1
|
Hejazi J, Amiri R, Nozarian S, Tavasolian R, Rahimlou M. Genetic determinants of food preferences: a systematic review of observational studies. BMC Nutr 2024; 10:24. [PMID: 38308303 PMCID: PMC10835975 DOI: 10.1186/s40795-024-00828-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/17/2024] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND Over the last decade, the results of several studies have indicated that adults' food preferences, consumption, and dietary choices vary depending on their genotype characteristics. However, the results of studies related to genes and polymorphisms involved in this phenomenon are contradictory. This study is a systematic review designed to evaluate the genetic determinants of food preferences. METHODS This study was conducted following the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Searches were conducted to identify articles testing the impact of genotypes on food choices, preferences, and intake in healthy adults. The search included all relevant keywords, and studies published between 1/1/1994 and October 2022 were considered. We assessed the quality of included studies and evaluated the risk of bias using the Newcastle-Ottawa Scale (NOS) for observational studies. RESULTS A total of 8,510 records were identified through our search method, and finally, 50 studies were included in this study. The majority of the studies evaluated the association of genetic variants with preferences for macronutrients, sweet, bitter, and fatty foods. The results of our study suggest a significant correlation between TAS2R38 variants (rs713598, rs1726866, rs10246939) and bitter and sweet taste preferences. Additionally, we found a considerable association between the T102C polymorphism of the 5-HT2A receptor gene and a higher intake of protein, and rs1761667 (CD36) was associated with fat preference. CONCLUSION In conclusion, this study revealed a significant association between certain genetic variants and food preferences among adults.
Collapse
Affiliation(s)
- Jalal Hejazi
- Department of Nutrition, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Roksaneh Amiri
- Department of Student Research Committee, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Shadi Nozarian
- Department of Nutrition, Ahvaz Jondishapur University of Medical Sciences, Ahvaz, Iran
| | - Ronia Tavasolian
- Department of Nutrition, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mehran Rahimlou
- Department of Nutrition, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
2
|
Abstract
PURPOSE OF REVIEW To provide a summary of current literature and propose potential mechanistic models to help us understand the role of HIV infection/antiretroviral therapy (ART), salt taste sensitivity (STS), and salt sensitivity of blood pressure (SSBP) in hypertension development. RECENT FINDINGS The epithelial sodium channel (ENaC) is the main protein/sodium channel for recognizing Na + in the tongue and mediates preference to low-medium salt concentrations in animals and humans. Considering the pressor response to oral salt in individuals with SSBP, poor STS may worsen blood pressure. Specific genetic variants in ENaC are linked to salt taste perception and hypertension. HIV infection, some ART, and specific antihypertensive drugs are associated with reduced STS and an increased liking for salty foods. Persons with HIV (PWH) on ART may have a decreased STS and are at a higher risk of developing salt-sensitive hypertension. Inflammation mediated by dietary salt is one of the drivers of poor STS and salt-sensitive hypertension among PWH.
Collapse
|
3
|
Abstract
Salt taste, the taste of sodium chloride (NaCl), is mechanistically one of the most complex and puzzling among basic tastes. Sodium has essential functions in the body but causes harm in excess. Thus, animals use salt taste to ingest the right amount of salt, which fluctuates by physiological needs: typically, attraction to low salt concentrations and rejection of high salt. This concentration-valence relationship is universally observed in terrestrial animals, and research has revealed complex peripheral codes for NaCl involving multiple taste pathways of opposing valence. Sodium-dependent and -independent pathways mediate attraction and aversion to NaCl, respectively. Gustatory sensors and cells that transduce NaCl have been uncovered, along with downstream signal transduction and neurotransmission mechanisms. However, much remains unknown. This article reviews classical and recent advances in our understanding of the molecular and cellular mechanisms underlying salt taste in mammals and insects and discusses perspectives on human salt taste.
Collapse
Affiliation(s)
- Akiyuki Taruno
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, Kyoto, Japan; .,Japan Science and Technology Agency, CREST, Saitama, Japan
| | - Michael D Gordon
- Department of Zoology and Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
4
|
Dulai JS, Smith ESJ, Rahman T. Acid-sensing ion channel 3: An analgesic target. Channels (Austin) 2021; 15:94-127. [PMID: 33258401 PMCID: PMC7801124 DOI: 10.1080/19336950.2020.1852831] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 11/13/2020] [Indexed: 12/12/2022] Open
Abstract
Acid-sensing ion channel 3 (ASIC3) belongs to the epithelial sodium channel/degenerin (ENaC/DEG) superfamily. There are 7 different ASIC subunits encoded by 5 different genes. Most ASIC subunits form trimeric ion channels that upon activation by extracellular protons mediate a transient inward current inducing cellular excitability. ASIC subunits exhibit differential tissue expression and biophysical properties, and the ability of subunits to form homo- and heteromeric trimers further increases the complexity of currents measured and their pharmacological properties. ASIC3 is of particular interest, not only because it exhibits high expression in sensory neurones, but also because upon activation it does not fully inactivate: a transient current is followed by a sustained current that persists during a period of extracellular acidity, i.e. ASIC3 can encode prolonged acidosis as a nociceptive signal. Furthermore, certain mediators sensitize ASIC3 enabling smaller proton concentrations to activate it and other mediators can directly activate the channel at neutral pH. Moreover, there is a plethora of evidence using transgenic mouse models and pharmacology, which supports ASIC3 as being a potential target for development of analgesics. This review will focus on current understanding of ASIC3 function to provide an overview of how ASIC3 contributes to physiology and pathophysiology, examining the mechanisms by which it can be modulated, and highlighting gaps in current understanding and future research directions.
Collapse
Affiliation(s)
| | | | - Taufiq Rahman
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| |
Collapse
|
5
|
Structural basis for Ca 2+ activation of the heteromeric PKD1L3/PKD2L1 channel. Nat Commun 2021; 12:4871. [PMID: 34381056 PMCID: PMC8357825 DOI: 10.1038/s41467-021-25216-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/23/2021] [Indexed: 02/07/2023] Open
Abstract
The heteromeric complex between PKD1L3, a member of the polycystic kidney disease (PKD) protein family, and PKD2L1, also known as TRPP2 or TRPP3, has been a prototype for mechanistic characterization of heterotetrametric TRP-like channels. Here we show that a truncated PKD1L3/PKD2L1 complex with the C-terminal TRP-fold fragment of PKD1L3 retains both Ca2+ and acid-induced channel activities. Cryo-EM structures of this core heterocomplex with or without supplemented Ca2+ were determined at resolutions of 3.1 Å and 3.4 Å, respectively. The heterotetramer, with a pseudo-symmetric TRP architecture of 1:3 stoichiometry, has an asymmetric selectivity filter (SF) guarded by Lys2069 from PKD1L3 and Asp523 from the three PKD2L1 subunits. Ca2+-entrance to the SF vestibule is accompanied by a swing motion of Lys2069 on PKD1L3. The S6 of PKD1L3 is pushed inward by the S4-S5 linker of the nearby PKD2L1 (PKD2L1-III), resulting in an elongated intracellular gate which seals the pore domain. Comparison of the apo and Ca2+-loaded complexes unveils an unprecedented Ca2+ binding site in the extracellular cleft of the voltage-sensing domain (VSD) of PKD2L1-III, but not the other three VSDs. Structure-guided mutagenic studies support this unconventional site to be responsible for Ca2+-induced channel activation through an allosteric mechanism.
Collapse
|
6
|
Kavaliauskienė I, Domarkienė I, Ambrozaitytė L, Barauskienė L, Meškienė R, Arasimavičius J, Irnius A, Kučinskas V. Association study of taste preference: Analysis in the Lithuanian population. Food Sci Nutr 2021; 9:4310-4321. [PMID: 34401081 PMCID: PMC8358374 DOI: 10.1002/fsn3.2401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/05/2021] [Accepted: 05/22/2021] [Indexed: 12/20/2022] Open
Abstract
Taste has strong evolutionary basis in the sense of survival by influencing our behavior to obtain food/medicine or avoid poisoning. It is a complex trait and varies among individuals and distinct populations. We aimed to investigate the association between known genetic factors (673 SNPs) and taste preference in the Lithuanian population, as well as to determine a reasonable method for qualitative evaluation of a specific taste phenotype for further genetic analysis. Study group included individuals representing six ethnolinguistic regions of Lithuania. Case and control groups for each taste were determined according to the answers selected to the taste-specific and frequency of specific food consumption questions. Sample sizes (case/control) for each taste are as follows: sweetness (55/179), bitterness (82/208), sourness (32/259), saltiness (42/249), and umami (96/190). Genotypes were extracted from the Illumina HumanOmniExpress-12v1.1 arrays' genotyping data. Analysis was performed using PLINK v1.9. We found associations between the main known genetic factors and four taste preferences in the Lithuanian population: sweetness-genes TAS1R3, TAS1R2, and GNAT3 (three SNPs); bitterness-genes CA6 and TAS2R38 (six SNPs); sourness-genes PKD2L1, ACCN2, PKD1L3, and ACCN1 (48 SNPs); and saltiness-genes SCNN1B and TRPV1 (five SNPs). We found our questionnaire as a beneficial aid for qualitative evaluation of taste preference. This was the first initiative to analyze genetic factors related to taste preference in the Lithuanian population. Besides, this study reproduces, supports, and complements results of previous limited taste genetic studies or ones that lack comprehensive results concerning distinct (ethnic) human populations.
Collapse
Affiliation(s)
- Ingrida Kavaliauskienė
- Department of Human and Medical GeneticsInstitute of Biomedical ScienceFaculty of MedicineVilnius UniversityVilniusLithuania
| | - Ingrida Domarkienė
- Department of Human and Medical GeneticsInstitute of Biomedical ScienceFaculty of MedicineVilnius UniversityVilniusLithuania
| | - Laima Ambrozaitytė
- Department of Human and Medical GeneticsInstitute of Biomedical ScienceFaculty of MedicineVilnius UniversityVilniusLithuania
| | - Lina Barauskienė
- Department of Human and Medical GeneticsInstitute of Biomedical ScienceFaculty of MedicineVilnius UniversityVilniusLithuania
| | - Raimonda Meškienė
- Department of Human and Medical GeneticsInstitute of Biomedical ScienceFaculty of MedicineVilnius UniversityVilniusLithuania
| | - Justas Arasimavičius
- Department of Human and Medical GeneticsInstitute of Biomedical ScienceFaculty of MedicineVilnius UniversityVilniusLithuania
| | - Algimantas Irnius
- Department of Human and Medical GeneticsInstitute of Biomedical ScienceFaculty of MedicineVilnius UniversityVilniusLithuania
| | - Vaidutis Kučinskas
- Department of Human and Medical GeneticsInstitute of Biomedical ScienceFaculty of MedicineVilnius UniversityVilniusLithuania
| |
Collapse
|
7
|
Ruan N, Tribble J, Peterson AM, Jiang Q, Wang JQ, Chu XP. Acid-Sensing Ion Channels and Mechanosensation. Int J Mol Sci 2021; 22:ijms22094810. [PMID: 34062742 PMCID: PMC8125064 DOI: 10.3390/ijms22094810] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/16/2022] Open
Abstract
Acid-sensing ion channels (ASICs) are mainly proton-gated cation channels that are activated by pH drops and nonproton ligands. They are part of the degenerin/epithelial sodium channel superfamily due to their sodium permeability. Predominantly expressed in the central nervous system, ASICs are involved in synaptic plasticity, learning/memory, and fear conditioning. These channels have also been implicated in multiple disease conditions, including ischemic brain injury, multiple sclerosis, Alzheimer’s disease, and drug addiction. Recent research has illustrated the involvement of ASICs in mechanosensation. Mechanosensation is a form of signal transduction in which mechanical forces are converted into neuronal signals. Specific mechanosensitive functions have been elucidated in functional ASIC1a, ASIC1b, ASIC2a, and ASIC3. The implications of mechanosensation in ASICs indicate their subsequent involvement in functions such as maintaining blood pressure, modulating the gastrointestinal function, and bladder micturition, and contributing to nociception. The underlying mechanism of ASIC mechanosensation is the tether-gate model, which uses a gating-spring mechanism to activate ASIC responses. Further understanding of the mechanism of ASICs will help in treatments for ASIC-related pathologies. Along with the well-known chemosensitive functions of ASICs, emerging evidence has revealed that mechanosensitive functions of ASICs are important for maintaining homeostasis and contribute to various disease conditions.
