1
|
Walker IS, Dini S, Aitken EH, Damelang T, Hasang W, Alemu A, Jensen ATR, Rambhatla JS, Opi DH, Duffy MF, Takashima E, Harawa V, Tsuboi T, Simpson JA, Mandala W, Taylor TE, Seydel KB, Chung AW, Rogerson SJ. A systems serology approach to identifying key antibody correlates of protection from cerebral malaria in Malawian children. BMC Med 2024; 22:388. [PMID: 39267089 PMCID: PMC11396342 DOI: 10.1186/s12916-024-03604-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 09/03/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) proteins are expressed on the surface of infected erythrocytes, mediating parasite sequestration in the vasculature. PfEMP1 is a major target of protective antibodies, but the features of the antibody response are poorly defined. METHODS In Malawian children with cerebral or uncomplicated malaria, we characterized the antibody response to 39 recombinant PfEMP1 Duffy binding like (DBL) domains or cysteine-rich interdomain regions (CIDRs) in detail, including measures of antibody classes, subclasses, and engagement with Fcγ receptors and complement. Using elastic net regularized logistic regression, we identified a combination of seven antibody targets and Fc features that best distinguished between children with cerebral and uncomplicated malaria. To confirm the role of the selected targets and Fc features, we measured antibody-dependent neutrophil and THP-1 cell phagocytosis of intercellular adhesion molecule-1 (ICAM-1) and endothelial protein C (EPCR) co-binding infected erythrocytes. RESULTS The selected features distinguished between children with cerebral and uncomplicated malaria with 87% accuracy (median, 80-96% interquartile range) and included antibody to well-characterized DBLβ3 domains and a less well-characterized CIDRγ12 domain. The abilities of antibodies to engage C1q and FcγRIIIb, rather than levels of IgG, correlated with protection. In line with a role of FcγRIIIb binding antibodies to DBLβ3 domains, antibody-dependent neutrophil phagocytosis of ICAM-1 and EPCR co-binding IE was higher in uncomplicated malaria (15% median, 8-38% interquartile range) compared to cerebral malaria (7%, 30-15%, p < 0.001). CONCLUSIONS Antibodies associated with protection from cerebral malaria target a subset of PfEMP1 domains. The Fc features of protective antibody response include engagement of FcγRIIIb and C1q, and ability to induce antibody-dependent neutrophil phagocytosis of infected erythrocytes. Identifying the targets and Fc features of protective immunity could facilitate the development of PfEMP1-based therapeutics for cerebral malaria.
Collapse
Affiliation(s)
- Isobel S Walker
- Department of Medicine, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
| | - Saber Dini
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Elizabeth H Aitken
- Department of Infectious Diseases, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
| | - Timon Damelang
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
| | - Wina Hasang
- Department of Infectious Diseases, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
| | - Agersew Alemu
- Department of Infectious Diseases, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
| | - Anja T R Jensen
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Janavi S Rambhatla
- Department of Medicine, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
| | - D Herbert Opi
- Department of Medicine, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
- Burnet Institute, 85 Commercial Road, Melbourne, VIC, 3004, Australia
- Department of Immunology, Monash University, Melbourne, VIC, Australia
| | - Michael F Duffy
- Department of Medicine, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
| | - Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Visopo Harawa
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Takafumi Tsuboi
- Division of Cell-Free Sciences, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Julie A Simpson
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Wilson Mandala
- Academy of Medical Sciences, Malawi University of Science and Technology, Thyolo, Malawi
| | - Terrie E Taylor
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
- College of Osteopathic Medicine, Michigan State University, East Lansing, USA
| | - Karl B Seydel
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
- College of Osteopathic Medicine, Michigan State University, East Lansing, USA
| | - Amy W Chung
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
| | - Stephen J Rogerson
- Department of Medicine, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia.
- Department of Infectious Diseases, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
2
|
Gbaguidi MLE, Adamou R, Edslev S, Hansen A, Domingo ND, Dechavanne C, Massougbodji A, Garcia A, Theisen M, Milet J, Donadi EA, Courtin D. IgG and IgM responses to the Plasmodium falciparum asexual stage antigens reflect respectively protection against malaria during pregnancy and infanthood. Malar J 2024; 23:154. [PMID: 38764069 PMCID: PMC11103834 DOI: 10.1186/s12936-024-04970-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/29/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND Plasmodium falciparum malaria is a public health issue mostly seen in tropical countries. Until now, there is no effective malaria vaccine against antigens specific to the blood-stage of P. falciparum infection. Because the pathogenesis of malarial disease results from blood-stage infection, it is essential to identify the most promising blood-stage vaccine candidate antigens under natural exposure to malaria infection. METHODS A cohort of 400 pregnant women and their infants was implemented in South Benin. An active and passive protocol of malaria surveillance was established during pregnancy and infancy to precisely ascertain malaria infections during the follow-up. Twenty-eight antibody (Ab) responses specific to seven malaria candidate vaccine antigens were repeatedly quantified during pregnancy (3 time points) and infancy (6 time points) in order to study the Ab kinetics and their protective role. Abs were quantified by ELISA and logistic, linear and cox-proportional hazard model were performed to analyse the associations between Ab responses and protection against malaria in mothers and infants, taking into account socio-economic factors and for infants an environmental risk of exposure. RESULTS The levels of IgM against MSP1, MSP2 and MSP3 showed an early protective response against the onset of symptomatic malaria infections starting from the 18th month of life, whereas no association was found for IgG responses during infancy. In women, some IgG responses tend to be associated with a protection against malaria risk along pregnancy and at delivery, among them IgG3 against GLURP-R0 and IgG2 against MSP1. CONCLUSION The main finding suggests that IgM should be considered in vaccine designs during infanthood. Investigation of the functional role played by IgM in malaria protection needs further attention.
Collapse
Affiliation(s)
- Mahugnon L Erasme Gbaguidi
- Division of Clinical Immunology, Department of Medicine, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
- IRD, MERIT, Université Paris Cité, 75006, Paris, France
- Centre d'Etude Et de Recherche Sur Les Pathologies Associées À La Grossesse Et À L'Enfance, Cotonou, Bénin
| | - Rafiou Adamou
- IRD, MERIT, Université Paris Cité, 75006, Paris, France
- Centre d'Etude Et de Recherche Sur Les Pathologies Associées À La Grossesse Et À L'Enfance, Cotonou, Bénin
| | - Sofie Edslev
- Institut de Recherche Clinique du Bénin, Abomey-Calavi, Benin
| | - Anita Hansen
- Institut de Recherche Clinique du Bénin, Abomey-Calavi, Benin
| | - Nadia D Domingo
- Centre d'Etude Et de Recherche Sur Les Pathologies Associées À La Grossesse Et À L'Enfance, Cotonou, Bénin
| | | | | | - André Garcia
- IRD, MERIT, Université Paris Cité, 75006, Paris, France
| | - Michael Theisen
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen, Rigshospitalet, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | | | - Eduardo A Donadi
- Division of Clinical Immunology, Department of Medicine, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - David Courtin
- IRD, MERIT, Université Paris Cité, 75006, Paris, France.
| |
Collapse
|
3
|
Figueroa-Romero A, Saura-Lázaro A, Fernández-Luis S, González R. Uncovering HIV and malaria interactions: the latest evidence and knowledge gaps. Lancet HIV 2024:S2352-3018(24)00035-3. [PMID: 38458223 DOI: 10.1016/s2352-3018(24)00035-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/12/2024] [Accepted: 02/12/2024] [Indexed: 03/10/2024]
Abstract
The geographical distribution of malaria and HIV infections widely overlap in sub-Saharan Africa, constituting a complex global health challenge. The interplay between both infections raises concerns about potential immunological, clinical, and therapeutic interactions. Both diseases have been reported to exacerbate the transmission of the other, including the possible vertical transmission of HIV in pregnant individuals with malaria. Co-infection also increases the risk of adverse outcomes such as severe malaria and death. In addition, interactions between antiretroviral and antimalarial drugs have been reported, potentially reducing the efficacy of these drugs. We review the current knowledge of the epidemiological, clinical, immunological, and therapeutic interactions of both infections. We focus on the latest available data and identify key knowledge gaps that should be addressed to guide policy makers in providing optimal HIV and malaria prevention, care, and treatment in vulnerable populations.
Collapse
Affiliation(s)
- Antía Figueroa-Romero
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain; Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Anna Saura-Lázaro
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Sheila Fernández-Luis
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain; Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique; Pediatrics Department, Pediatric Research and Clinical Trials Unit (UPIC), Fundación para la Investigación Biomédica del Hospital 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (IMAS12), Madrid, Spain
| | - Raquel González
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain; Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.
| |
Collapse
|
4
|
Romero DVL, Balendran T, Hasang W, Rogerson SJ, Aitken EH, Achuthan AA. Epigenetic and transcriptional regulation of cytokine production by Plasmodium falciparum-exposed monocytes. Sci Rep 2024; 14:2949. [PMID: 38316918 PMCID: PMC10844200 DOI: 10.1038/s41598-024-53519-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 02/01/2024] [Indexed: 02/07/2024] Open
Abstract
Plasmodium falciparum infection causes the most severe form of malaria, where excessive production of proinflammatory cytokines can drive the pathogenesis of the disease. Monocytes play key roles in host defense against malaria through cytokine production and phagocytosis; however, they are also implicated in pathogenesis through excessive proinflammatory cytokine production. Understanding the underlying molecular mechanisms that contribute to inflammatory cytokine production in P. falciparum-exposed monocytes is key towards developing better treatments. Here, we provide molecular evidence that histone 3 lysine 4 (H3K4) methylation is key for inflammatory cytokine production in P. falciparum-exposed monocytes. In an established in vitro system that mimics blood stage infection, elevated proinflammatory TNF and IL-6 cytokine production is correlated with increased mono- and tri-methylated H3K4 levels. Significantly, we demonstrate through utilizing a pharmacological inhibitor of H3K4 methylation that TNF and IL-6 expression can be suppressed in P. falciparum-exposed monocytes. This elucidated epigenetic regulatory mechanism, controlling inflammatory cytokine production, potentially provides new therapeutic options for future malaria treatment.
