1
|
Samuel T, Rapic S, Lindsay PE, DaCosta RS. Investigating the effects of stereotactic body radiation therapy on pancreatic tumor hypoxia and microvasculature in an orthotopic mouse model using intravital fluorescence microscopy. Sci Rep 2024; 14:31348. [PMID: 39733027 DOI: 10.1038/s41598-024-82757-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/09/2024] [Indexed: 12/30/2024] Open
Abstract
Despite decades of improvements in cytotoxic therapy, the current standard of care for locally advanced pancreatic cancer (LAPC) provides, on average, only a few months of survival benefit. Stereotactic Body Radiation Therapy (SBRT), a technique that accurately delivers high doses of radiation to tumors in fewer fractions, has emerged as a promising therapy to improve local control of LAPC; however, its effects on the tumor microenvironment and hypoxia remain poorly understood. To explore how SBRT affects pancreatic tumors, we combined an orthotopic mouse model of pancreatic cancer with an intravital microscopy platform to visualize changes to the in vivo tumor microenvironment in real-time. Mice received SBRT (5 × 8 Gy) or were left untreated, and were imaged before and 1, 4, 7, and 14 days after treatment (n = 7/group). A fluorescent human pancreatic cancer cell line (BxPC3-DsRed) engineered to express GFP under hypoxic conditions (driven by hypoxia-inducible factor, HIF) was used to monitor tumor hypoxia. Immunohistochemical staining was also performed on tissues to validate in vivo data. Our findings demonstrate a persistent decrease in pancreatic tumor hypoxia as early as one day after SBRT. This coincided with a decrease in both tumor cell proliferation and cell density in the SBRT group. Reduced demand for oxygen after SBRT (due to cell death and growth arrest from treatment) significantly contributed to reoxygenation of the pancreatic TME. Understanding how this reoxygenation phenomenon occurs in a dose-dependent manner will help improve dosing and fractionation schemes for clinical SBRT.
Collapse
Affiliation(s)
- Timothy Samuel
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Sara Rapic
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Patricia E Lindsay
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Ralph S DaCosta
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, Canada.
| |
Collapse
|
2
|
Rai AK, Sanghvi S, Muthukumaran NS, Chandrasekera D, Kadam A, Kishore J, Kyriazis ID, Tomar D, Ponnalagu D, Shettigar V, Khan M, Singh H, Goukassian D, Katare R, Garikipati VNS. Role of mitochondrial ribosomal protein L7/L12 (MRPL12) in diabetic ischemic heart disease. Free Radic Biol Med 2024; 222:531-538. [PMID: 38977138 DOI: 10.1016/j.freeradbiomed.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/19/2024] [Accepted: 07/04/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND Myocardial infarction (MI) is a significant cause of death in diabetic patients. Growing evidence suggests that mitochondrial dysfunction contributes to heart failure in diabetes. However, the molecular mechanisms of mitochondrial dysfunction mediating heart failure in diabetes are still poorly understood. METHODS We examined MRPL12 levels in right atrial appendage tissues from diabetic patients undergoing coronary artery bypass graft (CABG) surgery. Using AC-16 cells overexpressing MRPL12 under normal and hyperglycemic conditions we performed mitochondrial functional assays OXPHOS, bioenergetics, mitochondrial membrane potential, ATP production and cell death. RESULTS We observed elevated MRPL12 levels in heart tissue samples from diabetic patients with ischemic heart disease compared to non-diabetic patients. Overexpression of MRPL12 under hyperglycemic conditions did not affect oxidative phosphorylation (OXPHOS) levels, cellular ATP levels, or cardiomyocyte cell death. However, notable impairment in mitochondrial membrane potential (MMP) was observed under hyperglycemic conditions, along with alterations in both basal respiration oxygen consumption rate (OCR) and maximal respiratory capacity OCR. CONCLUSIONS Overall, our results suggest that MRPL12 may have a compensatory role in the diabetic myocardium with ischemic heart disease, suggesting that MRPL12 may implicate in the pathophysiology of MI in diabetes.
Collapse
MESH Headings
- Aged
- Animals
- Female
- Humans
- Male
- Middle Aged
- Adenosine Triphosphate/metabolism
- Atrial Appendage/metabolism
- Atrial Appendage/pathology
- Coronary Artery Bypass
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/complications
- Membrane Potential, Mitochondrial
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/pathology
- Mitochondria, Heart/genetics
- Mitochondrial Proteins/metabolism
- Mitochondrial Proteins/genetics
- Myocardial Ischemia/metabolism
- Myocardial Ischemia/pathology
- Myocardial Ischemia/genetics
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Oxidative Phosphorylation
- Ribosomal Proteins/metabolism
- Ribosomal Proteins/genetics
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
Collapse
Affiliation(s)
- Amit Kumar Rai
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| | - Shridhar Sanghvi
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Molecular Cellular and Developmental Biology, The Ohio State University, Columbus, OH, USA
| | | | - Dhananjie Chandrasekera
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Ashlesha Kadam
- Section of Cardiovascular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Jahnavi Kishore
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| | - Ioannis D Kyriazis
- Department of Biology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Dhanendra Tomar
- Section of Cardiovascular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Devasena Ponnalagu
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Vikram Shettigar
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| | - Mahmood Khan
- Dorothy M. Davis Heart Lung and Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Emergency Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Harpreet Singh
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Dorothy M. Davis Heart Lung and Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - David Goukassian
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Rajesh Katare
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Venkata Naga Srikanth Garikipati
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, USA; Department of Emergency Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
3
|
El Housseini W, Baiarashov E, Gerulskis R, Milam A, Minteer SD. Harnessing Redox Polymer Dynamics for Enhanced Glucose-Oxygen Coupling in Dual Biosensing and Therapeutic Applications. ACS Sens 2024; 9:3357-3366. [PMID: 38842796 DOI: 10.1021/acssensors.4c00685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
The burgeoning field of continuous glucose monitoring (CGM) for diabetes management faces significant challenges, particularly in achieving precise and stable biosensor performance under changing environmental conditions such as varying glucose concentrations and O2 levels. To address this, we present a novel biosensor based on the electroless coupling of glucose oxidation catalyzed by flavin-dependent glucose dehydrogenase (FAD-GDH) and O2 reduction catalyzed by bilirubin oxidase (BOD) via a redox polymer, dimethylferrocene-modified linear poly(ethylenimine), FcMe2-LPEI. Initial cyclic voltammetry tests confirm the colocalization of both enzymatic reactions within the potential range of the polymer, indicating an effective electron shuttle mechanism. As a result, we created a hybrid biosensor that operates at open-circuit potential (OCP). It can detect glucose concentrations of up to 100 mM under various O2 conditions, including ambient air. This resulted from optimizing the enzyme ratio to 120 ± 10 mUBOD·UFAD-GDH-1·atmO2-1. This biosensor is highly sensitive, a crucial feature for CGM applications. This distinguishes it from FAD-GDH traditional biosensors, which require a potential to be applied to measure glucose concentrations up to 30 mM. In addition, this biosensor demonstrates the ability to function as a noninvasive, external device that can adapt to changing glucose levels, paving the way for its use in diabetes care and, potentially, personalized healthcare devices. Furthermore, by leveraging the altered metabolic pathways in tumor cells, this system architecture opened up new avenues for targeted glucose scavenging and O2 reduction in cancer therapy.
Collapse
Affiliation(s)
- Wassim El Housseini
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
- Kummer Institute Center for Resource Sustainability, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Egor Baiarashov
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
- Kummer Institute Center for Resource Sustainability, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Rokas Gerulskis
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Adam Milam
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Shelley D Minteer
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
- Kummer Institute Center for Resource Sustainability, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| |
Collapse
|
4
|
Szczygieł M, Kalinowska B, Szczygieł D, Krzykawska-Serda M, Fiedor L, Murzyn AA, Sopel J, Matuszak Z, Elas M. EPR Monitoring of Oxygenation Levels in Tumors After Chlorophyllide-Based Photodynamic Therapy May Allow for Early Prediction of Treatment Outcome. Mol Imaging Biol 2024; 26:411-423. [PMID: 38296885 PMCID: PMC11211189 DOI: 10.1007/s11307-023-01886-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 02/02/2024]
Abstract
PURPOSE Molecular oxygen, besides a photosensitizer and light of appropriate wavelength, is one of the three factors necessary for photodynamic therapy (PDT). In tumor tissue, PDT leads to the killing of tumor cells, destruction of endothelial cells and vasculature collapse, and the induction of strong immune responses. All these effects may influence the oxygenation levels, but it is the vasculature changes that have the main impact on pO2. The purpose of our study was to monitor changes in tumor oxygenation after PDT and explore its significance for predicting long-term treatment response. PROCEDURES Electron paramagnetic resonance (EPR) spectroscopy enables direct, quantitative, and sequential measurements of partial pressure of oxygen (pO2) in the same animal. The levels of chlorophyll derived photosensitizers in tumor tissue were determined by transdermal emission measurements. RESULTS The noninvasive monitoring of pO2 in the tumor tissue after PDT showed that the higher ΔpO2 (pO2 after PDT minus pO2 before PDT), the greater the inhibition of tumor growth. ΔpO2 also correlated with higher levels of the photosensitizers in the tumor and with the occurrence of a severe edema/erythema after PDT. CONCLUSION Monitoring of PDT-induced changes in tumor oxygenation is a valuable prognostic factor and could be also used to identify potentially resistant tumors, which is important in predicting long-term treatment response.
Collapse
Affiliation(s)
- Małgorzata Szczygieł
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| | - Barbara Kalinowska
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Dariusz Szczygieł
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | | | - Leszek Fiedor
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Aleksandra Anna Murzyn
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Justyna Sopel
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Zenon Matuszak
- Department of Biophysics and Medical Physics, Faculty of Physics and Computer Science, AGH University of Science and Technology, Krakow, Poland
| | - Martyna Elas
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
5
|
Paluch KV, Platz KR, Rudisel EJ, Erdmann RR, Laurin TR, Dittenhafer-Reed KE. The role of lysine acetylation in the function of mitochondrial ribosomal protein L12. Proteins 2024; 92:583-592. [PMID: 38146092 DOI: 10.1002/prot.26654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/27/2023] [Accepted: 12/01/2023] [Indexed: 12/27/2023]
Abstract
Mitochondria play a central role in energy production and cellular metabolism. Mitochondria contain their own small genome (mitochondrial DNA, mtDNA) that carries the genetic instructions for proteins required for ATP synthesis. The mitochondrial proteome, including the mitochondrial transcriptional machinery, is subject to post-translational modifications (PTMs), including acetylation and phosphorylation. We set out to determine whether PTMs of proteins associated with mtDNA may provide a potential mechanism for the regulation of mitochondrial gene expression. Here, we focus on mitochondrial ribosomal protein L12 (MRPL12), which is thought to stabilize mitochondrial RNA polymerase (POLRMT) and promote transcription. Numerous acetylation sites of MRPL12 were identified by mass spectrometry. We employed amino acid mimics of the acetylated (lysine to glutamine mutants) and deacetylated (lysine to arginine mutants) versions of MRPL12 to interrogate the role of lysine acetylation in transcription initiation in vitro and mitochondrial gene expression in HeLa cells. MRPL12 acetyl and deacetyl protein mimics were purified and assessed for their ability to impact mtDNA promoter binding of POLRMT. We analyzed mtDNA content and mitochondrial transcript levels in HeLa cells upon overexpression of acetyl and deacetyl mimics of MRPL12. Our results suggest that MRPL12 single-site acetyl mimics do not change the mtDNA promoter binding ability of POLRMT or mtDNA content in HeLa cells. Individual acetyl mimics may have modest effects on mitochondrial transcript levels. We found that the mitochondrial deacetylase, Sirtuin 3, is capable of deacetylating MRPL12 in vitro, suggesting a potential role for dynamic acetylation controlling MRPL12 function in a role outside of the regulation of gene expression.
Collapse
Affiliation(s)
- Katelynn V Paluch
- Department of Chemistry and Biochemistry, Hope College, Holland, Michigan, USA
| | - Karlie R Platz
- Department of Chemistry and Biochemistry, Hope College, Holland, Michigan, USA
| | - Emma J Rudisel
- Department of Chemistry and Biochemistry, Hope College, Holland, Michigan, USA
| | - Ryan R Erdmann
- Department of Chemistry and Biochemistry, Hope College, Holland, Michigan, USA
| | - Taylor R Laurin
- Department of Chemistry and Biochemistry, Hope College, Holland, Michigan, USA
| | | |
Collapse
|
6
|
Jayathilake PG, Victori P, Pavillet CE, Lee CH, Voukantsis D, Miar A, Arora A, Harris AL, Morten KJ, Buffa FM. Metabolic symbiosis between oxygenated and hypoxic tumour cells: An agent-based modelling study. PLoS Comput Biol 2024; 20:e1011944. [PMID: 38489376 DOI: 10.1371/journal.pcbi.1011944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/27/2024] [Accepted: 02/24/2024] [Indexed: 03/17/2024] Open
Abstract
Deregulated metabolism is one of the hallmarks of cancer. It is well-known that tumour cells tend to metabolize glucose via glycolysis even when oxygen is available and mitochondrial respiration is functional. However, the lower energy efficiency of aerobic glycolysis with respect to mitochondrial respiration makes this behaviour, namely the Warburg effect, counter-intuitive, although it has now been recognized as source of anabolic precursors. On the other hand, there is evidence that oxygenated tumour cells could be fuelled by exogenous lactate produced from glycolysis. We employed a multi-scale approach that integrates multi-agent modelling, diffusion-reaction, stoichiometric equations, and Boolean networks to study metabolic cooperation between hypoxic and oxygenated cells exposed to varying oxygen, nutrient, and inhibitor concentrations. The results show that the cooperation reduces the depletion of environmental glucose, resulting in an overall advantage of using aerobic glycolysis. In addition, the oxygen level was found to be decreased by symbiosis, promoting a further shift towards anaerobic glycolysis. However, the oxygenated and hypoxic populations may gradually reach quasi-equilibrium. A sensitivity analysis using Latin hypercube sampling and partial rank correlation shows that the symbiotic dynamics depends on properties of the specific cell such as the minimum glucose level needed for glycolysis. Our results suggest that strategies that block glucose transporters may be more effective to reduce tumour growth than those blocking lactate intake transporters.
