1
|
Phutela K, Ahlawat P, Kaur J, Bal A, Singh N, Singh H, Sharma S. Inhibition of ATP Citrate Lyase by Hydroxycitrate-Loaded Exosomes Suppresses the Survival of Lung Adenocarcinoma Cells. Appl Biochem Biotechnol 2025:10.1007/s12010-025-05204-5. [PMID: 40025393 DOI: 10.1007/s12010-025-05204-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2025] [Indexed: 03/04/2025]
Abstract
The metabolic enzyme ATP citrate lyase is overexpressed in several cancers and links glucose metabolism with de novo fatty acid synthesis pathway by catalyzing the conversion of citrate into acetyl CoA and oxaloacetate. Potassium hydroxycitrate, its natural inhibitor, exhibits anticancer activity; however, its use is limited due to low bioavailability. This study aims to improve the efficacy of hydroxycitrate by its encapsulation in bovine milk exosome surface conjugated with folate for targeting lung cancer cells. The mean particle size of potassium hydroxycitrate-loaded exosomes (Exo-KH) and paclitaxel exosomes (Exo-Pac) was 183 nm and 174 nm; they had spherical morphology and encapsulation efficiency of 16.87 ± 2.78% and 27.65 ± 3.23%, respectively. In the in vitro study, Exo-KH suppressed the proliferation of A549 cells and significantly reduced ACLY mRNA expression. In addition to ACLY, EXO-KH also downregulated the mRNA expression of other crucial metabolic enzymes such as fatty acid synthase and isocitrate dehydrogenase 1. EXO-KH formulation caused significant increase in apoptosis rate (< 75%) and reactive oxygen species production and reduced ACLY protein expression in A549 cells. Moreover, the pharmacokinetic study revealed the sustained release of hydroxycitrate (half-life 22.74 h and clearance 0.13 µg/ml) from the exoformulation. Altogether, the study findings highlight the beneficial role of EXO-KH formulation against lung cancer.
Collapse
Affiliation(s)
- Kanika Phutela
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Madhya Marg, Sector 12, Chandigarh, 160012, India
| | - Priyanca Ahlawat
- Centre for Immuno-Biology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, 121001, India
| | - Jyotdeep Kaur
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Madhya Marg, Sector 12, Chandigarh, 160012, India
| | - Amanjit Bal
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Madhya Marg, Sector 12, Chandigarh, 160012, India
| | - Navneet Singh
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Madhya Marg, Sector 12, Chandigarh, 160012, India
| | - Harkant Singh
- Department of Cardiovascular and Thoracic Surgery, Postgraduate Institute of Medical Education and Research, Madhya Marg, Sector 12, Chandigarh, 160012, India
| | - Sadhna Sharma
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Madhya Marg, Sector 12, Chandigarh, 160012, India.
- Department of Biochemistry, All India Institute of Medical Sciences, Bilaspur, Himachal Pradesh, India.
| |
Collapse
|
2
|
Luan Y, Zhang Y, Li S, Gao C, Ying X, Zhao S, Zhang B. CD47 is a tumor cell-derived exosomal signature and regulates tumor immune microenvironment and immunotherapy responses. Transl Oncol 2025; 53:102291. [PMID: 39864342 PMCID: PMC11803903 DOI: 10.1016/j.tranon.2025.102291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/26/2024] [Accepted: 01/16/2025] [Indexed: 01/28/2025] Open
Abstract
BACKGROUND The pathogenesis of ovarian cancer (OvCa) involves a complex interplay of genetic, environmental, and hormonal factors. With the in-depth exploration of tumor ecosystem, exosomes can mediate the immunological status of tumor microenvironment (TME). Therefore, we aimed to recognize the tumor-derived exosomes (TEXs) which can distinguish the immune-hot and cold tumors and reflect the immunotherapeutic responses. METHODS A large set of transcriptomic and single-cell RNA-sequencing (scRNA-seq) datasets were downloaded and used to analyze the expression pattern of CD47 and its immuno-correlations in OvCa and multiple epithelial cell carcinomas such as breast cancers. In addition, a pan-gynecological cancer cohort was used to validate the correlation between CD47 and the inflamed TME. RESULTS In the current study, we found that CD47 was a TEX signature and had no transcriptional differences among patients with different clinicopathological features. Moreover, CD47 expression was positively correlated with the activation of immunological signaling pathways and enrichment of immune cell subpopulations in OvCa. Furthermore, in breast cancer and gynecological cancers, CD47, specially expressed in tumor cells, also showed favorable ability to distinguish the immune-hot and cold carcinomas. Moreover, in immunotherapy cohorts of breast cancer and other epithelial cell carcinomas, patients with CD47-high phenotype were more sensitive to immunotherapy and tended to achieve remission after treatment. Results from the TMA showed that CD47 was upregulated in tumor tissues and positively correlated with CD8 level. CONCLUSION In conclusion, CD47 is associated with an inflammatory TME, immune-hot tumors, and sensitivity of immunotherapy, highlighting the values of CD47 in identifying immunological traits and an immunotherapeutic response.
Collapse
Affiliation(s)
- Yifei Luan
- School of Innovation and Entrepreneurship, Hangzhou Medical College, Hangzhou 310053, PR China
| | - Yinghui Zhang
- Wuxi Maternal and Child Health Care Hospital, The Affiliated Women's Hospital of Jiangnan University, Wuxi 214002, PR China
| | - Shangjin Li
- Wuxi Maternal and Child Health Care Hospital, The Affiliated Women's Hospital of Jiangnan University, Wuxi 214002, PR China
| | - Caiyun Gao
- Market Supervision and Law Enforcement Guarantee Service Center of Xihu District, Hangzhou 310013, PR China
| | - Xinyi Ying
- Department of Clinical Medicine, Hangzhou Medical College, Hangzhou 310053, PR China
| | - Shaojie Zhao
- Wuxi Maternal and Child Health Care Hospital, The Affiliated Women's Hospital of Jiangnan University, Wuxi 214002, PR China.
| | - Bing Zhang
- Wuxi Maternal and Child Health Care Hospital, The Affiliated Women's Hospital of Jiangnan University, Wuxi 214002, PR China.
| |
Collapse
|
3
|
Rajendran RL, Gangadaran P, Ghosh S, Nagarajan AK, Batabyal R, Ahn BC. Unlocking the secrets of single extracellular vesicles by cutting-edge technologies. Pathol Res Pract 2025; 269:155878. [PMID: 40024075 DOI: 10.1016/j.prp.2025.155878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/20/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
Extracellular vesicles (EVs), isolated through techniques such as liquid biopsy, have emerged as crucial biomarkers in various diseases, including cancer. EVs were dismissed initially as cellular debris, EVs are now recognized for their role in intercellular communication, carrying proteins, RNAs, and other molecules between cells. Their stability in biofluids and ability to mirror their parent cells' molecular composition make them attractive candidates for non-invasive diagnostics. EVs, including microvesicles and exosomes, contribute to immune modulation and cancer progression, presenting both therapeutic challenges and opportunities. However, despite advances in analytical techniques like high-resolution microscopy and nanoparticle tracking analysis (NTA), standardization in EV isolation and characterization remains a hurdle. Cutting-edge technologies, such as atomic force microscopy and Raman tweezers microspectroscopy, have enhanced our understanding of single EVs, yet issues like low throughput and high technical complexity limit their widespread application. Other technologies like transmission electron microscopy, cryogenic transmission electron microscopy, super-resolution microscopy, direct stochastic optical reconstruction microscopy, single-molecule localization microscopy, tunable resistive pulse sensing, single-particle interferometric reflectance imaging sensor, flow cytometry, droplet digital analysis, total internal reflection fluorescence also contribute to EV analysis. Future research must focus on improving detection methods, developing novel analytical platforms, and integrating artificial intelligence to enhance the specificity of EV characterization. The future of EV research holds promise for breakthroughs in precision medicine, with a collaborative effort needed to translate these advancements into clinical practice.
Collapse
Affiliation(s)
- Ramya Lakshmi Rajendran
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; Cardiovascular Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Prakash Gangadaran
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; Cardiovascular Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Subhrojyoti Ghosh
- Department of Biotechnology, Indian Institute of Technology, Madras, Chennai 600036, India
| | - ArulJothi Kandasamy Nagarajan
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamilnadu 603203, India
| | - Rijula Batabyal
- Department of Biotechnology, Heritage Institute of Technology, Kolkata 700 107, India
| | - Byeong-Cheol Ahn
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; Cardiovascular Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea; Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu 41944, Republic of Korea.
| |
Collapse
|
4
|
Zhao X, Liu X, Chen T, Xie H, Li S, Zhang Y, Zhang H, Cao Y, Du W, Feng X, Liu X, Li Y, Chen P, Li Q, Liu BF. Fully Integrated Centrifugal Microfluidics for Rapid Exosome Isolation, Glycan Analysis, and Point-of-Care Diagnosis. ACS NANO 2025. [PMID: 40014808 DOI: 10.1021/acsnano.4c16988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Exosomes present in the circulatory system demonstrate considerable promise for the diagnosis and treatment of diseases. Nevertheless, the complex nature of blood samples and the prevalence of highly abundant proteins pose a significant obstacle to prompt and effective isolation and functional evaluation of exosomes from blood. Here, we present a fully integrated lab-on-a-disc equipped with two nanofilters, also termed iExoDisc, which facilitates automated isolation of exosomes from 400 μL blood samples within 45 min. By integrating the plasma separation module, highly abundant protein removal module, and nanopore membrane-based total isolation module, the resulting exosomes exhibited significantly increased purity (∼3-6-fold) compared to conventional ultracentrifugation and polymer precipitation. Additionally, we then successfully performed nontargeted and targeted glycan profiling on exosomes derived from clinical triple-negative breast cancer (TNBC) patients using MALDI-TOF-MS and lectin microarray containing 56 kinds of lectins. The findings from both methodologies indicated that galactosylation and sialylation exhibit potential as diagnostic indicators for TNBC. Finally, by utilizing the exosome-specific glycosylated protein CD63 as a proof-of-concept, we successfully realized the integration of point-of-care on-chip exosome separation and in situ detection with 2 h. Thus, the iExoDisc provides a potential approach to early cancer detection, liquid biopsy, and point-of-care diagnosis.
Collapse
Affiliation(s)
- Xudong Zhao
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiang Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Department of Laboratory Medicine, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430016, China
| | - Tucan Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Han Xie
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shunji Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ying Zhang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hongwei Zhang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yulin Cao
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Application of Extracellular Vesicle, Hubei University of Science and Technology, Xianning 437100, China
| | - Wei Du
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaojun Feng
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xin Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yiwei Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qiubai Li
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Application of Extracellular Vesicle, Hubei University of Science and Technology, Xianning 437100, China
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
5
|
Huang C, Li J, Xie Z, Hu X, Huang Y. Relationship between exosomes and cancer: formation, diagnosis, and treatment. Int J Biol Sci 2025; 21:40-62. [PMID: 39744442 PMCID: PMC11667803 DOI: 10.7150/ijbs.95763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 11/02/2024] [Indexed: 01/11/2025] Open
Abstract
Exosomes are a member of extracellular vesicles. However, their biological characteristics differ from those of other vesicles, and recently, their powerful functions as information molecules, biomarkers, and carriers have been demonstrated. Malignancies are the leading cause of high morbidity and mortality worldwide. The cure rate of malignancies can be improved by improving early screening rates and therapy. Moreover, a close correlation between exosomes and malignancies has been observed. An in-depth study of exosomes can provide new methods for diagnosing and treating tumors. Therefore, this study aimed to review, sort, and summarize such achievements, and present ideas and opinions on the application of exosomes in tumor treatment.
Collapse
Affiliation(s)
- Chen Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jiajin Li
- Sichuan university, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Zichuan Xie
- Sichuan university, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xiangjun Hu
- Sichuan university, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yan Huang
- Health Management Center, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Respiratory Health and Multimorbidity, China
- Research Laboratory for Prediction and Evaluation of Chronic Diseases in the Elderly, National Clinical Research Center for Geriatric Diseases, China
- General Practice Research Institute, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Kumari S, Lausted C, Scherler K, Ng AHC, Lu Y, Lee I, Hood L, Wang K. Approaches and Challenges in Characterizing the Molecular Content of Extracellular Vesicles for Biomarker Discovery. Biomolecules 2024; 14:1599. [PMID: 39766306 PMCID: PMC11674167 DOI: 10.3390/biom14121599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/04/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Extracellular vesicles (EVs) are lipid bilayer nanoparticles released from all known cells and are involved in cell-to-cell communication via their molecular content. EVs have been found in all tissues and body fluids, carrying a variety of biomolecules, including DNA, RNA, proteins, metabolites, and lipids, offering insights into cellular and pathophysiological conditions. Despite the emergence of EVs and their molecular contents as important biological indicators, it remains difficult to explore EV-mediated biological processes due to their small size and heterogeneity and the technical challenges in characterizing their molecular content. EV-associated small RNAs, especially microRNAs, have been extensively studied. However, other less characterized RNAs, including protein-coding mRNAs, long noncoding RNAs, circular RNAs, and tRNAs, have also been found in EVs. Furthermore, the EV-associated proteins can be used to distinguish different types of EVs. The spectrum of EV-associated RNAs, as well as proteins, may be associated with different pathophysiological conditions. Therefore, the ability to comprehensively characterize EVs' molecular content is critical for understanding their biological function and potential applications in disease diagnosis. Here, we set out to provide an overview of EV-associated RNAs and proteins as well as approaches currently being used to characterize them.
Collapse
Affiliation(s)
- Suman Kumari
- Institute for Systems Biology, Seattle, WA 98109, USA; (S.K.); (C.L.); (K.S.); (L.H.)
| | - Christopher Lausted
- Institute for Systems Biology, Seattle, WA 98109, USA; (S.K.); (C.L.); (K.S.); (L.H.)
| | - Kelsey Scherler
- Institute for Systems Biology, Seattle, WA 98109, USA; (S.K.); (C.L.); (K.S.); (L.H.)
| | - Alphonsus H. C. Ng
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA; (A.H.C.N.); (Y.L.)