Collapse
|
8
|
Walsh S, Izquierdo-Serra M, Acosta S, Edo A, Lloret M, Moret R, Bosch E, Oliva B, Bertranpetit J, Fernández-Fernández JM. Adaptive selection drives TRPP3 loss-of-function in an Ethiopian population. Sci Rep 2020; 10:20999. [PMID: 33268808 PMCID: PMC7710729 DOI: 10.1038/s41598-020-78081-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 11/20/2020] [Indexed: 11/15/2022] Open
Abstract
TRPP3 (also called PKD2L1) is a nonselective, cation-permeable channel activated by multiple stimuli, including extracellular pH changes. TRPP3 had been considered a candidate for sour sensor in humans, due to its high expression in a subset of tongue receptor cells detecting sour, along with its membership to the TRP channel family known to function as sensory receptors. Here, we describe the functional consequences of two non-synonymous genetic variants (R278Q and R378W) found to be under strong positive selection in an Ethiopian population, the Gumuz. Electrophysiological studies and 3D modelling reveal TRPP3 loss-of-functions produced by both substitutions. R278Q impairs TRPP3 activation after alkalinisation by mislocation of H+ binding residues at the extracellular polycystin mucolipin domain. R378W dramatically reduces channel activity by altering conformation of the voltage sensor domain and hampering channel transition from closed to open state. Sour sensitivity tests in R278Q/R378W carriers argue against both any involvement of TRPP3 in sour detection and the role of such physiological process in the reported evolutionary positive selection past event.
Collapse
Affiliation(s)
- Sandra Walsh
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Dr. Aiguader, 88, 08003, Barcelona, Catalonia, Spain
| | - Mercè Izquierdo-Serra
- Laboratory of Molecular Physiology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003, Barcelona, Spain
| | - Sandra Acosta
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Dr. Aiguader, 88, 08003, Barcelona, Catalonia, Spain
| | - Albert Edo
- Laboratory of Molecular Physiology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003, Barcelona, Spain
| | - María Lloret
- Laboratory of Molecular Physiology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003, Barcelona, Spain
| | - Roser Moret
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Dr. Aiguader, 88, 08003, Barcelona, Catalonia, Spain
| | - Elena Bosch
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Dr. Aiguader, 88, 08003, Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), 43206, Reus, Spain
| | - Baldo Oliva
- Structural Bioinformatics Lab, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003, Barcelona, Spain
| | - Jaume Bertranpetit
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Dr. Aiguader, 88, 08003, Barcelona, Catalonia, Spain.
| | - José Manuel Fernández-Fernández
- Laboratory of Molecular Physiology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003, Barcelona, Spain.
| |
Collapse
|
9
|
Walsh S, Pagani L, Xue Y, Laayouni H, Tyler-Smith C, Bertranpetit J. Positive selection in admixed populations from Ethiopia. BMC Genet 2020; 21:108. [PMID: 33092534 PMCID: PMC7580818 DOI: 10.1186/s12863-020-00908-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND In the process of adaptation of humans to their environment, positive or adaptive selection has played a main role. Positive selection has, however, been under-studied in African populations, despite their diversity and importance for understanding human history. RESULTS Here, we have used 119 available whole-genome sequences from five Ethiopian populations (Amhara, Oromo, Somali, Wolayta and Gumuz) to investigate the modes and targets of positive selection in this part of the world. The site frequency spectrum-based test SFselect was applied to idfentify a wide range of events of selection (old and recent), and the haplotype-based statistic integrated haplotype score to detect more recent events, in each case with evaluation of the significance of candidate signals by extensive simulations. Additional insights were provided by considering admixture proportions and functional categories of genes. We identified both individual loci that are likely targets of classic sweeps and groups of genes that may have experienced polygenic adaptation. We found population-specific as well as shared signals of selection, with folate metabolism and the related ultraviolet response and skin pigmentation standing out as a shared pathway, perhaps as a response to the high levels of ultraviolet irradiation, and in addition strong signals in genes such as IFNA, MRC1, immunoglobulins and T-cell receptors which contribute to defend against pathogens. CONCLUSIONS Signals of positive selection were detected in Ethiopian populations revealing novel adaptations in East Africa, and abundant targets for functional follow-up.
Collapse
Affiliation(s)
- Sandra Walsh
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Dr. Aiguader, 88 08003, Barcelona, Catalonia, Spain
| | - Luca Pagani
- Estonian Biocentre, Institute of Genomics, University of Tartu, 51010, Tartu, Estonia
- Department of Biology, University of Padova, 35131, Padova, Italy
| | - Yali Xue
- The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Hafid Laayouni
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Dr. Aiguader, 88 08003, Barcelona, Catalonia, Spain
- Bioinformatics Studies, ESCI-UPF, Barcelona, Catalonia, Spain
| | - Chris Tyler-Smith
- The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK.
| | - Jaume Bertranpetit
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Dr. Aiguader, 88 08003, Barcelona, Catalonia, Spain.
| |
Collapse
|
10
|
Parma V, Ohla K, Veldhuizen MG, Niv MY, Kelly CE, Bakke AJ, Cooper KW, Bouysset C, Pirastu N, Dibattista M, Kaur R, Liuzza MT, Pepino MY, Schöpf V, Pereda-Loth V, Olsson SB, Gerkin RC, Rohlfs Domínguez P, Albayay J, Farruggia MC, Bhutani S, Fjaeldstad AW, Kumar R, Menini A, Bensafi M, Sandell M, Konstantinidis I, Di Pizio A, Genovese F, Öztürk L, Thomas-Danguin T, Frasnelli J, Boesveldt S, Saatci Ö, Saraiva LR, Lin C, Golebiowski J, Hwang LD, Ozdener MH, Guàrdia MD, Laudamiel C, Ritchie M, Havlícek J, Pierron D, Roura E, Navarro M, Nolden AA, Lim J, Whitcroft KL, Colquitt LR, Ferdenzi C, Brindha EV, Altundag A, Macchi A, Nunez-Parra A, Patel ZM, Fiorucci S, Philpott CM, Smith BC, Lundström JN, Mucignat C, Parker JK, van den Brink M, Schmuker M, Fischmeister FPS, Heinbockel T, Shields VDC, Faraji F, Santamaría E, Fredborg WEA, Morini G, Olofsson JK, Jalessi M, Karni N, D'Errico A, Alizadeh R, Pellegrino R, Meyer P, Huart C, Chen B, Soler GM, Alwashahi MK, Welge-Lüssen A, Freiherr J, de Groot JHB, Klein H, Okamoto M, Singh PB, Hsieh JW, Reed DR, Hummel T, Munger SD, Hayes JE. More Than Smell-COVID-19 Is Associated With Severe Impairment of Smell, Taste, and Chemesthesis. Chem Senses 2020; 45:609-622. [PMID: 32564071 PMCID: PMC7337664 DOI: 10.1093/chemse/bjaa041] [Citation(s) in RCA: 319] [Impact Index Per Article: 79.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Recent anecdotal and scientific reports have provided evidence of a link between COVID-19 and chemosensory impairments such as anosmia. However, these reports have downplayed or failed to distinguish potential effects on taste, ignored chemesthesis, and generally lacked quantitative measurements. Here, we report the development, implementation and initial results of a multi-lingual, international questionnaire to assess self-reported quantity and quality of perception in three distinct chemosensory modalities (smell, taste, and chemesthesis) before and during COVID-19. In the first 11 days after questionnaire launch, 4039 participants (2913 women, 1118 men, 8 other, ages 19-79) reported a COVID-19 diagnosis either via laboratory tests or clinical assessment. Importantly, smell, taste and chemesthetic function were each significantly reduced compared to their status before the disease. Difference scores (maximum possible change ±100) revealed a mean reduction of smell (-79.7 ± 28.7, mean ± SD), taste (-69.0 ± 32.6), and chemesthetic (-37.3 ± 36.2) function during COVID-19. Qualitative changes in olfactory ability (parosmia and phantosmia) were relatively rare and correlated with smell loss. Importantly, perceived nasal obstruction did not account for smell loss. Furthermore, chemosensory impairments were similar between participants in the laboratory test and clinical assessment groups. These results show that COVID-19-associated chemosensory impairment is not limited to smell, but also affects taste and chemesthesis. The multimodal impact of COVID-19 and lack of perceived nasal obstruction suggest that SARS-CoV-2 infection may disrupt sensory-neural mechanisms.