Collapse
Affiliation(s)
| | - Pedro Victori
- Department of Oncology, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Clara E Pavillet
- Department of Oncology, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
- Department of Computing Sciences and Institute for Data Science and Analytics, Bocconi University, Milan, Italy
| | - Chang Heon Lee
- Department of Oncology, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Dimitrios Voukantsis
- Department of Oncology, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Ana Miar
- Department of Oncology, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Anjali Arora
- Department of Oncology, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Adrian L Harris
- Department of Oncology, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Karl J Morten
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Francesca M Buffa
- Department of Oncology, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
- Department of Computing Sciences and Institute for Data Science and Analytics, Bocconi University, Milan, Italy
| |
Collapse
|
7
|
Ji X, Yang Z, Li C, Zhu S, Zhang Y, Xue F, Sun S, Fu T, Ding C, Liu Y, Wan Q. Mitochondrial ribosomal protein L12 potentiates hepatocellular carcinoma by regulating mitochondrial biogenesis and metabolic reprogramming. Metabolism 2024; 152:155761. [PMID: 38104924 DOI: 10.1016/j.metabol.2023.155761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Mitochondrial dysfunction and metabolic reprogramming are key features of hepatocellular carcinoma (HCC). Despite its significance, the precise underlying mechanism behind these processes has not been fully elucidated. The latest investigations, along with our previous discoveries, have substantiated the significant role of mitochondrial ribosomal protein L12 (MRPL12), a newly identified gene involved in mitochondrial transcription regulation, in the modulation of mitochondrial metabolism. Nevertheless, the role of MRPL12 in tumorigenesis has yet to be investigated. METHODS The expression of MRPL12 in HCC was assessed using an online database. Western blot, quantitative real-time polymerase chain reaction (qRT-PCR), and immunohistochemistry (IHC) were employed to determine the expression of MRPL12 in HCC tissues, patient-derived organoid (PDO), and cell lines. The correlation between MRPL12 expression and clinicopathological features, as well as prognosis, was examined using tissue microarray analysis. An in vivo subcutaneous tumor xenograft model, gene knockdown or overexpression assay, chromatin immunoprecipitation (ChIP) assay, Seahorse XF96 assay, and cell function assay were employed to investigate the biological function and potential molecular mechanism of MRPL12 in HCC. RESULTS A significant upregulation of MRPL12 was observed in HCC cells, PDO and patient tissues, which correlated with advanced tumor stage, higher grade and poor prognosis. MRPL12 overexpression promoted cell proliferation, migration, and invasion in vitro, as well as tumorigenicity in vivo, whereas MRPL12 knockdown showed the opposite effect. MRPL12 knockdown also inhibited the capacity of organoids proliferation capacity. Furthermore, MRPL12 was found to be crucial for maintaining mitochondrial homeostasis. Both gain and loss-of-function experiments targeting MRPL12 in HCC cells altered oxidative phosphorylation (OXPHOS) and mitochondrial DNA content. Notably, suppression of OXPHOS effectively mitigates the tumor-promoting effect attributed to MRPL12 overexpression, implying the involvement of MRPL12 in HCC through the modulation of mitochondrial metabolism. Besides, Yin Yang 1 (YY1) was identified as a transcription factor responsible for regulating MRPL12, while the PI3K/mTOR pathway was found to act as an upstream regulator of YY1. MRPL12 knockdown attenuated the YY1 overexpression or PI3K/mTOR activation-induced malignant phenotype in HCC cells. CONCLUSION Our findings provide compelling evidence that MRPL12 is implicated in driving the malignant phenotype of HCC via regulating mitochondrial metabolism. Moreover, the aberrant expression of MRPL12 in HCC is mediated by the upstream PI3K/mTOR/YY1 pathway. These results highlight the potential of targeting MRPL12 as a promising therapeutic strategy for the treatment of HCC.
Collapse
Affiliation(s)
- Xingzhao Ji
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Shandong Key Laboratory of Infections Respiratory Disease, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zhen Yang
- Department of Infectious Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Chensheng Li
- Department of Gastroenterological Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Suwei Zhu
- Department of Critical-Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Yu Zhang
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China
| | - Fuyuan Xue
- Key Laboratory of Cell Metabolism in Medical and Health of Shandong Provincial Health Commission, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Shengnan Sun
- Key Laboratory of Cell Metabolism in Medical and Health of Shandong Provincial Health Commission, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Tingting Fu
- Key Laboratory of Cell Metabolism in Medical and Health of Shandong Provincial Health Commission, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Can Ding
- Department of Pulmonary and Critical Care Medicine, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China
| | - Yi Liu
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Shandong Key Laboratory of Infections Respiratory Disease, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| | - Qiang Wan
- Key Laboratory of Cell Metabolism in Medical and Health of Shandong Provincial Health Commission, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China.
| |
Collapse
|
8
|
Just U, Burtscher H, Jeratsch S, Fischer M, Stocking C, Preussner J, Looso M, Schwanbeck R, Günther S, Huss R, Mullen L, Braun T. Proteomic and transcriptomic characterisation of FIA10, a novel murine leukemic cell line that metastasizes into the brain. PLoS One 2024; 19:e0295641. [PMID: 38215076 PMCID: PMC10786371 DOI: 10.1371/journal.pone.0295641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/27/2023] [Indexed: 01/14/2024] Open
Abstract
Brain metastasis leads to increased mortality and is a major site of relapse for several cancers, yet the molecular mechanisms of brain metastasis are not well understood. In this study, we established and characterized a new leukemic cell line, FIA10, that metastasizes into the central nervous system (CNS) following injection into the tail vein of syngeneic mice. Mice injected with FIA10 cells developed neurological symptoms such as loss of balance, tremor, ataxic gait and seizures, leading to death within 3 months. Histopathology coupled with PCR analysis clearly showed infiltration of leukemic FIA10 cells into the brain parenchyma of diseased mice, with little involvement of bone marrow, peripheral blood and other organs. To define pathways that contribute to CNS metastasis, global transcriptome and proteome analysis was performed on FIA10 cells and compared with that of the parental stem cell line FDCP-Mix and the related FIA18 cells, which give rise to myeloid leukemia without CNS involvement. 188 expressed genes (RNA level) and 189 proteins were upregulated (log2 ratio FIA10/FIA18 ≥ 1) and 120 mRNAs and 177 proteins were downregulated (log2 ratio FIA10/FIA18 ≤ 1) in FIA10 cells compared with FIA18 cells. Major upregulated pathways in FIA10 cells revealed by biofunctional analyses involved immune response components, adhesion molecules and enzymes implicated in extracellular matrix remodeling, opening and crossing the blood-brain barrier (BBB), molecules supporting migration within the brain parenchyma, alterations in metabolism necessary for growth within the brain microenvironment, and regulators for these functions. Downregulated RNA and protein included several tumor suppressors and DNA repair enzymes. In line with the function of FIA10 cells to specifically infiltrate the brain, FIA10 cells have acquired a phenotype that permits crossing the BBB and adapting to the brain microenvironment thereby escaping immune surveillance. These data and our model system FIA10 will be valuable resources to study the occurrence of brain metastases and may help in the development of potential therapies against brain invasion.
Collapse
Affiliation(s)
- Ursula Just
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
- Leibniz Institute for Virology, Hamburg, Germany
- Department of Biochemistry, Christian-Albrechts-University zu Kiel, Kiel, Germany
| | - Helmut Burtscher
- Pharma Research Penzberg, Roche Diagnostics GmbH, Penzberg, Germany
| | - Sylvia Jeratsch
- Biomolecular Mass Spectrometry, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | | | | | - Jens Preussner
- Bioinformatics Core Unit, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Mario Looso
- Bioinformatics Core Unit, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Ralf Schwanbeck
- Department of Biochemistry, Christian-Albrechts-University zu Kiel, Kiel, Germany
| | - Stefan Günther
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Ralf Huss
- Pharma Research Penzberg, Roche Diagnostics GmbH, Penzberg, Germany
| | - Lynne Mullen
- QIAGEN, Redwood City, California, United States of America
| | - Thomas Braun
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| |
Collapse
|
9
|
Fontana GA, MacArthur MR, Rotankova N, Di Filippo M, Beer HD, Gahlon HL. The mitochondrial DNA common deletion as a potential biomarker of cancer-associated fibroblasts from skin basal and squamous cell carcinomas. Sci Rep 2024; 14:553. [PMID: 38177205 PMCID: PMC10766618 DOI: 10.1038/s41598-023-50213-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 12/16/2023] [Indexed: 01/06/2024] Open
Abstract
Cancer-associated fibroblasts (CAFs) are components of the tumor microenvironment and represent appealing therapeutic targets for translational studies. Conventional protein-based biomarkers for CAFs have been reported to be limited in their specificity, rendering difficult the identification of CAFs from normal fibroblasts (NFs) in clinical samples and dampening the development of CAF-targeted therapies to treat cancer. In this study, we propose the mitochondrial RNA and the mitochondrial DNA (mtDNA) common deletion (CD) as novel indicators of CAF identity. We found that cancer-activation correlated with decreased levels of the mtDNA CD, a condition not due to altered mitochondria count or cellular redox state, but potentially linked to the generalized overexpression of mtDNA maintenance genes in CAFs. Decreased mtDNA CD content in CAFs was associated with moderate to strong overexpression of mtDNA-encoded genes and to slightly improved mitochondrial function. We identified similar patterns of upregulation of mtDNA-encoded genes in independent single-cell RNA seq data obtained from squamous cell carcinoma (SCC) patients. By using the identified nucleic acids-based indicators, identification of CAFs from NFs could be improved, leading to potential therapeutic benefits in advancing translational and clinical studies.
Collapse
Affiliation(s)
- Gabriele A Fontana
- Department of Health Sciences and Technology, ETH Zurich, 8092, Zurich, Switzerland
- Cellvie AG, Technoparkstrasse 1, CH-8005 Zürich, Switzerland
| | - Michael R MacArthur
- Department of Health Sciences and Technology, ETH Zurich, 8092, Zurich, Switzerland
| | - Nadezhda Rotankova
- Department of Health Sciences and Technology, ETH Zurich, 8092, Zurich, Switzerland
| | - Michela Di Filippo
- Department of Dermatology, University Hospital Zurich, 8952, Schlieren, Switzerland
- Faculty of Medicine, University of Zurich, 8032, Zurich, Switzerland
| | - Hans-Dietmar Beer
- Department of Dermatology, University Hospital Zurich, 8952, Schlieren, Switzerland
- Faculty of Medicine, University of Zurich, 8032, Zurich, Switzerland
| | - Hailey L Gahlon
- Department of Health Sciences and Technology, ETH Zurich, 8092, Zurich, Switzerland.
| |
Collapse
|
10
|
Kroh A, Walter J, Fragoulis A, Möckel D, Lammers T, Kiessling F, Andruszkow J, Preisinger C, Egbert M, Jiao L, Eickhoff RM, Heise D, Berndt N, Cramer T, Neumann UP, Egners A, Ulmer TF. Hepatocellular loss of mTOR aggravates tumor burden in nonalcoholic steatohepatitis-related HCC. Neoplasia 2023; 46:100945. [PMID: 37976569 PMCID: PMC10685311 DOI: 10.1016/j.neo.2023.100945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/13/2023] [Indexed: 11/19/2023]
Abstract
Obesity and associated nonalcoholic steatohepatitis (NASH) are on the rise globally. NASH became an important driver of hepatocellular carcinoma (HCC) in recent years. Activation of the central metabolic regulator mTOR (mechanistic target of rapamycin) is frequently observed in HCCs. However, mTOR inhibition failed to improve the outcome of HCC therapies, demonstrating the need for a better understanding of the molecular and functional consequences of mTOR blockade. We established a murine NASH-driven HCC model based on long-term western diet feeding combined with hepatocellular mTOR-inactivation. We evaluated tumor load and whole-body fat percentage via µCT-scans, analyzed metabolic blood parameters and tissue proteome profiles. Additionally, we used a bioinformatic model to access liver and HCC mitochondrial metabolic functions. The tumor burden was massively increased via mTOR-knockout. Several signs argue for extensive metabolic reprogramming of glucose, fatty acid, bile acid and cholesterol metabolism. Kinetic modeling revealed reduced oxygen consumption in KO-tumors. NASH-derived HCC pathogenesis is driven by metabolic disturbances and should be considered separately from those caused by other etiologies. We conclude that mTOR functions as tumor suppressor in hepatocytes especially under long-term western diet feeding. However, some of the detrimental consequences of this diet are attenuated by mTOR blockade.
Collapse
Affiliation(s)
- Andreas Kroh
- Department of General, Visceral and Transplantation Surgery, RWTH Aachen University Hospital, Aachen, Germany.
| | - Jeanette Walter
- Department of General, Visceral and Transplantation Surgery, RWTH Aachen University Hospital, Aachen, Germany; Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, RWTH Aachen University Hospital, Aachen, Germany
| | - Athanassios Fragoulis
- Department of Anatomy and Cell Biology, RWTH Aachen University Hospital Aachen, Germany
| | - Diana Möckel
- Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, Aachen, Germany
| | - Twan Lammers
- Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, Aachen, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, Aachen, Germany
| | - Julia Andruszkow
- Institute of Pathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Christian Preisinger
- Proteomics Facility, Interdisciplinary Center for Clinical Research (IZKF) Aachen, Medical School, RWTH Aachen University Hospital, Aachen, Germany
| | - Maren Egbert
- Department of General, Visceral and Transplantation Surgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Long Jiao
- Department of General, Visceral and Transplantation Surgery, RWTH Aachen University Hospital, Aachen, Germany; Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Roman M Eickhoff
- Department of General, Visceral and Transplantation Surgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Daniel Heise
- Department of General, Visceral and Transplantation Surgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Nikolaus Berndt
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany; Institute of Computer-assisted Cardiovascular Medicine, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Thorsten Cramer
- Department of General, Visceral and Transplantation Surgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Ulf Peter Neumann
- Department of General, Visceral and Transplantation Surgery, RWTH Aachen University Hospital, Aachen, Germany; Department of Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Antje Egners
- Department of General, Visceral and Transplantation Surgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Tom Florian Ulmer
- Department of General, Visceral and Transplantation Surgery, RWTH Aachen University Hospital, Aachen, Germany; Department of Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
11
|
Hami R, Apeke S, Redou P, Gaubert L, Dubois LJ, Lambin P, Visvikis D, Boussion N. Predicting the Tumour Response to Radiation by Modelling the Five Rs of Radiotherapy Using PET Images. J Imaging 2023; 9:124. [PMID: 37367472 DOI: 10.3390/jimaging9060124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023] Open
Abstract
Despite the intensive use of radiotherapy in clinical practice, its effectiveness depends on several factors. Several studies showed that the tumour response to radiation differs from one patient to another. The non-uniform response of the tumour is mainly caused by multiple interactions between the tumour microenvironment and healthy cells. To understand these interactions, five major biologic concepts called the "5 Rs" have emerged. These concepts include reoxygenation, DNA damage repair, cell cycle redistribution, cellular radiosensitivity and cellular repopulation. In this study, we used a multi-scale model, which included the five Rs of radiotherapy, to predict the effects of radiation on tumour growth. In this model, the oxygen level was varied in both time and space. When radiotherapy was given, the sensitivity of cells depending on their location in the cell cycle was taken in account. This model also considered the repair of cells by giving a different probability of survival after radiation for tumour and normal cells. Here, we developed four fractionation protocol schemes. We used simulated and positron emission tomography (PET) imaging with the hypoxia tracer 18F-flortanidazole (18F-HX4) images as input data of our model. In addition, tumour control probability curves were simulated. The result showed the evolution of tumours and normal cells. The increase in the cell number after radiation was seen in both normal and malignant cells, which proves that repopulation was included in this model. The proposed model predicts the tumour response to radiation and forms the basis for a more patient-specific clinical tool where related biological data will be included.
