1
|
Dieckow S, Szafrański SP, Grischke J, Qu T, Doll-Nikutta K, Steglich M, Yang I, Häussler S, Stiesch M. Structure and composition of early biofilms formed on dental implants are complex, diverse, subject-specific and dynamic. NPJ Biofilms Microbiomes 2024; 10:155. [PMID: 39719447 DOI: 10.1038/s41522-024-00624-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/26/2024] [Indexed: 12/26/2024] Open
Abstract
Biofilm-associated peri-implant infections pose a major problem in modern medicine. The understanding of biofilm development is hampered by biofilm complexity and the lack of robust clinical models. This study comprehensively characterized the dynamics of early biofilm formation in the transmucosal passage of implant abutments in 12 patients. Biofilm structures and compositions were complex, diverse, subject-specific and dynamic. A total of 371 different bacterial species were detected. 100 phylogenetically diverse unnamed species and 35 taxonomically diverse disease-associated species comprised an average 4.3% and 3.1% of the community, respectively, but reached up to 12.7% and 21.7% in some samples. Oral taxa formed numerous positive associations and clusters and were characterized by a high potential for metabolic interactions. The subspecies diversity was highly patient-specific and species-dependent, with 1427 ASVs identified in total. The unprecedented depth of early biofilm characterization in this study will support the development of individualized preventive and early diagnostic strategies.
Collapse
Affiliation(s)
- Sophie Dieckow
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
| | - Szymon P Szafrański
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Jasmin Grischke
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
| | - Taoran Qu
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Katharina Doll-Nikutta
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Matthias Steglich
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Ines Yang
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Susanne Häussler
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute for Molecular Bacteriology, Twincore, Centre for Clinical and Experimental Infection Research, Hannover, Germany
- Department of Clinical Microbiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Meike Stiesch
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany.
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany.
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany.
| |
Collapse
|
2
|
Thitisakyothin P, Chanrat S, Srisatjaluk RL, Mitrakul K. Quantitative analysis of Streptococcus mutans, Bifidobacterium, and Scardovia Wiggsiae in occlusal biofilm and their association with Visible Occlusal Plaque Index (VOPI) and International Caries Detection and Assessment System (ICDAS). Eur Arch Paediatr Dent 2024:10.1007/s40368-024-00962-y. [PMID: 39715970 DOI: 10.1007/s40368-024-00962-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/07/2024] [Indexed: 12/25/2024]
Abstract
AIMS To quantitatively detect S. mutans, Bifidobacterium, and S. wiggsiae in occlusal biofilm from permanent first molars based on the Visible Occlusal Plaque Index (VOPI), and to analyse the association between their levels and the occlusal enamel caries occurrence following the diagnosis of the International Caries Detection and Assessment System (ICDAS). STUDY DESIGN One hundred twenty plaque samples were collected from children aged 6-8 years and divided into four groups (n = 30 each group) according to VOPI scores (0 = no visible plaque, 1 = thin plaque, 2 = thick plaque, and 3 = heavy plaque). Scores 0 and 1 were identified by running dental probe on the groove. Scores 2 and 3 were visually identified. ICDAS scores were recorded by scoring 0-3 (0 = sound tooth surface, 1 = opacity or discoloration of enamel after air drying, 2 = visual change in enamel when wet, and 3 = localised enamel breakdown). METHODS DNA was extracted from plaque samples and performed quantitative real-time PCR using SYBR green and specific primers for total bacteria including the 16S rRNA gene sequences conserved in all bacteria (BAC16S), S. mutans, Bifidobacterium, and S. wiggsiae. RESULTS Ages of the children were different amongst VOPI groups (p < 0.001). Levels of total bacteria (p < 0.001) and S. mutans (p = 0.026) increased when VOPI increased. The ratio of S. mutans to total bacteria (p = 0.015) and the ratio of Bifidobacterium to total bacteria (p < 0.001) decreased from VOPI 0 to VOPI 3. Significant differences in total bacteria (p < 0.001) and S. mutans (p = 0.018) were detected from VOPI 0 to VOPI 2. A difference in Bifidobacterium (p < 0.001) was detected from VOPI 0 to VOPI 1. CONCLUSION Quantities of total bacteria (p < 0.001), S. mutans (p = 0.02) and ICDAS scores (p < 0.001) and VOPI scores were positively correlated. Quantities of ratio of S. mutans to total bacteria (p = 0.003) and ratio of Bifidobacterium to total bacteria (p < 0.001) and VOPI scores and ICDAS scores (p < 0.001) were negatively correlated.
Collapse
Affiliation(s)
- P Thitisakyothin
- Department of Pediatric Dentistry, Faculty of Dentistry, Mahidol University, 6 Yothee Street, Ratchathewi, Bangkok, 10400, Thailand
| | - S Chanrat
- Department of Pediatric Dentistry, College of Dental Medicine, Rangsit University, Pathum Thani, Thailand
| | - R L Srisatjaluk
- Department of Oral Microbiology, Faculty of Dentistry, Mahidol University, 6 Yothee Street, Ratchathewi, Bangkok, 10400, Thailand
| | - K Mitrakul
- Department of Pediatric Dentistry, Faculty of Dentistry, Mahidol University, 6 Yothee Street, Ratchathewi, Bangkok, 10400, Thailand.
| |
Collapse
|
3
|
Niu Q, Chen S, Bai R, Lu Y, Peng L, Han B, Yu T. Dynamics of the oral microbiome during orthodontic treatment and antimicrobial advances for orthodontic appliances. iScience 2024; 27:111458. [PMID: 39720528 PMCID: PMC11667053 DOI: 10.1016/j.isci.2024.111458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024] Open
Abstract
The oral microbiome plays an important role in human health, and an imbalance of the oral microbiome could lead to oral and systemic diseases. Orthodontic treatment is an effective method to correct malocclusion. However, it is associated with many adverse effects, including white spot lesions, caries, gingivitis, periodontitis, halitosis, and even some systematic diseases. Undoubtedly, increased difficulty in oral hygiene maintenance and oral microbial disturbances are the main factors in developing these adverse effects. The present article briefly illustrates the characteristics of different ecological niches (including saliva, soft tissue surfaces of the oral mucosa, and hard tissue surfaces of the teeth) inhabited by oral microorganisms. According to the investigations conducted since 2014, we comprehensively elucidate the alterations of the oral microbiome in saliva, dental plaque, and other ecological niches after the introduction of orthodontic appliances. Finally, we provide a detailed review of recent advances in the antimicrobial properties of different orthodontic appliances. This article will provide researchers with a profound understanding of the underlying mechanisms of the effects of orthodontic appliances on human health and provide direction for further research on the antimicrobial properties of orthodontic appliances.
Collapse
Affiliation(s)
- Qin Niu
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing 100081, P.R. China
| | - Si Chen
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing 100081, P.R. China
| | - Rushui Bai
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing 100081, P.R. China
| | - Yuntao Lu
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing 100081, P.R. China
| | - Liying Peng
- Department of Orthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, P.R. China
| | - Bing Han
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing 100081, P.R. China
| | - Tingting Yu
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing 100081, P.R. China
| |
Collapse
|
4
|
Benseddik F, Pilliol V, Alou MT, Wasfy RM, Raoult D, Dubourg G. The oral microbiota and its relationship to dental calculus and caries. Arch Oral Biol 2024; 171:106161. [PMID: 39675254 DOI: 10.1016/j.archoralbio.2024.106161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/04/2024] [Accepted: 12/08/2024] [Indexed: 12/17/2024]
Abstract
OBJECTIVES In this review, we provide an overview of the composition of the microbiota associated with these two dental pathologies, caries and tartar, highlighting the microbial profiles associated with each pathology. DESIGN This literature review was carried out by a manual search of two electronic databases, PubMed and Web of Science (WOS), using specific keywords to the two oral pathologies dental caries and calculus. RESULTS The oral microbial community is known for its complexity, and comprises hundreds of species of different micro-organisms. Many of them, under the influence of endogenous and exogenous factors, can play a role in the onset and development of oral pathologies. Analysis of the microbial profiles of caries and dental calculus revealed that Streptococcus mutans and Lactobacillus species are abundant in the oral microbiota associated with caries whereas their presence is less reported in dental calculus. However, the three pathogens known as the "red complex", namely Porphyromonas, Tannarella and Treponema, which are associated with the development of periodontal pathology, are strongly present in the dental calculus microbiome. CONCLUSION The microbiota composition associated with dental caries and calculus highlights specific microbial signatures for each of the two oral pathologies, underscoring their differences and microbiological complexity, while the possible relationship between the formation of dental calculus and the development of caries remains unclear.
Collapse
Affiliation(s)
- Fatma Benseddik
- Aix-Marseille University, Microbes, Evolution, Phylogeny and Infection (MEPHI), France; IHU Méditerranée Infection, Marseille, France
| | - Virginie Pilliol
- Aix-Marseille University, Microbes, Evolution, Phylogeny and Infection (MEPHI), France; IHU Méditerranée Infection, Marseille, France; AP-HM, Marseille, France
| | - Maryam Tidjani Alou
- Aix-Marseille University, Microbes, Evolution, Phylogeny and Infection (MEPHI), France; IHU Méditerranée Infection, Marseille, France
| | - Reham Magdy Wasfy
- Aix-Marseille University, Microbes, Evolution, Phylogeny and Infection (MEPHI), France; IHU Méditerranée Infection, Marseille, France
| | - Didier Raoult
- Aix-Marseille University, Microbes, Evolution, Phylogeny and Infection (MEPHI), France; IHU Méditerranée Infection, Marseille, France
| | - Grégory Dubourg
- Aix-Marseille University, Microbes, Evolution, Phylogeny and Infection (MEPHI), France; IHU Méditerranée Infection, Marseille, France; AP-HM, Marseille, France.
| |
Collapse
|
5
|
Tanasă F, Nechifor M, Teacă CA. Essential Oils as Alternative Green Broad-Spectrum Biocides. PLANTS (BASEL, SWITZERLAND) 2024; 13:3442. [PMID: 39683235 DOI: 10.3390/plants13233442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/25/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024]
Abstract
Natural compounds from plants represent suitable options to replace synthetic biocides when employed against microorganisms in various applications. Essential oils (EOs) have attracted increased interest due to their biocompatible and rather innocuous nature, and complex biological activity (fungicide, biocide and anti-inflammatory, antioxidant, immunomodulatory action, etc.). EOs are complex mixtures of derived metabolites with high volatility obtained from various vegetal parts and employed to a great extent in different healthcare (natural cures, nutrition, phyto- and aromatherapy, spices) and cosmetics applications (perfumery, personal and beauty care), as well as in cleaning products, agriculture and pest control, food conservation and active packaging, or even for restauration and preservation of cultural artifacts. EOs can act in synergy with other compounds, organic and synthetic as well, when employed in different complex formulations. This review will illustrate the employment of EOs in different applications based on some of the most recent reports in a systematic and comprehensive, though not exhaustive, manner. Some critical assessments will also be included, as well as some perspectives in this regard.
Collapse
Affiliation(s)
- Fulga Tanasă
- Polyaddition and Photochemistry Department, "Petru Poni" Institute of Macromolecular Chemistry, 41A Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| | - Marioara Nechifor
- Polyaddition and Photochemistry Department, "Petru Poni" Institute of Macromolecular Chemistry, 41A Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| | - Carmen-Alice Teacă
- Center of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, 41A Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| |
Collapse
|
6
|
Macote-Orosco L, Martín-Vacas A, Paz-Cortés MM, Mourelle Martínez MR, de Nova MJ. The Relationship Between Manual Dexterity and Toothbrushing Efficiency in Preschool Children: A Crossover Study. CHILDREN (BASEL, SWITZERLAND) 2024; 11:1498. [PMID: 39767927 PMCID: PMC11674593 DOI: 10.3390/children11121498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025]
Abstract
AIM The aim of this study was to evaluate the relationship between oral hygiene (OH) efficiency and manual dexterity skills in Spanish five-year-old children using two fine motor tests. METHODS A cross-sectional study with a pre-post evaluation was designed. The children's OH was measured according to the Silness and Löe plaque index (PI) before toothbrushing upon arrival at school (pre) and after supervised toothbrushing (post). Motor skills (children's dexterity) were determined with the Visual Motor Skills and Resistance to Fatigue test (VMSRF test) and the scale for the Behavioural Assessment of Preschool Skills (BAPS scale). Data were analysed with the SPSS® statistics software with a 95% confidence interval and bilateral significance. RESULTS One hundred and twenty-nine children were evaluated. The mean PI was 2.5, indicating generally poor OH in the sample. No difference in OH was observed between genders or in the brushing frequency categories. No significant differences in OH or the PI were found between right- and left-handed children either (p > 0.05). Significant differences were found between the OH category pre and post toothbrushing in the total sample, as well as in the various sextants and surfaces evaluated. The results of the VMSRF and BAPS tests indicate moderate visuomotor skills and fatigue resistance and a poor average skill level. A statistically significant improvement in the PI was found in children with higher scores in the VMSRF and BAPS tests. CONCLUSIONS A significantly higher OH efficacy was found in children with better motor skills, although five-year-old children showed moderate visuomotor skills and fatigue resistance and a poor average preschool skill level.
Collapse
Affiliation(s)
- Lisbeth Macote-Orosco
- Faculty of Dentistry, Alfonso X El Sabio University, Villanueva de la Cañada, 28691 Madrid, Spain; (L.M.-O.); (A.M.-V.)
| | - Andrea Martín-Vacas
- Faculty of Dentistry, Alfonso X El Sabio University, Villanueva de la Cañada, 28691 Madrid, Spain; (L.M.-O.); (A.M.-V.)
- Postgraduate Specialization Program in Paediatric Dentistry, Faculty of Dentistry, Complutense University of Madrid, 28040 Madrid, Spain; (M.R.M.M.); (M.J.d.N.)
| | - Marta M. Paz-Cortés
- Faculty of Dentistry, Alfonso X El Sabio University, Villanueva de la Cañada, 28691 Madrid, Spain; (L.M.-O.); (A.M.-V.)
- Postgraduate Specialization Program in Paediatric Dentistry, Faculty of Dentistry, Complutense University of Madrid, 28040 Madrid, Spain; (M.R.M.M.); (M.J.d.N.)
| | - María Rosa Mourelle Martínez
- Postgraduate Specialization Program in Paediatric Dentistry, Faculty of Dentistry, Complutense University of Madrid, 28040 Madrid, Spain; (M.R.M.M.); (M.J.d.N.)
- Department of Dental Clinical Specialties, Faculty of Dentistry, Complutense University of Madrid, 28040 Madrid, Spain
| | - M. Joaquín de Nova
- Postgraduate Specialization Program in Paediatric Dentistry, Faculty of Dentistry, Complutense University of Madrid, 28040 Madrid, Spain; (M.R.M.M.); (M.J.d.N.)