Collapse
Affiliation(s)
- Valentina Parma
- Department of Psychology, Temple University, Philadelphia, PA, USA
| | - Kathrin Ohla
- Institute of Neuroscience and Medicine (INM-3), Research Center Jülich, Wilhelm-Johnen-Straße, Jülich, Germany
| | - Maria G Veldhuizen
- Department of Anatomy, Faculty of Medicine, Mersin University, Çiftlikköy Campus, Yenişehir, Mersin, Turkey
| | - Masha Y Niv
- Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot, Israel
| | | | - Alyssa J Bakke
- Department of Food Science, The Pennsylvania State University, Erickson Food Science Building, University Park, PA, USA
| | - Keiland W Cooper
- Center for the Neurobiology of Learning and Memory, University of California and Qureshey Research Laboratory, Irvine, CA, USA
| | - Cédric Bouysset
- Institut de Chimie de Nice, UMR CNRS 7272, Université Côte d'Azur, Avenue Valrose, Nice, France
| | - Nicola Pirastu
- Centre for Global Health Research, Usher Institute, The University of Edinburgh, Old Medical School, Teviot Place, Edinburgh, UK
| | - Michele Dibattista
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, Università degli Studi di Bari A. Moro, P.zza G. Cesare, Bari, Italy
| | - Rishemjit Kaur
- CSIR-Central Scientific Instruments Organisation, Chandigarh, India
| | - Marco Tullio Liuzza
- Department of Medical and Surgical Sciences, "Magna Graecia" University of Catanzaro, Viale Europa (Loc. Germaneto), Catanzaro, Italy
| | - Marta Y Pepino
- Department of Food Science and Human Nutrition and Division of Nutritional Sciences, University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Veronika Schöpf
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Währinger Gürtel, Vienna, Austria
| | - Veronica Pereda-Loth
- Laboratoire d'Anthropologie Moléculaire et Imagerie de Synthese, UMR 5288 CNRS, Universitéde Toulouse, Toulouse, France
| | - Shannon B Olsson
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bengaluru, India
| | - Richard C Gerkin
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Paloma Rohlfs Domínguez
- Department of Psychology and Anthropology, University of Extremadura, Avenida de la Universidad, s/n, Cáceres, Spain
| | - Javier Albayay
- Department of General Psychology, University of Padova, Via Venezia, Padova, Italy
| | - Michael C Farruggia
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Surabhi Bhutani
- School of Exercise and Nutritional Sciences, 5500 Campanile Drive, San Diego State University, San Diego, CA, USA
| | - Alexander W Fjaeldstad
- Flavour Clinic, Department of Otorhinolaryngology, Regional Hospital West Jutland, Central Denmark Region, Laegaardvej, Holstebro, Denmark
| | - Ritesh Kumar
- Biocomputation Group, Department of Computer Science, University of Hertfordshire, Hatfield, UK
| | - Anna Menini
- Neuroscience Area, International School for Advanced Studies, SISSA, Via Bonomea, Trieste, Italy
| | - Moustafa Bensafi
- Neuropop Team, Lyon Neuroscience Research Center, CNRS UMR5292-INSERM U1028-University Claude Bernard Lyon 1, 95 bd Pinel, Bron, France
| | - Mari Sandell
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland.,Functional Foods Forum, University of Turku, Turku, Finland
| | | | - Antonella Di Pizio
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Str., Freising, Germany
| | | | - Lina Öztürk
- Department of Anatomy, Faculty of Medicine, Mersin University, Çiftlikköy Campus, Yenişehir, Mersin, Turkey
| | - Thierry Thomas-Danguin
- CSGA-Centre for Taste and Feeding Behavior, INRAE, CNRS, AgroSup Dijon, Université Bourgogne Franche-Comté, 17 rue Sully, Dijon, France
| | - Johannes Frasnelli
- Department of Anatomy, Université du Québec à Trois-Rivières, boul. des Forges, Trois-Rivières, QC, Canada
| | - Sanne Boesveldt
- Division of Human Nutrition and Health, Wageningen University, Stippeneng, WE Wageningen, the Netherlands
| | - Özlem Saatci
- Department of Otorhinolaryngology, Medical Science University, Emek, Sancaktepe-İstanbul, Turkey
| | - Luis R Saraiva
- Monell Chemical Senses Center, Philadelphia, PA, USA.,Sidra Medicine, Out Patient Clinic, Doha, Qatar
| | - Cailu Lin
- Monell Chemical Senses Center, Philadelphia, PA, USA
| | - Jérôme Golebiowski
- Institut de Chimie de Nice, UMR CNRS 7272, Université Côte d'Azur, Avenue Valrose, Nice, France
| | - Liang-Dar Hwang
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | | | - Maria Dolors Guàrdia
- IRTA-Food Technology Programme, IRTA, Finca Camps i Armet, Monells, Girona, Spain
| | | | - Marina Ritchie
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Jan Havlícek
- Department of Zoology, Charles University, Viničná, Nové Město, Czechia
| | - Denis Pierron
- Équipe de Médecine Evolutive, UMR5288 CNRS/Université Toulouse III, faculté de chirurgie dentaire, 3 Chemin des Maraîchers, Toulouse, France
| | - Eugeni Roura
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Marta Navarro
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Alissa A Nolden
- Department of Food Science, University of Massachusetts, Holdsworth Way, Amherst, MA, USA
| | - Juyun Lim
- Department of Food Science and Technology, Oregon State University, Corvallis, OR, USA
| | | | | | - Camille Ferdenzi
- Neuropop Team, Lyon Neuroscience Research Center, CNRS UMR5292-INSERM U1028-University Claude Bernard Lyon 1, 95 bd Pinel, Bron, France
| | - Evelyn V Brindha
- Department of Electrical and Electronics Engineering, Karunya Institute of Technology and Sciences, Karunya Nagar, Coimbatore, Tamilnadu, India
| | - Aytug Altundag
- Otorhinolaryngology Department, Biruni University, Protokol Yolu, Topkapı, Zeytinburnu, Istanbul, Turkey
| | - Alberto Macchi
- Italian Academy of Rhinology Asst Settelaghi-University of Insubriae, via Guicciardini, Varese, Italy
| | - Alexia Nunez-Parra
- Department of Biology, Universidad de Chile, Las Palmeras, Santiago, Chile
| | - Zara M Patel
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Sébastien Fiorucci
- Institut de Chimie de Nice, UMR CNRS 7272, Université Côte d'Azur, Avenue Valrose, Nice, France
| | - Carl M Philpott
- The Norfolk Smell and Taste Clinic, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Barry C Smith
- Centre for the Study of the Senses, Institute of Philosophy, School of Advanced Study, University of London, London, UK
| | - Johan N Lundström
- Monell Chemical Senses Center, Philadelphia, PA, USA.,Department of Clinical Neuroscience, Karolinska Institutet, Nobels väg, Stockholm, Sweden
| | - Carla Mucignat
- Department of Molecular Medicine, University of Padova, via Marzolo, Padova, Italy
| | - Jane K Parker
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, UK
| | - Mirjam van den Brink
- Laboratory of Behavioural Gastronomy, Maastricht University Campus Venlo, Nassaustraat, BV Venlo, the Netherlands
| | - Michael Schmuker
- Biocomputation Group, Department of Computer Science, University of Hertfordshire, Hatfield, UK
| | | | - Thomas Heinbockel
- Department of Anatomy, College of Medicine, Howard University, N.W., Washington, DC, USA
| | - Vonnie D C Shields
- Biological Sciences Department, Fisher College of Science and Mathematics, Towson University, Towson, MD USA
| | - Farhoud Faraji
- Division of Otolaryngology, Head & Neck Surgery, University of California San Diego Health, MC La Jolla, CA, USA
| | - Enrique Santamaría
- Clinical Neuroproteomics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IDISNA), Proteored-ISCIII, Pamplona, Spain
| | - William E A Fredborg
- Department of Psychology, Stockholm University, Frescativägen, Stockholm, Sweden
| | - Gabriella Morini
- University of Gastronomic Sciences, Piazza Vittorio Emanuele II 9, Bra, Pollenzo, CN, Italy
| | - Jonas K Olofsson
- Department of Psychology, Stockholm University, Frescativägen, Stockholm, Sweden
| | - Maryam Jalessi
- Skull Base Research Center, The Five Senses Institute, Iran University of Medical Sciences, Rasoul Akram Hospital, Sattarkhan Ave., Tehran, Iran
| | - Noam Karni
- Internal Medicine Department, Hadassah Medical Center, Kiryat Hadassah, Jerusalem, Israel
| | - Anna D'Errico
- Department of Molecular and Cellular Neurobiology, Goethe Universität Frankfurt, Goethe Universität Frankfurt, Max von Laue Strasse, Frankfurt am Main, Germany
| | - Rafieh Alizadeh
- ENT and Head and Neck Research Center and Department, Hazrat Rasoul Hospital, The Five Senses Institute, Iran University of Medical Sciences, Iran University of Medical Sciences, Shahid Hemmat Highway, Tehran, Iran
| | - Robert Pellegrino
- Food Science Department, University of Tennessee, Knoxville, TN, USA
| | - Pablo Meyer
- Health Care and Life Sciences, IBM T. J. Watson Research Center, Yorktown Heights, NY, USA
| | - Caroline Huart
- Department of Otorhinolaryngology, Cliniques Universitaires Saint-Luc, Avenue Hippocrate, Brussels, Belgium
| | - Ben Chen
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Liwan District, Guangzhou City, China
| | - Graciela M Soler
- Department of Otorhinolaringology, Buenos Aires University and GEOG (Grupo de Estudio de Olfato y Gusto), Calle Paraguay, Piso 3. CABA (Ciudad Autónoma de Buenos Aires), Argentina
| | - Mohammed K Alwashahi
- Surgery Department, ENT Division, Sultan Qaboos University Hospital, Al Khoud, Muscat, Oman
| | - Antje Welge-Lüssen
- Department of Otorhinolaryngology, University Hospital Basel, Petersgraben, Basel, Switzerland
| | - Jessica Freiherr
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage, Erlangen, Germany
| | - Jasper H B de Groot
- Department of Psychology, Utrecht University, Heidelberglaan 1, CS Utrecht, The Netherlands
| | - Hadar Klein
- Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Masako Okamoto
- Department of Applied Biological Chemistry, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Preet Bano Singh
- Department of Oral Surgery and Oral Medicine, Faculty of Dentistry, University of Oslo, Blindern, Oslo, Norway
| | - Julien W Hsieh
- Rhinology-Olfactology Unit, ENT Department, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil, Geneva, Switzerland
| | | | | | - Thomas Hummel
- Department of Otorhinolaryngology, TU Dresden, Helmholtzstr., Dresden, Germany
| | - Steven D Munger
- Center for Smell and Taste, University of Florida, , Rm LG-101D, Gainesville, FL, USA.,Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - John E Hayes
- Department of Food Science, The Pennsylvania State University, Erickson Food Science Building, University Park, PA, USA
| |
Collapse
|
11
|
Rohde K, Schamarek I, Blüher M. Consequences of Obesity on the Sense of Taste: Taste Buds as Treatment Targets? Diabetes Metab J 2020; 44:509-528. [PMID: 32431111 PMCID: PMC7453985 DOI: 10.4093/dmj.2020.0058] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 03/25/2020] [Indexed: 12/19/2022] Open
Abstract
Premature obesity-related mortality is caused by cardiovascular and pulmonary diseases, type 2 diabetes mellitus, physical disabilities, osteoarthritis, and certain types of cancer. Obesity is caused by a positive energy balance due to hyper-caloric nutrition, low physical activity, and energy expenditure. Overeating is partially driven by impaired homeostatic feedback of the peripheral energy status in obesity. However, food with its different qualities is a key driver for the reward driven hedonic feeding with tremendous consequences on calorie consumption. In addition to visual and olfactory cues, taste buds of the oral cavity process the earliest signals which affect the regulation of food intake, appetite and satiety. Therefore, taste buds may play a crucial role how food related signals are transmitted to the brain, particularly in priming the body for digestion during the cephalic phase. Indeed, obesity development is associated with a significant reduction in taste buds. Impaired taste bud sensitivity may play a causal role in the pathophysiology of obesity in children and adolescents. In addition, genetic variation in taste receptors has been linked to body weight regulation. This review discusses the importance of taste buds as contributing factors in the development of obesity and how obesity may affect the sense of taste, alterations in food preferences and eating behavior.
Collapse
Affiliation(s)
- Kerstin Rohde
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany.
| | - Imke Schamarek
- Medical Department III (Endocrinology, Nephrology and Rheumatology), University of Leipzig, Leipzig, Germany
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany.
- Medical Department III (Endocrinology, Nephrology and Rheumatology), University of Leipzig, Leipzig, Germany
| |
Collapse
|
12
|
Does ENaC Work as Sodium Taste Receptor in Humans? Nutrients 2020; 12:nu12041195. [PMID: 32344597 PMCID: PMC7230849 DOI: 10.3390/nu12041195] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/14/2020] [Accepted: 04/21/2020] [Indexed: 12/17/2022] Open
Abstract
Taste reception is fundamental for the proper selection of food and beverages. Among the several chemicals recognized by the human taste system, sodium ions (Na+) are of particular relevance. Na+ represents the main extracellular cation and is a key factor in many physiological processes. Na+ elicits a specific sensation, called salty taste, and low-medium concentrations of table salt (NaCl, the common sodium-containing chemical we use to season foods) are perceived as pleasant and appetitive. How we detect this cation in foodstuffs is scarcely understood. In animal models, such as the mouse and the rat, the epithelial sodium channel (ENaC) has been proposed as a key protein for recognizing Na+ and for mediating preference responses to low-medium salt concentrations. Here, I will review our current understanding regarding the possible involvement of ENaC in the detection of food Na+ by the human taste system.