Collapse
Affiliation(s)
- Rihab Hami
- INSERM UMR 1101 "LaTIM", CEDEX 3, 29238 Brest, France
| | - Sena Apeke
- INSERM UMR 1101 "LaTIM", CEDEX 3, 29238 Brest, France
- CERV, European Center for Virtual Reality, ENIB, CEDEX 3, 29238 Brest, France
| | - Pascal Redou
- INSERM UMR 1101 "LaTIM", CEDEX 3, 29238 Brest, France
- CERV, European Center for Virtual Reality, ENIB, CEDEX 3, 29238 Brest, France
| | - Laurent Gaubert
- INSERM UMR 1101 "LaTIM", CEDEX 3, 29238 Brest, France
- CERV, European Center for Virtual Reality, ENIB, CEDEX 3, 29238 Brest, France
| | - Ludwig J Dubois
- The D-Lab, Department of Precision Medicine, GROW-School for Oncology, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Philippe Lambin
- The D-Lab, Department of Precision Medicine, GROW-School for Oncology, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Dimitris Visvikis
- INSERM UMR 1101 "LaTIM", CEDEX 3, 29238 Brest, France
- CHRU BREST, 29200 Brest, France
| | - Nicolas Boussion
- INSERM UMR 1101 "LaTIM", CEDEX 3, 29238 Brest, France
- CHRU BREST, 29200 Brest, France
| |
Collapse
|
12
|
Jin X, Liu D, Kong D, Zhou X, Zheng L, Xu C. Dissecting the alternation landscape of mitochondrial metabolism-related genes in lung adenocarcinoma and their latent mechanisms. Aging (Albany NY) 2023; 15:5482-5496. [PMID: 37335087 PMCID: PMC10333067 DOI: 10.18632/aging.204803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/23/2023] [Indexed: 06/21/2023]
Abstract
Lung adenocarcinoma (LUAD) is the most common histological subtype of lung cancer with high incidence and unsatisfactory prognosis. The majority of LUAD patients eventually succumb to local and/or distinct metastatic recurrence. Genomic research of LUAD has broadened our understanding of this disease's biology and improved target therapies. However, the alternation landscape and characteristics of mitochondrial metabolism-related genes (MMRGs) in LUAD progression remain poorly understood. We performed a comprehensive analysis to identify the function and mechanism of MMRGs in LUAD based on the TCGA and GEO databases, which might offer therapeutic values for clinical researchers. Then, we figured out three hub prognosis-associated MMRGs (also termed as PMMRGs: ACOT11, ALDH2, and TXNRD1) that were engaged in the evolution of LUAD. To investigate the correlation between clinicopathological characteristics and MMRGs, we divided LUAD samples into two clusters (C1 and C2) based on key MMRGs. In addition, important pathways and the immune infiltration landscape affected by LUAD clusters were also delineated. Further, we nominated potential regulatory mechanisms underlying the MMRGs in LUAD development and progression. In conclusion, our integrative analysis enables a more comprehensive understanding of the mutation landscape of MMRGs in LUAD and provides an opportunity for more precise treatment.
Collapse
Affiliation(s)
- Xing Jin
- Department of Thoracic Surgery, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Di Liu
- Department of Thoracic Surgery, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Demiao Kong
- Department of Thoracic Surgery, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Xiaojiang Zhou
- Department of Thoracic Surgery, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Liken Zheng
- Genecast Biotechnology, Wuxi, Jiangsu Province, China
| | - Chuan Xu
- Department of Thoracic Surgery, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| |
Collapse
|
13
|
Bassal MA. The Interplay between Dysregulated Metabolism and Epigenetics in Cancer. Biomolecules 2023; 13:944. [PMID: 37371524 DOI: 10.3390/biom13060944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/21/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Cellular metabolism (or energetics) and epigenetics are tightly coupled cellular processes. It is arguable that of all the described cancer hallmarks, dysregulated cellular energetics and epigenetics are the most tightly coregulated. Cellular metabolic states regulate and drive epigenetic changes while also being capable of influencing, if not driving, epigenetic reprogramming. Conversely, epigenetic changes can drive altered and compensatory metabolic states. Cancer cells meticulously modify and control each of these two linked cellular processes in order to maintain their tumorigenic potential and capacity. This review aims to explore the interplay between these two processes and discuss how each affects the other, driving and enhancing tumorigenic states in certain contexts.
Collapse
Affiliation(s)
- Mahmoud Adel Bassal
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
14
|
Finisguerra V, Dvorakova T, Formenti M, Van Meerbeeck P, Mignion L, Gallez B, Van den Eynde BJ. Metformin improves cancer immunotherapy by directly rescuing tumor-infiltrating CD8 T lymphocytes from hypoxia-induced immunosuppression. J Immunother Cancer 2023; 11:jitc-2022-005719. [PMID: 37147018 PMCID: PMC10163559 DOI: 10.1136/jitc-2022-005719] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND Despite their revolutionary success in cancer treatment over the last decades, immunotherapies encounter limitations in certain tumor types and patients. The efficacy of immunotherapies depends on tumor antigen-specific CD8 T-cell viability and functionality within the immunosuppressive tumor microenvironment, where oxygen levels are often low. Hypoxia can reduce CD8 T-cell fitness in several ways and CD8 T cells are mostly excluded from hypoxic tumor regions. Given the challenges to achieve durable reduction of hypoxia in the clinic, ameliorating CD8 T-cell survival and effector function in hypoxic condition could improve tumor response to immunotherapies. METHODS Activated CD8 T cells were exposed to hypoxia and metformin and analyzed by fluorescence-activated cell sorting for cell proliferation, apoptosis and phenotype. In vivo, metformin was administered to mice bearing hypoxic tumors and receiving either adoptive cell therapy with tumor-specific CD8 T cells, or immune checkpoint inhibitors; tumor growth was followed over time and CD8 T-cell infiltration, survival and localization in normoxic or hypoxic tumor regions were assessed by flow cytometry and immunofluorescence. Tumor oxygenation and hypoxia were measured by electron paramagnetic resonance and pimonidazole staining, respectively. RESULTS We found that the antidiabetic drug metformin directly improved CD8 T-cell fitness in hypoxia, both in vitro and in vivo. Metformin rescued murine and human CD8 T cells from hypoxia-induced apoptosis and increased their proliferation and cytokine production, while blunting the upregulation of programmed cell death protein 1 and lymphocyte-activation gene 3. This appeared to result from a reduced production of reactive oxygen species, due to the inhibition of mitochondrial complex I. Differently from what others reported, metformin did not reduce tumor hypoxia, but rather increased CD8 T-cell infiltration and survival in hypoxic tumor areas, and synergized with cyclophosphamide to enhance tumor response to adoptive cell therapy or immune checkpoint blockade in different tumor models. CONCLUSIONS This study describes a novel mechanism of action of metformin and presents a promising strategy to achieve immune rejection in hypoxic and immunosuppressive tumors, which would otherwise be resistant to immunotherapy.
Collapse
Affiliation(s)
- Veronica Finisguerra
- de Duve Institute, UCLouvain, Brussels, Belgium
- Ludwig Institute for Cancer Research, de Duve Institute, Brussels, Belgium
- Walloon Excellence in Life Science and Biotechnology (WELBIO), WEL Research Institute, Brussels, Belgium
| | - Tereza Dvorakova
- de Duve Institute, UCLouvain, Brussels, Belgium
- Ludwig Institute for Cancer Research, de Duve Institute, Brussels, Belgium
- Walloon Excellence in Life Science and Biotechnology (WELBIO), WEL Research Institute, Brussels, Belgium
| | - Matteo Formenti
- de Duve Institute, UCLouvain, Brussels, Belgium
- Ludwig Institute for Cancer Research, de Duve Institute, Brussels, Belgium
- Walloon Excellence in Life Science and Biotechnology (WELBIO), WEL Research Institute, Brussels, Belgium
| | | | - Lionel Mignion
- Biomedical Magnetic Resonance (REMA) Group, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
- Nuclear and Electron Spin Technologies (NEST) Platform, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
| | - Bernard Gallez
- Biomedical Magnetic Resonance (REMA) Group, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
- Nuclear and Electron Spin Technologies (NEST) Platform, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
| | - Benoit J Van den Eynde
- de Duve Institute, UCLouvain, Brussels, Belgium
- Ludwig Institute for Cancer Research, de Duve Institute, Brussels, Belgium
- Walloon Excellence in Life Science and Biotechnology (WELBIO), WEL Research Institute, Brussels, Belgium
- Nuffield Department of Clinical Medicine, Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| |
Collapse
|
15
|
Xu Y, Yang Y, Wang Y, Su J, Chan T, Zhou J, Gong Y, Wang K, Gu Y, Zhang C, Wu G, Bi L, Qin X, Han J. Molecular fingerprints of nuclear genome and mitochondrial genome for early diagnosis of lung adenocarcinoma. J Transl Med 2023; 21:250. [PMID: 37038181 PMCID: PMC10084603 DOI: 10.1186/s12967-023-04099-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/30/2023] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is the most prevalent subtype of lung cancer with high morbidity and mortality rates. Due to the heterogeneity of LUAD, its characteristics remain poorly understood. Exploring the clinical and molecular characteristics of LUAD is challenging but vital for early diagnosis. METHODS This observational and validation study enrolled 80 patients and 13 healthy controls. Nuclear and mtDNA-captured sequencings were performed. RESULTS This study identified a spectrum of nuclear and mitochondrial genome mutations in early-stage lung adenocarcinoma and explored their association with diagnosis. The correlation coefficient for somatic mutations in cfDNA and patient-matched tumor tissues was high in nuclear and mitochondrial genomes. The mutation number of highly mutated genes was evaluated, and the Least Absolute Shrinkage and Selection Operator (LASSO) established a diagnostic model. Receiver operating characteristic (ROC) curve analysis explored the diagnostic ability of the two panels. All models were verified in the testing cohort, and the mtDNA panel demonstrated excellent performance. This study identified somatic mutations in the nuclear and mitochondrial genomes, and detecting mutations in cfDNA displayed good diagnostic performance for early-stage LUAD. Moreover, detecting somatic mutations in the mitochondria may be a better tool for diagnosing early-stage LUAD. CONCLUSIONS This study identified specific and sensitive diagnostic biomarkers for early-stage LUAD by focusing on nuclear and mitochondrial genome mutations. This also further developed an early-stage LUAD-specific mutation gene panel for clinical utility. This study established a foundation for further investigation of LUAD molecular pathogenesis.
Collapse
Affiliation(s)
- Yichun Xu
- National Engineering Research Center for Biochip at Shanghai and Shanghai Biochip Limited Corporation, No.151, Libing Road, Shanghai, 201203, China.
- Department of Pathology, Shanghai Tongji Hospital, Tongji Hospital Affiliated to Tongji University, Shanghai, China.
| | - Yong Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, No.241, Huaihai West Road, Shanghai, China
| | - Yichao Wang
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No.110, Ganhe Road, Shanghai, China
| | - Jun Su
- National Engineering Research Center for Biochip at Shanghai and Shanghai Biochip Limited Corporation, No.151, Libing Road, Shanghai, 201203, China
- Department of Pathology, Shanghai Tongji Hospital, Tongji Hospital Affiliated to Tongji University, Shanghai, China
| | - Tianlong Chan
- National Engineering Research Center for Biochip at Shanghai and Shanghai Biochip Limited Corporation, No.151, Libing Road, Shanghai, 201203, China
| | - Jiajing Zhou
- National Engineering Research Center for Biochip at Shanghai and Shanghai Biochip Limited Corporation, No.151, Libing Road, Shanghai, 201203, China
| | - Yi Gong
- National Engineering Research Center for Biochip at Shanghai and Shanghai Biochip Limited Corporation, No.151, Libing Road, Shanghai, 201203, China
- Department of Pathology, Shanghai Tongji Hospital, Tongji Hospital Affiliated to Tongji University, Shanghai, China
| | - Ke Wang
- Acupuncture Anesthesia Clinical Research Institute, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yifeng Gu
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No.110, Ganhe Road, Shanghai, China
| | - Congmeng Zhang
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No.110, Ganhe Road, Shanghai, China
| | - Guanjin Wu
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No.110, Ganhe Road, Shanghai, China
| | - Ling Bi
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No.110, Ganhe Road, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiong Qin
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, No.241, Huaihai West Road, Shanghai, China.
| | - Junsong Han
- National Engineering Research Center for Biochip at Shanghai and Shanghai Biochip Limited Corporation, No.151, Libing Road, Shanghai, 201203, China.
- Department of Pathology, Shanghai Tongji Hospital, Tongji Hospital Affiliated to Tongji University, Shanghai, China.
| |
Collapse
|
16
|
Hu Y, Liu Y, Ma C, Ai K. MRPL12 Acts as A Novel Prognostic Biomarker Involved in Immune Cell Infiltration and Tumor Progression of Lung Adenocarcinoma. Int J Mol Sci 2023; 24:ijms24032762. [PMID: 36769082 PMCID: PMC9917664 DOI: 10.3390/ijms24032762] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/25/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Mitochondrial ribosomal protein L7/L12 (MRPL12) is a member of the mitochondrial ribosomal proteins (MRPs). However, the biological function of MRPL12 in lung adenocarcinoma (LUAD) remains unclear. The expression and prognostic value of MRPL12 in LUAD were systematically analyzed using UALCAN, TIMER, HPA, Kaplan-Meier plotter, and GEPIA databases. The relationship between MRPL12 and immune infiltrates was investigated using TIMER and TISIDB databases. The clinical significance of MRPL12 in LUAD patients was validated using a tissue microarray (TMA). Cellular functional experiments were carried out to examine the influences of MRPL12 knockdown on cell proliferation, migration, and invasion. MRPL12 was significantly upregulated in LUAD samples, and high MRPL12 expression was correlated with worse prognosis. MRPL12 expression was markedly associated with immunomodulators, chemokines, and infiltration levels of multiple immune cells. Furthermore, TMA results confirm the upregulation of MRPL12 expression in LUAD, and MRPL12 was identified as an independent prognostic factor in LUAD patients. MRPL12 knockdown inhibited proliferation, migration, and invasion of LUAD cells. These data indicate that MRPL12 is a prognostic biomarker and correlated with immune infiltrates in LUAD. Therefore, MRPL12 shows potential as a therapeutic target for LUAD.
Collapse
|
17
|
Vikramdeo KS, Sudan SK, Singh AP, Singh S, Dasgupta S. Mitochondrial respiratory complexes: Significance in human mitochondrial disorders and cancers. J Cell Physiol 2022; 237:4049-4078. [PMID: 36074903 DOI: 10.1002/jcp.30869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 07/18/2022] [Accepted: 08/23/2022] [Indexed: 11/07/2022]
Abstract
Mitochondria are pivotal organelles that govern cellular energy production through the oxidative phosphorylation system utilizing five respiratory complexes. In addition, mitochondria also contribute to various critical signaling pathways including apoptosis, damage-associated molecular patterns, calcium homeostasis, lipid, and amino acid biosynthesis. Among these diverse functions, the energy generation program oversee by mitochondria represents an immaculate orchestration and functional coordination between the mitochondria and nuclear encoded molecules. Perturbation in this program through respiratory complexes' alteration results in the manifestation of various mitochondrial disorders and malignancy, which is alarmingly becoming evident in the recent literature. Considering the clinical relevance and importance of this emerging medical problem, this review sheds light on the timing and nature of molecular alterations in various respiratory complexes and their functional consequences observed in various mitochondrial disorders and human cancers. Finally, we discussed how this wealth of information could be exploited and tailored to develop respiratory complex targeted personalized therapeutics and biomarkers for better management of various incurable human mitochondrial disorders and cancers.
