1
|
Han Y, Tu W, Zhang Y, Huang J, Meng X, Wu Q, Li S, Liu B, Michal JJ, Jiang Z, Tan Y, Zhou X, Wang H. Comprehensive analysis of single-nucleotide variants and alternative polyadenylation between inbred and outbred pigs. Int J Biol Macromol 2024; 278:134416. [PMID: 39098700 DOI: 10.1016/j.ijbiomac.2024.134416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
Inbreeding can lead to the accumulation of homozygous single nucleotide polymorphisms (SNPs) in the genome, which can significantly affect gene expression and phenotype. In this study, we examined the impact of homozygous SNPs resulting from inbreeding on alternative polyadenylation (APA) site selection and the underlying genetic mechanisms using inbred Luchuan pigs. Genome resequencing revealed that inbreeding results in a high accumulation of homozygous SNPs within the pig genome. 3' mRNA-seq on leg muscle, submandibular lymph node, and liver tissues was performed to identify differences in APA events between inbred and outbred Luchuan pigs. We revealed different tissue-specific APA usage caused by inbreeding, which were associated with different biological processes. Furthermore, we explored the role of polyadenylation signal (PAS) SNPs in APA regulation under inbreeding and identified key genes such as PUM1, SCARF1, RIPOR2, C1D, and LRRK2 that are involved in biological processes regulation. This study provides resources and sheds light on the impact of genomic homozygosity on APA regulation, offering insights into genetic characteristics and biological processes associated with inbreeding.
Collapse
Affiliation(s)
- Yu Han
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry & Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Weilong Tu
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry & Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China
| | - Yingying Zhang
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry & Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China
| | - Ji Huang
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry & Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China
| | - Xiangge Meng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Qingqing Wu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Songyu Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Bang Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Jennifer J Michal
- Department of Animal Sciences, Washington State University, Pullman, WA, USA
| | - Zhihua Jiang
- Department of Animal Sciences, Washington State University, Pullman, WA, USA
| | - Yongsong Tan
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry & Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China
| | - Xiang Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China.
| | - Hongyang Wang
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry & Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China.
| |
Collapse
|
2
|
Biswas B, Vagner S. Genotoxic stress impacts pre-mRNA 3'-end processing. Bioessays 2024; 46:e2400037. [PMID: 39030821 DOI: 10.1002/bies.202400037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 07/22/2024]
Abstract
Genotoxic stress, arising from various environmental sources and endogenous cellular processes, pose a constant threat to genomic stability. Cells have evolved intricate mechanisms to detect and repair DNA damage, orchestrating a robust genotoxic stress response to safeguard the integrity of the genome. Recent research has shed light on the crucial role of co- and post-transcriptional regulatory mechanisms in modulating the cellular response to genotoxic stress. Here we highlight recent advances illustrating the intricate interplay between pre-mRNA processing, with a focus on 3'-end processing, and genotoxic stress response.
Collapse
Affiliation(s)
- Biswendu Biswas
- Institut Curie, CNRS UMR 3348, PSL Research University, Orsay, France
- CNRS UMR 3348, Université Paris Sud, Université Paris-Saclay, Orsay, France
| | - Stéphan Vagner
- Institut Curie, CNRS UMR 3348, PSL Research University, Orsay, France
- CNRS UMR 3348, Université Paris Sud, Université Paris-Saclay, Orsay, France
| |
Collapse
|
3
|
Liu L, Sun P, Zhang W. A pan-cancer interrogation of intronic polyadenylation and its association with cancer characteristics. Brief Bioinform 2024; 25:bbae376. [PMID: 39082645 PMCID: PMC11289681 DOI: 10.1093/bib/bbae376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/26/2024] [Accepted: 07/17/2024] [Indexed: 08/03/2024] Open
Abstract
3'UTR-APAs have been extensively studied, but intronic polyadenylations (IPAs) remain largely unexplored. We characterized the profiles of 22 260 IPAs in 9679 patient samples across 32 cancer types from the Cancer Genome Atlas cohort. By comparing tumor and paired normal tissues, we identified 180 ~ 4645 dysregulated IPAs in 132 ~ 2249 genes in each of 690 patient tumors from 22 cancer types that showed consistent patterns within individual cancer types. We selected 2741 genes that showed consistently patterns across cancer types, including 1834 pan-cancer tumor-enriched and 907 tumor-depleted IPA genes; the former were amply represented in the functional pathways such as deoxyribonucleic acid damage repair. Expression of IPA isoforms was associated with tumor mutation burden and patient characteristics (e.g. sex, race, cancer stages, and subtypes) in cancer-specific and feature-specific manners, and could be a more accurate prognostic marker than gene expression (summary of all isoforms). In summary, our study reveals the roles and the clinical relevance of tumor-associated IPAs.
Collapse
Affiliation(s)
- Liang Liu
- Department of Cancer Biology, Wake Forest University School of Medicine, Medical Center Blvd, Winston-Salem, NC 27157, United States
- Center for Cancer Genomics and Precision Oncology, Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Medical Center Blvd, Winston-Salem, NC 27157, United States
| | - Peiqing Sun
- Department of Cancer Biology, Wake Forest University School of Medicine, Medical Center Blvd, Winston-Salem, NC 27157, United States
| | - Wei Zhang
- Department of Cancer Biology, Wake Forest University School of Medicine, Medical Center Blvd, Winston-Salem, NC 27157, United States
- Center for Cancer Genomics and Precision Oncology, Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Medical Center Blvd, Winston-Salem, NC 27157, United States
| |
Collapse
|
4
|
Blake D, Gazzara MR, Breuer I, Ferretti M, Lynch KW. Alternative 3'UTR expression induced by T cell activation is regulated in a temporal and signal dependent manner. Sci Rep 2024; 14:10987. [PMID: 38745101 PMCID: PMC11094061 DOI: 10.1038/s41598-024-61951-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 05/12/2024] [Indexed: 05/16/2024] Open
Abstract
The length of 3' untranslated regions (3'UTR) is highly regulated during many transitions in cell state, including T cell activation, through the process of alternative polyadenylation (APA). However, the regulatory mechanisms and functional consequences of APA remain largely unexplored. Here we present a detailed analysis of the temporal and condition-specific regulation of APA following activation of primary human CD4+ T cells. We find that global APA changes are regulated temporally and CD28 costimulatory signals enhance a subset of these changes. Most APA changes upon T cell activation involve 3'UTR shortening, although a set of genes enriched for function in the mTOR pathway exhibit 3'UTR lengthening. While upregulation of the core polyadenylation machinery likely induces 3'UTR shortening following prolonged T cell stimulation; a significant program of APA changes occur prior to cellular proliferation or upregulation of the APA machinery. Motif analysis suggests that at least a subset of these early changes in APA are driven by upregulation of RBM3, an RNA-binding protein which competes with the APA machinery for binding. Together this work expands our understanding of the impact and mechanisms of APA in response to T cell activation and suggests new mechanisms by which APA may be regulated.
Collapse
Affiliation(s)
- Davia Blake
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Matthew R Gazzara
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Genomic and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Isabel Breuer
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Genetics and Epigenetics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Max Ferretti
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kristen W Lynch
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Genomic and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Genetics and Epigenetics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
5
|
Mofayezi A, Jadaliha M, Zangeneh FZ, Khoddami V. Poly(A) tale: From A to A; RNA polyadenylation in prokaryotes and eukaryotes. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1837. [PMID: 38485452 DOI: 10.1002/wrna.1837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 03/19/2024]
Abstract
Most eukaryotic mRNAs and different non-coding RNAs undergo a form of 3' end processing known as polyadenylation. Polyadenylation machinery is present in almost all organisms except few species. In bacteria, the machinery has evolved from PNPase, which adds heteropolymeric tails, to a poly(A)-specific polymerase. Differently, a complex machinery for accurate polyadenylation and several non-canonical poly(A) polymerases are developed in eukaryotes. The role of poly(A) tail has also evolved from serving as a degradative signal to a stabilizing modification that also regulates translation. In this review, we discuss poly(A) tail emergence in prokaryotes and its development into a stable, yet dynamic feature at the 3' end of mRNAs in eukaryotes. We also describe how appearance of novel poly(A) polymerases gives cells flexibility to shape poly(A) tail. We explain how poly(A) tail dynamics help regulate cognate RNA metabolism in a context-dependent manner, such as during oocyte maturation. Finally, we describe specific mRNAs in metazoans that bear stem-loops instead of poly(A) tails. We conclude with how recent discoveries about poly(A) tail can be applied to mRNA technology. This article is categorized under: RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution RNA Processing > 3' End Processing RNA Turnover and Surveillance > Regulation of RNA Stability.
Collapse
Affiliation(s)
- Ahmadreza Mofayezi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
- ReNAP Therapeutics, Tehran, Iran
| | - Mahdieh Jadaliha
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | | | - Vahid Khoddami
- ReNAP Therapeutics, Tehran, Iran
- Pediatric Cell and Gene Therapy Research Center, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Yeganeh Markid T, Hosseinpour Feizi MA, Talebi M, Rezazadeh M, Khalaj-Kondori M. Gene expression investigation of four key regulators of polyadenylation and alternative adenylation in the periphery of late-onset Alzheimer's disease patients. Gene 2024; 895:148013. [PMID: 37981081 DOI: 10.1016/j.gene.2023.148013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/11/2023] [Accepted: 11/15/2023] [Indexed: 11/21/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is a genetic and sporadic neurodegenerative disease considered by an archetypal cognitive impairment and a decrease in less common cognitive impairment. Notably, the discovery of goals in this paradigm is still a challenge, and understanding basic mechanisms is an important step toward improving disease management. Polyadenylation (PA) and alternative polyadenylation (APA) are two of the most critical RNA processing stages in 3'UTRs that influence various AD-related genes. METHODS In this study, we assessed Cleavage and polyadenylation specificity factors 1 and 6 (CPSF1 and CPSF6), cleavage stimulation factor 1 (CSTF1), and WD Repeat Domain 33 (WDR33) genes expression in the periphery of 50 AD patients and 50 healthy individuals with age and gender-matched by quantitative real-time PCR. RESULTS Comparing AD patients with healthy people using expression analysis revealed a substantial increase in CSTF1 (posterior beta = 0.773, adjusted P-value = 0.042). Significant positive correlations were found between CSTF1 and CPSF1 (r = 0.365, P < 0.001), WDR33 (r = 0.506, P < 0.001), and CPSF6 (r = 0.446, P < 0.001) expression levels. CONCLUSION Although further research is required to determine their potential contribution to AD, our findings offer a fresh perspective on molecular regulatory pathways associated with AD pathogenic mechanisms associated with PA and APA.
Collapse
Affiliation(s)
- Tarlan Yeganeh Markid
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Iran; Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | - Mahnaz Talebi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Rezazadeh
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Iran; Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Khalaj-Kondori
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
7
|
Wang X, Leung FS, Bush JO, Conti M. Alternative cleavage and polyadenylation of the Ccnb1 mRNA defines accumulation of cyclin protein during the meiotic cell cycle. Nucleic Acids Res 2024; 52:1258-1271. [PMID: 38048302 PMCID: PMC10853788 DOI: 10.1093/nar/gkad1151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 11/01/2023] [Accepted: 11/14/2023] [Indexed: 12/06/2023] Open
Abstract
Progression through the mitotic and meiotic cell cycle is driven by fluctuations in the levels of cyclins, the regulatory subunits controlling the localization and activity of CDK1 kinases. Cyclin levels are regulated through a precise balance of synthesis and degradation. Here we demonstrate that the synthesis of Cyclin B1 during the oocyte meiotic cell cycle is defined by the selective translation of mRNA variants generated through alternative cleavage and polyadenylation (APA). Using gene editing in mice, we introduced mutations into the proximal and distal polyadenylation elements of the 3' untranslated region (UTR) of the Ccnb1 mRNA. Through in vivo loss-of-function experiments, we demonstrate that the translation of mRNA with a short 3' UTR specifies Cyclin B1 protein levels that set the timing of meiotic re-entry. In contrast, translation directed by a long 3' UTR is necessary to direct Cyclin B1 protein accumulation during the MI/MII transition. These findings establish that the progression through the cell cycle is dependent on the selective translation of multiple mRNA variants generated by APA.
