1
|
Zannikou M, Fish EN, Platanias LC. Signaling by Type I Interferons in Immune Cells: Disease Consequences. Cancers (Basel) 2024; 16:1600. [PMID: 38672681 PMCID: PMC11049350 DOI: 10.3390/cancers16081600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/08/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
This review addresses interferon (IFN) signaling in immune cells and the tumor microenvironment (TME) and examines how this affects cancer progression. The data reveal that IFNs exert dual roles in cancers, dependent on the TME, exhibiting both anti-tumor activity and promoting cancer progression. We discuss the abnormal IFN signaling induced by cancerous cells that alters immune responses to permit their survival and proliferation.
Collapse
Affiliation(s)
- Markella Zannikou
- Robert H. Lurie Comprehensive Cancer Center, Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, 303 East Superior Ave., Chicago, IL 60611, USA
| | - Eleanor N. Fish
- Toronto General Hospital Research Institute, University Health Network, 67 College Street, Toronto, ON M5G 2M1, Canada;
- Department of Immunology, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| | - Leonidas C. Platanias
- Robert H. Lurie Comprehensive Cancer Center, Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, 303 East Superior Ave., Chicago, IL 60611, USA
- Department of Medicine, Jesse Brown Veterans Affairs Medical Center, 820 S. Damen Ave., Chicago, IL 60612, USA
| |
Collapse
|
2
|
Wei Y, Braunstein Z, Chen J, Min X, Yang H, Duan L, Dong L, Zhong J. JAK2/STAT5 inhibition protects mice from experimental autoimmune encephalomyelitis by modulating T cell polarization. Int Immunopharmacol 2023; 120:110382. [PMID: 37269741 DOI: 10.1016/j.intimp.2023.110382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/05/2023]
Abstract
Multiple sclerosis (MS) has been considered as a T cell-mediated autoimmune disease. However, the signaling pathways regulating effector T cells in MS have yet to be elucidated. Janus kinase 2 (JAK2) plays a crucial role in hematopoietic/immune cytokine receptor signal transduction. Here, we tested the mechanistic regulation of JAK2 and the therapeutic potential of pharmacological JAK2 inhibition in MS. Both inducible whole-body JAK2 knockout and T cell-specific JAK2 knockout completely prevented the onset of experimental autoimmune encephalomyelitis (EAE), a widely used MS animal model. Mice with JAK2 deficiency in T cells exhibited minimal demyelination and minimal CD45+ leukocyte infiltration in the spinal cord, accompanied by a remarkable reduction of T helper cell type 1 (TH1) and type 17 (TH17) in the draining lymph nodes and spinal cord. In vitro experiments showed that disruption of JAK2 markedly suppressed TH1 differentiation and IFNγ production. The phosphorylation of signal transducer and activator of transcription 5 (STAT5) was reduced in JAK2 deficient T cells, while STAT5 overexpression significantly increased TH1 and IFNγ production in STAT5 transgenic mice. Consistent with these results, JAK1/2 inhibitor baricitinib or selective JAK2 inhibitor fedratinib attenuated the frequencies of TH1 as well as TH17 in the draining lymph nodes and alleviated the EAE disease activity in mice. Our findings suggest that overactive JAK2 signaling in T lymphocytes is the culprit in EAE, which may serve as a potent therapeutic target for autoimmune disease.
Collapse
Affiliation(s)
- Yingying Wei
- Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Zachary Braunstein
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Jun Chen
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Xinwen Min
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Handong Yang
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Lihua Duan
- Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Rheumatology, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi 330006, China.
| | - Lingli Dong
- Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Jixin Zhong
- Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH 44106, USA; Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Vascular Aging (HUST), Ministry of Education, Wuhan, Hubei 430030, China.
| |
Collapse
|
3
|
CTCF controls three-dimensional enhancer network underlying the inflammatory response of bone marrow-derived dendritic cells. Nat Commun 2023; 14:1277. [PMID: 36882470 PMCID: PMC9992691 DOI: 10.1038/s41467-023-36948-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/24/2023] [Indexed: 03/09/2023] Open
Abstract
Dendritic cells are antigen-presenting cells orchestrating innate and adaptive immunity. The crucial role of transcription factors and histone modifications in the transcriptional regulation of dendritic cells has been extensively studied. However, it is not been well understood whether and how three-dimensional chromatin folding controls gene expression in dendritic cells. Here we demonstrate that activation of bone marrow-derived dendritic cells induces extensive reprogramming of chromatin looping as well as enhancer activity, both of which are implicated in the dynamic changes in gene expression. Interestingly, depletion of CTCF attenuates GM-CSF-mediated JAK2/STAT5 signaling, resulting in defective NF-κB activation. Moreover, CTCF is necessary for establishing NF-κB-dependent chromatin interactions and maximal expression of pro-inflammatory cytokines, which prime Th1 and Th17 cell differentiation. Collectively, our study provides mechanistic insights into how three-dimensional enhancer networks control gene expression during bone marrow-derived dendritic cells activation, and offers an integrative view of the complex activities of CTCF in the inflammatory response of bone marrow-derived dendritic cells.
Collapse
|
4
|
Zhou HF, Wang FX, Sun F, Liu X, Rong SJ, Luo JH, Yue TT, Xiao J, Yang CL, Lu WY, Luo X, Zhou Q, Zhu H, Yang P, Xiong F, Yu QL, Zhang S, Wang CY. Aloperine Ameliorates IMQ-Induced Psoriasis by Attenuating Th17 Differentiation and Facilitating Their Conversion to Treg. Front Pharmacol 2022; 13:778755. [PMID: 35721119 PMCID: PMC9198605 DOI: 10.3389/fphar.2022.778755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 04/11/2022] [Indexed: 11/26/2022] Open
Abstract
Aloperine is an anti-inflammatory compound isolated from the Chinese herb Sophora alopecuroides L. Previously, our group has reported that the generation of induced Treg was promoted by aloperine treatment in a mouse colitis model. However, the effect of aloperine on effector T cell subsets remains unclear. We therefore carefully examined the effect of aloperine on the differentiation of major subsets of T helper cells. Based on our results, psoriasis, a Th17 dominant skin disease, is selected to explore the potential therapeutic effect of aloperine in vivo. Herein, we demonstrated that topical application of aloperine suppressed epidermal proliferation, erythema, and infiltration of inflammatory cells in skin lesions. Mechanistic studies revealed that aloperine suppressed the differentiation of Th17 cells directly through inhibiting the phosphorylation of STAT3 or indirectly through impairing the secretion of Th17-promoting cytokines by dendritic cells. Moreover, aloperine enhanced the conversion of Th17 into Treg via altering the pSTAT3/pSTAT5 ratio. Collectively, our study supported that aloperine possesses the capacity to affect Th17 differentiation and modulates Th17/Treg balance, thereby alleviating imiquimod (IMQ)-induced psoriasis in mice.
Collapse
Affiliation(s)
- Hai-Feng Zhou
- NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Fa-Xi Wang
- NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Fei Sun
- NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Xin Liu
- NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Shan-Jie Rong
- NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Jia-Hui Luo
- NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Tian-Tian Yue
- NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Jun Xiao
- NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China.,Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Chun-Liang Yang
- NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Wan-Ying Lu
- NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Xi Luo
- NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Qing Zhou
- NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - He Zhu
- NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Ping Yang
- NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Fei Xiong
- NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Qi-Lin Yu
- NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Shu Zhang
- NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Cong-Yi Wang
- NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| |
Collapse
|
5
|
JAK2 gene knockout inhibits corneal allograft rejection in mice by regulating dendritic cell-induced T cell immune tolerance. Cell Death Dis 2022; 8:289. [PMID: 35710633 PMCID: PMC9203759 DOI: 10.1038/s41420-022-01067-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/09/2022] [Accepted: 05/24/2022] [Indexed: 11/16/2022]
Abstract
Corneal allograft rejection can be seen in some patients after corneal transplantation. The present study intends to investigate whether JAK2 gene knockout affects corneal allograft rejection through regulation of dendritic cells (DCs)-induced T cell immune tolerance. In order to identify the target gene related to corneal allograft rejection, high-throughput mRNA sequencing and bioinformatics analysis were performed. JAK2 knockout mice were constructed and subjected to corneal allograft transplantation. The incidence of immune rejection was observed, the percentage of CD4+ T cells was detected, and the expression of Th1 cytokine interferon γ (IFN-γ) was determined. Flow cytometry and ELISA were performed to analyze the effects of JAK2 gene knockout on bone marrow-derived DCs (BMDCs). JAK2 was the target gene related to corneal allograft rejection. JAK2 gene knockout contributed to significantly prolonged survival time of corneal grafts in mice and inhibited corneal allograft rejection. The in vitro cell experiment further confirmed that JAK2 gene knockout contributed to the inactivation of CD4+ T cells and induced IFN-γ expression, accompanied by inhibition of DC immune function, development, maturation, and secretion of inflammatory cytokines. Collectively, JAK2 gene knockout inactivates CD4+ T cells to decrease IFN-γ expression, as well as inhibits DC development, maturation, and secretion of inflammatory cytokines, thereby reducing corneal allograft rejection.
Collapse
|
6
|
Huang TX, Tan XY, Huang HS, Li YT, Liu BL, Liu KS, Chen X, Chen Z, Guan XY, Zou C, Fu L. Targeting cancer-associated fibroblast-secreted WNT2 restores dendritic cell-mediated antitumour immunity. Gut 2022; 71:333-344. [PMID: 33692094 PMCID: PMC8762012 DOI: 10.1136/gutjnl-2020-322924] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Solid tumours respond poorly to immune checkpoint inhibitor (ICI) therapies. One major therapeutic obstacle is the immunosuppressive tumour microenvironment (TME). Cancer-associated fibroblasts (CAFs) are a key component of the TME and negatively regulate antitumour T-cell response. Here, we aimed to uncover the mechanism underlying CAFs-mediated tumour immune evasion and to develop novel therapeutic strategies targeting CAFs for enhancing ICI efficacy in oesophageal squamous cell carcinoma (OSCC) and colorectal cancer (CRC). DESIGN Anti-WNT2 monoclonal antibody (mAb) was used to treat immunocompetent C57BL/6 mice bearing subcutaneously grafted mEC25 or CMT93 alone or combined with anti-programmed cell death protein 1 (PD-1), and the antitumour efficiency and immune response were assessed. CAFs-induced suppression of dendritic cell (DC)-differentiation and DC-mediated antitumour immunity were analysed by interfering with CAFs-derived WNT2, either by anti-WNT2 mAb or with short hairpin RNA-mediated knockdown. The molecular mechanism underlying CAFs-induced DC suppression was further explored by RNA-sequencing and western blot analyses. RESULTS A negative correlation between WNT2+ CAFs and active CD8+ T cells was detected in primary OSCC tumours. Anti-WNT2 mAb significantly restored antitumour T-cell responses within tumours and enhanced the efficacy of anti-PD-1 by increasing active DC in both mouse OSCC and CRC syngeneic tumour models. Directly interfering with CAFs-derived WNT2 restored DC differentiation and DC-mediated antitumour T-cell responses. Mechanistic analyses further demonstrated that CAFs-secreted WNT2 suppresses the DC-mediated antitumour T-cell response via the SOCS3/p-JAK2/p-STAT3 signalling cascades. CONCLUSIONS CAFs could suppress antitumour immunity through WNT2 secretion. Targeting WNT2 might enhance the ICI efficacy and represent a new anticancer immunotherapy.
Collapse
Affiliation(s)
- Tu-Xiong Huang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China.,Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Xiang-Yu Tan
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Hui-Si Huang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Yu-Ting Li
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Bei-Lei Liu
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
| | - Kai-Sheng Liu
- Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Xinchun Chen
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Zhe Chen
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xin-Yuan Guan
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
| | - Chang Zou
- Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Li Fu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
7
|
Li H, Xu W, Liu X, Wang T, Wang S, Liu J, Jiang H. JAK2 deficiency improves erectile function in diabetic mice through attenuation of oxidative stress, apoptosis, and fibrosis. Andrology 2021; 9:1662-1671. [PMID: 34085398 PMCID: PMC8672361 DOI: 10.1111/andr.13061] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/11/2021] [Accepted: 05/31/2021] [Indexed: 12/13/2022]
Abstract
Background Janus kinase 2 (JAK2) is activated in diabetic mellitus (DM) conditions and may enhance oxidative stress, apoptosis and fibrosis in many tissues. Whether JAK2 activation is involved in the occurrence of diabetic erectile dysfunction (ED) is unknown. Objectives We performed this study to investigate the effect of JAK2 deficiency on diabetic ED. Materials and methods Conditional JAK2 gene knockout mice (Cre+/+‐JAK2fl/fl) were used, in which JAK2 gene knockout could be induced by tamoxifen. Mice fell into four groups: control, JAK2 knockout (JAK2−/−), DM, and DM with JAK2−/−. DM was induced by intraperitoneal injection of streptozotocin. Two months later, JAK2 gene knockout was induced with tamoxifen in Cre+/+‐JAK2fl/fl mice. After another 2 months, erectile function was measured by electrical stimulation of the cavernous nerve, and penile tissues were harvested. Ratio of maximal intracavernosal pressure (MIP) to mean arterial blood pressure (MAP), expression and phosphorylation of JAK2, oxidative stress level, NO/Cyclic Guanosine Monophosphate (cGMP) pathway, apoptosis, fibrosis, and transforming growth factor beta 1 (TGF‐β1)/Smad/Collagen IV pathway in corpus cavernosum, were measured. Results JAK2 expression was remarkably decreased after induction with tamoxifen. JAK2 was activated in penile tissues of diabetic mice, and JAK2 deficiency could improve the impaired erectile function caused by DM. However, in mice without DM, JAK2 deficiency had no apparent influence on erectile function. Levels of oxidative stress, apoptosis, fibrosis, and TGF‐β1/Smad/Collagen IV pathway were all elevated by DM, whereas JAK2 deficiency lessened these alterations in diabetic mice. Moreover, JAK2 deficiency improved the expression of the down‐regulated NO/cGMP pathway in diabetic mice. In non‐diabetic mice, no apparent changes were found in aforementioned parameters after JAK2 gene knockout. Discussion and conclusion Our study showed that JAK2 deficiency could improve erectile function in diabetic mice, which might be mediated by reduction in oxidative stress, apoptosis, and fibrosis in corpus cavernosum.