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Yue Lu
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA; (A.H.C.N.); (Y.L.)
| | - Inyoul Lee
- Institute for Systems Biology, Seattle, WA 98109, USA; (S.K.); (C.L.); (K.S.); (L.H.)
| | - Leroy Hood
- Institute for Systems Biology, Seattle, WA 98109, USA; (S.K.); (C.L.); (K.S.); (L.H.)
| | - Kai Wang
- Institute for Systems Biology, Seattle, WA 98109, USA; (S.K.); (C.L.); (K.S.); (L.H.)
| |
Collapse
|
7
|
Leung LL, Qu X, Chen B, Chan JYK. Extracellular vesicles in liquid biopsies: there is hope for oral squamous cell carcinoma. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:739-759. [PMID: 39811735 PMCID: PMC11725428 DOI: 10.20517/evcna.2024.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/29/2024] [Accepted: 11/20/2024] [Indexed: 01/16/2025]
Abstract
Current approaches to oral cancer diagnosis primarily involve physical examination, tissue biopsy, and advanced computer-aided imaging techniques. However, despite these advances, patient survival rates have not significantly improved. Hence, there is a critical need to develop minimally invasive tools with high sensitivity and specificity to improve patient survival and quality of life. Liquid biopsy is a non-invasive, real-time method for predicting cancer status and potentially serves as a biomarker source for treatment response. Liquid biopsy includes rich biologically relevant components, such as circulating tumor cells, circulating tumor DNA, and extracellular vesicles (EVs). EVs are particularly intriguing due to their relatively high abundance in most biofluids, with the potential to identify specific cargo derived from circulating tumor EVs. Moreover, normal cells in lymph nodes can uptake EVs, fostering a pre-metastatic microenvironment that facilitates lymph node metastases - a common occurrence in oral cancers. This review encompasses English language publications over the last twenty years, focusing on methods for isolating EVs from saliva, blood, and lymphatic fluids, as well as the collection methods employed. Seventeen cases met the inclusion criteria according to ISEV guidelines, including 10 saliva cases, 6 blood cases, and 1 lymphatic fluid case. This review also highlighted research gaps in oral squamous cell carcinoma (OSCC) EVs, including a lack of multi-omics studies and the exploration of potential EV markers for drug resistance, as well as a notable underutilization of microfluidic technologies to translate liquid biopsy EV findings into clinical applications.
Collapse
Affiliation(s)
| | | | | | - Jason YK. Chan
- Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong 00000, China
| |
Collapse
|
8
|
Bollard SM, Howard J, Casalou C, Kelly BS, O'Donnell K, Fenn G, O'Reilly J, Milling R, Shields M, Wilson M, Ajaykumar A, Triana K, Wynne K, Tobin DJ, Kelly PA, McCann A, Potter SM. Proteomic and metabolomic profiles of plasma-derived Extracellular Vesicles differentiate melanoma patients from healthy controls. Transl Oncol 2024; 50:102152. [PMID: 39405606 PMCID: PMC11736400 DOI: 10.1016/j.tranon.2024.102152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/12/2024] [Accepted: 10/05/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Plasma-derived Extracellular Vesicles (EVs) have been suggested as novel biomarkers in melanoma, due to their ability to reflect the cell of origin and ease of collection. This study aimed to identify novel EV biomarkers that can discriminate between disease stages. This was achieved by characterising the plasma-derived EVs of patients with melanoma, and comparing their proteomic and metabolomic profile to those from healthy controls. METHODS EVs were isolated from the plasma of 36 patients with melanoma and 13 healthy controls using Size Exclusion Chromatography. Proteomic and Metabolomic Analyses were performed, and machine learning algorithms were used to identify potential proteins and metabolites to differentiate the plasma-derived EVs from melanoma patients of different disease stages. RESULTS The concentration and size of the EV population isolated was similar between groups. Proteins (APOC4, PRG4, PLG, TNC, VWF and SERPIND1) and metabolites (lyso PC a C18:2, PC ae C44:3) previously associated with melanoma pathogenesis were identified as relevant in differentiating between disease stages. CONCLUSION The results further support the continued investigation of circulating plasma-derived EVs as biomarkers in melanoma. Furthermore, the potential of combined proteo-metabolomic signatures for differentiation between disease stages may provide valuable insights into early detection, prognosis, and personalised treatment strategies.
Collapse
Affiliation(s)
- S M Bollard
- Department of Plastic & Reconstructive Surgery, Mater Misericordiae University Hospital, Dublin 7, Ireland; School of Medicine, University College Dublin, Dublin 4, Ireland; Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland.
| | - J Howard
- School of Medicine, University College Dublin, Dublin 4, Ireland; Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - C Casalou
- Charles Institute of Dermatology, University College Dublin, Dublin 4, Ireland
| | - B S Kelly
- School of Medicine, University College Dublin, Dublin 4, Ireland
| | - K O'Donnell
- Department of Plastic & Reconstructive Surgery, Mater Misericordiae University Hospital, Dublin 7, Ireland
| | - G Fenn
- Department of Plastic & Reconstructive Surgery, Mater Misericordiae University Hospital, Dublin 7, Ireland
| | - J O'Reilly
- Department of Plastic & Reconstructive Surgery, Mater Misericordiae University Hospital, Dublin 7, Ireland
| | - R Milling
- Department of Plastic & Reconstructive Surgery, Mater Misericordiae University Hospital, Dublin 7, Ireland
| | - M Shields
- Department of Plastic & Reconstructive Surgery, Mater Misericordiae University Hospital, Dublin 7, Ireland
| | - M Wilson
- Department of Plastic & Reconstructive Surgery, Mater Misericordiae University Hospital, Dublin 7, Ireland
| | - A Ajaykumar
- UCD-Clinical Research Centre, University College Dublin, Dublin 4, Ireland
| | - K Triana
- UCD-Clinical Research Centre, University College Dublin, Dublin 4, Ireland
| | - K Wynne
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland
| | - D J Tobin
- Charles Institute of Dermatology, University College Dublin, Dublin 4, Ireland
| | - P A Kelly
- UCD School of Veterinary Medicine, University College Dublin, Dublin 4, Ireland
| | - A McCann
- School of Medicine, University College Dublin, Dublin 4, Ireland; Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - S M Potter
- Department of Plastic & Reconstructive Surgery, Mater Misericordiae University Hospital, Dublin 7, Ireland; School of Medicine, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
9
|
Ma Y, Zhang X, Liu C, Zhao Y. Extracellular vesicles in cancers: mechanisms, biomarkers, and therapeutic strategies. MedComm (Beijing) 2024; 5:e70009. [PMID: 39611045 PMCID: PMC11604295 DOI: 10.1002/mco2.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/03/2024] [Accepted: 10/10/2024] [Indexed: 11/30/2024] Open
Abstract
Extracellular vesicles (EVs) composed of various biologically active constituents, such as proteins, nucleic acids, lipids, and metabolites, have emerged as a noteworthy mode of intercellular communication. There are several categories of EVs, including exosomes, microvesicles, and apoptotic bodies, which largely differ in their mechanisms of formation and secretion. The amount of evidence indicated that changes in the EV quantity and composition play a role in multiple aspects of cancer development, such as the transfer of oncogenic signals, angiogenesis, metabolism remodeling, and immunosuppressive effects. As EV isolation technology and characteristics recognition improve, EVs are becoming more commonly used in the early diagnosis and evaluation of treatment effectiveness for cancers. Actually, EVs have sparked clinical interest in their potential use as delivery vehicles or vaccines for innovative antitumor techniques. This review will focus on the function of biological molecules contained in EVs linked to cancer progression and their participation in the intricate interrelationship within the tumor microenvironment. Furthermore, the potential efficacy of an EV-based liquid biopsy and delivery cargo for treatment will be explored. Finally, we explicitly delineate the limitations of EV-based anticancer therapies and provide an overview of the clinical trials aimed at improving EV development.
Collapse
Affiliation(s)
- Yuxi Ma
- Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Precision Radiation OncologyWuhanChina
- Cancer CenterInstitute of Radiation OncologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiaohui Zhang
- Cancer CenterHubei Key Laboratory of Cell HomeostasisCollege of Life SciencesTaiKang Center for Life and Medical SciencesWuhan UniversityWuhanChina
| | - Cuiwei Liu
- Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Precision Radiation OncologyWuhanChina
- Cancer CenterInstitute of Radiation OncologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yanxia Zhao
- Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Precision Radiation OncologyWuhanChina
- Cancer CenterInstitute of Radiation OncologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
10
|
Cong F, Huang J, Wu C, Zhong H, Qiu G, Luo T, Tang W. Integrin α6 and integrin β4 in exosomes promote lung metastasis of colorectal cancer. J Cancer Res Ther 2024; 20:2082-2093. [PMID: 39792419 DOI: 10.4103/jcrt.jcrt_230_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 10/23/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most common cancers worldwide. The mechanisms underlying metastasis, which contributes to poor outcomes, remain elusive. METHODS We used the Cancer Genome Atlas dataset to compare mRNA expression patterns of integrin α6 (ITGA6) and integrin β4 (ITGB4) in patients with CRC. We measured ITGA6 and ITGB4 expression levels in highly metastatic (i.e., HCT116 and SW620) and lowly metastatic (i.e., SW480 and Caco2) CRC cell lines. Exosomes were isolated from cell culture media and characterized using western blotting and nanoparticle analyses. The role of exosomes in lung metastasis was investigated using xenograft experiments in mice models, which received CRC cell injection and were treated with exosomes. RESULTS ITGA6 and ITGB4 were significantly overexpressed in CRC tissues, and ITGA6 was associated with the American Joint Committee on Cancer (AJCC) stage and outcome. ITGA6 and ITGB4, as well as exosomal ITGA6 and ITGB4, were significantly more highly expressed in HCT116 and SW620 cells than in SW480 and Caco2 cells. The proliferation and tubulogenesis of vascular endothelial cells were markedly decreased by disruption of ITGA6 and ITGB4 but were markedly increased by ectopic expression of ITGA6 and ITGB4. Exosomal ITGA6 and ITGB4 promoted CRC metastasis to the lung in vivo. CONCLUSIONS Taken together, our findings suggested that exosomal ITGA6 and ITGB4 displayed organotropism to the lung and upregulated proliferation and tubulogenic capacities, which might help reduce lung metastasis from CRC. These findings provided new insights into the mechanisms of CRC metastasis and provided novel potential therapeutic targets.
Collapse
Affiliation(s)
- Fengyun Cong
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jiahao Huang
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Changtao Wu
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Huage Zhong
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
- Guangxi Key Laboratory of Basic and Translational Research for Colorectal Cancer, China
| | - Guanhua Qiu
- Department of Ultrasound, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Tao Luo
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
- Guangxi Key Laboratory of Basic and Translational Research for Colorectal Cancer, China
| | - Weizhong Tang
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
- Guangxi Key Laboratory of Basic and Translational Research for Colorectal Cancer, China
| |
Collapse
|
11
|
Jaffet J, Singh V, Schrader S, Mertsch S. The Potential Role of Exosomes in Ocular Surface and Lacrimal Gland Regeneration. Curr Eye Res 2024:1-14. [PMID: 39508276 DOI: 10.1080/02713683.2024.2424265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/01/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024]
Abstract
PURPOSE Dry eye disease (DED), a multifactorial disease of the lacrimal system, manifests itself in patients with various symptoms such as itching, inflammation, discomfort and visual impairment. In its most severe forms, it results in the breakdown of the vital tissues of lacrimal functional unit and carries the risk of vision loss. Despite the frequency of occurrence of the disease, there are no effective curative treatment options available to date. Treatment using stem cells and its secreted factors could be a promising approach in the regeneration of damaged tissues of ocular surface. The treatment using secreted factors as well as extracellular vesicles has been demonstrated beneficial effects in various ocular surface diseases. This review provides insights on the usage of stem cell derived exosomes as a promising therapy against LG dysfunction induced ADDE for ocular surface repair. METHODS In order to gain an overview of the existing research in this field, literature search was carried out using the PubMed, Medline, Scopus and Web of Science databases. This review is based on 164 publications until June 2024 and the literature search was carried out using the key words "exosomes", "lacrimal gland regeneration", "exosomes in lacrimal dysfunction". RESULTS The literature and studies till date suggest that exosomes and other secreted factors from stem cells have demonstrated beneficial effects on damaged ocular tissues in various ocular surface diseases. Exosomal cargo plays a crucial role in regenerating tissues by promoting homeostasis in the lacrimal system, which is often compromised in severe cases of dry eye disease. Exosome therapy shows promise as a regenerative therapy, potentially addressing the lack of effective curative treatments available for patients with dry eye disease. CONCLUSION Stem cell-derived exosomes represent a promising, innovative approach as a new treatment option for ADDE. By targeting lacrimal gland dysfunction and enhancing ocular surface repair, exosome therapy offers potential for significant advances in dry eye disease management. Future research is needed to refine the application of this therapy, optimize delivery methods, and fully understand its long-term efficacy in restoring ocular health.