Collapse
Affiliation(s)
- Xiaotian Wang
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- USA Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | - Fang-Shiuan Leung
- USA Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA 94143, USA
- Program in Craniofacial Biology, University of California San Francisco, San Francisco, CA 94143, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Jeffrey O Bush
- USA Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA 94143, USA
- Program in Craniofacial Biology, University of California San Francisco, San Francisco, CA 94143, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Marco Conti
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- USA Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
8
|
Stroup EK, Ji Z. Deep learning of human polyadenylation sites at nucleotide resolution reveals molecular determinants of site usage and relevance in disease. Nat Commun 2023; 14:7378. [PMID: 37968271 PMCID: PMC10651852 DOI: 10.1038/s41467-023-43266-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 11/05/2023] [Indexed: 11/17/2023] Open
Abstract
The genomic distribution of cleavage and polyadenylation (polyA) sites should be co-evolutionally optimized with the local gene structure. Otherwise, spurious polyadenylation can cause premature transcription termination and generate aberrant proteins. To obtain mechanistic insights into polyA site optimization across the human genome, we develop deep/machine learning models to identify genome-wide putative polyA sites at unprecedented nucleotide-level resolution and calculate their strength and usage in the genomic context. Our models quantitatively measure position-specific motif importance and their crosstalk in polyA site formation and cleavage heterogeneity. The intronic site expression is governed by the surrounding splicing landscape. The usage of alternative polyA sites in terminal exons is modulated by their relative locations and distance to downstream genes. Finally, we apply our models to reveal thousands of disease- and trait-associated genetic variants altering polyadenylation activity. Altogether, our models represent a valuable resource to dissect molecular mechanisms mediating genome-wide polyA site expression and characterize their functional roles in human diseases.
Collapse
Affiliation(s)
- Emily Kunce Stroup
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Zhe Ji
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, 60628, USA.
| |
Collapse
|
9
|
Grlickova-Duzevik E, Reimonn TM, Michael M, Tian T, Owyoung J, McGrath-Conwell A, Neufeld P, Mueth M, Molliver DC, Ward PJ, Harrison BJ. Members of the CUGBP Elav-like family of RNA-binding proteins are expressed in distinct populations of primary sensory neurons. J Comp Neurol 2023; 531:1425-1442. [PMID: 37537886 DOI: 10.1002/cne.25520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/16/2023] [Accepted: 06/10/2023] [Indexed: 08/05/2023]
Abstract
Primary sensory dorsal root ganglia (DRG) neurons are diverse, with distinct populations that respond to specific stimuli. Previously, we observed that functionally distinct populations of DRG neurons express mRNA transcript variants with different 3' untranslated regions (3'UTRs). 3'UTRs harbor binding sites for interaction with RNA-binding proteins (RBPs) for transporting mRNAs to subcellular domains, modulating transcript stability, and regulating the rate of translation. In the current study, analysis of publicly available single-cell RNA-sequencing data generated from adult mice revealed that 17 3'UTR-binding RBPs were enriched in specific populations of DRG neurons. This included four members of the CUG triplet repeat (CUGBP) Elav-like family (CELF): CELF2 and CELF4 were enriched in peptidergic, CELF6 in both peptidergic and nonpeptidergic, and CELF3 in tyrosine hydroxylase-expressing neurons. Immunofluorescence studies confirmed that 60% of CELF4+ neurons are small-diameter C fibers and 33% medium-diameter myelinated (likely Aδ) fibers and showed that CELF4 is distributed to peripheral termini. Coexpression analyses using transcriptomic data and immunofluorescence revealed that CELF4 is enriched in nociceptive neurons that express GFRA3, CGRP, and the capsaicin receptor TRPV1. Reanalysis of published transcriptomic data from macaque DRG revealed a highly similar distribution of CELF members, and reanalysis of single-nucleus RNA-sequencing data derived from mouse and rat DRG after sciatic injury revealed differential expression of CELFs in specific populations of sensory neurons. We propose that CELF RBPs may regulate the fate of mRNAs in populations of nociceptors, and may play a role in pain and/or neuronal regeneration following nerve injury.
Collapse
Affiliation(s)
- Eliza Grlickova-Duzevik
- Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, Maine, USA
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine, USA
| | - Thomas M Reimonn
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Merilla Michael
- Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, Maine, USA
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine, USA
| | - Tina Tian
- Medical Scientist Training Program, Emory University, Atlanta, Georgia, USA
- Neuroscience Graduate Program, Emory University, Atlanta, Georgia, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jordan Owyoung
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, USA
- Genetics and Molecular Biology Graduate Program, Emory University, Atlanta, Georgia, USA
| | - Aidan McGrath-Conwell
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine, USA
- College of Arts and Sciences, University of New England, Biddeford, Maine, USA
| | - Peter Neufeld
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine, USA
- College of Arts and Sciences, University of New England, Biddeford, Maine, USA
| | - Madison Mueth
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine, USA
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, Maine, USA
| | - Derek C Molliver
- Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, Maine, USA
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine, USA
| | - Patricia Jillian Ward
- Neuroscience Graduate Program, Emory University, Atlanta, Georgia, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Benjamin J Harrison
- Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, Maine, USA
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine, USA
| |
Collapse
|
10
|
Cui Y, Wang L, Ding Q, Shin J, Cassel J, Liu Q, Salvino JM, Tian B. Elevated pre-mRNA 3' end processing activity in cancer cells renders vulnerability to inhibition of cleavage and polyadenylation. Nat Commun 2023; 14:4480. [PMID: 37528120 PMCID: PMC10394034 DOI: 10.1038/s41467-023-39793-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/27/2023] [Indexed: 08/03/2023] Open
Abstract
Cleavage and polyadenylation (CPA) is responsible for 3' end processing of eukaryotic poly(A)+ RNAs and preludes transcriptional termination. JTE-607, which targets CPSF-73, is the first known CPA inhibitor (CPAi) in mammalian cells. Here we show that JTE-607 perturbs gene expression through both transcriptional readthrough and alternative polyadenylation (APA). Sensitive genes are associated with features similar to those previously identified for PCF11 knockdown, underscoring a unified transcriptomic signature of CPAi. The degree of inhibition of an APA site by JTE-607 correlates with its usage level and, consistently, cells with elevated CPA activities, such as those with induced overexpression of FIP1, display greater transcriptomic disturbances when treated with JTE-607. Moreover, JTE-607 causes S phase crisis and is hence synergistic with inhibitors of DNA damage repair pathways. Together, our data reveal CPA activity and proliferation rate as determinants of CPAi-mediated cell death, raising the possibility of using CPAi as an adjunct therapy to suppress certain cancers.
Collapse
Affiliation(s)
- Yange Cui
- Gene Expression and Regulation Program, and Center for Systems and Computational Biology, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Luyang Wang
- Gene Expression and Regulation Program, and Center for Systems and Computational Biology, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Qingbao Ding
- Gene Expression and Regulation Program, and Center for Systems and Computational Biology, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Jihae Shin
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Joel Cassel
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Qin Liu
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Joseph M Salvino
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Bin Tian
- Gene Expression and Regulation Program, and Center for Systems and Computational Biology, The Wistar Institute, Philadelphia, PA, 19104, USA.
| |
Collapse
|
11
|
Zhang Q, Tian B. The emerging theme of 3'UTR mRNA isoform regulation in reprogramming of cell metabolism. Biochem Soc Trans 2023; 51:1111-1119. [PMID: 37171086 PMCID: PMC10771799 DOI: 10.1042/bst20221128] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/26/2023] [Accepted: 04/19/2023] [Indexed: 05/13/2023]
Abstract
The 3' untranslated region (3'UTR) of mRNA plays a key role in the post-transcriptional regulation of gene expression. Most eukaryotic protein-coding genes express 3'UTR isoforms owing to alternative cleavage and polyadenylation (APA). The 3'UTR isoform expression profile of a cell changes in cell proliferation, differentiation, and stress conditions. Here, we review the emerging theme of regulation of 3'UTR isoforms in cell metabolic reprogramming, focusing on cell growth and autophagy responses through the mTOR pathway. We discuss regulatory events that converge on the Cleavage Factor I complex, a master regulator of APA in 3'UTRs, and recent understandings of isoform-specific m6A modification and endomembrane association in determining differential metabolic fates of 3'UTR isoforms.
Collapse
Affiliation(s)
- Qiang Zhang
- Gene Expression and Regulation Program and Center for Systems and Computational Biology, The Wistar Institute, Philadelphia, PA 19104, U.S.A
| | - Bin Tian
- Gene Expression and Regulation Program and Center for Systems and Computational Biology, The Wistar Institute, Philadelphia, PA 19104, U.S.A
| |
Collapse
|
12
|
Abstract
Formation of the 3' end of a eukaryotic mRNA is a key step in the production of a mature transcript. This process is mediated by a number of protein factors that cleave the pre-mRNA, add a poly(A) tail, and regulate transcription by protein dephosphorylation. Cleavage and polyadenylation specificity factor (CPSF) in humans, or cleavage and polyadenylation factor (CPF) in yeast, coordinates these enzymatic activities with each other, with RNA recognition, and with transcription. The site of pre-mRNA cleavage can strongly influence the translation, stability, and localization of the mRNA. Hence, cleavage site selection is highly regulated. The length of the poly(A) tail is also controlled to ensure that every transcript has a similar tail when it is exported from the nucleus. In this review, we summarize new mechanistic insights into mRNA 3'-end processing obtained through structural studies and biochemical reconstitution and outline outstanding questions in the field.
Collapse
Affiliation(s)
- Vytautė Boreikaitė
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom;
| | - Lori A Passmore
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom;
| |
Collapse
|
13
|
Cao J, Kuyumcu-Martinez MN. Alternative polyadenylation regulation in cardiac development and cardiovascular disease. Cardiovasc Res 2023; 119:1324-1335. [PMID: 36657944 PMCID: PMC10262186 DOI: 10.1093/cvr/cvad014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/01/2022] [Accepted: 11/28/2022] [Indexed: 01/21/2023] Open
Abstract
Cleavage and polyadenylation of pre-mRNAs is a necessary step for gene expression and function. Majority of human genes exhibit multiple polyadenylation sites, which can be alternatively used to generate different mRNA isoforms from a single gene. Alternative polyadenylation (APA) of pre-mRNAs is important for the proteome and transcriptome landscape. APA is tightly regulated during development and contributes to tissue-specific gene regulation. Mis-regulation of APA is linked to a wide range of pathological conditions. APA-mediated gene regulation in the heart is emerging as a new area of research. Here, we will discuss the impact of APA on gene regulation during heart development and in cardiovascular diseases. First, we will briefly review how APA impacts gene regulation and discuss molecular mechanisms that control APA. Then, we will address APA regulation during heart development and its dysregulation in cardiovascular diseases. Finally, we will discuss pre-mRNA targeting strategies to correct aberrant APA patterns of essential genes for the treatment or prevention of cardiovascular diseases. The RNA field is blooming due to advancements in RNA-based technologies. RNA-based vaccines and therapies are becoming the new line of effective and safe approaches for the treatment and prevention of human diseases. Overall, this review will be influential for understanding gene regulation at the RNA level via APA in the heart and will help design RNA-based tools for the treatment of cardiovascular diseases in the future.