Collapse
Affiliation(s)
- Kunwar Somesh Vikramdeo
- Department of Pathology, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA.,Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama, USA
| | - Sarabjeet Kour Sudan
- Department of Pathology, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA.,Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama, USA
| | - Ajay P Singh
- Department of Pathology, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA.,Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama, USA.,Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| | - Seema Singh
- Department of Pathology, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA.,Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama, USA.,Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| | - Santanu Dasgupta
- Department of Pathology, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA.,Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama, USA.,Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| |
Collapse
|
18
|
Kulbay M, Johnson B, Ricaud G, Séguin-Grignon MN, Bernier J. Energetic metabolic reprogramming in Jurkat DFF40-deficient cancer cells. Mol Cell Biochem 2022; 477:2213-2233. [PMID: 35460011 DOI: 10.1007/s11010-022-04433-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 04/04/2022] [Indexed: 11/25/2022]
Abstract
DNA fragmentation factor 40 (DFF40), or the caspase-activated DNase (CAD), is an endonuclease specific for double-stranded DNA. Alterations in its function and expression have been linked to apoptosis resistance, a mechanism likely used by cancer cells. However, how the DFF40-related apoptosis resistance pathway occurs remains unclear. Here, we sought to determine if DFF40 expression could be linked to cell metabolism through the regulation of mitochondrial integrity and function. We demonstrated that DFF40-deficient cells are more resistant to staurosporine and tributyltin (TBT)-induced apoptosis, and express higher levels of Mcl-1 at basal state. Treatment with TBT induces higher Bcl-2 and caspase-9 mRNA transcripts in DFF40 KO Jurkat cells, as well as enhanced Bcl-2 phosphorylation. A loss of DFF40 expression induces a higher mitochondrial mass, mtDNA copy number, mitochondrial membrane potential, and glycolysis rates in resting T cells. DFF40-deficient cells exhibit the Warburg effect phenotype, where they rely significantly more on glycolysis than oxidative phosphorylation and have a higher proliferative state, demonstrated by a higher Ki-67 transcription factor expression and AKT phosphorylation. Finally, we demonstrated with cell fractioning that DFF40 can translocate to the mitochondria following apoptosis induction. Our study reveals that DFF40 may act as a regulator of mitochondria during cell death and its loss could compromise mitochondrial integrity and cause an energetic reprogramming in pathologies such as cancer.
Collapse
Affiliation(s)
- Merve Kulbay
- INRS-Centre Armand-Frappier Santé Biotechnologie, 531 Boul. des Prairies, Laval, QC, H7V 1B7, Canada
- Department of Medicine, Université de Montréal, 2900 Blvd. Edouard Montpetit, Montréal, QC, Canada
| | - Bruno Johnson
- INRS-Centre Armand-Frappier Santé Biotechnologie, 531 Boul. des Prairies, Laval, QC, H7V 1B7, Canada
| | - Guillaume Ricaud
- INRS-Centre Armand-Frappier Santé Biotechnologie, 531 Boul. des Prairies, Laval, QC, H7V 1B7, Canada
| | | | - Jacques Bernier
- INRS-Centre Armand-Frappier Santé Biotechnologie, 531 Boul. des Prairies, Laval, QC, H7V 1B7, Canada.
| |
Collapse
|
19
|
Luo H, Zhang Y, Hu N, He Y, He C. Systematic Construction and Validation of an RNA-Binding Protein-Associated Prognostic Model for Acute Myeloid Leukemia. Front Genet 2021; 12:715840. [PMID: 34630514 PMCID: PMC8498117 DOI: 10.3389/fgene.2021.715840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/26/2021] [Indexed: 12/13/2022] Open
Abstract
Background: The abnormal expression of RNA-binding proteins (RBPs) in various malignant tumors is closely related to the occurrence and development of tumors. However, the role of RBPs in acute myeloid leukemia (AML) is unclear. Methods: We downloaded harmonized RNA-seq count data and clinical data for AML from UCSC Xena, including The Cancer Genome Atlas (TCGA), The Genotype-Tissue Expression (GTEx), and Therapeutically Applicable Research to Generate Effective Treatments (TARGET) cohorts. R package edgeR was used for differential expression analysis of 337 whole-blood data and 173 AML data. The prognostic value of these RBPs was systematically investigated by using univariate Cox regression analysis, least absolute shrinkage and selection operator (LASSO)-Cox regression analysis, and multivariate Cox regression analysis. C-index and calibration diagram were used to judge the accuracy of the model, and decision curve analysis (DCA) was used to judge the net benefit. The biological pathways involved were revealed by gene set enrichment analysis (GSEA). The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and the protein-protein interaction (PPI) network performed lateral verification on the selected gene set and LASSO results. Results: A prognostic model of 12-RBP signature was established. In addition, the net benefit and prediction accuracy of the prognostic model and the mixed model based on it were significantly higher than that of cytogenetics. It is verified in the TARGET cohort and shows good prediction effect. Both the selection of our gene set and the LASSO results have high credibility. Most of these pathways are involved in the development of the disease, and they also accumulate in leukemia and RNA-related pathways. Conclusion: The prognosis model of the 12-RBP signature found in this study is an optimized biomarker that can effectively stratify the risk of AML patients. Nomogram based on this prognostic model is a reliable method to predict the median survival time of patients. This study expands our current understanding of the role of RBPs in the occurrence of AML and may lay the foundation for future treatment of the disease.
Collapse
Affiliation(s)
| | | | - Nan Hu
- Southwest Medical University, Luzhou, China
| | - Yancheng He
- Jiangyang City Construction College, Luzhou, China
| | | |
Collapse
|
20
|
Kishimoto S, Brender JR, Chandramouli GVR, Saida Y, Yamamoto K, Mitchell JB, Krishna MC. Hypoxia-Activated Prodrug Evofosfamide Treatment in Pancreatic Ductal Adenocarcinoma Xenografts Alters the Tumor Redox Status to Potentiate Radiotherapy. Antioxid Redox Signal 2021; 35:904-915. [PMID: 32787454 PMCID: PMC8568781 DOI: 10.1089/ars.2020.8131] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aims: In hypoxic tumor microenvironments, the strongly reducing redox environment reduces evofosfamide (TH-302) to release a cytotoxic bromo-isophosphoramide (Br-IPM) moiety. This drug therefore preferentially attacks hypoxic regions in tumors where other standard anticancer treatments such as chemotherapy and radiation therapy are often ineffective. Various combination therapies with evofosfamide have been proposed and tested in preclinical and clinical settings. However, the treatment effect of evofosfamide monotherapy on tumor hypoxia has not been fully understood, partly due to the lack of quantitative methods to assess tumor pO2in vivo. Here, we use quantitative pO2 imaging by electron paramagnetic resonance (EPR) to evaluate the change in tumor hypoxia in response to evofosfamide treatment using two pancreatic ductal adenocarcinoma xenograft models: MIA Paca-2 tumors responding to evofosfamide and Su.86.86 tumors that do not respond. Results: EPR imaging showed that oxygenation improved globally after evofosfamide treatment in hypoxic MIA Paca-2 tumors, in agreement with the ex vivo results obtained from hypoxia staining by pimonidazole and in apparent contrast to the decrease in Ktrans observed in dynamic contrast-enhanced magnetic resonance imaging (DCE MRI). Innovations: The observation that evofosfamide not only kills the hypoxic region of the tumor but also improves oxygenation in the residual tumor regions provides a rationale for combination therapies using radiation and antiproliferatives post evofosfamide for improved outcomes. Conclusion: This study suggests that reoxygenation after evofosfamide treatment is due to decreased oxygen demand rather than improved perfusion. Following the change in pO2 after treatment may therefore yield a way of monitoring treatment response. Antioxid. Redox Signal. 35, 904-915.
Collapse
Affiliation(s)
- Shun Kishimoto
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jeffrey R Brender
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Yu Saida
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Kazutoshi Yamamoto
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - James B Mitchell
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Murali C Krishna
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
21
|
Kim H, Shin YM, Chung S, Kim D, Park DB, Baek S, Park J, Kim SY, Kim D, Yi SW, Lee S, Lee JB, Ko J, Im G, Kang M, Sung H. Cell-Membrane-Derived Nanoparticles with Notch-1 Suppressor Delivery Promote Hypoxic Cell-Cell Packing and Inhibit Angiogenesis Acting as a Two-Edged Sword. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101558. [PMID: 34431568 PMCID: PMC11468545 DOI: 10.1002/adma.202101558] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 07/02/2021] [Indexed: 06/13/2023]
Abstract
Cell-cell interactions regulate intracellular signaling via reciprocal contacts of cell membranes in tissue regeneration and cancer growth, indicating a critical need of membrane-derived tools in studying these processes. Hence, cell-membrane-derived nanoparticles (CMNPs) are produced using tonsil-derived mesenchymal stem cells (TMSCs) from children owing to their short doubling time. As target cell types, laryngeal cancer cells are compared to bone-marrow-derived MSCs (BMSCs) because of their cartilage damaging and chondrogenic characteristics, respectively. Treating spheroids of these cell types with CMNPs exacerbates interspheroid hypoxia with robust maintenance of the cell-cell interaction signature for 7 days. Both cell types prefer a hypoxic environment, as opposed to blood vessel formation that is absent in cartilage but is required for cancer growth. Hence, angiogenesis is inhibited by displaying the Notch-1 aptamer on CMNPs. Consequently, laryngeal cancer growth is suppressed efficiently in contrast to improved chondroprotection observed in a series of cell and animal experiments using a xenograft mouse model of laryngeal cancer. Altogether, CMNPs execute a two-edged sword function of inducing hypoxic cell-cell packing, followed by suppressing angiogenesis to promote laryngeal cancer death and chondrogenesis simultaneously. This study presents a previously unexplored therapeutic strategy for anti-cancer and chondroprotective treatment using CMNPs.
Collapse
Affiliation(s)
- Hye‐Seon Kim
- Department of Medical EngineeringYonsei University College of MedicineSeoul03722Republic of Korea
| | - Young Min Shin
- Department of Medical EngineeringYonsei University College of MedicineSeoul03722Republic of Korea
| | - Seyong Chung
- Department of Medical EngineeringYonsei University College of MedicineSeoul03722Republic of Korea
| | - Dahee Kim
- Department of OtorhinolaryngologyYonsei University College of MedicineSeoul03722Republic of Korea
| | - Dan Bi Park
- TMD LAB Co., Ltd6th Floor, 31, Gwangnaru‐ro 8‐gilSeongdong‐guSeoul04799Republic of Korea
| | - Sewoom Baek
- Department of Medical EngineeringYonsei University College of MedicineSeoul03722Republic of Korea
| | - Jeongeun Park
- Department of Medical EngineeringYonsei University College of MedicineSeoul03722Republic of Korea
| | - Si Yeong Kim
- Department of Medical EngineeringYonsei University College of MedicineSeoul03722Republic of Korea
| | - Dae‐Hyun Kim
- Department of Veterinary SurgeryCollege of Veterinary MedicineChungnam National University99, Daehak‐roYuseong‐guDaejeon34134Republic of Korea
| | - Se Won Yi
- TMD LAB Co., Ltd6th Floor, 31, Gwangnaru‐ro 8‐gilSeongdong‐guSeoul04799Republic of Korea
| | - Songhyun Lee
- Department of Medical EngineeringYonsei University College of MedicineSeoul03722Republic of Korea
| | - Jung Bok Lee
- Department of Biological ScienceSookmyung Women's UniversityCheongpa‐ro 47‐gil 100, Yongsan‐guSeoul04310Republic of Korea
| | - Ji‐Yun Ko
- Department of Veterinary SurgeryCollege of Veterinary MedicineChungnam National University99, Daehak‐roYuseong‐guDaejeon34134Republic of Korea
- Research Institute of Convergence Life ScienceDongguk UniversityGoyang10326Republic of Korea
| | - Gun‐Il Im
- Department of OrthopedicsDongguk University Ilsan HospitalGoyang10326Republic of Korea
| | - Mi‐Lan Kang
- TMD LAB Co., Ltd6th Floor, 31, Gwangnaru‐ro 8‐gilSeongdong‐guSeoul04799Republic of Korea
| | - Hak‐Joon Sung
- Department of Medical EngineeringYonsei University College of MedicineSeoul03722Republic of Korea
| |
Collapse
|
22
|
Pham DL, Miller CR, Myers MS, Myers DM, Hansen LA, Nichols MG. Development and characterization of phasor-based analysis for FLIM to evaluate the metabolic and epigenetic impact of HER2 inhibition on squamous cell carcinoma cultures. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-210187R. [PMID: 34628733 PMCID: PMC8501457 DOI: 10.1117/1.jbo.26.10.106501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
SIGNIFICANCE Deranged metabolism and dysregulated growth factor signaling are closely associated with abnormal levels of proliferation, a recognized hallmark in tumorigenesis. Fluorescence lifetime imaging microscopy (FLIM) of endogenous nicotinamide adenine dinucleotide (NADH), a key metabolic coenzyme, offers a non-invasive, diagnostic indicator of disease progression, and treatment response. The model-independent phasor analysis approach leverages FLIM to rapidly evaluate cancer metabolism in response to targeted therapy. AIM We combined lifetime and phasor FLIM analysis to evaluate the influence of human epidermal growth factor receptor 2 (HER2) inhibition, a prevalent cancer biomarker, on both nuclear and cytoplasmic NAD(P)H of two squamous cell carcinoma (SCC) cultures. While better established, the standard lifetime analysis approach is relatively slow and potentially subject to intrinsic fitting errors and model assumptions. Phasor FLIM analysis offers a rapid, model-independent alternative, but the sensitivity of the bound NAD(P)H fraction to growth factor signaling must also be firmly established. APPROACH Two SCC cultures with low- and high-HER2 expression, were imaged using multiphoton-excited NAD(P)H FLIM, with and without treatment of the HER2 inhibitor AG825. Cells were challenged with mitochondrial inhibition and uncoupling to investigate AG825's impact on the overall metabolic capacity. Phasor FLIM and lifetime fitting analyses were compared within nuclear and cytoplasmic compartments to investigate epigenetic and metabolic impacts of HER2 inhibition. RESULTS NAD(P)H fluorescence lifetime and bound fraction consistently decreased following HER2 inhibition in both cell lines. High-HER2 SCC74B cells displayed a more significant response than low-HER2 SCC74A in both techniques. HER2 inhibition induced greater changes in nuclear than cytoplasmic compartments, leading to an increase in NAD(P)H intensity and concentration. CONCLUSIONS The use of both, complementary FLIM analysis techniques together with quantitative fluorescence intensity revealed consistent, quantitative changes in NAD(P)H metabolism associated with inhibition of growth factor signaling in SCC cell lines. HER2 inhibition promoted increased reliance on oxidative phosphorylation in both cell lines.
