- Department of Musculoskeletal and Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), The MRC - Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK.
| | - Malcolm J Jackson
- Department of Musculoskeletal and Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), The MRC - Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK.
| | - Katarzyna Goljanek-Whysall
- Department of Musculoskeletal and Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), The MRC - Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK; Department of Physiology, School of Medicine and REMEDI, CMNHS, University of Galway, Galway, Ireland.
| | - Aphrodite Vasilaki
- Department of Musculoskeletal and Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), The MRC - Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK.
| |
Collapse
|
2
|
Alameddine M, Altinpinar AE, Ersoy U, Kanakis I, Myrtziou I, Ozanne SE, Goljanek-Whysall K, Vasilaki A. Effect of Lactational Low-Protein Diet on Skeletal Muscle during Adulthood and Ageing in Male and Female Mouse Offspring. Nutrients 2024; 16:2926. [PMID: 39275242 PMCID: PMC11397042 DOI: 10.3390/nu16172926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024] Open
Abstract
Sarcopenia is characterised by the loss of skeletal muscle mass and function, which leads to a high risk of increased morbidity and mortality. Maternal malnutrition has been linked to impaired development of skeletal muscle of the offspring; however, there are limited studies that report the long-term effect of a maternal low-protein diet during lactation on the ageing of skeletal muscles. This study aimed to examine how a maternal low-protein diet (LPD) during lactation affects skeletal muscle ageing in the offspring. Pups born from control mothers were lactated by mothers fed with an LPD. Post-weaning, mice were either maintained on an LPD or switched to a control, normal-protein diet (NPD). In males, an LPD mainly affected the size of the myofibres without a major effect on fibre number and led to reduced grip strength in ageing mice (24 months). Female mice from mothers on an LPD had a lower body and muscle weight at weaning but caught up with control mice at 3 months. During ageing, the muscle weight, myofibre number and survival rate of female pups were significantly affected. These findings highlight the effect of an LPD during lactation on skeletal muscle ageing, the lifespan of offspring and the importance of sexual dimorphism in response to dietary challenges.
Collapse
Affiliation(s)
- Moussira Alameddine
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), University of Liverpool, Liverpool L7 8TX, UK
- Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Atilla Emre Altinpinar
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), University of Liverpool, Liverpool L7 8TX, UK
| | - Ufuk Ersoy
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), University of Liverpool, Liverpool L7 8TX, UK
| | - Ioannis Kanakis
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), University of Liverpool, Liverpool L7 8TX, UK
- Chester Medical School, Faculty of Health, Medicine and Society, University of Chester, Chester CH1 4BJ, UK
| | - Ioanna Myrtziou
- Chester Medical School, Faculty of Health, Medicine and Society, University of Chester, Chester CH1 4BJ, UK
| | - Susan E Ozanne
- MRC Metabolic Diseases Unit, Welcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, University of Cambridge Metabolic Research Laboratories, Cambridge CB2 0QQ, UK
| | - Katarzyna Goljanek-Whysall
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), University of Liverpool, Liverpool L7 8TX, UK
- Department of Physiology, School of Medicine and REMEDI, CMNHS, University of Galway, H91 TK33 Galway, Ireland
| | - Aphrodite Vasilaki
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), University of Liverpool, Liverpool L7 8TX, UK
| |
Collapse
|
3
|
Ersoy U, Kanakis I, Alameddine M, Pedraza-Vazquez G, Ozanne SE, Peffers MJ, Jackson MJ, Goljanek-Whysall K, Vasilaki A. Lifelong dietary protein restriction accelerates skeletal muscle loss and reduces muscle fibre size by impairing proteostasis and mitochondrial homeostasis. Redox Biol 2024; 69:102980. [PMID: 38064763 PMCID: PMC10755587 DOI: 10.1016/j.redox.2023.102980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 01/01/2024] Open
Abstract
The early life environment significantly affects the development of age-related skeletal muscle disorders. However, the long-term effects of lactational protein restriction on skeletal muscle are still poorly defined. Our study revealed that male mice nursed by dams fed a low-protein diet during lactation exhibited skeletal muscle growth restriction. This was associated with a dysregulation in the expression levels of genes related to the ribosome, mitochondria and skeletal muscle development. We reported that lifelong protein restriction accelerated loss of type-IIa muscle fibres and reduced muscle fibre size by impairing mitochondrial homeostasis and proteostasis at 18 months of age. However, feeding a normal-protein diet following lactational protein restriction prevented accelerated fibre loss and fibre size reduction in later life. These findings provide novel insight into the mechanisms by which lactational protein restriction hinders skeletal muscle growth and includes evidence that lifelong dietary protein restriction accelerated skeletal muscle loss in later life.
Collapse
Affiliation(s)
- Ufuk Ersoy
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), The MRC - Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK
| | - Ioannis Kanakis
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), The MRC - Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK; Chester Medical School, Faculty of Medicine and Life Sciences, University of Chester, Chester, UK
| | - Moussira Alameddine
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), The MRC - Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK
| | - Gibran Pedraza-Vazquez
- Department of Physiology, School of Medicine and REMEDI, CMNHS, University of Galway, Galway, Ireland
| | - Susan E Ozanne
- MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, University of Cambridge Metabolic Research Laboratories, Cambridge, UK
| | - Mandy Jayne Peffers
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), The MRC - Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK
| | - Malcolm J Jackson
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), The MRC - Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK
| | - Katarzyna Goljanek-Whysall
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), The MRC - Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK; Department of Physiology, School of Medicine and REMEDI, CMNHS, University of Galway, Galway, Ireland
| | - Aphrodite Vasilaki
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), The MRC - Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK.
| |
Collapse
|
4
|
Zambrano E, Reyes-Castro LA, Rodríguez-González GL, Chavira R, Lomas-Soria C, Gerow KG, Nathanielsz PW. Developmental Programming-Aging Interactions Have Sex-Specific and Developmental Stage of Exposure Outcomes on Life Course Circulating Corticosterone and Dehydroepiandrosterone (DHEA) Concentrations in Rats Exposed to Maternal Protein-Restricted Diets. Nutrients 2023; 15:nu15051239. [PMID: 36904238 PMCID: PMC10005360 DOI: 10.3390/nu15051239] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/05/2023] Open
Abstract
The steroids corticosterone and dehydroepiandrosterone (DHEA) perform multiple life course functions. Rodent life-course circulating corticosterone and DHEA trajectories are unknown. We studied life course basal corticosterone and DHEA in offspring of rats fed protein-restricted (10% protein, R) or control (20% protein, C), pregnancy diet first letter, and/or lactation second letter, producing four offspring groups-CC, RR, CR, and RC. We hypothesize that 1. maternal diet programs are sexually dimorphic, offspring life course steroid concentrations, and 2. an aging-related steroid will fall. Both changes differ with the plastic developmental period offspring experienced R, fetal life or postnatally, pre-weaning. Corticosterone was measured by radioimmunoassay and DHEA by ELISA. Steroid trajectories were evaluated by quadratic analysis. Female corticosterone was higher than male in all groups. Male and female corticosterone were highest in RR, peaked at 450 days, and fell thereafter. DHEA declined with aging in all-male groups. DHEA: corticosterone fell in three male groups but increased in all-female groups with age. In conclusion, life course and sexually dimorphic steroid developmental programming-aging interactions may explain differences in steroid studies at different life stages and between colonies experiencing different early-life programming. These data support our hypotheses of sex and programming influences and aging-related fall in rat life course serum steroids. Life course studies should address developmental programming-aging interactions.
Collapse
Affiliation(s)
- Elena Zambrano
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Luis A. Reyes-Castro
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Guadalupe L. Rodríguez-González
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Roberto Chavira
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Consuelo Lomas-Soria
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
- CONACyT-Cátedras, Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición SZ, Mexico City 14080, Mexico
| | - Kenneth G. Gerow
- Department of Statistics, University of Wyoming, Laramie, WY 82071, USA
| | - Peter W. Nathanielsz
- Wyoming Center for Pregnancy and Life Course Health Research, Department of Animal Science, University of Wyoming, Laramie, WY 82071, USA
- Correspondence:
| |
Collapse
|
5
|
Giakoumaki I, Pollock N, Aljuaid T, Sannicandro AJ, Alameddine M, Owen E, Myrtziou I, Ozanne SE, Kanakis I, Goljanek-Whysall K, Vasilaki A. Postnatal Protein Intake as a Determinant of Skeletal Muscle Structure and Function in Mice-A Pilot Study. Int J Mol Sci 2022; 23:8815. [PMID: 35955948 PMCID: PMC9369224 DOI: 10.3390/ijms23158815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 12/04/2022] Open
Abstract
Sarcopenia is characterised by an age-related decrease in the number of muscle fibres and additional weakening of the remaining fibres, resulting in a reduction in muscle mass and function. Many studies associate poor maternal nutrition during gestation and/or lactation with altered skeletal muscle homeostasis in the offspring and the development of sarcopenia. The aim of this study was to determine whether the musculoskeletal physiology in offspring born to mouse dams fed a low-protein diet during pregnancy was altered and whether any physiological changes could be modulated by the nutritional protein content in early postnatal stages. Thy1-YFP female mice were fed ad libitum on either a normal (20%) or a low-protein (5%) diet. Newborn pups were cross-fostered to different lactating dams (maintained on a 20% or 5% diet) to generate three groups analysed at weaning (21 days): Normal-to-Normal (NN), Normal-to-Low (NL) and Low-to-Normal (LN). Further offspring were maintained ad libitum on the same diet as during lactation until 12 weeks of age, creating another three groups (NNN, NLL, LNN). Mice on a low protein diet postnatally (NL, NLL) exhibited a significant reduction in body and muscle weight persisting up to 12 weeks, unlike mice on a low protein diet only prenatally (LN, LNN). Muscle fibre size was reduced in mice from the NL but not LN group, showing recovery at 12 weeks of age. Muscle force was reduced in NLL mice, concomitant with changes in the NMJ site and changes in atrophy-related and myosin genes. In addition, μCT scans of mouse tibiae at 12 weeks of age revealed changes in bone mass and morphology, resulting in a higher bone mass in the NLL group than the control NNN group. Finally, changes in the expression of miR-133 in the muscle of NLL mice suggest a regulatory role for this microRNA in muscle development in response to postnatal diet changes. Overall, this data shows that a low maternal protein diet and early postnatal life low-protein intake in mice can impact skeletal muscle physiology and function in early life while postnatal low protein diet favours bone integrity in adulthood.
Collapse
Affiliation(s)
- Ifigeneia Giakoumaki
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L7 8TX, UK
| | - Natalie Pollock
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L7 8TX, UK
- The MRC—Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool L7 8TX, UK
| | - Turki Aljuaid
- Department of Physiology, School of Medicine and REMEDI, CMNHS, NUI Galway, H91 TK33 Galway, Ireland
- Department of Biotechnology, College of Science, Taif University, Taif 21944, Saudi Arabia
| | - Anthony J. Sannicandro
- Department of Physiology, School of Medicine and REMEDI, CMNHS, NUI Galway, H91 TK33 Galway, Ireland
| | - Moussira Alameddine
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L7 8TX, UK
| | - Euan Owen
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L7 8TX, UK
| | - Ioanna Myrtziou
- Chester Medical School, University of Chester, Bache Hall, Countess View, Chester CH2 1BR, UK
| | - Susan E. Ozanne
- University of Cambridge MRC Metabolic Diseases Unit and Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke’s Hospital Cambridge, Cambridge CB2 0QQ, UK
| | - Ioannis Kanakis
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L7 8TX, UK
- Chester Medical School, University of Chester, Bache Hall, Countess View, Chester CH2 1BR, UK
| | - Katarzyna Goljanek-Whysall
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L7 8TX, UK
- The MRC—Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool L7 8TX, UK
- Department of Physiology, School of Medicine and REMEDI, CMNHS, NUI Galway, H91 TK33 Galway, Ireland
| | - Aphrodite Vasilaki
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L7 8TX, UK
- The MRC—Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool L7 8TX, UK
| |
Collapse
|
6
|
Simões-Alves AC, Arcoverde-Mello APFC, Campos JDO, Wanderley AG, Leandro CVG, da Costa-Silva JH, de Oliveira Nogueira Souza V. Cardiometabolic Effects of Postnatal High-Fat Diet Consumption in Offspring Exposed to Maternal Protein Restriction In Utero. Front Physiol 2022; 13:829920. [PMID: 35620602 PMCID: PMC9127546 DOI: 10.3389/fphys.2022.829920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/29/2022] [Indexed: 01/01/2023] Open
Abstract
In recent decades, the high incidence of infectious and parasitic diseases has been replaced by a high prevalence of chronic and degenerative diseases. Concomitantly, there have been profound changes in the behavior and eating habits of families around the world, characterizing a "nutritional transition" phenomenon, which refers to a shift in diet in response to modernization, urbanization, or economic development from undernutrition to the excessive consumption of hypercaloric and ultra-processed foods. Protein malnutrition that was a health problem in the first half of the 20th century has now been replaced by high-fat diets, especially diets high in saturated fat, predisposing consumers to overweight and obesity. This panorama points us to the alarming coexistence of both malnutrition and obesity in the same population. In this way, individuals whose mothers were undernourished early in pregnancy and then exposed to postnatal hyperlipidic nutrition have increased risk factors for developing metabolic dysfunction and cardiovascular diseases in adulthood. Thus, our major aim was to review the cardiometabolic effects resulting from postnatal hyperlipidic diets in protein-restricted subjects, as well as to examine the epigenetic repercussions occasioned by the nutritional transition.