Collapse
Affiliation(s)
- David V L Romero
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, 1F Royal Parade, Parkville, VIC, 3010, Australia
| | - Thivya Balendran
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, 1F Royal Parade, Parkville, VIC, 3010, Australia
| | - Wina Hasang
- Department of Infectious Diseases, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Stephen J Rogerson
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, 1F Royal Parade, Parkville, VIC, 3010, Australia
- Department of Infectious Diseases, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Elizabeth H Aitken
- Department of Infectious Diseases, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Adrian A Achuthan
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, 1F Royal Parade, Parkville, VIC, 3010, Australia.
| |
Collapse
|
5
|
Kassa MW, Hasang W, Barateiro A, Damelang T, Brewster J, Dombrowski JG, Longley RJ, Chung AW, Wunderlich G, Mueller I, Aitken EH, Marinho CRF, Rogerson SJ. Acquisition of antibodies to Plasmodium falciparum and Plasmodium vivax antigens in pregnant women living in a low malaria transmission area of Brazil. Malar J 2022; 21:360. [PMID: 36457056 PMCID: PMC9714246 DOI: 10.1186/s12936-022-04402-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Pregnant women have increased susceptibility to Plasmodium falciparum malaria and acquire protective antibodies over successive pregnancies. Most studies that investigated malaria antibody responses in pregnant women are from high transmission areas in sub-Saharan Africa, while reports from Latin America are scarce and inconsistent. The present study sought to explore the development of antibodies against P. falciparum and Plasmodium vivax antigens in pregnant women living in a low transmission area in the Brazilian Amazon. METHODS In a prospective cohort study, plasma samples from 408 pregnant women (of whom 111 were infected with P. falciparum, 96 had infections with P. falciparum and P. vivax, and 201 had no Plasmodium infection) were used to measure antibody levels. Levels of IgG and opsonizing antibody to pregnancy-specific variant surface antigens (VSAs) on infected erythrocytes (IEs), 10 recombinant VAR2CSA Duffy binding like (DBL domains), 10 non-pregnancy-specific P. falciparum merozoite antigens, and 10 P. vivax antigens were measured by flow cytometry, ELISA, and multiplex assays. Antibody levels and seropositivity among the groups were compared. RESULTS Antibodies to VSAs on P. falciparum IEs were generally low but were higher in currently infected women and women with multiple P. falciparum episodes over pregnancy. Many women (21%-69%) had antibodies against each individual VAR2CSA DBL domain, and antibodies to DBLs correlated with each other (r ≥ 0.55, p < 0.0001), but not with antibody to VSA or history of infection. Infection with either malaria species was associated with higher seropositivity rate for antibodies against P. vivax proteins, adjusted odds ratios (95% CI) ranged from 5.6 (3.2, 9.7), p < 0.0001 for PVDBPII-Sal1 to 15.7 (8.3, 29.7), p < 0.0001 for PvTRAg_2. CONCLUSIONS Pregnant Brazilian women had low levels of antibodies to pregnancy-specific VSAs that increased with exposure. They frequently recognized both VAR2CSA DBL domains and P. vivax antigens, but only the latter varied with infection. Apparent antibody prevalence is highly dependent on the assay platform used.
Collapse
Affiliation(s)
- Meseret W. Kassa
- grid.1008.90000 0001 2179 088XDepartment of Medicine, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Level 5, 792 Elizabeth St, University of Melbourne, Melbourne, VIC 3000 Australia
| | - Wina Hasang
- grid.1008.90000 0001 2179 088XDepartment of Infectious Diseases, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC Australia
| | - André Barateiro
- grid.11899.380000 0004 1937 0722Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Timon Damelang
- grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, University of Melbourne, Melbourne, VIC Australia
| | - Jessica Brewster
- grid.1042.70000 0004 0432 4889Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC Australia
| | - Jamille G. Dombrowski
- grid.11899.380000 0004 1937 0722Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rhea J. Longley
- grid.1042.70000 0004 0432 4889Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Melbourne, VIC Australia
| | - Amy W. Chung
- grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, University of Melbourne, Melbourne, VIC Australia
| | - Gerhard Wunderlich
- grid.11899.380000 0004 1937 0722Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ivo Mueller
- grid.1042.70000 0004 0432 4889Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Melbourne, VIC Australia
| | - Elizabeth H. Aitken
- grid.1008.90000 0001 2179 088XDepartment of Infectious Diseases, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, University of Melbourne, Melbourne, VIC Australia
| | - Claudio R. F. Marinho
- grid.11899.380000 0004 1937 0722Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Stephen J. Rogerson
- grid.1008.90000 0001 2179 088XDepartment of Medicine, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Level 5, 792 Elizabeth St, University of Melbourne, Melbourne, VIC 3000 Australia ,grid.1008.90000 0001 2179 088XDepartment of Infectious Diseases, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC Australia
| |
Collapse
|
6
|
Feng G, Kurtovic L, Agius PA, Aitken EH, Sacarlal J, Wines BD, Hogarth PM, Rogerson SJ, Fowkes FJI, Dobaño C, Beeson JG. Induction, decay, and determinants of functional antibodies following vaccination with the RTS,S malaria vaccine in young children. BMC Med 2022; 20:289. [PMID: 36002841 PMCID: PMC9402280 DOI: 10.1186/s12916-022-02466-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 07/06/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND RTS,S is the first malaria vaccine recommended for implementation among young children at risk. However, vaccine efficacy is modest and short-lived. Antibodies play the major role in vaccine-induced immunity, but knowledge on the induction, decay, and determinants of antibody function is limited, especially among children. Antibodies that promote opsonic phagocytosis and other cellular functions appear to be important contributors to RTS,S immunity. METHODS We studied a phase IIb trial of RTS,S/AS02 conducted in young children in malaria-endemic regions of Mozambique. We evaluated the induction of antibodies targeting the circumsporozoite protein (CSP, vaccine antigen) that interact with Fcγ-receptors (FcRγs) and promote phagocytosis (neutrophils, monocytes, THP-1 cells), antibody-dependent respiratory burst (ADRB) by neutrophils, and natural killer (NK) cell activity, as well as the temporal kinetics of responses over 5 years of follow-up (ClinicalTrials.gov registry number NCT00197041). RESULTS RTS,S vaccination induced CSP-specific IgG with FcγRIIa and FcγRIII binding activity and promoted phagocytosis by neutrophils, THP-1 monocytes, and primary human monocytes, neutrophil ADRB activity, and NK cell activation. Responses were highly heterogenous among children, and the magnitude of neutrophil phagocytosis by antibodies was relatively modest, which may reflect modest vaccine efficacy. Induction of functional antibodies was lower among children with higher malaria exposure. Functional antibody magnitude and the functional activity of antibodies largely declined within a year post-vaccination, and decay were highest in the first 6 months, consistent with the decline in vaccine efficacy over that time. Decay rates varied for different antibody parameters and decay was slower for neutrophil phagocytosis. Biostatistical modelling suggested IgG1 and IgG3 contribute in promoting FcγR binding and phagocytosis, and IgG targeting the NANP-repeat and C-terminal regions CSP were similarly important for functional activities. CONCLUSIONS Results provide new insights to understand the modest and time-limited efficacy of RTS,S in children and the induction of antibody functional activities. Improving the induction and maintenance of antibodies that promote phagocytosis and cellular functions, and combating the negative effect of malaria exposure on vaccine responses are potential strategies for improving RTS,S efficacy and longevity.