Collapse
|
13
|
Diószegi J, Llanaj E, Ádány R. Genetic Background of Taste Perception, Taste Preferences, and Its Nutritional Implications: A Systematic Review. Front Genet 2019; 10:1272. [PMID: 31921309 PMCID: PMC6930899 DOI: 10.3389/fgene.2019.01272] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 11/19/2019] [Indexed: 01/01/2023] Open
Abstract
Background: The rise in nutrition-related morbidity and mortality requires public health intervention programs targeting nutritional behavior. In addition to socio-economical, socio-cultural, psychological determinants, taste is one of the main factors that influence food choices. Differences in taste perception and sensitivity may be explained by genetic variations, therefore the knowledge of the extent to which genetic factors influence the development of individual taste preferences and eating patterns is important for public policy actions addressing nutritional behaviors. Our aim was to review genetic polymorphisms accounting for variability in taste and food preferences to contribute to an improved understanding of development of taste and food preferences. Methods: The electronic databases PubMed, Scopus, and Web of Science were searched using MeSH in PubMed and free text terms for articles published between January 1, 2000 and April 13, 2018. The search strategy was conducted following the PRISMA statement. The quality of the included studies was assessed by the validated Q-Genie tool. Results: Following the PRISMA flowchart, finally 103 articles were included in the review. Among the reviewed studies, 43 were rated to have good quality, 47 were rated to have moderate quality, and 13 were rated to have low quality. The majority of the studies assessed the association of genetic variants with the bitter taste modality, followed by articles analyzing the impact of polymorphisms on sweet and fat preferences. The number of studies investigating the association between umami, salty, and sour taste qualities and genetic polymorphisms was limited. Conclusions: Our findings suggest that a significant association exists between TAS2R38 variants (rs713598, rs1726866, rs10246939) and bitter and sweet taste preference. Other confirmed results are related to rs1761667 (CD36) and fat taste responsiveness. Otherwise further research is essential to confirm results of studies related to genetic variants and individual taste sensitivity. This knowledge may enhance our understanding of the development of individual taste and related food preferences and food choices that will aid the development of tailored public health strategy to reduce nutrition-related disease and morbidity.
Collapse
Affiliation(s)
- Judit Diószegi
- MTA-DE Public Health Research Group, Public Health Research Institute, University of Debrecen, Debrecen, Hungary
| | - Erand Llanaj
- Doctoral School of Health Sciences, University of Debrecen, Debrecen, Hungary
| | - Róza Ádány
- MTA-DE Public Health Research Group, Public Health Research Institute, University of Debrecen, Debrecen, Hungary.,Doctoral School of Health Sciences, University of Debrecen, Debrecen, Hungary.,WHO Collaborating Centre on Vulnerability and Health, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
14
|
Nachtigal D, Andrew K, Green BG. Selective Effects of Temperature on the Sensory Irritation but not Taste of NaCl and Citric Acid. Chem Senses 2019; 44:61-68. [PMID: 30418541 DOI: 10.1093/chemse/bjy072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
This study investigated the effect of temperature on taste and chemesthetic sensations produced by the prototypical salty and sour stimuli NaCl and citric acid. Experiment 1 measured the perceived intensity of irritation (burning, stinging) and taste (saltiness, sourness) produced on the tongue tip by brief (3 s) exposures to suprathreshold concentrations of NaCl and citric acid at 3 different temperatures (12, 34, and 42 °C). No significant effects of temperature were found on the taste or sensory irritation of either stimulus. Experiment 2 investigated the potential effects of temperature on sensory irritation at peri-threshold concentrations and its sensitization over time. Measurements were again made on the tongue tip at the same 3 temperatures. Heating was found to enhance the perception of irritation at peri-threshold concentrations for both stimuli, whereas cooling suppressed sensitization of irritation for NaCl but not for citric acid. These results (i) confirm prior evidence that perception of suprathreshold salty and sour tastes are independent of temperature; (ii) demonstrate that heat has only weak effects on sensory irritation produced by brief exposures to NaCl and citric acid; and (iii) suggest that sensitization of the irritation produced by NaCl and citric acid occur via different peripheral mechanisms that have different thermal sensitivities. Overall, the results are consistent with involvement of the heat-sensitive channel TRPV1 in the sensory irritation of both stimuli together with one or more additional channels (e.g., acid-sensing channel, epithelial sodium channel, TRPA1) that are insensitive to heat and may possibly be sensitive to cooling.
Collapse
Affiliation(s)
- Danielle Nachtigal
- The John B. Pierce Laboratory, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Kendra Andrew
- The John B. Pierce Laboratory, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Barry G Green
- The John B. Pierce Laboratory, Yale School of Medicine, Yale University, New Haven, CT, USA.,Department of Surgery (Otolaryngology), Yale School of Medicine, Yale University, New Haven, CT, USA
| |
Collapse
|
15
|
Abdel-Moemin AR, Regenstein JM, Abdel-Rahman MK. New Food Products for Sensory-Compromised Situations. Compr Rev Food Sci Food Saf 2018; 17:1625-1639. [DOI: 10.1111/1541-4337.12399] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/09/2018] [Accepted: 09/10/2018] [Indexed: 01/19/2023]
Affiliation(s)
- Aly R. Abdel-Moemin
- Dept. of Nutrition and Food Science, Faculty of Home Economics; Helwan Univ.; Cairo Egypt
| | | | - Manal K. Abdel-Rahman
- Dept. of Nutrition and Food Science, Faculty of Home Economics; Helwan Univ.; Cairo Egypt
| |
Collapse
|
16
|
|
17
|
Qian J, Mummalaneni S, Phan THT, Heck GL, DeSimone JA, West D, Mahavadi S, Hojati D, Murthy KS, Rhyu MR, Spielman AI, Özdener MH, Lyall V. Cyclic-AMP regulates postnatal development of neural and behavioral responses to NaCl in rats. PLoS One 2017; 12:e0171335. [PMID: 28192441 PMCID: PMC5305205 DOI: 10.1371/journal.pone.0171335] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 01/18/2017] [Indexed: 02/07/2023] Open
Abstract
During postnatal development rats demonstrate an age-dependent increase in NaCl chorda tympani (CT) responses and the number of functional apical amiloride-sensitive epithelial Na+ channels (ENaCs) in salt sensing fungiform (FF) taste receptor cells (TRCs). Currently, the intracellular signals that regulate the postnatal development of salt taste have not been identified. We investigated the effect of cAMP, a downstream signal for arginine vasopressin (AVP) action, on the postnatal development of NaCl responses in 19-23 day old rats. ENaC-dependent NaCl CT responses were monitored after lingual application of 8-chlorophenylthio-cAMP (8-CPT-cAMP) under open-circuit conditions and under ±60 mV lingual voltage clamp. Behavioral responses were tested using 2 bottle/24h NaCl preference tests. The effect of [deamino-Cys1, D-Arg8]-vasopressin (dDAVP, a specific V2R agonist) was investigated on ENaC subunit trafficking in rat FF TRCs and on cAMP generation in cultured adult human FF taste cells (HBO cells). Our results show that in 19-23 day old rats, the ENaC-dependent maximum NaCl CT response was a saturating sigmoidal function of 8-CPT-cAMP concentration. 8-CPT-cAMP increased the voltage-sensitivity of the NaCl CT response and the apical Na+ response conductance. Intravenous injections of dDAVP increased ENaC expression and γ-ENaC trafficking from cytosolic compartment to the apical compartment in rat FF TRCs. In HBO cells dDAVP increased intracellular cAMP and cAMP increased trafficking of γ- and δ-ENaC from cytosolic compartment to the apical compartment 10 min post-cAMP treatment. Control 19-23 day old rats were indifferent to NaCl, but showed clear preference for appetitive NaCl concentrations after 8-CPT-cAMP treatment. Relative to adult rats, 14 day old rats demonstrated significantly less V2R antibody binding in circumvallate TRCs. We conclude that an age-dependent increase in V2R expression produces an AVP-induced incremental increase in cAMP that modulates the postnatal increase in TRC ENaC and the neural and behavioral responses to NaCl.
Collapse
Affiliation(s)
- Jie Qian
- Departments of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Shobha Mummalaneni
- Departments of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Tam-Hao T. Phan
- Departments of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Gerard L. Heck
- Departments of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - John A. DeSimone
- Departments of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - David West
- Departments of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Sunila Mahavadi
- Departments of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Deanna Hojati
- Departments of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Karnam S. Murthy
- Departments of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Mee-Ra Rhyu
- Korea Food Research Institute, Bundang-gu, Sungnam-si, Gyeonggi-do, Korea
| | | | - Mehmet Hakan Özdener
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, United States of America
| | - Vijay Lyall
- Departments of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| |
Collapse
|
18
|
Zhang W, Chen P, Zhou L, Qin Z, Gao K, Yao J, Li C, Wang P. A biomimetic bioelectronic tongue: A switch for On- and Off- response of acid sensations. Biosens Bioelectron 2016; 92:523-528. [PMID: 27836602 DOI: 10.1016/j.bios.2016.10.069] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 10/24/2016] [Accepted: 10/25/2016] [Indexed: 11/24/2022]
Abstract
The perception of sour taste in mammals is important for its basic modality properties and avoiding toxic substances. We explore a biomimetic bioelectronic tongue, which integrate MEA (microelectrode array) and taste receptor cell for acid detection as a switch. However, the acid-sensing mechanism and coding of the taste receptor cells in the periphery is not well understood, with long-standing debate. Therefore, we firstly construct a Hodgkin-Huxley type mathematical model of whole-cell acid-sensing taste receptor cells based on the electrophysiologic patch clamp recordings with different acid sensitive receptor expressing and different acidic stimulations. ASICs and PKDL channels are two most promising candidates for acidic sensation. ASICs channels contribute to the On response, and PKDL channels coding the Offset stimulations respectively, which function as a pair for switch. Therefore, with the advantage of effective and noninvasive detection for MEA, a sour taste biosensor based on MEA and taste receptor cells was designed and established to detect sour response from the elementary acid sensitive taste receptor cells during and after stimulus. From simulation and extracelluar potential recordings, we found the biomimetic bioelectronic tongue was acid-sensitive, as acid stimulation pH decrease, the firing frequency significantly increase. Furthermore, this reliable and effective MEA based bioelectronic tongue functioned as a switch for stimulation On and Off. This study provided a powerful platform to recognize sour stimulation and help elucidate the sour taste sensation and coding mechanism.
Collapse
Affiliation(s)
- Wei Zhang
- CAS key Laboratory of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China.
| | - Peihua Chen
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Lianqun Zhou
- CAS key Laboratory of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Zhen Qin
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering, Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Keqiang Gao
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering, Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jia Yao
- CAS key Laboratory of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Chuanyu Li
- CAS key Laboratory of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Ping Wang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering, Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
19
|
A Comparison of Collection Techniques for Gene Expression Analysis of Human Oral Taste Tissue. PLoS One 2016; 11:e0152157. [PMID: 27010324 PMCID: PMC4807031 DOI: 10.1371/journal.pone.0152157] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 03/09/2016] [Indexed: 11/19/2022] Open
Abstract
Variability in human taste perception is associated with both genetic and environmental factors. The influence of taste receptor expression on this variability is unknown, in part, due to the difficulty in obtaining human oral tissue that enables quantitative expression measures of taste genes. In a comparison of six current techniques (Oragene RNeasy Kit, Isohelix swab, Livibrush cytobrush, tongue saliva, cheek saliva collection, and fungiform papillae biopsy), we identify the fungiform papillae biopsy is the optimal sampling technique to analyse human taste gene expression. The fungiform papillae biopsy resulted in the highest RNA integrity, enabling amplification of all the assessed taste receptor genes (TAS1R1, TAS1R2, TAS1R3, SCNN1A and CD36) and taste tissue marker genes (NCAM1, GNAT3 and PLCβ2). Furthermore, quantitative expression was observed in a subset of taste genes assessed from the saliva collection techniques (cheek saliva, tongue saliva and Oragene RNA kit). These saliva collection techniques may be useful as a non-invasive alternative sampling technique to the fungiform papillae biopsy. Identification of the fungiform papillae biopsy as the optimal collection method will facilitate further research into understanding the effect of gene expression on variability in human taste perception.