- Department of Dental Clinical Specialties, Faculty of Dentistry, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
7
|
Zhou Y, Zhou Y, Liao B, Chen X, Niu Y, Ren B. Effects of Toothpaste Containing 2% Zinc Citrate on Gingival Health and Three Related Bacteria-A Randomized Double-Blind Study. Clin Exp Dent Res 2024; 10:e70020. [PMID: 39497343 PMCID: PMC11534642 DOI: 10.1002/cre2.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 11/08/2024] Open
Abstract
OBJECTIVES Gingivitis is the initial stage of periodontitis, one of the most common oral diseases and the primary cause of tooth loss. This study aims to evaluate the effect of toothpaste containing 2% zinc citrate on gingival health and the abundance of three bacteria related to gingivitis and periodontitis. METHODS AND MATERIALS Eleven volunteers with the same oral health status were randomly assigned to the treatment (n = 5) and control (n = 6) groups. The control group used fluoride toothpaste, while the treatment group used fluoride toothpaste supplemented with 2% zinc citrate for 3 months. The plaque index, gingival index, and bleeding index were measured at baseline (0 day), 3 weeks, and 3 months. Dental plaque from four areas of the mouth (FDI criteria) was collected at the same timepoints. A total of 132 dental plaque samples were analyzed using quantitative PCR (qPCR) to monitor the abundance of Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis, and Tannerella forsythia. RESULTS Toothpaste containing 2% zinc citrate significantly lowered the gingival index and reduced gum bleeding but did not affect the plaque index. It also reduced the total abundance of the three bacteria related to gingivitis and periodontitis in dental plaque over a long-term period. CONCLUSIONS Toothpaste with 2% zinc citrate persistently improves gingival health and reduces the presence of gingivitis-associated bacteria in dental plaque. TRIAL REGISTRATION Chinese Clinical Trial Registry (Clinical trial registration no.: ChiCTR1900020592) (09/01/2019).
Collapse
Affiliation(s)
- Yujie Zhou
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Zhou
- Hawley & Hazel Chemical Co. (ZS) Ltd., Zhongshan, China
| | - Binyou Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaobin Chen
- Hawley & Hazel Chemical Co. (ZS) Ltd., Zhongshan, China
| | - Yulong Niu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Ramirez-Puebla S, Mark Welch J, Borisy G. Improved Visualization of Oral Microbial Consortia. J Dent Res 2024; 103:1421-1427. [PMID: 38828615 PMCID: PMC11653304 DOI: 10.1177/00220345241251784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Bacteria on the tongue dorsum (TD) form consortia tens to hundreds of microns in diameter organized around a core of epithelial cells. Whole-mount preparations have been instrumental in revealing their organization and specific microbial associations. However, their thickness and intricate 3-dimensional complexity present challenges for a comprehensive spatial analysis. To overcome these challenges, we employed a complementary approach: embedding in hydrophilic plastic followed by sectioning and postsectioning labeling. Samples were labeled by hybridization with multiplexed fluorescent oligonucleotide probes and visualized by spectral imaging and linear unmixing. Application of this strategy to TD biofilms improved the visualization of bacteria that were difficult to resolve in whole-mount imaging. Actinomyces, previously detected as patches, became resolved at the single-cell level. The filamentous taxa Leptotrichia and Lachnospiraceae, located at the core of the consortium, were regularly visualized whereas previously they were rarely detected when using whole mounts. Streptococcus salivarius, heterogeneously detected in whole mounts, were regularly and homogenously observed. Two-dimensional images provide valuable information about the organization of bacterial biofilms. However, they offer only a single plane of view for objects that can extend to hundreds of microns in thickness, and information obtained from such images may not always reflect the complexity of a 3-dimensional object. We combined serial physical sectioning with optical sectioning to facilitate the 3-dimensional reconstruction of consortia, spanning over 100 µm in thickness. Our work showcases the use of hydrophilic plastic embedding and sectioning for examining the structure of TD biofilms through spectral imaging fluorescence in situ hybridization. The result was improved visualization of important members of the human oral microbiome. This technique serves as a complementary method to the previously employed whole-mount analysis, offering its own set of advantages and limitations. Addressing the spatial complexity of bacterial consortia demands a multifaceted approach for a comprehensive and effective analysis.
Collapse
|
9
|
Plomp N, Bertl K, Lydrup M, Sjöberg K, Harmsen HJM, Stavropoulos A. Does Fusobacterium in Colorectal Cancer Sites Originate From the Oral Cavity? A Pilot Study. Clin Exp Dent Res 2024; 10:e70016. [PMID: 39491831 PMCID: PMC11532368 DOI: 10.1002/cre2.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/02/2024] [Accepted: 09/09/2024] [Indexed: 11/05/2024] Open
Abstract
OBJECTIVES Fusobacterium can contribute to oral diseases, but also pose as a systemic risk factor. This genus, and especially F. nucleatum, can be found in colorectal cancer (CRC) tissue and is involved in multiple aspects of this type of cancer. Previous studies indicated a possible oral origin of these bacteria; however, stronger evidence is needed to reach a definitive conclusion. This pilot study aimed to establish a method to successfully compare, at the strain level, fusobacteria from the oral cavity and CRC resection material for future cohort studies of CRC patients. MATERIAL AND METHODS In a first cohort of eight periodontitis patients, gingival crevicular fluid and saliva were collected. Fusobacterium was isolated on two different media. In a second cohort, saliva and CRC resection material were collected from ten CRC patients. These samples were used for screening of Fusobacterium with culturing, 16S rRNA gene profiling and a PCR-based approach. RESULTS In the first cohort, different Fusobacterium species were identified in GCF and saliva samples. However, as the total yield of Fusobacterium seemed slightly higher in saliva samples, it was therefore preferred for subsequent sample collection. Thus, in the second cohort, patient-matched saliva and CRC resection material were screened for Fusobacterium and this showed that nine patients were culture-positive in the saliva samples; however, no Fusobacterium could be isolated from the resection material. On the other hand, 16S rRNA gene profiling of the resection material indicated that eight CRC patients were positive for Fusobacterium. All eight of these patients carried Fusobacterium in their saliva, indicated by both marker gene PCR and culture-based screening. CONCLUSIONS These pilot results are compatible with data from previous studies, indicating a possible link between oral and CRC-associated Fusobacterium, and a more in-depth analysis of specific strains and their characteristics in a larger cohort is justified. TRIAL REGISTRATION The protocol was registered at clinicaltrials.gov (NCT05945082).
Collapse
Affiliation(s)
- Niels Plomp
- Department of Medical Microbiology and Infection Prevention, University Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Kristina Bertl
- Department of Periodontology, Dental Clinic, Faculty of MedicineSigmund Freud University ViennaViennaAustria
- Department of PeriodontologyBlekinge HospitalKarlskronaSweden
| | - Marie‐Louise Lydrup
- Department of SurgerySkåne University Hospital and Lund UniversityLundSweden
| | - Klas Sjöberg
- Department of Clinical SciencesLund UniversityMalmöSweden
- Department of Gastroenterology and NutritionSkåne University HospitalMalmöSweden
| | - Hermie J. M. Harmsen
- Department of Medical Microbiology and Infection Prevention, University Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Andreas Stavropoulos
- Department of PeriodontologyBlekinge HospitalKarlskronaSweden
- Periodontology, Faculty of OdontologyUniversity of MalmöMalmöSweden
- Division of Conservative Dentistry and Periodontology, University Clinic of DentistryMedical University of ViennaViennaAustria
- Department of Periodontology, School of Dental MedicineUniversity of BernBernSwitzerland
| |
Collapse
|
10
|
Jørgensen MR. Pathophysiological microenvironments in oral candidiasis. APMIS 2024; 132:956-973. [PMID: 38571459 DOI: 10.1111/apm.13412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/20/2024] [Indexed: 04/05/2024]
Abstract
Oral candidiasis (OC), a prevalent opportunistic infection of the oral mucosa, presents a considerable health challenge, particularly in individuals with compromised immune responses, advanced age, and local predisposing conditions. A considerable part of the population carries Candida in the oral cavity, but only few develop OC. Therefore, the pathogenesis of OC may depend on factors other than the attributes of the fungus, such as host factors and other predisposing factors. Mucosal trauma and inflammation compromise epithelial integrity, fostering a conducive environment for fungal invasion. Molecular insights into the immunocompromised state reveal dysregulation in innate and adaptive immunity, creating a permissive environment for Candida proliferation. Detailed examination of Candida species (spp.) and their virulence factors uncovers a nuanced understanding beyond traditional C. albicans focus, which embrace diverse Candida spp. and their strategies, influencing adhesion, invasion, immune evasion, and biofilm formation. Understanding the pathophysiological microenvironments in OC is crucial for the development of targeted therapeutic interventions. This review aims to unravel the diverse pathophysiological microenvironments influencing OC development focusing on microbial, host, and predisposing factors, and considers Candida resistance to antifungal therapy. The comprehensive approach offers a refined perspective on OC, seeking briefly to identify potential therapeutic targets for future effective management.
Collapse
Affiliation(s)
- Mette Rose Jørgensen
- Section of Oral Pathology and Oral Medicine, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
11
|
Fleskes RE, Johnson SJ, Honap TP, Abin CA, Gilmore JK, Oubré L, Bueschgen WD, Abel SM, Ofunniyin AA, Lewis CM, Schurr TG. Oral microbial diversity in 18th century African individuals from South Carolina. Commun Biol 2024; 7:1213. [PMID: 39342044 PMCID: PMC11439080 DOI: 10.1038/s42003-024-06893-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 09/13/2024] [Indexed: 10/01/2024] Open
Abstract
As part of the Anson Street African Burial Ground Project, we characterized the oral microbiomes of twelve 18th century African-descended individuals (Ancestors) from Charleston, South Carolina, USA, to study their oral health and diet. We found that their oral microbiome composition resembled that of other historic (18th-19th century) dental calculus samples but differed from that of modern samples, and was not influenced by indicators of oral health and wear observed in the dentition. Phylogenetic analysis of the oral bacteria, Tannerella forsythia and Pseudoramibacter alactolyticus, revealed varied patterns of lineage diversity and replacement in the Americas, with the Ancestors carrying strains similar to historic period Europeans and Africans. Functional profiling of metabolic pathways suggested that the Ancestors consumed a diet low in animal protein. Overall, our study reveals important insights into the oral microbial histories of African-descended individuals, particularly oral health and diet in colonial North American enslavement contexts.
Collapse
Affiliation(s)
- Raquel E Fleskes
- Department of Anthropology, Dartmouth College, Hanover, NH, USA.
- The Anson Street African Burial Ground Project, Mount Pleasant, SC, USA.
| | - Sarah J Johnson
- Laboratories of Molecular Anthropology and Microbiome Research (LMAMR), University of Oklahoma, Norman, OK, USA
- Department of Anthropology, University of Oklahoma, Norman, OK, USA
| | - Tanvi P Honap
- Laboratories of Molecular Anthropology and Microbiome Research (LMAMR), University of Oklahoma, Norman, OK, USA
- Department of Anthropology, University of Oklahoma, Norman, OK, USA
| | - Christopher A Abin
- Laboratories of Molecular Anthropology and Microbiome Research (LMAMR), University of Oklahoma, Norman, OK, USA
- Department of Anthropology, University of Oklahoma, Norman, OK, USA
| | - Joanna K Gilmore
- The Anson Street African Burial Ground Project, Mount Pleasant, SC, USA
- Department of Sociology and Anthropology, College of Charleston, Charleston, SC, USA
| | - La'Sheia Oubré
- The Anson Street African Burial Ground Project, Mount Pleasant, SC, USA
| | | | - Suzanne M Abel
- Charleston County Coroner's Office, North Charleston, SC, USA
| | - Ade A Ofunniyin
- The Anson Street African Burial Ground Project, Mount Pleasant, SC, USA
- Department of Sociology and Anthropology, College of Charleston, Charleston, SC, USA
| | - Cecil M Lewis
- Laboratories of Molecular Anthropology and Microbiome Research (LMAMR), University of Oklahoma, Norman, OK, USA.
- Department of Anthropology, University of Oklahoma, Norman, OK, USA.
| | - Theodore G Schurr
- The Anson Street African Burial Ground Project, Mount Pleasant, SC, USA.
- Department of Anthropology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
12
|
Valadbeigi H, Khoshnood S, Negahdari B, Maleki A, Mohammadinejat M, Haddadi MH. Mixed oral biofilms are controlled by the interspecies interactions of Fusobacterium nucleatum. Oral Dis 2024; 30:3582-3590. [PMID: 38009960 DOI: 10.1111/odi.14822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/10/2023] [Accepted: 10/20/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND Fusobacterium nucleatum (F. nucleatum) is an integral component of supra- and subgingival biofilms, especially more prevalent in subgingival areas during both periodontal health and disease. AIMS In this review, we explore the physical, metabolic, and genetic interactions that influence the role of F. nucleatum in the formation of mixed oral biofilms. The role of F. nucleatum in antibiotic resistance in oral biofilms was discussed and some therapeutic strategies were proposed. METHODS PubMed, Scopus, Google Scholar, and the Web of Science were extensively searched for English-language reports. RESULTS F. nucleatum-derived proteins such as RadD, Fap2, FomA, and CmpA are involved in direct interactions contributing to biofilm formation, while autoinducer-2 and putrescine are involved in metabolic interactions. Both groups are essential for the formation and persistence of oral biofilms. This study highlights the clinical relevance of targeted interactions of F. nucleatum in supra- and subgingival oral biofilms. CONCLUSIONS By focusing on these interactions, researchers and clinicians can develop more effective strategies to prevent biofilm-related disease and reduce the spread of antibiotic resistance. Further research in this area is warranted to explore the potential therapeutic interventions that can be derived from understanding the interactions of F. nucleatum in oral biofilm dynamics.
Collapse
Affiliation(s)
- Hassan Valadbeigi
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Saeed Khoshnood
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Maleki
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Medya Mohammadinejat
- Department of Medicinal Chemistry, Faculty of Chemistry, North-Tehran Branch, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
13
|
Zibar Belasic T, Badnjevic M, Zigante M, Mohar Vitezic B, Spalj S, Markova-Car EP. Supragingival dental biofilm profile and biofilm control during orthodontic treatment with fixed orthodontic appliance: A randomized controlled trial. Arch Oral Biol 2024; 164:105984. [PMID: 38701663 DOI: 10.1016/j.archoralbio.2024.105984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 05/05/2024]
Abstract
OBJECTIVE The effectiveness of supragingival dental biofilm control during orthodontic treatment and changes in the bacterial profile were analyzed. DESIGN Sixty-four participants aged 12-22 years (57% female) were included in the study. Participants underwent orthodontic treatment with fixed appliances and were randomly assigned to one of the three groups, which during a period of one month: (I) used chlorhexidine digluconate (CHX), (II) used high concentration of fluoride (F) gel and (III) performed standard oral hygiene. The plaque and gingivitis index, pH of biofilm and white spot lesions (WSL) were assessed. Changes of the bacteria in the biofilm were analyzed by the quantitative polymerase chain reaction RESULTS: Increase in the plaque index, pH of biofilm, and WSL was observed during orthodontic treatment with standard oral hygiene. Large interindividual variability was present, and the effects of one-month use of fluorides and CHX on clinical parameters were not significant. Despite standard hygiene the abundance of studied biofilm bacteria increased - the most Streptoccocus mutans (14.2x) and S. salivarius (3.3x), moderate Veillonella parvula (3x) and the least S. sobrinus (2.3x) and Agregatibacter actinomycetemcomitans (1.9x). The use of CHX reduced S. sobrinus (2.2x) and A. actinomycetemcomitans (1.9x). Fluoride use reduced A. actinomycetemcomitans (1.3x) and S. sobrinus (1.2x). Fluorides better controlled S. mutans than CHX. CONCLUSION Bacterial biomass in supragingival biofilm increased during treatment with metal orthodontic appliances, with greater increase in cariogenic bacteria than periopathogens. Fluoride controlled S. mutans, while CHX S. sobrinus and A. actinomycetemcomitans.