Collapse
Affiliation(s)
- Gaoqian Feng
- Burnet Institute, Melbourne, Australia.,Department of Medicine, The University of Melbourne, Melbourne, Australia
| | - Liriye Kurtovic
- Burnet Institute, Melbourne, Australia.,Central Clinical School, Monash University, Melbourne, Australia
| | - Paul A Agius
- Burnet Institute, Melbourne, Australia.,Department of Epidemiology and Preventative Medicine, Monash University, Melbourne, Australia.,Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Elizabeth H Aitken
- Peter Doherty Institute, The University of Melbourne, Melbourne, Australia
| | - Jahit Sacarlal
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique.,Faculdade de Medicina, Universidade Eduardo Mondlane (UEM), Maputo, Mozambique
| | - Bruce D Wines
- Burnet Institute, Melbourne, Australia.,Central Clinical School, Monash University, Melbourne, Australia.,Department of Pathology, The University of Melbourne, Melbourne, Australia
| | - P Mark Hogarth
- Burnet Institute, Melbourne, Australia.,Central Clinical School, Monash University, Melbourne, Australia.,Department of Pathology, The University of Melbourne, Melbourne, Australia
| | - Stephen J Rogerson
- Department of Medicine, The University of Melbourne, Melbourne, Australia.,Peter Doherty Institute, The University of Melbourne, Melbourne, Australia
| | - Freya J I Fowkes
- Burnet Institute, Melbourne, Australia.,Department of Epidemiology and Preventative Medicine, Monash University, Melbourne, Australia.,Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Carlota Dobaño
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique.,ISGlobal, Hospital Clínic Universitat de Barcelona, Barcelona, Catalonia, Spain.,CIBER de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| | - James G Beeson
- Burnet Institute, Melbourne, Australia. .,Department of Medicine, The University of Melbourne, Melbourne, Australia. .,Department of Microbiology, Monash University, Clayton, Australia.
| |
Collapse
|
7
|
Kassa MW, Hasang W, Rogerson SJ. Antibody-Dependent THP-1 Cell-Mediated Phagocytosis of Plasmodium falciparum-Infected Erythrocytes. Methods Mol Biol 2022; 2470:617-628. [PMID: 35881378 DOI: 10.1007/978-1-0716-2189-9_46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Antibodies that recognize variant surface antigens (VSAs) expressed on Plasmodium falciparum-infected erythrocytes (IEs) opsonize IEs for phagocytic clearance. The anti-VSA antibodies promote antibody-dependent cellular phagocytosis (ADCP) of IEs by interacting with innate immune cells. ADCP is an important immune effector mechanism of parasite clearance. ADCP can be a tool to assess the efficacy of vaccine-induced antibodies, in addition to measuring the neutralizing ability of antibodies. Here, we developed and validated an efficient and high-throughput plate-based flow cytometric assay to measure ADCP of IEs using the human monocytic THP-1 cell line. This flow cytometric assay can be used to analyze the level of naturally acquired or vaccine-induced opsonic antibodies in large cohorts.
Collapse
Affiliation(s)
- Meseret Workineh Kassa
- Department of Medicine, The Doherty Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Wina Hasang
- Department of Medicine, The Doherty Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Stephen John Rogerson
- Department of Medicine, The Doherty Institute, The University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
8
|
Aitken EH, Damelang T, Ortega-Pajares A, Alemu A, Hasang W, Dini S, Unger HW, Ome-Kaius M, Nielsen MA, Salanti A, Smith J, Kent S, Hogarth PM, Wines BD, Simpson JA, Chung AW, Rogerson SJ. Developing a multivariate prediction model of antibody features associated with protection of malaria-infected pregnant women from placental malaria. eLife 2021; 10:e65776. [PMID: 34181872 PMCID: PMC8241440 DOI: 10.7554/elife.65776] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 06/16/2021] [Indexed: 12/15/2022] Open
Abstract
Background Plasmodium falciparum causes placental malaria, which results in adverse outcomes for mother and child. P. falciparum-infected erythrocytes that express the parasite protein VAR2CSA on their surface can bind to placental chondroitin sulfate A. It has been hypothesized that naturally acquired antibodies towards VAR2CSA protect against placental infection, but it has proven difficult to identify robust antibody correlates of protection from disease. The objective of this study was to develop a prediction model using antibody features that could identify women protected from placental malaria. Methods We used a systems serology approach with elastic net-regularized logistic regression, partial least squares discriminant analysis, and a case-control study design to identify naturally acquired antibody features mid-pregnancy that were associated with protection from placental malaria at delivery in a cohort of 77 pregnant women from Madang, Papua New Guinea. Results The machine learning techniques selected 6 out of 169 measured antibody features towards VAR2CSA that could predict (with 86% accuracy) whether a woman would subsequently have active placental malaria infection at delivery. Selected features included previously described associations with inhibition of placental binding and/or opsonic phagocytosis of infected erythrocytes, and network analysis indicated that there are not one but multiple pathways to protection from placental malaria. Conclusions We have identified candidate antibody features that could accurately identify malaria-infected women as protected from placental infection. It is likely that there are multiple pathways to protection against placental malaria. Funding This study was supported by the National Health and Medical Research Council (Nos. APP1143946, GNT1145303, APP1092789, APP1140509, and APP1104975).
Collapse
Affiliation(s)
- Elizabeth H Aitken
- Department of Medicine, University of Melbourne, the Doherty InstituteMelbourneAustralia
| | - Timon Damelang
- Department of Microbiology and Immunology, University of Melbourne, the Doherty InstituteMelbourneAustralia
| | - Amaya Ortega-Pajares
- Department of Medicine, University of Melbourne, the Doherty InstituteMelbourneAustralia
| | - Agersew Alemu
- Department of Medicine, University of Melbourne, the Doherty InstituteMelbourneAustralia
| | - Wina Hasang
- Department of Medicine, University of Melbourne, the Doherty InstituteMelbourneAustralia
| | - Saber Dini
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of MelbourneMelbourneAustralia
| | - Holger W Unger
- Department of Medicine, University of Melbourne, the Doherty InstituteMelbourneAustralia
- Department of Obstetrics and Gynaecology, Royal Darwin HospitalDarwinAustralia
- Menzies School of Health ResearchDarwinAustralia
| | - Maria Ome-Kaius
- Walter and Eliza Hall Institute of Medical ResearchParkvilleAustralia
| | - Morten A Nielsen
- Centre for Medical Parasitology, Department of Microbiology and immunology, University of CopenhagenCopenhagenDenmark
| | - Ali Salanti
- Centre for Medical Parasitology, Department of Microbiology and immunology, University of CopenhagenCopenhagenDenmark
- Department of Infectious Disease, Copenhagen University HospitalCopenhagenDenmark
| | - Joe Smith
- Seattle Children’s Research InstituteSeattleUnited States
- Department of Pediatrics, University of WashingtonSeattleUnited States
| | - Stephen Kent
- Department of Microbiology and Immunology, University of Melbourne, the Doherty InstituteMelbourneAustralia
| | - P Mark Hogarth
- Seattle Children’s Research InstituteSeattleUnited States
- Immune Therapies Group, Centre for Biomedical Research, Burnet InstituteMelbourneAustralia
- Department of Clinical Pathology, University of MelbourneMelbourneAustralia
- Department of Immunology and Pathology, Monash UniversityMelbourneAustralia
| | - Bruce D Wines
- Immune Therapies Group, Centre for Biomedical Research, Burnet InstituteMelbourneAustralia
- Department of Clinical Pathology, University of MelbourneMelbourneAustralia
- Department of Immunology and Pathology, Monash UniversityMelbourneAustralia
| | - Julie A Simpson
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of MelbourneMelbourneAustralia
| | - Amy W Chung
- Department of Microbiology and Immunology, University of Melbourne, the Doherty InstituteMelbourneAustralia
| | - Stephen J Rogerson
- Department of Medicine, University of Melbourne, the Doherty InstituteMelbourneAustralia
| |
Collapse
|
9
|
McLean ARD, Opi DH, Stanisic DI, Cutts JC, Feng G, Ura A, Mueller I, Rogerson SJ, Beeson JG, Fowkes FJI. High Antibodies to VAR2CSA in Response to Malaria Infection Are Associated With Improved Birthweight in a Longitudinal Study of Pregnant Women. Front Immunol 2021; 12:644563. [PMID: 34220804 PMCID: PMC8242957 DOI: 10.3389/fimmu.2021.644563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/17/2021] [Indexed: 11/23/2022] Open
Abstract
Introduction Pregnant women have an increased risk of P. falciparum infection, which is associated with low birth weight and preterm delivery. VAR2CSA, a variant surface antigen expressed on the parasitized erythrocyte surface, enables sequestration in the placenta. Few studies have prospectively examined relationships between antibody responses during pregnancy and subsequent adverse birth outcomes, and there are limited data outside Africa. Methods Levels of IgG against VAR2CSA domains (DBL3; DBL5) and a VAR2CSA-expressing placental-binding P. falciparum isolate (PfCS2-IE) were measured in 301 women enrolled at their first visit to antenatal care which occurred mid-pregnancy (median = 26 weeks, lower and upper quartiles = 22, 28). Associations between antibody levels at enrolment and placental infection, birthweight and estimated gestational age at delivery were assessed by linear and logistic regression with adjustment for confounders. For all outcomes, effect modification by gravidity and peripheral blood P. falciparum infection at enrolment was assessed. Results Among women who had acquired P. falciparum infection at enrolment, those with higher levels of VAR2CSA antibodies (75th percentile) had infants with higher mean birthweight (estimates varied from +35g to +149g depending on antibody response) and reduced adjusted odds of placental infection (aOR estimates varied from 0.17 to 0.80), relative to women with lower levels (25th percentile) of VAR2CSA antibodies. However, among women who had not acquired an infection at enrolment, higher VAR2CSA antibodies were associated with increased odds of placental infection (aOR estimates varied from 1.10 to 2.24). Conclusions When infected by mid-pregnancy, a better immune response to VAR2CSA-expressing parasites may contribute to protecting against adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Alistair R D McLean