Collapse
Affiliation(s)
- Hao Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenchao Xu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaming Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaogang Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongyang Jiang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Zhu J, Yang T, Tang M, Yang Z, Pei H, Ye H, Tang Y, Cheng Z, Lin P, Chen L. Studies on the anti-psoriasis effects and its mechanism of a dual JAK2/FLT3 inhibitor flonoltinib maleate. Biomed Pharmacother 2021; 137:111373. [PMID: 33761599 DOI: 10.1016/j.biopha.2021.111373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/25/2021] [Accepted: 02/02/2021] [Indexed: 02/08/2023] Open
Abstract
Psoriasis is a chronic, inflammatory autoimmune disease mediated by T cells, and characterized with abnormal proliferation and differentiation of keratinocytes, and inflammatory infiltration. The Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway has been identified to play essential roles in mediating various of biological processes, and is closely related to autoimmune diseases. Dendritic cells (DCs) are important antigen presenting cells and play an important regulatory role in T cells. The proliferation, differentiation and function of DCs are regulated by JAK and FMS-like tyrosine kinase 3 (FLT3) signal pathways. Flonoltinib maleate (FM), a high selectivity dual JAK2/FLT3 inhibitor with IC50 values of 0.8 nM and 15 nM for JAK2 and FLT3, respectively, was developed by our laboratory. Moreover, FM was a potent JAK2 inhibitor with 863-fold and 696-fold selectivity over JAK1 and JAK3, respectively. In this study, the anti-psoriasis activity of FM was evaluated both in vitro and in vivo. FM effectively inhibited the proliferation of HaCaT, the inflammatory keratinocyte induced by M5 and markedly suppressed the generation and differentiation of DCs from bone marrow (BM), and inhibited the expression of FLT3 in DCs in vitro. FM effectively inhibited the ear thickening and improved the pathological changes of the ear in interleukin (IL)-23-induced psoriasis-like acanthosis mouse model. Further in keratin 14-vascular endothelial growth factor (K14-VEGF) transgenic homozygous mice model, FM could obviously improve the psoriatic symptom and pathological changes, significantly inhibit the generations of Th1 and Th17 cells in the spleen, and the accumulations of DCs in the ears. FM could also significantly reduce the expression of various inflammatory factors both in C57BL/6 and K14-VEGF mice ears, and the serum of K14-VEGF mice. Mechanism revealed that FM effectively suppressed the phosphorylation of JAK2, STAT3 and STAT5 in inflammatory keratinocytes and the mice ears of C57BL/6 and K14-VEGF, as well as the phosphorylation of FLT3 in K14-VEGF mice ears. In conclusion, FM plays an excellent anti-psoriasis activity, including inhibiting keratinocyte proliferation and regulating inflammatory response through inhibiting JAK2 and FLT3 signaling pathway.
Collapse
Affiliation(s)
- Jiali Zhu
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Tao Yang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Minghai Tang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhuang Yang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Heying Pei
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Haoyu Ye
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Yu Tang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhixuan Cheng
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Ping Lin
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Lijuan Chen
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
9
|
JAK1/2 inhibition impairs the development and function of inflammatory dendritic epidermal cells in atopic dermatitis. J Allergy Clin Immunol 2020; 147:2202-2212.e8. [PMID: 33338537 DOI: 10.1016/j.jaci.2020.11.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/14/2020] [Accepted: 11/10/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Janus kinase (JAK) inhibitors are a new class of therapeutic compounds for dermatological diseases. In atopic dermatitis (AD), data of clinical phase III trials show rapid improvement of pruritus and significant reduction of inflammation within the first weeks with a favorable safety profile. However, their mode of action in AD is not fully understood. OBJECTIVES In our study, we investigate the effect of different JAK inhibitors on cell differentiation, phenotype, and function of inflammatory dendritic epidermal cells (IDECs). METHODS We analyzed the JAK expression in IDEC from ex vivo skin and in vitro generated IDECs using flow cytometry and PCR. Further, we studied in vitro the effect of different JAK inhibitors on IDEC cell differentiation, phenotype, and maturation. RESULTS IDECs express JAK1 and JAK2 ex vivo and in vitro. We found that JAK1 and JAK2 were upregulated during the differentiation from monocytes to IDECs. Conversely, JAK2 inhibition by ruxolitinib (JAK1/2 inhibitor) or BMS-911543 (JAK2 inhibitor) abrogated the differentiation from monocytes into IDECs. Differentiated IDECs can redifferentiate into a more monocyte-like phenotype in the presence of ruxolitinib or BMS-911543. Furthermore, we showed that concomitant inhibition of JAK1/2 rather than blocking JAK1 or JAK2 alone, impaired maturation and the release of proinflammatory cytokines on lipopolysaccharide stimulation. CONCLUSIONS Our results suggest that inhibition of JAK1/2 impairs IDEC differentiation and function. We provide new insight into the mode of action of JAK inhibitors in AD and highlight the role of JAK1/2 inhibitors for the treatment of patients with AD.
Collapse
|
10
|
Li X, Na H, Xu L, Zhang X, Feng Z, Zhou X, Cui J, Zhang J, Lin F, Yang S, Yue F, Mousa H, Zuo Y. DC-SIGN mediates gastric cancer progression by regulating the JAK2/STAT3 signaling pathway and affecting LncRNA RP11-181G12.2 expression. Biomed Pharmacother 2019; 121:109644. [PMID: 31766099 DOI: 10.1016/j.biopha.2019.109644] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 11/01/2019] [Accepted: 11/01/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The molecular mechanisms of gastric cancer (GC) development are very complicated. Recent studies revealed that DC-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN)-related protein (DC-SIGNR) is involved in colon cancer and GC biological processes. However, the exact roles of DC-SIGN in GC remain unrevealed. METHODS DC-SIGN overexpression and knockdown experiments were performed by using DC-SIGN shRNA or DC-SIGN plasmid to investigate the biological roles of DC-SIGN in proliferation, cell cycle progression, migration and invasion of GC cells in vitro. Furthermore, the lncRNA profiles of SGC-7901 cells with control shRNA and DC-SIGN shRNA were generated by using microarray analysis. Mechanistically, the relationship between DC-SIGN, RP11-181G12.2 and the JAK2/STAT3 signaling pathway was then investigated using qRT-PCR and western blot assays. Additionally, we analyzed DC-SIGN and RP11-181G12.2 expression levels in GC specimens based on the Cancer Genome Atlas database. RESULTS In this study, the results showed that DC-SIGN was highly expressed in GC cells and significantly correlated with advanced clinical stage and lymphatic metastasis. Downregulation of DC-SIGN significantly inhibited the proliferation, cell cycle progression, migration and invasion of GC cells in vitro. The reverse results could partly be seen with the upregulation of DC-SIGN. Mechanistically, knockdown of DC-SIGN inactivated the JAK2/STAT3 signaling pathway, and overexpression of DC-SIGN activated the JAK2/STAT3 signaling pathway. In addition, through LncPath microarray analysis, we identified a lncRNA, RP11-181G12.2, that was significantly upregulated after knockdown of DC-SIGN; this was also confirmed by qRT-PCR. Furthermore, RP11-181G12.2 knockdown enhanced DC-SIGN expression in GC cells, further activating the JAK2/STAT3 signaling pathway. In contrast, DC-SIGN overexpression suppressed RP11-181G12.2 expression. CONCLUSIONS Our study suggests that DC-SIGN might be involved in the progression of GC by regulating the JAK2/STAT3 signaling pathway and affecting lncRNA RP11-181G12.2 expression.
Collapse
Affiliation(s)
- Xiaomeng Li
- Department of Clinical Biochemistry, College of Laboratory Diagnostic Medicine, Dalian Medical University, Dalian, 116044, China.
| | - Heya Na
- Department of Clinical Biochemistry, College of Laboratory Diagnostic Medicine, Dalian Medical University, Dalian, 116044, China; Department of Laboratory Medicine, The People's Hospital of Liaoning Province, Shenyang, 110016, China.
| | - Lijie Xu
- Department of Clinical Biochemistry, College of Laboratory Diagnostic Medicine, Dalian Medical University, Dalian, 116044, China.
| | - Xinsheng Zhang
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116044, China.
| | - Zhen Feng
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116044, China.
| | - Xu Zhou
- Department of Clinical Biochemistry, College of Laboratory Diagnostic Medicine, Dalian Medical University, Dalian, 116044, China.
| | - Jingyi Cui
- Department of Clinical Biochemistry, College of Laboratory Diagnostic Medicine, Dalian Medical University, Dalian, 116044, China.
| | - Jingbo Zhang
- Department of Clinical Biochemistry, College of Laboratory Diagnostic Medicine, Dalian Medical University, Dalian, 116044, China.
| | - Fang Lin
- Department of Clinical Biochemistry, College of Laboratory Diagnostic Medicine, Dalian Medical University, Dalian, 116044, China.
| | - Shiqing Yang
- Department of Clinical Biochemistry, College of Laboratory Diagnostic Medicine, Dalian Medical University, Dalian, 116044, China.
| | - Fangxia Yue
- Department of Clinical Biochemistry, College of Laboratory Diagnostic Medicine, Dalian Medical University, Dalian, 116044, China.
| | - Haithm Mousa
- Department of Clinical Biochemistry, College of Laboratory Diagnostic Medicine, Dalian Medical University, Dalian, 116044, China.
| | - Yunfei Zuo
- Department of Clinical Biochemistry, College of Laboratory Diagnostic Medicine, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
11
|
Gotthardt D, Trifinopoulos J, Sexl V, Putz EM. JAK/STAT Cytokine Signaling at the Crossroad of NK Cell Development and Maturation. Front Immunol 2019; 10:2590. [PMID: 31781102 PMCID: PMC6861185 DOI: 10.3389/fimmu.2019.02590] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/18/2019] [Indexed: 01/14/2023] Open
Abstract
Natural Killer (NK) cells are cytotoxic lymphocytes of the innate immune system and play a critical role in anti-viral and anti-tumor responses. NK cells develop in the bone marrow from hematopoietic stem cells (HSCs) that differentiate through common lymphoid progenitors (CLPs) to NK lineage-restricted progenitors (NKPs). The orchestrated action of multiple cytokines is crucial for NK cell development and maturation. Many of these cytokines such as IL-2, IL-7, IL-12, IL-15, IL-21, IL-27, and interferons (IFNs) signal via the Janus Kinase / Signal Transducer and Activator of Transcription (JAK/STAT) pathway. We here review the current knowledge about these cytokines and the downstream signaling involved in the development and maturation of conventional NK cells and their close relatives, innate lymphoid cells type 1 (ILC1). We further discuss the role of suppressor of cytokine signaling (SOCS) proteins in NK cells and highlight their potential for therapeutic application.
Collapse
Affiliation(s)
- Dagmar Gotthardt
- Department for Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Jana Trifinopoulos
- Department for Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Veronika Sexl
- Department for Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Eva Maria Putz
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| |
Collapse
|
12
|
Ubc9 deficiency selectively impairs the functionality of common lymphoid progenitors (CLPs) during bone marrow hematopoiesis. Mol Immunol 2019; 114:314-322. [PMID: 31442915 DOI: 10.1016/j.molimm.2019.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 10/26/2022]
Abstract
Hematopoietic development occurs in the bone marrow, and this process begins with hematopoietic stem cells (HSCs). Ubc9 is a unique E2-conjugating enzyme required for SUMOylation, an evolutionarily conserved post-translational modification system. We herein show that a conditional Ubc9 deletion in the hematopoietic system caused decreased thymus weight and reduced lymphocyte to myeloid cell ratio. Importantly, Ubc9 deletion in the hematopoietic system only selectively impaired the development of common lymphoid progenitors (CLPs) in the bone marrow and perturbed their potential to differentiate into lymphocytes, thereby decreasing the number of T/B cells in the periphery. Ubc9 was found to be required for CLP viability, and therefore, Ubc9 deficiency rendered CLPs to undergo apoptosis and attenuated their proliferation. Thus, Ubc9 plays a critical role in the regulation of CLP function during hematopoietic development in the bone marrow.