Collapse
Affiliation(s)
- Aiany Cibelle Simões-Alves
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Department of Physical Education and Sport Sciences, Universidade Federal de Pernambuco UFPE, Vitória de Santo Antão, Brazil
| | - Ana Paula Fonseca Cabral Arcoverde-Mello
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Department of Physical Education and Sport Sciences, Universidade Federal de Pernambuco UFPE, Vitória de Santo Antão, Brazil
| | - Jéssica de Oliveira Campos
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Department of Physical Education and Sport Sciences, Universidade Federal de Pernambuco UFPE, Vitória de Santo Antão, Brazil
| | | | - Carol Virginia Gois Leandro
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Department of Physical Education and Sport Sciences, Universidade Federal de Pernambuco UFPE, Vitória de Santo Antão, Brazil
| | - João Henrique da Costa-Silva
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Department of Physical Education and Sport Sciences, Universidade Federal de Pernambuco UFPE, Vitória de Santo Antão, Brazil
| | - Viviane de Oliveira Nogueira Souza
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Department of Physical Education and Sport Sciences, Universidade Federal de Pernambuco UFPE, Vitória de Santo Antão, Brazil
| |
Collapse
|
7
|
Serpente P, Zhang Y, Islimye E, Hart-Johnson S, Gould AP. Quantification of fetal organ sparing in maternal low-protein dietary models. Wellcome Open Res 2022; 6:218. [PMID: 35634534 PMCID: PMC9120932 DOI: 10.12688/wellcomeopenres.17124.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2022] [Indexed: 11/20/2022] Open
Abstract
Background: Maternal malnutrition can lead to fetal growth restriction. This is often associated with organ sparing and long-lasting physiological dysfunctions during adulthood, although the underlying mechanisms are not yet well understood. Methods: Low protein (LP) dietary models in C57BL/6J mice were used to investigate the proximal effects of maternal malnutrition on fetal organ weights and organ sparing at embryonic day 18.5 (E18.5). Results: Maternal 8% LP diet induced strikingly different degrees of fetal growth restriction in different animal facilities, but adjustment of dietary protein content allowed similar fetal body masses to be obtained. A maternal LP diet that restricted fetal body mass by 40% did not decrease fetal brain mass to the same extent, reflecting positive growth sparing of this organ. Under these conditions, fetal pancreas and liver mass decreased by 60-70%, indicative of negative organ sparing. A series of dietary swaps between LP and standard diets showed that the liver is capable of efficient catch-up growth from as late as E14.5 whereas, after E10.5, the pancreas is not. Conclusions: This study highlights that the reproducibility of LP fetal growth restriction studies between laboratories can be improved by careful calibration of maternal dietary protein content. LP diets that induce 30-40% restriction of prenatal growth provide a good model for fetal organ sparing. For the liver, recovery of growth following protein restriction is efficient throughout fetal development but, for the pancreas, transient LP exposures spanning the progenitor expansion phase lead to an irreversible fetal growth deficit.
Collapse
Affiliation(s)
- Patricia Serpente
- Laboratory of Physiology and Metabolism, The Francis Crick Institute, London, NW1 1AT, UK
- MRC National Institute for Medical Research, UK, Mill Hill, London, NW7 1AA, UK
| | - Ying Zhang
- Laboratory of Physiology and Metabolism, The Francis Crick Institute, London, NW1 1AT, UK
| | - Eva Islimye
- Laboratory of Physiology and Metabolism, The Francis Crick Institute, London, NW1 1AT, UK
| | - Sarah Hart-Johnson
- MRC National Institute for Medical Research, UK, Mill Hill, London, NW7 1AA, UK
- Biological Research Facility, The Francis Crick Institute, London, NW1 1AT, UK
| | - Alex P. Gould
- Laboratory of Physiology and Metabolism, The Francis Crick Institute, London, NW1 1AT, UK
- MRC National Institute for Medical Research, UK, Mill Hill, London, NW7 1AA, UK
| |
Collapse
|
8
|
Vipin VA, Blesson CS, Yallampalli C. Maternal low protein diet and fetal programming of lean type 2 diabetes. World J Diabetes 2022; 13:185-202. [PMID: 35432755 PMCID: PMC8984567 DOI: 10.4239/wjd.v13.i3.185] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/30/2021] [Accepted: 02/10/2022] [Indexed: 02/06/2023] Open
Abstract
Maternal nutrition is found to be the key factor that determines fetal health in utero and metabolic health during adulthood. Metabolic diseases have been primarily attributed to impaired maternal nutrition during pregnancy, and impaired nutrition has been an immense issue across the globe. In recent years, type 2 diabetes (T2D) has reached epidemic proportion and is a severe public health problem in many countries. Although plenty of research has already been conducted to tackle T2D which is associated with obesity, little is known regarding the etiology and pathophysiology of lean T2D, a variant of T2D. Recent studies have focused on the effects of epigenetic variation on the contribution of in utero origins of lean T2D, although other mechanisms might also contribute to the pathology. Observational studies in humans and experiments in animals strongly suggest an association between maternal low protein diet and lean T2D phenotype. In addition, clear sex-specific disease prevalence was observed in different studies. Consequently, more research is essential for the understanding of the etiology and pathophysiology of lean T2D, which might help to develop better disease prevention and treatment strategies. This review examines the role of protein insufficiency in the maternal diet as the central driver of the developmental programming of lean T2D.
Collapse
Affiliation(s)
- Vidyadharan Alukkal Vipin
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, United States
| | - Chellakkan Selvanesan Blesson
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, United States
- Family Fertility Center, Texas Children's Hospital, Houston, TX 77030, United States
| | - Chandra Yallampalli
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, United States
| |
Collapse
|
9
|
Serpente P, Zhang Y, Islimye E, Hart-Johnson S, Gould AP. Quantification of fetal organ sparing in maternal low-protein dietary models. Wellcome Open Res 2021; 6:218. [PMID: 35634534 PMCID: PMC9120932 DOI: 10.12688/wellcomeopenres.17124.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2021] [Indexed: 11/08/2023] Open
Abstract
Background: Maternal malnutrition can lead to fetal growth restriction. This is often associated with organ sparing and long-lasting physiological dysfunctions during adulthood, although the underlying mechanisms are not yet well understood. Methods: Low protein (LP) dietary models in C57BL/6J mice were used to investigate the proximal effects of maternal malnutrition on fetal organ weights and organ sparing at embryonic day 18.5 (E18.5). Results: Maternal 8% LP diet induced strikingly different degrees of fetal growth restriction in different animal facilities, but adjustment of dietary protein content allowed similar fetal body masses to be obtained. A maternal LP diet that restricted fetal body mass by 40% did not decrease fetal brain mass to the same extent, reflecting positive growth sparing of this organ. Under these conditions, fetal pancreas and liver mass decreased by 60-70%, indicative of negative organ sparing. A series of dietary swaps between LP and standard diets showed that the liver is capable of efficient catch-up growth from as late as E14.5 whereas, after E10.5, the pancreas is not. Conclusions: This study highlights that the reproducibility of LP fetal growth restriction studies between laboratories can be improved by careful calibration of maternal dietary protein content. LP diets that induce 30-40% restriction of prenatal growth provide a good model for fetal organ sparing. For the liver, recovery of growth following protein restriction is efficient throughout fetal development but, for the pancreas, transient LP exposures spanning the progenitor expansion phase lead to an irreversible fetal growth deficit.
Collapse
Affiliation(s)
- Patricia Serpente
- Laboratory of Physiology and Metabolism, The Francis Crick Institute, London, NW1 1AT, UK
- MRC National Institute for Medical Research, UK, Mill Hill, London, NW7 1AA, UK
| | - Ying Zhang
- Laboratory of Physiology and Metabolism, The Francis Crick Institute, London, NW1 1AT, UK
| | - Eva Islimye
- Laboratory of Physiology and Metabolism, The Francis Crick Institute, London, NW1 1AT, UK
| | - Sarah Hart-Johnson
- MRC National Institute for Medical Research, UK, Mill Hill, London, NW7 1AA, UK
- Biological Research Facility, The Francis Crick Institute, London, NW1 1AT, UK
| | - Alex P. Gould
- Laboratory of Physiology and Metabolism, The Francis Crick Institute, London, NW1 1AT, UK
- MRC National Institute for Medical Research, UK, Mill Hill, London, NW7 1AA, UK
| |
Collapse
|
10
|
Understanding the Long-Lasting Effects of Fetal Nutrient Restriction versus Exposure to an Obesogenic Diet on Islet-Cell Mass and Function. Metabolites 2021; 11:metabo11080514. [PMID: 34436455 PMCID: PMC8401811 DOI: 10.3390/metabo11080514] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/14/2022] Open
Abstract
Early life represents a window of phenotypic plasticity. Thus, exposure of the developing fetus to a compromised nutritional environment can have long term consequences for their health. Indeed, undernutrition or maternal intake of an obesogenic diet during pregnancy leads to a heightened risk of type 2 diabetes (T2D) and obesity in her offspring in adult life. Given that abnormalities in beta-cell function are crucial in delineating the risk of T2D, studies have investigated the impact of these exposures on islet morphology and beta-cell function in the offspring in a bid to understand why they are more at risk of T2D. Interestingly, despite the contrasting maternal metabolic phenotype and, therefore, intrauterine environment associated with undernutrition versus high-fat feeding, there are a number of similarities in the genes/biological pathways that are disrupted in offspring islets leading to changes in function. Looking to the future, it will be important to define the exact mechanisms involved in mediating changes in the gene expression landscape in islet cells to determine whether the road to T2D development is the same or different in those exposed to different ends of the nutritional spectrum.
Collapse
|
11
|
Kanakis I, Alameddine M, Folkes L, Moxon S, Myrtziou I, Ozanne SE, Peffers MJ, Goljanek-Whysall K, Vasilaki A. Small-RNA Sequencing Reveals Altered Skeletal Muscle microRNAs and snoRNAs Signatures in Weanling Male Offspring from Mouse Dams Fed a Low Protein Diet during Lactation. Cells 2021; 10:cells10051166. [PMID: 34064819 PMCID: PMC8150574 DOI: 10.3390/cells10051166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/07/2021] [Accepted: 05/09/2021] [Indexed: 12/18/2022] Open
Abstract
Maternal diet during gestation and lactation affects the development of skeletal muscles in offspring and determines muscle health in later life. In this paper, we describe the association between maternal low protein diet-induced changes in offspring skeletal muscle and the differential expression (DE) of small non-coding RNAs (sncRNAs). We used a mouse model of maternal protein restriction, where dams were fed either a normal (N, 20%) or a low protein (L, 8%) diet during gestation and newborns were cross-fostered to N or L lactating dams, resulting in the generation of NN, NL and LN offspring groups. Total body and tibialis anterior (TA) weights were decreased in weanling NL male offspring but were not different in the LN group, as compared to NN. However, histological evaluation of TA muscle revealed reduced muscle fibre size in both groups at weaning. Small RNA-sequencing demonstrated DE of multiple miRs, snoRNAs and snRNAs. Bioinformatic analyses of miRs-15a, -34a, -122 and -199a, in combination with known myomiRs, confirmed their implication in key muscle-specific biological processes. This is the first comprehensive report for the DE of sncRNAs in nutrition-associated programming of skeletal muscle development, highlighting the need for further research to unravel the detailed molecular mechanisms.
Collapse
Affiliation(s)
- Ioannis Kanakis
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L7 8TX, UK; (M.A.); (M.J.P.); (K.G.-W.); (A.V.)