- Burnet Institute, Melbourne, VIC, Australia.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - D Herbert Opi
- Burnet Institute, Melbourne, VIC, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia.,Department of Medicine at the Doherty Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Danielle I Stanisic
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea.,Institute for Glycomics, Griffith University, Southport, QLD, Australia
| | - Julia C Cutts
- Burnet Institute, Melbourne, VIC, Australia.,Department of Medicine at the Doherty Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Gaoqian Feng
- Burnet Institute, Melbourne, VIC, Australia.,Department of Medicine at the Doherty Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Alice Ura
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Ivo Mueller
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea.,Population, Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Département Parasites et Insectes Vecteurs, Institute Pasteur, Paris, France
| | - Stephen J Rogerson
- Department of Medicine at the Doherty Institute, University of Melbourne, Melbourne, VIC, Australia
| | - James G Beeson
- Burnet Institute, Melbourne, VIC, Australia.,Department of Medicine at the Doherty Institute, University of Melbourne, Melbourne, VIC, Australia.,Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Freya J I Fowkes
- Burnet Institute, Melbourne, VIC, Australia.,Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Centre for Epidemiology and Biostatistics, University of Melbourne, Melbourne, VIC, Australia.,Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
10
|
Vanda K, Bobbili N, Matsunaga M, Chen JJ, Salanti A, Leke RFG, Taylor DW. The Development, Fine Specificity, and Importance of High-Avidity Antibodies to VAR2CSA in Pregnant Cameroonian Women Living in Yaoundé, an Urban City. Front Immunol 2021; 12:610108. [PMID: 33717094 PMCID: PMC7953046 DOI: 10.3389/fimmu.2021.610108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/07/2021] [Indexed: 11/25/2022] Open
Abstract
Pregnant women infected with Plasmodium falciparum often produce antibodies (Abs) to VAR2CSA, a ligand that binds to placental chondroitin sulfate A causing placental malaria (PM). Antibodies to VAR2CSA are associated with improved pregnancy outcomes. Antibody avidity is a surrogate marker for the extent of maturation of the humoral immune response. Little is known about high avidity Abs to VAR2CSA for women living in urban African cities. Therefore, this study sought to determine: i) if high avidity Abs to full-length VAR2CSA (FV2) increase with gravidity in women in Yaoundé, Cameroon exposed to ~ 0.3-1.1 infectious mosquito bites per month, ii) if high avidity Abs to FV2 are directed against a specific region of VAR2CSA, and iii) if having high avidity Abs to FV2 improve pregnancy outcomes. Plasma samples collected at delivery from 695 women who had Abs to FV2 were evaluated. Ab levels and the Avidity Index (AI), defined as the percent Abs remaining bound to FV2 after incubation with 3M NH4SCN, were determined. Similar Ab levels to FV2 were present in women of all gravidities (G1 through 6+; p=0.80), except significantly lower levels were detected in PM−negative (PM−) primigravidae (p <0.001). Median Ab avidities increased between gravidity 1 and 2 (p<0.001) and remained stable thereafter (G3-G6+: p=0.51). These results suggest that B cell clonal expansion began during the first pregnancy, with clonal selection primarily occurring during the second. However, the majority of women (84%) had AI <35, a level of high avidity Abs previously reported to be associated with improved pregnancy outcomes. When plasma from 107 Cameroonian women was tested against 8 different regions of FV2, high avidity Abs were predominately restricted to DBL5 with median AI of 50 compared to AI <25 for the other domains. The only significance influence of high avidity Abs on pregnancy outcome was that babies born to mothers with AI above the median were 104 g heavier than babies born to women with AI below the median (p=0.045). These results suggest that a vaccine that boosts maturation of the immune response to VAR2CSA may be beneficial for women residing in urban areas.
Collapse
Affiliation(s)
- Koko Vanda
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
| | - Naveen Bobbili
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
| | - Masako Matsunaga
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
| | - John J Chen
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
| | - Ali Salanti
- Centre for Medical Parasitology, Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Disease, Copenhagen University Hospital, Copenhagen, Denmark
| | - Rose F G Leke
- Faculty of Medicine and Biomedical Research, The Biotechnology Center, University of Yaoundé 1, Yaoundé, Cameroon
| | - Diane Wallace Taylor
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
| |
Collapse
|
11
|
Wiebe MC, Yanow SK. Do Antibodies to Malaria Surface Antigens Play a Role in Protecting Mothers From Maternal Anemia? Front Immunol 2020; 11:609957. [PMID: 33391279 PMCID: PMC7775498 DOI: 10.3389/fimmu.2020.609957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/17/2020] [Indexed: 11/13/2022] Open
Abstract
Pregnancy-associated malaria (PAM) caused by Plasmodium falciparum can result in detrimental outcomes for both mother and infant, including low infant birth weight, preterm birth, maternal anemia, spontaneous abortion, and maternal and/or infant mortality. Maternal anemia is a particularly complex outcome, as the body must both maintain erythropoiesis and tolerance of the growing fetus, while directing a Th1 response against the parasite. Underlying the pathogenesis of PAM is the expression of variant surface antigens (VSAPAM) on the surface of infected red blood cells (iRBC) that mediate sequestration of the iRBC in the placenta. Naturally acquired antibodies to VSAPAM can block sequestration and activate opsonic phagocytosis, both associated with improved pregnancy outcomes. In this review, we ask whether VSAPAM antibodies can also protect mothers against malarial anemia. Studies were identified where VSAPAM antibody titres and/or function were associated with higher maternal hemoglobin levels, thus supporting additional protective mechanisms for these antibodies against PAM. Yet these associations were not widely observed, and many studies reported no association between protection from maternal anemia and VSAPAM antibodies. We discuss the epidemiological, biological and technical factors that may explain some of the variability among these studies. We appraise the current evidence of these complex interactions between PAM-specific immunity and maternal anemia, propose potential mechanisms, and discuss knowledge gaps.
Collapse
Affiliation(s)
- Madeleine C Wiebe
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Stephanie K Yanow
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada.,School of Public Health, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
12
|
Cutts JC, Agius PA, Zaw Lin, Powell R, Moore K, Draper B, Simpson JA, Fowkes FJI. Pregnancy-specific malarial immunity and risk of malaria in pregnancy and adverse birth outcomes: a systematic review. BMC Med 2020; 18:14. [PMID: 31941488 PMCID: PMC6964062 DOI: 10.1186/s12916-019-1467-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 11/11/2019] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND In endemic areas, pregnant women are highly susceptible to Plasmodium falciparum malaria characterized by the accumulation of parasitized red blood cells (pRBC) in the placenta. In subsequent pregnancies, women develop protective immunity to pregnancy-associated malaria and this has been hypothesized to be due to the acquisition of antibodies to the parasite variant surface antigen VAR2CSA. In this systematic review we provide the first synthesis of the association between antibodies to pregnancy-specific P. falciparum antigens and pregnancy and birth outcomes. METHODS We conducted a systematic review and meta-analysis of population-based studies (published up to 07 June 2019) of pregnant women living in P. falciparum endemic areas that examined antibody responses to pregnancy-specific P. falciparum antigens and outcomes including placental malaria, low birthweight, preterm birth, peripheral parasitaemia, maternal anaemia, and severe malaria. RESULTS We searched 6 databases and identified 33 studies (30 from Africa) that met predetermined inclusion and quality criteria: 16 studies contributed estimates in a format enabling inclusion in meta-analysis and 17 were included in narrative form only. Estimates were mostly from cross-sectional data (10 studies) and were heterogeneous in terms of magnitude and direction of effect. Included studies varied in terms of antigens tested, methodology used to measure antibody responses, and epidemiological setting. Antibody responses to pregnancy-specific pRBC and VAR2CSA antigens, measured at delivery, were associated with placental malaria (9 studies) and may therefore represent markers of infection, rather than correlates of protection. Antibody responses to pregnancy-specific pRBC, but not recombinant VAR2CSA antigens, were associated with trends towards protection from low birthweight (5 studies). CONCLUSIONS Whilst antibody responses to several antigens were positively associated with the presence of placental and peripheral infections, this review did not identify evidence that any specific antibody response is associated with protection from pregnancy-associated malaria across multiple populations. Further prospective cohort studies using standardized laboratory methods to examine responses to a broad range of antigens in different epidemiological settings and throughout the gestational period, will be necessary to identify and prioritize pregnancy-specific P. falciparum antigens to advance the development of vaccines and serosurveillance tools targeting pregnant women.