Collapse
Affiliation(s)
- T Zibar Belasic
- University of Trieste, Department of Medical, Surgical and Health Sciences, Piazza dell'Ospitale 1, Trieste, Italy
| | - M Badnjevic
- University of Rijeka, Faculty of Dental Medicine, Department of Orthodontics, Kresimirova 40, Rijeka, Croatia.
| | - M Zigante
- University of Rijeka, Faculty of Dental Medicine, Department of Orthodontics, Kresimirova 40, Rijeka, Croatia; Clinical Hospital Center Rijeka, Dental Clinic, Kresimirova 40, Rijeka, Croatia
| | - B Mohar Vitezic
- Clinical Hospital Center Rijeka, Dental Clinic, Kresimirova 40, Rijeka, Croatia; University of Rijeka, Faculty of Medicine, Department of Microbiology and Parasitology, Brace Branchetta 20, Rijeka, Croatia
| | - S Spalj
- University of Rijeka, Faculty of Dental Medicine, Department of Orthodontics, Kresimirova 40, Rijeka, Croatia; Clinical Hospital Center Rijeka, Dental Clinic, Kresimirova 40, Rijeka, Croatia; J. J. Strossmayer University of Osijek, Faculty of Dental Medicine and Health, Department of Dental Medicine, Crkvena 21, Osijek, Croatia
| | - E P Markova-Car
- University of Rijeka, Faculty of Medicine, Department of Basic and Clinical Pharmacology and Toxicology, Brace Branchetta 20, Rijeka, Croatia
| |
Collapse
|
14
|
Grodner B, Wu DT, Hahm S, Takayasu L, Wen N, Kim DM, Chen CY, De Vlaminck I. Microscale Spatial Dysbiosis in Oral biofilms Associated with Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.24.604873. [PMID: 39211202 PMCID: PMC11360903 DOI: 10.1101/2024.07.24.604873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Microbiome dysbiosis has largely been defined using compositional analysis of metagenomic sequencing data; however, differences in the spatial arrangement of bacteria between healthy and diseased microbiomes remain largely unexplored. In this study, we measured the spatial arrangement of bacteria in dental implant biofilms from patients with healthy implants, peri-implant mucositis, or peri-implantitis, an oral microbiome-associated inflammatory disease. We discovered that peri-implant biofilms from patients with mild forms of the disease were characterized by large single-genus patches of bacteria, while biofilms from healthy sites were more complex, mixed structures. Based on these findings, we propose a model of peri-implant dysbiosis where changes in biofilm spatial architecture allow the colonization of new community members. This model indicates that spatial structure could be used as a potential biomarker for community stability and has implications in diagnosis and treatment of peri-implant diseases. These results enhance our understanding of peri-implant disease pathogenesis and may be broadly relevant for spatially structured microbiomes.
Collapse
|
15
|
Nicolosi G, Donzella M, Polizzi A, Angjelova A, Santonocito S, Zanoli L, Annunziata M, Isola G. Early detection of cardiovascular risk markers through non-invasive ultrasound methodologies in periodontitis patients. Open Med (Wars) 2024; 19:20241003. [PMID: 39034949 PMCID: PMC11260002 DOI: 10.1515/med-2024-1003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024] Open
Abstract
Objectives This narrative review aims to update the current evidence and offer insight into the new non-invasive ultrasound techniques used to early identify degenerative vascular changes in subjects with periodontitis and to investigate if these methodologies could be useful to identify subclinical cardiovascular disease (CVD) dysfunction in periodontitis patients and to monitor changes in CVD risk after periodontal treatment. Methods Studies examining the assessment of vascular endothelial function through the latest methodologies were analyzed. Systematic reviews, observational studies, and clinical trials in the English language were identified using PubMed, Web of Science, and Google Scholar databases with key search terms such as "periodontitis," "endothelial dysfunction (ED)," "arterial stiffness," and "periodontal therapy." Results Several mechanisms are involved in the association between periodontitis and CVD. The key players are periodontal bacteria and their toxins, which can enter the circulation and infiltrate blood vessel walls. The increase in proinflammatory molecules such as interleukins and chemokines, c-reactive protein, fibrinogen, and oxidative stress also plays a decisive role. In addition, an increase in parameters of ED, arterial stiffness, and atherosclerosis, such as carotid intima-media thickness, pulse wave velocity, and flow-mediated dilatation, has been shown in periodontal patients. Conclusions The literature today agrees on the association of periodontitis and CVD and the positive role of periodontal therapy on systemic inflammatory indices and cardiovascular outcomes. Hopefully, these non-invasive methodologies could be extended to periodontal patients to provide a comprehensive understanding of the CVD-periodontitis link from the perspective of a personalized medicine approach in periodontology.
Collapse
Affiliation(s)
- Giada Nicolosi
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124, Catania, Italy
| | - Martina Donzella
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124, Catania, Italy
| | - Alessandro Polizzi
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124, Catania, Italy
| | - Angela Angjelova
- University Dental Clinical Center St. Pantelejmon, Faculty of Dentistry, Ss. Cyril and Methodius University in Skopje, 1000, Skopje, North Macedonia
| | - Simona Santonocito
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124, Catania, Italy
| | - Luca Zanoli
- Department of Clinical and Experimental Medicine, University of Catania, 95123, Catania, Italy
| | - Marco Annunziata
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, 80138, Naples, Italy
| | - Gaetano Isola
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124, Catania, Italy
| |
Collapse
|
16
|
Zuberi A, Ahmad N, Ahmad H, Saeed M, Ahmad I. Beyond antibiotics: CRISPR/Cas9 triumph over biofilm-associated antibiotic resistance infections. Front Cell Infect Microbiol 2024; 14:1408569. [PMID: 39035353 PMCID: PMC11257871 DOI: 10.3389/fcimb.2024.1408569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/27/2024] [Indexed: 07/23/2024] Open
Abstract
A complex structure known as a biofilm is formed when a variety of bacterial colonies or a single type of cell in a group sticks to a surface. The extracellular polymeric compounds that encase these cells, often consisting of proteins, eDNA, and polysaccharides, exhibit strong antibiotic resistance. Concerns about biofilm in the pharmaceutical industry, public health, and medical fields have sparked a lot of interest, as antibiotic resistance is a unique capacity exhibited by these biofilm-producing bacteria, which increases morbidity and death. Biofilm formation is a complicated process that is controlled by several variables. Insights into the processes to target for the therapy have been gained from multiple attempts to dissect the biofilm formation process. Targeting pathogens within a biofilm is profitable because the bacterial pathogens become considerably more resistant to drugs in the biofilm state. Although biofilm-mediated infections can be lessened using the currently available medications, there has been a lot of focus on the development of new approaches, such as bioinformatics tools, for both treating and preventing the production of biofilms. Technologies such as transcriptomics, metabolomics, nanotherapeutics and proteomics are also used to develop novel anti-biofilm agents. These techniques help to identify small compounds that can be used to inhibit important biofilm regulators. The field of appropriate control strategies to avoid biofilm formation is expanding quickly because of this spurred study. As a result, the current article addresses our current knowledge of how biofilms form, the mechanisms by which bacteria in biofilms resist antibiotics, and cutting-edge treatment approaches for infections caused by biofilms. Furthermore, we have showcased current ongoing research utilizing the CRISPR/Cas9 gene editing system to combat bacterial biofilm infections, particularly those brought on by lethal drug-resistant pathogens, concluded the article with a novel hypothesis and aspirations, and acknowledged certain limitations.
Collapse
Affiliation(s)
- Azna Zuberi
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, United States
- Department of Obs & Gynae, Northwestern University, Chicago, IL, United States
| | - Nayeem Ahmad
- Department of Biophysics, All India Institute of Medical Science, New Delhi, India
- Department of Microbiology, Immunology, and Infectious Diseases, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
| | - Hafiz Ahmad
- Department of Medical Microbiology & Immunology, Ras Al Khaimah (RAK) College of Medical Sciences, Ras Al Khaimah (RAK) Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Mohd Saeed
- Department of Biology, College of Science University of Hail, Hail, Saudi Arabia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
17
|
Pallavi P, Kumar V, Sen SK, Raut S. Deciphering the mechanism of anti-quorum sensing post-biotic mediators against Streptococcus mutans. Oral Dis 2024; 30:3471-3479. [PMID: 37870077 DOI: 10.1111/odi.14780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 10/24/2023]
Abstract
OBJECTIVE Glucosyltransferases (Gtfs) and quorum sensing (QS) mediated transduction genes play critical roles in the pathogenesis of Streptococcus mutan-mediated dental caries. Therefore, targeting gtfs and QS-mediated virulence genes have therefore emerged as an intriguing goal for efficient therapeutic approaches that block cariogenic biofilms. METHODS Post-biotic mediators (PMs) obtained from our previously isolated and characterized beneficial bacteria Enterobacter colacae PS-74 was assessed for its antibiofilm potential against S. mutans. According to the transcriptome method, qRT-PCR analysis was performed against virulence genes. For microscopic visualization, SEM and CLSM analyses were used to confirm the inhibitory effects of PMs. RESULTS PMs dramatically reduced the expression of QS signal transduction, glucan metabolism, and biofilm-regulated genes such gtfB, gtfC, ComDE, VicR, brpA in S. mutans, which validates the outcomes of in vitro result. Their unique metabolites may help to control biofilm formation by eluding antimicrobial resistance. CONCLUSION Considering the above findings, PMs may deem to be an innovative, alluring, and secure method for preventing dental caries due to their biological activity. Our study unravels the inhibitory effect of PMs, which will contribute to instruct drug design strategies for effective inhibition of S. mutans biofilms.
Collapse
Affiliation(s)
- Preeti Pallavi
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Vikas Kumar
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| | | | - Sangeeta Raut
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| |
Collapse
|
18
|
Rosner O, Livne S, Bsharat M, Dviker S, Jeffet U, Matalon S, Sterer N. Lavandula angustifolia Essential Oil Inhibits the Ability of Fusobacterium nucleatum to Produce Volatile Sulfide Compounds, a Key Components in Oral Malodor. Molecules 2024; 29:2982. [PMID: 38998934 PMCID: PMC11243465 DOI: 10.3390/molecules29132982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/16/2024] [Accepted: 06/16/2024] [Indexed: 07/14/2024] Open
Abstract
Oral malodor still constitutes a major challenge worldwide. A strong effort is invested in eliminating volatile sulfur compound-producing oral bacteria through organic natural products such as essential oils. Fusobacterium nucleatum is a known volatile sulfur compound-producing bacteria that inspires oral malodor. The aim of the present study was to test the effect of lavender essential oil on the bacterium's ability to produce volatile sulfide compounds, the principal components of oral malodor. Lavender (Lavandula angustifolia) essential oil was extracted by hydrodistillation and analyzed using GC-MS. The minimal inhibitory concentration (MIC) of lavender essential oil on Fusobacterium nucleatum was determined in a previous trial. Fusobacterium nucleatum was incubated anaerobically in the presence of sub-MIC, MIC, and above MIC concentrations of lavender essential oil, as well as saline and chlorhexidine as negative and positive controls, respectively. Following incubation, volatile sulfur compound levels were measured using GC (Oralchroma), and bacterial cell membrane damage was studied using fluorescence microscopy. Chemical analysis of lavender essential oil yielded five main components, with camphor being the most abundant, accounting for nearly one-third of the total lavender essential oil volume. The MIC (4 µL/mL) of lavender essential oil reduced volatile sulfur compound secretion at a statistically significant level compared to the control (saline). Furthermore, the level of volatile sulfur compound production attributed to 1 MIC of lavender essential oil was in the range of the positive control chlorhexidine with no significant difference. When examining bacterial membrane damage, 2 MIC of lavender essential oil (i.e., 8 µL/mL) demonstrated the same, showing antibacterial membrane damage values comparative to chlorhexidine. Since lavender essential oil was found to be highly effective in hindering volatile sulfur compound production by Fusobacterium nucleatum through the induction of bacterial cell membrane damage, the results suggest that lavender essential oil may be a suitable alternative to conventional chemical-based anti-malodor agents.
Collapse
Affiliation(s)
- Ofir Rosner
- Department of Prosthodontics, Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Shiri Livne
- Department of Prosthodontics, Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Maria Bsharat
- Department of Prosthodontics, Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Shir Dviker
- Department of Prosthodontics, Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Uziel Jeffet
- Department of Prosthodontics, Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Shlomo Matalon
- Department of Prosthodontics, Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Nir Sterer
- Department of Prosthodontics, Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel
| |
Collapse
|
19
|
Gerardi D, Bernardi S, Bruni A, Falisi G, Botticelli G. Characterization and morphological methods for oral biofilm visualization: where are we nowadays? AIMS Microbiol 2024; 10:391-414. [PMID: 38919718 PMCID: PMC11194622 DOI: 10.3934/microbiol.2024020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/16/2024] [Accepted: 05/31/2024] [Indexed: 06/27/2024] Open
Abstract
The oral microbiome represents an essential component of the oral ecosystem whose symbiotic relationship contributes to health maintenance. The biofilm represents a state of living of microorganisms surrounding themselves with a complex and tridimensional organized polymeric support and defense matrix. The substrates where the oral biofilm adhere can suffer from damages due to the microbial community metabolisms. Therefore, microbial biofilm represents the main etiological factor of the two pathologies of dental interest with the highest incidence, such as carious pathology and periodontal pathology. The study, analysis, and understanding of the characteristics of the biofilm, starting from the macroscopic structure up to the microscopic architecture, appear essential. This review examined the morphological methods used through the years to identify species, adhesion mechanisms that contribute to biofilm formation and stability, and how the action of microbicidal molecules is effective against pathological biofilm. Microscopy is the primary technique for the morphological characterization of biofilm. Light microscopy, which includes the stereomicroscope and confocal laser microscopy (CLSM), allows the visualization of microbial communities in their natural state, providing valuable information on the spatial arrangement of different microorganisms within the biofilm and revealing microbial diversity in the biofilm matrix. The stereomicroscope provides a three-dimensional view of the sample, allowing detailed observation of the structure, thickness, morphology, and distribution of the various species in the biofilm while CLSM provides information on its three-dimensional architecture, microbial composition, and dynamic development. Electron microscopy, scanning (SEM) or transmission (TEM), allows the high-resolution investigation of the architecture of the biofilm, analyzing the bacterial population, the extracellular polymeric matrix (EPS), and the mechanisms of the physical and chemical forces that contribute to the adhesion of the biofilm to the substrates, on a nanometric scale. More advanced microscopic methodologies, such as scanning transmission electron microscopy (STEM), high-resolution transmission electron microscopy (HR-TEM), and correlative microscopy, have enabled the evaluation of antibacterial treatments, due to the potential to reveal the efficacy of different molecules in breaking down the biofilm. In conclusion, evidence based on scientific literature shows that established microscopic methods represent the most common tools used to characterize biofilm and its morphology in oral microbiology. Further protocols and studies on the application of advanced microscopic techniques are needed to obtain precise details on the microbiological and pathological aspects of oral biofilm.