Collapse
Affiliation(s)
- Jilu Jaffet
- Laboratory of Experimental Ophthalmology, Department of Ophthalmology, Pius-Hospital, Carl von Ossietzky University, Oldenburg, Germany
- LV Prasad Eye Institute, Centre for Ocular Regeneration, Hyderabad, Telangana, India
- Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Vivek Singh
- LV Prasad Eye Institute, Centre for Ocular Regeneration, Hyderabad, Telangana, India
| | - Stefan Schrader
- Laboratory of Experimental Ophthalmology, Department of Ophthalmology, Pius-Hospital, Carl von Ossietzky University, Oldenburg, Germany
| | - Sonja Mertsch
- Laboratory of Experimental Ophthalmology, Department of Ophthalmology, Pius-Hospital, Carl von Ossietzky University, Oldenburg, Germany
| |
Collapse
|
12
|
Jackson Cullison SR, Flemming JP, Karagoz K, Wermuth PJ, Mahoney MG. Mechanisms of extracellular vesicle uptake and implications for the design of cancer therapeutics. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e70017. [PMID: 39483807 PMCID: PMC11522837 DOI: 10.1002/jex2.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/11/2024] [Accepted: 10/14/2024] [Indexed: 11/03/2024]
Abstract
The translation of pre-clinical anti-cancer therapies to regulatory approval has been promising, but slower than hoped. While innovative and effective treatments continue to achieve or seek approval, setbacks are often attributed to a lack of efficacy, failure to achieve clinical endpoints, and dose-limiting toxicities. Successful efforts have been characterized by the development of therapeutics designed to specifically deliver optimal and effective dosing to tumour cells while minimizing off-target toxicity. Much effort has been devoted to the rational design and application of synthetic nanoparticles to serve as targeted therapeutic delivery vehicles. Several challenges to the successful application of this modality as delivery vehicles include the induction of a protracted immune response that results in their rapid systemic clearance, manufacturing cost, lack of stability, and their biocompatibility. Extracellular vesicles (EVs) are a heterogeneous class of endogenous biologically produced lipid bilayer nanoparticles that mediate intercellular communication by carrying bioactive macromolecules capable of modifying cellular phenotypes to local and distant cells. By genetic, chemical, or metabolic methods, extracellular vesicles (EVs) can be engineered to display targeting moieties on their surface while transporting specific cargo to modulate pathological processes following uptake by target cell populations. This review will survey the types of EVs, their composition and cargoes, strategies employed to increase their targeting, uptake, and cargo release, and their potential as targeted anti-cancer therapeutic delivery vehicles.
Collapse
Affiliation(s)
| | - Joseph P. Flemming
- Rowan‐Virtua School of Osteopathic MedicineRowan UniversityStratfordNew JerseyUSA
| | - Kubra Karagoz
- Departments of PharmacologyPhysiology, and Cancer Biology, Thomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | | | - Mỹ G. Mahoney
- Departments of PharmacologyPhysiology, and Cancer Biology, Thomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
- Department of Otolaryngology – Head and Neck SurgeryThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
13
|
Chatterjee M, Gupta S, Nag S, Rehman I, Parashar D, Maitra A, Das K. Circulating Extracellular Vesicles: An Effective Biomarker for Cancer Progression. FRONT BIOSCI-LANDMRK 2024; 29:375. [PMID: 39614441 DOI: 10.31083/j.fbl2911375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/28/2024] [Accepted: 09/10/2024] [Indexed: 12/01/2024]
Abstract
Extracellular vesicles (EVs), the ubiquitous part of human biology, represent a small heterogenous, membrane-enclosed body that contains a diverse payload including genetic materials in the form of DNA, RNAs, small non-coding RNAs, etc. mostly mirroring their source of origin. Since, a vast majority of research has been conducted on how nucleic acids, proteins, lipids, and metabolites, associated with EVs can be effectively utilized to identify disease progression and therapeutic responses in cancer patients, EVs are increasingly being touted as valuable and reliable identifiers of cancer biomarkers in liquid biopsies. However, the lack of comprehensive clinical validation and effective standardization protocols severely limits its applications beyond the laboratories. The present review focuses on understanding the role of circulating EVs in different cancers and how they could potentially be treated as cancer biomarkers, typically due to the presence of bioactive molecules such as small non-coding RNAs, RNAs, DNA, proteins, etc., and their utilization for fine-tuning therapies. Here, we provide a brief general biology of EVs including their classification and subsequently discuss the source of circulatory EVs, the role of their associated payload as biomarkers, and how different cancers affect the level of circulatory EVs population.
Collapse
Affiliation(s)
- Madhura Chatterjee
- Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics, 741251 Kalyani, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, 281406 Mathura, India
| | - Sayoni Nag
- Department of Biotechnology, Brainware University, 700125 Barasat, India
| | - Ishita Rehman
- Department of Biotechnology, The Neotia University, 743368 Parganas, India
| | - Deepak Parashar
- Department of Medicine, Division of Hematology & Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Arindam Maitra
- Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics, 741251 Kalyani, India
| | - Kaushik Das
- Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics, 741251 Kalyani, India
| |
Collapse
|
14
|
Tam NW, Becker A, Mangiarotti A, Cipitria A, Dimova R. Extracellular Vesicle Mobility in Collagen I Hydrogels Is Influenced by Matrix-Binding Integrins. ACS NANO 2024; 18:29585-29601. [PMID: 39400273 PMCID: PMC11526431 DOI: 10.1021/acsnano.4c07186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/16/2024] [Accepted: 10/02/2024] [Indexed: 10/15/2024]
Abstract
Extracellular vesicles (EVs) are a diverse population of membrane structures produced and released by cells into the extracellular space for the intercellular trafficking of cargo molecules. They are implicated in various biological processes, including angiogenesis, immunomodulation, and cancer cell signaling. While much research has focused on their biogenesis or their effects on recipient cells, less is understood about how EVs are capable of traversing diverse tissue environments and crossing biological barriers. Their interactions with extracellular matrix components are of particular interest, as such interactions govern diffusivity and mobility, providing a potential basis for organotropism. To start to untangle how EV-matrix interactions affect diffusivity, we use high speed epifluorescence microscopy, single particle tracking, and confocal reflectance microscopy to analyze particle mobility and localization in extracellular matrix-mimicking hydrogels composed of collagen I. EVs are compared with synthetic liposomes and extruded plasma membrane vesicles to better understand the importance of membrane composition on these interactions. By treating EVs with trypsin to digest surface proteins, we determine that proteins are primarily responsible for EV immobilization in collagen I hydrogels. We next use a synthetic peptide competitive inhibitor to narrow down the identity of the proteins involved to argynylglycylaspartic acid (RGD) motif-binding integrins, which interact with unincorporated or denatured nonfibrillar collagen. Moreover, the effect of integrin inhibition with RGD peptides has strong implications for the use of RGD-peptide-based drugs to treat certain cancers, as integrin inhibition appears to increase EV mobility, improving their ability to infiltrate tissue-like environments.
Collapse
Affiliation(s)
- Nicky W. Tam
- Max
Planck Institute of Colloids and Interfaces, Science Park Golm, Potsdam 14476, Germany
| | | | - Agustín Mangiarotti
- Max
Planck Institute of Colloids and Interfaces, Science Park Golm, Potsdam 14476, Germany
| | - Amaia Cipitria
- Max
Planck Institute of Colloids and Interfaces, Science Park Golm, Potsdam 14476, Germany
- Group
of Bioengineering in Regeneration and Cancer, Biogipuzkoa Health Research
Institute, San Sebastián 20014, Spain
- IKERBASQUE,
Basque Foundation for Science, Bilbao 48009, Spain
| | - Rumiana Dimova
- Max
Planck Institute of Colloids and Interfaces, Science Park Golm, Potsdam 14476, Germany
| |
Collapse
|
15
|
Wong C, Jurczak EM, Roy R. Neuronal exosomes transport an miRISC cargo to preserve stem cell integrity during energy stress. Cell Rep 2024; 43:114851. [PMID: 39392750 DOI: 10.1016/j.celrep.2024.114851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 08/19/2024] [Accepted: 09/24/2024] [Indexed: 10/13/2024] Open
Abstract
During periods of nutrient scarcity, many animals undergo germline quiescence to preserve reproductive capacity, and neurons are often necessary for this adaptation. We show here that starvation causes the release of neuronal microRNA (miRNA)/Argonaute-loaded exosomes following AMP kinase-regulated trafficking changes within serotonergic neurons. This neuron-to-germline communication is independent of classical neurotransmission but instead relies on endosome-derived vesicles that carry a pro-quiescent small RNA cargo to modify germline gene expression. Using an miRNA activity sensor, we show that neuronally expressed miRNAs can extinguish the expression of germline mRNA targets in an exosome-dependent manner. Our findings demonstrate how an adaptive neuronal response can change gene expression at a distance by redirecting intracellular trafficking to release neuronal exosomes with specific miRNA cargoes capable of tracking to their appropriate destinations.
Collapse
Affiliation(s)
- Christopher Wong
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada
| | - Elena M Jurczak
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada
| | - Richard Roy
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada.
| |
Collapse
|
16
|
Kowkabany G, Bao Y. Nanoparticle Tracking Analysis: An Effective Tool to Characterize Extracellular Vesicles. Molecules 2024; 29:4672. [PMID: 39407601 PMCID: PMC11477862 DOI: 10.3390/molecules29194672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/26/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024] Open
Abstract
Extracellular vesicles (EVs) are membrane-enclosed particles that have attracted much attention for their potential in disease diagnosis and therapy. However, the clinical translation is limited by the dosing consistency due to their heterogeneity. Among various characterization techniques, nanoparticle tracking analysis (NTA) offers distinct benefits for EV characterization. In this review, we will discuss the NTA technique with a focus on factors affecting the results; then, we will review the two modes of the NTA techniques along with suitable applications in specific areas of EV studies. EVs are typically characterized by their size, size distribution, concentration, protein markers, and RNA cargos. The light-scattering mode of NTA offers accurate size, size distribution, and concentration information in solution, which is useful for comparing EV isolation methods, storage conditions, and EV secretion conditions. In contrast, fluorescent mode of NTA allows differentiating EV subgroups based on specific markers. The success of fluorescence NTA heavily relies on fluorescent tags (e.g., types of dyes and labeling methods). When EVs are labeled with disease-specific markers, fluorescence NTA offers an effective tool for disease detection in biological fluids, such as saliva, blood, and serum. Finally, we will discuss the limitations and future directions of the NTA technique in EV characterization.
Collapse
Affiliation(s)
| | - Yuping Bao
- Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA;
| |
Collapse
|
17
|
Hüser L, Chhabra Y, Gololobova O, Wang V, Liu G, Dixit A, Rocha MR, Harper EI, Fane ME, Marino-Bravante GE, Zabransky DJ, Cai KQ, Utikal J, Slusher BS, Walston J, Lipson EJ, Witwer KW, Weeraratna AT. Aged fibroblast-derived extracellular vesicles promote angiogenesis in melanoma. Cell Rep 2024; 43:114721. [PMID: 39255061 PMCID: PMC11835374 DOI: 10.1016/j.celrep.2024.114721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 07/09/2024] [Accepted: 08/20/2024] [Indexed: 09/12/2024] Open
Abstract
Advancing age is a negative prognostic factor for cutaneous melanoma. However, the role of extracellular vesicles (EVs) within the melanoma tumor microenvironment (TME) has remained unexplored in the context of aging. While the size and morphology of the EVs isolated from young vs. aged fibroblasts remained unaltered, the contents of the protein cargo were changed. Aging reduced the expression of the tetraspanin CD9 in both the dermal fibroblasts and released EVs. CD9 is a crucial regulator of EV cargo sorting. Modulating the CD9 expression in fibroblasts was sufficient to alter its levels in EVs. Mass spectrometry analysis of EVs released by CD9 knockdown (KD) vs. control cells revealed a significant increase in angiopoietin-like protein 2 (ANGPTL2), an angiogenesis promoter. Analysis of primary endothelial cells confirmed increased sprouting under CD9 KD conditions. Together, our data indicate that aged EVs play an important role in promoting a tumor-permissive microenvironment.
Collapse
Affiliation(s)
- Laura Hüser
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA; Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany; DKFZ Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| | - Yash Chhabra
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA; Research Program Cancer Signaling and Microenvironment, Fox Chase Institute for Cancer Research, Philadelphia, PA, USA
| | - Olesia Gololobova
- Department of Molecular and Comparative Pathobiology, Johns Hopkins Medicine, Baltimore, MD, USA
| | - Vania Wang
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Guanshu Liu
- Department of Radiology and Radiological Science, Johns Hopkins Medicine, Baltimore, MD, USA
| | - Agrani Dixit
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Murilo Ramos Rocha
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Elizabeth I Harper
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Mitchell E Fane
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA; Research Program Cancer Signaling and Microenvironment, Fox Chase Institute for Cancer Research, Philadelphia, PA, USA
| | - Gloria E Marino-Bravante
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Daniel J Zabransky
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Kathy Q Cai
- Research Program Cancer Signaling and Microenvironment, Fox Chase Institute for Cancer Research, Philadelphia, PA, USA
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany; DKFZ Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| | - Barbara S Slusher
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Psychiatry and Behavioral Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jeremy Walston
- Department of Medicine - Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Oncology - Hematologic Malignancies, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Evan J Lipson
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA; Bloomberg Kimmel Institute for Cancer Immunotherapy, Baltimore, MD, USA
| | - Kenneth W Witwer
- Department of Molecular and Comparative Pathobiology, Johns Hopkins Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ashani T Weeraratna
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
18
|
Jo G, Yeo WS. Enhanced synthesis of antibody-functionalized gold nanoparticles for multiplexed exosome detection via mass signal amplification in LDI-TOF MS. ANAL SCI 2024; 40:1663-1670. [PMID: 38780862 DOI: 10.1007/s44211-024-00604-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
We present a novel method for sensitive exosomal protein detection using organic matrix-free laser desorption/ionization time-of-flight mass spectrometry (LDI-TOF MS) and gold nanoparticles (AuNPs) functionalized with mass tags for signal amplification (Am-tags). Target exosomes were captured by specific antibodies on AuNPs and a biochip, where the antibody-presenting AuNPs (Ab/Am-tag@AuNPs) contained excess Am-tags. LDI-TOF MS analysis revealed the mass signal of Am-tags on Ab/Am-tag@AuNPs, indicating the presence of target exosomes. Thus, the target signal was amplified by a large number of Am-tags, resulting in enhanced sensitivity. We optimized the protocol to prepare stable Ab/Am-tag@AuNPs, focusing on parameters such as the concentration and ratio of thiol molecules for AuNP functionalization, suitable solvents for the coupling reaction, and amount of antibodies conjugated to the AuNPs. Subsequently, we evaluated the ability of our method to detect exosomes isolated from three cell lines, NIH3T3, MCF7, and HeLa, using an anti-Rab5 immobilized gold chip and anti-CD63/Am-tag@AuNPs with LDI-TOF MS analysis. Calibration curves constructed for the three cell lines showed a linear relationship with an excellent limit of detection. Finally, we emphasized the versatility of our method for the quantitative detection of exosomal proteins CD63 and mucin 1 (MUC1) using two types of Am-tags. LDI-TOF MS analysis revealed the presence of CD63 and MUC1 at different expression levels in HeLa and MCF7 cancer cells. Our findings clearly indicate the potential of Ab/Am-tag@AuNPs as a sensitive and reliable approach for identifying biomarkers in exosomes, providing valuable insights into their utility in biomedical research and clinical settings.