Collapse
Affiliation(s)
- Jun Cao
- Faculty of Environment and Life, Beijing University of Technology, Xueyuan Road, Haidian District, Beijing 100124, PR China
| | - Muge N Kuyumcu-Martinez
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77573, USA
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Translational Sciences, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77573, USA
| |
Collapse
|
14
|
LaForce GR, Philippidou P, Schaffer AE. mRNA isoform balance in neuronal development and disease. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1762. [PMID: 36123820 PMCID: PMC10024649 DOI: 10.1002/wrna.1762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/11/2022] [Accepted: 08/15/2022] [Indexed: 11/07/2022]
Abstract
Balanced mRNA isoform diversity and abundance are spatially and temporally regulated throughout cellular differentiation. The proportion of expressed isoforms contributes to cell type specification and determines key properties of the differentiated cells. Neurons are unique cell types with intricate developmental programs, characteristic cellular morphologies, and electrophysiological potential. Neuron-specific gene expression programs establish these distinctive cellular characteristics and drive diversity among neuronal subtypes. Genes with neuron-specific alternative processing are enriched in key neuronal functions, including synaptic proteins, adhesion molecules, and scaffold proteins. Despite the similarity of neuronal gene expression programs, each neuronal subclass can be distinguished by unique alternative mRNA processing events. Alternative processing of developmentally important transcripts alters coding and regulatory information, including interaction domains, transcript stability, subcellular localization, and targeting by RNA binding proteins. Fine-tuning of mRNA processing is essential for neuronal activity and maintenance. Thus, the focus of neuronal RNA biology research is to dissect the transcriptomic mechanisms that underlie neuronal homeostasis, and consequently, predispose neuronal subtypes to disease. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Geneva R LaForce
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Polyxeni Philippidou
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Ashleigh E Schaffer
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
15
|
Masamha CP. The emerging roles of CFIm25 (NUDT21/CPSF5) in human biology and disease. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1757. [PMID: 35965101 PMCID: PMC9925614 DOI: 10.1002/wrna.1757] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 11/11/2022]
Abstract
The mammalian cleavage factor I subunit CFIm25 (NUDT21) binds to the UGUA sequences of precursor RNAs. Traditionally, CFIm25 is known to facilitate 3' end formation of pre-mRNAs resulting in the formation of polyadenylated transcripts. Recent studies suggest that CFIm25 may be involved in the cyclization and hence generation of circular RNAs (circRNAs) that contain UGUA motifs. These circRNAs act as competing endogenous RNAs (ceRNAs) that disrupt the ceRNA-miRNA-mRNA axis. Other emerging roles of CFIm25 include regulating both alternative splicing and alternative polyadenylation (APA). APA generates different sized transcripts that may code for different proteins, or more commonly transcripts that code for the same protein but differ in the length and sequence content of their 3' UTRs (3' UTR-APA). CFIm25 mediated global changes in 3' UTR-APA affect human physiology including spermatogenesis and the determination of cell fate. Deregulation of CFIm25 and changes in 3' UTR-APA have been implicated in several human diseases including cancer. In many cancers, CFIm25 acts as a tumor suppressor. However, there are some cancers where CFIm25 has the opposite effect. Alterations in CFIm25-driven 3' UTR-APA may also play a role in neural dysfunction and fibrosis. CFIm25 mediated 3' UTR-APA changes can be used to generate specific signatures that can be used as potential biomarkers in development and disease. Due to the emerging role of CFIm25 as a regulator of the aforementioned RNA processing events, modulation of CFIm25 levels may be a novel viable therapeutic approach. This article is categorized under: RNA Processing > 3' End Processing RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Chioniso Patience Masamha
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Butler University, Indianapolis, Indiana, USA
| |
Collapse
|
16
|
Wang T, Ye W, Zhang J, Li H, Zeng W, Zhu S, Ji G, Wu X, Ma L. Alternative 3'-untranslated regions regulate high-salt tolerance of Spartina alterniflora. PLANT PHYSIOLOGY 2023; 191:2570-2587. [PMID: 36682816 PMCID: PMC10069910 DOI: 10.1093/plphys/kiad030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 12/06/2022] [Accepted: 12/15/2022] [Indexed: 05/15/2023]
Abstract
High-salt stress continues to challenge the growth and survival of many plants. Alternative polyadenylation (APA) produces mRNAs with different 3'-untranslated regions (3' UTRs) to regulate gene expression at the post-transcriptional level. However, the roles of alternative 3' UTRs in response to salt stress remain elusive. Here, we report the function of alternative 3' UTRs in response to high-salt stress in S. alterniflora (Spartina alterniflora), a monocotyledonous halophyte tolerant of high-salt environments. We found that high-salt stress induced global APA dynamics, and ∼42% of APA genes responded to salt stress. High-salt stress led to 3' UTR lengthening of 207 transcripts through increasing the usage of distal poly(A) sites. Transcripts with alternative 3' UTRs were mainly enriched in salt stress-related ion transporters. Alternative 3' UTRs of HIGH-AFFINITY K+ TRANSPORTER 1 (SaHKT1) increased RNA stability and protein synthesis in vivo. Regulatory AU-rich elements were identified in alternative 3' UTRs, boosting the protein level of SaHKT1. RNAi-knock-down experiments revealed that the biogenesis of 3' UTR lengthening in SaHKT1 was controlled by the poly(A) factor CLEAVAGE AND POLYADENYLATION SPECIFICITY FACTOR 30 (SaCPSF30). Over-expression of SaHKT1 with an alternative 3' UTR in rice (Oryza sativa) protoplasts increased mRNA accumulation of salt-tolerance genes in an AU-rich element-dependent manner. These results suggest that mRNA 3' UTR lengthening is a potential mechanism in response to high-salt stress. These results also reveal complex regulatory roles of alternative 3' UTRs coupling APA and regulatory elements at the post-transcriptional level in plants.
Collapse
Affiliation(s)
- Taotao Wang
- College of Forestry, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Wenbin Ye
- Department of Automation, Xiamen University, Xiamen, Fujian 361005, China
| | - Jiaxiang Zhang
- College of Forestry, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Han Li
- College of Forestry, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Weike Zeng
- College of Forestry, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Sheng Zhu
- Department of Automation, Xiamen University, Xiamen, Fujian 361005, China
| | - Guoli Ji
- Department of Automation, Xiamen University, Xiamen, Fujian 361005, China
| | - Xiaohui Wu
- Pasteurien College, Soochow University, Suzhou, Jiangsu 215000, China
| | - Liuyin Ma
- College of Forestry, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| |
Collapse
|
17
|
Hao Y, Cai T, Liu C, Zhang X, Fu XD. Sequential Polyadenylation to Enable Alternative mRNA 3' End Formation. Mol Cells 2023; 46:57-64. [PMID: 36697238 PMCID: PMC9880608 DOI: 10.14348/molcells.2023.2176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 01/27/2023] Open
Abstract
In eukaryotic cells, a key RNA processing step to generate mature mRNA is the coupled reaction for cleavage and polyadenylation (CPA) at the 3' end of individual transcripts. Many transcripts are alternatively polyadenylated (APA) to produce mRNAs with different 3' ends that may either alter protein coding sequence (CDS-APA) or create different lengths of 3'UTR (tandem-APA). As the CPA reaction is intimately associated with transcriptional termination, it has been widely assumed that APA is regulated cotranscriptionally. Isoforms terminated at different regions may have distinct RNA stability under different conditions, thus altering the ratio of APA isoforms. Such differential impacts on different isoforms have been considered as post-transcriptional APA, but strictly speaking, this can only be considered "apparent" APA, as the choice is not made during the CPA reaction. Interestingly, a recent study reveals sequential APA as a new mechanism for post-transcriptional APA. This minireview will focus on this new mechanism to provide insights into various documented regulatory paradigms.
Collapse
Affiliation(s)
- Yajing Hao
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Ting Cai
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Chang Liu
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Xuan Zhang
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Present address: Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou 310024, China
| |
Collapse
|
18
|
Mukherjee S, Graber JH, Moore CL. Macrophage differentiation is marked by increased abundance of the mRNA 3' end processing machinery, altered poly(A) site usage, and sensitivity to the level of CstF64. Front Immunol 2023; 14:1091403. [PMID: 36761770 PMCID: PMC9905730 DOI: 10.3389/fimmu.2023.1091403] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/11/2023] [Indexed: 01/26/2023] Open
Abstract
Regulation of mRNA polyadenylation is important for response to external signals and differentiation in several cell types, and results in mRNA isoforms that vary in the amount of coding sequence or 3' UTR regulatory elements. However, its role in differentiation of monocytes to macrophages has not been investigated. Macrophages are key effectors of the innate immune system that help control infection and promote tissue-repair. However, overactivity of macrophages contributes to pathogenesis of many diseases. In this study, we show that macrophage differentiation is characterized by shortening and lengthening of mRNAs in relevant cellular pathways. The cleavage/polyadenylation (C/P) proteins increase during differentiation, suggesting a possible mechanism for the observed changes in poly(A) site usage. This was surprising since higher C/P protein levels correlate with higher proliferation rates in other systems, but monocytes stop dividing after induction of differentiation. Depletion of CstF64, a C/P protein and known regulator of polyadenylation efficiency, delayed macrophage marker expression, cell cycle exit, attachment, and acquisition of structural complexity, and impeded shortening of mRNAs with functions relevant to macrophage biology. Conversely, CstF64 overexpression increased use of promoter-proximal poly(A) sites and caused the appearance of differentiated phenotypes in the absence of induction. Our findings indicate that regulation of polyadenylation plays an important role in macrophage differentiation.
Collapse
Affiliation(s)
- Srimoyee Mukherjee
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA, United States
| | - Joel H. Graber
- Computational Biology and Bioinformatics Core, Mount Desert Island Biological Laboratory, Bar Harbor, ME, United States
| | - Claire L. Moore
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA, United States
| |
Collapse
|
19
|
Gallicchio L, Olivares GH, Berry CW, Fuller MT. Regulation and function of alternative polyadenylation in development and differentiation. RNA Biol 2023; 20:908-925. [PMID: 37906624 PMCID: PMC10730144 DOI: 10.1080/15476286.2023.2275109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 11/02/2023] Open
Abstract
Alternative processing of nascent mRNAs is widespread in eukaryotic organisms and greatly impacts the output of gene expression. Specifically, alternative cleavage and polyadenylation (APA) is a co-transcriptional molecular process that switches the polyadenylation site (PAS) at which a nascent mRNA is cleaved, resulting in mRNA isoforms with different 3'UTR length and content. APA can potentially affect mRNA translation efficiency, localization, stability, and mRNA seeded protein-protein interactions. APA naturally occurs during development and cellular differentiation, with around 70% of human genes displaying APA in particular tissues and cell types. For example, neurons tend to express mRNAs with long 3'UTRs due to preferential processing at PASs more distal than other PASs used in other cell types. In addition, changes in APA mark a variety of pathological states, including many types of cancer, in which mRNAs are preferentially cleaved at more proximal PASs, causing expression of mRNA isoforms with short 3'UTRs. Although APA has been widely reported, both the function of APA in development and the mechanisms that regulate the choice of 3'end cut sites in normal and pathogenic conditions are still poorly understood. In this review, we summarize current understanding of how APA is regulated during development and cellular differentiation and how the resulting change in 3'UTR content affects multiple aspects of gene expression. With APA being a widespread phenomenon, the advent of cutting-edge scientific techniques and the pressing need for in-vivo studies, there has never been a better time to delve into the intricate mechanisms of alternative cleavage and polyadenylation.
Collapse
Affiliation(s)
- Lorenzo Gallicchio
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, USA
| | - Gonzalo H. Olivares
- Escuela de Kinesiología, Facultad de Medicina y Ciencias de la Salud, Center for Integrative Biology (CIB), Universidad Mayor, Chile and Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | | | - Margaret T. Fuller
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, USA
| |
Collapse
|
20
|
CYCLIN K down-regulation induces androgen receptor gene intronic polyadenylation, variant expression and PARP inhibitor vulnerability in castration-resistant prostate cancer. Proc Natl Acad Sci U S A 2022; 119:e2205509119. [PMID: 36129942 PMCID: PMC9522376 DOI: 10.1073/pnas.2205509119] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Expression of androgen receptor variants (AR-Vs) is implicated in the development of castration-resistant prostate cancer (PCa). Others have shown that androgen depletion or antiandrogen treatment induces AR-V expression in PCa cell lines, xenografts, and patient samples, although the underlying mechanism remains unclear. Our findings reveal that hormonal therapy–induced CYCLIN K down-regulation represents a key mechanism that drives intronic polyadenylation (IPA) usage in the AR gene and AR-V expression and castration resistance in PCa, and that this mechanism of action can be therapeutically targeted by the PARP inhibitor. Androgen receptor (AR) messenger RNA (mRNA) alternative splicing variants (AR-Vs) are implicated in castration-resistant progression of prostate cancer (PCa), although the molecular mechanism underlying the genesis of AR-Vs remains poorly understood. The CDK12 gene is often deleted or mutated in PCa and CDK12 deficiency is known to cause homologous recombination repair gene alteration or BRCAness via alternative polyadenylation (APA). Here, we demonstrate that pharmacological inhibition or genetic inactivation of CDK12 induces AR gene intronic (intron 3) polyadenylation (IPA) usage, AR-V expression, and PCa cell resistance to the antiandrogen enzalutamide (ENZ). We further show that AR binds to the CCNK gene promoter and up-regulates CYCLIN K expression. In contrast, ENZ decreases AR occupancy at the CCNK gene promoter and suppresses CYCLIN K expression. Similar to the effect of the CDK12 inhibitor, CYCLIN K degrader or ENZ treatment promotes AR gene IPA usage, AR-V expression, and ENZ-resistant growth of PCa cells. Importantly, we show that targeting BRCAness induced by CYCLIN K down-regulation with the PARP inhibitor overcomes ENZ resistance. Our findings identify CYCLIN K down-regulation as a key driver of IPA usage, hormonal therapy–induced AR-V expression, and castration resistance in PCa. These results suggest that hormonal therapy–induced AR-V expression and therapy resistance are vulnerable to PARP inhibitor treatment.