- Chester Medical School, Faculty of Medicine and Life Sciences, University of Chester, Chester CH2 1BR, UK;
- Correspondence: or
| | - Moussira Alameddine
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L7 8TX, UK; (M.A.); (M.J.P.); (K.G.-W.); (A.V.)
| | - Leighton Folkes
- School of Biological Sciences, Faculty of Science, University of East Anglia, Norwich NR4 7TJ, UK; (L.F.); (S.M.)
| | - Simon Moxon
- School of Biological Sciences, Faculty of Science, University of East Anglia, Norwich NR4 7TJ, UK; (L.F.); (S.M.)
| | - Ioanna Myrtziou
- Chester Medical School, Faculty of Medicine and Life Sciences, University of Chester, Chester CH2 1BR, UK;
| | - Susan E. Ozanne
- Metabolic Research Laboratories, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK;
| | - Mandy J. Peffers
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L7 8TX, UK; (M.A.); (M.J.P.); (K.G.-W.); (A.V.)
| | - Katarzyna Goljanek-Whysall
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L7 8TX, UK; (M.A.); (M.J.P.); (K.G.-W.); (A.V.)
- Department of Physiology, School of Medicine and REMEDI, CMNHS, NUI Galway, Galway H91 TK33, Ireland
| | - Aphrodite Vasilaki
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L7 8TX, UK; (M.A.); (M.J.P.); (K.G.-W.); (A.V.)
| |
Collapse
|
12
|
Parra-Vargas M, Ramon-Krauel M, Lerin C, Jimenez-Chillaron JC. Size Does Matter: Litter Size Strongly Determines Adult Metabolism in Rodents. Cell Metab 2020; 32:334-340. [PMID: 32814016 DOI: 10.1016/j.cmet.2020.07.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/16/2020] [Accepted: 07/20/2020] [Indexed: 11/25/2022]
Abstract
In this essay, we highlight how litter size in rodents is a strong determinant of neonatal growth and long-term metabolic health. Based on these effects, we strongly advise that scientific articles that utilize rodent models for obesity and metabolic research should include information on the litter sizes in the study to increase the data transparency of such reports.
Collapse
Affiliation(s)
- Marcela Parra-Vargas
- Institut de Recerca Sant Joan de Déu, Endocrinology, c/ Santa Rosa 39-57, 4ª planta, Esplugues, 08950 Barcelona, Spain
| | - Marta Ramon-Krauel
- Institut de Recerca Sant Joan de Déu, Endocrinology, c/ Santa Rosa 39-57, 4ª planta, Esplugues, 08950 Barcelona, Spain
| | - Carles Lerin
- Institut de Recerca Sant Joan de Déu, Endocrinology, c/ Santa Rosa 39-57, 4ª planta, Esplugues, 08950 Barcelona, Spain
| | - Josep C Jimenez-Chillaron
- Institut de Recerca Sant Joan de Déu, Endocrinology, c/ Santa Rosa 39-57, 4ª planta, Esplugues, 08950 Barcelona, Spain.
| |
Collapse
|
13
|
Palliyaguru DL, Rudderow AL, Sossong AM, Lewis KN, Younts C, Pearson KJ, Bernier M, de Cabo R. Perinatal diet influences health and survival in a mouse model of leukemia. GeroScience 2020; 42:1147-1155. [PMID: 32394346 DOI: 10.1007/s11357-020-00199-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 04/29/2020] [Indexed: 11/28/2022] Open
Abstract
The goal of the current study was to determine the role of maternal diet in the perinatal period on the health and survival of the offspring. AKR/J mice, a model described to be susceptible to leukemia development, was used where females were maintained on either standard diet (SD), high sucrose diet, Western diet, or calorie restriction (CR) as they were mated with SD-fed males. Body weights, pregnancy rates, litter size, and litter survival were used as markers of successful pregnancy and pup health. Data indicated that maternal diet had significant effects on litter size, early pup survival, and early pup body weights. As pups matured, the makeup of their respective maternal diet was a predictor of adult metabolic health and survival. Overall, these results suggest that perinatal maternal diet is an important determinant of the health and survival of the offspring and that these effects continue well into adulthood, strongly correlating with lifespan.
Collapse
Affiliation(s)
- Dushani L Palliyaguru
- Translational Gerontology Branch, National Institute on Aging, NIH, 251 Bayview Blvd, Suite 100, Baltimore, MD, 21224, USA
| | - Annamaria L Rudderow
- Translational Gerontology Branch, National Institute on Aging, NIH, 251 Bayview Blvd, Suite 100, Baltimore, MD, 21224, USA
| | - Alex M Sossong
- Translational Gerontology Branch, National Institute on Aging, NIH, 251 Bayview Blvd, Suite 100, Baltimore, MD, 21224, USA
| | - Kaitlyn N Lewis
- Translational Gerontology Branch, National Institute on Aging, NIH, 251 Bayview Blvd, Suite 100, Baltimore, MD, 21224, USA
| | - Caitlin Younts
- Translational Gerontology Branch, National Institute on Aging, NIH, 251 Bayview Blvd, Suite 100, Baltimore, MD, 21224, USA
| | - Kevin J Pearson
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Michel Bernier
- Translational Gerontology Branch, National Institute on Aging, NIH, 251 Bayview Blvd, Suite 100, Baltimore, MD, 21224, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, NIH, 251 Bayview Blvd, Suite 100, Baltimore, MD, 21224, USA.
| |
Collapse
|
14
|
Allman BR, Williams DK, Børsheim E, Andres A. Dietary Protein Intake during Pregnancy Is Not Associated with Offspring Insulin Sensitivity during the First Two Years of Life. Nutrients 2020; 12:nu12051338. [PMID: 32397092 PMCID: PMC7284765 DOI: 10.3390/nu12051338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/23/2020] [Accepted: 05/02/2020] [Indexed: 12/05/2022] Open
Abstract
Literature describing a relationship between dietary protein intake during pregnancy and offspring insulin resistance are equivocal perhaps because of the lapse between maternal and offspring measurements (~9–40 years). Thus, we evaluated protein intake in healthy women [n = 182, mean ± SD; body mass index (BMI): 26.2 ± 4.2 kg/m2] in early pregnancy (8.4 ± 1.6 weeks, EP), late pregnancy (30.1 ± 0.4 weeks, LP), and averaged throughout pregnancy, and determined the relationship between protein intake and offspring homeostatic model assessment of insulin resistance (HOMA2-IR) at 12 (12mo) and 24 (24mo) months. EP protein (g·kg−1·day−1) did not associate with HOMA2-IR at 12mo (β = 0.153, p = 0.429) or 24mo (β = −0.349, p = 0.098). LP protein did not associate with HOMA2-IR at 12mo (β = 0.023, p = 0.916) or 24mo (β = −0.442, p = 0.085). Finally, average protein did not associate with HOMA2-IR at 12mo (β = 0.711, p = 0.05) or 24mo (β = −0.445, p = 0.294). Results remained unchanged after adjusting for plant protein intake quartiles during pregnancy, maternal BMI, and offspring sex and body fat percentage. Additionally, these relationships did not change after quartile analysis of average protein intake, even after considering offspring fasting time and HOMA2-IR outliers, and maternal under-reporters of energy intake. Protein intake during pregnancy is not associated with indirect measurements of insulin sensitivity in offspring during the first two years of life.
Collapse
Affiliation(s)
- Brittany R. Allman
- Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA; (B.R.A.); (D.K.W.)
- Arkansas Children’s Research Institute, Little Rock, AR 72202, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| | - D. Keith Williams
- Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA; (B.R.A.); (D.K.W.)
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Elisabet Børsheim
- Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA; (B.R.A.); (D.K.W.)
- Arkansas Children’s Research Institute, Little Rock, AR 72202, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Correspondence: (E.B.); (A.A.); Tel.: +1-501-364-3053 (E.B.); +1-501-364-3301 (A.A.)
| | - Aline Andres
- Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA; (B.R.A.); (D.K.W.)
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
- Correspondence: (E.B.); (A.A.); Tel.: +1-501-364-3053 (E.B.); +1-501-364-3301 (A.A.)
| |
Collapse
|
15
|
Short K, Derrickson EM. Compensatory changes in villus morphology of lactating Mus musculus in response to insufficient dietary protein. J Exp Biol 2020; 223:jeb210823. [PMID: 32165430 DOI: 10.1242/jeb.210823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 02/27/2020] [Indexed: 11/20/2022]
Abstract
Energetic challenges match intestinal size to dietary intake but less is known about how the intestine responds to specific macronutrient challenges. We examined how intestinal size responds to insufficient dietary protein at the microscopic level. Villi, enterocytes and surface area were measured across the length of the small intestine in non-reproductive and lactating Mus musculus fed isocaloric control or protein-deficient diets. Lactating mice on the protein-deficient diet exhibited a 24% increase in villus height and a 30% increase in enterocyte width in the proximal small intestine and an overall similar increase in surface area; on the control diet, changes in villus height were localized in the mid region. Flexibility localized to the proximal small intestine suggests that enterokinase, a localized enzyme, may be a candidate enzyme that promotes compensation for a protein-deficient diet. Such flexibility could allow species to persist in the face of anthropogenically induced changing dietary profiles.
Collapse
Affiliation(s)
- Kay Short
- Department of Biology, Loyola University Maryland, 4501 N. Charles St, Baltimore, MD 21120, USA
| | - Elissa M Derrickson
- Department of Biology, Loyola University Maryland, 4501 N. Charles St, Baltimore, MD 21120, USA
| |
Collapse
|
16
|
Feng C, Bai K, Wang A, Ge X, Zhao Y, Zhang L, Wang T. Effects of dimethylglycine sodium salt supplementation on growth performance, hepatic antioxidant capacity, and mitochondria-related gene expression in weanling piglets born with low birth weight1. J Anim Sci 2020; 96:3791-3803. [PMID: 29931075 DOI: 10.1093/jas/sky233] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 06/19/2018] [Indexed: 12/30/2022] Open
Abstract
Dimethylglycine sodium salt (DMG-Na) has exhibited excellent advantages in animal experiments and human health. The present study aimed to investigate the effects of dietary supplementation with 0.1% DMG-Na on the growth performance, hepatic antioxidant capacity, and mRNA expression of mitochondria-related genes in low birth weight (LBW) piglets during weaning period. Sixteen piglets with normal birth weight (NBW) and 16 LBW piglets were fed either a basal diet or a 0.1% DMG-Na supplemented diet from age of 21 to 49 d. Blood and liver samples were collected at the end of the study. The results showed that compared with NBW piglets, LBW piglets exhibited greater (P < 0.05) alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase activities in the serum. LBW decreased (P < 0.05) the activity of glutathione peroxidase and increased (P < 0.05) the contents of malondialdehyde and H2O2 in liver. DMG-Na supplementation increased (P < 0.05) body weight gain, feed intake, and feed efficiency, decreased (P < 0.05) ALT and AST activities, and reduced the content of H2O2 in LBW piglets. LBW piglets had downregulated (P < 0.05) mRNA expression of thioredoxin 2, thioredoxin reductases 2, and nuclear respiratory factor-1 (Nrf1) in the liver. However, DMG-Na supplementation increased (P < 0.05) mRNA expression of Nrf1 in the liver. In conclusion, DMG-Na supplementation has beneficial effects in alleviating LBW-induced hepatic oxidative damage and changed mitochondrial genes expression levels, which is associated with increased antioxidant enzyme activities and up-regulating mRNA gene abundance.