Collapse
Affiliation(s)
- Davide Gerardi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Sara Bernardi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Angelo Bruni
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Giovanni Falisi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Gianluca Botticelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
20
|
Xu R, McLoughlin G, Nicol M, Geddes D, Stinson L. Residents or Tourists: Is the Lactating Mammary Gland Colonized by Residential Microbiota? Microorganisms 2024; 12:1009. [PMID: 38792838 PMCID: PMC11123721 DOI: 10.3390/microorganisms12051009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
The existence of the human milk microbiome has been widely recognized for almost two decades, with many studies examining its composition and relationship to maternal and infant health. However, the richness and viability of the human milk microbiota is surprisingly low. Given that the lactating mammary gland houses a warm and nutrient-rich environment and is in contact with the external environment, it may be expected that the lactating mammary gland would contain a high biomass microbiome. This discrepancy raises the question of whether the bacteria in milk come from true microbial colonization in the mammary gland ("residents") or are merely the result of constant influx from other bacterial sources ("tourists"). By drawing together data from animal, in vitro, and human studies, this review will examine the question of whether the lactating mammary gland is colonized by a residential microbiome.
Collapse
Affiliation(s)
- Ruomei Xu
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia (D.G.)
| | - Grace McLoughlin
- School of Biomedical Sciences, The University of Western Australia, Perth, WA 6009, Australia; (G.M.); (M.N.)
| | - Mark Nicol
- School of Biomedical Sciences, The University of Western Australia, Perth, WA 6009, Australia; (G.M.); (M.N.)
| | - Donna Geddes
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia (D.G.)
| | - Lisa Stinson
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia (D.G.)
| |
Collapse
|
21
|
Slobodianyk-Kolomoiets M, Khlebas S, Mazur I, Rudnieva K, Potochilova V, Iungin O, Kamyshnyi O, Kamyshna I, Potters G, Spiers AJ, Moshynets O. Extracellular host DNA contributes to pathogenic biofilm formation during periodontitis. Front Cell Infect Microbiol 2024; 14:1374817. [PMID: 38779563 PMCID: PMC11109387 DOI: 10.3389/fcimb.2024.1374817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/09/2024] [Indexed: 05/25/2024] Open
Abstract
Introduction Periodontal diseases are known to be associated with polymicrobial biofilms and inflammasome activation. A deeper understanding of the subgingival cytological (micro) landscape, the role of extracellular DNA (eDNA) during periodontitis, and contribution of the host immune eDNA to inflammasome persistence, may improve our understanding of the mechanisms underlaying severe forms of periodontitis. Methods In this work, subgingival biolfilms developing on biologically neutral polyethylene terephthalate films placed in gingival cavities of patients with chronic periodontitis were investigated by confocal laser scanning microscopy (CLSM). This allowed examination of realistic cytological landscapes and visualization of extracellular polymeric substances (EPS) including amyloids, total proteins, carbohydrates and eDNA, as well as comparison with several single-strain in vitro model biofilms produced by oral pathogens such as Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus gordonii, S. sanguinis and S. mitis. Fluorescence in situ hybridization (FISH) analysis was also used to identify eDNA derived from eubacteria, streptococci and members of the Bacteroides-Porphyromonas-Prevotella (BPP) group associated with periodontitis. Results Analysis of subgingival biofilm EPS revealed low levels of amyloids and high levels of eDNA which appears to be the main matrix component. However, bacterial eDNA contributed less than a third of the total eDNA observed, suggesting that host-derived eDNA released in neutrophil extracellular traps may be of more importance in the development of biofilms causing periodontitis. Discussion eDNA derived from host immunocompetent cells activated at the onset of periodontitis may therefore be a major driver of bacterial persistence and pathogenesis.
Collapse
Affiliation(s)
| | - Svitlana Khlebas
- Department of Dentistry, Shupyk National Healthcare University of Ukraine, Kyiv, Ukraine
| | - Iryna Mazur
- Department of Dentistry, Shupyk National Healthcare University of Ukraine, Kyiv, Ukraine
| | - Kateryna Rudnieva
- Central Clinical Diagnostic Laboratory, Kyiv Regional Clinical Hospital, Kyiv, Ukraine
- Department of Microbiology, Virology and Immunology, Bogomolets National Medical Academy, Kyiv, Ukraine
| | | | - Olga Iungin
- Biofilm Study Group, Department of Cell Regulatory Mechanisms, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Department of Biotechnology, Leather and Fur, Faculty of Chemical and Biopharmaceutical Technologies, Kyiv National University of Technologies and Design, Kyiv, Ukraine
| | - Olexandr Kamyshnyi
- Microbiology, Virology and Immunology Department, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Iryna Kamyshna
- Microbiology, Virology and Immunology Department, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Geert Potters
- Antwerp Maritime Academy, Antwerp, Belgium
- Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Andrew J. Spiers
- School of Applied Sciences, Abertay University, Dundee, United Kingdom
| | - Olena Moshynets
- Biofilm Study Group, Department of Cell Regulatory Mechanisms, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
22
|
Dahlquist-Axe G, Standeven FJ, Speller CF, Tedder A, Meehan CJ. Inferring diet, disease and antibiotic resistance from ancient human oral microbiomes. Microb Genom 2024; 10:001251. [PMID: 38739117 PMCID: PMC11165619 DOI: 10.1099/mgen.0.001251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/24/2024] [Indexed: 05/14/2024] Open
Abstract
The interaction between a host and its microbiome is an area of intense study. For the human host, it is known that the various body-site-associated microbiomes impact heavily on health and disease states. For instance, the oral microbiome is a source of various pathogens and potential antibiotic resistance gene pools. The effect of historical changes to the human host and environment to the associated microbiome, however, has been less well explored. In this review, we characterize several historical and prehistoric events which are considered to have impacted the oral environment and therefore the bacterial communities residing within it. The link between evolutionary changes to the oral microbiota and the significant societal and behavioural changes occurring during the pre-Neolithic, Agricultural Revolution, Industrial Revolution and Antibiotic Era is outlined. While previous studies suggest the functional profile of these communities may have shifted over the centuries, there is currently a gap in knowledge that needs to be filled. Biomolecular archaeological evidence of innate antimicrobial resistance within the oral microbiome shows an increase in the abundance of antimicrobial resistance genes since the advent and widespread use of antibiotics in the modern era. Nevertheless, a lack of research into the prevalence and evolution of antimicrobial resistance within the oral microbiome throughout history hinders our ability to combat antimicrobial resistance in the modern era.
Collapse
Affiliation(s)
- Gwyn Dahlquist-Axe
- School of Chemistry and Biosciences, University of Bradford, Bradford, UK
| | | | - Camilla F. Speller
- Department of Anthropology, University of British Columbia, Vancouver, Canada
| | - Andrew Tedder
- School of Chemistry and Biosciences, University of Bradford, Bradford, UK
| | - Conor J. Meehan
- Department of Biosciences, Nottingham Trent University, Nottingham, UK
| |
Collapse
|
23
|
Panta P, Tummakomma P, Purumandla U, Turimella S, Chintalapani S, Muttineni N, Kukkunuru GRT. Detection of Novel Periodontal Pathogens Using Fluorescence In Situ Hybridization: A Clinical Study. WORLD JOURNAL OF DENTISTRY 2024; 15:155-160. [DOI: 10.5005/jp-journals-10015-2369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
24
|
Settem RP, Ruscitto A, Chinthamani S, Honma K, Sharma A. Tannerella forsythia scavenges Fusobacterium nucleatum secreted NOD2 stimulatory molecules to dampen oral epithelial cell inflammatory response. Mol Oral Microbiol 2024; 39:40-46. [PMID: 37459655 PMCID: PMC10792118 DOI: 10.1111/omi.12429] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/29/2023] [Accepted: 07/10/2023] [Indexed: 01/18/2024]
Abstract
The oral organism Tannerella forsythia is auxotrophic for peptidoglycan amino sugar N-acetylmuramic acid (MurNAc). It survives in the oral cavity by scavenging MurNAc- and MurNAc-linked peptidoglycan fragments (muropeptides) secreted by co-habiting bacteria such as Fusobacterium nucleatum with which it forms synergistic biofilms. Muropeptides, MurNAc-l-Ala-d-isoGln (MDP, muramyl dipeptide) and d-γ-glutamyl-meso-DAP (iE-DAP dipeptide), are strong immunostimulatory molecules that activate nucleotide oligomerization domain (NOD)-like innate immune receptors and induce the expression of inflammatory cytokines and antimicrobial peptides. In this study, we utilized an in vitro T. forsythia-F. nucleatum co-culture model to determine if T. forsythia can selectively scavenge NOD ligands from the environment and impact NOD-mediated inflammation. The results showed that NOD-stimulatory molecules were secreted by F. nucleatum in the spent culture broth, which subsequently induced cytokine and antimicrobial peptide expression in oral epithelial cells. In the spent broth from T. forsythia-F. nucleatum co-cultures, the NOD-stimulatory activity was significantly reduced. These data indicated that F. nucleatum releases NOD2-stimulatory muropeptides in the environment, and T. forsythia can effectively scavenge the muropeptides released by co-habiting bacteria to dampen NOD-mediated host responses. This proof-of-principle study demonstrated that peptidoglycan scavenging by T. forsythia can impact the innate immunity of oral epithelium by dampening NOD activation.
Collapse
Affiliation(s)
| | | | | | - Kiyonobu Honma
- Oral Biology, University at Buffalo, Buffalo, New York, USA
| | - Ashu Sharma
- Oral Biology, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
25
|
Pignatelli P, Curia MC, Tenore G, Bondi D, Piattelli A, Romeo U. Oral bacteriome and oral potentially malignant disorders: A systematic review of the associations. Arch Oral Biol 2024; 160:105891. [PMID: 38295615 DOI: 10.1016/j.archoralbio.2024.105891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 02/02/2024]
Abstract
INTRODUCTION Periodontal bacteria can infiltrate the epithelium, activate signaling pathways, induce inflammation, and block natural killer and cytotoxic cells, all of which contribute to the vicious circle of carcinogenesis. It is unknown whether oral dysbiosis has an impact on the etiology or prognosis of OPMD. AIMS Within this paradigm, this work systemically investigated and reported on the composition of oral microbiota in patients with oral potentially malignant disorders (OPMD) versus healthy controls. METHODS Observational studies that reported next generation sequencing analysis of oral tissue or salivary samples and found at least three bacterial species were included. Identification, screening, citation analysis, and graphical synthesis were carried out. RESULTS For oral lichen planus (OLP), the bacteria with the highest abundance were Fusobacterium, Capnocytophaga, Gemella, Granulicatella, Porphyromonas, and Rothia; for oral leukoplakia (OLK), Prevotella. Streptococci levels in OLK and OLP were lower. The usage of alcohol or smoke had no effect on the outcomes. CONCLUSIONS An increase in periodontal pathogenic bacteria could promote the development and exacerbation of lichen. Effective bacteriome-based biomarkers are worthy of further investigation and application, as are bacteriome-based treatments.
Collapse
Affiliation(s)
- Pamela Pignatelli
- COMDINAV DUE, Nave Cavour, Italian Navy, Stazione Navale Mar Grande, Viale Ionio, 74122 Taranto, Italy.
| | - Maria Cristina Curia
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy
| | - Gianluca Tenore
- Department of Oral Sciences and Maxillofacial Surgery, Sapienza University of Rome, Via Caserta, 00161 Rome, Italy
| | - Danilo Bondi
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy
| | - Adriano Piattelli
- School of Dentistry, Saint Camillus International University for Health Sciences, 00131 Rome, Italy; Facultad de Medicina, UCAM Universidad Católica San Antonio de Murcia, Guadalupe, 30107 Murcia, Spain
| | - Umberto Romeo
- Department of Oral Sciences and Maxillofacial Surgery, Sapienza University of Rome, Via Caserta, 00161 Rome, Italy
| |
Collapse
|
26
|
Yáñez L, Soto C, Tapia H, Pacheco M, Tapia J, Osses G, Salinas D, Rojas-Celis V, Hoare A, Quest AFG, Díaz-Elizondo J, Pérez-Donoso JM, Bravo D. Co-Culture of P. gingivalis and F. nucleatum Synergistically Elevates IL-6 Expression via TLR4 Signaling in Oral Keratinocytes. Int J Mol Sci 2024; 25:3611. [PMID: 38612423 PMCID: PMC11011619 DOI: 10.3390/ijms25073611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/15/2024] [Accepted: 03/17/2024] [Indexed: 04/14/2024] Open
Abstract
Periodontitis, characterized by persistent inflammation in the periodontium, is intricately connected to systemic diseases, including oral cancer. Bacteria, such as Porphyromonas gingivalis and Fusobacterium nucleatum, play a pivotal role in periodontitis development because they contribute to dysbiosis and tissue destruction. Thus, comprehending the interplay between these bacteria and their impacts on inflammation holds significant relevance in clinical understanding and treatment advancement. In the present work, we explored, for the first time, their impacts on the expressions of pro-inflammatory mediators after infecting oral keratinocytes (OKs) with a co-culture of pre-incubated P. gingivalis and F. nucleatum. Our results show that the co-culture increases IL-1β, IL-8, and TNF-α expressions, synergistically augments IL-6, and translocates NF-kB to the cell nucleus. These changes in pro-inflammatory mediators-associated with chronic inflammation and cancer-correlate with an increase in cell migration following infection with the co-cultured bacteria or P. gingivalis alone. This effect depends on TLR4 because TLR4 knockdown notably impacts IL-6 expression and cell migration. Our study unveils, for the first time, crucial insights into the outcomes of their co-culture on virulence, unraveling the role of bacterial interactions in polymicrobial diseases and potential links to oral cancer.
Collapse
Affiliation(s)
- Lucas Yáñez
- Microbial Interactions Laboratory, Faculty of Dentistry, Universidad Andrés Bello, Santiago 8370133, Chile; (L.Y.); (C.S.); (H.T.); (M.P.); (J.T.); (G.O.); (J.D.-E.)
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile;
| | - Cristopher Soto
- Microbial Interactions Laboratory, Faculty of Dentistry, Universidad Andrés Bello, Santiago 8370133, Chile; (L.Y.); (C.S.); (H.T.); (M.P.); (J.T.); (G.O.); (J.D.-E.)
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile;
| | - Héctor Tapia
- Microbial Interactions Laboratory, Faculty of Dentistry, Universidad Andrés Bello, Santiago 8370133, Chile; (L.Y.); (C.S.); (H.T.); (M.P.); (J.T.); (G.O.); (J.D.-E.)
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile;
| | - Martín Pacheco
- Microbial Interactions Laboratory, Faculty of Dentistry, Universidad Andrés Bello, Santiago 8370133, Chile; (L.Y.); (C.S.); (H.T.); (M.P.); (J.T.); (G.O.); (J.D.-E.)
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile;
| | - Javiera Tapia
- Microbial Interactions Laboratory, Faculty of Dentistry, Universidad Andrés Bello, Santiago 8370133, Chile; (L.Y.); (C.S.); (H.T.); (M.P.); (J.T.); (G.O.); (J.D.-E.)
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile;
| | - Gabriela Osses
- Microbial Interactions Laboratory, Faculty of Dentistry, Universidad Andrés Bello, Santiago 8370133, Chile; (L.Y.); (C.S.); (H.T.); (M.P.); (J.T.); (G.O.); (J.D.-E.)