Collapse
|
21
|
Berry CW, Olivares GH, Gallicchio L, Ramaswami G, Glavic A, Olguín P, Li JB, Fuller MT. Developmentally regulated alternate 3' end cleavage of nascent transcripts controls dynamic changes in protein expression in an adult stem cell lineage. Genes Dev 2022; 36:916-935. [PMID: 36175033 PMCID: PMC9575692 DOI: 10.1101/gad.349689.122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/12/2022] [Indexed: 02/03/2023]
Abstract
Alternative polyadenylation (APA) generates transcript isoforms that differ in the position of the 3' cleavage site, resulting in the production of mRNA isoforms with different length 3' UTRs. Although widespread, the role of APA in the biology of cells, tissues, and organisms has been controversial. We identified >500 Drosophila genes that express mRNA isoforms with a long 3' UTR in proliferating spermatogonia but a short 3' UTR in differentiating spermatocytes due to APA. We show that the stage-specific choice of the 3' end cleavage site can be regulated by the arrangement of a canonical polyadenylation signal (PAS) near the distal cleavage site but a variant or no recognizable PAS near the proximal cleavage site. The emergence of transcripts with shorter 3' UTRs in differentiating cells correlated with changes in expression of the encoded proteins, either from off in spermatogonia to on in spermatocytes or vice versa. Polysome gradient fractionation revealed >250 genes where the long 3' UTR versus short 3' UTR mRNA isoforms migrated differently, consistent with dramatic stage-specific changes in translation state. Thus, the developmentally regulated choice of an alternative site at which to make the 3' end cut that terminates nascent transcripts can profoundly affect the suite of proteins expressed as cells advance through sequential steps in a differentiation lineage.
Collapse
Affiliation(s)
- Cameron W Berry
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Gonzalo H Olivares
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
- Center for Genome Regulation (CRG), Universidad de Chile, Santiago 7810000, Chile
- Drosophila Ring in Developmental Adaptations to Nutritional Stress (DRiDANS), Universidad de Chile, Santiago 7810000, Chile
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago 7810000, Chile
- Program of Human Genetics, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
- Escuela de Kinesiología, Facultad de Medicina y Ciencias de la Salud, Universidad Mayor, Huechuraba 8580745, Chile
- Center of Integrative Biology (CIB), Universidad Mayor, Huechuraba 8580745, Chile
| | - Lorenzo Gallicchio
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Gokul Ramaswami
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Alvaro Glavic
- Center for Genome Regulation (CRG), Universidad de Chile, Santiago 7810000, Chile
- Drosophila Ring in Developmental Adaptations to Nutritional Stress (DRiDANS), Universidad de Chile, Santiago 7810000, Chile
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago 7810000, Chile
| | - Patricio Olguín
- Drosophila Ring in Developmental Adaptations to Nutritional Stress (DRiDANS), Universidad de Chile, Santiago 7810000, Chile
- Program of Human Genetics, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Jin Billy Li
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Margaret T Fuller
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
22
|
Zhou R, Xiao X, He P, Zhao Y, Xu M, Zheng X, Yang R, Chen S, Zhou L, Zhang D, Yang Q, Song J, Tang C, Zhang Y, Lin JW, Cheng L, Chen L. OUP accepted manuscript. Nucleic Acids Res 2022; 50:e66. [PMID: 35288753 PMCID: PMC9226526 DOI: 10.1093/nar/gkac167] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/26/2022] [Accepted: 03/09/2022] [Indexed: 11/14/2022] Open
Abstract
Alternative polyadenylation increases transcript diversities at the 3’ end, regulating biological processes including cell differentiation, embryonic development and cancer progression. Here, we present a Bayesian method SCAPE, which enables de novo identification and quantification of polyadenylation (pA) sites at single-cell level by utilizing insert size information. We demonstrated its accuracy and robustness and identified 31 558 sites from 36 mouse organs, 43.8% (13 807) of which were novel. We illustrated that APA isoforms were associated with miRNAs binding and regulated in tissue-, cell type-and tumor-specific manners where no difference was found at gene expression level, providing an extra layer of information for cell clustering. Furthermore, we found genome-wide dynamic changes of APA usage during erythropoiesis and induced pluripotent stem cell (iPSC) differentiation, suggesting APA contributes to the functional flexibility and diversity of single cells. We expect SCAPE to aid the analyses of cellular dynamics and diversities in health and disease.
Collapse
Affiliation(s)
- Ran Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xia Xiao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ping He
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuancun Zhao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Mengying Xu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiuran Zheng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ruirui Yang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shasha Chen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lifang Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Dan Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qingxin Yang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Junwei Song
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chao Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yiming Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jing-wen Lin
- To whom correspondence should be addressed. Tel: +86 028 8546 8389;
| | - Lu Cheng
- Correspondence may also be addressed to Lu Cheng.
| | - Lu Chen
- Correspondence may also be addressed to Lu Chen.
| |
Collapse
|
23
|
Dynamic alternative polyadenylation during iPSC differentiation into cardiomyocytes. Comput Struct Biotechnol J 2022; 20:5859-5869. [DOI: 10.1016/j.csbj.2022.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/18/2022] [Accepted: 10/18/2022] [Indexed: 11/20/2022] Open
|
24
|
Huo XX, Wang SJ, Song H, Li MD, Yu H, Wang M, Gong HX, Qiu XT, Zhu YF, Zhang JY. Roles of Major RNA Adenosine Modifications in Head and Neck Squamous Cell Carcinoma. Front Pharmacol 2021; 12:779779. [PMID: 34899345 PMCID: PMC8657411 DOI: 10.3389/fphar.2021.779779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/09/2021] [Indexed: 11/13/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer malignancy worldwide and is known to have poor prognosis. The pathogenesis behind the development of HNSCC is not fully understood. Modifications on RNA are involved in many pathophysiological processes, such as tumor development and inflammation. Adenosine-related RNA modifications have shown to be linked to cancer and may play a role in cancer occurrence and development. To date, there are at least 170 different chemical RNA modifications that modify coding and non-coding RNAs (ncRNAs). These modifications affect RNA stability and transcription efficiency. In this review, we focus on the current understanding of the four major RNA adenosine modifications (N6-Methyladenosine, N1-Methyladenosine, Alternative Polyadenylation Modification and A-to-I RNA editing) and their potential molecular mechanisms related to HNSCC development and progression. We also touch on how these RNA modifications affect treatment of HNSCCs.
Collapse
Affiliation(s)
- Xing-Xing Huo
- Experimental Center of Clinical Research, Scientific Research Department, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Shu-Jie Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Hang Song
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Ming-de Li
- Experimental Center of Clinical Research, Scientific Research Department, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Hua Yu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Meng Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Hong-Xiao Gong
- Experimental Center of Clinical Research, Scientific Research Department, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Xiao-Ting Qiu
- Experimental Center of Clinical Research, Scientific Research Department, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Yong-Fu Zhu
- Experimental Center of Clinical Research, Scientific Research Department, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Jian-Ye Zhang
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
25
|
Abstract
Synthetic messenger RNA (mRNA), once delivered into cells, can be readily translated into proteins by ribosomes, which do not distinguish exogenous mRNAs from endogenous transcripts. Until recently, the intrinsic instability and immunostimulatory property of exogenous RNAs largely hindered the therapeutic application of synthetic mRNAs. Thanks to major technological innovations, such as introduction of chemically modified nucleosides, synthetic mRNAs have become programmable therapeutic reagents. Compared to DNA or protein-based therapeutic reagents, synthetic mRNAs bear several advantages: flexible design, easy optimization, low-cost preparation, and scalable synthesis. Therapeutic mRNAs are commonly designed to encode specific antigens to elicit organismal immune response to pathogens like viruses, express functional proteins to replace defective ones inside cells, or introduce novel enzymes to achieve unique functions like genome editing. Recent years have witnessed stunning progress on the development of mRNA vaccines against SARS-Cov2. This success is built upon our fundamental understanding of mRNA metabolism and translational control, a knowledge accumulated during the past several decades. Given the astronomical number of sequence combinations of four nucleotides, sequence-dependent control of mRNA translation remains incompletely understood. Rational design of synthetic mRNAs with robust translation and optimal stability remains challenging. Massively paralleled reporter assay (MPRA) has been proven to be powerful in identifying sequence elements in controlling mRNA translatability and stability. Indeed, a completely randomized sequence in 5' untranslated region (5'UTR) drives a wide range of translational outputs. In this Account, we will discuss general principles of mRNA translation in eukaryotic cells and elucidate the role of coding and noncoding regions in the translational regulation. From the therapeutic perspective, we will highlight the unique features of 5' cap, 5'UTR, coding region (CDS), stop codon, 3'UTR, and poly(A) tail. By focusing on the design strategies in mRNA engineering, we hope this Account will contribute to the rational design of synthetic mRNAs with broad therapeutic potential.
Collapse
Affiliation(s)
- Longfei Jia
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, United States
| | - Shu-Bing Qian
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
26
|
Marima R, Francies FZ, Hull R, Molefi T, Oyomno M, Khanyile R, Mbatha S, Mabongo M, Owen Bates D, Dlamini Z. MicroRNA and Alternative mRNA Splicing Events in Cancer Drug Response/Resistance: Potent Therapeutic Targets. Biomedicines 2021; 9:1818. [PMID: 34944633 PMCID: PMC8698559 DOI: 10.3390/biomedicines9121818] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer is a multifaceted disease that involves several molecular mechanisms including changes in gene expression. Two important processes altered in cancer that lead to changes in gene expression include altered microRNA (miRNA) expression and aberrant splicing events. MiRNAs are short non-coding RNAs that play a central role in regulating RNA silencing and gene expression. Alternative splicing increases the diversity of the proteome by producing several different spliced mRNAs from a single gene for translation. MiRNA expression and alternative splicing events are rigorously regulated processes. Dysregulation of miRNA and splicing events promote carcinogenesis and drug resistance in cancers including breast, cervical, prostate, colorectal, ovarian and leukemia. Alternative splicing may change the target mRNA 3'UTR binding site. This alteration can affect the produced protein and may ultimately affect the drug affinity of target proteins, eventually leading to drug resistance. Drug resistance can be caused by intrinsic and extrinsic factors. The interplay between miRNA and alternative splicing is largely due to splicing resulting in altered 3'UTR targeted binding of miRNAs. This can result in the altered targeting of these isoforms and altered drug targets and drug resistance. Furthermore, the increasing prevalence of cancer drug resistance poses a substantial challenge in the management of the disease. Henceforth, molecular alterations have become highly attractive drug targets to reverse the aberrant effects of miRNAs and splicing events that promote malignancy and drug resistance. While the miRNA-mRNA splicing interplay in cancer drug resistance remains largely to be elucidated, this review focuses on miRNA and alternative mRNA splicing (AS) events in breast, cervical, prostate, colorectal and ovarian cancer, as well as leukemia, and the role these events play in drug resistance. MiRNA induced cancer drug resistance; alternative mRNA splicing (AS) in cancer drug resistance; the interplay between AS and miRNA in chemoresistance will be discussed. Despite this great potential, the interplay between aberrant splicing events and miRNA is understudied but holds great potential in deciphering miRNA-mediated drug resistance.
Collapse
Affiliation(s)
- Rahaba Marima
- SAMRC Precision Oncology Research Unit (PORU), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfiel, Pretoria 0028, South Africa; (R.M.); (F.Z.F.); (R.H.); (T.M.); (M.O.); (R.K.); (S.M.); (M.M.); (D.O.B.)
| | - Flavia Zita Francies
- SAMRC Precision Oncology Research Unit (PORU), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfiel, Pretoria 0028, South Africa; (R.M.); (F.Z.F.); (R.H.); (T.M.); (M.O.); (R.K.); (S.M.); (M.M.); (D.O.B.)
| | - Rodney Hull
- SAMRC Precision Oncology Research Unit (PORU), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfiel, Pretoria 0028, South Africa; (R.M.); (F.Z.F.); (R.H.); (T.M.); (M.O.); (R.K.); (S.M.); (M.M.); (D.O.B.)
| | - Thulo Molefi
- SAMRC Precision Oncology Research Unit (PORU), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfiel, Pretoria 0028, South Africa; (R.M.); (F.Z.F.); (R.H.); (T.M.); (M.O.); (R.K.); (S.M.); (M.M.); (D.O.B.)
- Department of Medical Oncology, Steve Biko Academic Hospital, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Meryl Oyomno
- SAMRC Precision Oncology Research Unit (PORU), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfiel, Pretoria 0028, South Africa; (R.M.); (F.Z.F.); (R.H.); (T.M.); (M.O.); (R.K.); (S.M.); (M.M.); (D.O.B.)
- Department of Surgery, Steve Biko Academic Hospital, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Richard Khanyile
- SAMRC Precision Oncology Research Unit (PORU), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfiel, Pretoria 0028, South Africa; (R.M.); (F.Z.F.); (R.H.); (T.M.); (M.O.); (R.K.); (S.M.); (M.M.); (D.O.B.)