Collapse
Affiliation(s)
- Julia C Cutts
- Burnet Institute, 85 Commercial Road, Melbourne, Victoria, 3004, Australia.
| | - Paul A Agius
- Burnet Institute, 85 Commercial Road, Melbourne, Victoria, 3004, Australia.,Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia
| | - Zaw Lin
- Burnet Institute, 85 Commercial Road, Melbourne, Victoria, 3004, Australia.,Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Rosanna Powell
- Burnet Institute, 85 Commercial Road, Melbourne, Victoria, 3004, Australia
| | - Kerryn Moore
- Burnet Institute, 85 Commercial Road, Melbourne, Victoria, 3004, Australia.,Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Bridget Draper
- Burnet Institute, 85 Commercial Road, Melbourne, Victoria, 3004, Australia
| | - Julie A Simpson
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Freya J I Fowkes
- Burnet Institute, 85 Commercial Road, Melbourne, Victoria, 3004, Australia. .,Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia. .,Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia. .,Department of Infectious Diseases, Monash University, Melbourne, Australia.
| |
Collapse
|
13
|
Functional Antibodies against Placental Malaria Parasites Are Variant Dependent and Differ by Geographic Region. Infect Immun 2019; 87:IAI.00865-18. [PMID: 30988054 DOI: 10.1128/iai.00865-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 04/05/2019] [Indexed: 02/06/2023] Open
Abstract
During pregnancy, Plasmodium falciparum-infected erythrocytes (IE) accumulate in the intervillous spaces of the placenta by binding to chondroitin sulfate A (CSA) and elicit inflammatory responses that are associated with poor pregnancy outcomes. Primigravidae lack immunity to IE that sequester in the placenta and thus are susceptible to placental malaria (PM). Women become resistant to PM over successive pregnancies as antibodies to placental IE are acquired. Here, we assayed plasma collected at delivery from Malian and Tanzanian women of different parities for total antibody levels against recombinant VAR2CSA antigens (FCR3 allele), and for surface reactivity and binding inhibition and opsonizing functional activities against IE using two CSA-binding laboratory isolates (FCR3 and NF54). Overall, antibody reactivity to VAR2CSA recombinant proteins and to CSA-binding IE was higher in multigravidae than in primigravidae. However, plasma from Malian gravid women reacted more strongly with FCR3 whereas Tanzanian plasma preferentially reacted with NF54. Further, acquisition of functional antibodies was variant dependent: binding inhibition of P. falciparum strain NF54 (P < 0.001) but not of the strain FCR3 increased significantly with parity, while only opsonizing activity against FCR3 (P < 0.001) increased significantly with parity. In addition, opsonizing and binding inhibition activities of plasma of multigravidae were significantly correlated in assays of FCR3 (r = 0.4, P = 0.01) but not of NF54 isolates; functional activities did not correlate in plasma from primigravidae. These data suggest that IE surface-expressed epitopes involved in each functional activity differ among P. falciparum strains. Consequently, geographic bias in circulating strains may impact antibody functions. Our study has implications for the development of PM vaccines aiming to achieve broad protection against various parasite strains.
Collapse
|
14
|
Chan JA, Boyle MJ, Moore KA, Reiling L, Lin Z, Hasang W, Avril M, Manning L, Mueller I, Laman M, Davis T, Smith JD, Rogerson SJ, Simpson JA, Fowkes FJI, Beeson JG. Antibody Targets on the Surface of Plasmodium falciparum-Infected Erythrocytes That Are Associated With Immunity to Severe Malaria in Young Children. J Infect Dis 2019; 219:819-828. [PMID: 30365004 PMCID: PMC6376912 DOI: 10.1093/infdis/jiy580] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/15/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Sequestration of Plasmodium falciparum-infected erythrocytes (IEs) in the microvasculature contributes to pathogenesis of severe malaria in children. This mechanism is mediated by antigens expressed on the IE surface. However, knowledge of specific targets and functions of antibodies to IE surface antigens that protect against severe malaria is limited. METHODS Antibodies to IE surface antigens were examined in a case-control study of young children in Papua New Guinea presenting with severe or uncomplicated malaria (n = 448), using isolates with a virulent phenotype associated with severe malaria, and functional opsonic phagocytosis assays. We used genetically modified isolates and recombinant P. falciparum erythrocyte membrane protein 1 (PfEMP1) domains to quantify PfEMP1 as a target of antibodies associated with disease severity. RESULTS Antibodies to the IE surface and recombinant PfEMP1 domains were significantly higher in uncomplicated vs severe malaria and were boosted following infection. The use of genetically modified P. falciparum revealed that PfEMP1 was a major target of antibodies and that PfEMP1-specific antibodies were associated with reduced odds of severe malaria. Furthermore, antibodies promoting the opsonic phagocytosis of IEs by monocytes were lower in those with severe malaria. CONCLUSIONS Findings suggest that PfEMP1 is a dominant target of antibodies associated with reduced risk of severe malaria, and function in part by promoting opsonic phagocytosis.
Collapse
Affiliation(s)
- Jo-Anne Chan
- Burnet Institute for Medical Research and Public Health, Melbourne
| | - Michelle J Boyle
- Burnet Institute for Medical Research and Public Health, Melbourne
| | - Kerryn A Moore
- Burnet Institute for Medical Research and Public Health, Melbourne
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne
| | - Linda Reiling
- Burnet Institute for Medical Research and Public Health, Melbourne
| | - Zaw Lin
- Burnet Institute for Medical Research and Public Health, Melbourne
| | - Wina Hasang
- Department of Medicine, Melbourne School of Population and Global Health, University of Melbourne, Parkville, Australia
| | - Marion Avril
- Center for Infectious Diseases Research, Seattle, Washington
| | - Laurens Manning
- Papua New Guinea Institute of Medical Research, Madang
- University of Western Australia, Perth
| | - Ivo Mueller
- Walter and Eliza Hall Institute of Medical Research, Parkville
| | - Moses Laman
- Papua New Guinea Institute of Medical Research, Madang
| | | | - Joseph D Smith
- Center for Infectious Diseases Research, Seattle, Washington
| | - Stephen J Rogerson
- Department of Medicine, Melbourne School of Population and Global Health, University of Melbourne, Parkville, Australia
| | - Julie A Simpson
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville
| | - Freya J I Fowkes
- Burnet Institute for Medical Research and Public Health, Melbourne
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
- Department of Infectious Diseases, Monash University, Melbourne, Victoria, Australia
| | - James G Beeson
- Burnet Institute for Medical Research and Public Health, Melbourne
- Department of Medicine, Melbourne School of Population and Global Health, University of Melbourne, Parkville, Australia
- Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
15
|
Mayor A, Dobaño C, Nhabomba A, Guinovart C, Jiménez A, Manaca MN, Aguilar R, Barbosa A, Rodríguez MH, Cisteró P, Quimice LM, Menéndez C, Aponte JJ, Ordi J, Chitnis CE, Alonso PL. IgM and IgG against Plasmodium falciparum lysate as surrogates of malaria exposure and protection during pregnancy. Malar J 2018; 17:182. [PMID: 29743114 PMCID: PMC5944166 DOI: 10.1186/s12936-018-2331-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/24/2018] [Indexed: 11/10/2022] Open
Abstract
Background Difficulties to disentangle the protective versus exposure role of anti-malarial antibodies hamper the identification of clinically-relevant immune targets. Here, factors affecting maternal IgG and IgMs against Plasmodium falciparum antigens, as well as their relationship with parasite infection and clinical outcomes, were assessed in mothers and their children. Antibody responses among 207 Mozambican pregnant women at delivery against MSP119, EBA175, AMA1, DBLα and parasite lysate (3D7, R29 and E8B parasite lines), as well as the surface of infected erythrocytes, were assessed by enzyme-linked immunosorbent assay and flow cytometry. The relationship between antibody levels, maternal infection and clinical outcomes was assessed by multivariate regression analysis. Results Placental infection was associated with an increase in maternal levels of IgGs and IgMs against a broad range of parasite antigens. The multivariate analysis including IgGs and IgMs showed that the newborn weight increased with increasing IgG levels against a parasite lysate, whereas the opposite association was found with IgMs. IgGs are markers of protection against poor pregnancy outcomes and IgMs of parasite exposure. Conclusions Adjusting the analysis for the simultaneous effect of IgMs and IgGs can contribute to account for heterogeneous exposure to P. falciparum when assessing immune responses effective against malaria in pregnancy. Electronic supplementary material The online version of this article (10.1186/s12936-018-2331-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alfredo Mayor
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Carrer Rosselló 153 (CEK Building), 08036, Barcelona, Spain. .,Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.