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile;
| | - Daniela Salinas
- Oral Microbiology and Immunology Laboratory, Department of Pathology and Oral Medicine, Faculty of Dentistry, Universidad de Chile, Santiago 8380492, Chile; (D.S.); (A.H.)
| | - Victoria Rojas-Celis
- Virology Laboratory, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago 7800003, Chile;
| | - Anilei Hoare
- Oral Microbiology and Immunology Laboratory, Department of Pathology and Oral Medicine, Faculty of Dentistry, Universidad de Chile, Santiago 8380492, Chile; (D.S.); (A.H.)
| | - Andrew F. G. Quest
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile;
- Cellular Communication Laboratory, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Program of Cell and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Jessica Díaz-Elizondo
- Microbial Interactions Laboratory, Faculty of Dentistry, Universidad Andrés Bello, Santiago 8370133, Chile; (L.Y.); (C.S.); (H.T.); (M.P.); (J.T.); (G.O.); (J.D.-E.)
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile;
| | - José Manuel Pérez-Donoso
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Faculty of Life Sciences, Universidad Andrés Bello, Santiago 8370186, Chile;
| | - Denisse Bravo
- Microbial Interactions Laboratory, Faculty of Dentistry, Universidad Andrés Bello, Santiago 8370133, Chile; (L.Y.); (C.S.); (H.T.); (M.P.); (J.T.); (G.O.); (J.D.-E.)
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile;
| |
Collapse
|
27
|
Wang Z, Sun W, Hua R, Wang Y, Li Y, Zhang H. Promising dawn in tumor microenvironment therapy: engineering oral bacteria. Int J Oral Sci 2024; 16:24. [PMID: 38472176 DOI: 10.1038/s41368-024-00282-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/06/2024] [Accepted: 01/07/2024] [Indexed: 03/14/2024] Open
Abstract
Despite decades of research, cancer continues to be a major global health concern. The human mouth appears to be a multiplicity of local environments communicating with other organs and causing diseases via microbes. Nowadays, the role of oral microbes in the development and progression of cancer has received increasing scrutiny. At the same time, bioengineering technology and nanotechnology is growing rapidly, in which the physiological activities of natural bacteria are modified to improve the therapeutic efficiency of cancers. These engineered bacteria were transformed to achieve directed genetic reprogramming, selective functional reorganization and precise control. In contrast to endotoxins produced by typical genetically modified bacteria, oral flora exhibits favorable biosafety characteristics. To outline the current cognitions upon oral microbes, engineered microbes and human cancers, related literatures were searched and reviewed based on the PubMed database. We focused on a number of oral microbes and related mechanisms associated with the tumor microenvironment, which involve in cancer occurrence and development. Whether engineering oral bacteria can be a possible application of cancer therapy is worth consideration. A deeper understanding of the relationship between engineered oral bacteria and cancer therapy may enhance our knowledge of tumor pathogenesis thus providing new insights and strategies for cancer prevention and treatment.
Collapse
Affiliation(s)
- Zifei Wang
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei, China
| | - Wansu Sun
- Department of Stomatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ruixue Hua
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei, China
| | - Yuanyin Wang
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei, China
| | - Yang Li
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, China.
| | - Hengguo Zhang
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei, China.
| |
Collapse
|
28
|
Xu J, Yu L, Ye S, Ye Z, Yang L, Xu X. Oral microbiota-host interaction: the chief culprit of alveolar bone resorption. Front Immunol 2024; 15:1254516. [PMID: 38455060 PMCID: PMC10918469 DOI: 10.3389/fimmu.2024.1254516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 02/02/2024] [Indexed: 03/09/2024] Open
Abstract
There exists a bidirectional relationship between oral health and general well-being, with an imbalance in oral symbiotic flora posing a threat to overall human health. Disruptions in the commensal flora can lead to oral diseases, while systemic illnesses can also impact the oral cavity, resulting in the development of oral diseases and disorders. Porphyromonas gingivalis and Fusobacterium nucleatum, known as pathogenic bacteria associated with periodontitis, play a crucial role in linking periodontitis to accompanying systemic diseases. In periodontal tissues, these bacteria, along with their virulence factors, can excessively activate the host immune system through local diffusion, lymphatic circulation, and blood transmission. This immune response disruption contributes to an imbalance in osteoimmune mechanisms, alveolar bone resorption, and potential systemic inflammation. To restore local homeostasis, a deeper understanding of microbiota-host interactions and the immune network phenotype in local tissues is imperative. Defining the immune network phenotype in periodontal tissues offers a promising avenue for investigating the complex characteristics of oral plaque biofilms and exploring the potential relationship between periodontitis and associated systemic diseases. This review aims to provide an overview of the mechanisms underlying Porphyromonas gingivalis- and Fusobacterium nucleatum-induced alveolar bone resorption, as well as the immunophenotypes observed in host periodontal tissues during pathological conditions.
Collapse
Affiliation(s)
- Jingyu Xu
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Ling Yu
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Surong Ye
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Zitong Ye
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Luyi Yang
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Xiaoxi Xu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
29
|
Jones J, Shi Q, Nath RR, Brito IL. Keystone pathobionts associated with colorectal cancer promote oncogenic reprograming. PLoS One 2024; 19:e0297897. [PMID: 38363784 PMCID: PMC10871517 DOI: 10.1371/journal.pone.0297897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 01/12/2024] [Indexed: 02/18/2024] Open
Abstract
Fusobacterium nucleatum (Fn) and enterotoxigenic Bacteroides fragilis (ETBF) are two pathobionts consistently enriched in the gut microbiomes of patients with colorectal cancer (CRC) compared to healthy counterparts and frequently observed for their direct association within tumors. Although several molecular mechanisms have been identified that directly link these organisms to features of CRC in specific cell types, their specific effects on the epithelium and local immune compartment are not well-understood. To fill this gap, we leveraged single-cell RNA sequencing (scRNA-seq) on wildtype mice and mouse model of CRC. We find that Fn and ETBF exacerbate cancer-like transcriptional phenotypes in transit-amplifying and mature enterocytes in a mouse model of CRC. We also observed increased T cells in the pathobiont-exposed mice, but these pathobiont-specific differences observed in wildtype mice were abrogated in the mouse model of CRC. Although there are similarities in the responses provoked by each organism, we find pathobiont-specific effects in Myc-signaling and fatty acid metabolism. These findings support a role for Fn and ETBF in potentiating tumorigenesis via the induction of a cancer stem cell-like transit-amplifying and enterocyte population and the disruption of CTL cytotoxic function.
Collapse
Affiliation(s)
- Josh Jones
- Meinig School for Biomedical Engineering, Cornell University, Ithaca, NY, United States of America
| | - Qiaojuan Shi
- Meinig School for Biomedical Engineering, Cornell University, Ithaca, NY, United States of America
| | - Rahul R. Nath
- Meinig School for Biomedical Engineering, Cornell University, Ithaca, NY, United States of America
| | - Ilana L. Brito
- Meinig School for Biomedical Engineering, Cornell University, Ithaca, NY, United States of America
| |
Collapse
|
30
|
Chen D, Chew D, Xiang Q, Lam T, Dai Y, Liu J, Wang L, He T, Strand R, Zhang X, Lim L, Xu J, Shi Y, Dong W. Interactions and effects of a stannous-containing sodium fluoride dentifrice on oral pathogens and the oral microbiome. Front Microbiol 2024; 15:1327913. [PMID: 38426054 PMCID: PMC10902866 DOI: 10.3389/fmicb.2024.1327913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/02/2024] [Indexed: 03/02/2024] Open
Abstract
Numerous studies have investigated the effects of stannous ions on specific microbes and their efficacy in reducing dental plaque. Nonetheless, our understanding of their impact on the oral microbiome is still a subject of ongoing exploration. Therefore, this study sought to evaluate the effects of a stannous-containing sodium fluoride dentifrice in comparison to a zinc-containing sodium fluoride dentifrice and a control group on intact, healthy oral biofilms. Utilizing the novel 2bRAD-M approach for species-resolved metagenomics, and FISH/CLSM with probes targeting periodontal and caries associated species alongside Sn2+ and Zn2+ ions, we collected and analyzed in situ biofilms from 15 generally healthy individuals with measurable dental plaque and treated the biofilms with dentifrices to elucidate variations in microbial distribution. Although significant shifts in the microbiome upon treatment were not observed, the use of a stannous-containing sodium fluoride dentifrice primarily led to an increase in health-associated commensal species and decrease in pathogenic species. Notably, FISH/CLSM analysis highlighted a marked reduction in representative species associated with periodontitis and caries following treatment with the use of a stannous-containing sodium fluoride dentifrice, as opposed to a zinc-containing sodium fluoride dentifrice and the control group. Additionally, Sn2+ specific intracellular imaging reflected the colocalization of Sn2+ ions with P. gingivalis but not with other species. In contrast, Zn2+ ions exhibited non-specific binding, thus suggesting that Sn2+ could exhibit selective binding toward pathogenic species. Altogether, our results demonstrate that stannous ions could help to maintain a healthy oral microbiome by preferentially targeting certain pathogenic bacteria to reverse dysbiosis and underscores the importance of the continual usage of such products as a preventive measure for oral diseases and the maintenance of health.
Collapse
Affiliation(s)
- Danyan Chen
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Periodontology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Stomatology, Yiwu Central Hospital, Yiwu, Zhejiang, China
| | - Dillon Chew
- Singapore Innovation Center, The Procter & Gamble Company, Singapore, Singapore
| | - Qianfeng Xiang
- Department of Dentistry-Regenerative Biomaterials, Radboud University Medical Center, Nijmegen, Netherlands
| | - TzeHau Lam
- Singapore Innovation Center, The Procter & Gamble Company, Singapore, Singapore
| | - Yajie Dai
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
| | - Jiquan Liu
- Singapore Innovation Center, The Procter & Gamble Company, Singapore, Singapore
| | - Lijiang Wang
- Procter & Gamble Technology Co. Ltd, Beijing, China
| | - Tao He
- The Procter & Gamble Company, Mason, OH, United States
| | - Ross Strand
- Singapore Innovation Center, The Procter & Gamble Company, Singapore, Singapore
| | - Xiaolan Zhang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Linda Lim
- Singapore Innovation Center, The Procter & Gamble Company, Singapore, Singapore
| | - Jian Xu
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yunming Shi
- Procter & Gamble Technology Co. Ltd, Beijing, China
| | - Weili Dong
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Periodontology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
31
|
Chen M, Trotter VV, Walian PJ, Chen Y, Lopez R, Lui LM, Nielsen TN, Malana RG, Thorgersen MP, Hendrickson AJ, Carion H, Deutschbauer AM, Petzold CJ, Smith HJ, Arkin AP, Adams MWW, Fields MW, Chakraborty R. Molecular mechanisms and environmental adaptations of flagellar loss and biofilm growth of Rhodanobacter under environmental stress. THE ISME JOURNAL 2024; 18:wrae151. [PMID: 39113613 PMCID: PMC11410051 DOI: 10.1093/ismejo/wrae151] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/22/2024] [Accepted: 08/07/2024] [Indexed: 09/20/2024]
Abstract
Biofilms aid bacterial adhesion to surfaces via direct and indirect mechanisms, and formation of biofilms is considered as an important strategy for adaptation and survival in suboptimal environmental conditions. However, the molecular underpinnings of biofilm formation in subsurface sediment/groundwater ecosystems where microorganisms often experience fluctuations in nutrient input, pH, and nitrate or metal concentrations are underexplored. We examined biofilm formation under different nutrient, pH, metal, and nitrate regimens of 16 Rhodanobacter strains isolated from subsurface groundwater wells spanning diverse levels of pH (3.5 to 5) and nitrates (13.7 to 146 mM). Eight Rhodanobacter strains demonstrated significant biofilm growth under low pH, suggesting adaptations for survival and growth at low pH. Biofilms were intensified under aluminum stress, particularly in strains possessing fewer genetic traits associated with biofilm formation, findings warranting further investigation. Through random barcode transposon-site sequencing (RB-TnSeq), proteomics, use of specific mutants, and transmission electron microscopy analysis, we discovered flagellar loss under aluminum stress, indicating a potential relationship between motility, metal tolerance, and biofilm growth. Comparative genomic analyses revealed the absence of flagella and chemotaxis genes and the presence of a putative type VI secretion system in the highly biofilm-forming strain FW021-MT20. In this study we identified genetic determinants associated with biofilm growth under metal stress in a predominant environmental genus, Rhodanobacter, and identified traits aiding survival and adaptation to contaminated subsurface environments.
Collapse
Affiliation(s)
- Mingfei Chen
- Department of Ecology, Earth & Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Valentine V Trotter
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Peter J Walian
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Yan Chen
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Romario Lopez
- Department of Ecology, Earth & Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Lauren M Lui
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Torben N Nielsen
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Ria Gracielle Malana
- Department of Ecology, Earth & Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Michael P Thorgersen
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Andrew J Hendrickson
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Héloïse Carion
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Adam M Deutschbauer
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Christopher J Petzold
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Heidi J Smith
- Center for Biofilm Engineering and Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - Adam P Arkin
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Matthew W Fields
- Center for Biofilm Engineering and Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - Romy Chakraborty
- Department of Ecology, Earth & Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
32
|
Bourbour S, Darbandi A, Bostanghadiri N, Ghanavati R, Taheri B, Bahador A. Effects of Antimicrobial Photosensitizers of Photodynamic Therapy (PDT) to Treat Periodontitis. Curr Pharm Biotechnol 2024; 25:1209-1229. [PMID: 37475551 DOI: 10.2174/1389201024666230720104516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/07/2023] [Accepted: 06/20/2023] [Indexed: 07/22/2023]
Abstract
Antimicrobial photodynamic therapy or aPDT is an alternative therapeutic approach in which lasers and different photosensitizing agents are used to eradicate periodontopathic bacteria in periodontitis. Periodontitis is a localized infectious disease caused by periodontopathic bacteria and can destroy bones and tissues surrounding and supporting the teeth. The aPDT system has been shown by in vitro studies to have high bactericidal efficacy. It was demonstrated that aPDT has low local toxicity, can speed up dental therapy, and is cost-effective. Several photosensitizers (PSs) are available for each type of light source which did not induce any damage to the patient and are safe. In recent years, significant advances have been made in aPDT as a non-invasive treatment method, especially in treating infections and cancers. Besides, aPDT can be perfectly combined with other treatments. Hence, this survey focused on the effectiveness and mechanism of aPDT of periodontitis by using lasers and the most frequently used antimicrobial PSs such as methylene blue (MB), toluidine blue ortho (TBO), indocyanine green (ICG), malachite green (MG) (Triarylmethanes), erythrosine dyes (ERY) (Xanthenes dyes), rose bengal (RB) (Xanthenes dyes), eosin-Y (Xanthenes dyes), radachlorin group and curcumin. The aPDT with these PSs can reduce pathogenic bacterial loads in periodontitis. Therefore, it is clear that there is a bright future for using aPDT to fight microorganisms causing periodontitis.