- Department of Medical Oncology, Steve Biko Academic Hospital, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Sikhumbuzo Mbatha
- SAMRC Precision Oncology Research Unit (PORU), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfiel, Pretoria 0028, South Africa; (R.M.); (F.Z.F.); (R.H.); (T.M.); (M.O.); (R.K.); (S.M.); (M.M.); (D.O.B.)
- Department of Surgery, Steve Biko Academic Hospital, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Mzubanzi Mabongo
- SAMRC Precision Oncology Research Unit (PORU), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfiel, Pretoria 0028, South Africa; (R.M.); (F.Z.F.); (R.H.); (T.M.); (M.O.); (R.K.); (S.M.); (M.M.); (D.O.B.)
- Department of Maxillofacial and Oral Surgery, School of Dentistry, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - David Owen Bates
- SAMRC Precision Oncology Research Unit (PORU), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfiel, Pretoria 0028, South Africa; (R.M.); (F.Z.F.); (R.H.); (T.M.); (M.O.); (R.K.); (S.M.); (M.M.); (D.O.B.)
- Centre for Cancer Sciences, Division of Cancer and Stem Cells, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfiel, Pretoria 0028, South Africa; (R.M.); (F.Z.F.); (R.H.); (T.M.); (M.O.); (R.K.); (S.M.); (M.M.); (D.O.B.)
| |
Collapse
|
27
|
Biswas J, Li W, Singer RH, Coleman RA. Imaging Organization of RNA Processing within the Nucleus. Cold Spring Harb Perspect Biol 2021; 13:a039453. [PMID: 34127450 PMCID: PMC8635003 DOI: 10.1101/cshperspect.a039453] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Within the nucleus, messenger RNA is generated and processed in a highly organized and regulated manner. Messenger RNA processing begins during transcription initiation and continues until the RNA is translated and degraded. Processes such as 5' capping, alternative splicing, and 3' end processing have been studied extensively with biochemical methods and more recently with single-molecule imaging approaches. In this review, we highlight how imaging has helped understand the highly dynamic process of RNA processing. We conclude with open questions and new technological developments that may further our understanding of RNA processing.
Collapse
Affiliation(s)
- Jeetayu Biswas
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Weihan Li
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Robert H Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Robert A Coleman
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| |
Collapse
|
28
|
Burri D, Zavolan M. Shortening of 3' UTRs in most cell types composing tumor tissues implicates alternative polyadenylation in protein metabolism. RNA (NEW YORK, N.Y.) 2021; 27:1459-1470. [PMID: 34521731 PMCID: PMC8594477 DOI: 10.1261/rna.078886.121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/24/2021] [Indexed: 05/18/2023]
Abstract
During pre-mRNA maturation 3' end processing can occur at different polyadenylation sites in the 3' untranslated region (3' UTR) to give rise to transcript isoforms that differ in the length of their 3' UTRs. Longer 3' UTRs contain additional cis-regulatory elements that impact the fate of the transcript and/or of the resulting protein. Extensive alternative polyadenylation (APA) has been observed in cancers, but the mechanisms and roles remain elusive. In particular, it is unclear whether the APA occurs in the malignant cells or in other cell types that infiltrate the tumor. To resolve this, we developed a computational method, called SCUREL, that quantifies changes in 3' UTR length between groups of cells, including cells of the same type originating from tumor and control tissue. We used this method to study APA in human lung adenocarcinoma (LUAD). SCUREL relies solely on annotated 3' UTRs and on control systems such as T cell activation, and spermatogenesis gives qualitatively similar results at much greater sensitivity compared to the previously published scAPA method. In the LUAD samples, we find a general trend toward 3' UTR shortening not only in cancer cells compared to the cell type of origin, but also when comparing other cell types from the tumor vs. the control tissue environment. However, we also find high variability in the individual targets between patients. The findings help in understanding the extent and impact of APA in LUAD, which may support improvements in diagnosis and treatment.
Collapse
Affiliation(s)
- Dominik Burri
- Computational and Systems Biology, Biozentrum, University of Basel, Basel, CH-4056, Switzerland SIB Swiss Institute of Bioinformatics, Basel, CH-4056, Switzerland
| | - Mihaela Zavolan
- Computational and Systems Biology, Biozentrum, University of Basel, Basel, CH-4056, Switzerland SIB Swiss Institute of Bioinformatics, Basel, CH-4056, Switzerland
| |
Collapse
|
29
|
Shi X, Ding K, Zhao Q, Li P, Kang Y, Tan S, Sun J. Suppression of CPSF6 Enhances Apoptosis Through Alternative Polyadenylation-Mediated Shortening of the VHL 3'UTR in Gastric Cancer Cells. Front Genet 2021; 12:707644. [PMID: 34594359 PMCID: PMC8477001 DOI: 10.3389/fgene.2021.707644] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/12/2021] [Indexed: 12/11/2022] Open
Abstract
Alternative polyadenylation (APA) is an important RNA post-transcriptional process, which can generate diverse mRNA isoforms. Increasing evidence shows that APA is involved in cell self-renewal, development, immunity, and cancer. CPSF6 is one of the core proteins of CFIm complex and can modulate the APA process. Although it has been reported to play oncogenic roles in cancer, the underlying mechanisms remain unclear. The aim of the present study was to characterize CPSF6 in human gastric cancer (GC). We observed that CPSF6 was upregulated in GC. Knockdown of CPSF6 inhibited proliferation and enhanced apoptosis of GC cells both in vitro and in vivo. Global APA site profiling analysis revealed that knockdown of CPSF6 induced widespread 3′UTR shortening of genes in GC cells, including VHL. We also found CPSF6 negatively regulated the expression of VHL through APA and VHL short-3′UTR isoform enhanced apoptosis and inhibited cell growth in GC cells. Our data suggested that CPSF6-induced cell proliferation and inhibition of apoptosis were mediated by the preferential usage of poly(A) in VHL. Our data provide insights into the function of CPSF6 and may imply potential therapeutic targets against GC.
Collapse
Affiliation(s)
- Xinglong Shi
- Ministry of Education Key Laboratory for Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Keshuo Ding
- Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei, China.,Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qiang Zhao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Pengxiao Li
- Ministry of Education Key Laboratory for Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yani Kang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Sheng Tan
- Ministry of Education Key Laboratory for Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jielin Sun
- Ministry of Education Key Laboratory for Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
30
|
Mohanan NK, Shaji F, Koshre GR, Laishram RS. Alternative polyadenylation: An enigma of transcript length variation in health and disease. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1692. [PMID: 34581021 DOI: 10.1002/wrna.1692] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/16/2021] [Accepted: 08/24/2021] [Indexed: 12/19/2022]
Abstract
Alternative polyadenylation (APA) is a molecular mechanism during a pre-mRNA processing that involves usage of more than one polyadenylation site (PA-site) generating transcripts of varying length from a single gene. The location of a PA-site affects transcript length and coding potential of an mRNA contributing to both mRNA and protein diversification. This variation in the transcript length affects mRNA stability and translation, mRNA subcellular and tissue localization, and protein function. APA is now considered as an important regulatory mechanism in the pathophysiology of human diseases. An important consequence of the changes in the length of 3'-untranslated region (UTR) from disease-induced APA is altered protein expression. Yet, the relationship between 3'-UTR length and protein expression remains a paradox in a majority of diseases. Here, we review occurrence of APA, mechanism of PA-site selection, and consequences of transcript length variation in different diseases. Emerging evidence reveals coordinated involvement of core RNA processing factors including poly(A) polymerases in the PA-site selection in diseases-associated APAs. Targeting such APA regulators will be therapeutically significant in combating drug resistance in cancer and other complex diseases. This article is categorized under: RNA Processing > 3' End Processing RNA in Disease and Development > RNA in Disease Translation > Regulation.
Collapse
Affiliation(s)
- Neeraja K Mohanan
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
- Manipal Academy of Higher Education, Manipal, India
| | - Feba Shaji
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Ganesh R Koshre
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
- Manipal Academy of Higher Education, Manipal, India
| | - Rakesh S Laishram
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
| |
Collapse
|
31
|
Dharmalingam P, Mahalingam R, Yalamanchili HK, Weng T, Karmouty-Quintana H, Guha A, A Thandavarayan R. Emerging roles of alternative cleavage and polyadenylation (APA) in human disease. J Cell Physiol 2021; 237:149-160. [PMID: 34378793 DOI: 10.1002/jcp.30549] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/13/2021] [Accepted: 07/20/2021] [Indexed: 12/11/2022]
Abstract
In the messenger RNA (mRNA) maturation process, the 3'-end of pre-mRNA is cleaved and a poly(A) sequence is added, this is an important determinant of mRNA stability and its cellular functions. More than 60%-70% of human genes have three or more polyadenylation (APA) sites and can be cleaved at different sites, generating mRNA transcripts of varying lengths. This phenomenon is termed as alternative cleavage and polyadenylation (APA) and it plays role in key biological processes like gene regulation, cell proliferation, senescence, and also in various human diseases. Loss of regulatory microRNA binding sites and interactions with RNA-binding proteins leading to APA are largely investigated in human diseases. However, the functions of the core APA machinery and related factors during disease conditions remain largely unknown. In this review, we discuss the roles of polyadenylation machinery in relation to brain disease, cardiac failure, pulmonary fibrosis, cancer, infectious conditions, and other human diseases. Collectively, we believe this review will be a useful avenue for understanding the emerging role of APA in the pathobiology of various human diseases.
Collapse
Affiliation(s)
- Prakash Dharmalingam
- Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai, India
| | - Rajasekaran Mahalingam
- Laboratory of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hari Krishna Yalamanchili
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA.,Department of Pediatrics - Neurology, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, USA.,Department of Pediatrics, USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas, USA
| | - Tingting Weng
- Department of Biochemistry and Molecular Biology & Divisions of Critical Care, Pulmonary and Sleep Medicine, Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Harry Karmouty-Quintana
- Department of Biochemistry and Molecular Biology & Divisions of Critical Care, Pulmonary and Sleep Medicine, Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Ashrith Guha
- Department of Cardiology, Houston Methodist DeBakey Heart & Vascular Center, Houston, Texas, USA
| | | |
Collapse
|
32
|
Cheng LC, Zheng D, Zhang Q, Guvenek A, Cheng H, Tian B. Alternative 3' UTRs play a widespread role in translation-independent mRNA association with the endoplasmic reticulum. Cell Rep 2021; 36:109407. [PMID: 34289366 PMCID: PMC8501909 DOI: 10.1016/j.celrep.2021.109407] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/17/2021] [Accepted: 06/23/2021] [Indexed: 12/28/2022] Open
Abstract
Transcripts encoding membrane and secreted proteins are known to associate with the endoplasmic reticulum (ER) through translation. Here, using cell fractionation, polysome profiling, and 3' end sequencing, we show that transcripts differ substantially in translation-independent ER association (TiERA). Genes in certain functional groups, such as cell signaling, tend to have significantly higher TiERA potentials than others, suggesting the importance of ER association for their mRNA metabolism, such as localized translation. The TiERA potential of a transcript is determined largely by size, sequence content, and RNA structures. Alternative polyadenylation (APA) isoforms can have distinct TiERA potentials because of changes in transcript features. The widespread 3' UTR lengthening in cell differentiation leads to greater transcript association with the ER, especially for genes that are capable of expressing very long 3' UTRs. Our data also indicate that TiERA is in dynamic competition with translation-dependent ER association, suggesting limited space on the ER for mRNA association.
Collapse
Affiliation(s)
- Larry C Cheng
- Program in Gene Expression and Regulation and Center for Systems and Computational Biology, The Wistar Institute, Philadelphia, PA 19104, USA; Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA; Graduate Program in Quantitative Biomedicine, School of Graduate Studies, Rutgers University, Piscataway, NJ 08854, USA
| | - Dinghai Zheng
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Qiang Zhang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Aysegul Guvenek
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA; Rutgers School of Graduate Studies, Newark, NJ 07103, USA
| | - Hong Cheng
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Bin Tian
- Program in Gene Expression and Regulation and Center for Systems and Computational Biology, The Wistar Institute, Philadelphia, PA 19104, USA; Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA; Graduate Program in Quantitative Biomedicine, School of Graduate Studies, Rutgers University, Piscataway, NJ 08854, USA; Rutgers School of Graduate Studies, Newark, NJ 07103, USA.
| |
Collapse
|
33
|
Goering R, Engel KL, Gillen AE, Fong N, Bentley DL, Taliaferro JM. LABRAT reveals association of alternative polyadenylation with transcript localization, RNA binding protein expression, transcription speed, and cancer survival. BMC Genomics 2021; 22:476. [PMID: 34174817 PMCID: PMC8234626 DOI: 10.1186/s12864-021-07781-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/07/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The sequence content of the 3' UTRs of many mRNA transcripts is regulated through alternative polyadenylation (APA). The study of this process using RNAseq data, though, has been historically challenging. RESULTS To combat this problem, we developed LABRAT, an APA isoform quantification method. LABRAT takes advantage of newly developed transcriptome quantification techniques to accurately determine relative APA site usage and how it varies across conditions. Using LABRAT, we found consistent relationships between gene-distal APA and subcellular RNA localization in multiple cell types. We also observed connections between transcription speed and APA site choice as well as tumor-specific transcriptome-wide shifts in APA isoform abundance in hundreds of patient-derived tumor samples that were associated with patient prognosis. We investigated the effects of APA on transcript expression and found a weak overall relationship, although many individual genes showed strong correlations between relative APA isoform abundance and overall gene expression. We interrogated the roles of 191 RNA-binding proteins in the regulation of APA isoforms, finding that dozens promote broad, directional shifts in relative APA isoform abundance both in vitro and in patient-derived samples. Finally, we find that APA site shifts in the two classes of APA, tandem UTRs and alternative last exons, are strongly correlated across many contexts, suggesting that they are coregulated. CONCLUSIONS We conclude that LABRAT has the ability to accurately quantify APA isoform ratios from RNAseq data across a variety of sample types. Further, LABRAT is able to derive biologically meaningful insights that connect APA isoform regulation to cellular and molecular phenotypes.