Collapse
|
13
|
Higazi HMKI, He L, Fang J, Sun F, Zhou Q, Huang T, He X, Wang Y, Xiong F, Yang P, Yu Q, Li J, Wagner KU, Adam BL, Zhang S, Wang CY. Loss of Jak2 protects cardiac allografts from chronic rejection by attenuating Th1 response along with increased regulatory T cells. Am J Transl Res 2019; 11:624-640. [PMID: 30899367 PMCID: PMC6413256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 01/05/2019] [Indexed: 06/09/2023]
Abstract
Chronic rejection acts as the most formidable obstacle for organ transplantation in clinical settings. Herein we demonstrated in a cardiac transplantation model that blockade of Janus kinase 2 (Jak2) provides protection for cardiac allografts against chronic rejection. Specifically, loss of Jak2 almost completely abolished the production of IFN-γ+ Th1 cells, while the percentage of Foxp3+ regulatory T cells (Tregs) was significantly increased. As a result, loss of Jak2 significantly prolonged allograft survival (58 ± 30.6 days vs. 7 ± 0.3 days). Particularly, 4 out of 13 Jak2 deficient recipients (30%) showed long-term acceptance of allografts as manifested by the graft survival time > 100 days. Cellular studies revealed that Jak2 deficiency did not impact the intrinsic proliferative capability for CD4+ T cells in response to nonspecific polyclonal and allogenic stimulation. Mechanistic studies documented that the impaired Th1 development was caused by the attenuated IFN-γ/STAT1 and IL-12/STAT4 signaling along with repressed expression of Th1 transcription factors T-bet, Hlx and Runx3. However, the IL-2/STAT5 signaling remained intact, which ensured normal Treg development in Jak2-/- naïve CD4 T cells. Together, our data support that blockade of Jak2 may have therapeutic potential for prevention and treatment of allograft rejection in clinical settings.
Collapse
Affiliation(s)
- Hassan Mohammed Khair Ibrahim Higazi
- The Center for Biomedical Research, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Long He
- The Center for Biomedical Research, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Jing Fang
- The Center for Biomedical Research, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Fei Sun
- The Center for Biomedical Research, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Qing Zhou
- The Center for Biomedical Research, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Teng Huang
- The Center for Biomedical Research, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Xiaoyu He
- The Center for Biomedical Research, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Yi Wang
- The Center for Biomedical Research, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Fei Xiong
- The Center for Biomedical Research, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Ping Yang
- The Center for Biomedical Research, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Qilin Yu
- The Center for Biomedical Research, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Jinxiu Li
- Shenzhen Third People’s Hospital29 Bujibulan Road, Longgang District, Shenzhen, Guangdong 518000, China
| | - Kay-Uwe Wagner
- University of Nebraska Medical Center, 985950 Nebraska Medical CenterDRCII, Omaha, NE 68198-5950, USA
| | - Bao-Ling Adam
- Department of Surgery, Medical College of Georgia at Augusta University1120 15th Street, BI-4074, Augusta, GA 30912, USA
| | - Shu Zhang
- The Center for Biomedical Research, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Cong-Yi Wang
- The Center for Biomedical Research, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| |
Collapse
|
14
|
Kim E, Yoon JY, Lee J, Jeong D, Park JG, Hong YH, Kim JH, Aravinthan A, Kim JH, Cho JY. TANK-binding kinase 1 and Janus kinase 2 play important roles in the regulation of mitogen-activated protein kinase phosphatase-1 expression after toll-like receptor 4 activation. J Cell Physiol 2018; 233:8790-8801. [PMID: 29797567 DOI: 10.1002/jcp.26787] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 04/30/2018] [Indexed: 12/13/2022]
Abstract
Inflammation is a response that protects the body from pathogens. Through several inflammatory signaling pathways mediated by various families of transcription factors, such as nuclear factor-κB (NF-κB), activator protein-1 (AP-1), interferon regulatory factors (IRFs), and signal transducers and activators of transcription (STATs), various inflammatory cytokines and chemokines are induced and inflammatory responses are boosted. Simultaneously, inhibitory systems are activated and provide negative feedback. A typical mechanism by which this process occurs is that inflammatory signaling molecules upregulate mitogen-activated protein kinase phosphatase-1 (MKP1) expression. Here, we investigated how kinases regulate MKP1 expression in lipopolysaccharide-triggered cascades. We found that p38 and c-Jun N-terminal kinase (JNK) inhibitors decreased MKP1 expression. Using specific inhibitors, gene knockouts, and gene knockdowns, we also found that tumor necrosis factor receptor-associated factor family member-associated nuclear factor κB activator (TANK)-binding kinase 1 (TBK1) and Janus kinase 2 (JAK2) are involved in the induction of MKP1 expression. By analyzing JAK2-induced activation of STATs, STAT3-specific inhibitors, promoter binding sites, and STAT3-/- cells, we found that STAT3 is directly linked to TBK1-mediated and JAK2-mediated induction of MKP1 expression. Our data suggest that MKP1 expression can be differentially regulated by p38, JNK, and the TBK1-JAK2-STAT3 pathway after activation of toll-like receptor 4 (TLR4). These data also imply crosstalk between the AP-1 pathway and the IRF3 and STAT3 pathways.
Collapse
Affiliation(s)
- Eunji Kim
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea
| | - Ju Y Yoon
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea.,Central Research Institute, Dongkwang Pharmaceutical Company, Seoul, Korea
| | - Jongsung Lee
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea
| | - Deok Jeong
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea
| | - Jae G Park
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea
| | - Yo H Hong
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea
| | - Ji H Kim
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea
| | - Adithan Aravinthan
- Department of Physiology, College of Veterinary Medicine, Chonbuk National University, Iksan, Korea
| | - Jong-Hoon Kim
- Department of Physiology, College of Veterinary Medicine, Chonbuk National University, Iksan, Korea
| | - Jae Y Cho
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
15
|
Dendritic Cells in Sepsis: Pathological Alterations and Therapeutic Implications. J Immunol Res 2017; 2017:3591248. [PMID: 29075648 PMCID: PMC5624156 DOI: 10.1155/2017/3591248] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 07/24/2017] [Accepted: 08/08/2017] [Indexed: 01/09/2023] Open
Abstract
Sepsis is the leading cause of death for critically ill patients in recent years. Dendritic cells (DCs) are important antigen-presenting cells and play a key role in immune response by regulating the innate and adaptive immunity. The number of DCs, the differentiation of monocytes into DCs, and the levels of surface molecules associated with the function of DCs are changed in the development of sepsis. There are many mechanisms involved in the alterations of DCs during sepsis, including the induction of apoptosis, reactive oxygen species generation, activation of the Wnt signaling pathway, epigenetic regulation, and variation in Toll-like receptor-dependent signaling. In this review, we present the classifications of DC subsets and mechanisms involved in the alterations of DCs in sepsis, as well as further discuss the therapeutic strategies targeting DCs in sepsis to improve the aberrant immune response and prolong the life during sepsis progression.
Collapse
|
16
|
CD155 blockade improves survival in experimental sepsis by reversing dendritic cell dysfunction. Biochem Biophys Res Commun 2017; 490:283-289. [DOI: 10.1016/j.bbrc.2017.06.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 06/10/2017] [Indexed: 01/28/2023]
|
17
|
Zhao HM, Xu R, Huang XY, Cheng SM, Huang MF, Yue HY, Wang X, Zou Y, Lu AP, Liu DY. Curcumin Suppressed Activation of Dendritic Cells via JAK/STAT/SOCS Signal in Mice with Experimental Colitis. Front Pharmacol 2016; 7:455. [PMID: 27932984 PMCID: PMC5122716 DOI: 10.3389/fphar.2016.00455] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 11/14/2016] [Indexed: 12/21/2022] Open
Abstract
Dendritic cells (DCs) play a pivotal role as initiators in the pathogenesis of inflammatory bowel disease and are regulated by the JAK/STAT/SOCS signaling pathway. As a potent anti-inflammatory compound, curcumin represents a viable treatment alternative or adjunctive therapy in the management of chronic inflammatory bowel disease (IBD). The mechanism of curcumin treated IBD on DCs is not completely understood. In the present study, we explored the mechanism of curcumin treated experimental colitis by observing activation of DCs via JAK/STAT/SOCS signaling pathway in colitis mice. Experimental colitis was induced by 2, 4, 6-trinitrobenzene sulfonic acid. After 7 days treatment with curcumin, its therapeutic effect was verified by decreased colonic weight, histological scores, and remitting pathological injury. Meanwhile, the levels of major histocompatibility complex class II and DC costimulatory molecules (CD83, CD28, B7-DC, CD40, CD40 L, and TLR2) were inhibited and followed the up-regulated levels of IL-4, IL-10, and IFN-γ, and down-regulated GM-CSF, IL-12p70, IL-15, IL-23, and TGF-β1. A key finding was that the phosphorylation of the three members (JAK2, STAT3, and STAT6) of the JAK/STAT/SOCS signaling pathway was inhibited, and the three downstream proteins (SOCS1, SOCS3, and PIAS3) from this pathway were highly expressed. In conclusion, curcumin suppressed the activation of DCs by modulating the JAK/STAT/SOCS signaling pathway to restore immunologic balance to effectively treat experimental colitis.
Collapse
Affiliation(s)
- Hai-Mei Zhao
- School of Basic Medical Sciences, Jiangxi University of Traditional Chinese Medicine Nanchang, China
| | - Rong Xu
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine Nanchang, China
| | - Xiao-Ying Huang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine Nanchang, China
| | - Shao-Min Cheng
- School of Basic Medical Sciences, Jiangxi University of Traditional Chinese Medicine Nanchang, China
| | - Min-Fang Huang
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine Nanchang, China
| | - Hai-Yang Yue
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine Nanchang, China
| | - Xin Wang
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine Nanchang, China
| | - Yong Zou
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine Nanchang, China
| | - Ai-Ping Lu
- School of Chinese Medicine, Hong Kong Baptist University Kowloon Tong, China
| | - Duan-Yong Liu
- Science and Technology College, Jiangxi University of Traditional Chinese Medicine Nanchang, China
| |
Collapse
|
18
|
Amano W, Nakajima S, Yamamoto Y, Tanimoto A, Matsushita M, Miyachi Y, Kabashima K. JAK inhibitor JTE-052 regulates contact hypersensitivity by downmodulating T cell activation and differentiation. J Dermatol Sci 2016; 84:258-265. [PMID: 27665390 DOI: 10.1016/j.jdermsci.2016.09.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 09/08/2016] [Accepted: 09/13/2016] [Indexed: 12/30/2022]
Abstract
BACKGROUND Using JAK inhibitors to inhibit cytokine signaling is presumed to be a possible means of treating skin inflammatory disorders such as contact dermatitis. OBJECTIVE To clarify the action site of JAK inhibitors in skin inflammatory disorders. METHODS We analyzed the mechanism of action of the JAK inhibitor JTE-052 using murine skin inflammation models, including contact hypersensitivity (CHS) and irritant contact dermatitis. Cells isolated from ear tissue or lymph node (LN) were analyzed by flow cytometry. The amounts of cytokines in the culture medium were measured by ELISA or bead array system. Proliferation of LN cells was evaluated by measurement of tritiated thymidine incorporation. RESULTS Oral administration of JTE-052 during both sensitization and elicitation phase attenuated CHS, but did not affect croton oil-induced irritant contact dermatitis. JTE-052 potently inhibited T cell proliferation and activation by antigen presentation in vitro, and attenuated skin inflammation in a sensitized-lymphocyte transfer model without suppressing T cell migration. JTE-052 did not affect hapten-induced cutaneous dendritic cell migration into draining lymph nodes or their costimulatory molecule expressions. CONCLUSION The JAK inhibitor JTE-052 exerts an inhibitory effect on antigen-specific T cell activation and subsequent inflammation in acquired skin immunity, such as CHS.