Collapse
Affiliation(s)
- Chengcheng Feng
- College of Animal Science and Technology, Nanjing Agricultural University, Xuanwu District, Nanjing, People' s Republic of China
| | - Kaiwen Bai
- College of Animal Science and Technology, Nanjing Agricultural University, Xuanwu District, Nanjing, People' s Republic of China
| | - Anan Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Xuanwu District, Nanjing, People' s Republic of China
| | - Xiaoke Ge
- College of Animal Science and Technology, Nanjing Agricultural University, Xuanwu District, Nanjing, People' s Republic of China
| | - Yongwei Zhao
- College of Animal Science and Technology, Nanjing Agricultural University, Xuanwu District, Nanjing, People' s Republic of China
| | - Lili Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Xuanwu District, Nanjing, People' s Republic of China
| | - Tian Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Xuanwu District, Nanjing, People' s Republic of China
| |
Collapse
|
17
|
Berends LM, Dearden L, Tung YCL, Voshol P, Fernandez-Twinn DS, Ozanne SE. Programming of central and peripheral insulin resistance by low birthweight and postnatal catch-up growth in male mice. Diabetologia 2018; 61:2225-2234. [PMID: 30043179 PMCID: PMC6133152 DOI: 10.1007/s00125-018-4694-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/13/2018] [Indexed: 02/06/2023]
Abstract
AIMS Intra-uterine growth restriction (IUGR) followed by accelerated postnatal growth is associated with an increased risk of obesity and type 2 diabetes. We aimed to determine central and peripheral insulin sensitivity in mice that underwent IUGR followed by postnatal catch-up growth and investigate potential molecular mechanisms underpinning their physiology. METHODS We used a C57BL/6J mouse model of maternal diet-induced IUGR (maternal diet, 8% protein) followed by cross-fostering to a normal nutrition dam (maternal diet, 20% protein) and litter size manipulation to cause accelerated postnatal catch-up growth. We performed intracerebroventricular insulin injection and hyperinsulinaemic-euglycaemic clamp studies to examine the effect of this early nutritional manipulation on central and peripheral insulin resistance. Furthermore, we performed quantitative real-time PCR and western blotting to examine the expression of key insulin-signalling components in discrete regions of the hypothalamus. RESULTS IUGR followed by accelerated postnatal growth caused impaired glucose tolerance and peripheral insulin resistance. In addition, these 'recuperated' animals were resistant to the anorectic effects of central insulin administration. This central insulin resistance was associated with reduced protein levels of the p110β subunit of phosphoinositide 3-kinase (PI3K) and increased serine phosphorylation of IRS-1 in the arcuate nucleus (ARC) of the hypothalamus. Expression of the gene encoding protein tyrosine phosphatase 1B (PTP1B; Ptpn1) was also increased specifically in this region of the hypothalamus. CONCLUSIONS/INTERPRETATION Mice that undergo IUGR followed by catch-up growth display peripheral and central insulin resistance in adulthood. Recuperated offspring show changes in expression/phosphorylation of components of the insulin signalling pathway in the ARC. These defects may contribute to the resistance to the anorectic effects of central insulin, as well as the impaired glucose homeostasis seen in these animals.
Collapse
Affiliation(s)
- Lindsey M Berends
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Box 289, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Laura Dearden
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Box 289, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Yi Chun L Tung
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Box 289, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Peter Voshol
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Box 289, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Denise S Fernandez-Twinn
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Box 289, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Susan E Ozanne
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Box 289, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
18
|
Li X, Yan Q, Tang S, Tan Z, Fitzsimmons CJ, Yi K. Effects of maternal feed intake restriction during pregnancy on the expression of growth regulation, imprinting and epigenetic transcription-related genes in foetal goats. Anim Reprod Sci 2018; 198:90-98. [PMID: 30213570 DOI: 10.1016/j.anireprosci.2018.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/27/2018] [Accepted: 09/04/2018] [Indexed: 12/20/2022]
Abstract
Maternal nutrition during gestation is a leading factor of modifying the foetal epigenome and phenotype for mammals. Imprinting genes have important roles in regulating foetal growth, programming and development. There, however, are limited data available on the effects of feed intake restriction on the expression of imprinting genes in pregnant goats. The present study, therefore, was conducted to assess the effects of maternal feed intake restriction on the relative abundance of mRNA for growth imprinting, DNA methyltransferase (DNMT) and epigenetic transcription-related genes in the liver and heart of foetal goats during gestation. A total of 24 Liuyang black goats (2.0±0.3 yr) with similar body weight (BW, 31.22±8.09 kg) and parity (2) were allocated equally to either a control group (CG) or a restriction group (RG) during both early (from 26 to 65 days) and late (from 96 to 135 days) gestation. All goats were fed a mixed diet and had free access to fresh water. The feed of the RG was 40% less than that of the CG. The early and late gestation goats were weighed, bled and slaughtered on days 65 and 135 of gestation, respectively. In early gestation, the foetal weight, body length, the weight of foetal heart and liver were greater (P < 0.05) in the RG. The CpG methylation of genomic DNA in the foetal heart was less (P = 0.0001) in the RG. The relative abundance of mRNA of methyl-CpG-binding domain protein 2 (MBD2) and methyl-CpG-binding domain protein 3 (MBD3) genes in the foetal liver were greater (P < 0.05) in the RG. During the late gestation, the foetal weight, heart weight and liver weight were less (P < 0.05) in the RG. The relative abundance of mRNA for the MBD2 gene (P = 0.043) in the foetal heart, and the ten-eleven translocation protein 1 (TET1) gene (P < 0.05) in both the foetal heart and liver were greater in the RG. These results indicate feed intake restriction during gestation influenced foetal development and regulated the relative abundance of mRNA for epigenetic transcription-related genes.
Collapse
Affiliation(s)
- Xiaopeng Li
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center of Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qiongxian Yan
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center of Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, PR China; Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, Changsha, Hunan 410128, PR China.
| | - Shaoxun Tang
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center of Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, PR China; Hunan Co-Innovation Center of Animal Production Safety, CICAPS, Changsha, Hunan 410128, PR China
| | - Zhiliang Tan
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center of Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, PR China; Hunan Co-Innovation Center of Animal Production Safety, CICAPS, Changsha, Hunan 410128, PR China
| | - Carolyn Jean Fitzsimmons
- Livestock Genetecs, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Kangle Yi
- Prataculture & Herbivore Laboratory, Hunan Institute of Animal and Veterinary Science, 8 Changlang Road, Changsha, Hunan 410131, PR China.
| |
Collapse
|
19
|
Preston JD, Reynolds LJ, Pearson KJ. Developmental Origins of Health Span and Life Span: A Mini-Review. Gerontology 2018; 64:237-245. [PMID: 29324453 DOI: 10.1159/000485506] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 11/21/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND A vast body of research has demonstrated that disease susceptibility and offspring health can be influenced by perinatal factors, which include both paternal and maternal behavior and environment. Offspring disease risk has the potential to affect the health span and life span of offspring. KEY FINDINGS Various maternal factors, such as environmental toxicant exposure, diet, stress, exercise, age at conception, and longevity have the potential to influence age-associated diseases such as cardiovascular disease, obesity, diabetes, and cancer risk in offspring. Paternal factors such as diet, age at conception, and longevity can potentially impact offspring health span and life span-reducing traits as well. PRACTICAL IMPLICATIONS Continued research could go a long way toward defining mechanisms of the developmental origins of life span and health span, and eventually establishing regimens to avoid negative developmental influences and to encourage positive interventions to potentially increase life span and improve health span in offspring.
Collapse
Affiliation(s)
- Joshua D Preston
- Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA
| | | | | |
Collapse
|
20
|
Latimer MN, Freij KW, Cleveland BM, Biga PR. Physiological and Molecular Mechanisms of Methionine Restriction. Front Endocrinol (Lausanne) 2018; 9:217. [PMID: 29780356 PMCID: PMC5945823 DOI: 10.3389/fendo.2018.00217] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 04/17/2018] [Indexed: 01/17/2023] Open
Abstract
Methionine restriction (MR) has been studied extensively over the last 25 years for its role in altering metabolic hallmarks of disease. Animals subjected to MR, display changes in metabolic flexibility demonstrated by increases in energy expenditure, glucose tolerance, and lifespan. These changes have been well characterized in a number of model systems and significant progress has been made in understanding how hepatic fibroblast growth factor 21 links MR to several components of its metabolic phenotype. Despite these advances, a complete understanding of mechanisms engaged by dietary MR remains elusive. In this review, we offer a brief history of MR and its known mechanisms associated with stress, metabolism, and lifespan extension. We consider the role of epigenetics in the response of animals to MR and propose a novel epigenetic pathway involving the regulation of microRNAs during MR.
Collapse
Affiliation(s)
- Mary Neslund Latimer
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Khalid Walid Freij
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Beth M. Cleveland
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service (USDA), Kearneysville, WV, United States
| | - Peggy R. Biga
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States
- *Correspondence: Peggy R. Biga,
| |
Collapse
|
21
|
Grueber CE, Gray LJ, Morris KM, Simpson SJ, Senior AM. Intergenerational effects of nutrition on immunity: a systematic review and meta-analysis. Biol Rev Camb Philos Soc 2017; 93:1108-1124. [DOI: 10.1111/brv.12387] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 10/16/2017] [Accepted: 10/18/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Catherine E. Grueber
- The University of Sydney, Faculty of Science, School of Life and Environmental Sciences; NSW 2006 Australia
- San Diego Zoo Global; PO Box 120551, San Diego CA 92112 U.S.A
| | - Lindsey J. Gray
- The University of Sydney, Faculty of Science, School of Life and Environmental Sciences; NSW 2006 Australia
- The University of Sydney; Charles Perkins Centre; NSW 2006 Australia
| | - Katrina M. Morris
- The Roslin Institute; The University of Edinburgh; Easter Bush Campus, Midlothian EH25 9RG U.K
| | - Stephen J. Simpson
- The University of Sydney, Faculty of Science, School of Life and Environmental Sciences; NSW 2006 Australia
- The University of Sydney; Charles Perkins Centre; NSW 2006 Australia
| | - Alistair M. Senior
- The University of Sydney; Charles Perkins Centre; NSW 2006 Australia
- The University of Sydney, Faculty of Science; School of Mathematics and Statistics; NSW 2006 Australia
| |
Collapse
|
22
|
Tarry-Adkins JL, Ozanne SE. Nutrition in early life and age-associated diseases. Ageing Res Rev 2017; 39:96-105. [PMID: 27594376 DOI: 10.1016/j.arr.2016.08.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 03/24/2016] [Accepted: 08/05/2016] [Indexed: 02/06/2023]
Abstract
The prevalence of age-associated disease is increasing at a striking rate globally. It is known that a strong association exists between a suboptimal maternal and/or early-life environment and increased propensity of developing age-associated disease, including cardiovascular disease (CVD), type-2 diabetes (T2D) and obesity. The dissection of underlying molecular mechanisms to explain this phenomenon, which is known as 'developmental programming' is still emerging; however three common mechanisms have emerged in many models of developmental programming. These mechanisms are (a) changes in tissue structure, (b) epigenetic regulation and (c) accelerated cellular ageing. This review will examine the epidemiological evidence and the animal models of suboptimal maternal environments, focusing upon these molecular mechanisms and will discuss the progress being made in the development of safe and effective intervention strategies which ultimately could target those 'programmed' individuals who are known to be at-risk of age-associated disease.
Collapse
Affiliation(s)
- Jane L Tarry-Adkins
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Level 4, Box 289, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 OQQ, UK.
| | - Susan E Ozanne
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Level 4, Box 289, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 OQQ, UK.
| |
Collapse
|
23
|
Vaiserman AM, Koliada AK, Jirtle RL. Non-genomic transmission of longevity between generations: potential mechanisms and evidence across species. Epigenetics Chromatin 2017; 10:38. [PMID: 28750655 PMCID: PMC5531095 DOI: 10.1186/s13072-017-0145-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 07/21/2017] [Indexed: 02/06/2023] Open
Abstract
Accumulating animal and human data indicate that environmental exposures experienced during sensitive developmental periods may strongly influence risk of adult disease. Moreover, the effects triggered by developmental environmental cues can be transgenerationally transmitted, potentially affecting offspring health outcomes. Increasing evidence suggests a central role of epigenetic mechanisms (heritable alterations in gene expression occurring without changes in underlying DNA sequence) in mediating these effects. This review summarizes the findings from animal models, including worms, insects, and rodents, and also from human studies, indicating that lifespan and longevity-associated characteristics can be transmitted across generations via non-genetic factors.
Collapse
Affiliation(s)
- Alexander M Vaiserman
- D.F. Chebotarev Institute of Gerontology, NAMS, Vyshgorodskaya st. 67, Kiev, 04114, Ukraine.
| | - Alexander K Koliada
- D.F. Chebotarev Institute of Gerontology, NAMS, Vyshgorodskaya st. 67, Kiev, 04114, Ukraine
| | - Randy L Jirtle
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, 27695, USA.,Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
24
|
Kereliuk SM, Brawerman GM, Dolinsky VW. Maternal Macronutrient Consumption and the Developmental Origins of Metabolic Disease in the Offspring. Int J Mol Sci 2017; 18:E1451. [PMID: 28684678 PMCID: PMC5535942 DOI: 10.3390/ijms18071451] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/14/2017] [Accepted: 06/30/2017] [Indexed: 12/18/2022] Open
Abstract
Recent research aimed at understanding the rise in obesity and cardiometabolic disease in children suggests that suboptimal maternal nutrition conditions organ systems and physiological responses in the offspring contributing to disease development. Understanding the mechanisms by which the macronutrient composition of the maternal diet during pregnancy or lactation affects health outcomes in the offspring may lead to new maternal nutrition recommendations, disease prevention strategies and therapies that reduce the increasing incidence of cardiometabolic disease in children. Recent mechanistic animal model research has identified how excess fats and sugars in the maternal diet alter offspring glucose tolerance, insulin signaling and metabolism. Maternal nutrition appears to influence epigenetic alterations in the offspring and the programming of gene expression in key metabolic pathways. This review is focused on experimental studies in animal models that have investigated mechanisms of how maternal consumption of macronutrients affects cardiometabolic disease development in the offspring. Future research using "-omic" technologies is essential to elucidate the mechanisms of how altered maternal macronutrient consumption influences the development of disease in the offspring.