Collapse
Affiliation(s)
- Raeann Goering
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Krysta L Engel
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Austin E Gillen
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Nova Fong
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - David L Bentley
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - J Matthew Taliaferro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
34
|
Analysis of alternative polyadenylation from single-cell RNA-seq using scDaPars reveals cell subpopulations invisible to gene expression. Genome Res 2021; 31:1856-1866. [PMID: 34035046 DOI: 10.1101/gr.271346.120] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 04/20/2021] [Indexed: 11/25/2022]
Abstract
Alternative polyadenylation (APA) is a major mechanism of post-transcriptional regulation in various cellular processes including cell proliferation and differentiation, but the APA heterogeneity among single cells remains largely unknown. Single-cell RNA sequencing (scRNA-seq) has been extensively used to define cell subpopulations at the transcription level. Yet, most scRNA-seq data have not been analyzed in an "APA-aware" manner. Here, we introduce scDaPars (Dynamic Analysis of Alternative PolyAdenylation from Single-cell RNA-seq), a bioinformatics algorithm to accurately quantify APA events at both single-cell and single-gene resolution using either 3' end (10x Chromium) or full-length (Smart-seq2) scRNA-seq data. Validations in both real and simulated data indicate that scDaPars can robustly recover missing APA events caused by the low amounts of mRNA sequenced in single cells. When applied to cancer and human endoderm differentiation data, scDaPars not only revealed cell type-specific APA regulation but also identified cell subpopulations that are otherwise invisible to conventional gene expression analysis. Thus, scDaPars will enable us to understand cellular heterogeneity at the post-transcriptional APA level.
Collapse
|
35
|
Kandhari N, Kraupner-Taylor CA, Harrison PF, Powell DR, Beilharz TH. The Detection and Bioinformatic Analysis of Alternative 3 ' UTR Isoforms as Potential Cancer Biomarkers. Int J Mol Sci 2021; 22:5322. [PMID: 34070203 PMCID: PMC8158509 DOI: 10.3390/ijms22105322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/06/2021] [Accepted: 05/06/2021] [Indexed: 12/17/2022] Open
Abstract
Alternative transcript cleavage and polyadenylation is linked to cancer cell transformation, proliferation and outcome. This has led researchers to develop methods to detect and bioinformatically analyse alternative polyadenylation as potential cancer biomarkers. If incorporated into standard prognostic measures such as gene expression and clinical parameters, these could advance cancer prognostic testing and possibly guide therapy. In this review, we focus on the existing methodologies, both experimental and computational, that have been applied to support the use of alternative polyadenylation as cancer biomarkers.
Collapse
Affiliation(s)
- Nitika Kandhari
- Development and Stem Cells Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia; (N.K.); (C.A.K.-T.); (P.F.H.)
| | - Calvin A. Kraupner-Taylor
- Development and Stem Cells Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia; (N.K.); (C.A.K.-T.); (P.F.H.)
| | - Paul F. Harrison
- Development and Stem Cells Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia; (N.K.); (C.A.K.-T.); (P.F.H.)
- Monash Bioinformatics Platform, Monash University, Melbourne, VIC 3800, Australia;
| | - David R. Powell
- Monash Bioinformatics Platform, Monash University, Melbourne, VIC 3800, Australia;
| | - Traude H. Beilharz
- Development and Stem Cells Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia; (N.K.); (C.A.K.-T.); (P.F.H.)
| |
Collapse
|
36
|
Sommerkamp P, Cabezas-Wallscheid N, Trumpp A. Alternative Polyadenylation in Stem Cell Self-Renewal and Differentiation. Trends Mol Med 2021; 27:660-672. [PMID: 33985920 DOI: 10.1016/j.molmed.2021.04.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 12/13/2022]
Abstract
Cellular function is shaped by transcriptional and post-transcriptional mechanisms, including alternative polyadenylation (APA). By directly controlling 3'- untranslated region (UTR) length and the selection of the last exon, APA regulates up to 70% of all cellular transcripts influencing RNA stability, output, and protein isoform expression. Cell-state-dependent 3'-UTR shortening has been identified as a hallmark of cellular proliferation. Hence, quiescent/dormant stem cells are characterized by long 3'-UTRs, whereas proliferative stem/progenitor cells exhibit 3'-UTR shortening. Here, the latest studies analyzing the role of APA in regulating stem cell state, self-renewal, differentiation, and metabolism are reviewed. The new role of APA in controlling stem cell fate opens novel potential therapeutic avenues in the field of regenerative medicine.
Collapse
Affiliation(s)
- Pia Sommerkamp
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany
| | | | - Andreas Trumpp
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69117 Heidelberg, Germany; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany.
| |
Collapse
|
37
|
Scarborough AM, Flaherty JN, Hunter OV, Liu K, Kumar A, Xing C, Tu BP, Conrad NK. SAM homeostasis is regulated by CFI m-mediated splicing of MAT2A. eLife 2021; 10:e64930. [PMID: 33949310 PMCID: PMC8139829 DOI: 10.7554/elife.64930] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 05/03/2021] [Indexed: 12/14/2022] Open
Abstract
S-adenosylmethionine (SAM) is the methyl donor for nearly all cellular methylation events. Cells regulate intracellular SAM levels through intron detention of MAT2A, the only SAM synthetase expressed in most cells. The N6-adenosine methyltransferase METTL16 promotes splicing of the MAT2A detained intron by an unknown mechanism. Using an unbiased CRISPR knock-out screen, we identified CFIm25 (NUDT21) as a regulator of MAT2A intron detention and intracellular SAM levels. CFIm25 is a component of the cleavage factor Im (CFIm) complex that regulates poly(A) site selection, but we show it promotes MAT2A splicing independent of poly(A) site selection. CFIm25-mediated MAT2A splicing induction requires the RS domains of its binding partners, CFIm68 and CFIm59 as well as binding sites in the detained intron and 3´ UTR. These studies uncover mechanisms that regulate MAT2A intron detention and reveal a previously undescribed role for CFIm in splicing and SAM metabolism.
Collapse
Affiliation(s)
- Anna M Scarborough
- Department of Microbiology, UT Southwestern Medical CenterDallasUnited States
| | - Juliana N Flaherty
- Department of Microbiology, UT Southwestern Medical CenterDallasUnited States
| | - Olga V Hunter
- Department of Microbiology, UT Southwestern Medical CenterDallasUnited States
| | - Kuanqing Liu
- Department of Biochemistry, UT Southwestern Medical CenterDallasUnited States
| | - Ashwani Kumar
- Eugene McDermott Center for Human Growth and Development, UT Southwestern Medical CenterDallasUnited States
| | - Chao Xing
- Eugene McDermott Center for Human Growth and Development, UT Southwestern Medical CenterDallasUnited States
- Department of Bioinformatics, UT Southwestern Medical CenterDallasUnited States
- Department of Population and Data Sciences, UT Southwestern Medical CenterDallasUnited States
| | - Benjamin P Tu
- Department of Biochemistry, UT Southwestern Medical CenterDallasUnited States
| | - Nicholas K Conrad
- Department of Microbiology, UT Southwestern Medical CenterDallasUnited States
| |
Collapse
|
38
|
Komini C, Theohari I, Lambrianidou A, Nakopoulou L, Trangas T. PAPOLA contributes to cyclin D1 mRNA alternative polyadenylation and promotes breast cancer cell proliferation. J Cell Sci 2021; 134:237820. [PMID: 33712453 DOI: 10.1242/jcs.252304] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 02/26/2021] [Indexed: 12/16/2022] Open
Abstract
Poly(A) polymerases add the poly(A) tail at the 3' end of nearly all eukaryotic mRNA, and are associated with proliferation and cancer. To elucidate the role of the most-studied mammalian poly(A) polymerase, poly(A) polymerase α (PAPOLA), in cancer, we assessed its expression in 221 breast cancer samples and found it to correlate strongly with the aggressive triple-negative subtype. Silencing PAPOLA in MCF-7 and MDA-MB-231 breast cancer cells reduced proliferation and anchorage-independent growth by decreasing steady-state cyclin D1 (CCND1) mRNA and protein levels. Whereas the length of the CCND1 mRNA poly(A) tail was not affected, its 3' untranslated region (3'UTR) lengthened. Overexpressing PAPOLA caused CCND1 mRNA 3'UTR shortening with a concomitant increase in the amount of corresponding transcript and protein, resulting in growth arrest in MCF-7 cells and DNA damage in HEK-293 cells. Such overexpression of PAPOLA promoted proliferation in the p53 mutant MDA-MB-231 cells. Our data suggest that PAPOLA is a possible candidate target for the control of tumor growth that is mostly relevant to triple-negative tumors, a group characterized by PAPOLA overexpression and lack of alternative targeted therapies.
Collapse
Affiliation(s)
- Chrysoula Komini
- Department of Biological Applications and Technology, University of Ioannina, Ioannina, 45110, Greece
| | - Irini Theohari
- First Department of Pathology, Medical School, University of Athens, Athens, 11517, Greece
| | - Andromachi Lambrianidou
- Department of Biological Applications and Technology, University of Ioannina, Ioannina, 45110, Greece
| | - Lydia Nakopoulou
- First Department of Pathology, Medical School, University of Athens, Athens, 11517, Greece
| | - Theoni Trangas
- Department of Biological Applications and Technology, University of Ioannina, Ioannina, 45110, Greece
| |
Collapse
|
39
|
Pereira-Castro I, Moreira A. On the function and relevance of alternative 3'-UTRs in gene expression regulation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 12:e1653. [PMID: 33843145 DOI: 10.1002/wrna.1653] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022]
Abstract
Messanger RNA (mRNA) isoforms with alternative 3'-untranslated regions (3'-UTRs) are produced by alternative polyadenylation (APA), which occurs during transcription in most eukaryotic genes. APA fine-tunes gene expression in a cell-type- and cellular state-dependent manner. Selection of an APA site entails the binding of core cleavage and polyadenylation factors to a particular polyadenylation site localized in the pre-mRNA and is controlled by multiple regulatory determinants, including transcription, pre-mRNA cis-regulatory sequences, and protein factors. Alternative 3'-UTRs serve as platforms for specific RNA binding proteins and microRNAs, which regulate gene expression in a coordinated manner by controlling mRNA fate and function in the cell. Genome-wide studies illustrated the full extent of APA prevalence and revealed that specific 3'-UTR profiles are associated with particular cellular states and diseases. Generally, short 3'-UTRs are associated with proliferative and cancer cells, and long 3'-UTRs are mostly found in polarized and differentiated cells. Fundamental new insights on the physiological consequences of this widespread event and the molecular mechanisms involved have been revealed through single-cell studies. Publicly available comprehensive databases that cover all APA mRNA isoforms identified in many cellular states and diseases reveal specific APA signatures. Therapies tackling APA mRNA isoforms or APA regulators may be regarded as innovative and attractive tools for diagnostics or treatment of several pathologies. We highlight the function of APA and alternative 3'-UTRs in gene expression regulation, the control of these mechanisms, their physiological consequences, and their potential use as new biomarkers and therapeutic tools. This article is categorized under: RNA Processing > 3' End Processing RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Isabel Pereira-Castro
- Gene Regulation, i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Alexandra Moreira
- Gene Regulation, i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
40
|
Zhang Y, Liu L, Qiu Q, Zhou Q, Ding J, Lu Y, Liu P. Alternative polyadenylation: methods, mechanism, function, and role in cancer. J Exp Clin Cancer Res 2021; 40:51. [PMID: 33526057 PMCID: PMC7852185 DOI: 10.1186/s13046-021-01852-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 01/20/2021] [Indexed: 12/12/2022] Open
Abstract
Occurring in over 60% of human genes, alternative polyadenylation (APA) results in numerous transcripts with differing 3'ends, thus greatly expanding the diversity of mRNAs and of proteins derived from a single gene. As a key molecular mechanism, APA is involved in various gene regulation steps including mRNA maturation, mRNA stability, cellular RNA decay, and protein diversification. APA is frequently dysregulated in cancers leading to changes in oncogenes and tumor suppressor gene expressions. Recent studies have revealed various APA regulatory mechanisms that promote the development and progression of a number of human diseases, including cancer. Here, we provide an overview of four types of APA and their impacts on gene regulation. We focus particularly on the interaction of APA with microRNAs, RNA binding proteins and other related factors, the core pre-mRNA 3'end processing complex, and 3'UTR length change. We also describe next-generation sequencing methods and computational tools for use in poly(A) signal detection and APA repositories and databases. Finally, we summarize the current understanding of APA in cancer and provide our vision for future APA related research.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China
| | - Lian Liu
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China
| | - Qiongzi Qiu
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Women's Reproductive Health Key Laboratory of Zhejiang Province, Department of Gynecologic Oncology, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Qing Zhou
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Women's Reproductive Health Key Laboratory of Zhejiang Province, Department of Gynecologic Oncology, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Jinwang Ding
- Department of Head and Neck Surgery, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, 310022, Zhejiang, China.
| | - Yan Lu
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Women's Reproductive Health Key Laboratory of Zhejiang Province, Department of Gynecologic Oncology, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China.