Collapse
|
20
|
Kumarhia D, He L, McCluskey LP. Inflammatory stimuli acutely modulate peripheral taste function. J Neurophysiol 2016; 115:2964-75. [PMID: 27009163 DOI: 10.1152/jn.01104.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/23/2016] [Indexed: 12/30/2022] Open
Abstract
Inflammation-mediated changes in taste perception can affect health outcomes in patients, but little is known about the underlying mechanisms. In the present work, we hypothesized that proinflammatory cytokines directly modulate Na(+) transport in taste buds. To test this, we measured acute changes in Na(+) flux in polarized fungiform taste buds loaded with a Na(+) indicator dye. IL-1β elicited an amiloride-sensitive increase in Na(+) transport in taste buds. In contrast, TNF-α dramatically and reversibly decreased Na(+) flux in polarized taste buds via amiloride-sensitive and amiloride-insensitive Na(+) transport systems. The speed and partial amiloride sensitivity of these changes in Na(+) flux indicate that IL-1β and TNF-α modulate epithelial Na(+) channel (ENaC) function. A portion of the TNF-mediated decrease in Na(+) flux is also blocked by the TRPV1 antagonist capsazepine, although TNF-α further reduced Na(+) transport independently of both amiloride and capsazepine. We also assessed taste function in vivo in a model of infection and inflammation that elevates these and additional cytokines. In rats administered systemic lipopolysaccharide (LPS), CT responses to Na(+) were significantly elevated between 1 and 2 h after LPS treatment. Low, normally preferred concentrations of NaCl and sodium acetate elicited high response magnitudes. Consistent with this outcome, codelivery of IL-1β and TNF-α enhanced Na(+) flux in polarized taste buds. These results demonstrate that inflammation elicits swift changes in Na(+) taste function, which may limit salt consumption during illness.
Collapse
Affiliation(s)
- Devaki Kumarhia
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia; and Graduate Program in Molecular Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Lianying He
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia; and
| | - Lynnette Phillips McCluskey
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia; and
| |
Collapse
|
21
|
Hu M, Liu Y, Wu J, Liu X. Influx-Operated Ca(2+) Entry via PKD2-L1 and PKD1-L3 Channels Facilitates Sensory Responses to Polymodal Transient Stimuli. Cell Rep 2015; 13:798-811. [PMID: 26489466 DOI: 10.1016/j.celrep.2015.09.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 08/18/2015] [Accepted: 09/13/2015] [Indexed: 12/21/2022] Open
Abstract
The polycystic TRP subfamily member PKD2-L1, in complex with PKD1-L3, is involved in physiological responses to diverse stimuli. A major challenge to understanding whether and how PKD2-L1/PKD1-L3 acts as a bona fide molecular transducer is that recombinant channels usually respond with small or undetectable currents. Here, we discover a type of Ca(2+) influx-operated Ca(2+) entry (ICE) that generates pronounced Ca(2+) spikes. Triggered by rapid onset/offset of Ca(2+), voltage, or acid stimuli, Ca(2+)-dependent activation amplifies a small Ca(2+) influx via the channel. Ca(2+) concurrently drives a self-limiting negative feedback (Ca(2+)-dependent inactivation) that is regulated by the Ca(2+)-binding EF hands of PKD2-L1. Our results suggest a biphasic ICE with opposite Ca(2+) feedback regulation that facilitates sensory responses to multimodal transient stimuli. We suggest that such a mechanism may also occur for other sensory modalities and other Ca(2+) channels.
Collapse
Affiliation(s)
- Mingfeng Hu
- X-Lab for Transmembrane Signaling Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yuxia Liu
- X-Lab for Transmembrane Signaling Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jinzhi Wu
- X-Lab for Transmembrane Signaling Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xiaodong Liu
- X-Lab for Transmembrane Signaling Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; School of Life Sciences, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
22
|
Tizzano M, Grigereit L, Shultz N, Clary MS, Finger TE. Immunohistochemical Analysis of Human Vallate Taste Buds. Chem Senses 2015; 40:655-60. [PMID: 26400924 DOI: 10.1093/chemse/bjv048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The morphology of the vallate papillae from postmortem human samples was investigated with immunohistochemistry. Microscopically, taste buds were present along the inner wall of the papilla, and in some cases in the outer wall as well. The typical taste cell markers PLCβ2, GNAT3 (gustducin) and the T1R3 receptor stain elongated cells in human taste buds consistent with the Type II cells in rodents. In the human tissue, taste bud cells that stain with Type II cell markers, PLCβ2 and GNAT3, also stain with villin antibody. Two typical immunochemical markers for Type III taste cells in rodents, PGP9.5 and SNAP25, fail to stain any taste bud cells in the human postmortem tissue, although these antibodies do stain numerous nerve fibers throughout the specimen. Car4, another Type III cell marker, reacted with only a few taste cells in our samples. Finally, human vallate papillae have a general network of innervation similar to rodents and antibodies directed against SNAP25, PGP9.5, acetylated tubulin and P2X3 all stain free perigemmal nerve endings as well as intragemmal taste fibers. We conclude that with the exception of certain molecular features of Type III cells, human vallate papillae share the structural, morphological, and molecular features observed in rodents.
Collapse
Affiliation(s)
- Marco Tizzano
- Rocky Mountain Taste & Smell Center, University of Colorado School of Medicine, 12801 E. 17th Avenue, Aurora, CO 80045, USA, Department of Cell & Developmental Biology, University of Colorado School of Medicine, 12801 E. 17th Avenue, Aurora, CO 80045, USA and
| | - Laura Grigereit
- Rocky Mountain Taste & Smell Center, University of Colorado School of Medicine, 12801 E. 17th Avenue, Aurora, CO 80045, USA, Department of Cell & Developmental Biology, University of Colorado School of Medicine, 12801 E. 17th Avenue, Aurora, CO 80045, USA and
| | - Nicole Shultz
- Rocky Mountain Taste & Smell Center, University of Colorado School of Medicine, 12801 E. 17th Avenue, Aurora, CO 80045, USA, Department of Cell & Developmental Biology, University of Colorado School of Medicine, 12801 E. 17th Avenue, Aurora, CO 80045, USA and
| | - Matthew S Clary
- Rocky Mountain Taste & Smell Center, University of Colorado School of Medicine, 12801 E. 17th Avenue, Aurora, CO 80045, USA, Department of Otolaryngology, University of Colorado School of Medicine, 12700 E. 19th Avenue, Aurora, CO 80045, USA
| | - Thomas E Finger
- Rocky Mountain Taste & Smell Center, University of Colorado School of Medicine, 12801 E. 17th Avenue, Aurora, CO 80045, USA, Department of Cell & Developmental Biology, University of Colorado School of Medicine, 12801 E. 17th Avenue, Aurora, CO 80045, USA and Department of Otolaryngology, University of Colorado School of Medicine, 12700 E. 19th Avenue, Aurora, CO 80045, USA
| |
Collapse
|
23
|
Fujikura K. Multiple loss-of-function variants of taste receptors in modern humans. Sci Rep 2015; 5:12349. [PMID: 26307445 PMCID: PMC4549710 DOI: 10.1038/srep12349] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 06/26/2015] [Indexed: 12/20/2022] Open
Abstract
Despite recent advances in the knowledge of interindividual taste differences, the underlying genetic backgrounds have remained to be fully elucidated. Much of the taste variation among different mammalian species can be explained by pseudogenization of taste receptors. Here I investigated whether the most recent disruptions of taste receptor genes segregate with their intact forms in modern humans by analyzing 14 ethnically diverse populations. The results revealed an unprecedented prevalence of 25 segregating loss-of-function (LoF) taste receptor variants, identifying one of the most pronounced cases of functional population diversity in the human genome. LoF variant frequency in taste receptors (2.10%) was considerably higher than the overall LoF frequency in human genome (0.16%). In particular, molecular evolutionary rates of candidate sour (14.7%) and bitter (1.8%) receptors were far higher in humans than those of sweet (0.02%), salty (0.05%), and umami (0.17%) receptors compared with other carnivorous mammals, although not all of the taste receptors were identified. Many LoF variants are population-specific, some of which arose even after population differentiation, not before divergence of the modern and archaic human. I conclude that modern humans might have been losing some sour and bitter receptor genes because of high-frequency LoF variants.
Collapse
Affiliation(s)
- Kohei Fujikura
- Kobe University School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| |
Collapse
|
24
|
PKD2L1/PKD1L3 channel complex with an alkali-activated mechanism and calcium-dependent inactivation. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2015; 44:483-92. [PMID: 26066678 DOI: 10.1007/s00249-015-1040-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 04/20/2015] [Accepted: 05/07/2015] [Indexed: 10/23/2022]
Abstract
Polycystic kidney disease-like (PKDL) genes that are expressed in sour taste cells have been proposed to be involved in the transduction of sourness by producing off-responses, which shows a large inward current after withdrawing the acid stimuli. However, the underlying mechanisms of off-responses are still unclear. Here, we demonstrate that an alkali-activated mechanism is responsible for eliciting off-responses, as evidenced by both experimental and theoretical analyses. In addition, we showed that the decaying phase of offset responses in PKD2L1/PKD1L3 channels was substantially accelerated by extracellular Ca(2+).
Collapse
|
25
|
DeSimone JA, Phan THT, Mummalaneni S, Rhyu MR, Heck GL, Lyall V. Regulatory Effects of Ca2+ and H+ on the Rat Chorda Tympani Response to NaCl and KCl. Chem Senses 2015; 40:401-12. [PMID: 25953775 DOI: 10.1093/chemse/bjv022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Modulatory effects of pHi and [Ca(2+)]i on taste receptor cell (TRC) epithelial sodium channel (ENaC) were investigated by monitoring chorda tympani (CT) responses to NaCl and KCl at various lingual voltages, before and after lingual application of ionomycin and with 0-10mM CaCl2 in the stimulus and rinse solutions adjusted to pHo 2.0-9.7. 0.1 and 0.5M KCl responses varied continuously with voltage and were fitted to an apical ion channel kinetic model using the same parameters. ENaC-dependent NaCl CT response was fitted to the same channel model but with parameters characteristic of ENaC. A graded increase in TRC [Ca(2+)]i decreased the ENaC-dependent NaCl CT response, and inhibited and ultimately eliminated its pH sensitivity. CT responses to KCl were pHi- and [Ca(2+)]i-independent. Between ±60 mV applied lingual potential, the data were well described by a linear approximation to the nonlinear channel equation and yielded 2 parameters, the open-circuit response and the negative of the slope of the line in the CT response versus voltage plot, designated the response conductance. The ENaC-dependent NaCl CT response conductance was a linear function of the open-circuit response for all pHi-[Ca(2+)]i combinations examined. Analysis of these data shows that pHi and [Ca(2+)]i regulate TRC ENaC exclusively through modulation of the maximum CT response.
Collapse
Affiliation(s)
- John A DeSimone
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA 23298-0551, USA and
| | - Tam-Hao T Phan
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA 23298-0551, USA and
| | - Shobha Mummalaneni
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA 23298-0551, USA and
| | - Mee-Ra Rhyu
- Korea Food Research Institute, Bundang-gu, Sungnam-si, Gyeonggi-do 463-746, Korea
| | - Gerard L Heck
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA 23298-0551, USA and
| | - Vijay Lyall
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA 23298-0551, USA and
| |
Collapse
|
26
|
|
27
|
Molecular mechanisms of taste recognition: considerations about the role of saliva. Int J Mol Sci 2015; 16:5945-74. [PMID: 25782158 PMCID: PMC4394514 DOI: 10.3390/ijms16035945] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 03/05/2015] [Accepted: 03/06/2015] [Indexed: 12/13/2022] Open
Abstract
The gustatory system plays a critical role in determining food preferences and food intake, in addition to nutritive, energy and electrolyte balance. Fine tuning of the gustatory system is also crucial in this respect. The exact mechanisms that fine tune taste sensitivity are as of yet poorly defined, but it is clear that various effects of saliva on taste recognition are also involved. Specifically those metabolic polypeptides present in the saliva that were classically considered to be gut and appetite hormones (i.e., leptin, ghrelin, insulin, neuropeptide Y, peptide YY) were considered to play a pivotal role. Besides these, data clearly indicate the major role of several other salivary proteins, such as salivary carbonic anhydrase (gustin), proline-rich proteins, cystatins, alpha-amylases, histatins, salivary albumin and mucins. Other proteins like glucagon-like peptide-1, salivary immunoglobulin-A, zinc-α-2-glycoprotein, salivary lactoperoxidase, salivary prolactin-inducible protein and salivary molecular chaperone HSP70/HSPAs were also expected to play an important role. Furthermore, factors including salivary flow rate, buffer capacity and ionic composition of saliva should also be considered. In this paper, the current state of research related to the above and the overall emerging field of taste-related salivary research alongside basic principles of taste perception is reviewed.