Collapse
Affiliation(s)
- Stephanie M Kereliuk
- Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme of the Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
| | - Gabriel M Brawerman
- Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme of the Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
| | - Vernon W Dolinsky
- Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme of the Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
| |
Collapse
|
25
|
Maternal protein restriction depresses the duodenal expression of iron transporters and serum iron level in male weaning piglets. Br J Nutr 2017; 117:923-929. [PMID: 28534724 DOI: 10.1017/s0007114517000794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
To investigate the effects of maternal dietary protein restriction on offspring Fe metabolism, twenty-four second-parity Landrace×Yorkshire sows were randomly allocated to standard-protein (SP) and low-protein (LP) groups. The SP sows were fed diets containing 15 and 18 % crude protein throughout pregnancy and lactation, respectively, whereas the LP sows were subjected to 50 % dietary protein restriction. Offspring birth weight was not affected, but the body weight at weaning (P=0·06) and average daily gain (P=0·01) of the female piglets were significantly decreased. Serum Fe level in the LP piglets was markedly decreased at weaning, especially in males (P=0·03). Serum ferritin level (P=0·08) tended to be lower, yet serum transferrin was greatly higher (P=0·01) in male weaning piglets of the LP group. Duodenal expression of the divalent metal transporter 1 (DMT1) and ferroportin (FPN) was surprisingly reduced (P<0·05) at the level of protein, but not at the mRNA level, in male weaning piglets of the LP group. Male weaning piglets born to the LP sows exhibited higher hepatic hepcidin levels (P=0·09), lower hepatic expression of transferrin (P<0·01) and transferrin receptor 1 (P<0·05) at the level of mRNA. However, no significant differences were observed for hepatic Fe storage, ferritin, transferrin and transferrin receptor 1 protein expression in male weaning piglets of the two groups. These results indicate that maternal protein restriction during pregnancy and lactation influences growth of female offspring at weaning, reduces duodenal expression of Fe transporters (DMT1 and FPN) and decreases serum Fe level in male weaning piglets.
Collapse
|
26
|
Flacke GL, Tomkins JL, Black R, Steck B. Demographics of polycystic kidney disease and captive population viability in pygmy hippopotamus (Choeropsis liberiensis). Zoo Biol 2017; 36:136-151. [PMID: 28198143 DOI: 10.1002/zoo.21351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 12/09/2016] [Accepted: 01/03/2017] [Indexed: 11/12/2022]
Abstract
Polycystic kidney disease (PKD) was previously diagnosed at necropsy in several pygmy hippopotami (Choeropsis liberiensis) from the Smithsonian National Zoo and Zoo Basel, suggesting a threat to the long-term viability of the captive population. We determined the incidence and demographics of PKD in the captive population historically; we tested if the condition is linked to pedigree; we investigated mode of inheritance; we examined effects of PKD on longevity; we conducted survival analysis; and we examined long-term population viability. Thirty-seven percent of 149 necropsied adult pygmy hippos were affected by PKD, and it was more common in females, controlling for the overall female-biased sex-ratio. Prevalence increased significantly with age, but most hippos were beyond their reproductive prime before developing clinical signs; thus fecundity was likely unaffected. PKD was linked to pedigree and may exhibit X-linked dominance, but further research is needed to definitively establish the mode of inheritance. PKD did not affect longevity, overall or within any age class. There was no significant correlation between inbreeding coefficient (F) and PKD, and the prevalence in wild-caught and captive-born animals was similar. Longevity for both captive-born and inbred hippos (F > 0) was significantly shorter than longevity for their wild-caught and non-inbred counterparts. Demographic projections indicated the extant population will likely experience a slow increase over time, provided there are no space constraints. We conclude that although PKD is an important cause of morbidity and mortality in pygmy hippos, the condition is not a primary concern for overall viability of the captive population.
Collapse
Affiliation(s)
- Gabriella L Flacke
- School of Animal Biology, University of Western Australia, Crawley, Australia
| | - Joseph L Tomkins
- School of Animal Biology, University of Western Australia, Crawley, Australia.,Center for Evolutionary Biology, School of Animal Biology, University of Western Australia, Crawley, Australia
| | - Robert Black
- School of Animal Biology, University of Western Australia, Crawley, Australia
| | | |
Collapse
|
27
|
Zhang H, Li Y, Su W, Ying Z, Zhou L, Zhang L, Wang T. Resveratrol attenuates mitochondrial dysfunction in the liver of intrauterine growth retarded suckling piglets by improving mitochondrial biogenesis and redox status. Mol Nutr Food Res 2017; 61. [PMID: 27958670 DOI: 10.1002/mnfr.201600653] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/24/2016] [Accepted: 12/05/2016] [Indexed: 12/25/2022]
Abstract
SCOPE Emerging evidence has identified mitochondrial biogenesis and oxidative phosphorylation as potential targets for the prevention and treatment of metabolic syndrome. This study investigated the effect of resveratrol (RSV) on hepatic mitochondrial function in intrauterine growth-retarded (IUGR) suckling piglets. METHODS AND RESULTS Seven normal birth weight (NBW) and fourteen IUGR neonatal male piglets were selected. Piglets were fed control diets supplemented with 0 (NBW-CON), 0 (IUGR-CON), and 1.0 (IUGR-RSV) g RSV per kg of milk dry matter from 7 to 21 days of age (n = 7), respectively. Mitochondrial function, swelling, and redox status in the liver were assessed. Compared with NBW, IUGR impaired hepatic mitochondrial biogenesis and energy homeostasis of the control piglets. IUGR control piglets showed overproduction of superoxide radicals, increased concentration of malondialdehyde, and marked swelling in the mitochondria. RSV improved mitochondrial DNA content, ATP production, and fatty acid oxidation in the liver of IUGR piglets, along with an increased activity of sirtuin 1. RSV inhibited mitochondrial superoxide anion accumulation, increased complex III and manganese superoxide dismutase activities, and ameliorated mitochondrial swelling and lipid peroxidation in the IUGR piglets. CONCLUSION RSV may have beneficial effects in improving hepatic mitochondrial function and redox status in the IUGR piglets.
Collapse
Affiliation(s)
- Hao Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yue Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Weipeng Su
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zhixiong Ying
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Le Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Lili Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Tian Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
28
|
The effects of aging and maternal protein restriction during lactation on thymic involution and peripheral immunosenescence in adult mice. Oncotarget 2016; 7:6398-409. [PMID: 26843625 PMCID: PMC4872722 DOI: 10.18632/oncotarget.7176] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 01/25/2016] [Indexed: 12/02/2022] Open
Abstract
Environmental factors such as nutrition during early life can influence long-term health, a concept termed developmental programming. Initial research was focused towards the effects on metabolic health but more recent studies have demonstrated effects on parameters such as lifespan and immunity. In this study we report that maternal protein restriction during lactation in mice, that is known to prolong lifespan, slows aging of the central and peripheral immune systems. Offspring of dams fed a postnatal low-protein (PLP) diet during lactation had a significant increase in thymic cellularity and T cell numbers across their lifespan compared to controls, and a less marked age-associated decrease in thymocyte cluster of differentiation (CD) 3 expression. PLP animals also demonstrated increased relative splenic cellularity, increased naïve: memory CD4+ and CD8+ T cell ratios, increased staining and density of germinal centres, and decreased gene expression of p16 in the spleen, a robust biomarker of aging. A slower rate of splenic aging in PLP animals would be expected to result in decreased susceptibility to infection and neoplasia. In conclusion nutritionally-induced slow postnatal growth leads to delayed aging of the adaptive immune system, which may contribute towards the extended lifespan observed in these animals.
Collapse
|
29
|
Kalhan SC. One carbon metabolism in pregnancy: Impact on maternal, fetal and neonatal health. Mol Cell Endocrinol 2016; 435:48-60. [PMID: 27267668 PMCID: PMC5014566 DOI: 10.1016/j.mce.2016.06.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 06/02/2016] [Accepted: 06/02/2016] [Indexed: 02/07/2023]
Abstract
One carbon metabolism or methyl transfer, a crucial component of metabolism in all cells and tissues, supports the critical function of synthesis of purines, thymidylate and methylation via multiple methyl transferases driven by the ubiquitous methyl donor s-adenosylmethionine. Serine is the primary methyl donor to the one carbon pool. Intracellular folates and methionine metabolism are the critical components of one carbon transfer. Methionine metabolism requires vitamin B12, B6 as cofactors and is modulated by endocrine signals and is responsive to nutrient intake. Perturbations in one carbon transfer can have profound effects on cell proliferation, growth and function. Epidemiological studies in humans and experimental model have established a strong relationship between impaired fetal growth and the immediate and long term consequences to the health of the offspring. It is speculated that during development, maternal environmental and nutrient influences by their effects on one carbon transfer can impact the health of the mother, impair growth and reprogram metabolism of the fetus, and cause long term morbidity in the offspring. The potential for such effects is underscored by the unique responses in methionine metabolism in the human mother during pregnancy, the absence of transsulfuration activity in the fetus, ontogeny of methionine metabolism in the placenta and the unique metabolism of serine and glycine in the fetus. Dietary protein restriction in animals and marginal protein intake in humans causes characteristic changes in one carbon metabolism. The impact of perturbations in one carbon metabolism on the health of the mother during pregnancy, on fetal growth and the neonate are discussed and their possible mechanism explored.
Collapse
Affiliation(s)
- Satish C Kalhan
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Department of Pathobiology, Lerner Research Institute, NE-40, Cleveland Clinic, 9500 Euclid Av, Cleveland, OH, 44195, USA.
| |
Collapse
|
30
|
Martin-Gronert MS, Fernandez-Twinn DS, Bushell M, Siddle K, Ozanne SE. Cell-autonomous programming of rat adipose tissue insulin signalling proteins by maternal nutrition. Diabetologia 2016; 59:1266-75. [PMID: 26965244 PMCID: PMC4861755 DOI: 10.1007/s00125-016-3905-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 02/03/2016] [Indexed: 01/10/2023]
Abstract
AIMS/HYPOTHESIS Individuals with a low birthweight have an increased risk of developing type 2 diabetes mellitus in adulthood. This is associated with peripheral insulin resistance. Here, we aimed to determine whether changes in insulin signalling proteins in white adipose tissue (WAT) can be detected prior to the onset of impaired glucose tolerance, determine whether these changes are cell-autonomous and identify the underlying mechanisms involved. METHODS Fourteen-month-old male rat offspring born to dams fed a standard protein (20%) diet or a low (8%) protein diet throughout gestation and lactation were studied. Fat distribution and adipocyte size were determined. Protein content and mRNA expression of key insulin signalling molecules were analysed in epididymal WAT and in pre-adipocytes that had undergone in vitro differentiation. RESULTS The offspring of low protein fed dams (LP offspring) had reduced visceral WAT mass, altered fat distribution and a higher percentage of small adipocytes in epididymal WAT. This was associated with reduced levels of IRS1, PI3K p110β, Akt1 and PKCζ proteins and of phospho-Akt Ser473. Corresponding mRNA transcript levels were unchanged. Similarly, in vitro differentiated adipocytes from LP offspring showed reduced protein levels of IRβ, IRS1, PI3K p85α and p110β subunits, and Akt1. Levels of Akt Ser473 and IRS1 Tyr612 phosphorylation were reduced, while IRS1 Ser307 phosphorylation was increased. CONCLUSIONS/INTERPRETATION Maternal protein restriction during gestation and lactation changes the distribution and morphology of WAT and reduces the levels of key insulin signalling proteins in the male offspring. This phenotype is retained in in vitro differentiated adipocytes, suggesting that programming occurs via cell-autonomous mechanism(s).