Collapse
Affiliation(s)
- Gaon Jo
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, 143-701, Korea
| | - Woon-Seok Yeo
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, 143-701, Korea.
| |
Collapse
|
19
|
Pan K, Zhu Y, Chen P, Yang K, Chen Y, Wang Y, Dai Z, Huang Z, Zhong P, Zhao X, Fan S, Ning L, Zhang J, Chen P. Biological functions and biomedical applications of extracellular vesicles derived from blood cells. Free Radic Biol Med 2024; 222:43-61. [PMID: 38848784 DOI: 10.1016/j.freeradbiomed.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/26/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
There is a growing interest in using extracellular vesicles (EVs) for therapeutic applications. EVs are composed of cytoplasmic proteins and nucleic acids and an external lipid bilayer containing transmembrane proteins on their surfaces. EVs can alter the state of the target cells by interacting with the receptor ligand of the target cell or by being internalised by the target cell. Blood cells are the primary source of EVs, and 1 μL of plasma contains approximately 1.5 × 107 EVs. Owing to their easy acquisition and the avoidance of cell amplification in vitro, using blood cells as a source of therapeutic EVs has promising clinical application prospects. This review summarises the characteristics and biological functions of EVs derived from different blood cell types (platelets, erythrocytes, and leukocytes) and analyses the prospects and challenges of using them for clinical therapeutic applications. In summary, blood cell-derived EVs can regulate different cell types such as immune cells (macrophages, T cells, and dendritic cells), stem cells, and somatic cells, and play a role in intercellular communication, immune regulation, and cell proliferation. Overall, blood cell-derived EVs have the potential for use in vascular diseases, inflammatory diseases, degenerative diseases, and injuries. To promote the clinical translation of blood cell-derived EVs, researchers need to perform further studies on EVs in terms of scalable and reproducible isolation technology, quality control, safety, stability and storage, regulatory issues, cost-effectiveness, and long-term efficacy.
Collapse
Affiliation(s)
- Kaifeng Pan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China
| | - Yiwei Zhu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China
| | - Pengyu Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China
| | - Ke Yang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China
| | - Yiyu Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China
| | - Yongcheng Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China
| | - Zhanqiu Dai
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China; Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325088, China
| | - Zhenxiang Huang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China
| | - Peiyu Zhong
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China
| | - Xing Zhao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China.
| | - Shunwu Fan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China.
| | - Lei Ning
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China.
| | - Jianfeng Zhang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China.
| | - Pengfei Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China.
| |
Collapse
|
20
|
Pham CV, Chowdhury R, Patel S, Jaysawal SK, Hou Y, Xu H, Jia L, Zhang Y, Wang X, Duan W, Xiang D. An aptamer-guided fluorescence polarisation platform for extracellular vesicle liquid biopsy. J Extracell Vesicles 2024; 13:e12502. [PMID: 39221546 PMCID: PMC11367152 DOI: 10.1002/jev2.12502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 07/18/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
The translation of discoveries on extracellular vesicle (EV) based cancer biomarkers to personalised precision oncology requires the development of robust, sensitive and specific assays that are amenable to adoption in the clinical laboratory. Whilst a variety of elegant approaches for EV liquid biopsy have been developed, most of them remain as research prototypes due to the requirement of a high level of microfabrication and/or sophisticated instruments. Hence, this study is set to develop a simple DNA aptamer-enabled and fluorescence polarisation-based homogenous assay that eliminates the need to separate unbound detection ligands from the bound species for EV detection. High specificity is achieved by immobilising EVs with one set of antibodies and subsequently detecting them with a DNA aptamer targeting a distinct EV biomarker. This two-pronged strategy ensures the removal of most, if not all, non-EV substances in the input biofluids, including soluble proteins, protein aggregates or non-vesicular particles, prior to quantifying biomarker-positive EVs. A limit of detection of 5.0 × 106 EVs/mL was achieved with a linear quantification range of 5.0 × 108 to 2.0 × 1010 EVs/mL. Facilitated by a multiple parametric analysis strategy, this aptamer-guided fluorescence polarisation assay was capable of distinguishing EVs from three different types of solid cancer cells based on quantitative differences in the levels of the same sets of biomarkers on EVs. Given the simplicity of the method and its ease of implementation in automated clinical biochemistry analysers, this assay could be exploited for future EV-based continuous and real-time monitoring of the emergence of new macro- or micro-metastasis, cancer progression as well as the response to treatment throughout different stages of cancer management in the clinic.
Collapse
Affiliation(s)
- Cuong Viet Pham
- School of MedicineDeakin UniversityWaurn PondsVICAustralia
- Molecular Imaging and Theranostics LaboratoryBaker Heart and Diabetes InstituteMelbourneVICAustralia
| | | | - Shweta Patel
- School of MedicineDeakin UniversityWaurn PondsVICAustralia
| | | | - Yingchu Hou
- Laboratory of Tumor Molecular and Cellular Biology College of Life SciencesShaanxi Normal UniversityXi'anShaanxiChina
| | - Huo Xu
- College of Materials and Chemical EngineeringMinjiang UniversityFuzhouFujianChina
| | - Lee Jia
- College of Materials and Chemical EngineeringMinjiang UniversityFuzhouFujianChina
| | - Yu‐mei Zhang
- School of MedicineDeakin UniversityWaurn PondsVICAustralia
| | - Xiaowei Wang
- Molecular Imaging and Theranostics LaboratoryBaker Heart and Diabetes InstituteMelbourneVICAustralia
- Department of Cardiometabolic HealthUniversity of MelbourneVICAustralia
| | - Wei Duan
- School of MedicineDeakin UniversityWaurn PondsVICAustralia
| | - Dongxi Xiang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer InstituteShanghai Jiaotong UniversityShanghaiChina
- Department of Biliary‐Pancreatic Surgerythe Renji Hospital Affiliated to Shanghai Jiaotong University School of MedicineShanghaiChina
| |
Collapse
|
21
|
Soltanmohammadi F, Gharehbaba AM, Zangi AR, Adibkia K, Javadzadeh Y. Current knowledge of hybrid nanoplatforms composed of exosomes and organic/inorganic nanoparticles for disease treatment and cell/tissue imaging. Biomed Pharmacother 2024; 178:117248. [PMID: 39098179 DOI: 10.1016/j.biopha.2024.117248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024] Open
Abstract
Exosome-nanoparticle hybrid nanoplatforms, can be prepared by combining exosomes with different types of nanoparticles. The main purpose of combining exosomes with nanoparticles is to overcome the limitations of using each of them as drug delivery systems. Using nanoparticles for drug delivery has some limitations, such as high immunogenicity, poor cellular uptake, low biocompatibility, cytotoxicity, low stability, and rapid clearance by immune cells. However, using exosomes as drug delivery systems also has its own drawbacks, such as poor encapsulation efficiency, low production yield, and the inability to load large molecules. These limitations can be addressed by utilizing hybrid nanoplatforms. Additionally, the use of exosomes allows for targeted delivery within the hybrid system. Exosome-inorganic/organic hybrid nanoparticles may be used for both therapy and diagnosis in the future. This may lead to the development of personalized medicine using hybrid nanoparticles. However, there are a few challenges associated with this. Surface modifications, adding functional groups, surface charge adjustments, and preparing nanoparticles with the desired size are crucial to the possibility of preparing exosome-nanoparticle hybrids. Additional challenges for the successful implementation of hybrid platforms in medical treatments and diagnostics include scaling up the manufacturing process and ensuring consistent quality and reproducibility across various batches. This review focuses on various types of exosome-nanoparticle hybrid systems and also discusses the preparation and loading methods for these hybrid nanoplatforms. Furthermore, the potential applications of these hybrid nanocarriers in drug/gene delivery, disease treatment and diagnosis, and cell/tissue imaging are explained.
Collapse
Affiliation(s)
- Fatemeh Soltanmohammadi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Adel Mahmoudi Gharehbaba
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Rajabi Zangi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khosro Adibkia
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Javadzadeh
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
22
|
Andreu Z, Hidalgo MR, Masiá E, Romera-Giner S, Malmierca-Merlo P, López-Guerrero JA, García-García F, Vicent MJ. Comparative profiling of whole-cell and exosome samples reveals protein signatures that stratify breast cancer subtypes. Cell Mol Life Sci 2024; 81:363. [PMID: 39172142 PMCID: PMC11342910 DOI: 10.1007/s00018-024-05403-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024]
Abstract
Identifying novel breast cancer biomarkers will improve patient stratification, enhance therapeutic outcomes, and help develop non-invasive diagnostics. We compared the proteomic profiles of whole-cell and exosomal samples of representative breast cancer cell subtypes to evaluate the potential of extracellular vesicles as non-invasive disease biomarkers in liquid biopsies. Overall, differentially-expressed proteins in whole-cell and exosome samples (which included markers for invasion, metastasis, angiogenesis, and drug resistance) effectively discriminated subtypes; furthermore, our results confirmed that the proteomic profile of exosomes reflects breast cancer cell-of-origin, which underscores their potential as disease biomarkers. Our study will contribute to identifying biomarkers that support breast cancer patient stratification and developing novel therapeutic strategies. We include an open, interactive web tool to explore the data as a molecular resource that can explain the role of these protein signatures in breast cancer classification.
Collapse
Affiliation(s)
- Zoraida Andreu
- Polymer Therapeutics Laboratory and Screening Platform, Príncipe Felipe Research Center (CIPF), Av. Eduardo Primo Yúfera 3, Valencia, 46012, Spain.
- IVO-CIPF Joint Cancer Research Unit, Príncipe Felipe Research Center (CIPF), Av. Eduardo Primo Yúfera 3, Valencia, 46012, Spain.
- Computational Biomedicine Laboratory, Príncipe Felipe Research Center (CIPF), Av. Eduardo Primo Yúfera 3, Valencia, 46012, Spain.
- Laboratory of Molecular Biology, Foundation of the Valencian Institute of Oncology, Valencia, 46009, Spain.
| | - Marta R Hidalgo
- IVO-CIPF Joint Cancer Research Unit, Príncipe Felipe Research Center (CIPF), Av. Eduardo Primo Yúfera 3, Valencia, 46012, Spain
- Computational Biomedicine Laboratory, Príncipe Felipe Research Center (CIPF), Av. Eduardo Primo Yúfera 3, Valencia, 46012, Spain
- Department of Mathematics, School of Mathematics, University of Valencia, Valencia, 46010, Spain
| | - Esther Masiá
- Polymer Therapeutics Laboratory and Screening Platform, Príncipe Felipe Research Center (CIPF), Av. Eduardo Primo Yúfera 3, Valencia, 46012, Spain
- IVO-CIPF Joint Cancer Research Unit, Príncipe Felipe Research Center (CIPF), Av. Eduardo Primo Yúfera 3, Valencia, 46012, Spain
- CIBERONC, Carlos III Health Institute (IISCIII), Madrid, Spain
| | - Sergio Romera-Giner
- Computational Biomedicine Laboratory, Príncipe Felipe Research Center (CIPF), Av. Eduardo Primo Yúfera 3, Valencia, 46012, Spain
| | - Pablo Malmierca-Merlo
- Computational Biomedicine Laboratory, Príncipe Felipe Research Center (CIPF), Av. Eduardo Primo Yúfera 3, Valencia, 46012, Spain
| | - José A López-Guerrero
- IVO-CIPF Joint Cancer Research Unit, Príncipe Felipe Research Center (CIPF), Av. Eduardo Primo Yúfera 3, Valencia, 46012, Spain
- Laboratory of Molecular Biology, Foundation of the Valencian Institute of Oncology, Valencia, 46009, Spain
- Department of Pathology, Medical School, Catholic University of Valencia 'San Vicente Mártir', Valencia, 46001, Spain
| | - Francisco García-García
- IVO-CIPF Joint Cancer Research Unit, Príncipe Felipe Research Center (CIPF), Av. Eduardo Primo Yúfera 3, Valencia, 46012, Spain.
- Computational Biomedicine Laboratory, Príncipe Felipe Research Center (CIPF), Av. Eduardo Primo Yúfera 3, Valencia, 46012, Spain.
| | - María J Vicent
- Polymer Therapeutics Laboratory and Screening Platform, Príncipe Felipe Research Center (CIPF), Av. Eduardo Primo Yúfera 3, Valencia, 46012, Spain.
- IVO-CIPF Joint Cancer Research Unit, Príncipe Felipe Research Center (CIPF), Av. Eduardo Primo Yúfera 3, Valencia, 46012, Spain.
- CIBERONC, Carlos III Health Institute (IISCIII), Madrid, Spain.
| |
Collapse
|
23
|
Ghosh S, Rajendran RL, Mahajan AA, Chowdhury A, Bera A, Guha S, Chakraborty K, Chowdhury R, Paul A, Jha S, Dey A, Dubey A, Gorai S, Das P, Hong CM, Krishnan A, Gangadaran P, Ahn BC. Harnessing exosomes as cancer biomarkers in clinical oncology. Cancer Cell Int 2024; 24:278. [PMID: 39113040 PMCID: PMC11308730 DOI: 10.1186/s12935-024-03464-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
Exosomes are extracellular vesicles well known for facilitating cell-to-cell communication by distributing essential macromolecules like proteins, DNA, mRNA, lipids, and miRNA. These vesicles are abundant in fluids distributed throughout the body, including urine, blood, saliva, and even bile. They are important diagnostic tools for breast, lung, gastrointestinal cancers, etc. However, their application as cancer biomarkers has not yet been implemented in most parts of the world. In this review, we discuss how OMICs profiling of exosomes can be practiced by substituting traditional imaging or biopsy methods for cancer detection. Previous methods like extensive imaging and biopsy used for screening were expensive, mostly invasive, and could not easily provide early detection for various types of cancer. Exosomal biomarkers can be utilized for routine screening by simply collecting body fluids from the individual. We anticipate that the use of exosomes will be brought to light by the success of clinical trials investigating their potential to enhance cancer detection and treatment in the upcoming years.