- Cancer Center, Zhejiang University, Hangzhou, 310029, Zhejiang, China.
| | - Pengyuan Liu
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China.
- Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
- Cancer Center, Zhejiang University, Hangzhou, 310029, Zhejiang, China.
| |
Collapse
|
41
|
Epidermal progenitors suppress GRHL3-mediated differentiation through intronic polyadenylation promoted by CPSF-HNRNPA3 collaboration. Nat Commun 2021; 12:448. [PMID: 33469008 PMCID: PMC7815847 DOI: 10.1038/s41467-020-20674-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 12/11/2020] [Indexed: 01/29/2023] Open
Abstract
In self-renewing somatic tissue such as skin epidermis, terminal differentiation genes must be suppressed in progenitors to sustain regenerative capacity. Here we show that hundreds of intronic polyadenylation (IpA) sites are differentially used during keratinocyte differentiation, which is accompanied by downregulation of the Cleavage and Polyadenylation Specificity Factor (CPSF) complex. Sustained CPSF expression in undifferentiated keratinocytes requires the contribution from the transcription factor MYC. In keratinocytes cultured in undifferentiation condition, CSPF knockdown induces premature differentiation and partially affects dynamically used IpA sites. These sites include an IpA site located in the first intron of the differentiation activator GRHL3. CRISPR knockout of GRHL3 IpA increased full-length GRHL3 mRNA expression. Using a targeted genetic screen, we identify that HNRNPA3 interacts with CPSF and enhances GRHL3 IpA. Our data suggest a model where the interaction between CPSF and RNA-binding proteins, such as HNRNPA3, promotes site-specific IpA and suppresses premature differentiation in progenitors.
Collapse
|
42
|
Alternative Polyadenylation: a new frontier in post transcriptional regulation. Biomark Res 2020; 8:67. [PMID: 33292571 PMCID: PMC7690165 DOI: 10.1186/s40364-020-00249-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022] Open
Abstract
Polyadenylation of pre-messenger RNA (pre-mRNA) specific sites and termination of their downstream transcriptions are signaled by unique sequence motif structures such as AAUAAA and its auxiliary elements. Alternative polyadenylation (APA) is an important post-transcriptional regulatory mechanism that processes RNA products depending on its 3'-untranslated region (3'-UTR) specific sequence signal. APA processing can generate several mRNA isoforms from a single gene, which may have different biological functions on their target gene. As a result, cellular genomic stability, proliferation capability, and transformation feasibility could all be affected. Furthermore, APA modulation regulates disease initiation and progression. APA status could potentially act as a biomarker for disease diagnosis, severity stratification, and prognosis forecast. While the advance of modern throughout technologies, such as next generation-sequencing (NGS) and single-cell sequencing techniques, have enriched our knowledge about APA, much of APA biological process is unknown and pending for further investigation. Herein, we review the current knowledge on APA and how its regulatory complex factors (CFI/IIm, CPSF, CSTF, and RBPs) work together to determine RNA splicing location, cell cycle velocity, microRNA processing, and oncogenesis regulation. We also discuss various APA experiment strategies and the future direction of APA research.
Collapse
|
43
|
Chatrikhi R, Mallory MJ, Gazzara MR, Agosto LM, Zhu WS, Litterman AJ, Ansel KM, Lynch KW. RNA Binding Protein CELF2 Regulates Signal-Induced Alternative Polyadenylation by Competing with Enhancers of the Polyadenylation Machinery. Cell Rep 2020; 28:2795-2806.e3. [PMID: 31509743 PMCID: PMC6752737 DOI: 10.1016/j.celrep.2019.08.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/28/2019] [Accepted: 08/02/2019] [Indexed: 12/22/2022] Open
Abstract
The 3′ UTR (UTR) of human mRNAs plays a critical role in controlling protein expression and function. Importantly, 3′ UTRs of human messages are not invariant for each gene but rather are shaped by alternative polyadenylation (APA) in a cell state-dependent manner, including in response to T cell activation. However, the proteins and mechanisms driving APA regulation remain poorly understood. Here we show that the RNA-binding protein CELF2 controls APA of its own message in a signal-dependent manner by competing with core enhancers of the polyadenylation machinery for binding to RNA. We further show that CELF2 binding overlaps with APA enhancers transcriptome-wide, and almost half of 3′ UTRs that undergo T cell signaling-induced APA are regulated in a CELF2-dependent manner. These studies thus reveal CELF2 to be a critical regulator of 3′ UTR identity in T cells and demonstrate an additional mechanism for CELF2 in regulating polyadenylation site choice. Alternative polyadenylation (APA) is broadly regulated during cellular activation. Chatrikhi et al. demonstrate that the RNA-binding protein CELF2 competes with CFIm25 and CstF64 for binding around polyadenylation sites. Increased expression of CELF2 upon cellular activation alters this competition and is a key driver of activation-induced APA.
Collapse
Affiliation(s)
- Rakesh Chatrikhi
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael J Mallory
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew R Gazzara
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Graduate Group in Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Laura M Agosto
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wandi S Zhu
- Department of Microbiology and Immunology, UC San Francisco, San Francisco, CA 94143, USA
| | - Adam J Litterman
- Department of Microbiology and Immunology, UC San Francisco, San Francisco, CA 94143, USA
| | - K Mark Ansel
- Department of Microbiology and Immunology, UC San Francisco, San Francisco, CA 94143, USA
| | - Kristen W Lynch
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
44
|
Weng T, Huang J, Wagner EJ, Ko J, Wu M, Wareing NE, Xiang Y, Chen NY, Ji P, Molina JG, Volcik KA, Han L, Mayes MD, Blackburn MR, Assassi S. Downregulation of CFIm25 amplifies dermal fibrosis through alternative polyadenylation. J Exp Med 2020; 217:jem.20181384. [PMID: 31757866 PMCID: PMC7041714 DOI: 10.1084/jem.20181384] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 03/19/2019] [Accepted: 09/17/2019] [Indexed: 01/09/2023] Open
Abstract
This study implicates the key regulator of alternative polyadenylation, CFIm25 in dermal fibrosis and in systemic sclerosis (scleroderma) pathogenesis. CFIm25 downregulation promotes the expression of profibrotic factors, exaggerates bleomycin-induced skin fibrosis, while CFIm25 restoration attenuates skin fibrosis. Systemic sclerosis (SSc; scleroderma) is a multisystem fibrotic disease. The mammalian cleavage factor I 25-kD subunit (CFIm25; encoded by NUDT21) is a key regulator of alternative polyadenylation, and its depletion causes predominantly 3′UTR shortening through loss of stimulation of distal polyadenylation sites. A shortened 3′UTR will often lack microRNA target sites, resulting in increased mRNA translation due to evasion of microRNA-mediated repression. Herein, we report that CFlm25 is downregulated in SSc skin, primary dermal fibroblasts, and two murine models of dermal fibrosis. Knockdown of CFIm25 in normal skin fibroblasts is sufficient to promote the 3′UTR shortening of key TGFβ-regulated fibrotic genes and enhance their protein expression. Moreover, several of these fibrotic transcripts show 3′UTR shortening in SSc skin. Finally, mice with CFIm25 deletion in fibroblasts show exaggerated skin fibrosis upon bleomycin treatment, and CFIm25 restoration attenuates bleomycin-induced skin fibrosis. Overall, our data link this novel RNA-processing mechanism to dermal fibrosis and SSc pathogenesis.
Collapse
Affiliation(s)
- Tingting Weng
- Department of Biochemistry and Molecular Biology, the University of Texas Health Science Center at Houston, Houston, TX
| | - Jingjing Huang
- Department of Biochemistry and Molecular Biology, the University of Texas Health Science Center at Houston, Houston, TX.,Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Eric J Wagner
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, TX
| | - Junsuk Ko
- Department of Biochemistry and Molecular Biology, the University of Texas Health Science Center at Houston, Houston, TX
| | - Minghua Wu
- Department of Internal Medicine, Division of Rheumatology, The University of Texas Health Science Center at Houston, Houston, TX
| | - Nancy E Wareing
- Department of Biochemistry and Molecular Biology, the University of Texas Health Science Center at Houston, Houston, TX
| | - Yu Xiang
- Department of Biochemistry and Molecular Biology, the University of Texas Health Science Center at Houston, Houston, TX
| | - Ning-Yuan Chen
- Department of Biochemistry and Molecular Biology, the University of Texas Health Science Center at Houston, Houston, TX
| | - Ping Ji
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, TX
| | - Jose G Molina
- Department of Biochemistry and Molecular Biology, the University of Texas Health Science Center at Houston, Houston, TX
| | - Kelly A Volcik
- Department of Biochemistry and Molecular Biology, the University of Texas Health Science Center at Houston, Houston, TX
| | - Leng Han
- Department of Biochemistry and Molecular Biology, the University of Texas Health Science Center at Houston, Houston, TX
| | - Maureen D Mayes
- Department of Internal Medicine, Division of Rheumatology, The University of Texas Health Science Center at Houston, Houston, TX
| | - Michael R Blackburn
- Department of Biochemistry and Molecular Biology, the University of Texas Health Science Center at Houston, Houston, TX
| | - Shervin Assassi
- Department of Internal Medicine, Division of Rheumatology, The University of Texas Health Science Center at Houston, Houston, TX
| |
Collapse
|
45
|
Shulman ED, Elkon R. Systematic identification of functional SNPs interrupting 3'UTR polyadenylation signals. PLoS Genet 2020; 16:e1008977. [PMID: 32804959 PMCID: PMC7451987 DOI: 10.1371/journal.pgen.1008977] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 08/27/2020] [Accepted: 07/01/2020] [Indexed: 12/22/2022] Open
Abstract
Alternative polyadenylation (APA) is emerging as a widespread regulatory layer since the majority of human protein-coding genes contain several polyadenylation (p(A)) sites in their 3’UTRs. By generating isoforms with different 3’UTR length, APA potentially affects mRNA stability, translation efficiency, nuclear export, and cellular localization. Polyadenylation sites are regulated by adjacent RNA cis-regulatory elements, the principals among them are the polyadenylation signal (PAS) AAUAAA and its main variant AUUAAA, typically located ~20-nt upstream of the p(A) site. Mutations in PAS and other auxiliary poly(A) cis-elements in the 3’UTR of several genes have been shown to cause human Mendelian diseases, and to date, only a few common SNPs that regulate APA were associated with complex diseases. Here, we systematically searched for SNPs that affect gene expression and human traits by modulation of 3’UTR APA. First, focusing on the variants most likely to exert the strongest effect, we identified 2,305 SNPs that interrupt the canonical PAS or its main variant. Implementing pA-QTL tests using GTEx RNA-seq data, we identified 330 PAS SNPs (called PAS pA-QTLs) that were significantly associated with the usage of their p(A) site. As expected, PAS-interrupting alleles were mostly linked with decreased cleavage at their p(A) site and the consequential 3’UTR lengthening. However, interestingly, in ~10% of the cases, the PAS-interrupting allele was associated with increased usage of an upstream p(A) site and 3’UTR shortening. As an indication of the functional effects of these PAS pA-QTLs on gene expression and complex human traits, we observed for few dozens of them marked colocalization with eQTL and/or GWAS signals. The PAS-interrupting alleles linked with 3’UTR lengthening were also strongly associated with decreased gene expression, indicating that shorter isoforms generated by APA are generally more stable than longer ones. Last, we carried out an extended, genome-wide analysis of 3’UTR variants and detected thousands of additional pA-QTLs having weaker effects compared to the PAS pA-QTLs. mRNA molecules that encode for proteins end with a long stretch of adenosines, called poly(A) tail. The poly(A) tail contributes to the stability of the mRNA molecules, their translation to proteins and their import from the nucleus to the cytoplasm. The process of adding this tail to the mRNAs is called polyadenylation, and the termination site on the mRNAs at which the poly(A) tail is added is called the poly(A) site. In recent years it became evident that the vast majority of mRNAs of human genes contain several alternative poly(A) sites and their usage generates different mRNA isoforms that differ in their stability and translation efficiency. Therefore, alternative polyadenylation (APA) is emerging as a novel and important, yet underexplored, mechanism that regulate gene expression. The choice between alternative p(A) sites in an mRNA molecule is regulated by regulatory sequences located within a region in the mRNA called the 3’ untranslated region (3’UTR). A major challenge in present human genetics research is to understand how common genetic variants affect individuals’ health. In our study, we systematically identified dozens of genetic variants that affect the choice between alternative p(A) sites and demonstrated that by that, these variants influence the expression level of the target genes. Our results help to illuminate a novel mechanism by which genetic variants that are common in the population affect different traits including our risk for developing diseases.