Collapse
Affiliation(s)
- Malgorzata S Martin-Gronert
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Box 289, Cambridge, CB2 OQQ, UK.
| | - Denise S Fernandez-Twinn
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Box 289, Cambridge, CB2 OQQ, UK
| | - Martin Bushell
- MRC Toxicology Unit, University of Leicester, Hodgkin Building, Leicester, UK
| | - Kenneth Siddle
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Box 289, Cambridge, CB2 OQQ, UK
| | - Susan E Ozanne
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Box 289, Cambridge, CB2 OQQ, UK
| |
Collapse
|
31
|
Davis K, Chamseddine D, Harper JM. Nutritional limitation in early postnatal life and its effect on aging and longevity in rodents. Exp Gerontol 2016; 86:84-89. [PMID: 27167581 DOI: 10.1016/j.exger.2016.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 05/05/2016] [Accepted: 05/06/2016] [Indexed: 11/17/2022]
Abstract
Nutrient limitation in the form of chronic dietary restriction (DR), or more specifically a life-long reduction of total daily nutritional intake, was first shown to extend longevity in rats more than eight decades ago and is one of the most robust anti-aging interventions known. More recently, it has become apparent that dietary restriction limited to only the first few weeks of life in rodents is also capable of significantly impacting aging and longevity. The imposition of nutrient limitation is often achieved via the manipulation of litter size or the modulation of maternal nutrient intake during the lactational period. Not surprisingly, nutrient limited pups are smaller at weaning, and remain so throughout their life, while exhibiting signs of slowed aging. In this review, we discuss potential mechanisms that account for the anti-aging effects of postnatal undernutrition with an emphasis on those pathways that parallel changes seen with chronic DR.
Collapse
Affiliation(s)
- Kallie Davis
- Department of Biological Sciences, Sam Houston State University, Huntsville, TX 77340, USA
| | - Douja Chamseddine
- Department of Biological Sciences, Sam Houston State University, Huntsville, TX 77340, USA
| | - James M Harper
- Department of Biological Sciences, Sam Houston State University, Huntsville, TX 77340, USA.
| |
Collapse
|
32
|
Visser WE, Bombardieri CR, Zevenbergen C, Barnhoorn S, Ottaviani A, van der Pluijm I, Brandt R, Kaptein E, van Heerebeek R, van Toor H, Garinis GA, Peeters RP, Medici M, van Ham W, Vermeij WP, de Waard MC, de Krijger RR, Boelen A, Kwakkel J, Kopchick JJ, List EO, Melis JPM, Darras VM, Dollé MET, van der Horst GTJ, Hoeijmakers JHJ, Visser TJ. Tissue-Specific Suppression of Thyroid Hormone Signaling in Various Mouse Models of Aging. PLoS One 2016; 11:e0149941. [PMID: 26953569 PMCID: PMC4783069 DOI: 10.1371/journal.pone.0149941] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 02/07/2016] [Indexed: 01/24/2023] Open
Abstract
DNA damage contributes to the process of aging, as underscored by premature aging syndromes caused by defective DNA repair. Thyroid state changes during aging, but underlying mechanisms remain elusive. Since thyroid hormone (TH) is a key regulator of metabolism, changes in TH signaling have widespread effects. Here, we reveal a significant common transcriptomic signature in livers from hypothyroid mice, DNA repair-deficient mice with severe (Csbm/m/Xpa-/-) or intermediate (Ercc1-/Δ-7) progeria and naturally aged mice. A strong induction of TH-inactivating deiodinase D3 and decrease of TH-activating D1 activities are observed in Csbm/m/Xpa-/- livers. Similar findings are noticed in Ercc1-/Δ-7, in naturally aged animals and in wild-type mice exposed to a chronic subtoxic dose of DNA-damaging agents. In contrast, TH signaling in muscle, heart and brain appears unaltered. These data show a strong suppression of TH signaling in specific peripheral organs in premature and normal aging, probably lowering metabolism, while other tissues appear to preserve metabolism. D3-mediated TH inactivation is unexpected, given its expression mainly in fetal tissues. Our studies highlight the importance of DNA damage as the underlying mechanism of changes in thyroid state. Tissue-specific regulation of deiodinase activities, ensuring diminished TH signaling, may contribute importantly to the protective metabolic response in aging.
Collapse
Affiliation(s)
- W. Edward Visser
- Dept of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
- * E-mail:
| | - Cíntia R. Bombardieri
- MGC Dept of Genetics, Cancer Genomics Center, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Chantal Zevenbergen
- Dept of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Sander Barnhoorn
- MGC Dept of Genetics, Cancer Genomics Center, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Alexandre Ottaviani
- MGC Dept of Genetics, Cancer Genomics Center, Erasmus Medical Center, Rotterdam, The Netherlands
- Institute for Research on Cancer and Aging, Nice (IRCAN), UMR 7284 CNRS U1081 INSERM UNS, 28 avenue de Valombrose Faculté de Médecine, Nice, France
| | - Ingrid van der Pluijm
- MGC Dept of Genetics, Cancer Genomics Center, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Renata Brandt
- MGC Dept of Genetics, Cancer Genomics Center, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ellen Kaptein
- Dept of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Hans van Toor
- Dept of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - George A. Garinis
- MGC Dept of Genetics, Cancer Genomics Center, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Robin P. Peeters
- Dept of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Marco Medici
- Dept of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Willy van Ham
- Laboratory of Comparative Endocrinology, Biology Department, KULeuven, Leuven, Belgium
| | - Wilbert P. Vermeij
- MGC Dept of Genetics, Cancer Genomics Center, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Monique C. de Waard
- MGC Dept of Genetics, Cancer Genomics Center, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Anita Boelen
- Dept of Endocrinology and Metabolism, Academic Medical Center, Amsterdam, The Netherlands
| | - Joan Kwakkel
- Dept of Endocrinology and Metabolism, Academic Medical Center, Amsterdam, The Netherlands
| | - John J. Kopchick
- Dept of Biomedical Sciences, Edison Biotechnology Institute, Ohio University, Athens, Ohio, United States of America
| | - Edward O. List
- Dept of Biomedical Sciences, Edison Biotechnology Institute, Ohio University, Athens, Ohio, United States of America
| | - Joost P. M. Melis
- Dept of Toxicogenetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Veerle M. Darras
- Laboratory of Comparative Endocrinology, Biology Department, KULeuven, Leuven, Belgium
| | - Martijn E. T. Dollé
- Centre for Health Protection Research, National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | | | - Jan H. J. Hoeijmakers
- MGC Dept of Genetics, Cancer Genomics Center, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Theo J. Visser
- Dept of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
33
|
Abuzgaia AM, Hardy DB, Arany E. Regulation of postnatal pancreatic Pdx1 and downstream target genes after gestational exposure to protein restriction in rats. Reproduction 2015; 149:293-303. [DOI: 10.1530/rep-14-0245] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The study carried out in our laboratory demonstrated that protein restriction (low protein, LP) during fetal and neonatal life alters pancreatic development and impairs glucose tolerance later in life. In this study, we examined the role of the transcription factorPdx1, a master regulator of β-cell differentiation and function along with its downstream target genes insulin,Glut2and glucokinase (GK). The role(s) of these genes and protein products on the pancreata of male offspring from mothers exposed to LP diets were assessed during gestation, weaning, and adult life. Pregnant rats were allocated to two dietary treatments: control (C) 20% protein diet or LP, 8% protein diet. At birth, offspring were divided into four groups: C received control diet all life, LP1 received LP diet all life, LP2 changed the LP diet to C at weaning, and LP3 switched to C after being exposed to LP during gestation only. Body weights (bw) were significantly (P<0.001) decreased in all LP groups at birth. At weaning, only the LP3 offspring had their body weight restored to control levels.Pdx1or any of thePdx1-target genes were similar in all diets at day 21. However, at d130Pdx1mRNA expression and protein abundance were significantly decreased (P<0.05) in all LP groups. In addition, insulin mRNA and protein were decreased in LP1 and LP3 groups compared with C,Glut2mRNA and GLUT2 protein levels were decreased in LP3 and GK did not change between groups. Intraperitoneal glucose tolerance test revealed impaired glucose tolerance in LP3 males, concomitant with decreased β-cell mass, islet area, and PDX1 nuclear protein localization. Collectively, this study suggests that restoring proteins in the diet after birth in LP offspring dramatically impairs glucose homeostasis in early adulthood, by alteringPdx1expression and downstream-target genes increasing the risk to develop type 2 diabetes.
Collapse
|
34
|
Romero-Haro AA, Alonso-Alvarez C. The Level of an Intracellular Antioxidant during Development Determines the Adult Phenotype in a Bird Species: A Potential Organizer Role for Glutathione. Am Nat 2015; 185:390-405. [DOI: 10.1086/679613] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
35
|
Drake JC, Bruns DR, Peelor FF, Biela LM, Miller RA, Hamilton KL, Miller BF. Long-lived crowded-litter mice have an age-dependent increase in protein synthesis to DNA synthesis ratio and mTORC1 substrate phosphorylation. Am J Physiol Endocrinol Metab 2014; 307:E813-21. [PMID: 25205819 PMCID: PMC4216950 DOI: 10.1152/ajpendo.00256.2014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Increasing mouse litter size [crowded litter (CL)] presumably imposes a transient nutrient stress during suckling and extends lifespan through unknown mechanisms. Chronic calorically restricted and rapamycin-treated mice have decreased DNA synthesis and mTOR complex 1 (mTORC1) signaling but maintained protein synthesis, suggesting maintenance of existing cellular structures. We hypothesized that CL would exhibit similar synthetic and signaling responses to other long-lived models and, by comparing synthesis of new protein to new DNA, that insight may be gained into the potential preservation of existing cellular structures in the CL model. Protein and DNA synthesis was assessed in gastroc complex, heart, and liver of 4- and 7-mo CL mice. We also examined mTORC1 signaling in 3- and 7-mo aged animals. Compared with controls, 4-mo CL had greater DNA synthesis in gastroc complex with no differences in protein synthesis or mTORC1 substrate phosphorylation across tissues. Seven-month CL had less DNA synthesis than controls in heart and greater protein synthesis and mTORC1 substrate phosphorylation across tissues. The increased new protein-to-new DNA synthesis ratio suggests that new proteins are synthesized more so in existing cells at 7 mo, differing from 4 mo, in CL vs. controls. We propose that, in CL, protein synthesis shifts from being directed toward new cells (4 mo) to maintenance of existing cellular structures (7 mo), independently of decreased mTORC1.
Collapse
Affiliation(s)
- Joshua C Drake
- Health and Exercise Science Department, Colorado State University, Fort Collins, Colorado; and
| | - Danielle R Bruns
- Health and Exercise Science Department, Colorado State University, Fort Collins, Colorado; and
| | - Frederick F Peelor
- Health and Exercise Science Department, Colorado State University, Fort Collins, Colorado; and
| | - Laurie M Biela
- Health and Exercise Science Department, Colorado State University, Fort Collins, Colorado; and
| | - Richard A Miller
- Department of Pathology and Geriatrics Center, University of Michigan, Ann Arbor, Michigan
| | - Karyn L Hamilton
- Health and Exercise Science Department, Colorado State University, Fort Collins, Colorado; and
| | - Benjamin F Miller
- Health and Exercise Science Department, Colorado State University, Fort Collins, Colorado; and
| |
Collapse
|
36
|
Nicholas LM, Rattanatray L, Morrison JL, Kleemann DO, Walker SK, Zhang S, MacLaughlin S, McMillen IC. Maternal obesity or weight loss around conception impacts hepatic fatty acid metabolism in the offspring. Obesity (Silver Spring) 2014; 22:1685-93. [PMID: 24719305 DOI: 10.1002/oby.20752] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 03/20/2014] [Indexed: 01/19/2023]
Abstract
OBJECTIVE To determine the impact of maternal obesity or weight loss during the periconceptional period on programming of lipid metabolism in the liver of the offspring. METHODS An embryo transfer model was used to investigate the effects of exposure to either maternal obesity and/or weight loss before and for 1-week post-conception on the abundance of key molecules regulating hepatic fatty acid oxidation and lipid synthesis in the 4-month-old lamb. RESULTS Periconceptional maternal obesity resulted in decreased hepatic PPARα, PGC1α and GCN5 abundance and increased hepatic SIRT1 and AMPKα1, AMPKα2 and SREBP1 abundance in the offspring. Maternal weight loss in obese ewes did not ablate all of these effects of maternal obesity on hepatic metabolism in the lamb. Weight loss in normal weight ewes also resulted in decreased hepatic PGC1α and GCN5 and increased AMPKα2 abundance in the offspring. CONCLUSIONS Exposure of the oocyte/embryo to either maternal obesity or weight loss during the periconceptional period has long term consequences for hepatic lipid metabolism. These findings highlight the sensitivity of the early embryo to maternal nutrition and the need for dietary interventions which maximize metabolic benefits and minimize metabolic costs for the next generation.