Collapse
Affiliation(s)
- Dan L. Pham
- Creighton University, Department of Physics, Omaha, Nebraska, United States
| | | | - Molly S. Myers
- Creighton University, Department of Physics, Omaha, Nebraska, United States
| | - Dominick M. Myers
- Creighton University, Department of Biomedical Sciences, Omaha, Nebraska, United States
| | - Laura A. Hansen
- Creighton University, Department of Biomedical Sciences, Omaha, Nebraska, United States
| | - Michael G. Nichols
- Creighton University, Department of Physics, Omaha, Nebraska, United States
- Creighton University, Department of Biomedical Sciences, Omaha, Nebraska, United States
| |
Collapse
|
23
|
Shevchenko NS, Krutenko NV, Zimnytska TV, Voloshyn KV. The role of hypoxia-inducible factors in the development of chronic pathology. UKRAINIAN BIOCHEMICAL JOURNAL 2021. [DOI: 10.15407/ubj93.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This review highlights the current understanding of hypoxia-inducible factors (HIFs) role as regulators of oxygen-dependent reactions and inducers of genes expression in human organism. The focus is on the most significant relationships between the activation or inhibition of the HIFs intracellular system and development of the inflammatory process in various organs, chronic diseases of gastrointestinal tract, osteoarticular system, kidneys as well as hematological, endocrine and metabolic disorders.
Collapse
|
24
|
Anzai T, Saijou S, Ohnuki Y, Kurosawa H, Yasunaga M, Matsumura Y. TMEM180 contributes to SW480 human colorectal cancer cell proliferation through intra-cellular metabolic pathways. Transl Oncol 2021; 14:101186. [PMID: 34332338 PMCID: PMC8335657 DOI: 10.1016/j.tranon.2021.101186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 12/24/2022] Open
Abstract
TMEM180, a novel colon cancer-specific protein with a 12-transmembrane topology, is upregulated at low oxygen. Previously, we established a humanized monoclonal antibody against TMEM180 aimed at clinical trials. Prior to such trials, it is necessary to clarify the function of TMEM180 in cancer. To compare SW480 human colon cancer cells and their TMEM180-knockdown derivatives, we analyzed proliferation and oxygen consumption, and also performed phosphorylation proteomics, metabolomics, and next-generation sequencing (NGS). The preliminary results revealed that TMEM180 appeared to promote the growth of colon cancer but had almost no effect on oxygen consumption or expression of phosphorylated proteins. By contrast, glycolysis differed dramatically between SW480 and TMEM180-knockdown cells. The NGS analysis revealed that TMEM180 promotes enzyme expression in nitric oxide (NO) synthesis system, suggesting that it promotes glucose and glutamine metabolism, thereby contributing to cancer growth. Overall, the results of this study warrant further basic studies of TMEM180 molecule.
Collapse
Affiliation(s)
- Takahiro Anzai
- Division of Developmental Therapeutics, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, 6-5-1, Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Shinji Saijou
- Division of Developmental Therapeutics, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, 6-5-1, Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan; Research division, RIN Institute Inc, 2-5-10, Shintomi, Chuo-Ku, Tokyo, 104-0041, Japan
| | - Yoshitsugu Ohnuki
- Faculty of Life and Environmental Sciences, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-4-37, Takeda, Kofu, Yamanashi 400-8510, Japan
| | - Hiroshi Kurosawa
- Faculty of Life and Environmental Sciences, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-4-37, Takeda, Kofu, Yamanashi 400-8510, Japan
| | - Masahiro Yasunaga
- Division of Developmental Therapeutics, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, 6-5-1, Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Yasuhiro Matsumura
- Division of Developmental Therapeutics, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, 6-5-1, Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan; Research division, RIN Institute Inc, 2-5-10, Shintomi, Chuo-Ku, Tokyo, 104-0041, Japan; Department of Immune Medicine, National Cancer Center Research Institute, National Cancer Center, 5-1-1, Tsukiji, Chuo-Ku, Tokyo 104-0045, Japan.
| |
Collapse
|
25
|
Ushio-Fukai M, Ash D, Nagarkoti S, Belin de Chantemèle EJ, Fulton DJR, Fukai T. Interplay Between Reactive Oxygen/Reactive Nitrogen Species and Metabolism in Vascular Biology and Disease. Antioxid Redox Signal 2021; 34:1319-1354. [PMID: 33899493 PMCID: PMC8418449 DOI: 10.1089/ars.2020.8161] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Reactive oxygen species (ROS; e.g., superoxide [O2•-] and hydrogen peroxide [H2O2]) and reactive nitrogen species (RNS; e.g., nitric oxide [NO•]) at the physiological level function as signaling molecules that mediate many biological responses, including cell proliferation, migration, differentiation, and gene expression. By contrast, excess ROS/RNS, a consequence of dysregulated redox homeostasis, is a hallmark of cardiovascular disease. Accumulating evidence suggests that both ROS and RNS regulate various metabolic pathways and enzymes. Recent studies indicate that cells have mechanisms that fine-tune ROS/RNS levels by tight regulation of metabolic pathways, such as glycolysis and oxidative phosphorylation. The ROS/RNS-mediated inhibition of glycolytic pathways promotes metabolic reprogramming away from glycolytic flux toward the oxidative pentose phosphate pathway to generate nicotinamide adenine dinucleotide phosphate (NADPH) for antioxidant defense. This review summarizes our current knowledge of the mechanisms by which ROS/RNS regulate metabolic enzymes and cellular metabolism and how cellular metabolism influences redox homeostasis and the pathogenesis of disease. A full understanding of these mechanisms will be important for the development of new therapeutic strategies to treat diseases associated with dysregulated redox homeostasis and metabolism. Antioxid. Redox Signal. 34, 1319-1354.
Collapse
Affiliation(s)
- Masuko Ushio-Fukai
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.,Department of Medicine (Cardiology) and Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Dipankar Ash
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.,Department of Medicine (Cardiology) and Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Sheela Nagarkoti
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.,Department of Medicine (Cardiology) and Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Eric J Belin de Chantemèle
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.,Department of Medicine (Cardiology) and Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - David J R Fulton
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.,Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Tohru Fukai
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.,Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.,Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia, USA
| |
Collapse
|
26
|
Pancreatic cancer cachexia: three dimensions of a complex syndrome. Br J Cancer 2021; 124:1623-1636. [PMID: 33742145 PMCID: PMC8110983 DOI: 10.1038/s41416-021-01301-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/18/2021] [Accepted: 02/02/2021] [Indexed: 02/08/2023] Open
Abstract
Cancer cachexia is a multifactorial syndrome that is characterised by a loss of skeletal muscle mass, is commonly associated with adipose tissue wasting and malaise, and responds poorly to therapeutic interventions. Although cachexia can affect patients who are severely ill with various malignant or non-malignant conditions, it is particularly common among patients with pancreatic cancer. Pancreatic cancer often leads to the development of cachexia through a combination of distinct factors, which, together, explain its high prevalence and clinical importance in this disease: systemic factors, including metabolic changes and pathogenic signals related to the tumour biology of pancreatic adenocarcinoma; factors resulting from the disruption of the digestive and endocrine functions of the pancreas; and factors related to the close anatomical and functional connection of the pancreas with the gut. In this review, we conceptualise the various insights into the mechanisms underlying pancreatic cancer cachexia according to these three dimensions to expose its particular complexity and the challenges that face clinicians in trying to devise therapeutic interventions.
Collapse
|
27
|
Yang Y, Zhang G, Guo F, Li Q, Luo H, Shu Y, Shen Y, Gan J, Xu L, Yang H. Mitochondrial UQCC3 Modulates Hypoxia Adaptation by Orchestrating OXPHOS and Glycolysis in Hepatocellular Carcinoma. Cell Rep 2021; 33:108340. [PMID: 33147459 DOI: 10.1016/j.celrep.2020.108340] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 08/07/2020] [Accepted: 10/09/2020] [Indexed: 02/08/2023] Open
Abstract
Bioenergetic reprogramming during hypoxia adaption is critical to promote hepatocellular carcinoma (HCC) growth and progression. However, the mechanism underlying the orchestration of mitochondrial OXPHOS (oxidative phosphorylation) and glycolysis in hypoxia is not fully understood. Here, we report that mitochondrial UQCC3 (C11orf83) expression increases in hypoxia and correlates with the poor prognosis of HCC patients. Loss of UQCC3 impairs HCC cell proliferation in hypoxia in vitro and in vivo. Mechanistically, UQCC3 forms a positive feedback loop with mitochondrial reactive oxygen species (ROS) to sustain UQCC3 expression and ROS generation in hypoxic HCC cells and subsequently maintains mitochondrial structure and function and stabilizes HIF-1α expression to enhance glycolysis under hypoxia. Thus, UQCC3 plays an indispensable role for bioenergetic reprogramming of HCC cells during hypoxia adaption by simultaneously regulating OXPHOS and glycolysis. The positive feedback between UQCC3 and ROS indicates a self-modulating model within mitochondria that initiates the adaptation of HCC to hypoxic stress.
Collapse
Affiliation(s)
- Yun Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Guimin Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Fengzhu Guo
- Lung Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Qiqi Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Hui Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yang Shu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yuge Shen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Jia Gan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Lin Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Hanshuo Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China; Experimental and Research Animal Institute, Sichuan University, Chengdu, China.
| |
Collapse
|
28
|
Tao J, Yang G, Zhou W, Qiu J, Chen G, Luo W, Zhao F, You L, Zheng L, Zhang T, Zhao Y. Targeting hypoxic tumor microenvironment in pancreatic cancer. J Hematol Oncol 2021; 14:14. [PMID: 33436044 PMCID: PMC7805044 DOI: 10.1186/s13045-020-01030-w] [Citation(s) in RCA: 226] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/25/2020] [Indexed: 12/13/2022] Open
Abstract
Attributable to its late diagnosis, early metastasis, and poor prognosis, pancreatic cancer remains one of the most lethal diseases worldwide. Unlike other solid tumors, pancreatic cancer harbors ample stromal cells and abundant extracellular matrix but lacks vascularization, resulting in persistent and severe hypoxia within the tumor. Hypoxic microenvironment has extensive effects on biological behaviors or malignant phenotypes of pancreatic cancer, including metabolic reprogramming, cancer stemness, invasion and metastasis, and pathological angiogenesis, which synergistically contribute to development and therapeutic resistance of pancreatic cancer. Through various mechanisms including but not confined to maintenance of redox homeostasis, activation of autophagy, epigenetic regulation, and those induced by hypoxia-inducible factors, intratumoral hypoxia drives the above biological processes in pancreatic cancer. Recognizing the pivotal roles of hypoxia in pancreatic cancer progression and therapies, hypoxia-based antitumoral strategies have been continuously developed over the recent years, some of which have been applied in clinical trials to evaluate their efficacy and safety in combinatory therapies for patients with pancreatic cancer. In this review, we discuss the molecular mechanisms underlying hypoxia-induced aggressive and therapeutically resistant phenotypes in both pancreatic cancerous and stromal cells. Additionally, we focus more on innovative therapies targeting the tumor hypoxic microenvironment itself, which hold great potential to overcome the resistance to chemotherapy and radiotherapy and to enhance antitumor efficacy and reduce toxicity to normal tissues.
Collapse
Affiliation(s)
- Jinxin Tao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Gang Yang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Wenchuan Zhou
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, 200092, China
| | - Jiangdong Qiu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Guangyu Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Wenhao Luo
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Fangyu Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Lianfang Zheng
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China. .,Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China.
| |
Collapse
|
29
|
Fendt SM, Frezza C, Erez A. Targeting Metabolic Plasticity and Flexibility Dynamics for Cancer Therapy. Cancer Discov 2020; 10:1797-1807. [PMID: 33139243 PMCID: PMC7710573 DOI: 10.1158/2159-8290.cd-20-0844] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/06/2020] [Accepted: 09/02/2020] [Indexed: 11/16/2022]
Abstract
Cancer cells continuously rewire their metabolism to fulfill their need for rapid growth and survival while subject to changes in environmental cues. Thus, a vital component of a cancer cell lies in its metabolic adaptability. The constant demand for metabolic alterations requires flexibility, that is, the ability to utilize different metabolic substrates; as well as plasticity, that is, the ability to process metabolic substrates in different ways. In this review, we discuss how dynamic changes in cancer metabolism affect tumor progression and the consequential implications for cancer therapy. SIGNIFICANCE: Recognizing cancer dynamic metabolic adaptability as an entity can lead to targeted therapy that is expected to decrease drug resistance.
Collapse
Affiliation(s)
- Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Christian Frezza
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Ayelet Erez
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
30
|
Rickard AG, Zhuang M, DeRosa CA, Zhang X, Dewhirst MW, Fraser CL, Palmer GM. Dual-emissive, oxygen-sensing boron nanoparticles quantify oxygen consumption rate in breast cancer cells. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:JBO-200174RR. [PMID: 33231018 PMCID: PMC7682476 DOI: 10.1117/1.jbo.25.11.116504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/30/2020] [Indexed: 06/11/2023]
Abstract
SIGNIFICANCE Decreasing the oxygen consumption rate (OCR) of tumor cells is a powerful method for ameliorating tumor hypoxia. However, quantifying the change in OCR is challenging in complex experimental systems. AIM We present a method for quantifying the OCR of two tumor cell lines using oxygen-sensitive dual-emissive boron nanoparticles (BNPs). We hypothesize that our BNP results are equivalent to the standard Seahorse assay. APPROACH We quantified the spectral emissions of the BNP and accounted for external oxygen diffusion to quantify OCR over 24 h. The BNP-computed OCR of two breast cancer cell lines, E0771 and 4T07, were compared with their respective Seahorse assays. Both cell lines were also irradiated to quantify radiation-induced changes in the OCR. RESULTS Using a Bland-Altman analysis, our BNPs OCR was equivalent to the standard Seahorse assay. Moreover, in an additional experiment in which we irradiated the cells at their 50% survival fraction, the BNPs were sensitive enough to quantify 24% reduction in OCR after irradiation. CONCLUSIONS Our results conclude that the BNPs are a viable alternative to the Seahorse assay for quantifying the OCR in cells. The Bland-Altman analysis showed that these two methods result in equivalent OCR measurements. Future studies will extend the OCR measurements to complex systems including 3D cultures and in vivo models, in which OCR measurements cannot currently be made.