Collapse
Affiliation(s)
- Wataru Amano
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan; Central Pharmaceutical Research Institute, Japan Tobacco, Japan
| | - Saeko Nakajima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yasuo Yamamoto
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan; Central Pharmaceutical Research Institute, Japan Tobacco, Japan
| | - Atsuo Tanimoto
- Central Pharmaceutical Research Institute, Japan Tobacco, Japan
| | | | - Yoshiki Miyachi
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| |
Collapse
|
19
|
He L, Sun F, Wang Y, Zhu J, Fang J, Zhang S, Yu Q, Gong Q, Ren B, Xiang X, Chen Z, Ning Q, Hu J, Yang P, Wang CY. HMGB1 exacerbates bronchiolitis obliterans syndrome via RAGE/NF-κB/HPSE signaling to enhance latent TGF-β release from ECM. Am J Transl Res 2016; 8:1971-1984. [PMID: 27347307 PMCID: PMC4891412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 03/19/2016] [Indexed: 06/06/2023]
Abstract
Bronchiolitis obliterans syndrome (BOS), characterized by progressive airflow obstruction, is the main barrier to long-term graft survival after lung transplantation. Despite extensive studies, the mechanisms underlying BOS remain poorly understood, and targeted interventions have not yet been fully developed. In the present study, we employed a mouse model of tracheal transplantation and demonstrated that blockade of HMGB1 alone or combined with heparanase (HPSE) attenuates the development of BOS. It was noted that HMGB1 was first passively released from necrotic/damaged cells as a result of early unavoidable allograft injuries, leading to macrophage infiltration along with HMGB1 active secretion. Mechanistic studies revealed that extracellular HMGB1 acted through its receptor, RAGE, to activate NF-κB, which then bound to the HPSE promoter to transcribe its expression. The enhanced HPSE next released HS-bonded latent TGF-β from myofibroblast ECM by cleaving HS chains to promote the initiation and progression of BOS. Together, our data suggest that HMGB1 and HPSE could be viable targets for prevention and intervention of fibrotic diseases such BOS after lung transplantation.
Collapse
Affiliation(s)
- Long He
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education, Key Laboratory of Organ Transplantation, Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and TechnologyWuhan 430030, China
| | - Fei Sun
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education, Key Laboratory of Organ Transplantation, Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and TechnologyWuhan 430030, China
| | - Yi Wang
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education, Key Laboratory of Organ Transplantation, Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and TechnologyWuhan 430030, China
| | - Jianghui Zhu
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education, Key Laboratory of Organ Transplantation, Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and TechnologyWuhan 430030, China
| | - Jing Fang
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education, Key Laboratory of Organ Transplantation, Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and TechnologyWuhan 430030, China
| | - Shu Zhang
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education, Key Laboratory of Organ Transplantation, Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and TechnologyWuhan 430030, China
| | - Qilin Yu
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education, Key Laboratory of Organ Transplantation, Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and TechnologyWuhan 430030, China
| | - Quan Gong
- Clinical and Molecular Immunology Research Center, Department of Immunology, Medical College of Yangtze UniversityJingzhou, Hubei, China
| | - Boxue Ren
- Clinical and Molecular Immunology Research Center, Department of Immunology, Medical College of Yangtze UniversityJingzhou, Hubei, China
| | - Xudong Xiang
- Department of Emergency Medicine, Institute of Emergency Medicine and Rare Diseases, The Second Xiangya Hospital, Central South UniversityChangsha, China
| | - Zhishui Chen
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education, Key Laboratory of Organ Transplantation, Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and TechnologyWuhan 430030, China
- Department of Sponsored Program Administration, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and TechnologyWuhan 430030, China
| | - Qin Ning
- Department of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Jifa Hu
- Department of Sponsored Program Administration, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and TechnologyWuhan 430030, China
| | - Ping Yang
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education, Key Laboratory of Organ Transplantation, Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and TechnologyWuhan 430030, China
| | - Cong-Yi Wang
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education, Key Laboratory of Organ Transplantation, Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and TechnologyWuhan 430030, China
- Department of Sponsored Program Administration, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and TechnologyWuhan 430030, China
| |
Collapse
|
20
|
IL-6 Inhibition Reduces STAT3 Activation and Enhances the Antitumor Effect of Carboplatin. Mediators Inflamm 2016; 2016:8026494. [PMID: 27006530 PMCID: PMC4781984 DOI: 10.1155/2016/8026494] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/27/2016] [Accepted: 02/01/2016] [Indexed: 02/07/2023] Open
Abstract
Recent studies suggest that tumor-associated macrophage-produced IL-6 is an important mediator within the tumor microenvironment that promotes tumor growth. The activation of IL-6/STAT3 axis has been associated with chemoresistance and poor prognosis of a variety of cancers including colorectal carcinoma and thus serves as a potential immunotherapeutic target for cancer treatment. However, it is not fully understood whether anticytokine therapy could reverse chemosensitivity and enhance the suppressive effect of chemotherapy on tumor growth. In this study, we aimed to investigate the effect of IL-6 inhibition therapy on the antitumor effect of carboplatin. Enhanced expression of IL-6 and activation of STAT3 were observed in human colorectal carcinoma samples compared to normal colorectal tissue, with higher levels of IL-6/STAT3 in low grade carcinomas. Treatment of carboplatin (CBP) dose-dependently increased IL-6 production and STAT3 activation in human colorectal LoVo cells. Blockade of IL-6 with neutralizing antibody enhanced chemosensitivity of LoVo cells to carboplatin as evidenced by increased cell apoptosis. IL-6 blockade abolished carboplatin-induced STAT3 activation. IL-6 blockade and carboplatin synergistically reduced cyclin D1 expression and enhanced caspase-3 activity in LoVo cells. Our results suggest that inhibition of IL-6 may enhance chemosensitivity of colon cancers with overactive STAT3 to platinum agents.
Collapse
|
21
|
Yao Y, Wang Y, Zhang Z, He L, Zhu J, Zhang M, He X, Cheng Z, Ao Q, Cao Y, Yang P, Su Y, Zhao J, Zhang S, Yu Q, Ning Q, Xiang X, Xiong W, Wang CY, Xu Y. Chop Deficiency Protects Mice Against Bleomycin-induced Pulmonary Fibrosis by Attenuating M2 Macrophage Production. Mol Ther 2016; 24:915-25. [PMID: 26883801 DOI: 10.1038/mt.2016.36] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 01/22/2016] [Indexed: 02/07/2023] Open
Abstract
C/EBP homologous protein (Chop) has been shown to have altered expression in patients with idiopathic pulmonary fibrosis (IPF), but its exact role in IPF pathoaetiology has not been fully addressed. Studies conducted in patients with IPF and Chop(-/-) mice have dissected the role of Chop and endoplasmic reticulum (ER) stress in pulmonary fibrosis pathogenesis. The effect of Chop deficiency on macrophage polarization and related signalling pathways were investigated to identify the underlying mechanisms. Patients with IPF and mice with bleomycin (BLM)-induced pulmonary fibrosis were affected by the altered Chop expression and ER stress. In particular, Chop deficiency protected mice against BLM-induced lung injury and fibrosis. Loss of Chop significantly attenuated transforming growth factor β (TGF-β) production and reduced M2 macrophage infiltration in the lung following BLM induction. Mechanistic studies showed that Chop deficiency repressed the M2 program in macrophages, which then attenuated TGF-β secretion. Specifically, loss of Chop promoted the expression of suppressors of cytokine signaling 1 and suppressors of cytokine signaling 3, and through which Chop deficiency repressed signal transducer and activator of transcription 6/peroxisome proliferator-activated receptor gamma signaling, the essential pathway for the M2 program in macrophages. Together, our data support the idea that Chop and ER stress are implicated in IPF pathoaetiology, involving at least the induction and differentiation of M2 macrophages.
Collapse
Affiliation(s)
- Yingying Yao
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases, Chinese Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Wang
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases, Chinese Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhijun Zhang
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Long He
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianghui Zhu
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meng Zhang
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyu He
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenshun Cheng
- Department of Respiratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Qilin Ao
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Cao
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases, Chinese Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Yang
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunchao Su
- Department of Pharmacology and Toxicology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, USA
| | - Jianping Zhao
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases, Chinese Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shu Zhang
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qilin Yu
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qin Ning
- Department of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xudong Xiang
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Weining Xiong
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases, Chinese Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cong-Yi Wang
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongjian Xu
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases, Chinese Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
22
|
Xu XY, Li HJ, Zhang LY, Lu X, Zuo DM, Shan GQ, Xu TY, Chen ZL. Mannan-binding lectin at supraphysiological concentrations inhibits differentiation of dendritic cells from human CD14+monocytes. Microbiol Immunol 2015; 59:724-34. [DOI: 10.1111/1348-0421.12337] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/31/2015] [Accepted: 11/04/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Xiao-Ying Xu
- Department of Immunology; School of Basic Medical Sciences; Southern Medical University; Guangzhou Avenue North 1838 Guangdong China
| | - Hui-Jie Li
- Department of Immunology; School of Basic Medical Sciences; Southern Medical University; Guangzhou Avenue North 1838 Guangdong China
| | - Li-Yun Zhang
- Department of Immunology; School of Basic Medical Sciences; Southern Medical University; Guangzhou Avenue North 1838 Guangdong China
| | - Xiao Lu
- Department of Immunology; School of Basic Medical Sciences; Southern Medical University; Guangzhou Avenue North 1838 Guangdong China
| | - Da-Ming Zuo
- Department of Immunology; School of Basic Medical Sciences; Southern Medical University; Guangzhou Avenue North 1838 Guangdong China
| | - Gui-Qiu Shan
- Guangzhou General Hospital of Guangzhou Military Command; Liuhua Road 111 Guangzhou Guangdong China
| | - Tian-Yu Xu
- Department of Immunology; School of Basic Medical Sciences; Southern Medical University; Guangzhou Avenue North 1838 Guangdong China
| | - Zheng-Liang Chen
- Department of Immunology; School of Basic Medical Sciences; Southern Medical University; Guangzhou Avenue North 1838 Guangdong China
| |
Collapse
|
23
|
Llop-Guevara A, Porras M, Cendón C, Di Ceglie I, Siracusa F, Madarena F, Rinotas V, Gómez L, van Lent PL, Douni E, Chang HD, Kamradt T, Román J. Simultaneous inhibition of JAK and SYK kinases ameliorates chronic and destructive arthritis in mice. Arthritis Res Ther 2015; 17:356. [PMID: 26653844 PMCID: PMC4675041 DOI: 10.1186/s13075-015-0866-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 11/19/2015] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Despite the broad spectrum of antirheumatic drugs, RA is still not well controlled in up to 30-50 % of patients. Inhibition of JAK kinases by means of the pan-JAK inhibitor tofacitinib has demonstrated to be effective even in difficult-to-treat patients. Here, we discuss whether the efficacy of JAK inhibition can be improved by simultaneously inhibiting SYK kinase, since both kinases mediate complementary and non-redundant pathways in RA. METHODS Efficacy of dual JAK + SYK inhibition with selective small molecule inhibitors was evaluated in chronic G6PI-induced arthritis, a non-self-remitting and destructive arthritis model in mice. Clinical and histopathological scores, as well as cytokine and anti-G6PI antibody production were assessed in both preventive and curative protocols. Potential immunotoxicity was also evaluated in G6PI-induced arthritis and in a 28-day TDAR model, by analysing the effects of JAK + SYK inhibition on hematological parameters, lymphoid organs, leukocyte subsets and cell function. RESULTS Simultaneous JAK + SYK inhibition completely prevented mice from developing arthritis. This therapeutic strategy was also very effective in ameliorating already established arthritis. Dual kinase inhibition immediately resulted in greatly decreased clinical and histopathological scores and led to disease remission in over 70 % of the animals. In contrast, single JAK inhibition and anti-TNF therapy (etanercept) were able to stop disease progression but not to revert it. Dual kinase inhibition decreased Treg and NK cell counts to the same extent as single JAK inhibition but overall cytotoxicity remained intact. Interestingly, treatment discontinuation rapidly reversed such immune cell reduction without compromising clinical efficacy, suggesting long-lasting curative effects. Dual kinase inhibition reduced the Th1/Th17 cytokine cascade and the differentiation and function of joint cells, in particular osteoclasts and fibroblast-like synoviocytes. CONCLUSIONS Concurrent JAK + SYK inhibition resulted in higher efficacy than single kinase inhibition and TNF blockade in a chronic and severe arthritis model. Thus, blockade of multiple immune signals with dual JAK + SYK inhibition represents a reasonable therapeutic strategy for RA, in particular in patients with inadequate responses to current treatments. Our data supports the multiplicity of events underlying this heterogeneous and complex disease.
Collapse
Affiliation(s)
| | - Mónica Porras
- Draconis Pharma S.L., Calle Pallars 179, Barcelona, Spain.
| | - Carla Cendón
- Draconis Pharma S.L., Calle Pallars 179, Barcelona, Spain.
- Deutsches Rheuma-Forschungszentrum, Berlin, Germany.
| | | | | | | | - Vagelis Rinotas
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Athens, Greece.
| | - Lluís Gómez
- Draconis Pharma S.L., Calle Pallars 179, Barcelona, Spain.
| | | | - Eleni Douni
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Athens, Greece.
- Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece.
| | | | | | - Juan Román
- Draconis Pharma S.L., Calle Pallars 179, Barcelona, Spain.
| |
Collapse
|
24
|
Georgakilas AG, Pavlopoulou A, Louka M, Nikitaki Z, Vorgias CE, Bagos PG, Michalopoulos I. Emerging molecular networks common in ionizing radiation, immune and inflammatory responses by employing bioinformatics approaches. Cancer Lett 2015; 368:164-72. [DOI: 10.1016/j.canlet.2015.03.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/16/2015] [Indexed: 12/16/2022]
|
25
|
McLornan DP, Khan AA, Harrison CN. Immunological Consequences of JAK Inhibition: Friend or Foe? Curr Hematol Malig Rep 2015. [PMID: 26292803 DOI: 10.1007/s11899-015-0284-z.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Over the last decade, unparalleled advances have been made within the field of 'Philadelphia chromosome'-negative myeloproliferative neoplasms (MPN) regarding both disease pathogenesis and therapeutic targeting. The discovery of deregulated JAK-STAT signalling in MPN led to the rapid development of JAK inhibitor agents, targeting both mutated and wild-type JAK, which have significantly altered the therapeutic paradigm for patients with MPN. Although the largest population treated with these agents incorporates those with myelofibrosis, increasing data supports potential usage in other MPNs such as essential thromocythaemia and polycythaemia vera. Many MPNs are associated with a hyperinflammatory state and deregulation of immune homeostasis. Over the last few years, research has focused on attempting to decipher the complex and context-dependent changes that contribute to this immune deregulation. Moreover, very recent studies have demonstrated significant JAK inhibitor-mediated effects within the T cell, natural killer cell and dendritic cell compartments following exposure to JAK inhibitors. In parallel, case reports of infections occurring following exposure to ruxolitinib, many of which are atypical, have focused research efforts on delineating JAK inhibitor-associated immunological consequences. Within this review article, we will describe what is currently known about MPN-associated immune deregulation and JAK inhibitor-mediated immunomodulation.
Collapse
Affiliation(s)
- Donal P McLornan
- Department of Haematology, Guy's and St. Thomas' NHS Foundation Trust, London, SE1 7EH, UK. .,Department of Haematological Medicine, King's College Hospital NHS Foundation Trust, London, SE5 9NU, UK.
| | - Alesia A Khan
- Department of Haematology, Guy's and St. Thomas' NHS Foundation Trust, London, SE1 7EH, UK
| | - Claire N Harrison
- Department of Haematology, Guy's and St. Thomas' NHS Foundation Trust, London, SE1 7EH, UK
| |
Collapse
|
26
|
McLornan DP, Khan AA, Harrison CN. Immunological Consequences of JAK Inhibition: Friend or Foe? Curr Hematol Malig Rep 2015; 10:370-9. [PMID: 26292803 DOI: 10.1007/s11899-015-0284-z] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Donal P McLornan
- Department of Haematology, Guy's and St. Thomas' NHS Foundation Trust, London, SE1 7EH, UK.
- Department of Haematological Medicine, King's College Hospital NHS Foundation Trust, London, SE5 9NU, UK.
| | - Alesia A Khan
- Department of Haematology, Guy's and St. Thomas' NHS Foundation Trust, London, SE1 7EH, UK
| | - Claire N Harrison
- Department of Haematology, Guy's and St. Thomas' NHS Foundation Trust, London, SE1 7EH, UK
| |
Collapse
|
27
|
Ran L, Yu Q, Zhang S, Xiong F, Cheng J, Yang P, Xu JF, Nie H, Zhong Q, Yang X, Yang F, Gong Q, Kuczma M, Kraj P, Gu W, Ren BX, Wang CY. Cx3cr1 deficiency in mice attenuates hepatic granuloma formation during acute schistosomiasis by enhancing the M2-type polarization of macrophages. Dis Model Mech 2015; 8:691-700. [PMID: 26035381 PMCID: PMC4486856 DOI: 10.1242/dmm.018242] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 04/15/2015] [Indexed: 12/29/2022] Open
Abstract
Acute schistosomiasis is characterized by pro-inflammatory responses against tissue- or organ-trapped parasite eggs along with granuloma formation. Here, we describe studies in Cx3cr1−/− mice and demonstrate the role of Cx3cr1 in the pathoetiology of granuloma formation during acute schistosomiasis. Mice deficient in Cx3cr1 were protected from granuloma formation and hepatic injury induced by Schistosoma japonicum eggs, as manifested by reduced body weight loss and attenuated hepatomegaly along with preserved liver function. Notably, S. japonicum infection induced high levels of hepatic Cx3cr1 expression, which was predominantly expressed by infiltrating macrophages. Loss of Cx3cr1 rendered macrophages preferentially towards M2 polarization, which then led to a characteristic switch of the host immune defense from a conventional Th1 to a typical Th2 response during acute schistosomiasis. This immune switch caused by Cx3cr1 deficiency was probably associated with enhanced STAT6/PPAR-γ signaling and increased expression of indoleamine 2,3-dioxygenase (IDO), an enzyme that promotes M2 polarization of macrophages. Taken together, our data provide evidence suggesting that CX3CR1 could be a viable therapeutic target for treatment of acute schistosomiasis. Highlighted Article: A reduction in CX3CR1 signaling provides protection for mice against pro-inflammatory responses and hepatic granuloma formation during acute schistosomiasis.
Collapse
Affiliation(s)
- Lin Ran
- Department of Molecular Biology, Medical College of Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei 434023, China The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Qilin Yu
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Shu Zhang
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Fei Xiong
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Jia Cheng
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Ping Yang
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Jun-Fa Xu
- Department of Clinical Immunology, Institute of Laboratory Medicine, Guangdong Medical College, No. 1 Xincheng Road, Dongguan 523808, China
| | - Hao Nie
- Clinical and Molecular Immunology Research Center, Medical College of Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei 434023, China
| | - Qin Zhong
- Department of Molecular Biology, Medical College of Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei 434023, China
| | - Xueli Yang
- Department of Molecular Biology, Medical College of Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei 434023, China
| | - Fei Yang
- Clinical and Molecular Immunology Research Center, Medical College of Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei 434023, China
| | - Quan Gong
- Department of Immunology, Medical College of Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei 434023, China
| | - Michal Kuczma
- The Center for Biotechnology and Genomic Medicine, Georgia Regents University, 1120 15th Street, Augusta, GA 30912, USA
| | - Piotr Kraj
- The Center for Biotechnology and Genomic Medicine, Georgia Regents University, 1120 15th Street, Augusta, GA 30912, USA
| | - Weikuan Gu
- Department of Orthopedic Surgery and BME, Campbell-Clinic, University of Tennessee, Health Science Center, Memphis, TN 38163, USA
| | - Bo-Xu Ren
- Department of Molecular Biology, Medical College of Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei 434023, China
| | - Cong-Yi Wang
- Department of Molecular Biology, Medical College of Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei 434023, China The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China Department of Clinical Immunology, Institute of Laboratory Medicine, Guangdong Medical College, No. 1 Xincheng Road, Dongguan 523808, China
| |
Collapse
|
28
|
Riquelme SA, Bueno SM, Kalergis AM. Carbon monoxide down-modulates Toll-like receptor 4/MD2 expression on innate immune cells and reduces endotoxic shock susceptibility. Immunology 2015; 144:321-32. [PMID: 25179131 DOI: 10.1111/imm.12375] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 07/28/2014] [Accepted: 08/26/2014] [Indexed: 01/28/2023] Open
Abstract
Carbon monoxide (CO) has been recently reported as the main anti-inflammatory mediator of the haem-degrading enzyme haem-oxygenase 1 (HO-1). It has been shown that either HO-1 induction or CO treatment reduces the ability of monocytes to respond to inflammatory stimuli, such as lipopolysaccharide (LPS), due to an inhibition of the signalling pathways leading to nuclear factor-κB, mitogen-activated protein kinases and interferon regulatory factor 3 activation. Hence, it has been suggested that CO impairs the stimulation of the Toll-like receptor 4 (TLR4)/myeloid differentiation factor-2 (MD2) complex located on the surface of immune cells. However, whether CO can negatively modulate the surface expression of the TLR4/MD2 complex in immune cells remains unknown. Here we report that either HO-1 induction or treatment with CO decreases the surface expression of TLR4/MD2 in dendritic cells (DC) and neutrophils. In addition, in a septic shock model of mice intraperitoneally injected with lipopolysaccharide (LPS), prophylactic treatment with CO protected animals from hypothermia, weight loss, mobility loss and death. Further, mice pre-treated with CO and challenged with LPS showed reduced recruitment of DC and neutrophils to peripheral blood, suggesting that this gas causes a systemic tolerance to endotoxin challenge. No differences in the amount of innate cells in lymphoid tissues were observed in CO-treated mice. Our results suggest that CO treatment reduces the expression of the TLR4/MD2 complex on the surface of myeloid cells, which renders them resistant to LPS priming in vitro, as well as in vivo in a model of endotoxic shock.
Collapse
Affiliation(s)
- Sebastián A Riquelme
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile; INSERM, UMR 1064, Nantes, France
| | | | | |
Collapse
|
29
|
So EY, Ouchi T. Translational initiation regulated by ATM in dendritic cells development. Cell Death Dis 2014; 5:e1418. [PMID: 25210801 PMCID: PMC4540194 DOI: 10.1038/cddis.2014.362] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 06/24/2014] [Accepted: 07/01/2014] [Indexed: 01/15/2023]
Abstract
Ataxia telangiectasia mutated (ATM) protein has been implicated in multiple pathways such as DNA repair, cell cycle checkpoint, cell growth, development, and stem cell renewal. In this study, we demonstrate evidence that ATM is involved in granulocyte macrophage colony-stimulating factor (GM-CSF)-induced dendritic cell (DC) development from bone marrow (BM) cells. Inactivation of ATM protein results in decreased BM proliferation, leading to reduced DC development and their activity for T cell activation. Expression of Jak2, STAT5, and mTOR is suppressed in both wild-type and ATM-null BM prior to GM-CSF stimulation. Activation of those proteins is delayed and prolonged hypophosphorylation of 4EBP1 is observed in ATM-null BM when treated with GM-CSF, although Erk and p38 are similarly expressed and activated in both wild-type and ATM-null BM cell types. Akt is also suppressed in wild-type BM, and transduction of constitutively active Akt or STAT5 in ATM-null BM restores DC development. Together, these results illustrate that ATM deficiency causes impaired initiation of protein translation in BM, leading to immature development of DC.
Collapse
Affiliation(s)
- E Y So
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - T Ouchi
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY, USA
| |
Collapse
|
30
|
Chen YF, Wang SH, Chang SJ, Shiau AL, Her LS, Shieh GS, Chen CF, Chang CC, Su YC, Wu CL, Wu TS. Zhankuic acid A as a novel JAK2 inhibitor for the treatment of concanavalin A-induced hepatitis. Biochem Pharmacol 2014; 91:217-30. [DOI: 10.1016/j.bcp.2014.06.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 06/28/2014] [Accepted: 06/30/2014] [Indexed: 11/28/2022]
|
31
|
Zhong J, Yu Q, Yang P, Rao X, He L, Fang J, Tu Y, Zhang Z, Lai Q, Zhang S, Kuczma M, Kraj P, Xu JF, Gong F, Zhou J, Wen L, Eizirik DL, Du J, Wang W, Wang CY. MBD2 regulates TH17 differentiation and experimental autoimmune encephalomyelitis by controlling the homeostasis of T-bet/Hlx axis. J Autoimmun 2014; 53:95-104. [DOI: 10.1016/j.jaut.2014.05.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 05/17/2014] [Accepted: 05/23/2014] [Indexed: 01/28/2023]
|
32
|
Xu L, Xiang X, Ji X, Wang W, Luo M, Luo S, Li K, Gong S, Liu S, Ma L, Chen P, Li J. Effects and mechanism of dehydroepiandrosterone on epithelial-mesenchymal transition in bronchial epithelial cells. Exp Lung Res 2014; 40:211-21. [PMID: 24784499 DOI: 10.3109/01902148.2013.879966] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Chronic persistent asthma is characterized by airway remodeling, in which epithelial-mesenchymal transition (EMT) may play a significant role. Dehydroepiandrosterone (DHEA), a steroid hormone and testosterone analog, is considered as an important immunomodulating hormone. However, its role in EMT remains unclear. We sought to investigate whether transforming growth factor-β1 (TGF-β1) stimulates human bronchial epithelial cells (16HBE-14o) to undergo EMT, and whether this transition can be abrogated by DHEA. METHODS The 16HBE-14o cells were stimulated with 5 ng/ml TGF-β1 for 3 days to induce EMT, with or without DHEA pretreatment, and assayed for epithelial or mesenchymal markers using Western Blot. The involvement of phosphoinositide 3-kinase (PI3K) -mediated signaling pathway was also evaluated, the epithelial cells were also incubated with pharmacological approaches (agonists and antagonists of Akt, LY294002 or IGF-1) or flutamide, the antagonist of androgen receptor. Results were analyzed using nonparametric statistical tests. RESULTS Our data demonstrate that treatment of 16HBE-14o cells with TGF-β1 for 3 days induced EMT as reflected by conversion to the spindle-like morphology, loss of E-cadherin, and acquisition of a-smooth muscle actin (a-SMA). Pretreatment of 16HBE-14o cells with DHEA preserved the epithelial-like morphology, restored the expression of E-cadherin, and abolished the activation of a-SMA, and this effect is a PI3K-dependent mechanism. CONCLUSION Our results indicate that TGF-β1 induces EMT in a PI3K-dependent manner in 16HBE-14o cells. DHEA inhibits the bronchial epithelial to mesenchymal transition via the inhibition of PI3K/Akt-dependent signal pathway stimulated by TGF-β1. Therefore, DHEA may be a useful therapy for asthma.