| | - Carlota Dobaño
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Carrer Rosselló 153 (CEK Building), 08036, Barcelona, Spain.,Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Augusto Nhabomba
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Caterina Guinovart
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Carrer Rosselló 153 (CEK Building), 08036, Barcelona, Spain.,Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Alfons Jiménez
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Carrer Rosselló 153 (CEK Building), 08036, Barcelona, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | | | - Ruth Aguilar
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Carrer Rosselló 153 (CEK Building), 08036, Barcelona, Spain.,Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.,CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Arnoldo Barbosa
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Carrer Rosselló 153 (CEK Building), 08036, Barcelona, Spain.,Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Mauricio H Rodríguez
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Carrer Rosselló 153 (CEK Building), 08036, Barcelona, Spain.,Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Pau Cisteró
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Carrer Rosselló 153 (CEK Building), 08036, Barcelona, Spain
| | - Lazaro M Quimice
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Clara Menéndez
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Carrer Rosselló 153 (CEK Building), 08036, Barcelona, Spain.,Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - John J Aponte
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Carrer Rosselló 153 (CEK Building), 08036, Barcelona, Spain.,Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Jaume Ordi
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Carrer Rosselló 153 (CEK Building), 08036, Barcelona, Spain
| | - Chetan E Chitnis
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Pedro L Alonso
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Carrer Rosselló 153 (CEK Building), 08036, Barcelona, Spain.,Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| |
Collapse
|
16
|
Hommel M, Chan JA, Umbers AJ, Langer C, Rogerson SJ, Smith JD, Beeson JG. Evaluating antibody functional activity and strain-specificity of vaccine candidates for malaria in pregnancy using in vitro phagocytosis assays. Parasit Vectors 2018; 11:69. [PMID: 29378634 PMCID: PMC5789608 DOI: 10.1186/s13071-018-2653-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 01/16/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria in pregnancy is a major cause of poor maternal and infant health, and is associated with the sequestration of P. falciparum-infected erythrocytes (IE) in the placenta. The leading vaccine candidate for pregnancy malaria, VAR2CSA, has been shown to induce antibodies that inhibit IE adhesion to the placental receptor chondroitin sulfate A (CSA), potentially preventing placental infection. However, the ability of vaccination-induced antibodies to promote opsonic phagocytosis is not well defined, but likely to be an important component of protective immunity. METHODS We investigated the use of an opsonic phagocytosis assay to evaluate antibodies induced by pregnancy malaria vaccine candidate antigens based on VAR2CSA. Opsonic phagocytosis was measured by flow cytometry and visualized by electron microscopy. We measured vaccine-induced antibody reactivity to placental type IEs from different geographical origins, and the functional ability of antibodies raised in immunized rabbits to induce phagocytosis by a human monocyte cell line. RESULTS Immunization-induced antibodies showed a mixture of strain-specific and cross-reactive antibody recognition of different placental-binding parasite lines. Antibodies generated against the DBL5 and DBL3 domains of VAR2CSA effectively promoted the opsonic phagocytosis of IEs by human monocytes; however, these functional antibodies were largely allele-specific and not cross-reactive. This has significant implications for the development of vaccines aiming to achieve a broad coverage against diverse parasite strains. Using competition ELISAs, we found that acquired human antibodies among pregnant women targeted both cross-reactive and allele-specific epitopes, consistent with what we observed with vaccine-induced antibodies. CONCLUSIONS Vaccines based on domains of VAR2CSA induced opsonic phagocytosis of IEs in a strain-specific manner. Assays measuring this phagocytic activity have the potential to aid the development and evaluation of vaccines against malaria in pregnancy.
Collapse
Affiliation(s)
| | | | | | | | - Stephen J Rogerson
- Department of Medicine, Peter Doherty Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Joseph D Smith
- Center for Infectious Diseases Research, Seattle, WA, USA
| | - James G Beeson
- Burnet Institute, Melbourne, VIC, Australia. .,Department of Medicine, Peter Doherty Institute, University of Melbourne, Melbourne, VIC, Australia. .,Department of Microbiology and Central Clinical School, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
17
|
A versatile, high through-put, bead-based phagocytosis assay for Plasmodium falciparum. Sci Rep 2017; 7:14705. [PMID: 29089635 PMCID: PMC5665980 DOI: 10.1038/s41598-017-13900-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/02/2017] [Indexed: 11/08/2022] Open
Abstract
Antibody-mediated phagocytosis is an important immune effector mechanism against Plasmodium falciparum-infected erythrocytes (IE); however, current phagocytosis assays use IE collected from infected individuals or from in vitro cultures of P. falciparum, making them prone to high variation. A simple, high-throughput flow cytometric assay was developed that uses THP-1 cells and fluorescent beads covalently-coupled with the malarial antigen VAR2CSA. The assay is highly repeatable, provides both the overall percent phagocytosis and semi-quantitates the number of antigen-coupled beads internalized.
Collapse
|
18
|
Nguyen N, Wilson DW, Nagalingam G, Triccas JA, Schneider EK, Li J, Velkov T, Baell J. Broad activity of diphenyleneiodonium analogues against Mycobacterium tuberculosis, malaria parasites and bacterial pathogens. Eur J Med Chem 2017; 148:507-518. [PMID: 29269132 DOI: 10.1016/j.ejmech.2017.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 09/07/2017] [Accepted: 10/04/2017] [Indexed: 01/06/2023]
Abstract
In this study, a structure-activity relationship (SAR) compound series based on the NDH-2 inhibitor diphenyleneiodonium (DPI) was synthesised. Compounds were evaluated primarily for in vitro efficacy against Gram-positive and Gram-negative bacteria, commonly responsible for nosocomial and community acquired infections. In addition, we also assessed the activity of these compounds against Mycobacterium tuberculosis (Tuberculosis) and Plasmodium spp. (Malaria). This led to the discovery of highly potent compounds active against bacterial pathogens and malaria parasites in the low nanomolar range, several of which were significantly less toxic to mammalian cells.
Collapse
Affiliation(s)
- Nghi Nguyen
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences Monash University, VIC, 3052, Australia
| | - Danny W Wilson
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide 5005, Australia; Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria 3004, Australia
| | - Gayathri Nagalingam
- Microbial Pathogenesis and Immunity Group, Discipline of Infectious Diseases and Immunology, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - James A Triccas
- Microbial Pathogenesis and Immunity Group, Discipline of Infectious Diseases and Immunology, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Elena K Schneider
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences Monash University, VIC, 3052, Australia
| | - Jian Li
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, VIC, 3800, Australia
| | - Tony Velkov
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences Monash University, VIC, 3052, Australia.
| | - Jonathan Baell
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences Monash University, VIC, 3052, Australia; School of Pharmaceutical Sciences, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
| |
Collapse
|
19
|
Chan JA, Stanisic DI, Duffy MF, Robinson LJ, Lin E, Kazura JW, King CL, Siba PM, Fowkes FJ, Mueller I, Beeson JG. Patterns of protective associations differ for antibodies to P. falciparum-infected erythrocytes and merozoites in immunity against malaria in children. Eur J Immunol 2017; 47:2124-2136. [PMID: 28833064 DOI: 10.1002/eji.201747032] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 07/09/2017] [Accepted: 08/16/2017] [Indexed: 11/10/2022]
Abstract
Acquired antibodies play an important role in immunity to P. falciparum malaria and are typically directed towards surface antigens expressed by merozoites and infected erythrocytes (IEs). The importance of specific IE surface antigens as immune targets remains unclear. We evaluated antibodies and protective associations in two cohorts of children in Papua New Guinea. We used genetically-modified P. falciparum to evaluate the importance of PfEMP1 and a P. falciparum isolate with a virulent phenotype. Our findings suggested that PfEMP1 was the dominant target of antibodies to the IE surface, including functional antibodies that promoted opsonic phagocytosis by monocytes. Antibodies were associated with increasing age and concurrent parasitemia, and were higher among children exposed to a higher force-of-infection as determined using molecular detection. Antibodies to IE surface antigens were consistently associated with reduced risk of malaria in both younger and older children. However, protective associations for antibodies to merozoite surface antigens were only observed in older children. This suggests that antibodies to IE surface antigens, particularly PfEMP1, play an earlier role in acquired immunity to malaria, whereas greater exposure is required for protective antibodies to merozoite antigens. These findings have implications for vaccine design and serosurveillance of malaria transmission and immunity.
Collapse
Affiliation(s)
- Jo-Anne Chan
- Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia.,Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Danielle I Stanisic
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Institute for Glycomics, Griffith University, Southport, Queensland, Australia
| | - Michael F Duffy
- Department of Medicine and Melbourne School of Public Health, University of Melbourne, Parkville, Victoria, Australia
| | - Leanne J Robinson
- Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia.,Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Enmoore Lin
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - James W Kazura
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, USA
| | - Christopher L King
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, USA
| | - Peter M Siba
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Freya Ji Fowkes
- Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia.,Melbourne School of Public Health, University of Melbourne, Parkville, Victoria, Australia.,Department of Epidemiology and Preventive Medicine and Department of Infectious Diseases, Monash University, Melbourne, Victoria, Australia
| | - Ivo Mueller
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - James G Beeson
- Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia.,Department of Medicine and Melbourne School of Public Health, University of Melbourne, Parkville, Victoria, Australia.,Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
20
|
Hill DL, Schofield L, Wilson DW. IgG opsonization of merozoites: multiple immune mechanisms for malaria vaccine development. Int J Parasitol 2017; 47:585-595. [PMID: 28668325 DOI: 10.1016/j.ijpara.2017.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 04/12/2017] [Accepted: 05/12/2017] [Indexed: 02/07/2023]
Abstract
Global eradication of the human-infecting malaria parasite Plasmodium falciparum, the major cause of malaria mortality, is unlikely to be achieved without an effective vaccine. However, our limited understanding of how protective immune responses target malaria parasites in humans, and how to best elicit these immune responses through vaccination, has hampered vaccine development. The red blood cell invading stage of the parasite lifecycle (merozoite) displays antigens that are attractive vaccine candidates as they are accessible to antibodies and raise high antibody titres in naturally immune individuals. The number of merozoite antigens that elicit an immune response, and their structural and functional diversity, has led to a large number of lead antigens being pursued as vaccine candidates. Despite being seemingly spoilt for choice in terms of vaccine candidates, there is still a lack of consensus on exactly how merozoite antibodies reduce parasitemia and malaria disease. In this review we describe the various immune mechanisms that can result from IgG opsonization of merozoites, and highlight recent developments that support a role for these functional antibodies in naturally acquired and vaccine-induced immunity.