Collapse
Affiliation(s)
- Ashlyn G. Rickard
- Duke University, Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, United States
| | - Meng Zhuang
- University of Virginia, Department of Chemistry, Charlottesville, Virginia, United States
| | - Christopher A. DeRosa
- University of Virginia, Department of Chemistry, Charlottesville, Virginia, United States
| | - Xiaojie Zhang
- Duke University, Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, United States
| | - Mark W. Dewhirst
- Duke University, Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, United States
| | - Cassandra L. Fraser
- University of Virginia, Department of Chemistry, Charlottesville, Virginia, United States
| | - Gregory M. Palmer
- Duke University, Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, United States
| |
Collapse
|
31
|
Belcher DA, Lucas A, Cabrales P, Palmer AF. Tumor vascular status controls oxygen delivery facilitated by infused polymerized hemoglobins with varying oxygen affinity. PLoS Comput Biol 2020; 16:e1008157. [PMID: 32817659 PMCID: PMC7462268 DOI: 10.1371/journal.pcbi.1008157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 09/01/2020] [Accepted: 07/16/2020] [Indexed: 11/19/2022] Open
Abstract
Oxygen (O2) delivery facilitated by hemoglobin (Hb)-based O2 carriers (HBOCs) is a promising strategy to increase the effectiveness of chemotherapeutics for treatment of solid tumors. However, the heterogeneous vascular structures present within tumors complicates evaluating the oxygenation potential of HBOCs within the tumor microenvironment. To account for spatial variations in the vasculature and tumor tissue that occur during tumor growth, we used a computational model to develop artificial tumor constructs. With these simulated tumors, we performed a polymerized human hemoglobin (hHb) (PolyhHb) enhanced oxygenation simulation accounting for differences in the physiologic characteristics of human and mouse blood. The results from this model were used to determine the potential effectiveness of different treatment options including a top load (low volume) and exchange (large volume) infusion of a tense quaternary state (T-State) PolyhHb, relaxed quaternary state (R-State) PolyhHb, and a non O2 carrying control. Principal component analysis (PCA) revealed correlations between the different regimes of effectiveness within the different simulated dosage options. In general, we found that infusion of T-State PolyhHb is more likely to decrease tissue hypoxia and modulate the metabolic rate of O2 consumption. Though the developed models are not a definitive descriptor of O2 carrier interaction in tumor capillary networks, we accounted for factors such as non-uniform vascular density and permeability that limit the applicability of O2 carriers during infusion. Finally, we have used these validated computational models to establish potential benchmarks to guide tumor treatment during translation of PolyhHb mediated therapies into clinical applications.
Collapse
Affiliation(s)
- Donald A. Belcher
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, United States of America
| | - Alfredo Lucas
- Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
| | - Pedro Cabrales
- Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
| | - Andre F. Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
32
|
Santomartino R, Ottaviano D, Camponeschi I, Landicho TAA, Falato L, Visca A, Soulard A, Lemaire M, Bianchi MM. The hypoxic expression of the glucose transporter RAG1 reveals the role of the bHLH transcription factor Sck1 as a novel hypoxic modulator in Kluyveromyces lactis. FEMS Yeast Res 2020; 19:5519861. [PMID: 31210264 DOI: 10.1093/femsyr/foz041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 06/16/2019] [Indexed: 12/13/2022] Open
Abstract
Glucose is the preferred nutrient for most living cells and is also a signaling molecule that modulates several cellular processes. Glucose regulates the expression of glucose permease genes in yeasts through signaling pathways dependent on plasma membrane glucose sensors. In the yeast Kluyveromyces lactis, sufficient levels of glucose induction of the low-affinity glucose transporter RAG1 gene also depends on a functional glycolysis, suggesting additional intracellular signaling. We have found that the expression of RAG1 gene is also induced by hypoxia in the presence of glucose, indicating that glucose and oxygen signaling pathways are interconnected. In this study we investigated the molecular mechanisms underlying this crosstalk. By analyzing RAG1 expression in various K. lactis mutants, we found that the bHLH transcriptional activator Sck1 is required for the hypoxic induction of RAG1 gene. The RAG1 promoter region essential for its hypoxic induction was identified by promoter deletion experiments. Taken together, these results show that the RAG1 glucose permease gene is synergistically induced by hypoxia and glucose and highlighted a novel role for the transcriptional activator Sck1 as a key mediator in this mechanism.
Collapse
Affiliation(s)
- Rosa Santomartino
- Sapienza Università di Roma, Dept. Biologia e Biotecnologie C. Darwin, p.le Aldo Moro 5, 00185 Rome, Italy
| | - Daniela Ottaviano
- Sapienza Università di Roma, Dept. Biologia e Biotecnologie C. Darwin, p.le Aldo Moro 5, 00185 Rome, Italy
| | - Ilaria Camponeschi
- Sapienza Università di Roma, Dept. Biologia e Biotecnologie C. Darwin, p.le Aldo Moro 5, 00185 Rome, Italy
| | | | - Luca Falato
- Sapienza Università di Roma, Dept. Biologia e Biotecnologie C. Darwin, p.le Aldo Moro 5, 00185 Rome, Italy
| | - Andrea Visca
- Sapienza Università di Roma, Dept. Biologia e Biotecnologie C. Darwin, p.le Aldo Moro 5, 00185 Rome, Italy
| | - Alexandre Soulard
- Université Lyon 1, CNRS, INSA de Lyon, UMR5240 Microbiologie, Adaptation et Pathogénie, Génétique Moléculaire des Levures, Villeurbanne F69622, France
| | - Marc Lemaire
- Université Lyon 1, CNRS, INSA de Lyon, UMR5240 Microbiologie, Adaptation et Pathogénie, Génétique Moléculaire des Levures, Villeurbanne F69622, France
| | - Michele Maria Bianchi
- Sapienza Università di Roma, Dept. Biologia e Biotecnologie C. Darwin, p.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
33
|
Design, Synthesis, Molecular Docking and Biological Activity of New Piperidine and Piperazine Derivatives of Dichloroacetate as Potential Anticancer Agents. Pharm Chem J 2020. [DOI: 10.1007/s11094-020-02172-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
34
|
Hayami T, Yokoi N, Yamaguchi T, Honda K, Murao N, Takahashi H, Wang S, Seino Y, Kamiya H, Yabe D, Sweet IR, Mizoguchi A, Nakamura J, Seino S. Tumor-like features of gene expression and metabolic profiles in enlarged pancreatic islets are associated with impaired incretin-induced insulin secretion in obese diabetes: A study of Zucker fatty diabetes mellitus rat. J Diabetes Investig 2020; 11:1434-1447. [PMID: 32279428 PMCID: PMC7610108 DOI: 10.1111/jdi.13272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 03/26/2020] [Accepted: 04/05/2020] [Indexed: 12/13/2022] Open
Abstract
AIMS/INTRODUCTION Pancreatic islets are heterogenous. To clarify the relationship between islet heterogeneity and incretin action in the islets, we studied gene expression and metabolic profiles of non-large and enlarged islets of the Zucker fatty diabetes mellitus rat, an obese diabetes model, as well as incretin-induced insulin secretion (IIIS) in these islets. MATERIALS AND METHODS Pancreatic islets of control (fa/+) and fatty (fa/fa) rats at 8 and 12 weeks-of-age were isolated. The islets of fa/fa rats at 12 weeks-of-age were separated into non-large islets (≤200 μm in diameter) and enlarged islets (>300 μm in diameter). Morphological analyses, insulin secretion experiments, transcriptome analysis, metabolome analysis and oxygen consumption analysis were carried out on these islets. RESULTS The number of enlarged islets was increased with age in fatty rats, and IIIS was significantly reduced in the enlarged islets. Markers for β-cell differentiation were markedly decreased in the enlarged islets, but those for cell proliferation were increased. Glycolysis was enhanced in the enlarged islets, whereas the tricarboxylic acid cycle was suppressed. The oxygen consumption rate under glucose stimulation was reduced in the enlarged islets. Production of glutamate, a key signal for IIIS, was decreased in the enlarged islets. CONCLUSIONS The enlarged islets of Zucker fatty diabetes mellitus rats, which are defective for IIIS, show tumor cell-like metabolic features, including a dedifferentiated state, accelerated aerobic glycolysis and impaired mitochondrial function. The age-dependent increase in such islets could contribute to the pathophysiology of obese diabetes.
Collapse
Affiliation(s)
- Tomohide Hayami
- Division of Molecular and Metabolic Medicine, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan.,Kansai Electric Power Medical Research Institute, Kobe, Japan.,Division of Diabetes, Department of Internal Medicine, Aichi Medical University, Nagakute, Japan
| | - Norihide Yokoi
- Division of Molecular and Metabolic Medicine, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan.,Kansai Electric Power Medical Research Institute, Kobe, Japan
| | - Takuro Yamaguchi
- Division of Molecular and Metabolic Medicine, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan.,Kansai Electric Power Medical Research Institute, Kobe, Japan
| | - Kohei Honda
- Division of Molecular and Metabolic Medicine, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Naoya Murao
- Division of Molecular and Metabolic Medicine, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Harumi Takahashi
- Division of Molecular and Metabolic Medicine, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan.,Kansai Electric Power Medical Research Institute, Kobe, Japan
| | - Shujie Wang
- Department of Neural Regeneration and Cell Communication, Mie University Graduate School of Medicine, Tsu, Japan
| | - Yusuke Seino
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Fujita Health University, Toyoake, Japan
| | - Hideki Kamiya
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University, Nagakute, Japan
| | - Daisuke Yabe
- Division of Molecular and Metabolic Medicine, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan.,Kansai Electric Power Medical Research Institute, Kobe, Japan
| | - Ian R Sweet
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington, Seattle, Washington, USA
| | - Akira Mizoguchi
- Department of Neural Regeneration and Cell Communication, Mie University Graduate School of Medicine, Tsu, Japan
| | - Jiro Nakamura
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University, Nagakute, Japan
| | - Susumu Seino
- Division of Molecular and Metabolic Medicine, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan.,Kansai Electric Power Medical Research Institute, Kobe, Japan
| |
Collapse
|
35
|
Raghav L, Chang YH, Hsu YC, Li YC, Chen CY, Yang TY, Chen KC, Hsu KH, Tseng JS, Chuang CY, Lee MH, Wang CL, Chen HW, Yu SL, Su SF, Yuan SS, Chen JJ, Ho SY, Li KC, Yang PC, Chang GC, Chen HY. Landscape of Mitochondria Genome and Clinical Outcomes in Stage 1 Lung Adenocarcinoma. Cancers (Basel) 2020; 12:E755. [PMID: 32210009 PMCID: PMC7140061 DOI: 10.3390/cancers12030755] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/18/2020] [Accepted: 03/18/2020] [Indexed: 12/18/2022] Open
Abstract
Risk factors including genetic effects are still being investigated in lung adenocarcinoma (LUAD). Mitochondria play an important role in controlling imperative cellular parameters, and anomalies in mitochondrial function might be crucial for cancer development. The mitochondrial genomic aberrations found in lung adenocarcinoma and their associations with cancer development and progression are not yet clearly characterized. Here, we identified a spectrum of mitochondrial genome mutations in early-stage lung adenocarcinoma and explored their association with prognosis and clinical outcomes. Next-generation sequencing was used to reveal the mitochondrial genomes of tumor and conditionally normal adjacent tissues from 61 Stage 1 LUADs. Mitochondrial somatic mutations and clinical outcomes including relapse-free survival (RFS) were analyzed. Patients with somatic mutations in the D-loop region had longer RFS (adjusted hazard ratio, adjHR = 0.18, p = 0.027), whereas somatic mutations in mitochondrial Complex IV and Complex V genes were associated with shorter RFS (adjHR = 3.69, p = 0.012, and adjHR = 6.63, p = 0.002, respectively). The risk scores derived from mitochondrial somatic mutations were predictive of RFS (adjHR = 9.10, 95%CI: 2.93-28.32, p < 0.001). Our findings demonstrated the vulnerability of the mitochondrial genome to mutations and the potential prediction ability of somatic mutations. This research may contribute to improving molecular guidance for patient treatment in precision medicine.
Collapse
Affiliation(s)
- Lovely Raghav
- Institute of Statistical Science, Academia Sinica, Taipei 11529, Taiwan; (L.R.); (Y.-H.C.); (Y.-C.L.); (S.-S.Y.); (K.-C.L.)
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu 30010, Taiwan;
- Bioinformatics Program, Taiwan International Graduate Program, Institute of Information Science, Academia Sinica, Taipei 11529, Taiwan
| | - Ya-Hsuan Chang
- Institute of Statistical Science, Academia Sinica, Taipei 11529, Taiwan; (L.R.); (Y.-H.C.); (Y.-C.L.); (S.-S.Y.); (K.-C.L.)
| | - Yi-Chiung Hsu
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan 32001, Taiwan;
| | - Yu-Cheng Li
- Institute of Statistical Science, Academia Sinica, Taipei 11529, Taiwan; (L.R.); (Y.-H.C.); (Y.-C.L.); (S.-S.Y.); (K.-C.L.)
| | - Chih-Yi Chen
- Institute of Medicine, Department of Surgery, Chung Shan Medical University Hospital, Taichung 40201, Taiwan;
| | - Tsung-Ying Yang
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan;
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 40705, Taiwan; (K.-C.C.); (K.-H.H.); (J.-S.T.)
| | - Kun-Chieh Chen
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 40705, Taiwan; (K.-C.C.); (K.-H.H.); (J.-S.T.)
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 402, Taiwan;
| | - Kuo-Hsuan Hsu
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 40705, Taiwan; (K.-C.C.); (K.-H.H.); (J.-S.T.)
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 402, Taiwan;
| | - Jeng-Sen Tseng
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan;
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 40705, Taiwan; (K.-C.C.); (K.-H.H.); (J.-S.T.)
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 402, Taiwan;
| | - Cheng-Yen Chuang
- Division of Thoracic Surgery, Department of Surgery, Taichung Veterans General Hospital, Taichung 40705, Taiwan;
| | - Mei-Hsuan Lee
- Institute of Clinical Medicine, National Yang-Ming University, Taipei 112, Taiwan;
| | - Chih-Liang Wang
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Tao-Yuan 33305, Taiwan;
| | - Huei-Wen Chen
- Graduate Institute of Toxicology, National Taiwan University, Taipei 10617, Taiwan;
| | - Sung-Liang Yu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 10617, Taiwan;
| | - Sheng-Fang Su
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei 10055, Taiwan;
| | - Shin-Sheng Yuan
- Institute of Statistical Science, Academia Sinica, Taipei 11529, Taiwan; (L.R.); (Y.-H.C.); (Y.-C.L.); (S.-S.Y.); (K.-C.L.)
| | - Jeremy J.W. Chen
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 402, Taiwan;
| | - Shinn-Ying Ho
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu 30010, Taiwan;
| | - Ker-Chau Li
- Institute of Statistical Science, Academia Sinica, Taipei 11529, Taiwan; (L.R.); (Y.-H.C.); (Y.-C.L.); (S.-S.Y.); (K.-C.L.)
- Department of Statistics, University of California Los Angeles, Los Angeles, CA 90095-1554, USA
| | - Pan-Chyr Yang
- Center of Genomic Medicine, National Taiwan University, Taipei 10617, Taiwan;
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Gee-Chen Chang
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan;
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 40705, Taiwan; (K.-C.C.); (K.-H.H.); (J.-S.T.)
- Comprehensive Cancer Center, Taichung Veterans General Hospital, Taichung 40704, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Hsuan-Yu Chen
- Institute of Statistical Science, Academia Sinica, Taipei 11529, Taiwan; (L.R.); (Y.-H.C.); (Y.-C.L.); (S.-S.Y.); (K.-C.L.)