Collapse
Affiliation(s)
- Subhrojyoti Ghosh
- Department of Biotechnology, Indian Institute of Technology, Madras, Chennai, 600036, India
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Atharva A Mahajan
- Advance Centre for Treatment, Research and Education in Cancer (ACTREC), Navi Mumbai, 410210, India
| | - Ankita Chowdhury
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, Delhi, 110016, India
| | - Aishi Bera
- Department of Biotechnology, Heritage Institute of Technology, Kolkata, 700107, India
| | - Sudeepta Guha
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, 826004, India
| | - Kashmira Chakraborty
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, 826004, India
| | - Rajanyaa Chowdhury
- Department of Biotechnology, Heritage Institute of Technology, Kolkata, 700107, India
| | - Aritra Paul
- Department of Biotechnology, Heritage Institute of Technology, Kolkata, 700107, India
| | - Shreya Jha
- Department of Biomedical Engineering, National Institute of Technology, Rourkela, Orissa, 769008, India
| | - Anuvab Dey
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, Assam, 781039, India
| | - Amit Dubey
- Computational Chemistry and Drug Discovery Division, Quanta Calculus, Greater Noida, Uttar Pradesh, India
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Sukhamoy Gorai
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Purbasha Das
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, 700073, India
| | - Chae Moon Hong
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea
| | - Anand Krishnan
- Department of Chemical Pathology, Office of the Dean, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein, 9300, Free State, South Africa.
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea.
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
| |
Collapse
|
24
|
Mousavikia SN, Darvish L, Bahreyni Toossi MT, Azimian H. Exosomes: Their role in the diagnosis, progression, metastasis, and treatment of glioblastoma. Life Sci 2024; 350:122743. [PMID: 38806071 DOI: 10.1016/j.lfs.2024.122743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 05/10/2024] [Accepted: 05/22/2024] [Indexed: 05/30/2024]
Abstract
Exosomes are crucial for the growth and spread of glioblastomas, an aggressive form of brain cancer. These tiny vesicles play a crucial role in the activation of signaling pathways and intercellular communication. They can also transfer a variety of biomolecules such as proteins, lipids and nucleic acids from donor to recipient cells. Exosomes can influence the immune response by regulating the activity of immune cells, and they are crucial for the growth and metastasis of glioblastoma cells. In addition, exosomes contribute to drug resistance during treatment, which is a major obstacle in the treatment of glioblastoma. By studying them, the diagnosis and prognosis of glioblastoma can be improved. Due to their high biocompatibility and lack of toxicity, they have become an attractive option for drug delivery. The development of exosomes as carriers of specific therapeutic agents could overcome some of the obstacles to effective treatment of glioblastoma. In this review, we address the potential of exosomes for the treatment of glioblastoma and show how they can be modified for this purpose.
Collapse
Affiliation(s)
- S N Mousavikia
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - L Darvish
- Department of Radiology, Faculty of Paramedicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran; Mother and Child Welfare Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - M T Bahreyni Toossi
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - H Azimian
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
25
|
Xu F, Luo S, Lu P, Cai C, Li W, Li C. Composition, functions, and applications of exosomal membrane proteins. Front Immunol 2024; 15:1408415. [PMID: 39148736 PMCID: PMC11324478 DOI: 10.3389/fimmu.2024.1408415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024] Open
Abstract
Exosomes play a crucial role in various biological processes, such as human development, immune responses, and disease occurrence. The membrane proteins on exosomes are pivotal factors for their biological functionality. Currently, numerous membrane proteins have been identified on exosome membranes, participating in intercellular communication, mediating target cell recognition, and regulating immune processes. Furthermore, membrane proteins from exosomes derived from cancer cells can serve as relevant biomarkers for early cancer diagnosis. This article provides a comprehensive review of the composition of exosome membrane proteins and their diverse functions in the organism's biological processes. Through in-depth exploration of exosome membrane proteins, it is expected to offer essential foundations for the future development of novel biomedical diagnostics and therapies.
Collapse
Affiliation(s)
- Fang Xu
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Shumin Luo
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Pengpeng Lu
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Chao Cai
- Integrated Chinese and Western Medicine Center, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Weihua Li
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Integrated Chinese and Western Medicine Center, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Chuanyun Li
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
26
|
Bano A, Yadav P, Sharma M, Verma D, Vats R, Chaudhry D, Kumar P, Bhardwaj R. Extraction and characterization of exosomes from the exhaled breath condensate and sputum of lung cancer patients and vulnerable tobacco consumers-potential noninvasive diagnostic biomarker source. J Breath Res 2024; 18:046003. [PMID: 38988301 DOI: 10.1088/1752-7163/ad5eae] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024]
Abstract
Noninvasive sample sources of exosomes, such as exhaled breath and sputum, which are in close proximity to the tumor microenvironment and may contain biomarkers indicative of lung cancer, are far more permissive than invasive sample sources for biomarker screening. Standardized exosome extraction and characterization approaches for low-volume noninvasive samples are critically needed. We isolated and characterized exhaled breath condensate (EBC) and sputum exosomes from healthy nonsmokers (n= 30), tobacco smokers (n= 30), and lung cancer patients (n= 40) and correlated the findings with invasive sample sources. EBC samples were collected by using commercially available R-Tubes. To collect sputum samples the participants were directed to take deep breaths, hold their breath, and cough in a collection container. Dynamic light scattering, nanoparticle tracking analysis, and transmission electron microscopy were used to evaluate the exosome morphology. Protein isolation, western blotting, exosome quantification via EXOCET, and Fourier transform infrared spectroscopy were performed for molecular characterization. Exosomes were successfully isolated from EBC and sputum samples, and their yields were adequate and sufficiently pure for subsequent downstream processing and characterization. The exosomes were confirmed based on their size, shape, and surface marker expression. Remarkably, cancer exosomes were the largest in size not only in the plasma subgroups, but also in the EBC (p < 0.05) and sputum (p= 0.0036) subgroups, according to our findings. A significant difference in exosome concentrations were observed between the control sub-groups (p < 0.05). Our research confirmed that exosomes can be extracted from noninvasive sources, such as EBC and sputum, to investigate lung cancer diagnostic biomarkers for research, clinical, and early detection in smokers.
Collapse
Affiliation(s)
- Afsareen Bano
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Pooja Yadav
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Megha Sharma
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Deepika Verma
- Department of Biochemistry, All India Institute of Medical Sciences, Delhi 110029, India
| | - Ravina Vats
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Dhruva Chaudhry
- Department of Pulmonary & Critical Care Medicine, Pt. B. D. Sharma PGIMS, Rohtak, Haryana 124001, India
| | - Pawan Kumar
- Department of Pulmonary & Critical Care Medicine, Pt. B. D. Sharma PGIMS, Rohtak, Haryana 124001, India
| | - Rashmi Bhardwaj
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| |
Collapse
|
27
|
Zheng L, Li J, Li Y, Sun W, Ma L, Qu F, Tan W. Empowering Exosomes with Aptamers for Precision Theranostics. SMALL METHODS 2024:e2400551. [PMID: 38967170 DOI: 10.1002/smtd.202400551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/04/2024] [Indexed: 07/06/2024]
Abstract
As information messengers for cell-to-cell communication, exosomes, typically small membrane vesicles (30-150 nm), play an imperative role in the physiological and pathological processes of living systems. Accumulating studies have demonstrated that exosomes are potential biological candidates for theranostics, including liquid biopsy-based diagnosis and drug delivery. However, their clinical applications are hindered by several issues, especially their unspecific detection and insufficient targeting ability. How to upgrade the accuracy of exosome-based theranostics is being widely explored. Aptamers, benefitting from their admirable characteristics, are used as excellent molecular recognition elements to empower exosomes for precision theranostics. With high affinity against targets and easy site-specific modification, aptamers can be incorporated with platforms for the specific detection of exosomes, thus providing opportunities for advancing disease diagnostics. Furthermore, aptamers can be tailored and functionalized on exosomes to enable targeted therapeutics. Herein, this review emphasizes the empowering of exosomes by aptamers for precision theranostics. A brief introduction of exosomes and aptamers is provided, followed by a discussion of recent progress in aptamer-based exosome detection for disease diagnosis, and the emerging applications of aptamer-functionalized exosomes for targeted therapeutics. Finally, current challenges and opportunities in this research field are presented.
Collapse
Affiliation(s)
- Liyan Zheng
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/ Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Jin Li
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Yingying Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/ Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Weidi Sun
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/ Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - LeLe Ma
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Fengli Qu
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, 310024, China
| | - Weihong Tan
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, 310024, China
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
28
|
Dabral P, Bhasin N, Ranjan M, Makhlouf MM, Abd Elmageed ZY. Tumor-Derived Extracellular Vesicles as Liquid Biopsy for Diagnosis and Prognosis of Solid Tumors: Their Clinical Utility and Reliability as Tumor Biomarkers. Cancers (Basel) 2024; 16:2462. [PMID: 39001524 PMCID: PMC11240796 DOI: 10.3390/cancers16132462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
Early cancer detection and accurate monitoring are crucial to ensure increased patient survival. Recent research has focused on developing non-invasive biomarkers to diagnose cancer early and monitor disease progression at low cost and risk. Extracellular vesicles (EVs), nanosized particles secreted into extracellular spaces by most cell types, are gaining immense popularity as novel biomarker candidates for liquid cancer biopsy, as they can transport bioactive cargo to distant sites and facilitate intercellular communications. A literature search was conducted to discuss the current approaches for EV isolation and the advances in using EV-associated proteins, miRNA, mRNA, DNA, and lipids as liquid biopsies. We discussed the advantages and challenges of using these vesicles in clinical applications. Moreover, recent advancements in machine learning as a novel tool for tumor marker discovery are also highlighted.
Collapse
Affiliation(s)
- Prerna Dabral
- Vitalant Research Institute, University of California San Francisco, San Francisco, CA 94105, USA;
| | - Nobel Bhasin
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Manish Ranjan
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Maysoon M. Makhlouf
- Department of Biomedical Sciences, Discipline of Pharmacology, Edward Via College of Osteopathic Medicine (VCOM), 4408 Bon Aire Drive, Monroe, LA 71203, USA;
| | - Zakaria Y. Abd Elmageed
- Department of Biomedical Sciences, Discipline of Pharmacology, Edward Via College of Osteopathic Medicine (VCOM), 4408 Bon Aire Drive, Monroe, LA 71203, USA;
| |
Collapse
|
29
|
Bobo TA, Robinson M, Tofade C, Sokolski‐Papkov M, Nichols P, Vorobiov S, Fu H. AAV gene replacement therapy for treating MPS IIIC: Facilitating bystander effects via EV-mRNA cargo. J Extracell Vesicles 2024; 13:e12464. [PMID: 38961538 PMCID: PMC11222166 DOI: 10.1002/jev2.12464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/22/2024] [Indexed: 07/05/2024] Open
Abstract
MPS IIIC is a lysosomal storage disease caused by mutations in heparan-α-glucosaminide N-acetyltransferase (HGSNAT), for which no treatment is available. Because HGSNAT is a trans-lysosomal-membrane protein, gene therapy for MPS IIIC needs to transduce as many cells as possible for maximal benefits. All cells continuously release extracellular vesicles (EVs) and communicate by exchanging biomolecules via EV trafficking. To address the unmet need, we developed a rAAV-hHGSNATEV vector with an EV-mRNA-packaging signal in the 3'UTR to facilitate bystander effects, and tested it in an in vitro MPS IIIC model. In human MPS IIIC cells, rAAV-hHGSNATEV enhanced HGSNAT mRNA and protein expression, EV-hHGSNAT-mRNA packaging, and cleared GAG storage. Importantly, incubation with EVs led to hHGSNAT protein expression and GAG contents clearance in recipient MPS IIIC cells. Further, rAAV-hHGSNATEV transduction led to the reduction of pathological EVs in MPS IIIC cells to normal levels, suggesting broader therapeutic benefits. These data demonstrate that incorporating the EV-mRNA-packaging signal into a rAAV-hHGSNAT vector enhances EV packaging of hHGSNAT-mRNA, which can be transported to non-transduced cells and translated into functional rHGSNAT protein, facilitating cross-correction of disease pathology. This study supports the therapeutic potential of rAAVEV for MPS IIIC, and broad diseases, without having to transduce every cell.
Collapse
Affiliation(s)
- Tierra A. Bobo
- Gene Therapy CenterChapel HillUSA
- Division of Genetics and Metabolism, Department of PediatricsSchool of MedicineChapel HillUSA
| | | | | | - Marina Sokolski‐Papkov
- Center for Nanotechnology in Drug Delivery, Division of Molecular Pharmaceutics, Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillUSA
| | | | | | - Haiyan Fu
- Gene Therapy CenterChapel HillUSA
- Division of Genetics and Metabolism, Department of PediatricsSchool of MedicineChapel HillUSA
| |
Collapse
|
30
|
Liu C, Wang J, Negishi R, Inuzuka T, Kiwa T. Label-Free Measurement of CD63 Positive Extracellular Vesicles Using Terahertz Chemical Microscopy. ACS Sens 2024; 9:3244-3252. [PMID: 38785322 DOI: 10.1021/acssensors.4c00590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Extracellular vesicles (EVs) are small cellular organelles involved in intracellular signaling and cell-to-cell interactions. Recent studies suggested that exosomes may have potential applications in the diagnosis and treatment of cancer and neurodegenerative diseases. In this study, extracellular vesicles of the human nonsmall cell lung cancer cell line H1299 and the unlabeled antiCD63 antibody were imaged using a new label-free terahertz chemical microscopy (TCM) technique to detect changes in the terahertz wave amplitude. To verify the high specificity of the protein biomarkers and the sensitivity of the biosensor surface, we also confirmed the selective binding of the antibody to the antigen, bovine serum albumin, and cancer cells. We also performed real-time measurements of the interaction between EVs from the H1299 cell and the antiCD63 antibody, which showed that the amount of change in the terahertz intensity increased with increasing concentration and the time to saturation decreased. Finally, to reuse the used biosensors (sensing plates), plasma-oxygen cleaning was used, and the activity of the biosensor surface was confirmed by terahertz microscopy and atomic force microscopy and was found to be reusable after less than 3 min of cleaning. Consequently, terahertz chemical microscopy was able to detect the presence or absence of antigen-antibody binding and its reaction rate and binding strength.