Collapse
Affiliation(s)
- Li Xu
- 1Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Zhong J, Rao X, Braunstein Z, Taylor A, Narula V, Hazey J, Mikami D, Needleman B, Rutsky J, Sun Q, Deiuliis JA, Satoskar AR, Rajagopalan S. T-cell costimulation protects obesity-induced adipose inflammation and insulin resistance. Diabetes 2014; 63:1289-302. [PMID: 24222350 PMCID: PMC4179314 DOI: 10.2337/db13-1094] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A key pathophysiologic role for activated T-cells in mediating adipose inflammation and insulin resistance (IR) has been recently postulated. However, mechanisms underlying their activation are poorly understood. In this study, we demonstrated a previously unrecognized homeostatic role for the costimulatory B7 molecules (CD80 and CD86) in preventing adipose inflammation. Instead of promoting inflammation, which was found in many other disease conditions, B7 costimulation reduced adipose inflammation by maintaining regulatory T-cell (Treg) numbers in adipose tissue. In both humans and mice, expression of CD80 and CD86 was negatively correlated with the degree of IR and adipose tissue macrophage infiltration. Decreased B7 expression in obesity appeared to directly impair Treg proliferation and function that lead to excessive proinflammatory macrophages and the development of IR. CD80/CD86 double knockout (B7 KO) mice had enhanced adipose macrophage inflammation and IR under both high-fat and normal diet conditions, accompanied by reduced Treg development and proliferation. Adoptive transfer of Tregs reversed IR and adipose inflammation in B7 KO mice. Our results suggest an essential role for B7 in maintaining Tregs and adipose homeostasis and may have important implications for therapies that target costimulation in type 2 diabetes.
Collapse
Affiliation(s)
- Jixin Zhong
- Division of Cardiology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Xiaoquan Rao
- Division of Cardiology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Zachary Braunstein
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH
| | - Anne Taylor
- Department of Surgery, The Ohio State University, Columbus, OH
| | - Vimal Narula
- Department of Surgery, The Ohio State University, Columbus, OH
| | - Jeffrey Hazey
- Department of Surgery, The Ohio State University, Columbus, OH
| | - Dean Mikami
- Department of Surgery, The Ohio State University, Columbus, OH
| | | | - Jessica Rutsky
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH
| | - Qinghua Sun
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH
| | - Jeffrey A. Deiuliis
- Division of Cardiology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Abhay R. Satoskar
- Division of Experimental Pathology, The Ohio State University, Columbus, OH
| | - Sanjay Rajagopalan
- Division of Cardiology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
- Corresponding author: Sanjay Rajagopalan,
| |
Collapse
|
34
|
Tung D, Ciallella J, Hain H, Cheung PH, Saha S. Possible therapeutic effect of trilostane in rodent models of inflammation and nociception. CURRENT THERAPEUTIC RESEARCH 2014; 75:71-6. [PMID: 24465047 PMCID: PMC3898193 DOI: 10.1016/j.curtheres.2013.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 09/26/2013] [Indexed: 11/25/2022]
Abstract
Background Trilostane was identified in an in vivo screen of compounds in a lipopolysaccharide model of inflammation to support a repurposing effort. There is no previous documentation of any anti-inflammatory effects of trilostane. Objective The aim of this study was to elucidate the novel pharmacologic activity of trilostane in a series of inflammation and nociception signal-finding models. Methods Anti-inflammatory effects of trilostane were evaluated in lipopolysaccharide-induced systemic and lung inflammation models and in a 2,4-dinitrofluorobenzene–induced delayed-type hypersensitivity (DTH) model in the mouse ear. The analgesic activities of trilostane were evaluated in a hot plate nociception model as a function of paw-withdrawal latency and in the formalin-induced nociception model with a behavioral end point. In all studies, trilostane was administered 15 minutes before challenge. In the DTH model, the animals were given a second dose 24 hours after the first dose. Results Trilostane inhibited tumor necrosis factor-α and monocyte chemoattractant protein-1 production in the lipopolysaccharide-induced systemic and pulmonary inflammation models. It also significantly reduced ear swelling in the 2,4-dinitrofluorobenzene–induced DTH model. In the hot plate nociception model, trilostane increased the latency of paw-licking behavior. Trilostane also significantly reduced the duration of pain behaviors in the late phase of the formalin-induced inflammatory pain model. Conclusions These signal-finding studies suggest that trilostane has novel anti-inflammatory and analgesic properties.
Collapse
Affiliation(s)
- David Tung
- BioMed Valley Discoveries, Kansas City, Missouri
| | | | | | | | - Saurabh Saha
- BioMed Valley Discoveries, Kansas City, Missouri
| |
Collapse
|
35
|
Yang S, Li X, Li K, Fan B, Tang Z. A genome-wide scan for signatures of selection in Chinese indigenous and commercial pig breeds. BMC Genet 2014; 15:7. [PMID: 24422716 PMCID: PMC3898232 DOI: 10.1186/1471-2156-15-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 01/09/2014] [Indexed: 11/18/2022] Open
Abstract
Background Modern breeding and artificial selection play critical roles in pig domestication and shape the genetic variation of different breeds. China has many indigenous pig breeds with various characteristics in morphology and production performance that differ from those of foreign commercial pig breeds. However, the signatures of selection on genes implying for economic traits between Chinese indigenous and commercial pigs have been poorly understood. Results We identified footprints of positive selection at the whole genome level, comprising 44,652 SNPs genotyped in six Chinese indigenous pig breeds, one developed breed and two commercial breeds. An empirical genome-wide distribution of Fst (F-statistics) was constructed based on estimations of Fst for each SNP across these nine breeds. We detected selection at the genome level using the High-Fst outlier method and found that 81 candidate genes show high evidence of positive selection. Furthermore, the results of network analyses showed that the genes that displayed evidence of positive selection were mainly involved in the development of tissues and organs, and the immune response. In addition, we calculated the pairwise Fst between Chinese indigenous and commercial breeds (CHN VS EURO) and between Northern and Southern Chinese indigenous breeds (Northern VS Southern). The IGF1R and ESR1 genes showed evidence of positive selection in the CHN VS EURO and Northern VS Southern groups, respectively. Conclusions In this study, we first identified the genomic regions that showed evidences of selection between Chinese indigenous and commercial pig breeds using the High-Fst outlier method. These regions were found to be involved in the development of tissues and organs, the immune response, growth and litter size. The results of this study provide new insights into understanding the genetic variation and domestication in pigs.
Collapse
Affiliation(s)
| | | | | | - Bin Fan
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P,R, China.
| | | |
Collapse
|
36
|
Vindrieux D, Augert A, Girard CA, Gitenay D, Lallet-Daher H, Wiel C, Le Calvé B, Gras B, Ferrand M, Verbeke S, de Launoit Y, Leroy X, Puisieux A, Aubert S, Perrais M, Gelb M, Simonnet H, Lambeau G, Bernard D. PLA2R1 mediates tumor suppression by activating JAK2. Cancer Res 2013; 73:6334-45. [PMID: 24008317 DOI: 10.1158/0008-5472.can-13-0318] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Little is known about the physiological role of the phospholipase A2 receptor (PLA2R1). PLA2R1 has been described as regulating the replicative senescence, a telomerase-dependent proliferation arrest. The downstream PLA2R1 signaling and its role in cancer are currently unknown. Senescence induction in response to activated oncogenes is a failsafe program of tumor suppression that must be bypassed for tumorigenesis. We now present evidence that PLA2R1 functions in vitro as a tumor suppressor, the depletion of which is sufficient to escape oncogene-induced senescence (OIS), thereby facilitating oncogenic cell transformation. Furthermore, mice that are genetically deficient in PLA2R1 display increased sensitivity to RAS-induced tumorigenesis by facilitating OIS escape, highlighting its physiological role as a tumor suppressor. Unexpectedly, PLA2R1 activated JAK2 and its effector signaling, with PLA2R1-mediated inhibition of cell transformation largely reverted in JAK2-depleted cells. This finding was unexpected as the JAK2 pathway has been associated mainly with protumoral functions and several inhibitors are currently in clinical trials. Taken together, our findings uncover an unanticipated tumor suppressive role for PLA2R1 that is mediated by targeting downstream JAK2 effector signaling.
Collapse
Affiliation(s)
- David Vindrieux
- Authors' Affiliations: Inserm U1052, Centre de Recherche en Cancérologie de Lyon; CNRS UMR5286; Centre Léon Bérard; Université de Lyon, Lyon; UMR8161, CNRS/Universités de Lille 1 et 2; Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, CNRS and Université de Nice-Sophia Antipolis, Valbonne; INSERM U916, Bergonié Cancer Institute, Université Bordeaux, Bordeaux; and Institut de Pathologie, CHRU, Faculté de Médecine, Université de Lille; INSERM U837, Jean-Pierre Aubert Research Center, Team 5, Lille; Department of Medicine, University of Washington, Seattle, Washington
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Liu X, Tian Y, Lu N, Gin T, Cheng CHK, Chan MTV. Stat3 inhibition attenuates mechanical allodynia through transcriptional regulation of chemokine expression in spinal astrocytes. PLoS One 2013; 8:e75804. [PMID: 24098399 PMCID: PMC3789727 DOI: 10.1371/journal.pone.0075804] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 08/19/2013] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Signal transducer and activator of transcription 3 (Stat3) is known to induce cell proliferation and inflammation by regulating gene transcription. Recent studies showed that Stat3 modulates nociceptive transmission by reducing spinal astrocyte proliferation. However, it is unclear whether Stat3 also contributes to the modulation of nociceptive transmission by regulating inflammatory response in spinal astrocytes. This study aimed at investigating the role of Stat3 on neuroinflammation during development of pain in rats after intrathecal injection of lipopolysaccharide (LPS). METHODS Stat3 specific siRNA oligo and synthetic selective inhibitor (Stattic) were applied to block the activity of Stat3 in primary astrocytes or rat spinal cord, respectively. LPS was used to induce the expression of proinflammatory genes in all studies. Immunofluorescence staining of cells and slices of spinal cord was performed to monitor Stat3 activation. The impact of Stat3 inhibition on proinflammatory genes expression was determined by cytokine antibody array, enzyme-linked immunosorbent assay and real-time polymerase chain reaction. Mechanical allodynia, as determined by the threshold pressure that could induce hind paw withdrawal after application of standardized von Frey filaments, was used to detect the effects of Stat3 inhibition after pain development with intrathecal LPS injection. RESULTS Intrathecal injection of LPS activated Stat3 in reactive spinal astrocytes. Blockade of Stat3 activity attenuated mechanical allodynia significantly and was correlated with a lower number of reactive astrocytes in the spinal dorsal horn. In vitro study demonstrated that Stat3 modulated inflammatory response in primary astrocytes by transcriptional regulation of chemokine expression including Cx3cl1, Cxcl5, Cxcl10 and Ccl20. Similarly, inhibition of Stat3 reversed the expression of these chemokines in the spinal dorsal horn. CONCLUSIONS Stat3 acted as a transcriptional regulator of reactive astrocytes by modulating chemokine expression. Stat3 regulated inflammatory response in astrocytes and contributed to pain modulation. Blockade of Stat3 represents a new target for pain control.
Collapse
Affiliation(s)
- Xiaodong Liu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
| | - Yuanyuan Tian
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
| | - Na Lu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
| | - Tony Gin
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
| | - Christopher H. K. Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
- * E-mail: (CHKC); (MTVC)
| | - Matthew T. V. Chan
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
- * E-mail: (CHKC); (MTVC)
| |
Collapse
|
38
|
Zeng JC, Zhang Z, Li TY, Liang YF, Wang HM, Bao JJ, Zhang JA, Wang WD, Xiang WY, Kong B, Wang ZY, Wu BH, Chen XD, He L, Zhang S, Wang CY, Xu JF. Assessing the role of IL-35 in colorectal cancer progression and prognosis. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2013; 6:1806-1816. [PMID: 24040445 PMCID: PMC3759487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 07/29/2013] [Indexed: 06/02/2023]
Abstract
Despite the recent realization of Interleukin (IL)-35 in tumorigenesis, its exact impact on colorectal cancer (CRC) progression and prognosis, however, is yet to be elucidated clearly. We thus in the present report conducted comparative analysis of IL-35 levels between CRC patients and matched control subjects. IL-35 is highly expressed in all CRC tissues, which can be detected in vast majority of colorectal cancer cells. IL-35 levels in CRC lysates and serum samples are highly correlated to the severity of malignancy and the clinical stage of tumor. Particularly, a significant reduction for serum IL-35 was noted in patients after surgical resection, indicating that IL-35 promotes CRC progression associated with poor prognosis. Mechanistic study demonstrated a significant correlation between serum IL-35 levels and the number of peripheral regulatory T (Treg) cells in CRC patients, suggesting that IL-35 implicates in CRC pathogenesis probably by inducing Treg cells, while cancer cell-derived IL-35 may also recruit Treg cells into the tumor microenvironment in favor of tumor growth. Together, our data support that IL-35 could be a valuable biomarker for assessing CRC progression and prognosis in clinical settings.