Collapse
Affiliation(s)
- Samaneh Bourbour
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Atieh Darbandi
- Molecular Microbiology Research Center, Shahed University, Tehran, Iran
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Narjess Bostanghadiri
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Roya Ghanavati
- Department of Microbiology, Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | - Behrouz Taheri
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Abbas Bahador
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
33
|
Žiemytė M, Lopez-Roldan A, Carda-Diéguez M, Reglero-Santaolaya M, Rodriguez A, Ferrer MD, Mira A. Personalized antibiotic selection in periodontal treatment improves clinical and microbiological outputs. Front Cell Infect Microbiol 2023; 13:1307380. [PMID: 38179425 PMCID: PMC10765594 DOI: 10.3389/fcimb.2023.1307380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/29/2023] [Indexed: 01/06/2024] Open
Abstract
Introduction Periodontitis is a biofilm-mediated disease that is usually treated by non-surgical biofilm elimination with or without antibiotics. Antibiotic treatment in periodontal patients is typically selected empirically or using qPCR or DNA hybridization methods. These approaches are directed towards establishing the levels of different periodontal pathogens in periodontal pockets to infer the antibiotic treatment. However, current methods are costly and do not consider the antibiotic susceptibility of the whole subgingival biofilm. Methods In the current manuscript, we have developed a method to culture subgingival samples ex vivo in a fast, label-free impedance-based system where biofilm growth is monitored in real-time under exposure to different antibiotics, producing results in 4 hours. To test its efficacy, we performed a double-blind, randomized clinical trial where patients were treated with an antibiotic either selected by the hybridization method (n=32) or by the one with the best effect in the ex vivo growth system (n=32). Results Antibiotic selection was different in over 80% of the cases. Clinical parameters such as periodontal pocket depth, attachment level, and bleeding upon probing improved in both groups. However, dental plaque was significantly reduced only in the group where antibiotics were selected according to the ex vivo growth. In addition, 16S rRNA sequencing showed a larger reduction in periodontal pathogens and a larger increase in health-associated bacteria in the ex vivo growth group. Discussion The results of clinical and microbiological parameters, together with the reduced cost and low analysis time, support the use of the impedance system for improved individualized antibiotic selection.
Collapse
Affiliation(s)
- Miglė Žiemytė
- Genomics & Health Department, Foundation for the Promotion of Health and Biomedical Research of the Valencian Community (FISABIO) Foundation, Valencia, Spain
| | - Andrés Lopez-Roldan
- Department of Stomatology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Miguel Carda-Diéguez
- Genomics & Health Department, Foundation for the Promotion of Health and Biomedical Research of the Valencian Community (FISABIO) Foundation, Valencia, Spain
| | - Marta Reglero-Santaolaya
- Department of Stomatology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Ana Rodriguez
- Department of Stomatology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - María D. Ferrer
- Genomics & Health Department, Foundation for the Promotion of Health and Biomedical Research of the Valencian Community (FISABIO) Foundation, Valencia, Spain
| | - Alex Mira
- Genomics & Health Department, Foundation for the Promotion of Health and Biomedical Research of the Valencian Community (FISABIO) Foundation, Valencia, Spain
- School of Health and Welfare, Jönköping University, Jönköping, Sweden
| |
Collapse
|
34
|
Alio I, Moll R, Hoffmann T, Mamat U, Schaible UE, Pappenfort K, Alawi M, Schie M, Thünauer R, Stamm J, Rohde H, Streit WR. Stenotrophomonas maltophilia affects the gene expression profiles of the major pathogens Pseudomonas aeruginosa and Staphylococcus aureus in an in vitro multispecies biofilm model. Microbiol Spectr 2023; 11:e0085923. [PMID: 37819084 PMCID: PMC10714729 DOI: 10.1128/spectrum.00859-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/21/2023] [Indexed: 10/13/2023] Open
Abstract
IMPORTANCE In the past, studies have focused on bacterial pathogenicity in mono-species infections, in part ignoring the clinical relevance of diseases caused by more than one pathogen (i.e., polymicrobial infections). However, it is now common knowledge that multiple bacteria species are often involved in the course of an infection. For treatment of such infections, it is absolutely important to understand the dynamics of species interactions at possible infection sites and the molecular mechanisms behind these interactions. Here, we studied the impact of Stenotrophomonas maltophilia on its commensals Pseudomonas aeruginosa and Staphylococcus aureus in multispecies biofilms. We analyzed the 3D structural architectures of dual- and triple-species biofilms, niche formation within the biofilms, and the interspecies interactions on a molecular level. RNAseq data identified key genes involved in multispecies biofilm formation and interaction as potential drug targets for the clinical combat of multispecies infection with these major pathogens.
Collapse
Affiliation(s)
- Ifey Alio
- Department of Microbiology and Biotechnology, University Hamburg, Hamburg, Germany
| | - Raphael Moll
- Department of Microbiology and Biotechnology, University Hamburg, Hamburg, Germany
| | - Tim Hoffmann
- Department of Microbiology and Biotechnology, University Hamburg, Hamburg, Germany
| | - Uwe Mamat
- Cellular Microbiology, Priority Research Area Infections, Research Center Borstel, Leibniz Lung Center,Leibniz Research Alliance Infection , Borstel Gemany, Borstel, Germany
| | - Ulrich E. Schaible
- Cellular Microbiology, Priority Research Area Infections, Research Center Borstel, Leibniz Lung Center,Leibniz Research Alliance Infection , Borstel Gemany, Borstel, Germany
| | - Kai Pappenfort
- Institute of Microbiology, Friedrich Schiller University of Jena, Jena, Germany
| | - Malik Alawi
- Bioinformatics Core, UKE Hamburg, Hamburg, Germany
| | - Marcel Schie
- LIV, Leibniz Institute of Experimental Virology, Hamburg, Germany
| | - Roland Thünauer
- LIV, Leibniz Institute of Experimental Virology, Hamburg, Germany
| | - Johanna Stamm
- Institute for Medical Microbiology, Virology and Hygiene, UKE, Eppendorf, Hamburg, Germany
| | - Holger Rohde
- Institute for Medical Microbiology, Virology and Hygiene, UKE, Eppendorf, Hamburg, Germany
| | - Wolfgang R. Streit
- Department of Microbiology and Biotechnology, University Hamburg, Hamburg, Germany
| |
Collapse
|
35
|
Pisano M, Giordano F, Sangiovanni G, Capuano N, Acerra A, D’Ambrosio F. The Interaction between the Oral Microbiome and Systemic Diseases: A Narrative Review. MICROBIOLOGY RESEARCH 2023; 14:1862-1878. [DOI: 10.3390/microbiolres14040127] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Background: The human being is defined as a ‘superorganism’ since it is made up of its own cells and microorganisms that reside inside and outside the human body. Commensal microorganisms, which are even ten times more numerous than the cells present in the body, perform very important functions for the host, as they contribute to the health of the host, resist pathogens, maintain homeostasis, and modulate the immune system. In the mouth, there are different types of microorganisms, such as viruses, mycoplasmas, bacteria, archaea, fungi, and protozoa, often organized in communities. The aim of this umbrella review is to evaluate if there is a connection between the oral microbiome and systematic diseases. Methodology: A literature search was conducted through PubMed/MEDLINE, the COCHRANE library, Scopus, and Web of Science databases without any restrictions. Because of the large number of articles included and the wide range of methods and results among the studies found, it was not possible to report the results in the form of a systematic review or meta-analysis. Therefore, a narrative review was conducted. We obtained 73.931 results, of which 3593 passed the English language filter. After the screening of the titles and abstracts, non-topic entries were excluded, but most articles obtained concerned interactions between the oral microbiome and systemic diseases. Discussion: A description of the normal microbial flora was present in the oral cavity both in physiological conditions and in local pathological conditions and in the most widespread systemic pathologies. Furthermore, the therapeutic precautions that the clinician can follow in order to intervene on the change in the microbiome have been described. Conclusions: This review highlights what are the intercorrelations of the oral microbiota in healthy subjects and in subjects in pathological conditions. According to several recent studies, there is a clear correlation between dysbiosis of the oral microbiota and diseases such as diabetes, cardiovascular diseases, chronic inflammatory diseases, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Massimo Pisano
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Salerno, Italy
| | - Francesco Giordano
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Salerno, Italy
| | - Giuseppe Sangiovanni
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Salerno, Italy
| | - Nicoletta Capuano
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Salerno, Italy
| | - Alfonso Acerra
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Salerno, Italy
| | - Francesco D’Ambrosio
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Salerno, Italy
| |
Collapse
|
36
|
Labossiere A, Ramsey M, Merritt J, Kreth J. Molecular commensalism-how to investigate underappreciated health-associated polymicrobial communities. mBio 2023; 14:e0134223. [PMID: 37754569 PMCID: PMC10653818 DOI: 10.1128/mbio.01342-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023] Open
Abstract
The study of human commensal bacteria began with the first observation of prokaryotes >340 years ago. Since then, the study of human-associated microbes has been justifiably biased toward the study of infectious pathogens. However, the role of commensal microbes has in recent years begun to be understood with some appreciation of them as potential protectors of host health rather than bystanders. As our understanding of these valuable microbes grows, it highlights how much more remains to be learned about them and their roles in maintaining health. We note here that a thorough framework for the study of commensals, both in vivo and in vitro is overall lacking compared to well-developed methodologies for pathogens. The modification and application of methods for the study of pathogens can work well for the study of commensals but is not alone sufficient to properly characterize their relationships. This is because commensals live in homeostasis with the host and within complex communities. One difficulty is determining which commensals have a quantifiable impact on community structure and stability as well as host health, vs benign microbes that may indeed serve only as bystanders. Human microbiomes are composed of bacteria, archaea, fungi, and viruses. This review focuses particularly on oral bacteria, yet many of the principles of commensal impacts on host health observed in the mouth can translate well to other host sites. Here, we discuss the value of commensals, the shortcomings involved in model systems for their study, and some of the more notable impacts they have upon not only each other but host health.
Collapse
Affiliation(s)
- Alex Labossiere
- Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, Rhode Island, USA
| | - Matthew Ramsey
- Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, Rhode Island, USA
| | - Justin Merritt
- Biomaterial and Biomedical Sciences, Oregon Health and Science University, School of Dentistry, Portland, Oregon, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Jens Kreth
- Biomaterial and Biomedical Sciences, Oregon Health and Science University, School of Dentistry, Portland, Oregon, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
37
|
Lau HC, Yuan X, Huang H, Zhang M, Hsueh CY, Gong H. Fusobacterium nucleatum facilitates proliferation and autophagy by activating miR-361-3p/NUDT1 axis through oxidative stress in hypopharyngeal squamous cell carcinoma. BMC Cancer 2023; 23:990. [PMID: 37848855 PMCID: PMC10580517 DOI: 10.1186/s12885-023-11439-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/24/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND To investigate how Fusobacterium nucleatum (Fn) promotes oxidative stress and mediates proliferation and autophagy in hypopharyngeal squamous cell carcinoma (HPSCC). METHODS The prognosis for 82 HPSCC cases was retrospectively analyzed. HPSCC cell line FaDu was co-cultured with Fn. Knockdown of NUDT1 (shNUDT1 group) was done after observing DNA damage response. CCK8 and tumorigenesis assays for proliferation observation, mitochondria ROS (MitoROS) measurement to examine intracellular oxidative stress, and ELISA to analyze concentration of 8-oxo-2'-deoxyguanosine (8-oxo-dG) in cells. Dual-luciferase reporter assays clarified miR-361-3p connection with NUDT1. Autophagy flow was observed using electron microscopy and related proteins. RESULTS Fn was highly associated with NUDT1. The shNUDT1 group experienced lower proliferation compared with normal FaDu (NC group) in vivo and in vitro. The shNUDT1 group showed 8-oxo-dG and γH2AX to be elevated. Intracellular ROS decreased in shNUDT1Fn group when compared to Fn group. Upregulating miR-361-3p could suppress NUDT1 expression and downstream proliferation and autophagy. Fn modulated miR-361-3p via OH-, which could be proven by H2O2 assay and N-acetylcysteine. CONCLUSIONS Higher Fn in HPSCC patients suggests poorer prognosis. NUDT1 might affect cell proliferation and autophagy and modulate DNA damage response. The oxidative stress induced miR-361-3p/NUDT1 axis is first introduced in microbiome-carcinoma research.
Collapse
Affiliation(s)
- Hui-Ching Lau
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Shanghai Key Clinical Disciplines of Otorhinolaryngology, Shanghai, PR China
| | - Xiaohui Yuan
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Shanghai Key Clinical Disciplines of Otorhinolaryngology, Shanghai, PR China
| | - Huiying Huang
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Shanghai Key Clinical Disciplines of Otorhinolaryngology, Shanghai, PR China
| | - Ming Zhang
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Shanghai Key Clinical Disciplines of Otorhinolaryngology, Shanghai, PR China
| | - Chi-Yao Hsueh
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Shanghai Key Clinical Disciplines of Otorhinolaryngology, Shanghai, PR China
| | - Hongli Gong
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China.
- Shanghai Key Clinical Disciplines of Otorhinolaryngology, Shanghai, PR China.
| |
Collapse
|
38
|
G C B, Zhou P, Naha A, Gu J, Wu C. Development of a xylose-inducible promoter and riboswitch combination system for manipulating gene expression in Fusobacterium nucleatum. Appl Environ Microbiol 2023; 89:e0066723. [PMID: 37695289 PMCID: PMC10537658 DOI: 10.1128/aem.00667-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/05/2023] [Indexed: 09/12/2023] Open
Abstract
Inducible gene expression systems are important for studying bacterial gene function, yet most exhibit leakage. In this study, we engineered a leakage-free hybrid system for precise gene expression controls in Fusobacterium nucleatum by integrating the xylose-inducible expression system with the theophylline-responsive riboswitch. This innovative method enables concurrent control of target gene expression at both transcription and translation initiation levels. Using luciferase and the indole-producing enzyme tryptophanase (TnaA) as reporters, we demonstrated that the hybrid system displays virtually no observable signal in the absence of inducers. We employed this system to express FtsX, a protein related to fusobacterial cytokinesis, in an ftsX mutant strain, unveiling a dose-dependent manner in FtsX production. Without inducers, cells form long filaments, while increasing FtsX levels by increasing inducer concentrations led to a gradual reduction in cell length until normal morphology was restored. Crucially, this system facilitated essential gene investigation, identifying the signal peptidase lepB gene as vital for F. nucleatum. LepB's essentiality stems from depletion, affecting outer membrane biogenesis and cell division. This novel hybrid system holds the potential for advancing research on essential genes and accurate gene regulation in F. nucleatum. IMPORTANCE Fusobacterium nucleatum, an anaerobic bacterium prevalent in the human oral cavity, is strongly linked to periodontitis and can colonize areas beyond the oral cavity, such as the placenta and gastrointestinal tract, causing adverse pregnancy outcomes and promoting colorectal cancer growth. Given F. nucleatum's clinical significance, research is underway to develop targeted therapies to inhibit its growth or eradicate the bacterium specifically. Essential genes, crucial for bacterial survival, growth, and reproduction, are promising drug targets. A leak-free-inducible gene expression system is needed for studying these genes, enabling conditional gene knockouts and elucidating the importance of those essential genes. Our study identified lepB as the essential gene by first generating a conditional gene mutation in F. nucleatum. Combining a xylose-inducible system with a riboswitch facilitated the analysis of essential genes in F. nucleatum, paving the way for potential drug development targeting this bacterium for various clinical applications.