Collapse
Affiliation(s)
- Danika L Hill
- Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom; The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Department of Medical Biology, University of Melbourne, Parkville, Australia.
| | - Louis Schofield
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Australia
| | - Danny W Wilson
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, Australia; Burnet Institute, 85 Commercial Road, Melbourne 3004, Victoria, Australia.
| |
Collapse
|
21
|
Abstract
One hundred and twenty-five million women in malaria-endemic areas become pregnant each year (see Dellicour et al. PLoS Med7: e1000221 [2010]) and require protection from infection to avoid disease and death for themselves and their offspring. Chloroquine prophylaxis was once a safe approach to prevention but has been abandoned because of drug-resistant parasites, and intermittent presumptive treatment with sulfadoxine-pyrimethamine, which is currently used to protect pregnant women throughout Africa, is rapidly losing its benefits for the same reason. No other drugs have yet been shown to be safe, tolerable, and effective as prevention for pregnant women, although monthly dihydroartemisinin-piperaquine has shown promise for reducing poor pregnancy outcomes. Insecticide-treated nets provide some benefits, such as reducing placental malaria and low birth weight. However, this leaves a heavy burden of maternal, fetal, and infant morbidity and mortality that could be avoided. Women naturally acquire resistance to Plasmodium falciparum over successive pregnancies as they acquire antibodies against parasitized red cells that bind chondroitin sulfate A in the placenta, suggesting that a vaccine is feasible. Pregnant women are an important reservoir of parasites in the community, and women of reproductive age must be included in any elimination effort, but several features of malaria during pregnancy will require special consideration during the implementation of elimination programs.
Collapse
Affiliation(s)
- Michal Fried
- Laboratory of Malaria Immunology and Vaccinology, NIAID, NIH, Bethesda, MD 20892
| | - Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, NIAID, NIH, Bethesda, MD 20892
| |
Collapse
|
22
|
Chandrasiri UP, Fowkes FJI, Beeson JG, Richards JS, Kamiza S, Maleta K, Ashorn P, Rogerson SJ. Association between malaria immunity and pregnancy outcomes among Malawian pregnant women receiving nutrient supplementation. Malar J 2016; 15:547. [PMID: 27829430 PMCID: PMC5103486 DOI: 10.1186/s12936-016-1597-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/31/2016] [Indexed: 11/24/2022] Open
Abstract
Background Malaria antibody responses measured at delivery have been associated with protection from maternal anaemia and low birth weight deliveries. Whether malarial antibodies present in the first half of pregnancy may protect from these or other poor birth outcomes is unclear. To determine whether malaria antibodies in the first half of pregnancy predict pregnancy outcomes, antibodies were measured to a range of merozoite antigens and to antigens expressed on the surface of parasitized red blood cells (pRBCs) in plasma samples collected at 14–20 weeks of gestation from Malawian women. The latter antibodies were measured as total IgG to pRBCs, and antibodies promoting opsonic phagocytosis of pRBCs. Associations between antibodies and maternal haemoglobin in late pregnancy or newborn size were investigated, after adjusting for potential covariates. Results Antibodies to pRBC surface antigens were associated with higher haemoglobin concentration at 36 weeks. Total IgG to pRBCs was associated with 0.4 g/l [(95% confidence interval (0.04, 0.8)] increase in haemoglobin, and opsonizing antibody with 0.5 (0.05, 0.9) increase in haemoglobin for each 10% increase in antibody. These antibodies were not associated with birthweight, placental malaria, or newborn anthropometrics. Antibodies to merozoite antigens and non-placental-binding IEs were not associated with decreased risk of any of these outcomes. In some instances, they were negatively associated with outcomes of interest. Conclusion Antibodies to placental-binding infected erythrocytes may be associated with higher haemoglobin levels in pregnancy, whereas antibodies to other malaria antigens may instead be markers of malaria exposure. Trial registration clinicaltrials.gov NCT01239693. Registered Nov 10, 2010.
Collapse
Affiliation(s)
- Upeksha P Chandrasiri
- Department of Medicine at the Doherty Institute of Infection and Immunity, University of Melbourne, 792 Elizabeth Street, Melbourne, VIC, Australia
| | - Freya J I Fowkes
- Macfarlane Burnet Institute of Medical Research, 85 Commercial Road, Prahran, VIC, Australia.,Department of Epidemiology, Centre for Epidemiology and Biostatistics, University of Melbourne, Melbourne, VIC, Australia.,Department of Preventive Medicine and Infectious Diseases, Monash University, Clayton, VIC, Australia
| | - James G Beeson
- Department of Medicine at the Doherty Institute of Infection and Immunity, University of Melbourne, 792 Elizabeth Street, Melbourne, VIC, Australia.,Macfarlane Burnet Institute of Medical Research, 85 Commercial Road, Prahran, VIC, Australia.,Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Jack S Richards
- Macfarlane Burnet Institute of Medical Research, 85 Commercial Road, Prahran, VIC, Australia.,Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Steve Kamiza
- University of Malawi College of Medicine, Blantyre, Malawi
| | - Kenneth Maleta
- Faculty of Public Health and Family Medicine, University of Malawi College of Medicine, Blantyre, Malawi
| | - Per Ashorn
- Centre for Child Health Research, University of Tampere School of Medicine and Tampere University Hospital, Tampere, Finland.,Department of Paediatrics, Tampere University Hospital, Tampere, Finland
| | - Stephen J Rogerson
- Department of Medicine at the Doherty Institute of Infection and Immunity, University of Melbourne, 792 Elizabeth Street, Melbourne, VIC, Australia.
| |
Collapse
|
23
|
Chan JA, Howell KB, Langer C, Maier AG, Hasang W, Rogerson SJ, Petter M, Chesson J, Stanisic DI, Duffy MF, Cooke BM, Siba PM, Mueller I, Bull PC, Marsh K, Fowkes FJI, Beeson JG. A single point in protein trafficking by Plasmodium falciparum determines the expression of major antigens on the surface of infected erythrocytes targeted by human antibodies. Cell Mol Life Sci 2016; 73:4141-58. [PMID: 27193441 PMCID: PMC5042999 DOI: 10.1007/s00018-016-2267-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/22/2016] [Accepted: 05/06/2016] [Indexed: 11/30/2022]
Abstract
Antibodies to blood-stage antigens of Plasmodium falciparum play a pivotal role in human immunity to malaria. During parasite development, multiple proteins are trafficked from the intracellular parasite to the surface of P. falciparum-infected erythrocytes (IEs). However, the relative importance of different proteins as targets of acquired antibodies, and key pathways involved in trafficking major antigens remain to be clearly defined. We quantified antibodies to surface antigens among children, adults, and pregnant women from different malaria-exposed regions. We quantified the importance of antigens as antibody targets using genetically engineered P. falciparum with modified surface antigen expression. Genetic deletion of the trafficking protein skeleton-binding protein-1 (SBP1), which is involved in trafficking the surface antigen PfEMP1, led to a dramatic reduction in antibody recognition of IEs and the ability of human antibodies to promote opsonic phagocytosis of IEs, a key mechanism of parasite clearance. The great majority of antibody epitopes on the IE surface were SBP1-dependent. This was demonstrated using parasite isolates with different genetic or phenotypic backgrounds, and among antibodies from children, adults, and pregnant women in different populations. Comparisons of antibody reactivity to parasite isolates with SBP1 deletion or inhibited PfEMP1 expression suggest that PfEMP1 is the dominant target of acquired human antibodies, and that other P. falciparum IE surface proteins are minor targets. These results establish SBP1 as part of a critical pathway for the trafficking of major surface antigens targeted by human immunity, and have key implications for vaccine development, and quantifying immunity in populations.
Collapse
Affiliation(s)
- Jo-Anne Chan
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, VIC, 3001, Australia
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Katherine B Howell
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Christine Langer
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, VIC, 3001, Australia
| | - Alexander G Maier
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Wina Hasang
- Department of Medicine, University of Melbourne, Parkville, VIC, Australia
| | - Stephen J Rogerson
- Department of Medicine, University of Melbourne, Parkville, VIC, Australia
| | - Michaela Petter
- Department of Medicine, University of Melbourne, Parkville, VIC, Australia
| | - Joanne Chesson
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | | | - Michael F Duffy
- Department of Medicine, University of Melbourne, Parkville, VIC, Australia
| | - Brian M Cooke
- Programs in Infection and Immunity and Cardiovascular Disease, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
- Department of Microbiology, Monash University, Melbourne, VIC, Australia
| | - Peter M Siba
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Ivo Mueller
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Peter C Bull
- Centre for Geographic Medicine Research, Coast, Kenya Medical Research Institute, Kilifi, Kenya
| | - Kevin Marsh
- Centre for Geographic Medicine Research, Coast, Kenya Medical Research Institute, Kilifi, Kenya
| | - Freya J I Fowkes
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, VIC, 3001, Australia
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Melbourne School of Public Health, University of Melbourne, Parkville, VIC, Australia
- Department of Epidemiology and Preventive Medicine and Department of Infectious Diseases, Monash University, Melbourne, VIC, Australia
| | - James G Beeson
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, VIC, 3001, Australia.
- Department of Medicine, University of Melbourne, Parkville, VIC, Australia.