Collapse
Affiliation(s)
- Changjiang Liu
- School of Medical Information Engineering, Zunyi Medical University, Zunyi 563006, P. R. China
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan
| | - Jin Wang
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan
| | - Ryo Negishi
- H.U. Group Research Institute G.K., Tokyo 197-0833, Japan
| | | | - Toshihiko Kiwa
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
31
|
Neettiyath A, Chung K, Liu W, Lee LP. Nanoplasmonic sensors for extracellular vesicles and bacterial membrane vesicles. NANO CONVERGENCE 2024; 11:23. [PMID: 38918255 PMCID: PMC11199476 DOI: 10.1186/s40580-024-00431-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/03/2024] [Indexed: 06/27/2024]
Abstract
Extracellular vesicles (EVs) are promising tools for the early diagnosis of diseases, and bacterial membrane vesicles (MVs) are especially important in health and environment monitoring. However, detecting EVs or bacterial MVs presents significant challenges for the clinical translation of EV-based diagnostics. In this Review, we provide a comprehensive discussion on the basics of nanoplasmonic sensing and emphasize recent developments in nanoplasmonics-based optical sensors to effectively identify EVs or bacterial MVs. We explore various nanoplasmonic sensors tailored for EV or bacterial MV detection, emphasizing the application of localized surface plasmon resonance through gold nanoparticles and their multimers. Additionally, we highlight advanced EV detection techniques based on surface plasmon polaritons using plasmonic thin film and nanopatterned structures. Furthermore, we evaluate the improved detection capability of surface-enhanced Raman spectroscopy in identifying and classifying these vesicles, aided by plasmonic nanostructures. Nanoplasmonic sensing techniques have remarkable precision and sensitivity, making them a potential tool for accurate EV detection in clinical applications, facilitating point-of-care molecular diagnostics. Finally, we summarize the challenges associated with nanoplasmonic EV or bacterial MV sensors and offer insights into potential future directions for this evolving field.
Collapse
Affiliation(s)
- Aparna Neettiyath
- Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Kyungwha Chung
- Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
- Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, Suwon 16419, Korea
| | - Wenpeng Liu
- Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Luke P Lee
- Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
- Harvard Medical School, Harvard University, Boston, MA 02115, USA.
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA.
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA 94720, USA.
- Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, Suwon 16419, Korea.
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.
| |
Collapse
|
32
|
Liu Q, Zhang Q, Yao Z, Yi G, Kang Y, Qiu Y, Yang Y, Yuan H, Fu R, Sheng W, Cheng L, Wang W, Wang H, Peng C. Pushing Forward the DNA Walkers in Connection with Tumor-Derived Extracellular Vesicles. Int J Nanomedicine 2024; 19:6231-6252. [PMID: 38915916 PMCID: PMC11194468 DOI: 10.2147/ijn.s464895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/15/2024] [Indexed: 06/26/2024] Open
Abstract
Extracellular vesicles (EVs) are microparticles released from cells in both physiological and pathological conditions and could be used to monitor the progression of various pathological states, including neoplastic diseases. In various EVs, tumor-derived extracellular vesicles (TEVs) are secreted by different tumor cells and are abundant in many molecular components, such as proteins, nucleic acids, lipids, and carbohydrates. TEVs play a crucial role in forming and advancing various cancer processes. Therefore, TEVs are regarded as promising biomarkers for the early detection of cancer in liquid biopsy. However, the currently developed TEV detection methods still face several key scientific problems that need to be solved, such as low sensitivity, poor specificity, and poor accuracy. To overcome these limitations, DNA walkers have emerged as one of the most popular nanodevices that exhibit better signal amplification capability and enable highly sensitive and specific detection of the analytes. Due to their unique properties of high directionality, flexibility, and efficiency, DNA walkers hold great potential for detecting TEVs. This paper provides an introduction to EVs and DNA walker, additionally, it summarizes recent advances in DNA walker-based detection of TEVs (2018-2024). The review highlights the close relationship between TEVs and DNA walkers, aims to offer valuable insights into TEV detection and to inspire the development of reliable, efficient, simple, and innovative methods for detecting TEVs based on DNA walker in the future.
Collapse
Affiliation(s)
- Qingyi Liu
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Qiongdan Zhang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Zhijian Yao
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Gangqiang Yi
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Yeonseok Kang
- College of Korean Medicine, Wonkwang University, Jeonbuk, Korea
| | - Yixing Qiu
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Yupei Yang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Hanwen Yuan
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Ronggeng Fu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Wenbing Sheng
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Lidong Cheng
- Hunan Yirentang Chinese Herbal Pieces Co., Ltd, Changde, People’s Republic of China
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Huizhen Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Caiyun Peng
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- Institute of Innovation and Applied Research in Chinese Medicine Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| |
Collapse
|
33
|
Moghassemi S, Dadashzadeh A, Sousa MJ, Vlieghe H, Yang J, León-Félix CM, Amorim CA. Extracellular vesicles in nanomedicine and regenerative medicine: A review over the last decade. Bioact Mater 2024; 36:126-156. [PMID: 38450204 PMCID: PMC10915394 DOI: 10.1016/j.bioactmat.2024.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 03/08/2024] Open
Abstract
Small extracellular vesicles (sEVs) are known to be secreted by a vast majority of cells. These sEVs, specifically exosomes, induce specific cell-to-cell interactions and can activate signaling pathways in recipient cells through fusion or interaction. These nanovesicles possess several desirable properties, making them ideal for regenerative medicine and nanomedicine applications. These properties include exceptional stability, biocompatibility, wide biodistribution, and minimal immunogenicity. However, the practical utilization of sEVs, particularly in clinical settings and at a large scale, is hindered by the expensive procedures required for their isolation, limited circulation lifetime, and suboptimal targeting capacity. Despite these challenges, sEVs have demonstrated a remarkable ability to accommodate various cargoes and have found extensive applications in the biomedical sciences. To overcome the limitations of sEVs and broaden their potential applications, researchers should strive to deepen their understanding of current isolation, loading, and characterization techniques. Additionally, acquiring fundamental knowledge about sEVs origins and employing state-of-the-art methodologies in nanomedicine and regenerative medicine can expand the sEVs research scope. This review provides a comprehensive overview of state-of-the-art exosome-based strategies in diverse nanomedicine domains, encompassing cancer therapy, immunotherapy, and biomarker applications. Furthermore, we emphasize the immense potential of exosomes in regenerative medicine.
Collapse
Affiliation(s)
- Saeid Moghassemi
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Arezoo Dadashzadeh
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Maria João Sousa
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Hanne Vlieghe
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Jie Yang
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Cecibel María León-Félix
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Christiani A. Amorim
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
34
|
Skoczylas Ł, Gawin M, Fochtman D, Widłak P, Whiteside TL, Pietrowska M. Immune capture and protein profiling of small extracellular vesicles from human plasma. Proteomics 2024; 24:e2300180. [PMID: 37713108 PMCID: PMC11046486 DOI: 10.1002/pmic.202300180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023]
Abstract
Extracellular vesicles (EVs), the key players in inter-cellular communication, are produced by all cell types and are present in all body fluids. Analysis of the proteome content is an important approach in structural and functional studies of these vesicles. EVs circulating in human plasma are heterogeneous in size, cellular origin, and functions. This heterogeneity and the potential presence of contamination with plasma components such as lipoprotein particles and soluble plasma proteins represent a challenge in profiling the proteome of EV subsets by mass spectrometry. An immunocapture strategy prior to mass spectrometry may be used to isolate a homogeneous subpopulation of small EVs (sEV) with a specific endocytic origin from plasma or other biofluids. Immunocapture selectively separates EV subpopulations in biofluids based on the presence of a unique protein carried on the vesicle surface. The advantages and disadvantages of EV immune capture as a preparative step for mass spectrometry are discussed.
Collapse
Affiliation(s)
- Łukasz Skoczylas
- Maria Sklodowska-Curie National Research Institute of Oncology, 44-102 Gliwice, Poland
| | - Marta Gawin
- Maria Sklodowska-Curie National Research Institute of Oncology, 44-102 Gliwice, Poland
| | - Daniel Fochtman
- Maria Sklodowska-Curie National Research Institute of Oncology, 44-102 Gliwice, Poland
- Silesian University of Technology, 44-100 Gliwice, Poland
| | - Piotr Widłak
- Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Theresa L. Whiteside
- UPMC Hillman Cancer Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232, USA
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Monika Pietrowska
- Maria Sklodowska-Curie National Research Institute of Oncology, 44-102 Gliwice, Poland
| |
Collapse
|
35
|
Wang R, Shi Y, Lv Y, Xie C, Hu Y. The novel insights of epithelial-derived exosomes in various fibrotic diseases. Biomed Pharmacother 2024; 174:116591. [PMID: 38631144 DOI: 10.1016/j.biopha.2024.116591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024] Open
Abstract
The characteristics of fibrosis include the abnormal accumulation of extracellular matrix proteins and abnormal tissue repair caused by injury, infection, and inflammation, leading to a significant increase in organ failure and mortality. Effective and precise treatments are urgently needed to halt and reverse the progression of fibrotic diseases. Exosomes are tiny vesicles derived from endosomes, spanning from 40 to 160 nanometers in diameter, which are expelled into the extracellular matrix environment by various cell types. They play a crucial role in facilitating cell-to-cell communication by transporting a variety of cargoes, including proteins, RNA, and DNA. Epithelial cells serve as the primary barrier against diverse external stimuli that precipitate fibrotic diseases. Numerous research suggests that exosomes from epithelial cells have a significant impact on several fibrotic diseases. An in-depth comprehension of the cellular and molecular mechanisms of epithelial cell-derived exosomes in fibrosis holds promise for advancing the exploration of novel diagnostic biomarkers and clinical drug targets. In this review, we expand upon the pathogenic mechanisms of epithelium-derived exosomes and highlight their role in the fibrotic process by inducing inflammation and activating fibroblasts. In addition, we are particularly interested in the bioactive molecules carried by epithelial-derived exosomes and their potential value in the diagnosis and treatment of fibrosis and delineate the clinical utility of exosomes as an emerging therapeutic modality, highlighting their potential application in addressing various medical conditions.
Collapse
Affiliation(s)
- Rifu Wang
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| | - Yuxin Shi
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| | - Yonglin Lv
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| | - Changqing Xie
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan, China; NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, China.
| | - Yanjia Hu
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan, China.
| |
Collapse
|
36
|
Chatzilakou E, Hu Y, Jiang N, Yetisen AK. Biosensors for melanoma skin cancer diagnostics. Biosens Bioelectron 2024; 250:116045. [PMID: 38301546 DOI: 10.1016/j.bios.2024.116045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 02/03/2024]
Abstract
Skin cancer is a critical global public health concern, with melanoma being the deadliest variant, correlated to 80% of skin cancer-related deaths and a remarkable propensity to metastasize. Despite notable progress in skin cancer prevention and diagnosis, the limitations of existing methods accentuate the demand for precise diagnostic tools. Biosensors have emerged as valuable clinical tools, enabling rapid and reliable point-of-care (POC) testing of skin cancer. This review offers insights into skin cancer development, highlights essential cutaneous melanoma biomarkers, and assesses the current landscape of biosensing technologies for diagnosis. The comprehensive analysis in this review underscores the transformative potential of biosensors in revolutionizing melanoma skin cancer diagnosis, emphasizing their critical role in advancing patient outcomes and healthcare efficiency. The increasing availability of these approaches supports direct diagnosis and aims to reduce the reliance on biopsies, enhancing POC diagnosis. Recent advancements in biosensors for skin cancer diagnosis hold great promise, with their integration into healthcare expected to enhance early detection accuracy and reliability, thereby mitigating socioeconomic disparities.
Collapse
Affiliation(s)
- Eleni Chatzilakou
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2BU, UK
| | - Yubing Hu
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2BU, UK.
| | - Nan Jiang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China; JinFeng Laboratory, Chongqing, 401329, China.
| | - Ali K Yetisen
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2BU, UK.
| |
Collapse
|
37
|
Xiao X, Lin X, Ting CL, Huang X, Zeng B, Liu T, Zeng T. Extraction-free, immuno-RPA-CRISPR/Cas13a-based one-pot detection of glypican-3 directly from extracellular vesicles. Anal Chim Acta 2024; 1297:342385. [PMID: 38438232 DOI: 10.1016/j.aca.2024.342385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/06/2024]
Abstract
BACKGROUND Glypican-3 (GPC3) is a heparan sulfate proteoglycan (HSPG) that binds to the cell membrane via glycosylphosphatidylinositol (GPI). It is not found in healthy adult liver but is overexpressed in human hepatocellular carcinoma (HCC). The protein marker GPC3 on extracellular vesicles (GPC3+ EVs) is also useful for HCC detection. Nevertheless, the absence of practical and dependable quantitative techniques to evaluate EVs proteins prevents their clinical implementation. RESULTS Here, using an immuno-recombinase polymerase amplification (immuno-RPA) process and dual amplification of clustered regularly interspaced short palindromic repeats (CRISPR)-Cas13a, we firstly create an extraction-free one-pot immuno-RPA-CRISPR (opiCRISPR) for the direct and extremely sensitive detection of EVs proteins. The EVs protein-targeted detection probe is amplified by RPA to generate a long repetitive sequence containing multiple CRISPR RNA (crRNA) targeting barcodes, and the signal is further amplified by the CRISPR-Cas13a side-chain cleavage activity to generate a fluorescent signal. The results show that circulating extracellular vesicle GPC3 (eGPC3) levels are a reliable marker for GPC3 expression in tumor, opening up new avenues for tumor diagnosis. SIGNIFICANCE AND NOVELTY We created an eGPC3 assay based on the CRISPR-Cas13a system, and successfully study the significance of extracellular vesicle GPC3 markers in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Xiangyan Xiao
- Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, PR China; Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Xiaocong Lin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guang Dong Medical University, 524023, Zhanjiang, PR China
| | - Chu Lok Ting
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guang Dong Medical University, 524023, Zhanjiang, PR China
| | - Xueran Huang
- Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, PR China
| | - Biyun Zeng
- School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, PR China
| | - Tiancai Liu
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, PR China.