Collapse
Affiliation(s)
- Lisa M Nicholas
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, South Australia, Australia, 5000
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Available data from both experimental and epidemiological studies suggest that inadequate diet in early life can permanently change the structure and function of specific organs or homoeostatic pathways, thereby ‘programming’ the individual’s health status and longevity. Sufficient evidence has accumulated showing significant impact of epigenetic regulation mechanisms in nutritional programming phenomenon. The essential role of early-life diet in the development of aging-related chronic diseases is well established and described in many scientific publications. However, the programming effects on lifespan have not been extensively reviewed systematically. The aim of the review is to provide a summary of research findings and theoretical explanations that indicate that longevity can be influenced by early nutrition.
Collapse
|
38
|
Carr SK, Chen JH, Cooper WN, Constância M, Yeo GSH, Ozanne SE. Maternal diet amplifies the hepatic aging trajectory of Cidea in male mice and leads to the development of fatty liver. FASEB J 2014; 28:2191-201. [PMID: 24481968 DOI: 10.1096/fj.13-242727] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The importance of the early environment on long-term heath and life span is well documented. However, the molecular mechanisms mediating these effects remain poorly understood. Male offspring from a maternal protein restriction model, in which animals are exposed to a low-protein diet while in utero and then are cross-fostered to normally fed dams, demonstrate low birth weight, catch-up growth, and reduced life span (recuperated offspring). In the current study, we used microarray analysis to identify hepatic genes that changed with age. Cell death-inducing DNA fragmentation factor, α subunit-like effector A (Cidea), a transcriptional coactivator that has been implicated in lipid accumulation demonstrated one of the largest age-associated increases in expression (200-fold, P<0.001). This increase was exaggerated ∼3-fold in recuperated offspring. These demonstrated increased hepatic lipid accumulation, higher levels of transcription factors important in lipid regulation, and greater oxidative stress. In vitro analysis revealed that Cidea expression was regulated by oxidative stress and DNA methylation. These findings suggest that maternal diet modulates the age-associated changes in Cidea expression through several mechanisms. This expression affects hepatic lipid metabolism in these animals and thus provides a mechanism by which maternal diet can contribute to the metabolic health and ultimately the life span of the offspring.
Collapse
Affiliation(s)
- Sarah K Carr
- 1University of Cambridge Metabolic Research Laboratories, MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Box 289, Addenbrooke's Hospital, Cambridge CB2 OQQ, UK.
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
The global prevalence of diabetes mellitus has reached epidemic proportions. In 2010, it was estimated that 6.4 % of the adult population (285 million) have diabetes. In recent years, the incidence of type 2 diabetes (T2D), a condition traditionally associated with aging, has been steadily increasing among younger individuals. It is now a well-established notion that the early-life period is a critical window of development and that influences during this period can "developmentally prime" the metabolic status of the adult. This review discusses the role of maternal and in utero influences on the developmental priming of T2D risk. Both human epidemiological studies and experimental animal models are beginning to demonstrate that early dietary challenges can accelerate the onset of age-associated metabolic disturbances, including insulin resistance, T2D, obesity, hypertension, and cardiovascular disease. These findings show that poor maternal nutrition can prime a prediabetes phenotype, often manifest as insulin resistance, by very early stages of life. Thus, the maternal diet is a critical determinant of premature T2D risk. While the mechanisms that link early nutrition to age-associated metabolic decline are currently unclear, preliminary findings suggest perturbations in a number of processes involved in cellular aging, such as changes in longevity-associated Sirtuin activity, epigenetic regulation of key metabolic genes, and mitochondrial dysfunction. Preliminary studies show that pharmacological interventions in utero and dietary supplementation in early postnatal life may alleviate insulin resistance and reduce T2D risk. However, further studies are warranted to fully understand the relationship between the early environment and long-term effects on metabolism. Such mechanistic insights will facilitate strategic interventions that prevent accelerated metabolic decline and the premature onset of T2D in the current and future generations.
Collapse
Affiliation(s)
- Kimberley D Bruce
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL, 33458, USA,
| |
Collapse
|
40
|
Guzmán-Quevedo O, Da Silva Aragão R, Pérez García G, Matos RJB, de Sa Braga Oliveira A, de Castro RM, Bolaños-Jiménez F. Impaired hypothalamic mTOR activation in the adult rat offspring born to mothers fed a low-protein diet. PLoS One 2013; 8:e74990. [PMID: 24040371 PMCID: PMC3767644 DOI: 10.1371/journal.pone.0074990] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 08/08/2013] [Indexed: 12/23/2022] Open
Abstract
Several epidemiological and experimental studies have clearly established that maternal malnutrition induces a high risk of developing obesity and related metabolic diseases in the offspring. To determine if altered nutrient sensing might underlie this enhanced disease susceptibility, here we examined the effects of perinatal protein restriction on the activation of the nutrient sensor mTOR in response to acute variations in the nutritional status of the organism. Female Wistar rats were fed isocaloric diets containing either 17% protein (control) or 8% protein (PR) throughout pregnancy and lactation. At weaning offspring received standard chow and at 4 months of age the effects of fasting or fasting plus re-feeding on the phosphorylation levels of mTOR and its downstream target S6 ribosomal protein (rpS6) in the hypothalamus were assessed by immuno-fluorescence and western blot. Under ad libitum feeding conditions, PR rats exhibited decreased mTOR and rpS6 phosphorylation in the arcuate (ARC) and ventromedial (VMH) hypothalamic nuclei. Moreover, the phosphorylation of mTOR and rpS6 in these hypothalamic nuclei decreased with fasting in control but not in PR animals. Conversely, PR animals exhibited enhanced number of pmTOR imunostained cells in the paraventricular nucleus (PVN) and fasting decreased the activation of mTOR in the PVN of malnourished but not of control rats. These alterations occurred at a developmental stage at which perinatally-undernourished animals do not show yet obesity or glucose intolerance. Collectively, our observations suggest that altered hypothalamic nutrient sensing in response to an inadequate foetal and neonatal energetic environment is one of the basic mechanisms of the developmental programming of metabolic disorders and might play a causing role in the development of the metabolic syndrome induced by malnutrition during early life.
Collapse
Affiliation(s)
- Omar Guzmán-Quevedo
- Unité Mixte de recherche 1280 Physiologie des Adaptations Nutritionnelles, Institut National de la Recherche Agronomique, Nantes, France
- Université de Nantes, Nantes Atlantique Université, Nantes, France
| | - Raquel Da Silva Aragão
- Unité Mixte de recherche 1280 Physiologie des Adaptations Nutritionnelles, Institut National de la Recherche Agronomique, Nantes, France
- Université de Nantes, Nantes Atlantique Université, Nantes, France
- Departamento de Nutrição, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Georgina Pérez García
- Unité Mixte de recherche 1280 Physiologie des Adaptations Nutritionnelles, Institut National de la Recherche Agronomique, Nantes, France
- Université de Nantes, Nantes Atlantique Université, Nantes, France
| | - Rhowena J. B. Matos
- Núcleo de Educação Física e Ciências do Esporte, Universidade Federal de Pernambuco, Vitória de Santo Antão, Pernambuco, Brazil
| | - André de Sa Braga Oliveira
- Unité Mixte de recherche 1280 Physiologie des Adaptations Nutritionnelles, Institut National de la Recherche Agronomique, Nantes, France
- Université de Nantes, Nantes Atlantique Université, Nantes, France
- Departamento de Nutrição, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Raul Manhães de Castro
- Departamento de Nutrição, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Francisco Bolaños-Jiménez
- Unité Mixte de recherche 1280 Physiologie des Adaptations Nutritionnelles, Institut National de la Recherche Agronomique, Nantes, France
- Université de Nantes, Nantes Atlantique Université, Nantes, France
- * E-mail:
| |
Collapse
|
41
|
Nicholas LM, Rattanatray L, MacLaughlin SM, Ozanne SE, Kleemann DO, Walker SK, Morrison JL, Zhang S, Muhlhäusler BS, Martin-Gronert MS, McMillen IC. Differential effects of maternal obesity and weight loss in the periconceptional period on the epigenetic regulation of hepatic insulin-signaling pathways in the offspring. FASEB J 2013; 27:3786-96. [PMID: 23729590 DOI: 10.1096/fj.13-227918] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Our aim was to determine the effect of exposure to maternal obesity or to maternal weight loss around conception on the programming of hepatic insulin signaling in the offspring. We used an embryo transfer model in sheep to investigate the effects of exposure to either maternal obesity or to weight loss in normal and obese mothers preceding and for 1 wk after conception on the expression of hepatic insulin-signaling and gluconeogenic factors and key miRNAs involved in insulin signaling in the offspring. We found that exposure to maternal obesity resulted in increased hepatic miR-29b (P<0.05), miR-103 (P<0.01), and miR-107 (P<0.05) expression, a decrease in IR (P<0.05), phopsho-Akt (P<0.01), and phospho-FoxO1 (P<0.01) abundance, and a paradoxical decrease in 11βHSD1 (P<0.05), PEPCK-C (P<0.01), and PEPCK-M (P<0.05) expression in lambs. These changes were ablated by a period of moderate dietary restriction imposed during the periconceptional period. Maternal dietary restriction alone also resulted in decreased abundance of a separate subset of hepatic insulin-signaling molecules, namely, IRS1 (P<0.05), PDK1 (P<0.01), phospho-PDK1 (P<0.05), and aPKCζ (P<0.05) and in decreased PEPCK-C (P<0.01) and G6Pase (P<0.01) expression in the lamb. Our findings highlight the sensitivity of the epigenome to maternal nutrition around conception and the need for dietary interventions that maximize metabolic benefits and minimize metabolic costs for the next generation.
Collapse
Affiliation(s)
- Lisa M Nicholas
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Vo TX, Revesz A, Sohi G, Ma N, Hardy DB. Maternal protein restriction leads to enhanced hepatic gluconeogenic gene expression in adult male rat offspring due to impaired expression of the liver X receptor. J Endocrinol 2013; 218:85-97. [PMID: 23633563 DOI: 10.1530/joe-13-0055] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Epidemiological studies demonstrate that the link between impaired fetal development and glucose intolerance in later life is exacerbated by postnatal catch-up growth. Maternal protein restriction (MPR) during pregnancy and lactation in the rat has been previously demonstrated to lead to impaired glucose tolerance in adulthood, however the effects of protein restoration during weaning on glucose homeostasis are largely unknown. Recent in vitro studies have identified that the liver X receptor α (LXRα) maintains glucose homeostasis by inhibiting critical genes involved in gluconeogenesis including G6pase (G6pc), 11β-Hsd1 (Hsd11b1) and Pepck (Pck1). Therefore, we hypothesized that MPR with postnatal catch-up growth would impair LXRα in vivo, which in turn would lead to augmented gluconeogenic LXRα-target gene expression and glucose intolerance. To examine this hypothesis, pregnant Wistar rats were fed a control (20%) protein diet (C) or a low (8%) protein diet during pregnancy and switched to a control diet at birth (LP). At 4 months, the LP offspring had impaired glucose tolerance. In addition, LP offspring had decreased LXRα expression, while hepatic expression of 11β-HSD1 and G6Pase was significantly higher. This was concomitant with decreased binding of LXRα to the putative LXRE on 11β-Hsd1 and G6pase. Finally, we demonstrated that the acetylation of histone H3 (K9,14) surrounding the transcriptional start site of hepatic Lxrα (Nr1h3) was decreased in LP offspring, suggesting MPR-induced epigenetic silencing of the Lxrα promoter. In summary, our study demonstrates for the first time the important role of LXRα in mediating enhanced hepatic gluconeogenic gene expression and consequent glucose intolerance in adult MPR offspring.