Collapse
|
28
|
Ishimaru Y. Molecular mechanisms underlying the reception and transmission of sour taste information. Biosci Biotechnol Biochem 2015; 79:171-6. [DOI: 10.1080/09168451.2014.975187] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Abstract
Taste enables organisms to determine the properties of ingested substances by conveying information regarding the five basic taste modalities: sweet, salty, sour, bitter, and umami. The sweet, salty, and umami taste modalities convey the carbohydrate, electrolyte, and glutamate content of food, indicating its desirability and stimulating appetitive responses. The sour and bitter modalities convey the acidity of food and the presence of potential toxins, respectively, stimulating aversive responses to such tastes. In recent years, the receptors mediating sweet, bitter, and umami tastes have been identified as members of the T1R and T2R G-protein-coupled receptor families; however, the molecular mechanisms underlying sour taste detection have yet to be clearly elucidated. This review covers the molecular mechanisms proposed to mediate the detection and transmission of sour stimuli, focusing on polycystic kidney disease 1-like 3 (Pkd1l3), Pkd2l1, and carbonic anhydrase 4 (Car4).
Collapse
Affiliation(s)
- Yoshiro Ishimaru
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Japan
| |
Collapse
|
29
|
Holzer P. Acid-sensing ion channels in gastrointestinal function. Neuropharmacology 2015; 94:72-9. [PMID: 25582294 DOI: 10.1016/j.neuropharm.2014.12.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 11/21/2014] [Accepted: 12/04/2014] [Indexed: 12/15/2022]
Abstract
Gastric acid is of paramount importance for digestion and protection from pathogens but, at the same time, is a threat to the integrity of the mucosa in the upper gastrointestinal tract and may give rise to pain if inflammation or ulceration ensues. Luminal acidity in the colon is determined by lactate production and microbial transformation of carbohydrates to short chain fatty acids as well as formation of ammonia. The pH in the oesophagus, stomach and intestine is surveyed by a network of acid sensors among which acid-sensing ion channels (ASICs) and acid-sensitive members of transient receptor potential ion channels take a special place. In the gut, ASICs (ASIC1, ASIC2, ASIC3) are primarily expressed by the peripheral axons of vagal and spinal afferent neurons and are responsible for distinct proton-gated currents in these neurons. ASICs survey moderate decreases in extracellular pH and through these properties contribute to a protective blood flow increase in the face of mucosal acid challenge. Importantly, experimental studies provide increasing evidence that ASICs contribute to gastric acid hypersensitivity and pain under conditions of gastritis and peptic ulceration but also participate in colonic hypersensitivity to mechanical stimuli (distension) under conditions of irritation that are not necessarily associated with overt inflammation. These functional implications and their upregulation by inflammatory and non-inflammatory pathologies make ASICs potential targets to manage visceral hypersensitivity and pain associated with functional gastrointestinal disorders. This article is part of the Special Issue entitled 'Acid-Sensing Ion Channels in the Nervous System'.
Collapse
Affiliation(s)
- Peter Holzer
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, A-8010 Graz, Austria.
| |
Collapse
|
30
|
Shigemura N. Modulation of Taste Responsiveness by Angiotensin II. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2015. [DOI: 10.3136/fstr.21.757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Noriatsu Shigemura
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University
| |
Collapse
|
31
|
Abstract
TRP channels are expressed in taste buds, nerve fibers, and keratinocytes in the oronasal cavity. These channels play integral roles in transducing chemical stimuli, giving rise to sensations of taste, irritation, warmth, coolness, and pungency. Specifically, TRPM5 acts downstream of taste receptors in the taste transduction pathway. TRPM5 channels convert taste-evoked intracellular Ca(2+) release into membrane depolarization to trigger taste transmitter secretion. PKD2L1 is expressed in acid-sensitive (sour) taste bud cells but is unlikely to be the transducer for sour taste. TRPV1 is a receptor for pungent chemical stimuli such as capsaicin and for several irritants (chemesthesis). It is controversial whether TRPV1 is present in the taste buds and plays a direct role in taste. Instead, TRPV1 is expressed in non-gustatory sensory afferent fibers and in keratinocytes of the oronasal cavity. In many sensory fibers and epithelial cells lining the oronasal cavity, TRPA1 is also co-expressed with TRPV1. As with TRPV1, TRPA1 transduces a wide variety of irritants and, in combination with TRPV1, assures that there is a broad response to noxious chemical stimuli. Other TRP channels, including TRPM8, TRPV3, and TRPV4, play less prominent roles in chemesthesis and no known role in taste, per se. The pungency of foods and beverages is likely highly influenced by the temperature at which they are consumed, their acidity, and, for beverages, their carbonation. All these factors modulate the activity of TRP channels in taste buds and in the oronasal mucosa.
Collapse
Affiliation(s)
- Stephen D Roper
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, 1600 NW 10th Ave., Miami, FL, 33136, USA,
| |
Collapse
|
32
|
Zhu K, Zhou X, Xu S, Sun D, Ren W, Zhou K, Yang G. The loss of taste genes in cetaceans. BMC Evol Biol 2014; 14:218. [PMID: 25305673 PMCID: PMC4232718 DOI: 10.1186/s12862-014-0218-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 10/02/2014] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Five basic taste modalities, sour, sweet, bitter, salt and umami, can be distinguished by humans and are fundamental for physical and ecological adaptations in mammals. Molecular genetic studies of the receptor genes for these tastes have been conducted in terrestrial mammals; however, little is known about the evolution and adaptation of these genes in marine mammals. RESULTS Here, all five basic taste modalities, sour, sweet, bitter, salt and umami, were investigated in cetaceans. The sequence characteristics and evolutionary analyses of taste receptor genes suggested that nearly all cetaceans may have lost all taste modalities except for that of salt. CONCLUSIONS This is the first study to comprehensively examine the five basic taste modalities in cetaceans with extensive taxa sampling. Our results suggest that cetaceans have lost four of the basic taste modalities including sour, sweet, umami, and most of the ability to sense bitter tastes. The integrity of the candidate salt taste receptor genes in all the cetaceans examined may be because of their function in Na(+) reabsorption, which is key to osmoregulation and aquatic adaptation.
Collapse
Affiliation(s)
- Kangli Zhu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| | - Xuming Zhou
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| | - Shixia Xu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| | - Di Sun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| | - Wenhua Ren
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| | - Kaiya Zhou
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| | - Guang Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
33
|
Abstract
The discovery of new drug targets represents a real opportunity for developing fresh strategies against pain. Ion channels are interesting targets because they are directly involved in the detection and the transmission of noxious stimuli by sensory fibres of the peripheral nervous system and by neurons of the spinal cord. Acid-Sensing Ion Channels (ASICs) have emerged as important players in the pain pathway. They are neuronal, voltage-independent depolarizing sodium channels activated by extracellular protons. The ASIC family comprises several subunits that need to associate into homo- or hetero-trimers to form a functional channel. The ASIC1 and ASIC3 isoforms are particularly important in sensory neurons, whereas ASIC1a, alone or in association with ASIC2, is essential in the central nervous system. The potent analgesic effects associated with their inhibition in animals (which can be comparable to those of morphine) and data suggesting a role in human pain illustrate the therapeutic potential of these channels.
Collapse
Affiliation(s)
- Eric Lingueglia
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, 660 route des Lucioles, Sophia Antipolis, 06560 Valbonne, France - Université de Nice-Sophia Antipolis, 660 route des Lucioles, 06560 Valbonne, France - LabEx Ion Channel Science and Therapeutics, 06560 Valbonne, France
| |
Collapse
|
34
|
Mummalaneni S, Qian J, Phan THT, Rhyu MR, Heck GL, DeSimone JA, Lyall V. Effect of ENaC modulators on rat neural responses to NaCl. PLoS One 2014; 9:e98049. [PMID: 24839965 PMCID: PMC4026388 DOI: 10.1371/journal.pone.0098049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 04/28/2014] [Indexed: 01/31/2023] Open
Abstract
The effects of small molecule ENaC activators N,N,N-trimethyl-2-((4-methyl-2-((4-methyl-1H-indol-3-yl)thio)pentanoyl)oxy)ethanaminium iodide (Compound 1) and N-(2-hydroxyethyl)-4-methyl-2-((4-methyl-1H-indol-3-yl)thio)pentanamide (Compound 2), were tested on the benzamil (Bz)-sensitive NaCl chorda tympani (CT) taste nerve response under open-circuit conditions and under ±60 mV applied lingual voltage-clamp, and compared with the effects of known physiological activators (8-CPT-cAMP, BAPTA-AM, and alkaline pH), and an inhibitor (ionomycin+Ca2+) of ENaC. The NaCl CT response was enhanced at −60 mV and suppressed at +60 mV. In every case the CT response (r) versus voltage (V) curve was linear. All ENaC activators increased the open-circuit response (ro) and the voltage sensitivity (κ, negative of the slope of the r versus V curve) and ionomycin+Ca2+ decreased ro and κ to zero. Compound 1 and Compound 2 expressed a sigmoidal-saturating function of concentration (0.25–1 mM) with a half-maximal response concentration (k) of 0.49 and 1.05 mM, respectively. Following treatment with 1 mM Compound 1, 8-CPT-cAMP, BAPTA-AM and pH 10.3, the Bz-sensitive NaCl CT response to 100 mM NaCl was enhanced and was equivalent to the Bz-sensitive CT response to 300 mM NaCl. Plots of κ versus ro in the absence and presence of the activators or the inhibitor were linear, suggesting that changes in the affinity of Na+ for ENaC under different conditions are fully compensated by changes in the apical membrane potential difference, and that the observed changes in the Bz-sensitive NaCl CT response arise exclusively from changes in the maximum CT response (rm). The results further suggest that the agonists enhance and ionomycin+Ca2+ decreases ENaC function by increasing or decreasing the rate of release of Na+ from its ENaC binding site to the receptor cell cytosol, respectively. Irrespective of agonist type, the Bz-sensitive NaCl CT response demonstrated a maximum response enhancement limit of about 75% over control value.