- College of Medicine, National Taiwan University, Taipei 10617, Taiwan
- College of Life Science, National Taiwan University, Taipei 10617, Taiwan
- Ph.D. Program in Microbial Genomics, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
36
|
Bhandari V, Li CH, Bristow RG, Boutros PC. Divergent mutational processes distinguish hypoxic and normoxic tumours. Nat Commun 2020; 11:737. [PMID: 32024819 PMCID: PMC7002770 DOI: 10.1038/s41467-019-14052-x] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 11/29/2019] [Indexed: 12/14/2022] Open
Abstract
Many primary tumours have low levels of molecular oxygen (hypoxia), and hypoxic tumours respond poorly to therapy. Pan-cancer molecular hallmarks of tumour hypoxia remain poorly understood, with limited comprehension of its associations with specific mutational processes, non-coding driver genes and evolutionary features. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2658 cancers across 38 tumour types, we quantify hypoxia in 1188 tumours spanning 27 cancer types. Elevated hypoxia associates with increased mutational load across cancer types, irrespective of underlying mutational class. The proportion of mutations attributed to several mutational signatures of unknown aetiology directly associates with the level of hypoxia, suggesting underlying mutational processes for these signatures. At the gene level, driver mutations in TP53, MYC and PTEN are enriched in hypoxic tumours, and mutations in PTEN interact with hypoxia to direct tumour evolutionary trajectories. Overall, hypoxia plays a critical role in shaping the genomic and evolutionary landscapes of cancer.
Collapse
Affiliation(s)
- Vinayak Bhandari
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Ontario Institute for Cancer Research, Toronto, Canada
| | - Constance H Li
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Ontario Institute for Cancer Research, Toronto, Canada
- Department of Human Genetics, University of California, Los Angeles, USA
| | - Robert G Bristow
- Division of Cancer Sciences, Faculty of Biology, Health and Medicine, University of Manchester, Manchester, UK.
- The Christie NHS Foundation Trust, Manchester, UK.
- CRUK Manchester Institute and Centre, Manchester, UK.
| | - Paul C Boutros
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
- Department of Human Genetics, University of California, Los Angeles, USA.
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada.
- Vector Institute for Artificial Intelligence, Toronto, Canada.
- Department of Urology, University of California, Los Angeles, USA.
- Jonsson Comprehensive Cancer Centre, University of California Los Angeles, Los Angeles, USA.
- Institute for Precision Health, University of California Los Angeles, Los Angeles, USA.
| |
Collapse
|
37
|
Wang X, Yeo RX, Hogg PJ, Goldstein D, Crowe P, Dilda PJ, Yang JL. The synergistic inhibitory effect of combining therapies targeting EGFR and mitochondria in sarcomas. Oncotarget 2020; 11:46-61. [PMID: 32002123 PMCID: PMC6967775 DOI: 10.18632/oncotarget.27416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/16/2019] [Indexed: 12/13/2022] Open
Abstract
Our group previously demonstrated that sarcoma cell lines were insensitive to epidermal growth factor receptor (EGFR) inhibitor gefitinib monotherapy. PENAO, an anti-tumour metabolic compound created in our laboratory, is currently in clinical trials. Considering the positive regulation of tumour energy production by both the EGFR signalling and tumour metabolism pathways, this study aimed to investigate the effect and mechanisms of combination therapy using gefitinib and PENAO in sarcoma cell lines in vitro and in vivo. PENAO monotherapy reduced proliferation in 12 sarcoma cell lines. Combining gefitinib and PENAO resulted in synergistic inhibition in both a time- and dose-dependent manner in 3 sarcoma cell lines with less prominent monotherapy effects. Combined treatment significantly enhanced cell death and perturbed mitochondrial function. In vivo combination therapy with PENAO and gefitinib was non-toxic to mice and significantly delayed tumour growth and prolonged survival. At 20 days after treatment, tumours from the combination treated mice were significantly smaller than those from untreated and single drug treated mice. The survival curves also showed significant difference across and between groups. The combination of PENAO and gefitinib in vitro and in vivo, shows promise as a treatment pathway in this poor outcome tumour.
Collapse
Affiliation(s)
- Xiaochun Wang
- Sarcoma and Nano-oncology Group, Adult Cancer Program, Lowy Cancer Research Centre, Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia.,Department of Surgery, Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia.,These authors contributed equally to this work
| | - Reichelle X Yeo
- Sarcoma and Nano-oncology Group, Adult Cancer Program, Lowy Cancer Research Centre, Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia.,The Centenary Institute, NHMRC Clinical Trials Centre, Sydney Medical School, University of Sydney, Sydney, Australia.,These authors contributed equally to this work
| | - Philip J Hogg
- The Centenary Institute, NHMRC Clinical Trials Centre, Sydney Medical School, University of Sydney, Sydney, Australia
| | - David Goldstein
- Department of Medical Oncology, Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Philip Crowe
- Sarcoma and Nano-oncology Group, Adult Cancer Program, Lowy Cancer Research Centre, Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia.,Department of Surgery, Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Pierre J Dilda
- Tumour Metabolism Group, Adult Cancer Program, Lowy Cancer Research Centre, Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Jia-Lin Yang
- Sarcoma and Nano-oncology Group, Adult Cancer Program, Lowy Cancer Research Centre, Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia.,Department of Surgery, Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia
| |
Collapse
|
38
|
Maity S, Chatterjee A, Ganguly J. Stimuli-responsive sugar-derived hydrogels: A modern approach in cancer biology. GREEN APPROACHES IN MEDICINAL CHEMISTRY FOR SUSTAINABLE DRUG DESIGN 2020:617-649. [DOI: 10.1016/b978-0-12-817592-7.00018-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
39
|
Stakišaitis D, Juknevičienė M, Damanskienė E, Valančiūtė A, Balnytė I, Alonso MM. The Importance of Gender-Related Anticancer Research on Mitochondrial Regulator Sodium Dichloroacetate in Preclinical Studies In Vivo. Cancers (Basel) 2019; 11:cancers11081210. [PMID: 31434295 PMCID: PMC6721567 DOI: 10.3390/cancers11081210] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 12/28/2022] Open
Abstract
Sodium dichloroacetate (DCA) is an investigational medicinal product which has a potential anticancer preparation as a metabolic regulator in cancer cells’ mitochondria. Inhibition of pyruvate dehydrogenase kinases by DCA keeps the pyruvate dehydrogenase complex in the active form, resulting in decreased lactic acid in the tumor microenvironment. This literature review displays the preclinical research data on DCA’s effects on the cell pyruvate dehydrogenase deficiency, pyruvate mitochondrial oxidative phosphorylation, reactive oxygen species generation, and the Na+–K+–2Cl− cotransporter expression regulation in relation to gender. It presents DCA pharmacokinetics and the hepatocarcinogenic effect, and the safety data covers the DCA monotherapy efficacy for various human cancer xenografts in vivo in male and female animals. Preclinical cancer researchers report the synergistic effects of DCA combined with different drugs on cancer by reversing resistance to chemotherapy and promoting cell apoptosis. Researchers note that female and male animals differ in the mechanisms of cancerogenesis but often ignore studying DCA’s effects in relation to gender. Preclinical gender-related differences in DCA pharmacology, pharmacological mechanisms, and the elucidation of treatment efficacy in gonad hormone dependency could be relevant for individualized therapy approaches so that gender-related differences in treatment response and safety can be proposed.
Collapse
Affiliation(s)
- Donatas Stakišaitis
- Laboratory of Molecular Oncology, National Cancer Institute, 08660 Vilnius, Lithuania.
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania.
| | - Milda Juknevičienė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Eligija Damanskienė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Angelija Valančiūtė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Ingrida Balnytė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Marta Maria Alonso
- Department of Pediatrics, Clínica Universidad de Navarra, University of Navarra, 55 Pamplona, Spain.
| |
Collapse
|
40
|
Harms JK, Lee TW, Wang T, Lai A, Kee D, Chaplin JM, McIvor NP, Hunter FW, Macann AMJ, Wilson WR, Jamieson SMF. Impact of Tumour Hypoxia on Evofosfamide Sensitivity in Head and Neck Squamous Cell Carcinoma Patient-Derived Xenograft Models. Cells 2019; 8:E717. [PMID: 31337055 PMCID: PMC6678517 DOI: 10.3390/cells8070717] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/11/2019] [Accepted: 07/11/2019] [Indexed: 01/05/2023] Open
Abstract
Tumour hypoxia is a marker of poor prognosis and failure of chemoradiotherapy in head and neck squamous cell carcinoma (HNSCC), providing a strategy for therapeutic intervention in this setting. To evaluate the utility of the hypoxia-activated prodrug evofosfamide (TH-302) in HNSCC, we established ten early passage patient-derived xenograft (PDX) models of HNSCC that were characterised by their histopathology, hypoxia status, gene expression, and sensitivity to evofosfamide. All PDX models closely resembled the histology of the patient tumours they were derived from. Pimonidazole-positive tumour hypoxic fractions ranged from 1.7-7.9% in line with reported HNSCC clinical values, while mRNA expression of the Toustrup hypoxia gene signature showed close correlations between PDX and matched patient tumours, together suggesting the PDX models may accurately model clinical tumour hypoxia. Evofosfamide as a single agent (50 mg/kg IP, qd × 5 for three weeks) demonstrated antitumour efficacy that was variable across the PDX models, ranging from complete regressions in one p16-positive PDX model to lack of significant activity in the three most resistant models. Despite all PDX models showing evidence of tumour hypoxia, and hypoxia being essential for activation of evofosfamide, the antitumour activity of evofosfamide only weakly correlated with tumour hypoxia status determined by pimonidazole immunohistochemistry. Other candidate evofosfamide sensitivity genes-MKI67, POR, and SLFN11-did not strongly influence evofosfamide sensitivity in univariate analyses, although a weak significant relationship with MKI67 was observed, while SLFN11 expression was lost in PDX tumours. Overall, these data confirm that evofosfamide has antitumour activity in clinically-relevant PDX tumour models of HNSCC and support further clinical evaluation of this drug in HNSCC patients. Further research is required to identify those factors that, alongside hypoxia, can influence sensitivity to evofosfamide and could act as predictive biomarkers to support its use in precision medicine therapy of HNSCC.
Collapse
Affiliation(s)
- Julia K Harms
- Auckland Cancer Society Research Centre, University of Auckland, Auckland 1023, New Zealand
| | - Tet-Woo Lee
- Auckland Cancer Society Research Centre, University of Auckland, Auckland 1023, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand
| | - Tao Wang
- Auckland Cancer Society Research Centre, University of Auckland, Auckland 1023, New Zealand
| | - Amy Lai
- Auckland Cancer Society Research Centre, University of Auckland, Auckland 1023, New Zealand
- Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland 1023, New Zealand
| | - Dennis Kee
- LabPLUS, Auckland City Hospital, Auckland 1023, New Zealand
| | - John M Chaplin
- Department of Otolaryngology-Head and Neck Surgery, Auckland City Hospital, Auckland 1023, New Zealand
| | - Nick P McIvor
- Department of Otolaryngology-Head and Neck Surgery, Auckland City Hospital, Auckland 1023, New Zealand
| | - Francis W Hunter
- Auckland Cancer Society Research Centre, University of Auckland, Auckland 1023, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand
| | - Andrew M J Macann
- Department of Radiation Oncology, Auckland City Hospital, Auckland 1023, New Zealand
| | - William R Wilson
- Auckland Cancer Society Research Centre, University of Auckland, Auckland 1023, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand
| | - Stephen M F Jamieson
- Auckland Cancer Society Research Centre, University of Auckland, Auckland 1023, New Zealand.
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand.
- Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland 1023, New Zealand.
| |
Collapse
|
41
|
Human antigen R protein modulates vascular endothelial growth factor expression in human corneal epithelial cells under hypoxia. J Formos Med Assoc 2019; 119:359-366. [PMID: 31262614 DOI: 10.1016/j.jfma.2019.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/20/2019] [Accepted: 06/14/2019] [Indexed: 01/23/2023] Open
Abstract
PURPOSE Corneal avascularity is critical for corneal transparency; therefore, a tailored process has been presumed to minimize corneal neovascularization (NV). In most cell types, the transcription of vascular endothelial growth factor (VEGF) is up-regulated, and the stability of VEGF mRNA is sustained by human antigen R (HuR) during hypoxia; however, whether such response applies to corneal epithelial cells is unclear. METHODS Human corneal epithelial cells (HCECs) and MCF-7 cells that serves as the control were incubated under 0.5% oxygen, and the levels of VEGF and HuR were examined time-dependently. The alteration of HuR was also examined in vivo using the closed-eye contact lens-induced corneal neovascularization rabbit model and immunohistochemistry. Additionally, the expression of HuR was modulated by transfection of plasmids encoding HuR or siRNA targeting HuR to validate the role of HuR in VEGF expression. RESULTS We found that, unlike in control cells, the level of VEGF was not up-regulated, and the HuR expression was declined in HCECs following hypoxia. The HuR immunostaining intensities were decreased in corneal epithelial cells of rabbits wearing contact lenses. In addition, HuR overexpression restored the ability of HCECs to up-regulate VEGF under hypoxia; however, knockdown of HuR suppressed hypoxia-induced VEGF in control cells but did not further decrease VEGF in HCECs. These findings suggest that HCECs may modulate HuR to suppress hypoxia-mediated up-regulation of VEGF. CONCLUSION Our study revealed a distinct regulation of VEGF via HuR in HCECs following hypoxia, which likely contributes to minimizing corneal NV and/or maintenance of corneal avascularity.
Collapse
|
42
|
Inanc S, Keles D, Eskiizmir G, Basbinar Y, Oktay G. METFORMIN AND DICHOLOROACETATE COMBINATION EXERT A SYNERGISTIC EFFECT ON CELL VIABILITY OF ORAL SQUAMOUS CELL CARCINOMA. ENT UPDATES 2019. [DOI: 10.32448/entupdates.569464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
43
|
Tataranni T, Agriesti F, Pacelli C, Ruggieri V, Laurenzana I, Mazzoccoli C, Sala GD, Panebianco C, Pazienza V, Capitanio N, Piccoli C. Dichloroacetate Affects Mitochondrial Function and Stemness-Associated Properties in Pancreatic Cancer Cell Lines. Cells 2019; 8:cells8050478. [PMID: 31109089 PMCID: PMC6562462 DOI: 10.3390/cells8050478] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 12/14/2022] Open
Abstract
Targeting metabolism represents a possible successful approach to treat cancer. Dichloroacetate (DCA) is a drug known to divert metabolism from anaerobic glycolysis to mitochondrial oxidative phosphorylation by stimulation of PDH. In this study, we investigated the response of two pancreatic cancer cell lines to DCA, in two-dimensional and three-dimension cell cultures, as well as in a mouse model. PANC-1 and BXPC-3 treated with DCA showed a marked decrease in cell proliferation and migration which did not correlate with enhanced apoptosis indicating a cytostatic rather than a cytotoxic effect. Despite PDH activation, DCA treatment resulted in reduced mitochondrial oxygen consumption without affecting glycolysis. Moreover, DCA caused enhancement of ROS production, mtDNA, and of the mitophagy-marker LC3B-II in both cell lines but reduced mitochondrial fusion markers only in BXPC-3. Notably, DCA downregulated the expression of the cancer stem cells markers CD24/CD44/EPCAM only in PANC-1 but inhibited spheroid formation/viability in both cell lines. In a xenograft pancreatic cancer mouse-model DCA treatment resulted in retarding cancer progression. Collectively, our results clearly indicate that the efficacy of DCA in inhibiting cancer growth mechanistically depends on the cell phenotype and on multiple off-target pathways. In this context, the novelty that DCA might affect the cancer stem cell compartment is therapeutically relevant.