Collapse
Affiliation(s)
- Thin Xuan Vo
- Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada N6A 5C1
| | | | | | | | | |
Collapse
|
43
|
Aiken CE, Tarry-Adkins JL, Ozanne SE. Suboptimal nutrition in utero causes DNA damage and accelerated aging of the female reproductive tract. FASEB J 2013; 27:3959-65. [PMID: 23792302 DOI: 10.1096/fj.13-234484] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Early life exposure to adverse environments can lead to a variety of metabolic and cardiovascular diseases in offspring. We hypothesize that female reproductive function may also be affected, with subsequent implications for fertility. We used an established maternal low-protein model where animals are born small but undergo rapid postnatal catch-up growth by suckling a control-fed dam (recuperated offspring). Markers of oxidative stress and cellular aging in reproductive tract tissues were assessed at 3 and 6 mo of age. Recuperated offspring had lower birth weight than controls (P<0.01) but caught up during lactation. 4-Hydroxynonenal (4HNE; an indicator of oxidative stress) was increased in recuperated animals compared with controls in both ovaries and oviducts at 6 mo. At 3 and 6 mo, ovaries and oviducts of recuperated offspring had increased mitochondrial (mt)DNA copy number (P<0.01). By contrast, germ-line cells showed no difference in mtDNA copy number, suggesting they were protected from suboptimal maternal nutrition. Oviduct and somatic ovarian telomere length declined more rapidly with age in recuperated animals. This accelerated cellular aging was associated with a declined ovarian reserve in developmentally programmed animals. These findings have significant clinical implications in light of worldwide trends to delayed childbearing.
Collapse
Affiliation(s)
- Catherine E Aiken
- 1University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Level 4, Box 289, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Hills Rd., Cambridge, CB2 OQQ, UK.
| | | | | |
Collapse
|
44
|
de Rooij SR, Roseboom TJ. The developmental origins of ageing: study protocol for the Dutch famine birth cohort study on ageing. BMJ Open 2013; 3:bmjopen-2013-003167. [PMID: 23794570 PMCID: PMC3686163 DOI: 10.1136/bmjopen-2013-003167] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
INTRODUCTION Evidence from animal studies suggest that the rate of ageing may be influenced not only by genetic and lifestyle factors, but also by the prenatal environment. We have previously shown that people who were exposed to famine during early gestation performed worse on a selective attention task, which may be a first sign of cognitive decline, and were on average 3 years younger at the time of coronary artery disease diagnosis. Women in this group seem to die at a younger age. We hypothesise that an accelerated ageing process, set in motion by the poor prenatal environment, underlies these findings. METHODS AND ANALYSIS The Dutch Famine Birth Cohort consists of 2414 men and women born in Amsterdam as term singletons around the time of the Dutch famine. In a subsample of 150 cohort members, who now are about 68 years of age, we are currently measuring cognitive decline and the incidence of white matter hyperintensities and cerebral microbleeds (through MRI), incidence of fractures, grip strength and physical performance, visual acuity and incidence of cataract operations. In this same subgroup, we will assess telomere length, oxidative stress and inflammatory status as potential underlying mechanisms. Furthermore, in the entire cohort, we will assess mortality as well as hospital admissions for age-related diseases up to the age of 68 years. ETHICS AND DISSEMINATION The study was approved by the local medical ethics committee (Academic Medical Centre, University of Amsterdam) and is being carried out in agreement with the Declaration of Helsinki. All participants give written informed consent. Study findings will be widely disseminated to the scientific public as well as to the medical society and general public.
Collapse
Affiliation(s)
- Susanne R de Rooij
- Department of Clinical Epidemiology and Biostatistics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Tessa J Roseboom
- Department of Clinical Epidemiology and Biostatistics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
- Department of Obstetrics and Gynaecology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
45
|
Matzkin LM, Johnson S, Paight C, Markow TA. Preadult parental diet affects offspring development and metabolism in Drosophila melanogaster. PLoS One 2013; 8:e59530. [PMID: 23555695 PMCID: PMC3608729 DOI: 10.1371/journal.pone.0059530] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 02/15/2013] [Indexed: 02/07/2023] Open
Abstract
When Drosophila melanogaster larvae are reared on isocaloric diets differing in their amounts of protein relative to sugar, emerging adults exhibit significantly different development times and metabolic pools of protein, glycogen and trigylcerides. In the current study, we show that the influence of larval diet experienced during just one generation extends into the next generation, even when that subsequent generation had been shifted to a standard diet during development. Offspring of flies that were reared on high protein relative to sugar underwent metamorphosis significantly faster, had higher reproductive outputs, and different metabolic pool contents compared to the offspring of adults from low protein relative to sugar diets. In addition, isofemale lines differed in the degree to which parental effects were observed, suggesting a genetic component to the observed transgenerational influences.
Collapse
Affiliation(s)
- Luciano M. Matzkin
- Department of Biological Sciences, University of Alabama in Huntsville, Huntsville, Alabama, United States of America
| | - Sarah Johnson
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Christopher Paight
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Therese A. Markow
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
- Laboratorio Nacional de Genomica de la Biodiversidad, Centro de Investigaciones y Estudios Avancados, Irapuato, Guanajuato, Mexico
- * E-mail:
| |
Collapse
|
46
|
He Z, Wu D, Sun Z, Tan Z, Qiao J, Ran T, Tang S, Zhou C, Han X, Wang M, Kang J, Beauchemin K. Protein or energy restriction during late gestation alters fetal growth and visceral organ mass: An evidence of intrauterine programming in goats. Anim Reprod Sci 2013; 137:177-82. [DOI: 10.1016/j.anireprosci.2013.01.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 12/18/2012] [Accepted: 01/13/2013] [Indexed: 11/25/2022]
|
47
|
Nascimento E, Guzman-Quevedo O, Delacourt N, da Silva Aragão R, Perez-Garcia G, de Souza SL, Manhães-de-Castro R, Bolaños-Jiménez F, Kaeffer B. Long-lasting effect of perinatal exposure to L-tryptophan on circadian clock of primary cell lines established from male offspring born from mothers fed on dietary protein restriction. PLoS One 2013; 8:e56231. [PMID: 23460795 PMCID: PMC3584092 DOI: 10.1371/journal.pone.0056231] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 01/11/2013] [Indexed: 01/26/2023] Open
Abstract
Background & Aims Maternal undernutrition programs metabolic adaptations which are ultimately detrimental to adult. L-tryptophan supplementation was given to manipulate the long-term sequelae of early-life programming by undernutrition and explore whether cultured cells retain circadian clock dysregulation. Methods Male rat pups from mothers fed on low protein (8%, LP) or control (18%, CP) diet were given, one hour before light off, an oral bolus of L-tryptophan (125 mg/kg) between Day-12 and Day-21 of age. Body weight, food intake, blood glucose along with the capacity of colonization of primary cells from biopsies were measured during the young (45–55 days) and adult (110–130 days) phases. Circadian clock oscillations were re-induced by a serum shock over 30 hours on near-confluent cell monolayers to follow PERIOD1 and CLOCK proteins by Fluorescent Linked ImmunoSorbent Assay (FLISA) and period1 and bmal1 mRNA by RT-PCR. Cell survival in amino acid-free conditions were used to measure circadian expression of MAP-LC3B, MAP-LC3B-FP and Survivin. Results Tryptophan supplementation did not alter body weight gain nor feeding pattern. By three-way ANOVA of blood glucose, sampling time was found significant during all phases. A significant interaction between daily bolus (Tryptophan, saline) and diets (LP, CP) were found during young (p = 0.0291) and adult (p = 0.0285) phases. In adult phase, the capacity of colonization at seeding of primary cells was twice lower for LP rats. By three-way ANOVA of PERIOD1 perinuclear/nuclear immunoreactivity during young phase, we found a significant effect of diets (p = 0.049), daily bolus (p<0.0001) and synchronizer hours (p = 0.0002). All factors were significantly interacting (p = 0.0148). MAP-LC3B, MAP-LC3B-FP and Survivin were altered according to diets in young phase. Conclusions Sequelae of early-life undernutrition and the effects of L-tryptophan supplementation can be monitored non-invasively by circadian sampling of blood D-glucose and on the expression of PERIOD1 protein in established primary cell lines.
Collapse
Affiliation(s)
- Elizabeth Nascimento
- Departamento de Nutrição, Centro de Ciências da Saude, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Omar Guzman-Quevedo
- Unité Mixte de Recherche-1280, Physiologie des Adaptations Nutritionnelles, Institut National Recherche Agronomique, Université de Nantes, France
| | - Nellie Delacourt
- Unité Mixte de Recherche-1280, Physiologie des Adaptations Nutritionnelles, Institut National Recherche Agronomique, Université de Nantes, France
| | - Raquel da Silva Aragão
- Departamento de Nutrição, Centro de Ciências da Saude, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Georgina Perez-Garcia
- Unité Mixte de Recherche-1280, Physiologie des Adaptations Nutritionnelles, Institut National Recherche Agronomique, Université de Nantes, France
| | - Sandra Lopes de Souza
- Departamento de Anatomia, Centro de Ciências Biologicas, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Raul Manhães-de-Castro
- Departamento de Nutrição, Centro de Ciências da Saude, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Francisco Bolaños-Jiménez
- Unité Mixte de Recherche-1280, Physiologie des Adaptations Nutritionnelles, Institut National Recherche Agronomique, Université de Nantes, France
| | - Bertrand Kaeffer
- Unité Mixte de Recherche-1280, Physiologie des Adaptations Nutritionnelles, Institut National Recherche Agronomique, Université de Nantes, France
- * E-mail:
| |
Collapse
|
48
|
Feed allowance and maternal backfat levels during gestation influence maternal cortisol levels, milk fat composition and offspring growth. J Nutr Sci 2013; 2:e1. [PMID: 25191557 PMCID: PMC4153285 DOI: 10.1017/jns.2012.20] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 08/20/2012] [Accepted: 08/23/2012] [Indexed: 01/21/2023] Open
Abstract
The fetal and early postnatal environment can have a long-term influence on offspring growth. Using a pig model, we investigated the effects of maternal body condition (thin or fat) and maternal gestation feeding level (restricted, control or high) on maternal stress, milk composition, litter size, piglet birth weight and pre-weaning growth. A total of sixty-eight thin (backfat depth about 8 mm) and seventy-two fat (backfat depth about 12 mm) gilts were selected at about 22 weeks. This backfat difference was then accentuated nutritionally up to service at about 32 weeks. During gestation, individual gilts from within each group were randomly allocated to a gestation diet at the following feed allowances: 1·8 kg/d (restricted); 2·5 kg/d (control) and 3·5 kg/d (high) until day 90 of gestation. During gestation restricted gilts had higher levels of cortisol than high and control fed animals. Piglets born to fat gilts had higher average daily gain during the lactation period and higher weaning weights at day 28 than piglets born to thin gilts. Gilts on a high feed level had heavier piglets than those provided with restricted and control allocations. Fat gilts had less saturated fat in their milk at day 21 of lactation and higher unsaturated fat levels. No differences were found in the n-6:n-3 PUFA ratio in the milk between thin and fat gilts. In conclusion, maternal body condition influenced the daily weight gain of offspring up to weaning (day 28) and milk fat composition. Furthermore, maternal feed level during gestation alters maternal cortisol levels and milk fat composition.
Collapse
|
49
|
Gonzalez-Rodriguez P, Tong W, Xue Q, Li Y, Hu S, Zhang L. Fetal hypoxia results in programming of aberrant angiotensin ii receptor expression patterns and kidney development. Int J Med Sci 2013; 10:532-8. [PMID: 23532764 PMCID: PMC3607238 DOI: 10.7150/ijms.5566] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 02/26/2013] [Indexed: 01/30/2023] Open
Abstract
AIMS The present study tested the hypothesis that fetal hypoxia adversely affects kidney development in fetal and offspring rats and alter the expression patterns of angiotensin II type 1 (AT1R) and type 2 (AT2R) receptors. METHODS Time-dated pregnant rats were divided between normoxic and hypoxic (10.5% O2 last period of gestation) groups. Protein expression, in the offspring, was determined using western blot. RESULTS Hypoxic treatment significantly decreased body and kidney weight in 21-day fetuses (E21) and 7-day neonates (P7). In 3-month-old offspring there were no significant differences in body and kidney weight between hypoxic and control animals. Fetal hypoxia had no effect on kidney AT1R density in E21 or P7, but significantly decreased kidney AT1R protein and mRNA abundance in both male and female adults. In contrast, kidney AT2R density was not affected by fetal hypoxia throughout the developmental stages studied. The hypoxia-mediated reduction of nephron numbers was progressively from P7 worsened into the adulthood with females affected more than males. CONCLUSION The results suggest that fetal hypoxia causes programming of aberrant kidney development and accelerates the aging process of the kidney during the postnatal development, which may contribute to an increased risk of cardiovascular disease.
Collapse
Affiliation(s)
- Pablo Gonzalez-Rodriguez
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | | | | | | | | | | |
Collapse
|
50
|
Taurine Supplementation Restores Insulin Secretion and Reduces ER Stress Markers in Protein-Malnourished Mice. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 776:129-39. [DOI: 10.1007/978-1-4614-6093-0_14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|