| | - Tao Zeng
- Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, PR China.
| |
Collapse
|
38
|
Vázquez-Iglesias L, Stanfoca Casagrande GM, García-Lojo D, Ferro Leal L, Ngo TA, Pérez-Juste J, Reis RM, Kant K, Pastoriza-Santos I. SERS sensing for cancer biomarker: Approaches and directions. Bioact Mater 2024; 34:248-268. [PMID: 38260819 PMCID: PMC10801148 DOI: 10.1016/j.bioactmat.2023.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
These days, cancer is thought to be more than just one illness, with several complex subtypes that require different screening approaches. These subtypes can be distinguished by the distinct markings left by metabolites, proteins, miRNA, and DNA. Personalized illness management may be possible if cancer is categorized according to its biomarkers. In order to stop cancer from spreading and posing a significant risk to patient survival, early detection and prompt treatment are essential. Traditional cancer screening techniques are tedious, time-consuming, and require expert personnel for analysis. This has led scientists to reevaluate screening methodologies and make use of emerging technologies to achieve better results. Using time and money saving techniques, these methodologies integrate the procedures from sample preparation to detection in small devices with high accuracy and sensitivity. With its proven potential for biomedical use, surface-enhanced Raman scattering (SERS) has been widely used in biosensing applications, particularly in biomarker identification. Consideration was given especially to the potential of SERS as a portable clinical diagnostic tool. The approaches to SERS-based sensing technologies for both invasive and non-invasive samples are reviewed in this article, along with sample preparation techniques and obstacles. Aside from these significant constraints in the detection approach and techniques, the review also takes into account the complexity of biological fluids, the availability of biomarkers, and their sensitivity and selectivity, which are generally lowered. Massive ways to maintain sensing capabilities in clinical samples are being developed recently to get over this restriction. SERS is known to be a reliable diagnostic method for treatment judgments. Nonetheless, there is still room for advancement in terms of portability, creation of diagnostic apps, and interdisciplinary AI-based applications. Therefore, we will outline the current state of technological maturity for SERS-based cancer biomarker detection in this article. The review will meet the demand for reviewing various sample types (invasive and non-invasive) of cancer biomarkers and their detection using SERS. It will also shed light on the growing body of research on portable methods for clinical application and quick cancer detection.
Collapse
Affiliation(s)
- Lorena Vázquez-Iglesias
- CINBIO, Universidade de Vigo, Campus Universitario As Lagoas Marcosende, Vigo 36310, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), 36310, Vigo, Spain
| | | | - Daniel García-Lojo
- CINBIO, Universidade de Vigo, Campus Universitario As Lagoas Marcosende, Vigo 36310, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), 36310, Vigo, Spain
| | - Letícia Ferro Leal
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
- Barretos School of Medicine Dr. Paulo Prata—FACISB, Barretos, 14785-002, Brazil
| | - Tien Anh Ngo
- Vinmec Tissue Bank, Vinmec Health Care System, Hanoi, Viet Nam
| | - Jorge Pérez-Juste
- CINBIO, Universidade de Vigo, Campus Universitario As Lagoas Marcosende, Vigo 36310, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), 36310, Vigo, Spain
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B's—PT Government Associate Laboratory, 4710-057, Braga, Portugal
| | - Krishna Kant
- CINBIO, Universidade de Vigo, Campus Universitario As Lagoas Marcosende, Vigo 36310, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), 36310, Vigo, Spain
| | - Isabel Pastoriza-Santos
- CINBIO, Universidade de Vigo, Campus Universitario As Lagoas Marcosende, Vigo 36310, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), 36310, Vigo, Spain
| |
Collapse
|
39
|
Naquin TD, Canning AJ, Gu Y, Chen J, Naquin CM, Xia J, Lu B, Yang S, Koroza A, Lin K, Wang HN, Jeck WR, Lee LP, Vo-Dinh T, Huang TJ. Acoustic separation and concentration of exosomes for nucleotide detection: ASCENDx. SCIENCE ADVANCES 2024; 10:eadm8597. [PMID: 38457504 PMCID: PMC10923504 DOI: 10.1126/sciadv.adm8597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/05/2024] [Indexed: 03/10/2024]
Abstract
Efficient isolation and analysis of exosomal biomarkers hold transformative potential in biomedical applications. However, current methods are prone to contamination and require costly consumables, expensive equipment, and skilled personnel. Here, we introduce an innovative spaceship-like disc that allows Acoustic Separation and Concentration of Exosomes and Nucleotide Detection: ASCENDx. We created ASCENDx to use acoustically driven disc rotation on a spinning droplet to generate swift separation and concentration of exosomes from patient plasma samples. Integrated plasmonic nanostars on the ASCENDx disc enable label-free detection of enriched exosomes via surface-enhanced Raman scattering. Direct detection of circulating exosomal microRNA biomarkers from patient plasma samples by the ASCENDx platform facilitated a diagnostic assay for colorectal cancer with 95.8% sensitivity and 100% specificity. ASCENDx overcomes existing limitations in exosome-based molecular diagnostics and holds a powerful position for future biomedical research, precision medicine, and point-of-care medical diagnostics.
Collapse
Affiliation(s)
- Ty D. Naquin
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Aidan J. Canning
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Yuyang Gu
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Jianing Chen
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Chloe M. Naquin
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Jianping Xia
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Brandon Lu
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Shujie Yang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Aleksandra Koroza
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Katherine Lin
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Hsin-Neng Wang
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - William R. Jeck
- Department of Pathology, Duke University Medical Center, Durham, NC 27708, USA
| | - Luke P. Lee
- Harvard Medical School, Harvard University; Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Bioengineering and Department of Electrical Engineering and Computer Science, University of California, Berkeley, Berkeley, CA 94720, USA
- Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, Suwon, Gyeonggi-do, Korea
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, Korea
| | - Tuan Vo-Dinh
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Tony Jun Huang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| |
Collapse
|
40
|
Boyne C, Coote A, Synowsky S, Naden A, Shirran S, Powis SJ. Characterising the HLA-I immunopeptidome of plasma-derived extracellular vesicles in patients with melanoma. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e146. [PMID: 38939414 PMCID: PMC11080910 DOI: 10.1002/jex2.146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 03/05/2024] [Accepted: 03/10/2024] [Indexed: 06/29/2024]
Abstract
Extracellular vesicles (EVs) frequently express human leukocyte antigen class I (HLA-I) molecules. The immunopeptidomes presented on EV HLA-I are being mapped to provide key information on both specific cancer-related peptides, and for larger immunopeptidomic signatures associated with disease. Utilizing HLA-I immunoisolation and mass spectrometry, we characterised the HLA-I immunopeptidome of EVs derived from the melanoma cancer cell line, ESTDAB-026, and the plasma of 12 patients diagnosed with advanced stage melanoma, alongside 11 healthy controls. The EV HLA-I immunopeptidome derived from melanoma cells features T cell epitopes with known immunogenicity and peptides derived from known tumour associated antigens (TAAs). Both T cell epitopes with known immunogenicity and peptides derived from known TAAs were also identifiable in the melanoma patient samples. Patient stratification into two distinct groups with varying immunological profiles was also observed. The data obtained in this study suggests for the first time that the HLA-I immunopeptidome of EVs derived from blood may aid in the detection of important diagnostic or prognostic biomarkers and also provide new immunotherapy targets.
Collapse
Affiliation(s)
- Caitlin Boyne
- School of MedicineUniversity of St AndrewsFifeScotland
| | - Abigail Coote
- School of MedicineUniversity of St AndrewsFifeScotland
| | - Silvia Synowsky
- School of BiologyUniversity of St AndrewsFifeScotland
- Biological Sciences Research ComplexUniversity of St AndrewsFifeScotland
| | - Aaron Naden
- School of ChemistryUniversity of St AndrewsFifeScotland
| | - Sally Shirran
- School of BiologyUniversity of St AndrewsFifeScotland
- Biological Sciences Research ComplexUniversity of St AndrewsFifeScotland
| | - Simon J. Powis
- School of MedicineUniversity of St AndrewsFifeScotland
- Biological Sciences Research ComplexUniversity of St AndrewsFifeScotland
| |
Collapse
|
41
|
Dorado E, Doria ML, Nagelkerke A, McKenzie JS, Maneta‐Stavrakaki S, Whittaker TE, Nicholson JK, Coombes RC, Stevens MM, Takats Z. Extracellular vesicles as a promising source of lipid biomarkers for breast cancer detection in blood plasma. J Extracell Vesicles 2024; 13:e12419. [PMID: 38443328 PMCID: PMC10914699 DOI: 10.1002/jev2.12419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/18/2024] [Accepted: 02/08/2024] [Indexed: 03/07/2024] Open
Abstract
Extracellular vesicles (EVs), including exosomes and microvesicles, mediate intercellular communication in cancer, from development to metastasis. EV-based liquid biopsy is a promising strategy for cancer diagnosis as EVs can be found in cancer patients' body fluids. In this study, the lipid composition of breast cancer-derived EVs was studied as well as the potential of blood plasma EVs for the identification of lipid biomarkers for breast cancer detection. Initially, an untargeted lipidomic analysis was carried out for a panel of cancerous and non-cancerous mammary epithelial cells and their secreted EVs. We found that breast cancer-derived EVs are enriched in sphingolipids and glycerophospholipids compared to their parental cells. The initial in vitro study showed that EVs and their parental cells can be correctly classified (100% accuracy) between cancerous and non-cancerous, as well as into their respective breast cancer subtypes, based on their lipid composition. Subsequently, an untargeted lipidomic analysis was carried out for blood plasma EVs from women diagnosed with breast cancer (primary or progressive metastatic breast cancer) as well as healthy women. Correspondingly, when blood plasma EVs were analysed, breast cancer patients and healthy women were correctly classified with an overall accuracy of 93.1%, based on the EVs' lipid composition. Similarly, the analysis of patients with primary breast cancer and healthy women showed an overall accuracy of 95% for their correct classification. Furthermore, primary and metastatic breast cancers were correctly classified with an overall accuracy of 89.5%. This reveals that the blood plasma EVs' lipids may be a promising source of biomarkers for detection of breast cancer. Additionally, this study demonstrates the usefulness of untargeted lipidomics in the study of EV lipid composition and EV-associated biomarker discovery studies. This is a proof-of-concept study and a starting point for further analysis on the identification of EV-based biomarkers for breast cancer.
Collapse
Affiliation(s)
- Erika Dorado
- Faculty of Medicine, Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUnited Kingdom
| | - Maria Luisa Doria
- Faculty of Medicine, Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUnited Kingdom
| | - Anika Nagelkerke
- Faculty of Engineering, Department of Bioengineering, Department of Materials, Institute of Biomedical EngineeringImperial College LondonLondonUnited Kingdom
| | - James S. McKenzie
- Faculty of Medicine, Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUnited Kingdom
| | - Stefania Maneta‐Stavrakaki
- Faculty of Medicine, Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUnited Kingdom
| | - Thomas E. Whittaker
- Faculty of Engineering, Department of Bioengineering, Department of Materials, Institute of Biomedical EngineeringImperial College LondonLondonUnited Kingdom
| | - Jeremy K. Nicholson
- Institute of Global Health InnovationImperial College LondonLondonUnited Kingdom
| | - Raoul Charles Coombes
- Faculty of Medicine, Department of Surgery and CancerImperial College LondonLondonUnited Kingdom
| | - Molly M. Stevens
- Faculty of Engineering, Department of Bioengineering, Department of Materials, Institute of Biomedical EngineeringImperial College LondonLondonUnited Kingdom
| | - Zoltan Takats
- Faculty of Medicine, Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUnited Kingdom
- PRISM Inserm U1192University of LilleLilleFrance
- Deparment of ImmunomedicineUniversity of RegensburgRegensburgGermany
| |
Collapse
|
42
|
Ko SY, Lee W, Naora H. Harnessing microRNA-enriched extracellular vesicles for liquid biopsy. Front Mol Biosci 2024; 11:1356780. [PMID: 38449696 PMCID: PMC10916008 DOI: 10.3389/fmolb.2024.1356780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/13/2024] [Indexed: 03/08/2024] Open
Abstract
Extracellular microRNAs (miRNAs) can be detected in body fluids and hold great potential as cancer biomarkers. Extracellular miRNAs are protected from degradation by binding various proteins and through their packaging into extracellular vesicles (EVs). There is evidence that the diagnostic performance of cancer-associated extracellular miRNAs can be improved by assaying EV-miRNA instead of total cell-free miRNA, but several challenges have hampered the advancement of EV-miRNA in liquid biopsy. Because almost all types of cells release EVs, cancer cell-derived EVs might constitute only a minor fraction of EVs in body fluids of cancer patients with low volume disease. Furthermore, a given cell type can release several subpopulations of EVs that vary in their cargo, and there is evidence that the majority of EVs contain low copy numbers of miRNAs. In this mini-review, we discuss the potential of several candidate EV membrane proteins such as CD147 to define cancer cell-derived EVs, and approaches by which subpopulations of miRNA-rich EVs in body fluids might be identified. By integrating these insights, we discuss strategies by which EVs that are both cancer cell-derived and miRNA-rich could be isolated to enhance the diagnostic performance of extracellular miRNAs.