Collapse
Affiliation(s)
- Tiziana Tataranni
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture (Pz), Italy.
| | - Francesca Agriesti
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture (Pz), Italy.
| | - Consiglia Pacelli
- Department of Clinical and Experimental Medicine, University of Foggia, 71100 Foggia, Italy.
| | - Vitalba Ruggieri
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture (Pz), Italy.
| | - Ilaria Laurenzana
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture (Pz), Italy.
| | - Carmela Mazzoccoli
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture (Pz), Italy.
| | - Gerardo Della Sala
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture (Pz), Italy.
| | - Concetta Panebianco
- Division of Gastroenterology, IRCCS "Casa Sollievo della Sofferenza" Hospital, 71013 San Giovanni Rotondo, Italy.
| | - Valerio Pazienza
- Division of Gastroenterology, IRCCS "Casa Sollievo della Sofferenza" Hospital, 71013 San Giovanni Rotondo, Italy.
| | - Nazzareno Capitanio
- Department of Clinical and Experimental Medicine, University of Foggia, 71100 Foggia, Italy.
| | - Claudia Piccoli
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture (Pz), Italy.
- Department of Clinical and Experimental Medicine, University of Foggia, 71100 Foggia, Italy.
| |
Collapse
|
44
|
Poljsak B, Kovac V, Dahmane R, Levec T, Starc A. Cancer Etiology: A Metabolic Disease Originating from Life's Major Evolutionary Transition? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7831952. [PMID: 31687086 PMCID: PMC6800902 DOI: 10.1155/2019/7831952] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 07/21/2019] [Accepted: 08/27/2019] [Indexed: 12/30/2022]
Abstract
A clear understanding of the origins of cancer is the basis of successful strategies for effective cancer prevention and management. The origin of cancer at the molecular and cellular levels is not well understood. Is the primary cause of the origin of cancer the genomic instability or impaired energy metabolism? An attempt was made to present cancer etiology originating from life's major evolutionary transition. The first evolutionary transition went from simple to complex cells when eukaryotic cells with glycolytic energy production merged with the oxidative mitochondrion (The Endosymbiosis Theory first proposed by Lynn Margulis in the 1960s). The second transition went from single-celled to multicellular organisms once the cells obtained mitochondria, which enabled them to obtain a higher amount of energy. Evidence will be presented that these two transitions, as well as the decline of NAD+ and ATP levels, are the root of cancer diseases. Restoring redox homeostasis and reactivation of mitochondrial oxidative metabolism are important factors in cancer prevention.
Collapse
Affiliation(s)
- B. Poljsak
- 1Faculty of Health Sciences, University of Ljubljana, Laboratory of Oxidative Stress Research, Ljubljana, Slovenia
| | - V. Kovac
- 1Faculty of Health Sciences, University of Ljubljana, Laboratory of Oxidative Stress Research, Ljubljana, Slovenia
| | - R. Dahmane
- 2Faculty of Health Sciences, University of Ljubljana, Chair of Biomedicine in Health Care, Ljubljana, Slovenia
| | - T. Levec
- 3Faculty of Health Sciences, University of Ljubljana, Chair of Public Health, Ljubljana, Slovenia
| | - A. Starc
- 3Faculty of Health Sciences, University of Ljubljana, Chair of Public Health, Ljubljana, Slovenia
| |
Collapse
|
45
|
Kerimi A, Williamson G. Differential Impact of Flavonoids on Redox Modulation, Bioenergetics, and Cell Signaling in Normal and Tumor Cells: A Comprehensive Review. Antioxid Redox Signal 2018; 29:1633-1659. [PMID: 28826224 PMCID: PMC6207159 DOI: 10.1089/ars.2017.7086] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
SIGNIFICANCE Flavonoids can interact with multiple molecular targets to elicit their cellular effects, leading to changes in signal transduction, gene expression, and/or metabolism, which can, subsequently, affect the entire cell and organism. Immortalized cell lines, derived from tumors, are routinely employed as a surrogate for mechanistic studies, with the results extrapolated to tissues in vivo. Recent Advances: We review the activities of selected flavonoids on cultured tumor cells derived from various tissues in comparison to corresponding primary cells or tissues in vivo, mainly using quercetin and flavanols (epicatechin and (-)-epigallocatechin gallate) as exemplars. Several studies have indicated that flavonoids could retard cancer progression in vivo in animal models as well as in tumor cell models. CRITICAL ISSUES Extrapolation from in vitro and animal models to humans is not straightforward given both the extensive conjugation and complex microbiota-dependent metabolism of flavonoids after consumption, as well as the heterogeneous metabolism of different tumors. FUTURE DIRECTIONS Comparison of data from studies on primary cells or in vivo are essential not only to validate results obtained from cultured cell models, but also to highlight whether any differences may be further exploited in the clinical setting for chemoprevention. Tumor cell models can provide a useful mechanistic tool to study the effects of flavonoids, provided that the limitations of each model are understood and taken into account in interpretation of the data.
Collapse
Affiliation(s)
- Asimina Kerimi
- School of Food Science and Nutrition, University of Leeds , Leeds, United Kingdom
| | - Gary Williamson
- School of Food Science and Nutrition, University of Leeds , Leeds, United Kingdom
| |
Collapse
|
46
|
Florio R, De Lellis L, Veschi S, Verginelli F, di Giacomo V, Gallorini M, Perconti S, Sanna M, Mariani-Costantini R, Natale A, Arduini A, Amoroso R, Cataldi A, Cama A. Effects of dichloroacetate as single agent or in combination with GW6471 and metformin in paraganglioma cells. Sci Rep 2018; 8:13610. [PMID: 30206358 PMCID: PMC6134030 DOI: 10.1038/s41598-018-31797-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 08/06/2018] [Indexed: 12/14/2022] Open
Abstract
Paragangliomas (PGLs) are infiltrating autonomic nervous system tumors that cause important morbidity. At present, surgery is the only effective therapeutic option for this rare tumor. Thus, new agents for PGL treatment should be identified. Using unique PGL cell models established in our laboratory, we evaluated the effect of dichloroacetate (DCA) as single agent or in a novel combination with other metabolic drugs, including GW6471 and metformin. DCA and metformin had not been tested before in PGL. DCA reduced PGL cell viability and growth through mechanisms involving reactivation of PDH complex leading to promotion of oxidative metabolism, with lowering of lactate and enhanced ROS production. This resulted in cell cycle inhibition and induction of apoptosis in PGL cells, as shown by flow cytometry and immunoblot analyses. Moreover, DCA drastically impaired clonogenic activity and migration of PGL cells. Also metformin reduced PGL cell viability as single agent and the combinations of DCA, GW6471 and metformin had strong effects on cell viability. Furthermore, combined treatments had drastic and synergistic effects on clonogenic ability. In conclusion, DCA, GW6471 and metformin as single agents and in combination appear to have promising antitumor effects in unique cell models of PGL.
Collapse
Affiliation(s)
- Rosalba Florio
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Unit of General Pathology, CeSI-MeT, University of Chieti, Chieti, Italy
| | - Laura De Lellis
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy. .,Unit of General Pathology, CeSI-MeT, University of Chieti, Chieti, Italy.
| | - Serena Veschi
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Fabio Verginelli
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Unit of General Pathology, CeSI-MeT, University of Chieti, Chieti, Italy
| | - Viviana di Giacomo
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Marialucia Gallorini
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Silvia Perconti
- Unit of General Pathology, CeSI-MeT, University of Chieti, Chieti, Italy
| | - Mario Sanna
- Department of Otology and Skull Base Surgery, Gruppo Otologico, Piacenza, Italy
| | - Renato Mariani-Costantini
- Unit of General Pathology, CeSI-MeT, University of Chieti, Chieti, Italy.,Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Angelica Natale
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | | | - Rosa Amoroso
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Amelia Cataldi
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Alessandro Cama
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy. .,Unit of General Pathology, CeSI-MeT, University of Chieti, Chieti, Italy.
| |
Collapse
|
47
|
Tavares‐Valente D, Granja S, Baltazar F, Queirós O. Bioenergetic modulators hamper cancer cell viability and enhance response to chemotherapy. J Cell Mol Med 2018; 22:3782-3794. [PMID: 29845734 PMCID: PMC6050502 DOI: 10.1111/jcmm.13642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/14/2018] [Indexed: 01/12/2023] Open
Abstract
Gliomas are characterized by a marked glycolytic metabolism with a consequent production of massive amounts of lactate, even in the presence of normal levels of oxygen, associated to increased invasion capacity and to higher resistance to conventional treatment. This work aimed to understand how the metabolic modulation can influence tumour aggressive features and its potential to be used as complementary therapy. We assessed the effect of bioenergetic modulators (BMs) targeting different metabolic pathways in glioma cell characteristics. The in vivo effect of BMs was evaluated using the chicken chorioallantoic membrane model. Additionally, the effect of pre-treatment with BMs in the response to the antitumour drug temozolomide (TMZ) was analysed in vitro. Cell treatment with the BMs induced a decrease in cell viability and in migratory/invasion abilities, as well as modifications in metabolic parameters (glucose, lactate and ATP) and increased the cytotoxicity of the conventional drug TMZ. Furthermore, all BMs decreased the tumour growth and the number of blood vessels in an in vivo model. Our results demonstrate that metabolic modulation has the potential to be used as therapy to decrease the aggressiveness of the tumours or to be combined with conventional drugs used in glioma treatment.
Collapse
Affiliation(s)
- Diana Tavares‐Valente
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoCampus de Gualtar4710‐057BragaPortugal
- Department of SciencesIINFACTS ‐ Institute of Research and Advanced Training in Health Sciences and TechnologiesCESPU, CRLUniversity Institute of Health Sciences (IUCS)GandraPortugal
| | - Sara Granja
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoCampus de Gualtar4710‐057BragaPortugal
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoCampus de Gualtar4710‐057BragaPortugal
| | - Odília Queirós
- Department of SciencesIINFACTS ‐ Institute of Research and Advanced Training in Health Sciences and TechnologiesCESPU, CRLUniversity Institute of Health Sciences (IUCS)GandraPortugal
| |
Collapse
|
48
|
Morshed A, Dutta P. Mathematical Model for Tissue-Level Hypoxic Response in Microfluidic Environment. J Biomech Eng 2018; 140:2654664. [PMID: 28916839 DOI: 10.1115/1.4037915] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Indexed: 12/27/2022]
Abstract
Availability of essential species like oxygen is critical in shaping the dynamics of tumor growth. When the intracellular oxygen level falls below normal, it initiates major cascades in cellular dynamics leading to tumor cell survival. In a cellular block with cells growing away from the blood vessel, the scenario can be aggravated for the cells further inside the block. In this study, the dynamics of intracellular species inside a colony of tumor cells are investigated by varying the cell-block thickness and cell types in a microfluidic cell culture device. The oxygen transport across the cell block is modeled through diffusion, while ascorbate (AS) transport from the extracellular medium is addressed by a concentration-dependent uptake model. The extracellular and intracellular descriptions were coupled through the consumption and traffic of species from the microchannel to the cell block. Our model shows that the onset of hypoxia is possible in HeLa cell within minutes depending on the cell location, although the nutrient supply inside the channel is maintained in normoxic levels. This eventually leads to total oxygen deprivation inside the cell block in the extreme case, representing the development of a necrotic core that maintains a dynamic balance with growing cells and scarce supply. The numerical model reveals that species concentration and hypoxic response are different for HeLa and HelaS3 cells. Results also indicate that the long-term hypoxic response from a microfluidic cellular block stays within 5% of the values of a tissue with the basal layer. The hybrid model can be very useful in designing microfluidic experiments to satisfactorily predict the tissue-level response in cancer research.
Collapse
Affiliation(s)
- Adnan Morshed
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920 e-mail:
| | - Prashanta Dutta
- Fellow ASME School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920 e-mail:
| |
Collapse
|
49
|
Ma D, Gilbert T, Pignanelli C, Tarade D, Noel M, Mansour F, Gupta M, Ma S, Ropat J, Curran C, Vshyvenko S, Hudlicky T, Pandey S. Exploiting mitochondrial and oxidative vulnerabilities with a synthetic analog of pancratistatin in combination with piperlongumine for cancer therapy. FASEB J 2018; 32:417-430. [PMID: 28928246 DOI: 10.1096/fj.201700275r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 09/05/2017] [Indexed: 01/09/2023]
Abstract
Harsh adverse effects as a result of nonspecific targeting of chemotherapeutics currently pose obstacles in cancer therapy; thus, it would be invaluable to devise novel approaches to specifically target cancer cells. The natural compound pancratistatin (PST) has been shown to preferentially induce apoptosis in a variety of cancer cell types. Recently, several analogs of PST were shown to be efficacious in inducing apoptosis in a variety of aggressive cancer cell types via cancer cell mitochondrial targeting; it caused dissipation of mitochondrial membrane potential and decreased oxygen consumption, and with isolated mitochondria, it induced the release of apoptogenic factors. The natural compound piperlongumine has been shown to target the stress response to reactive oxygen species in cancer cells. We explored the combinatorial potential of two small molecules (SVTH-6 and piperlongumine) that target these vulnerabilities in cancer cells. Interestingly, when combined with the PST analog, SVTH-6, an increase in mitochondrial dysfunction was observed, leading to an enhanced cytotoxic effect against several human cancer cell types. Additionally, this combination treatment was effective in reducing cancer cell growth in physiologically more relevant 3-dimensional spheroid cell cultures. This enhanced effect was found to be dependent on reactive oxygen species generation because an antioxidant could rescue cancer cells from this combination treatment. Importantly, noncancerous cells were markedly less sensitive to this combination treatment. Thus, targeting mitochondrial and oxidative stress vulnerabilities of cancer cells could be an effective strategy for cancer therapy.-Ma, D., Gilbert, T., Pignanelli, C., Tarade, D., Noel, M., Mansour, F., Gupta, M., Ma, S., Ropat, J., Curran, C., Vshyvenko, S., Hudlicky, T., Pandey. S. Exploiting mitochondrial and oxidative vulnerabilities with a synthetic analog of pancratistatin in combination with piperlongumine for cancer therapy.
Collapse
Affiliation(s)
- Dennis Ma
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada
| | - Tyler Gilbert
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada
| | - Christopher Pignanelli
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada
| | - Daniel Tarade
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada
| | - Megan Noel
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada
| | - Fadi Mansour
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada
| | - Manika Gupta
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada
| | - Sabrina Ma
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada
| | - Jesse Ropat
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada
| | - Colin Curran
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada
| | - Sergey Vshyvenko
- Chemistry Department, Brock University, Ontario, Canada
- Centre for Biotechnology, Brock University, Ontario, Canada
| | - Tomas Hudlicky
- Chemistry Department, Brock University, Ontario, Canada
- Centre for Biotechnology, Brock University, Ontario, Canada
| | - Siyaram Pandey
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada;
| |
Collapse
|
50
|
Zacksenhaus E, Shrestha M, Liu JC, Vorobieva I, Chung PE, Ju Y, Nir U, Jiang Z. Mitochondrial OXPHOS Induced by RB1 Deficiency in Breast Cancer: Implications for Anabolic Metabolism, Stemness, and Metastasis. Trends Cancer 2017; 3:768-779. [DOI: 10.1016/j.trecan.2017.09.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/08/2017] [Accepted: 09/12/2017] [Indexed: 12/26/2022]
|