Collapse
Affiliation(s)
- Shobha Mummalaneni
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Jie Qian
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Tam-Hao T. Phan
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Mee-Ra Rhyu
- Korea Food Research Institute, Bundang-gu, Sungnam-si, Gyeonggi-do, Korea
| | - Gerard L. Heck
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - John A. DeSimone
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Vijay Lyall
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail:
| |
Collapse
|
35
|
Kim MJ, Son HJ, Kim Y, Kweon HJ, Suh BC, Lyall V, Rhyu MR. Selective activation of hTRPV1 by N-geranyl cyclopropylcarboxamide, an amiloride-insensitive salt taste enhancer. PLoS One 2014; 9:e89062. [PMID: 24586504 PMCID: PMC3930709 DOI: 10.1371/journal.pone.0089062] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 01/14/2014] [Indexed: 02/06/2023] Open
Abstract
TRPV1t, a variant of the transient receptor potential vanilloid-1 (TRPV1) has been proposed as a constitutively active, non-selective cation channel as a putative amiloride-insensitive salt taste receptor and shares many properties with TRPV1. Based on our previous chorda tympani taste nerve recordings in rodents and human sensory evaluations, we proposed that N-geranylcyclopropylcarboxamide (NGCC), a novel synthetic compound, acts as a salt taste enhancer by modulating the amiloride/benzamil-insensitive Na+ entry pathways. As an extension of this work, we investigated NGCC-induced human TRPV1 (hTRPV1) activation using a Ca2+-flux signaling assay in cultured cells. NGCC enhanced Ca2+ influx in hTRPV1-expressing cells in a dose-dependent manner (EC50 = 115 µM). NGCC-induced Ca2+ influx was significantly attenuated by ruthenium red (RR; 30 µM), a non-specific blocker of TRP channels and capsazepine (CZP; 5 µM), a specific antagonist of TRPV1, implying that NGCC directly activates hTRPV1. TRPA1 is often co-expressed with TRPV1 in sensory neurons. Therefore, we also investigated the effects of NGCC on hTRPA1-expressing cells. Similar to hTRPV1, NGCC enhanced Ca2+ influx in hTRPA1-expressing cells (EC50 = 83.65 µM). The NGCC-induced Ca2+ influx in hTRPA1-expressing cells was blocked by RR (30 µM) and HC-030031 (100 µM), a specific antagonist of TRPA1. These results suggested that NGCC selectively activates TRPV1 and TRPA1 in cultured cells. These data may provide additional support for our previous hypothesis that NGCC interacts with TRPV1 variant cation channel, a putative amiloride/benzamil-insensitive salt taste pathway in the anterior taste receptive field.
Collapse
Affiliation(s)
- Min Jung Kim
- Division of Metabolism and Functionality Research, Korea Food Research Institute, Bundang-gu, Sungnam-si, Gyeonggi-do, Republic of Korea
| | - Hee Jin Son
- Division of Metabolism and Functionality Research, Korea Food Research Institute, Bundang-gu, Sungnam-si, Gyeonggi-do, Republic of Korea
| | - Yiseul Kim
- Division of Metabolism and Functionality Research, Korea Food Research Institute, Bundang-gu, Sungnam-si, Gyeonggi-do, Republic of Korea
| | - Hae-Jin Kweon
- Department of Brain Science, DaeguGyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Byung-Chang Suh
- Department of Brain Science, DaeguGyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Vijay Lyall
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Mee-Ra Rhyu
- Division of Metabolism and Functionality Research, Korea Food Research Institute, Bundang-gu, Sungnam-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
36
|
Noël J, Salinas M, Baron A, Diochot S, Deval E, Lingueglia E. Current perspectives on acid-sensing ion channels: new advances and therapeutic implications. Expert Rev Clin Pharmacol 2014; 3:331-46. [DOI: 10.1586/ecp.10.13] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
37
|
Bachmanov AA, Bosak NP, Lin C, Matsumoto I, Ohmoto M, Reed DR, Nelson TM. Genetics of taste receptors. Curr Pharm Des 2014; 20:2669-83. [PMID: 23886383 PMCID: PMC4764331 DOI: 10.2174/13816128113199990566] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 07/24/2013] [Indexed: 12/19/2022]
Abstract
Taste receptors function as one of the interfaces between internal and external milieus. Taste receptors for sweet and umami (T1R [taste receptor, type 1]), bitter (T2R [taste receptor, type 2]), and salty (ENaC [epithelial sodium channel]) have been discovered in the recent years, but transduction mechanisms of sour taste and ENaC-independent salt taste are still poorly understood. In addition to these five main taste qualities, the taste system detects such noncanonical "tastes" as water, fat, and complex carbohydrates, but their reception mechanisms require further research. Variations in taste receptor genes between and within vertebrate species contribute to individual and species differences in taste-related behaviors. These variations are shaped by evolutionary forces and reflect species adaptations to their chemical environments and feeding ecology. Principles of drug discovery can be applied to taste receptors as targets in order to develop novel taste compounds to satisfy demand in better artificial sweeteners, enhancers of sugar and sodium taste, and blockers of bitterness of food ingredients and oral medications.
Collapse
|
38
|
Feng P, Huang L, Wang H. Taste bud homeostasis in health, disease, and aging. Chem Senses 2013; 39:3-16. [PMID: 24287552 DOI: 10.1093/chemse/bjt059] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The mammalian taste bud is an onion-shaped epithelial structure with 50-100 tightly packed cells, including taste receptor cells, supporting cells, and basal cells. Taste receptor cells detect nutrients and toxins in the oral cavity and transmit the sensory information to gustatory nerve endings in the buds. Supporting cells may play a role in the clearance of excess neurotransmitters after their release from taste receptor cells. Basal cells are precursor cells that differentiate into mature taste cells. Similar to other epithelial cells, taste cells turn over continuously, with an average life span of about 8-12 days. To maintain structural homeostasis in taste buds, new cells are generated to replace dying cells. Several recent studies using genetic lineage tracing methods have identified populations of progenitor/stem cells for taste buds, although contributions of these progenitor/stem cell populations to taste bud homeostasis have yet to be fully determined. Some regulatory factors of taste cell differentiation and degeneration have been identified, but our understanding of these aspects of taste bud homoeostasis remains limited. Many patients with various diseases develop taste disorders, including taste loss and taste distortion. Decline in taste function also occurs during aging. Recent studies suggest that disruption or alteration of taste bud homeostasis may contribute to taste dysfunction associated with disease and aging.
Collapse
Affiliation(s)
- Pu Feng
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA.
| | | | | |
Collapse
|
39
|
Yu Y, Ulbrich MH, Li MH, Dobbins S, Zhang WK, Tong L, Isacoff EY, Yang J. Molecular mechanism of the assembly of an acid-sensing receptor ion channel complex. Nat Commun 2013; 3:1252. [PMID: 23212381 PMCID: PMC3575195 DOI: 10.1038/ncomms2257] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 11/05/2012] [Indexed: 12/11/2022] Open
Abstract
Polycystic kidney disease (PKD) family proteins associate with transient receptor potential (TRP) channel family proteins to form functionally important complexes. PKD proteins differ from known ion channel-forming proteins and are generally thought to act as membrane receptors. Here we find that PKD1L3, a PKD protein, functions as a channel-forming subunit in an acid-sensing heteromeric complex formed by PKD1L3 and TRPP3, a TRP channel protein. Single amino-acid mutations in the putative pore region of both proteins alter the channel's ion selectivity. The PKD1L3/TRPP3 complex in the plasma membrane of live cells contains one PKD1L3 and three TRPP3. A TRPP3 C-terminal coiled-coil domain forms a trimer in solution and in crystal, and has a crucial role in the assembly and surface expression of the PKD1L3/TRPP3 complex. These results demonstrate that PKD subunits constitute a new class of channel-forming proteins, enriching our understanding of the function of PKD proteins and PKD/TRPP complexes.
Collapse
Affiliation(s)
- Yong Yu
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Wu JHY, Lemaitre RN, Manichaikul A, Guan W, Tanaka T, Foy M, Kabagambe EK, Djousse L, Siscovick D, Fretts AM, Johnson C, King IB, Psaty BM, McKnight B, Rich SS, Chen YDI, Nettleton JA, Tang W, Bandinelli S, Jacobs DR, Browning BL, Laurie CC, Gu X, Tsai MY, Steffen LM, Ferrucci L, Fornage M, Mozaffarian D. Genome-wide association study identifies novel loci associated with concentrations of four plasma phospholipid fatty acids in the de novo lipogenesis pathway: results from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium. CIRCULATION. CARDIOVASCULAR GENETICS 2013; 6:171-83. [PMID: 23362303 PMCID: PMC3891054 DOI: 10.1161/circgenetics.112.964619] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND- Palmitic acid (16:0), stearic acid (18:0), palmitoleic acid (16:1n-7), and oleic acid (18:1n-9) are major saturated and monounsaturated fatty acids that affect cellular signaling and metabolic pathways. They are synthesized via de novo lipogenesis and are the main saturated and monounsaturated fatty acids in the diet. Levels of these fatty acids have been linked to diseases including type 2 diabetes mellitus and coronary heart disease. METHODS AND RESULTS- Genome-wide association studies were conducted in 5 population-based cohorts comprising 8961 participants of European ancestry to investigate the association of common genetic variation with plasma levels of these 4 fatty acids. We identified polymorphisms in 7 novel loci associated with circulating levels of ≥1 of these fatty acids. ALG14 (asparagine-linked glycosylation 14 homolog) polymorphisms were associated with higher 16:0 (P=2.7×10(-11)) and lower 18:0 (P=2.2×10(-18)). FADS1 and FADS2 (desaturases) polymorphisms were associated with higher 16:1n-7 (P=6.6×10(-13)) and 18:1n-9 (P=2.2×10(-32)) and lower 18:0 (P=1.3×10(-20)). LPGAT1 (lysophosphatidylglycerol acyltransferase) polymorphisms were associated with lower 18:0 (P=2.8×10(-9)). GCKR (glucokinase regulator; P=9.8×10(-10)) and HIF1AN (factor inhibiting hypoxia-inducible factor-1; P=5.7×10(-9)) polymorphisms were associated with higher 16:1n-7, whereas PKD2L1 (polycystic kidney disease 2-like 1; P=5.7×10(-15)) and a locus on chromosome 2 (not near known genes) were associated with lower 16:1n-7 (P=4.1×10(-8)). CONCLUSIONS- Our findings provide novel evidence that common variations in genes with diverse functions, including protein-glycosylation, polyunsaturated fatty acid metabolism, phospholipid modeling, and glucose- and oxygen-sensing pathways, are associated with circulating levels of 4 fatty acids in the de novo lipogenesis pathway. These results expand our knowledge of genetic factors relevant to de novo lipogenesis and fatty acid biology.
Collapse
Affiliation(s)
- Jason H Y Wu
- Department of Epidemiology and Nutrition, Harvard School of Public Health, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Coupling of proton binding in extracellular domain to channel gating in acid-sensing ion channel. J Mol Neurosci 2013; 51:199-207. [PMID: 23494639 DOI: 10.1007/s12031-013-9991-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Accepted: 03/03/2013] [Indexed: 01/15/2023]
Abstract
Protonation of several amino acid residues in the extracellular domain (ECD) of acid-sensing ion channel (ASIC) causes conformational changes that lead to opening of the channel. It is not clear how conformational changes in ECD are coupled to channel gating. Here, we show that the loop connecting β9 and α4 at the base of the thumb region of ECD interacts with post-TM1 to stabilize the channel in the closed state. Flexibility of these two regions is important for optimum gating of the channel. In ASIC1a, when Y71 (post-TM1) and W287 (β9-α4 loop) were mutated to cysteine, they formed disulfide bond in the closed state. Breaking of the disulfide bond by reducing agent dithiothreitol (DTT) or tris(2-carboxyethyl)phosphine (TCEP) potentiated the current significantly. Engineered cysteine G288C reacted with sulfhydryl-specific methanethiosulfonate ethyltrimethylammonium (MTSET) in the open state but not in closed/steady desensitized state, suggesting gating-associated conformational movement of this loop. We also identified a salt bridge between highly conserved R64 at TM1 and D432 at TM2 that is important for optimum gating. Based on our results and other published work, we propose that proton binding in ECD is followed by the displacement of the β9-α4 loop of the thumb, leading to the rotation of TM1. Conformational movement propagates to TM2 and the channel gate opens by the concomitant movement of TM2 and breaking of the salt bridge between R64 and D432.