Collapse
Affiliation(s)
| | | | - Honami Naora
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
43
|
Cvjetkovic A, Karimi N, Crescitelli R, Thorsell A, Taflin H, Lässer C, Lötvall J. Proteomic profiling of tumour tissue-derived extracellular vesicles in colon cancer. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e127. [PMID: 38939898 PMCID: PMC11080707 DOI: 10.1002/jex2.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 07/19/2023] [Accepted: 10/23/2023] [Indexed: 06/29/2024]
Abstract
Colon cancer is one of the most commonly occurring tumours among both women and men, and over the past decades the incidence has been on the rise. As such, the need for biomarker identification as well as an understanding of the underlying disease mechanism has never been greater. Extracellular vesicles are integral mediators of cell-to-cell communication and offer a unique opportunity to study the machinery that drives disease progression, and they also function as vectors for potential biomarkers. Tumour tissue and healthy mucosal tissue from the colons of ten patients were used to isolate tissue-resident EVs that were subsequently subjected to global quantitative proteomic analysis through LC-MS/MS. In total, more than 2000 proteins were identified, with most of the common EV markers being among them. Bioinformatics revealed a clear underrepresentation of proteins involved in energy production and cellular adhesion in tumour EVs, while proteins involved in protein biosynthesis were overrepresented. Additionally, 53 membrane proteins were found to be significantly upregulated in tumour EVs. Among them were several proteins with enzymatic functions that degrade the extracellular matrix, and three of these, Fibroblast activating factor (FAP), Cell surface hyaluronidase (CEMIP2), as well as Ephrin receptor B3 (EPHB3), were validated and found to be consistent with the global quantitative results. These stark differences in the proteomes between healthy and cancerous tissue emphasise the importance of the interstitial vesicle secretome as a major player of disease development.
Collapse
Affiliation(s)
- Aleksander Cvjetkovic
- Krefting Research Centre, Institute of Medicine at Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Nasibeh Karimi
- Krefting Research Centre, Institute of Medicine at Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Rossella Crescitelli
- Krefting Research Centre, Institute of Medicine at Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Sahlgrenska Center for Cancer Research and Wallenberg Centre for Molecular and Translational Medicine, Department of Surgery, Institute of Clinical Sciences, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of SurgerySahlgrenska University HospitalGothenburgSweden
| | - Annika Thorsell
- Proteomics Core Facility, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Helena Taflin
- Transplant Institute at Sahlgrenska University Hospital, Institute of Clinical SciencesSahlgrenska Academy at University of GothenburgGothenburgSweden
| | - Cecilia Lässer
- Krefting Research Centre, Institute of Medicine at Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Jan Lötvall
- Krefting Research Centre, Institute of Medicine at Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| |
Collapse
|
44
|
Wang X, Wang L, Lin H, Zhu Y, Huang D, Lai M, Xi X, Huang J, Zhang W, Zhong T. Research progress of CTC, ctDNA, and EVs in cancer liquid biopsy. Front Oncol 2024; 14:1303335. [PMID: 38333685 PMCID: PMC10850354 DOI: 10.3389/fonc.2024.1303335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/04/2024] [Indexed: 02/10/2024] Open
Abstract
Circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), and extracellular vehicles (EVs) have received significant attention in recent times as emerging biomarkers and subjects of transformational studies. The three main branches of liquid biopsy have evolved from the three primary tumor liquid biopsy detection targets-CTC, ctDNA, and EVs-each with distinct benefits. CTCs are derived from circulating cancer cells from the original tumor or metastases and may display global features of the tumor. ctDNA has been extensively analyzed and has been used to aid in the diagnosis, treatment, and prognosis of neoplastic diseases. EVs contain tumor-derived material such as DNA, RNA, proteins, lipids, sugar structures, and metabolites. The three provide different detection contents but have strong complementarity to a certain extent. Even though they have already been employed in several clinical trials, the clinical utility of three biomarkers is still being studied, with promising initial findings. This review thoroughly overviews established and emerging technologies for the isolation, characterization, and content detection of CTC, ctDNA, and EVs. Also discussed were the most recent developments in the study of potential liquid biopsy biomarkers for cancer diagnosis, therapeutic monitoring, and prognosis prediction. These included CTC, ctDNA, and EVs. Finally, the potential and challenges of employing liquid biopsy based on CTC, ctDNA, and EVs for precision medicine were evaluated.
Collapse
Affiliation(s)
- Xiaoling Wang
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
| | - Lijuan Wang
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
| | - Haihong Lin
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
| | - Yifan Zhu
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
| | - Defa Huang
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Mi Lai
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xuxiang Xi
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Junyun Huang
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
| | - Wenjuan Zhang
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
| | - Tianyu Zhong
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
| |
Collapse
|
45
|
Maqsood Q, Sumrin A, Saleem Y, Wajid A, Mahnoor M. Exosomes in Cancer: Diagnostic and Therapeutic Applications. Clin Med Insights Oncol 2024; 18:11795549231215966. [PMID: 38249520 PMCID: PMC10799603 DOI: 10.1177/11795549231215966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/29/2023] [Indexed: 01/23/2024] Open
Abstract
Small extracellular vesicles called exosomes are produced by cells and contain a range of biomolecules, including proteins, lipids, and nucleic acids. Exosomes have been implicated in the development and spread of cancer, and recent studies have shown that their contents may be exploited as biomarkers for early detection and ongoing surveillance of the disease. In this review article, we summarize the current knowledge on exosomes as biomarkers of cancer. We discuss the various methods used for exosome isolation and characterization, as well as the different types of biomolecules found within exosomes that are relevant for cancer diagnosis and prognosis. We also highlight recent studies that have demonstrated the utility of exosomal biomarkers in different types of cancer, such as lung cancer, breast cancer, and pancreatic cancer. Overall, exosomes show great promise as noninvasive biomarkers for cancer detection and monitoring. Exosomes have the ability to transform cancer diagnostic and therapeutic paradigms, providing promise for more efficient and individualized. This review seeks to serve as an inspiration for new ideas and research in the never-ending fight against cancer. Moreover, further studies are needed to validate their clinical utility and establish standardized protocols for their isolation and analysis. With continued research and development, exosomal biomarkers have the potential to revolutionize cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Quratulain Maqsood
- Department of Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Aleena Sumrin
- Department of Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Yasar Saleem
- Department of Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research Laboratories Complex Lahore, Lahore, Pakistan
| | - Abdul Wajid
- Department of Biotechnology, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Pakistan
| | - Muhammada Mahnoor
- Department of Rehabilitation Science, The University of Lahore, Lahore, Pakistan
| |
Collapse
|
46
|
Sun Z, Zhang B, Tu H, Pan C, Chai Y, Chen W. Advances in colorimetric biosensors of exosomes: novel approaches based on natural enzymes and nanozymes. NANOSCALE 2024; 16:1005-1024. [PMID: 38117141 DOI: 10.1039/d3nr05459d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Exosomes are 30-150 nm vesicles derived from diverse cell types, serving as one of the most important biomarkers for early diagnosis and prognosis of diseases. However, the conventional detection method for exosomes faces significant challenges, such as unsatisfactory sensitivity, complicated operation, and the requirement of complicated devices. In recent years, colorimetric exosome biosensors with a visual readout underwent rapid development due to the advances in natural enzyme-based assays and the integration of various types of nanozymes. These synthetic nanomaterials show unique physiochemical properties and catalytic abilities, enabling the construction of exosome colorimetric biosensors with novel principles. This review will illustrate the reaction mechanisms and properties of natural enzymes and nanozymes, followed by a detailed introduction of the recent advances in both types of enzyme-based colorimetric biosensors. A comparison between natural enzymes and nanozymes is made to provide insights into the research that improves the sensitivity and convenience of assays. Finally, the advantages, challenges, and future directions of enzymes as well as exosome colorimetric biosensors are highlighted, aiming at improving the overall performance from different approaches.
Collapse
Affiliation(s)
- Zhonghao Sun
- Department of Biomedical Engineering, Shenzhen University Medicine School, Shenzhen University, Shenzhen, 518055, China.
| | - Binmao Zhang
- Department of Biomedical Engineering, Shenzhen University Medicine School, Shenzhen University, Shenzhen, 518055, China.
| | - Hangjia Tu
- Department of Biomedical Engineering, Shenzhen University Medicine School, Shenzhen University, Shenzhen, 518055, China.
| | - Chuye Pan
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, China.
| | - Yujuan Chai
- Department of Biomedical Engineering, Shenzhen University Medicine School, Shenzhen University, Shenzhen, 518055, China.
| | - Wenwen Chen
- Department of Biomedical Engineering, Shenzhen University Medicine School, Shenzhen University, Shenzhen, 518055, China.
| |
Collapse
|
47
|
Fais S, Logozzi M. The Diagnostic and Prognostic Value of Plasmatic Exosome Count in Cancer Patients and in Patients with Other Pathologies. Int J Mol Sci 2024; 25:1049. [PMID: 38256122 PMCID: PMC10816819 DOI: 10.3390/ijms25021049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
The extent of both scientific articles and reviews on extracellular vesicles (EVs) has grown impressively over the last few decades [...].
Collapse
Affiliation(s)
- Stefano Fais
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
- ExoLab Italia, Tecnopolo d’Abruzzo, 67100 L’Aquila, Italy
| | - Mariantonia Logozzi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| |
Collapse
|
48
|
Hánělová K, Raudenská M, Masařík M, Balvan J. Protein cargo in extracellular vesicles as the key mediator in the progression of cancer. Cell Commun Signal 2024; 22:25. [PMID: 38200509 PMCID: PMC10777590 DOI: 10.1186/s12964-023-01408-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/24/2023] [Indexed: 01/12/2024] Open
Abstract
Exosomes are small vesicles of endosomal origin that are released by almost all cell types, even those that are pathologically altered. Exosomes widely participate in cell-to-cell communication via transferring cargo, including nucleic acids, proteins, and other metabolites, into recipient cells. Tumour-derived exosomes (TDEs) participate in many important molecular pathways and affect various hallmarks of cancer, including fibroblasts activation, modification of the tumour microenvironment (TME), modulation of immune responses, angiogenesis promotion, setting the pre-metastatic niche, enhancing metastatic potential, and affecting therapy sensitivity and resistance. The unique exosome biogenesis, composition, nontoxicity, and ability to target specific tumour cells bring up their use as promising drug carriers and cancer biomarkers. In this review, we focus on the role of exosomes, with an emphasis on their protein cargo, in the key mechanisms promoting cancer progression. We also briefly summarise the mechanism of exosome biogenesis, its structure, protein composition, and potential as a signalling hub in both normal and pathological conditions. Video Abstract.
Collapse
Affiliation(s)
- Klára Hánělová
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
| | - Martina Raudenská
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
| | - Michal Masařík
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, Vestec, CZ-252 50, Czech Republic
| | - Jan Balvan
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic.
| |
Collapse
|
49
|
Wang Y, Lu C, Guo S, Guo Y, Wei T, Chen Q. Leafhopper salivary vitellogenin mediates virus transmission to plant phloem. Nat Commun 2024; 15:3. [PMID: 38167823 PMCID: PMC10762104 DOI: 10.1038/s41467-023-43488-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 11/10/2023] [Indexed: 01/05/2024] Open
Abstract
Salivary effectors of piercing-sucking insects can suppress plant defense to promote insect feeding, but it remains largely elusive how they facilitate plant virus transmission. Leafhopper Nephotettix cincticeps transmits important rice reovirus via virus-packaging exosomes released from salivary glands and then entering the rice phloem. Here, we report that intact salivary vitellogenin of N. cincticeps (NcVg) is associated with the GTPase Rab5 of N. cincticeps (NcRab5) for release from salivary glands. In virus-infected salivary glands, NcVg is upregulated and packaged into exosomes mediated by virus-induced NcRab5, subsequently entering the rice phloem. The released NcVg inherently suppresses H2O2 burst of rice plants by interacting with rice glutathione S-transferase F12, an enzyme catalyzing glutathione-dependent oxidation, thus facilitating leafhoppers feeding. When leafhoppers transmit virus, virus-upregulated NcVg thus promotes leafhoppers feeding and enhances viral transmission. Taken together, the findings provide evidence that viruses exploit insect exosomes to deliver virus-hijacked effectors for efficient transmission.
Collapse
Affiliation(s)
- Yanfei Wang
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Chengcong Lu
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Shude Guo
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yuxin Guo
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Taiyun Wei
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Qian Chen
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
| |
Collapse
|
50
|
Mojtaba Mousavi S, Alireza Hashemi S, Yari Kalashgrani M, Rahmanian V, Riazi M, Omidifar N, Hamed Althomali R, Rahman MM, Chiang WH, Gholami A. Recent Progress in Prompt Molecular Detection of Exosomes Using CRISPR/Cas and Microfluidic-Assisted Approaches Toward Smart Cancer Diagnosis and Analysis. ChemMedChem 2024; 19:e202300359. [PMID: 37916531 DOI: 10.1002/cmdc.202300359] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/28/2023] [Accepted: 11/01/2023] [Indexed: 11/03/2023]
Abstract
Exosomes are essential indicators of molecular mechanisms involved in interacting with cancer cells and the tumor environment. As nanostructures based on lipids and nucleic acids, exosomes provide a communication pathway for information transfer by transporting biomolecules from the target cell to other cells. Importantly, these extracellular vesicles are released into the bloodstream by the most invasive cells, i. e., cancer cells; in this way, they could be considered a promising specific biomarker for cancer diagnosis. In this matter, CRISPR-Cas systems and microfluidic approaches could be considered practical tools for cancer diagnosis and understanding cancer biology. CRISPR-Cas systems, as a genome editing approach, provide a way to inactivate or even remove a target gene from the cell without affecting intracellular mechanisms. These practical systems provide vital information about the factors involved in cancer development that could lead to more effective cancer treatment. Meanwhile, microfluidic approaches can also significantly benefit cancer research due to their proper sensitivity, high throughput, low material consumption, low cost, and advanced spatial and temporal control. Thereby, employing CRISPR-Cas- and microfluidics-based approaches toward exosome monitoring could be considered a valuable source of information for cancer therapy and diagnosis. This review assesses the recent progress in these promising diagnosis approaches toward accurate cancer therapy and in-depth study of cancer cell behavior.
Collapse
Affiliation(s)
- Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City, 106335, Taiwan
| | - Seyyed Alireza Hashemi
- Health Policy Research Center, Health Institute, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Vahid Rahmanian
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, Lodz, 90-363, Poland
| | - Mohsen Riazi
- Biotechnology Research Center, Shiraz University of Medical Science, Shiraz, 71468-64685, Iran
| | - Navid Omidifar
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mohammed M Rahman
- Center of Excellence for Advanced Materials Research (CEAMR) & Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City, 106335, Taiwan
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Science, Shiraz, 71468-64685, Iran
| |
Collapse
|