Collapse
Affiliation(s)
- Bibek G C
- Department of Microbiology & Molecular Genetics, The University of Texas Health Science Center, Houston, Texas, USA
| | - Peng Zhou
- Department of Microbiology & Molecular Genetics, The University of Texas Health Science Center, Houston, Texas, USA
| | - Arindam Naha
- Department of Microbiology & Molecular Genetics, The University of Texas Health Science Center, Houston, Texas, USA
| | - Jianhua Gu
- Houston Methodist Hospital Research Institute, Houston, Texas, USA
| | - Chenggang Wu
- Department of Microbiology & Molecular Genetics, The University of Texas Health Science Center, Houston, Texas, USA
| |
Collapse
|
39
|
Pignatelli P, Nuccio F, Piattelli A, Curia MC. The Role of Fusobacterium nucleatum in Oral and Colorectal Carcinogenesis. Microorganisms 2023; 11:2358. [PMID: 37764202 PMCID: PMC10537357 DOI: 10.3390/microorganisms11092358] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/02/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
In recent years, several studies have suggested a strong association of microorganisms with several human cancers. Two periodontopathogenic species in particular have been mentioned frequently: Fusobacterium nucleatum (F. nucleatum) and Porphyromonas gingivalis. Chronic periodontal disease has been reported to be a risk factor for oral squamous cell carcinoma (OSCC), colorectal cancer (CRC) and pancreatic cancer. F. nucleatum is a Gram-negative anaerobic bacterium that lives in the oral cavity, urogenital, intestinal and upper digestive tract. It plays a significant role as a co-aggregation factor, with almost all bacterial species that participate in oral plaque formation acting as a bridge between early and late colonizers. F. nucleatum, gives an important inflammatory contribution to tumorigenesis progression and is associated with epithelial-derived malignancies, such as OSCC and CRC. F. nucleatum produces an adhesion protein, FadA, which binds to VE-cadherin on endothelial cells and to E-cadherins on epithelial cells. The last binding activates oncogenic pathways, such as Wnt/βcatenin, in oral and colorectal carcinogenesis. F. nucleatum also affects immune response because its Fap2 protein interacts with an immune receptor named TIGIT present on some T cells and natural killer cells inhibiting immune cells activities. Morover, F. nucleatum release outer membrane vesicles (OMVs), which induce the production of proinflammatory cytokines and initiating inflammation. F. nucleatum migrates from the oral cavity and reaches the colon hematogenously but it is not known if in the bloodstream it reaches the CRC as free, erythrocyte-bound bacteria or in OMV. F. nucleatum abundance in CRC tissue has been inversely correlated with overall survival (OS). The prevention and treatment of periodontal disease through the improvement of oral hygiene should be included in cancer prevention protocols. FadA virulence factors may also serve as novel targets for therapeutic intervention of oral and colorectal cancer.
Collapse
Affiliation(s)
- Pamela Pignatelli
- COMDINAV DUE, Nave Cavour, Italian Navy, Stazione Navale Mar Grande, 74122 Taranto, Italy;
| | - Federica Nuccio
- MARICENSELEZ ANCONA, Centro di Selezione M.M., Italian Navy, 60127 Ancona, Italy;
| | - Adriano Piattelli
- School of Dentistry, Saint Camillus International University for Health Sciences, 00131 Rome, Italy;
- Facultad de Medicina, UCAM Universidad Católica San Antonio de Murcia, 30107 Murcia, Spain
| | - Maria Cristina Curia
- Department of Medical, Oral and Biotechnological Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
40
|
Tar I, Szegedi M, Krasuska-Sławińska E, Heropolitańska-Pliszka E, Bernatowska EA, Öncü E, Keles S, Guner SN, Reisli I, Gesheva N, Naumova E, Izakovicova-Holla L, Litzman J, Savchak I, Kostyuchenko L, Erdõs M. Intraoral and maxillofacial abnormalities in patients with autosomal dominant hyper-IgE syndrome. Cent Eur J Immunol 2023; 48:228-236. [PMID: 37901871 PMCID: PMC10604639 DOI: 10.5114/ceji.2023.130874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 05/24/2023] [Indexed: 10/31/2023] Open
Abstract
Autosomal dominant hyper-IgE syndrome (AD-HIES) is an inborn error of immunity (IEI) caused by a dominant-negative mutation in the signal transducer and activator of transcription 3 (STAT 3). This disease is characterized by chronic eczematoid dermatitis, recurrent staphylococcal skin abscesses, pneumonia, pneumatoceles, and extremely high serum IgE levels. Loss-of-function STAT3 mutations may also result in distinct non-immunologic features such as dental, facial, skeletal, and vascular abnormalities, central nervous system malformations and an increased risk for bone fractures. Prophylactic treatment of Candida infections and prophylactic antimicrobial therapy for staphylococcal skin infections and sinopulmonary infections are essential. An awareness of the oral and maxillofacial features of HIES may facilitate early diagnosis with genetic counselling and may improve future patient care. This study describes oral, dental, and maxillofacial manifestations in 14 patients with genetically defined AD-HIES. We also review the literature and propose recommendations for the complex care of patients with this rare primary immunodeficiency.
Collapse
Affiliation(s)
- Ildikó Tar
- Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Márta Szegedi
- Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Ewa Krasuska-Sławińska
- Dental Surgical Clinic for Children, Children’s Memorial Health Institute, Warsaw, Poland
| | | | - Ewa A. Bernatowska
- Department of Immunology, Children’s Memorial Health Institute, Warsaw, Poland
| | - Elif Öncü
- Department of Periodontology, Lokman Hekim University, Ankara, Turkey
| | - Sevgi Keles
- Division of Pediatric Allergy and Immunology, Necmettin Erbakan University, Konya, Turkey
| | - Sukru N. Guner
- Division of Pediatric Allergy and Immunology, Necmettin Erbakan University, Konya, Turkey
| | - Ismail Reisli
- Division of Pediatric Allergy and Immunology, Necmettin Erbakan University, Konya, Turkey
| | - Nevena Gesheva
- Department of Clinical Immunology and Stem Cell Bank, University Hospital “Aleksandrovska”, Sofia, Bulgaria
| | - Elissaveta Naumova
- Department of Clinical Immunology and Stem Cell Bank, University Hospital “Aleksandrovska”, Sofia, Bulgaria
| | - Lydie Izakovicova-Holla
- Department of Stomatology, St Anne’s University Hospital, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jiri Litzman
- Department of Clinical Immunology and Allergology, St Anne’s University Hospital, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Igor Savchak
- Department of Pediatric Immunology and Rheumatology, Western Ukrainian Specialized Children’s Medical Center, Lviv, Ukraine
| | - Larysa Kostyuchenko
- Department of Pediatric Immunology and Rheumatology, Western Ukrainian Specialized Children’s Medical Center, Lviv, Ukraine
| | - Melinda Erdõs
- J Project Education and Research Network, Debrecen, Hungary
| |
Collapse
|
41
|
Ohara H, Odanaka K, Shiine M, Hayasaka M. Antimicrobial effect of oral care gel containing hinokitiol and 4-isopropyl-3-methylphenol against intraoral pathogenic microorganisms. PLoS One 2023; 18:e0283295. [PMID: 37656688 PMCID: PMC10473516 DOI: 10.1371/journal.pone.0283295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 08/21/2023] [Indexed: 09/03/2023] Open
Abstract
OBJECTIVE Deterioration of oral hygiene is closely related to an increase in severity and mortality of corona virus disease-19 (COVID-19), and also contributes to the development of various diseases such as aspiration pneumonia or Alzheimer's. Oral care is attracting high interest in Japan, which has entered a super-aging society. In this study, we aimed to investigate whether commercially available Hinora® (HO), an oral care gel containing hinokitiol and 4-isopropyl-3-methylphenol (IPMP), has biofilm formation inhibitory and antimicrobial activities against various intraoral pathogen microorganisms. METHOD Candida species, Aggregatibacter actinomycetemcomitans, Staphylococcus aureus, and Pseudomonas aeruginosa were selected during the study period, all of which were analyzed using antimicrobial disc, microorganism turbidity, and crystal violet assays. In addition, the germ tube test using Candida albicans (C. albicans) was performed with a modification of Mackenzie's method. Images for morphological observation of the germ tubes were acquired using an inverted microscope. For comparison between products, we used Refrecare® (RC), which only contains hinokitiol (not containing IPMP). RESULTS All the intraoral pathogenic microorganisms showed drug susceptibility against undiluted forms of HO and/or RC. In particular, HO was more effective at lower concentrations than RC. In the HO-added group, inhibition circles were observed in all bacteria except P. aeruginosa when added at a concentration of 0.5 g/mL or more. The optical density values at 590 nm (crystal violet) and/or 600 nm (microorganism turbidity) of all the fungi and bacteria were significantly lower when cultured in medium with HO. Inhibition of growth or biofilm formation was observed when HO was added at a concentration of 0.05 g/mL or higher. To investigate the action mechanism of HO, germ tube tests were performed in C. albicans. The results showed that culturing C. albicans in soybean-casein digest broth with HO (0.05 g/mL) significantly suppressed germ tube formation. CONCLUSIONS These data suggest that oral care gel-containing hinokitiol and IPMP has strong biofilm formation inhibitory activity, as well as antifungal and antimicrobial effects against Candida fungi and multiple intraoral pathogenic microorganisms. Therefore, it may be a promising treatment option for oral infections.
Collapse
Affiliation(s)
- Hiroshi Ohara
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Ohu University, Koriyama, Japan
- Department of Pharmacy, Ohu University Hospital, Koriyama, Japan
| | - Keita Odanaka
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Ohu University, Koriyama, Japan
| | - Miku Shiine
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Ohu University, Koriyama, Japan
| | - Masataka Hayasaka
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Ohu University, Koriyama, Japan
| |
Collapse
|
42
|
Perry EK, Tan MW. Bacterial biofilms in the human body: prevalence and impacts on health and disease. Front Cell Infect Microbiol 2023; 13:1237164. [PMID: 37712058 PMCID: PMC10499362 DOI: 10.3389/fcimb.2023.1237164] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/11/2023] [Indexed: 09/16/2023] Open
Abstract
Bacterial biofilms can be found in most environments on our planet, and the human body is no exception. Consisting of microbial cells encased in a matrix of extracellular polymers, biofilms enable bacteria to sequester themselves in favorable niches, while also increasing their ability to resist numerous stresses and survive under hostile circumstances. In recent decades, biofilms have increasingly been recognized as a major contributor to the pathogenesis of chronic infections. However, biofilms also occur in or on certain tissues in healthy individuals, and their constituent species are not restricted to canonical pathogens. In this review, we discuss the evidence for where, when, and what types of biofilms occur in the human body, as well as the diverse ways in which they can impact host health under homeostatic and dysbiotic states.
Collapse
Affiliation(s)
| | - Man-Wah Tan
- Department of Infectious Diseases, Genentech, South San Francisco, CA, United States
| |
Collapse
|
43
|
Ratheesh NK, Zdimal AM, Calderon CA, Shrivastava A. Bacterial Swarm-Mediated Phage Transportation Disrupts a Biofilm Inherently Protected from Phage Penetration. Microbiol Spectr 2023; 11:e0093723. [PMID: 37358420 PMCID: PMC10434198 DOI: 10.1128/spectrum.00937-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/05/2023] [Indexed: 06/27/2023] Open
Abstract
Physical forces that arise due to bacterial motility and growth play a significant role in shaping the biogeography of the human oral microbiota. Bacteria of the genus Capnocytophaga are abundant in the human oral microbiota and yet very little is known about their physiology. The human oral isolate Capnocytophaga gingivalis exhibits robust gilding motility that is driven by the rotary type 9 secretion system (T9SS), and cells of C. gingivalis transport nonmotile oral microbes as cargo. Phages, i.e., viruses that infect bacteria, are found in abundance within the microbiota. By tracking fluorescently labeled lambda phages that do not infect C. gingivalis, we report active phage transportation by C. gingivalis swarms. Lambda phage-carrying C. gingivalis swarms were propagated near an Escherichia coli colony. The rate of disruption of the E. coli colony increased 10 times compared with a control where phages simply diffused to the E. coli colony. This finding suggests a mechanism where fluid flows produced by motile bacteria increase the rate of transport of phages to their host bacterium. Additionally, C. gingivalis swarms formed tunnel-like structures within a curli fiber-containing E. coli biofilm that increased the efficiency of phage penetration. Our data suggest that invasion by a C. gingivalis swarm changes the spatial structure of the prey biofilm and further increases the penetration of phages. IMPORTANCE Dysbiosis of the human oral microbiota is associated with several diseases, but the factors that shape the biogeography of the oral microbiota are mostly opaque. Biofilms that form in the human supragingival and subgingival regions have a diverse microbial community where some microbes form well-defined polymicrobial structures. C. gingivalis, a bacterium abundant in human gingival regions, has robust gliding motility that is powered by the type 9 secretion system. We demonstrate that swarms of C. gingivalis can transport phages through a complex biofilm which increases the death rate of the prey biofilm. These findings suggest that C. gingivalis could be used as a vehicle for the transportation of antimicrobials and that active phage transportation could shape the spatial structure of a microbial community.
Collapse
Affiliation(s)
- Nichith K. Ratheesh
- Biodesign Center for Fundamental and Applied Microbiomics, School of Life Sciences, Center for Biological Physics, Arizona State University, Tempe, Arizona, USA
| | - Amanda M. Zdimal
- Biodesign Center for Fundamental and Applied Microbiomics, School of Life Sciences, Center for Biological Physics, Arizona State University, Tempe, Arizona, USA
| | - Cole A. Calderon
- Biodesign Center for Fundamental and Applied Microbiomics, School of Life Sciences, Center for Biological Physics, Arizona State University, Tempe, Arizona, USA
| | - Abhishek Shrivastava
- Biodesign Center for Fundamental and Applied Microbiomics, School of Life Sciences, Center for Biological Physics, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
44
|
Das A, Patro S, Simnani FZ, Singh D, Sinha A, Kumari K, Rao PV, Singh S, Kaushik NK, Panda PK, Suar M, Verma SK. Biofilm modifiers: The disparity in paradigm of oral biofilm ecosystem. Biomed Pharmacother 2023; 164:114966. [PMID: 37269809 DOI: 10.1016/j.biopha.2023.114966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/19/2023] [Accepted: 05/29/2023] [Indexed: 06/05/2023] Open
Abstract
A biofilm is a population of sessile microorganisms that has a distinct organized structure and characteristics like channels and projections. Good oral hygiene and reduction in the prevalence of periodontal diseases arise from minimal biofilm accumulation in the mouth, however, studies focusing on modifying the ecology of oral biofilms have not yet been consistently effective. The self-produced matrix of extracellular polymeric substances and greater antibiotic resistance make it difficult to target and eliminate biofilm infections, which lead to serious clinical consequences that are often lethal. Therefore, a better understanding is required to target and modify the ecology of biofilms in order to eradicate the infection, not only in instances of oral disorders but also in terms of nosocomial infections. The review focuses on several biofilm ecology modifiers to prevent biofilm infections, as well as the involvement of biofilm in antibiotic resistance, implants or in-dwelling device contamination, dental caries, and other periodontal disorders. It also discusses recent advances in nanotechnology that may lead to novel strategies for preventing and treating infections caused by biofilms as well as a novel outlook to infection control.