Collapse
|
42
|
Ji HL, Zhao RZ, Chen ZX, Shetty S, Idell S, Matalon S. δ ENaC: a novel divergent amiloride-inhibitable sodium channel. Am J Physiol Lung Cell Mol Physiol 2012; 303:L1013-26. [PMID: 22983350 DOI: 10.1152/ajplung.00206.2012] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The fourth subunit of the epithelial sodium channel, termed delta subunit (δ ENaC), was cloned in human and monkey. Increasing evidence shows that this unique subunit and its splice variants exhibit biophysical and pharmacological properties that are divergent from those of α ENaC channels. The widespread distribution of epithelial sodium channels in both epithelial and nonepithelial tissues implies a range of physiological functions. The altered expression of SCNN1D is associated with numerous pathological conditions. Genetic studies link SCNN1D deficiency with rare genetic diseases with developmental and functional disorders in the brain, heart, and respiratory systems. Here, we review the progress of research on δ ENaC in genomics, biophysics, proteomics, physiology, pharmacology, and clinical medicine.
Collapse
Affiliation(s)
- Hong-Long Ji
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas, USA.
| | | | | | | | | | | |
Collapse
|
43
|
Desimone JA, Ren Z, Phan THT, Heck GL, Mummalaneni S, Lyall V. Changes in taste receptor cell [Ca2+]i modulate chorda tympani responses to salty and sour taste stimuli. J Neurophysiol 2012; 108:3206-20. [PMID: 22956787 DOI: 10.1152/jn.00916.2011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The relationship between taste receptor cell (TRC) Ca(2+) concentration ([Ca(2+)](i)) and rat chorda tympani (CT) nerve responses to salty [NaCl and NaCl+benzamil (Bz)] and sour (HCl, CO(2), and acetic acid) taste stimuli was investigated before and after lingual application of ionomycin+Ca(2+), 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester (BAPTA-AM), U73122 (phospholipase C blocker), and thapsigargin (Ca(2+)-ATPase inhibitor) under open-circuit or lingual voltage-clamp conditions. An increase in TRC [Ca(2+)](i) attenuated the tonic Bz-sensitive NaCl CT response and the apical membrane Na(+) conductance. A decrease in TRC [Ca(2+)](i) enhanced the tonic Bz-sensitive and Bz-insensitive NaCl CT responses and apical membrane Na(+) conductance but did not affect CT responses to KCl or NH(4)Cl. An increase in TRC [Ca(2+)](i) did not alter the phasic response but attenuated the tonic CT response to acidic stimuli. A decrease in [Ca(2+)](i) did not alter the phasic response but attenuated the tonic CT response to acidic stimuli. In a subset of TRCs, a positive relationship between [H(+)](i) and [Ca(2+)](i) was obtained using in vitro imaging techniques. U73122 inhibited the tonic CT responses to NaCl, and thapsigargin inhibited the tonic CT responses to salty and sour stimuli. The results suggest that salty and sour taste qualities are transduced by [Ca(2+)](i)-dependent and [Ca(2+)](i)-independent mechanisms. Changes in TRC [Ca(2+)](i) in a BAPTA-sensitive cytosolic compartment regulate ion channels and cotransporters involved in the salty and sour taste transduction mechanisms and in neural adaptation. Changes in TRC [Ca(2+)](i) in a separate subcompartment, sensitive to inositol trisphosphate and thapsigargin but inaccessible to BAPTA, are associated with neurotransmitter release.
Collapse
Affiliation(s)
- John A Desimone
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, USA
| | | | | | | | | | | |
Collapse
|
44
|
Genetic Predisposition and Taste Preference: Impact on Food Intake and Risk of Chronic Disease. Curr Nutr Rep 2012. [DOI: 10.1007/s13668-012-0021-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
45
|
Newcomb RD, Xia MB, Reed DR. Heritable differences in chemosensory ability among humans. ACTA ACUST UNITED AC 2012. [DOI: 10.1186/2044-7248-1-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Abstract
The combined senses of taste, smell and the common chemical sense merge to form what we call ‘flavor.’ People show marked differences in their ability to detect many flavors, and in this paper, we review the role of genetics underlying these differences in perception. Most of the genes identified to date encode receptors responsible for detecting tastes or odorants. We list these genes and describe their characteristics, beginning with the best-studied case, that of differences in phenylthiocarbamide (PTC) detection, encoded by variants of the bitter taste receptor gene TAS2R38. We then outline examples of genes involved in differences in sweet and umami taste, and discuss what is known about other taste qualities, including sour and salty, fat (termed pinguis), calcium, and the ‘burn’ of peppers. Although the repertoire of receptors involved in taste perception is relatively small, with 25 bitter and only a few sweet and umami receptors, the number of odorant receptors is much larger, with about 400 functional receptors and another 600 potential odorant receptors predicted to be non-functional. Despite this, to date, there are only a few cases of odorant receptor variants that encode differences in the perception of odors: receptors for androstenone (musky), isovaleric acid (cheesy), cis-3-hexen-1-ol (grassy), and the urinary metabolites of asparagus. A genome-wide study also implicates genes other than olfactory receptors for some individual differences in perception. Although there are only a small number of examples reported to date, there may be many more genetic variants in odor and taste genes yet to be discovered.
Collapse
|
46
|
Giraldez T, Rojas P, Jou J, Flores C, Alvarez de la Rosa D. The epithelial sodium channel δ-subunit: new notes for an old song. Am J Physiol Renal Physiol 2012; 303:F328-38. [PMID: 22573384 DOI: 10.1152/ajprenal.00116.2012] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Amiloride-sensitive epithelial Na(+) channels (ENaCs) can be formed by different combinations of four homologous subunits, named α, β, γ, and δ. In addition to providing an apical entry pathway for transepithelial Na(+) reabsorption in tight epithelia such as the kidney distal tubule and collecting duct, ENaCs are also expressed in nonepithelial cells, where they may play different functional roles. The δ-subunit of ENaC was originally identified in humans and is able to form amiloride-sensitive Na(+) channels alone or in combination with β and γ, generally resembling the canonical kidney ENaC formed by α, β, and γ. However, δ differs from α in its tissue distribution and channel properties. Despite the low sequence conservation between α and δ (37% identity), their similar functional characteristics provide an excellent model for exploring structural correlates of specific ENaC biophysical and pharmacological properties. Moreover, the study of cellular mechanisms modulating the activity of different ENaC subunit combinations provides an opportunity to gain insight into the regulation of the channel. In this review, we examine the evolution of ENaC genes, channel subunit composition, the distinct functional and pharmacological features that δ confers to ENaC, and how this can be exploited to better understand this ion channel. Finally, we briefly consider possible functional roles of the ENaC δ-subunit.
Collapse
Affiliation(s)
- Teresa Giraldez
- Research Division, University Hospital N.S. Candelaria, Santa Cruz de Tenerife, Tenerife, Spain
| | | | | | | | | |
Collapse
|
47
|
Abstract
The epithelial Na(+) channel (ENaC) and acid-sensitive ion channel (ASIC) branches of the ENaC/degenerin superfamily of cation channels have drawn increasing attention as potential therapeutic targets in a variety of diseases and conditions. Originally thought to be solely expressed in fluid absorptive epithelia and in neurons, it has become apparent that members of this family exhibit nearly ubiquitous expression. Therapeutic opportunities range from hypertension, due to the role of ENaC in maintaining whole body salt and water homeostasis, to anxiety disorders and pain associated with ASIC activity. As a physiologist intrigued by the fundamental mechanics of salt and water transport, it was natural that Dale Benos, to whom this series of reviews is dedicated, should have been at the forefront of research into the amiloride-sensitive sodium channel. The cloning of ENaC and subsequently the ASIC channels has revealed a far wider role for this channel family than was previously imagined. In this review, we will discuss the known and potential roles of ENaC and ASIC subunits in the wide variety of pathologies in which these channels have been implicated. Some of these, such as the role of ENaC in Liddle's syndrome are well established, others less so; however, all are related in that the fundamental defect is due to inappropriate channel activity.
Collapse
Affiliation(s)
- Yawar J Qadri
- Department of Physiology and Biophysics, University of Alabama at Birmingham, AL 35294, USA
| | | | | |
Collapse
|
48
|
|
49
|
Wu WL, Cheng CF, Sun WH, Wong CW, Chen CC. Targeting ASIC3 for pain, anxiety, and insulin resistance. Pharmacol Ther 2011; 134:127-38. [PMID: 22233754 DOI: 10.1016/j.pharmthera.2011.12.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 12/05/2011] [Indexed: 02/07/2023]
Abstract
The acid-sensing ion channel 3 (ASIC3) is a pH sensor that responds to mild extracellular acidification and is predominantly expressed in nociceptors. There is much interest in targeting ASIC3 to relieve pain associated with tissue acidosis, and selective drugs targeting ASIC3 have been used to relieve acid-evoked pain in animal models and human studies. There is accumulating evidence that ASIC3 is widely expressed in many neuronal and non-neuronal cells, such as neurons in the brain and adipose cells, albeit to a lesser extent than in nociceptors. Asic3-knockout mice have reduced anxiety levels and enhanced insulin sensitivity, suggesting that antagonizing ASIC3 has additional benefits. This view is tempered by recent studies suggesting that Asic3-knockout mice may experience cardiovascular disturbances. Due to the development of ASIC3 antagonists as analgesics, we review here the additional benefits, safety, risks, and strategy associated with antagonizing ASIC3 function.
Collapse
Affiliation(s)
- Wei-Li Wu
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Road, Section 2, Taipei 115, Taiwan
| | | | | | | | | |
Collapse
|
50
|
Yang J, Wang Q, Zheng W, Tuli J, Li Q, Wu Y, Hussein S, Dai XQ, Shafiei S, Li XG, Shen PY, Tu JC, Chen XZ. Receptor for activated C kinase 1 (RACK1) inhibits function of transient receptor potential (TRP)-type channel Pkd2L1 through physical interaction. J Biol Chem 2011; 287:6551-61. [PMID: 22174419 DOI: 10.1074/jbc.m111.305854] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pkd2L1 (also called TRPP3) is a non-selective cation channel permeable to Ca(2+), Na(+), and K(+) and is activated by Ca(2+). It is also part of an acid-triggered off-response cation channel complex. We previously reported roles of the Pkd2L1 C-terminal fragments in its channel function, but the role of the N terminus remains unclear. Using a yeast two-hybrid screening, we found that the Pkd2L1 N terminus interacts with the receptor for activated C kinase 1 (RACK1), a scaffolding/anchoring protein implicated in various cellular functions. This interaction requires the last two Trp-Asp (WD) motifs of RACK1 and fragment Ala(19)-Pro(45) of Pkd2L1. The interaction was confirmed by GST pulldown, blot overlay, and co-immunoprecipitation assays. By (45)Ca tracer uptake and two-microelectrode voltage clamp electrophysiology, we found that in Xenopus oocytes with RACK1 overexpression Pkd2L1 channel activity is abolished or substantially reduced. Combining with oocyte surface biotinylation experiments, we demonstrated that RACK1 inhibits the function of Pkd2L1 channel on the plasma membrane in addition to reducing its total and plasma membrane expression. Overexpressing Pkd2L1 N- or C-terminal fragments as potential blocking peptides for the Pkd2L1-RACK1 interaction, we found that Pkd2L1 N-terminal fragment Met(1)-Pro(45), but not Ile(40)-Ile(97) or C-terminal fragments, abolishes the inhibition of Pkd2L1 channel by overexpressed and oocyte-native RACK1 likely through disrupting the Pkd2L1-RACK1 association. Taken together, our study demonstrated that RACK1 inhibits Pkd2L1 channel function through binding to domain Met(1)-Pro(45) of Pkd2L1. Thus, Pkd2L1 is a novel target channel whose function is regulated by the versatile scaffolding protein RACK1.
Collapse
Affiliation(s)
- Jungwoo Yang
- Department of Physiology, University of Alberta, 7-29 Medical Sciences Building, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|