Collapse
Affiliation(s)
- Eldad David Shulman
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ran Elkon
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- * E-mail:
| |
Collapse
|
46
|
Ren C, Deng K, Wang Z, Deng M, Fan Y, Zhang Y, Ma J, Wang S, Liu Z, Wang F. Reinterpreting sheep muscle strand-specific RNA sequencing data showing extensive 3'UTR extensions. Anim Genet 2020; 51:788-798. [PMID: 32696483 DOI: 10.1111/age.12987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 05/16/2020] [Accepted: 06/23/2020] [Indexed: 12/01/2022]
Abstract
The more complex 3' UTR in higher organisms may have the function of increasing post-transcriptional gene regulation. Recent RNA sequencing technologies have provided us with the possibility to capture the complete 3' UTR landscape of different species and cells. However, no systematic analysis of sheep-related 3' UTR has been performed. Here, we conducted a detailed analysis of the 3' UTR with the primary goal of identifying intact 3' UTR landscapes in the sheep muscles of the three developmental stages. Based on strand-specific RNA sequencing (ssRNA-seq) data, we found that thousands of genes in sheep muscle are continuously transcribed after the UTR of the reference genome (Oar_v4.0). More than 66% of the 3' UTR extensions exhibit similar expression trends to their upstream gene exons. These 3' UTR extensions strongly enrich thousands of conserved microRNA binding sites. The 3' UTR extension-associated RNA of PFKM (PuaRNA) was predicted to be derived from the 3' UTR of PFKM. In sheep myocytes, myotubes and various tissues, the expression pattern of PuaRNA is positively correlated with that of PFKM. Taken together, these new 3' UTR annotations greatly extend the range of mammalian post-transcriptional regulatory networks, which have a particular impact on the regulation of sheep muscle development.
Collapse
Affiliation(s)
- Caifang Ren
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Weigang Street, Xuanwu District, Nanjing, Jiangsu, 210095, China.,School of Medicine, Jiangsu University, Zhengjiang, Jiangsu, 212013, China
| | - Kaiping Deng
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Weigang Street, Xuanwu District, Nanjing, Jiangsu, 210095, China
| | - Zhibo Wang
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Weigang Street, Xuanwu District, Nanjing, Jiangsu, 210095, China
| | - Mingtian Deng
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Weigang Street, Xuanwu District, Nanjing, Jiangsu, 210095, China
| | - Yixuan Fan
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Weigang Street, Xuanwu District, Nanjing, Jiangsu, 210095, China
| | - Yanli Zhang
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Weigang Street, Xuanwu District, Nanjing, Jiangsu, 210095, China
| | - Jianyu Ma
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Weigang Street, Xuanwu District, Nanjing, Jiangsu, 210095, China
| | - Shuting Wang
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Weigang Street, Xuanwu District, Nanjing, Jiangsu, 210095, China
| | - Zifei Liu
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Weigang Street, Xuanwu District, Nanjing, Jiangsu, 210095, China
| | - Feng Wang
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Weigang Street, Xuanwu District, Nanjing, Jiangsu, 210095, China
| |
Collapse
|
47
|
Cheng LC, Zheng D, Baljinnyam E, Sun F, Ogami K, Yeung PL, Hoque M, Lu CW, Manley JL, Tian B. Widespread transcript shortening through alternative polyadenylation in secretory cell differentiation. Nat Commun 2020; 11:3182. [PMID: 32576858 PMCID: PMC7311474 DOI: 10.1038/s41467-020-16959-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 05/29/2020] [Indexed: 11/29/2022] Open
Abstract
Most eukaryotic genes produce alternative polyadenylation (APA) isoforms. Here we report that, unlike previously characterized cell lineages, differentiation of syncytiotrophoblast (SCT), a cell type critical for hormone production and secretion during pregnancy, elicits widespread transcript shortening through APA in 3'UTRs and in introns. This global APA change is observed in multiple in vitro trophoblast differentiation models, and in single cells from placentas at different stages of pregnancy. Strikingly, the transcript shortening is unrelated to cell proliferation, a feature previously associated with APA control, but instead accompanies increased secretory functions. We show that 3'UTR shortening leads to transcripts with higher mRNA stability, which augments transcriptional activation, especially for genes involved in secretion. Moreover, this mechanism, named secretion-coupled APA (SCAP), is also executed in B cell differentiation to plasma cells. Together, our data indicate that SCAP tailors the transcriptome during formation of secretory cells, boosting their protein production and secretion capacity.
Collapse
Affiliation(s)
- Larry C Cheng
- Graduate Program in Quantitative Biomedicine, School of Graduate Studies, Rutgers University, New Brunswick, NJ 08901, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
- Program in Gene Expression and Regulation, and Center for Systems and Computational Biology, Wistar Institute, Philadelphia, PA 19104, USA
| | - Dinghai Zheng
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Erdene Baljinnyam
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Fangzheng Sun
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Koichi Ogami
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan
| | - Percy Luk Yeung
- Robert Wood Johnson Medical School and Child Health Institute of New Jersey, New Brunswick, NJ 08901, USA
| | - Mainul Hoque
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Chi-Wei Lu
- Robert Wood Johnson Medical School and Child Health Institute of New Jersey, New Brunswick, NJ 08901, USA
| | - James L Manley
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Bin Tian
- Graduate Program in Quantitative Biomedicine, School of Graduate Studies, Rutgers University, New Brunswick, NJ 08901, USA.
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA.
- Program in Gene Expression and Regulation, and Center for Systems and Computational Biology, Wistar Institute, Philadelphia, PA 19104, USA.
| |
Collapse
|
48
|
Nourse J, Spada S, Danckwardt S. Emerging Roles of RNA 3'-end Cleavage and Polyadenylation in Pathogenesis, Diagnosis and Therapy of Human Disorders. Biomolecules 2020; 10:biom10060915. [PMID: 32560344 PMCID: PMC7356254 DOI: 10.3390/biom10060915] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/10/2020] [Accepted: 06/13/2020] [Indexed: 12/11/2022] Open
Abstract
A crucial feature of gene expression involves RNA processing to produce 3′ ends through a process termed 3′ end cleavage and polyadenylation (CPA). This ensures the nascent RNA molecule can exit the nucleus and be translated to ultimately give rise to a protein which can execute a function. Further, alternative polyadenylation (APA) can produce distinct transcript isoforms, profoundly expanding the complexity of the transcriptome. CPA is carried out by multi-component protein complexes interacting with multiple RNA motifs and is tightly coupled to transcription, other steps of RNA processing, and even epigenetic modifications. CPA and APA contribute to the maintenance of a multitude of diverse physiological processes. It is therefore not surprising that disruptions of CPA and APA can lead to devastating disorders. Here, we review potential CPA and APA mechanisms involving both loss and gain of function that can have tremendous impacts on health and disease. Ultimately we highlight the emerging diagnostic and therapeutic potential CPA and APA offer.
Collapse
Affiliation(s)
- Jamie Nourse
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (J.N.); (S.S.)
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Stefano Spada
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (J.N.); (S.S.)
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Sven Danckwardt
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (J.N.); (S.S.)
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Rhine-Main, Germany
- Correspondence:
| |
Collapse
|
49
|
Shen T, Li H, Song Y, Li L, Lin J, Wei G, Ni T. Alternative polyadenylation dependent function of splicing factor SRSF3 contributes to cellular senescence. Aging (Albany NY) 2020; 11:1356-1388. [PMID: 30835716 PMCID: PMC6428108 DOI: 10.18632/aging.101836] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 02/17/2019] [Indexed: 12/18/2022]
Abstract
Down-regulated splicing factor SRSF3 is known to promote cellular senescence, an important biological process in preventing cancer and contributing to individual aging, via its alternative splicing dependent function in human cells. Here we discovered alternative polyadenylation (APA) dependent function of SRSF3 as a novel mechanism explaining SRSF3 downregulation induced cellular senescence. Knockdown of SRSF3 resulted in preference usage of proximal poly(A) sites and thus global shortening of 3′ untranslated regions (3′ UTRs) of mRNAs. SRSF3-depletion also induced senescence-related phenotypes in both human and mouse cells. These 3′ UTR shortened genes were enriched in senescence-associated pathways. Shortened 3′ UTRs tended to produce more proteins than the longer ones. Simulating the effects of 3′ UTR shortening by overexpression of three candidate genes (PTEN, PIAS1 and DNMT3A) all led to senescence-associated phenotypes. Mechanistically, SRSF3 has higher binding density near proximal poly(A) site than distal one in 3′ UTR shortened genes. Further, upregulation of PTEN by either ectopic overexpression or SRSF3-knockdown induction both led to reduced phosphorylation of AKT and ultimately senescence-associated phenotypes. We revealed for the first time that reduced SRSF3 expression could promote cellular senescence through its APA-dependent function, largely extending our mechanistic understanding in splicing factor regulated cellular senescence.
Collapse
Affiliation(s)
- Ting Shen
- State Key Laboratory of Genetic Engineering and Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai 200438, China
| | - Huan Li
- State Key Laboratory of Genetic Engineering and Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai 200438, China
| | - Yifang Song
- State Key Laboratory of Genetic Engineering and Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai 200438, China
| | - Li Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jinzhong Lin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Gang Wei
- State Key Laboratory of Genetic Engineering and Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai 200438, China
| | - Ting Ni
- State Key Laboratory of Genetic Engineering and Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai 200438, China
| |
Collapse
|
50
|
Herrmann CJ, Schmidt R, Kanitz A, Artimo P, Gruber AJ, Zavolan M. PolyASite 2.0: a consolidated atlas of polyadenylation sites from 3' end sequencing. Nucleic Acids Res 2020; 48:D174-D179. [PMID: 31617559 PMCID: PMC7145510 DOI: 10.1093/nar/gkz918] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/26/2019] [Accepted: 10/14/2019] [Indexed: 12/31/2022] Open
Abstract
Generated by 3′ end cleavage and polyadenylation at alternative polyadenylation (poly(A)) sites, alternative terminal exons account for much of the variation between human transcript isoforms. More than a dozen protocols have been developed so far for capturing and sequencing RNA 3′ ends from a variety of cell types and species. In previous studies, we have used these data to uncover novel regulatory signals and cell type-specific isoforms. Here we present an update of the PolyASite (https://polyasite.unibas.ch) resource of poly(A) sites, constructed from publicly available human, mouse and worm 3′ end sequencing datasets by enforcing uniform quality measures, including the flagging of putative internal priming sites. Through integrated processing of all data, we identified and clustered sites that are closely spaced and share polyadenylation signals, as these are likely the result of stochastic variations in processing. For each cluster, we identified the representative - most frequently processed - site and estimated the relative use in the transcriptome across all samples. We have established a modern web portal for efficient finding, exploration and export of data. Database generation is fully automated, greatly facilitating incorporation of new datasets and the updating of underlying genome resources.
Collapse
Affiliation(s)
| | - Ralf Schmidt
- Biozentrum, University of Basel, Basel, Switzerland
| | | | - Panu Artimo
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Andreas J Gruber
- Oxford Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | |
Collapse
|