Collapse
Affiliation(s)
- Antarikshya Das
- KIIT School of Dental Sciences, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Swadheena Patro
- KIIT School of Dental Sciences, KIIT University, Bhubaneswar 751024, Odisha, India.
| | | | - Dibyangshee Singh
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Adrija Sinha
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Khushbu Kumari
- KIIT School of Dental Sciences, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Patnala Vedika Rao
- KIIT School of Medical Sciences, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Sarita Singh
- BVG Life Sciences Limited, Sagar Complex, Old Pune-Mumbai Road, Chinchwad, Pune 411034, India
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, Republic of Korea.
| | - Pritam Kumar Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden.
| | - Mrutyunjay Suar
- KIIT School of Dental Sciences, KIIT University, Bhubaneswar 751024, Odisha, India.
| | - Suresh K Verma
- KIIT School of Dental Sciences, KIIT University, Bhubaneswar 751024, Odisha, India.
| |
Collapse
|
45
|
Santacroce L, Passarelli PC, Azzolino D, Bottalico L, Charitos IA, Cazzolla AP, Colella M, Topi S, Godoy FG, D’Addona A. Oral microbiota in human health and disease: A perspective. Exp Biol Med (Maywood) 2023; 248:1288-1301. [PMID: 37688509 PMCID: PMC10625343 DOI: 10.1177/15353702231187645] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2023] Open
Abstract
The evolution of medical knowledge about oral microbiota has increased awareness of its important role for the entire human body health. A wide range of microbial species colonizing the oral cavity interact both with each other and with their host through complex pathways. Usually, these interactions lead to a harmonious coexistence (i.e. eubiosis). However, several factors - including diet, poor oral hygiene, tobacco smoking, and certain medications, among others - can disrupt this weak homeostatic balance (i.e. dysbiosis) with potential implications on both oral (i.e. development of caries and periodontal disease) and systemic health. This article is thus aimed at providing an overview on the importance of oral microbiota in mediating several physiological and pathological conditions affecting human health. In this context, strategies based on oral hygiene and diet as well as the role of probiotics supplementation are discussed.
Collapse
Affiliation(s)
- Luigi Santacroce
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University Hospital of Bari, Bari 70124, Italy
| | - Pier Carmine Passarelli
- Department of Head, Neck and Sense Organs, Division of Oral Surgery and Implantology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Domenico Azzolino
- Geriatric Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| | - Lucrezia Bottalico
- Department of Clinical Disciplines, School of Technical Medical Sciences, University of Elbasan “A. Xhuvani,” Elbasan 3001, Albania
| | - Ioannis Alexandros Charitos
- Department of Clinical Disciplines, School of Technical Medical Sciences, University of Elbasan “A. Xhuvani,” Elbasan 3001, Albania
- Istituti Clinici Scientifici Maugeri IRCCS, Institute of Bari, Bari 70124, Italy
| | - Angela Pia Cazzolla
- Department of Clinical and Experimental Medicine, Riuniti University Hospital of Foggia, Foggia 71122, Italy
| | - Marica Colella
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University Hospital of Bari, Bari 70124, Italy
| | - Skender Topi
- Department of Clinical Disciplines, School of Technical Medical Sciences, University of Elbasan “A. Xhuvani,” Elbasan 3001, Albania
| | - Franklin Garcia Godoy
- Bioscience Research Center, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- The Forsyth Institute, Cambridge, MA 02142, USA
- Department of Surgery, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Antonio D’Addona
- Department of Head, Neck and Sense Organs, Division of Oral Surgery and Implantology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| |
Collapse
|
46
|
Pallavi P, Barik A, Sahoo N, Rajhans G, Raut S. Alleviation of dental caries by use of isolated potential probiotic and its characterization. Biotechnol Appl Biochem 2023; 70:1518-1529. [PMID: 37232000 DOI: 10.1002/bab.2471] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/30/2023] [Indexed: 05/27/2023]
Abstract
Streptococcus mutans plays a major role in biofilm formation and pathogenic bacterial adhesion. Here we investigated the abilities of our isolates from diverse conventional sources to characterize the beneficial bacteria for inhibition of S. mutans. Enterobacter cloacae PS-74, a beneficial bacteria isolated from yoghurt, is gram negative, rod shaped, and resistant to acid, bile salt, and amylase. PS-74 cell-free supernatants (CFS) demonstrated highest zone of inhibition of 29 ± 1.7 mm. Further, the minimum inhibitory concentration (MIC) value of CFS PS-74 was recorded to be 10 μL and its minimum bactericidal concentration (MBC) value was found to be 15μL which led to 99.9% log reduction of S. mutans. Moreover, the biofilm formation was reduced by 84.91% at MIC15 of CFS PS-74 which alleviate the dental caries formation by S. mutans. This is the first report on E. cloacae PS-74, which was studied for its probiotic properties to inhibit S. mutans MTCC-890 due to the production of organic acids and employed in oral treatment.
Collapse
Affiliation(s)
- Preeti Pallavi
- Center for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Adyasa Barik
- Center for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Naresh Sahoo
- Department of Chemistry, Faculty of Engineering and Technology (ITER), Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Geetanjali Rajhans
- Center for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Sangeeta Raut
- Center for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| |
Collapse
|
47
|
Chang JW, Bi J, Owen G, Shen Y, Haapasalo M, Wiebe C, Tarzemany R, Larjava H. Scanning electron microscopic analysis of adherent bacterial biofilms associated with peri-implantitis. Clin Exp Dent Res 2023; 9:586-595. [PMID: 37157917 PMCID: PMC10441592 DOI: 10.1002/cre2.741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 03/27/2023] [Accepted: 04/07/2023] [Indexed: 05/10/2023] Open
Abstract
OBJECTIVES Peri-implantitis (PI) is caused by bacteria in the peri-implant space but the consensus on microbial profile is still lacking. Current microbial sampling of PI lesions has largely focused on analyzing bacterial species that have been shed from the implant surface and captured in the pocket fluid. The purpose of the present study was to investigate the morphotypes of bacteria in biofilm covering the implant threads and explore whether certain morphotypes were associated with PI. METHODS Fourteen failed implants were removed and instantly processed for scanning electron microscope analysis. The implants were imaged at three equally divided sub-crestal levels of the exposed area. Bacterial morphotypes were identified and quantified by three examiners. Mobility and years in function were correlated to the presence of different morphotypes. RESULTS The implants demonstrated the presence of variable bacterial morphotypes that did not correlate to disease progression in our study. Some implants were dominated by filaments and others showed the presence of combinations of cocci/rods or spirilles/spirochetes. In general, all implants showed variable morphologic biofilm composition. However, individual implants tended to have similar composition throughout the entire implant. Rods and filaments were dominant morphotypes throughout the surfaces and cocci showed increased presence toward the apical third. There were some differences in the biofilm morphology with mobility and time in function. CONCLUSIONS The profiles of bacterial biofilm morphotypes in failing implants with similar clinical presentations were highly variable. While there were significant differences between implants, similar morphotypes in individual implants were often found throughout the entire surface.
Collapse
Affiliation(s)
- Jae W. Chang
- Division of Periodontics, Faculty of DentistryUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Jiarui Bi
- Division of Periodontics, Faculty of DentistryUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Gethin Owen
- Division of Periodontics, Faculty of DentistryUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Ya Shen
- Division of Periodontics, Faculty of DentistryUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Markus Haapasalo
- Division of Periodontics, Faculty of DentistryUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Colin Wiebe
- Division of Periodontics, Faculty of DentistryUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Rana Tarzemany
- Division of Periodontics, Faculty of DentistryUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Hannu Larjava
- Division of Periodontics, Faculty of DentistryUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| |
Collapse
|
48
|
Pisani F, Pisani V, Arcangeli F, Harding A, Singhrao SK. Treponema denticola Has the Potential to Cause Neurodegeneration in the Midbrain via the Periodontal Route of Infection-Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6049. [PMID: 37297653 PMCID: PMC10252855 DOI: 10.3390/ijerph20116049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/30/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease and the most common example of dementia. The neuropathological features of AD are the abnormal deposition of extracellular amyloid-β (Aβ) and intraneuronal neurofibrillary tangles with hyperphosphorylated tau protein. It is recognized that AD starts in the frontal cerebral cortex, and then it progresses to the entorhinal cortex, the hippocampus, and the rest of the brain. However, some studies on animals suggest that AD could also progress in the reverse order starting from the midbrain and then spreading to the frontal cortex. Spirochetes are neurotrophic: From a peripheral route of infection, they can reach the brain via the midbrain. Their direct and indirect effect via the interaction of their virulence factors and the microglia potentially leads to the host peripheral nerve, the midbrain (especially the locus coeruleus), and cortical damage. On this basis, this review aims to discuss the hypothesis of the ability of Treponema denticola to damage the peripheral axons in the periodontal ligament, to evade the complemental pathway and microglial immune response, to determine the cytoskeletal impairment and therefore causing the axonal transport disruption, an altered mitochondrial migration and the consequent neuronal apoptosis. Further insights about the central neurodegeneration mechanism and Treponema denticola's resistance to the immune response when aggregated in biofilm and its quorum sensing are suggested as a pathogenetic model for the advanced stages of AD.
Collapse
Affiliation(s)
- Flavio Pisani
- Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston PR1 2HE, UK
| | - Valerio Pisani
- IRCCS, “Santa Lucia” Foundation, Neurology and Neurorehabilitation Unit, Via Ardeatina, 306, 00179 Rome, Italy
| | - Francesca Arcangeli
- Azienda Sanitaria Locale ASLRM1, Nuovo Regina Margherita Hospital, Geriatric Department, Advanced Centre for Dementia and Cognitive Disorders, Via Emilio Morosini, 30, 00153 Rome, Italy
| | - Alice Harding
- Dementia and Neurodegenerative Disease Research Group, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston PR1 2HE, UK
| | - Simarjit Kaur Singhrao
- Dementia and Neurodegenerative Disease Research Group, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston PR1 2HE, UK
| |
Collapse
|
49
|
Hernández-Venegas PA, Martínez-Martínez RE, Zaragoza-Contreras EA, Domínguez-Pérez RA, Reyes-López SY, Donohue-Cornejo A, Cuevas-González JC, Molina-Frechero N, Espinosa-Cristóbal LF. Bactericidal Activity of Silver Nanoparticles on Oral Biofilms Related to Patients with and without Periodontal Disease. J Funct Biomater 2023; 14:311. [PMID: 37367275 DOI: 10.3390/jfb14060311] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Periodontal disease (PD) is a multifactorial oral disease regularly caused by bacterial biofilms. Silver nanoparticles (AgNP) have offered good antimicrobial activity; moreover, there is no available scientific information related to their antimicrobial effects in biofilms from patients with PD. This study reports the bactericidal activity of AgNP against oral biofilms related to PD. MATERIALS AND METHODS AgNP of two average particle sizes were prepared and characterized. Sixty biofilms were collected from patients with (30 subjects) and without PD (30 subjects). Minimal inhibitory concentrations of AgNP were calculated and the distribution of bacterial species was defined by polymerase chain reaction. RESULTS Well-dispersed sizes of AgNP were obtained (5.4 ± 1.3 and 17.5 ± 3.4 nm) with an adequate electrical stability (-38.2 ± 5.8 and -32.6 ± 5.4 mV, respectively). AgNP showed antimicrobial activities for all oral samples; however, the smaller AgNP had significantly the most increased bactericidal effects (71.7 ± 39.1 µg/mL). The most resistant bacteria were found in biofilms from PD subjects (p < 0.05). P. gingivalis, T. denticola, and T. forsythia were present in all PD biofilms (100%). CONCLUSIONS The AgNP showed efficient bactericidal properties as an alternative therapy for the control or progression of PD.
Collapse
Affiliation(s)
- Perla Alejandra Hernández-Venegas
- Chemical Biological Department, Institute of Biomedical Sciences, Autonomous University of Juarez City (UACJ), Envolvente del PRONAF and Estocolmo s/n, Ciudad Juárez 32310, Chihuahua, Mexico
| | - Rita Elizabeth Martínez-Martínez
- Master Program in Advanced Dentistry, Faculty of Dentistry, Autonomous University of San Luis Potosi, Manuel Nava Avenue, Universitary Campus, San Luis Potosí 78290, San Luis Potosi, Mexico
| | - Erasto Armando Zaragoza-Contreras
- Department of Engineering and Materials Chemistry, Centro de Investigación en Materiales Avanzados, S. C., Miguel de Cervantes No. 120, Chihuahua 31109, Chihuahua, Mexico
| | - Rubén Abraham Domínguez-Pérez
- Laboratory of Multidisciplinary Dental Research, Faculty of Medicine, Autonomous University of Queretaro, Clavel Street, Prados de La Capilla, Santiago de Querétaro 76176, Queretaro, Mexico
| | - Simón Yobanny Reyes-López
- Institute of Biomedical Sciences, Autonomous University of Juarez City (UACJ), Envolvente del PRONAF and Estocolmo s/n, Ciudad Juárez 32310, Chihuahua, Mexico
| | - Alejandro Donohue-Cornejo
- Master Program in Dental Sciences, Stomatology Department, Institute of Biomedical Sciences, Autonomous University of Juarez City (UACJ), Envolvente del PRONAF and Estocolmo s/n, Ciudad Juárez 32310, Chihuahua, Mexico
| | - Juan Carlos Cuevas-González
- Master Program in Dental Sciences, Stomatology Department, Institute of Biomedical Sciences, Autonomous University of Juarez City (UACJ), Envolvente del PRONAF and Estocolmo s/n, Ciudad Juárez 32310, Chihuahua, Mexico
| | - Nelly Molina-Frechero
- Division of Biological and Health Sciences, Autonomous Metropolitan University Xochimilco (UAM), Mexico City 04960, Mexico
| | - León Francisco Espinosa-Cristóbal
- Master Program in Dental Sciences, Stomatology Department, Institute of Biomedical Sciences, Autonomous University of Juarez City (UACJ), Envolvente del PRONAF and Estocolmo s/n, Ciudad Juárez 32310, Chihuahua, Mexico
| |
Collapse
|
50
|
Bibek GC, Zhou P, Naha A, Gu J, Wu C. Development of a Xylose-Inducible Promoter and Riboswitch Combination System for Manipulating Gene Expression in Fusobacterium nucleatum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.24.538132. [PMID: 37163003 PMCID: PMC10168284 DOI: 10.1101/2023.04.24.538132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Inducible gene expression systems are important for studying bacterial gene function, yet most exhibit leakage. In this study, we engineered a leakage-free hybrid system for precise gene expression controls in Fusobacterium nucleatum by integrating the xylose-inducible expression system with the theophylline-responsive riboswitch. This innovative method enables concurrent control of target gene expression at both transcription and translation initiation levels. Using luciferase and the indole-producing enzyme tryptophanase (TnaA) as reporters, we demonstrated that the hybrid system displays virtually no observable signal in the absence of inducers. We employed this system to express FtsX, a protein related to fusobacterial cytokinesis, in an ftsX mutant strain, unveiling a dose-dependent manner in FtsX production. Without inducers, cells form long filaments, while increasing FtsX levels by increasing inducers concentrations led to a gradual reduction in cell length until normal morphology was restored. Crucially, this system facilitated essential gene investigation, identifying the signal peptidase lepB gene as vital for F. nucleatum . LepB's essentiality stems from depletion, affecting outer membrane biogenesis and cell division. This novel hybrid system holds the potential for advancing research on essential genes and accurate gene regulation in F. nucleatum .
Collapse
|