Collapse
Affiliation(s)
- Jin-Cheng Zeng
- Department of Clinical Immunology, Institute of Laboratory Medicine, Guangdong Medical CollegeDongguan, China, 523808
- Guangdong Provincial Key Laboratory of Medical Molecular DiagnosticsDongguan 523808, China
| | - Zhi Zhang
- Department of Surgery, Affiliated Hospital of Guangdong Medical CollegeZhangjiang 523001, China
| | - Tian-Yu Li
- Department of Surgery, Second Clinical Medical School of Guangdong Medical CollegeDongguan 523808, China
| | - Yan-Fang Liang
- Department of Pathology, Taiping people’s Hospital of DongguanDongguan 523905, China
| | - Hong-Mei Wang
- Department of Clinical Immunology, Institute of Laboratory Medicine, Guangdong Medical CollegeDongguan, China, 523808
| | - Jing-Jing Bao
- Guangdong Provincial Key Laboratory of Medical Molecular DiagnosticsDongguan 523808, China
| | - Jun-Ai Zhang
- Guangdong Provincial Key Laboratory of Medical Molecular DiagnosticsDongguan 523808, China
| | - Wan-Dang Wang
- Department of Clinical Immunology, Institute of Laboratory Medicine, Guangdong Medical CollegeDongguan, China, 523808
| | - Wen-Yu Xiang
- Department of Clinical Immunology, Institute of Laboratory Medicine, Guangdong Medical CollegeDongguan, China, 523808
| | - Bin Kong
- Guangdong Provincial Key Laboratory of Medical Molecular DiagnosticsDongguan 523808, China
| | - Zhi-Yong Wang
- Department of Clinical Immunology, Institute of Laboratory Medicine, Guangdong Medical CollegeDongguan, China, 523808
- Guangdong Provincial Key Laboratory of Medical Molecular DiagnosticsDongguan 523808, China
| | - Bin-Hua Wu
- Guangdong Provincial Key Laboratory of Medical Molecular DiagnosticsDongguan 523808, China
| | - Xiao-Dong Chen
- Department of Surgery, Affiliated Hospital of Guangdong Medical CollegeZhangjiang 523001, China
| | - Long He
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology1095 Jiefang Ave. Wuhan 430030, China
| | - Shu Zhang
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology1095 Jiefang Ave. Wuhan 430030, China
| | - Cong-Yi Wang
- Department of Clinical Immunology, Institute of Laboratory Medicine, Guangdong Medical CollegeDongguan, China, 523808
- Guangdong Provincial Key Laboratory of Medical Molecular DiagnosticsDongguan 523808, China
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology1095 Jiefang Ave. Wuhan 430030, China
| | - Jun-Fa Xu
- Department of Clinical Immunology, Institute of Laboratory Medicine, Guangdong Medical CollegeDongguan, China, 523808
- Guangdong Provincial Key Laboratory of Medical Molecular DiagnosticsDongguan 523808, China
| |
Collapse
|
39
|
Ji X, Li J, Xu L, Wang W, Luo M, Luo S, Ma L, Li K, Gong S, He L, Zhang Z, Yang P, Zhou Z, Xiang X, Wang CY. IL4 and IL-17A provide a Th2/Th17-polarized inflammatory milieu in favor of TGF-β1 to induce bronchial epithelial-mesenchymal transition (EMT). INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2013; 6:1481-1492. [PMID: 23923066 PMCID: PMC3726963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 05/16/2013] [Indexed: 06/02/2023]
Abstract
Severe asthma is a chronic airway disease characterized by the Th2/Th17-polarized inflammation along with permanent airway remodeling. Despite past extensive studies, the exact role for Th2 and Th17 cytokines in asthmatic pathoetiology, particularly in the pathogenesis of bronchial epithelial-mesenchymal transition (EMT), is yet to be fully addressed. We herein conducted studies in 16-HBE cells and demonstrated that Th2-derived IL-4 and Th17-derived IL-17A provide a chronic inflammatory milieu that favors TGF-β1 to induce bronchial EMT. A synergic action was noted between TGF-β1, IL-4 and IL-17A in terms of induction of EMT. IL-4 and IL-17A synergized with TGF-β1 to induce epithelial cells re-entering cell cycle, and to promote epithelial to mesenchymal morphological transistion, and by which they enhanced the capacity of TGF-β1 to suppress E-cadherin expression, and to induce a-SMA expression in epithelial cells. Mechanistic studies revealed that this synergic action is coordinated by the regulation of ERK1/2 activity. Our results not only provide a novel insight into the understanding of the mechanisms underlying airway remodeling in asthmatic condition, but also have the potential for developing more effective therapeutic strategies against severe asthmatics in clinical settings.
Collapse
Affiliation(s)
- Xiaoying Ji
- Department of Respiratory Medicine, the Second Xiangya Hospital, Central South UniversityChangsha, China
| | - Jinxiu Li
- Department of Respiratory Medicine, the Second Xiangya Hospital, Central South UniversityChangsha, China
| | - Li Xu
- Department of Respiratory Medicine, the Second Xiangya Hospital, Central South UniversityChangsha, China
| | - Wenjing Wang
- Department of Respiratory Medicine, the Second Xiangya Hospital, Central South UniversityChangsha, China
| | - Ming Luo
- Department of Respiratory Medicine, the Second Xiangya Hospital, Central South UniversityChangsha, China
| | - Shuangling Luo
- Department of Respiratory Medicine, the Second Xiangya Hospital, Central South UniversityChangsha, China
| | - Libing Ma
- Department of Respiratory Medicine, the Affiliated Hospital, Guilin Medical CollegeGuilin, China
| | - Keng Li
- Department of Respiratory Medicine, the Second Xiangya Hospital, Central South UniversityChangsha, China
| | - Subo Gong
- Department of Respiratory Medicine, the Second Xiangya Hospital, Central South UniversityChangsha, China
| | - Long He
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education, Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology1095 Jiefang Ave., Wuhan, 430030, China
- The Center for Biotechnology and Genomic Medicine, Georgia Regents University1120 15 Street, CA4098, Augusta, GA 30912, USA
| | - Zhijun Zhang
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education, Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology1095 Jiefang Ave., Wuhan, 430030, China
- The Center for Biotechnology and Genomic Medicine, Georgia Regents University1120 15 Street, CA4098, Augusta, GA 30912, USA
| | - Ping Yang
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education, Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology1095 Jiefang Ave., Wuhan, 430030, China
- The Center for Biotechnology and Genomic Medicine, Georgia Regents University1120 15 Street, CA4098, Augusta, GA 30912, USA
| | - Zhiguang Zhou
- Diabetes Center, Second Xiangya Hospital, Central South UniversityChangsha, China
| | - Xudong Xiang
- Department of Respiratory Medicine, the Second Xiangya Hospital, Central South UniversityChangsha, China
| | - Cong-Yi Wang
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education, Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology1095 Jiefang Ave., Wuhan, 430030, China
- The Center for Biotechnology and Genomic Medicine, Georgia Regents University1120 15 Street, CA4098, Augusta, GA 30912, USA
| |
Collapse
|
40
|
Wang H, Brown J, Gao S, Liang S, Jotwani R, Zhou H, Suttles J, Scott DA, Lamont RJ. The role of JAK-3 in regulating TLR-mediated inflammatory cytokine production in innate immune cells. THE JOURNAL OF IMMUNOLOGY 2013; 191:1164-74. [PMID: 23797672 DOI: 10.4049/jimmunol.1203084] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The role of JAK-3 in TLR-mediated innate immune responses is poorly understood, although the suppressive function of JAK3 inhibition in adaptive immune response has been well studied. In this study, we found that JAK3 inhibition enhanced TLR-mediated immune responses by differentially regulating pro- and anti- inflammatory cytokine production in innate immune cells. Specifically, JAK3 inhibition by pharmacological inhibitors or specific small interfering RNA or JAK3 gene knockout resulted in an increase in TLR-mediated production of proinflammatory cytokines while concurrently decreasing the production of IL-10. Inhibition of JAK3 suppressed phosphorylation of PI3K downstream effectors including Akt, mammalian target of rapamycin complex 1, glycogen synthase kinase 3β (GSK3β), and CREB. Constitutive activation of Akt or inhibition of GSK3β abrogated the capability of JAK3 inhibition to enhance proinflammatory cytokines and suppress IL-10 production. In contrast, inhibition of PI3K enhanced this regulatory ability of JAK3 in LPS-stimulated monocytes. At the transcriptional level, JAK3 knockout lead to the increased phosphorylation of STATs that could be attenuated by neutralization of de novo inflammatory cytokines. JAK3 inhibition exhibited a GSK3 activity-dependent ability to enhance phosphorylation levels and DNA binding of NF-κB p65. Moreover, JAK3 inhibition correlated with an increased CD4(+) T cell response. Additionally, higher neutrophil infiltration, IL-17 expression, and intestinal epithelium erosion were observed in JAK3 knockout mice. These findings demonstrate the negative regulatory function of JAK3 and elucidate the signaling pathway by which JAK3 differentially regulates TLR-mediated inflammatory cytokine production in innate immune cells.
Collapse
Affiliation(s)
- Huizhi Wang
- Oral Health and Systemic Disease Research Group, University of Louisville School of Dentistry, Louisville, KY 40202, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
The Janus kinase (JAK)-inhibitor ruxolitinib decreases constitutional symptoms and spleen size of myelofibrosis (MF) patients by mechanisms distinct from its anticlonal activity. Here we investigated whether ruxolitinib affects dendritic cell (DC) biology. The in vitro development of monocyte-derived DCs was almost completely blocked when the compound was added throughout the differentiation period. Furthermore, when applied solely during the final lipopolysaccharide-induced maturation step, ruxolitinib reduced DC activation as demonstrated by decreased interleukin-12 production and attenuated expression of activation markers. Ruxolitinib also impaired both in vitro and in vivo DC migration. Dysfunction of ruxolitinib-exposed DCs was further underlined by their impaired induction of allogeneic and antigen-specific T-cell responses. Ruxolitinib-treated mice immunized with ovalbumin (OVA)/CpG induced markedly reduced in vivo activation and proliferation of OVA-specific CD8⁺ T cells compared with vehicle-treated controls. Finally, using an adenoviral infection model, we show that ruxolitinib-exposed mice exhibit delayed adenoviral clearance. Our results demonstrate that ruxolitinib significantly affects DC differentiation and function leading to impaired T-cell activation. DC dysfunction may result in increased infection rates in ruxolitinib-treated patients. However, our findings may also explain the outstanding anti-inflammatory and immunomodulating activity of JAK inhibitors currently used in the treatment of MF and autoimmune diseases.
Collapse
|
42
|
Yang P, Zhang Y, Pang J, Zhang S, Yu Q, He L, Wagner KU, Zhou Z, Wang CY. Loss of Jak2 impairs endothelial function by attenuating Raf-1/MEK1/Sp-1 signaling along with altered eNOS activities. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:617-25. [PMID: 23747947 DOI: 10.1016/j.ajpath.2013.04.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 02/17/2013] [Accepted: 04/08/2013] [Indexed: 10/26/2022]
Abstract
A number of inhibitors have been used to dissect the functional relevance of Jak2 in endothelial homeostasis, with disparate results. Given that Jak2 deficiency leads to embryonic lethality, the exact role of Jak2 in the regulation of postnatal endothelial function is yet to be fully elucidated. We generated a model in which Jak2 deficiency can be induced by tamoxifen in adult mice. Loss of Jak2 significantly impaired endothelium-dependent response capacity for vasodilators. Matrigel plug assays indicated a notable decrease in endothelial angiogenic function in Jak2-deficient mice. Studies in a hindlimb ischemic model indicated that Jak2 activity is likely to be a prerequisite for prompt perfusion recovery, based on the concordance of temporal changes in Jak2 expression during the course of ischemic injury and perfusion recovery. A remarkable delay in perfusion recovery, along with reduced capillary and arteriole formation, was observed in Jak2-deficient mice. Antibody array studies indicated that loss of Jak2 led to repressed eNOS expression. In mechanistic studies, Jak2 deficiency attenuated Raf-1/MEK1 signaling, which then reduced activity of Sp-1, an essential transcription factor responsible for eNOS expression. These data are important not only for understanding the exact role that Jak2 plays in endothelial homeostasis, but also for assessing Jak2-based therapeutic strategies in a variety of clinical settings.
Collapse
Affiliation(s)
- Ping Yang
- Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Yang P, Zhang Y, Xu J, Zhang S, Yu Q, Pang J, Rao X, Kuczma M, Marrero MB, Fulton D, Kraj P, Su Y, Wang CY. SUMO1 regulates endothelial function by modulating the overall signals in favor of angiogenesis and homeostatic responses. Am J Transl Res 2013; 5:427-440. [PMID: 23724166 PMCID: PMC3665916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 04/25/2013] [Indexed: 06/02/2023]
Abstract
As a versatile regulatory mechanism, sumoylation has been found to be essential for ordered diverse cellular processes. However, the exact impact of sumoylation on endothelial function largely remained elusive. Here we investigated the role of small ubiquitin-like modifier 1 (SUMO1) mediated sumoylation in the regulation of endothelial function by examining its effect on angiogenesis and homeostatic responses. Adenoviral-mediated SUMO1 expression in porcine aortic endothelial cells (PAECs) dose-dependently promoted proliferation, migration and tube formation. In line with these results in PAECs, Matrigel plug assays in SUMO1 transgenic mice demonstrated a significant higher capacity for vascular neogenesis as compared with that of control littermates. Moreover, SUMO1 expression protected PAECs from serum starvation or H2O2-induced apoptosis. Mechanistic studies demonstrated that SUMO1 sumoylation modulates ERK1/2 activation and MMP13 expression as well as Jak2/STAT5 signaling to promote angiogenesis. SUMO1 sumoylation also suppressed NFκB and c-JUN transcriptional activity to provide protection for PAECs against oxidative stress-induced apoptosis. Given that sumoylation is a reversible process, dynamic regulation of the sumoylation function could be a novel strategy to modulate endothelial function in disease states.
Collapse
Affiliation(s)
- Ping Yang
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology1095 Jiefang Ave, Wuhan 430030, China
| | - Yushan Zhang
- The Center for Biotechnology and Genomic Medicine, Georgia Regents University1120 15 Street, CA4098, Augusta, GA 30912, USA
| | - Junfa Xu
- Department of Clinical Immunology, Institute of Laboratory Medicine, Guangdong Medical College1 Xincheng Road, Dongguan, 523808, China
| | - Shu Zhang
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology1095 Jiefang Ave, Wuhan 430030, China
| | - Qilin Yu
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology1095 Jiefang Ave, Wuhan 430030, China
| | - Junfeng Pang
- The Center for Biotechnology and Genomic Medicine, Georgia Regents University1120 15 Street, CA4098, Augusta, GA 30912, USA
| | - Xiaoquan Rao
- The Center for Biotechnology and Genomic Medicine, Georgia Regents University1120 15 Street, CA4098, Augusta, GA 30912, USA
| | - Michal Kuczma
- The Center for Biotechnology and Genomic Medicine, Georgia Regents University1120 15 Street, CA4098, Augusta, GA 30912, USA
| | - Mario B Marrero
- Vascular Biology Center, Georgia Regents UniversityAugusta, GA, USA
| | - David Fulton
- Vascular Biology Center, Georgia Regents UniversityAugusta, GA, USA
| | - Piotr Kraj
- The Center for Biotechnology and Genomic Medicine, Georgia Regents University1120 15 Street, CA4098, Augusta, GA 30912, USA
| | - Yunchao Su
- Department of Pharmacology and Toxicology, Georgia Regents UniversityAugusta, GA, USA
| | - Cong-Yi Wang
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology1095 Jiefang Ave, Wuhan 430030, China
- The Center for Biotechnology and Genomic Medicine, Georgia Regents University1120 15 Street, CA4098, Augusta, GA 30912, USA
- Department of Clinical Immunology, Institute of Laboratory Medicine, Guangdong Medical College1 Xincheng Road, Dongguan, 523808, China
| |
Collapse
|
44
|
Yang J, Ning Y, Qiu J, He JS, Li W, Ma ZF, Shao JF, LI YQ, Zeng R, Zhang M, Cheng J, Chen SF, Xu G, Wang CY, Yao Y. TJ0711, a novel vasodilatory β-blocker, protects SHR rats against hypertension induced renal injury. Am J Transl Res 2013; 5:279-290. [PMID: 23634239 PMCID: PMC3633971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 03/21/2013] [Indexed: 06/02/2023]
Abstract
Previous studies suggested that β-blockers with adjunctive α1-blocking activities warrant renoprotective function other than the therapeutic effect on hypertension. The current report is designed to dissect the role of TJ0711, a novel β-blocker with a 1:1 ratio for the β1/α1 blocking activities, in renoprotection in SHR rats. It was noted that TJ0711 possesses similar potency for control of blood pressure as that of Carvedilol. However, TJ0711 is much more potent in terms of protecting SHR rats against hypertension induced renal injury. Specifically, SHR rats treated with 20mg/kg/day of TJ0711 manifested significantly lower levels for urine albumin and total protein. In line with these result, TJ0711 treated rats displayed much less severe pathological changes in the kidneys. Mechanistic studies revealed that TJ0711 improves kidney perfusion during the course of hypertensive insult by enhancing eNOS expression through suppressing inflammatory cytokine secretion. TJ0711 also attenuates Vasohibin-1 expression to prevent HIF-1α from signal-induced degradation, and by which it promotes HO-1 expression to protect SHR rats against oxidative stress induced by hypertension in the kidneys. Together, our data suggest that TJ0711 possesses higher potency for renoprotection while manifesting the similar effect on hypertension therapy as Carvedilol.
Collapse
Affiliation(s)
- Juan Yang
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Yong Ning
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Jun Qiu
- Department of Pharmacy, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Jin-Seng He
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Wei Li
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Zu-Fu Ma
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Ju-Fang Shao
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Yue-Qiang LI
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Rui Zeng
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Meng Zhang
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Jia Cheng
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Su-Fang Chen
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Gang Xu
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Cong-Yi Wang
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
- The Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Georgia Regents University1120 15 Street, CA4098, Augusta, GA 30912, USA
| | - Ying Yao
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| |
Collapse
|
45
|
Landman G, Arend S, van Dissel J. Ruxolitinib can mask symptoms and signs of necrotizing fasciitis. J Infect 2013. [DOI: 10.1016/j.jinf.2012.11.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
46
|
Decoding dendritic cell function through module and network analysis. J Immunol Methods 2013; 387:71-80. [DOI: 10.1016/j.jim.2012.09.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 09/17/2012] [Indexed: 01/08/2023]
|
47
|
Zhong J, Rao X, Deiuliis J, Braunstein Z, Narula V, Hazey J, Mikami D, Needleman B, Satoskar AR, Rajagopalan S. A potential role for dendritic cell/macrophage-expressing DPP4 in obesity-induced visceral inflammation. Diabetes 2013; 62:149-57. [PMID: 22936179 PMCID: PMC3526020 DOI: 10.2337/db12-0230] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dipeptidyl peptidase-4 (DDP4) inhibitors target the enzymatic degradation of incretin peptides and represent a major advance in the treatment of type 2 diabetes. DPP4 has a number of nonenzymatic functions that involve its interaction with adenosine deaminase (ADA) and other extracellular matrix proteins. Here, we assessed the nonenzymatic role of DPP4 in regulating dendritic cell (DC)/macrophage-mediated adipose inflammation in obesity. Both obese humans and rodents demonstrated increased levels of DPP4 expression in DC/macrophage cell populations from visceral adipose tissue (VAT). The DPP4 expression increased during monocyte differentiation to DC/macrophages and with lipopolysaccharide (LPS)-induced activation of DC/macrophages. The DPP4 colocalized with membrane-bound ADA on human DCs and enhanced the ability of the latter to stimulate T-cell proliferation. The DPP4 interaction with ADA in human DC/macrophages was competitively inhibited by the addition of exogenous soluble DPP4. Knockdown of DPP4 in human DCs, but not pharmacologic inhibition of their enzymatic function, significantly attenuated the ability to activate T cells without influencing its capacity to secrete proinflammatory cytokines. The nonenzymatic function of DPP4 on DC may play a role in potentiation of inflammation in obesity by interacting with ADA. These findings suggest a novel role for the paracrine regulation of inflammation in adipose tissue by DPP4.
Collapse
Affiliation(s)
- Jixin Zhong
- Davis Heart & Lung Research Institute, The Ohio State University Medical Center, Columbus, Ohio
| | - Xiaoquan Rao
- Davis Heart & Lung Research Institute, The Ohio State University Medical Center, Columbus, Ohio
| | - Jeffrey Deiuliis
- Davis Heart & Lung Research Institute, The Ohio State University Medical Center, Columbus, Ohio
| | - Zachary Braunstein
- Davis Heart & Lung Research Institute, The Ohio State University Medical Center, Columbus, Ohio
| | - Vimal Narula
- Department of Surgery, The Ohio State University Medical Center, Columbus, Ohio
| | - Jeffrey Hazey
- Department of Surgery, The Ohio State University Medical Center, Columbus, Ohio
| | - Dean Mikami
- Department of Surgery, The Ohio State University Medical Center, Columbus, Ohio
| | - Bradley Needleman
- Department of Surgery, The Ohio State University Medical Center, Columbus, Ohio
| | - Abhay R. Satoskar
- Department of Pathology, The Ohio State University Medical Center, Columbus, Ohio
| | - Sanjay Rajagopalan
- Davis Heart & Lung Research Institute, The Ohio State University Medical Center, Columbus, Ohio
| |
Collapse
|
48
|
Zhang S, Lv JW, Yang P, Yu Q, Pang J, Wang Z, Guo H, Liu S, Hu J, Li J, Leng J, Huang Y, Ye Z, Wang CY. Loss of dicer exacerbates cyclophosphamide-induced bladder overactivity by enhancing purinergic signaling. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:937-46. [PMID: 22796409 DOI: 10.1016/j.ajpath.2012.05.035] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Accepted: 05/30/2012] [Indexed: 12/23/2022]
Abstract
microRNAs (miRNAs) have regulated the expression and function of genes implicated in many pathological settings, but their impact on the pathoetiological characteristics of overactive bladder (OAB) largely remains unknown. We have generated a mouse model in which adult mice can be induced for detrusor deletion of Dicer, an enzyme essential for miRNA processing. Targeted deletion of Dicer did not lead to a significant change for detrusor functionality under physiological conditions; however, loss of Dicer exacerbated cyclophosphamide-induced OAB, manifested by the higher severity of altered detrusor contractile force and sensitivity, abnormal urodynamics, and enhanced macrophage infiltration. Mechanistic studies revealed that loss of Dicer may impair the expression of miRNAs that are capable of targeting P2x mRNAs. As a result, mice deficient in Dicer manifest enhanced P2X expression in the detrusor on cyclophosphamide treatment, predisposing to the increased risk for OAB development. More important, studies using bladder biopsy samples of patients with OAB also demonstrated similar results as those found in animals. Taken together, our results suggest that miRNAs modulate OAB susceptibility by regulating purinergic signaling, in which the pathogenic insult induces the expression of miRNAs capable of targeting P2X mRNAs to suppress OAB symptoms.
Collapse
Affiliation(s)
- Shu Zhang
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Regulation of dendritic cell development by GM-CSF: molecular control and implications for immune homeostasis and therapy. Blood 2012; 119:3383-93. [PMID: 22323450 DOI: 10.1182/blood-2011-11-370130] [Citation(s) in RCA: 238] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Dendritic cells (DCs) represent a small and heterogeneous fraction of the hematopoietic system, specialized in antigen capture, processing, and presentation. The different DC subsets act as sentinels throughout the body and perform a key role in the induction of immunogenic as well as tolerogenic immune responses. Because of their limited lifespan, continuous replenishment of DC is required. Whereas the importance of GM-CSF in regulating DC homeostasis has long been underestimated, this cytokine is currently considered a critical factor for DC development under both steady-state and inflammatory conditions. Regulation of cellular actions by GM-CSF depends on the activation of intracellular signaling modules, including JAK/STAT, MAPK, PI3K, and canonical NF-κB. By directing the activity of transcription factors and other cellular effector proteins, these pathways influence differentiation, survival and/or proliferation of uncommitted hematopoietic progenitors, and DC subset–specific precursors, thereby contributing to specific aspects of DC subset development. The specific intracellular events resulting from GM-CSF–induced signaling provide a molecular explanation for GM-CSF–dependent subset distribution as well as clues to the specific characteristics and functions of GM-CSF–differentiated DCs compared with DCs generated by fms-related tyrosine kinase 3 ligand. This knowledge can be used to identify therapeutic targets to improve GM-CSF–dependent DC-based strategies to regulate immunity.
Collapse
|
50
|
van de Laar L, van den Bosch A, Wierenga ATJ, Janssen HLA, Coffer PJ, Woltman AM. Tight Control of STAT5 Activity Determines Human CD34-Derived Interstitial Dendritic Cell and Langerhans Cell Development. THE JOURNAL OF IMMUNOLOGY 2011; 186:7016-24. [DOI: 10.4049/jimmunol.1003977] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|