- Department of Microbiology, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
24
|
Boyle MJ, Reiling L, Osier FH, Fowkes FJI. Recent insights into humoral immunity targeting Plasmodium falciparum and Plasmodium vivax malaria. Int J Parasitol 2016; 47:99-104. [PMID: 27451359 DOI: 10.1016/j.ijpara.2016.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/08/2016] [Accepted: 06/09/2016] [Indexed: 01/02/2023]
Abstract
Recent efforts in malaria control have led to marked reductions in malaria incidence. However, new strategies are needed to sustain malaria elimination and eradication and achieve the World Health Organization goal of a malaria-free world. The development of highly effective vaccines would contribute to this goal and would be facilitated by a comprehensive understanding of humoral immune responses targeting Plasmodium falciparum and Plasmodium vivax malaria. New tools are required to facilitate the identification of vaccine candidates and the development of vaccines that induce functional and protective immunity. Here we discuss recent published findings, and unpublished work presented at the 2016 Molecular Approaches to Malaria conference, that highlight advancements in understanding humoral immune responses in the context of vaccine development. Highlights include the increased application of 'omics' and 'Big data' platforms to identify vaccine candidates, and the identification of novel functions of antibody responses that mediate protection. The application of these strategies and a global approach will increase the likelihood of rapid development of highly efficacious vaccines.
Collapse
Affiliation(s)
- Michelle J Boyle
- Burnet Institute for Medical Research and Public Health, Melbourne, Victoria 3004, Australia; Menzies School of Medical Research, Darwin, Northern Territory 0810, Australia.
| | - Linda Reiling
- Burnet Institute for Medical Research and Public Health, Melbourne, Victoria 3004, Australia
| | - Faith H Osier
- KEMRI Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - Freya J I Fowkes
- Burnet Institute for Medical Research and Public Health, Melbourne, Victoria 3004, Australia; Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria 3010, Australia; Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria 3004, Australia; Department of Infectious Diseases, Monash University, Melbourne, Victoria 3004, Australia
| |
Collapse
|
25
|
Imported malaria including HIV and pregnant woman risk groups: overview of the case of a Spanish city 2004-2014. Malar J 2015; 14:356. [PMID: 26383771 PMCID: PMC4574548 DOI: 10.1186/s12936-015-0891-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 09/03/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Arrival of inmigrants from malaria endemic areas has led to a emergence of cases of this parasitic disease in Spain. The objective of this study was to analyse the high incidence rate of imported malaria in Fuenlabrada, a city in the south of Madrid, together with the frequent the lack of chemoprophylaxis, for the period between 2004 and 2014. Both pregnant women and HIV risk groups have been considered. METHODS Retrospective descriptive study of laboratory-confirmed malaria at the Fuenlabrada University Hospital, in Madrid, during a 10-year period (2004-2014). These data were obtained reviewing medical histories of the cases. Relevant epidemiological, clinical and laboratory results were analysed, with focus on the following risk groups: pregnant women and individuals with HIV. RESULTS A total of 185 cases were diagnosed (90.3 % Plasmodium falciparum). The annual incidence rate was 11.9/100,000 inhabitants/year. The average age was 30.8 years (SD: 14.3). Infections originating in sub-Saharan Africa comprised the 97.6 % of the cases. A total of 85.9 % were Visiting Friends and Relatives. Only a 4.3 % completed adequate prophylaxis. A total of 14.28 % of the fertile women were pregnant, and 8 cases (4.3 %) had HIV. None of them in these special groups completed prophylaxis. CONCLUSIONS The incidence rate in Fuenlabrada is higher than in the rest of Spain, due to the large number of immigrants from endemic areas living in the municipality. However, the results are not representative of all the country. It seems to be reasonable to implement prevention and pre-travel assessment programs to increase chemoprophylaxis. Pregnancy tests and HIV serology should be completed for all patients to improve prophylactic methods.
Collapse
|
26
|
McLEAN ARD, ATAIDE R, SIMPSON JA, BEESON JG, FOWKES FJI. Malaria and immunity during pregnancy and postpartum: a tale of two species. Parasitology 2015; 142:999-1015. [PMID: 25731914 PMCID: PMC4453920 DOI: 10.1017/s0031182015000074] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 12/19/2014] [Accepted: 01/16/2015] [Indexed: 11/07/2022]
Abstract
It is well established that pregnant women are at an increased risk of Plasmodium falciparum infection when compared to non-pregnant individuals and limited epidemiological data suggest Plasmodium vivax risk also increases with pregnancy. The risk of P. falciparum declines with successive pregnancies due to the acquisition of immunity to pregnancy-specific P. falciparum variants. However, despite similar declines in P. vivax risk with successive pregnancies, there is a paucity of evidence P. vivax-specific immunity. Cross-species immunity, as well as immunological and physiological changes that occur during pregnancy may influence the susceptibility to both P. vivax and P. falciparum. The period following delivery, the postpartum period, is relatively understudied and available epidemiological data suggests that it may also be a period of increased risk of infection to Plasmodium spp. Here we review the literature and directly compare and contrast the epidemiology, clinical pathogenesis and immunological features of P. vivax and P. falciparum in pregnancy, with a particular focus on studies performed in areas co-endemic for both species. Furthermore, we review the intriguing epidemiology literature of both P. falciparum and P. vivax postpartum and relate observations to the growing literature pertaining to malaria immunology in the postpartum period.
Collapse
Affiliation(s)
- A. R. D. McLEAN
- Macfarlane Burnet Institute of Medical Research, 85 Commercial Road, Melbourne, Victoria 3004, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - R. ATAIDE
- Macfarlane Burnet Institute of Medical Research, 85 Commercial Road, Melbourne, Victoria 3004, Australia
| | - J. A. SIMPSON
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - J. G. BEESON
- Macfarlane Burnet Institute of Medical Research, 85 Commercial Road, Melbourne, Victoria 3004, Australia
- Department of Microbiology, Monash University, Melbourne, Victoria, Australia
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - F. J. I. FOWKES
- Macfarlane Burnet Institute of Medical Research, 85 Commercial Road, Melbourne, Victoria 3004, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Epidemiology and Preventive Medicine and Department of Infectious Diseases, Monash University, Commercial Road, Melbourne, Victoria 3004, Australia
| |
Collapse
|
27
|
Chandrasiri UP, Fowkes FJI, Richards JS, Langer C, Fan YM, Taylor SM, Beeson JG, Dewey KG, Maleta K, Ashorn P, Rogerson SJ. The impact of lipid-based nutrient supplementation on anti-malarial antibodies in pregnant women in a randomized controlled trial. Malar J 2015; 14:193. [PMID: 25957793 PMCID: PMC4438573 DOI: 10.1186/s12936-015-0707-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 04/16/2015] [Indexed: 11/12/2022] Open
Abstract
Background Malaria and undernutrition frequently coexist, especially in pregnant women and young children. Nutrient supplementation of these vulnerable groups might reduce their susceptibility to malaria by improving immunity. Methods Antibody immunity to antigens expressed by a placental-binding parasite isolate, a non-placental binding parasite isolate, merozoites and schizonts at enrolment (before 20 gestation weeks) and at 36 gestation weeks were measured in 1,009 Malawian pregnant women receiving a daily lipid-based nutrient supplement, multiple micronutrients or iron and folic acid, who were participants in a randomized clinical trial assessing the effects of nutrient supplementation on pregnancy outcomes and child development(registration ID: NCT01239693). Results Antibodies to placental-binding isolates significantly increased while antibodies to most merozoite antigens declined over pregnancy. Overall, after adjustment for covariates, the type of supplementation did not influence antibody levels at 36 gestation weeks or the rate of change in antibody levels from enrolment to 36 weeks. A negative association between maternal body mass index and opsonizing antibodies to placental-binding antigens (coefficient (95% CI) -1.04 (−1.84, −0.24), was observed. Similarly, women with higher socioeconomic status had significantly lower IgG and opsonizing antibodies to placental-binding antigens. Neither of these associations was significantly influenced by the supplementation type. Conclusions In the current cohort nutrient supplementation did not affect anti-malarial antibody responses, but poor and undernourished mothers should be a priority group in future trials. Electronic supplementary material The online version of this article (doi:10.1186/s12936-015-0707-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Upeksha P Chandrasiri
- Department of Medicine, Clinical Sciences Building, The University of Melbourne, Royal Parade, Parkville, VIC, 3052, Australia.
| | - Freya J I Fowkes
- Macfarlane Burnet Institute of Medical Research, 85 Commercial Road, Melbourne, Australia. .,Centre for Epidemiology and Biostatistics, Department of Epidemiology, The University of Melbourne, Melbourne, Australia. .,Preventive Medicine and Department of Infectious Diseases, Monash University, Melbourne, Australia.
| | - Jack S Richards
- Department of Medicine, Clinical Sciences Building, The University of Melbourne, Royal Parade, Parkville, VIC, 3052, Australia. .,Macfarlane Burnet Institute of Medical Research, 85 Commercial Road, Melbourne, Australia.
| | - Christine Langer
- Macfarlane Burnet Institute of Medical Research, 85 Commercial Road, Melbourne, Australia.
| | - Yue-Mei Fan
- Department for International Health, University of Tampere School of Medicine, Tampere, Finland. .,Department of Paediatrics, Tampere University Hospital, Tampere, Finland.
| | - Steve M Taylor
- Duke University Medical Center, Durham, North Carolina, USA. .,Gillings School of Global Public Health, University of North Carolina, Chapel Hill, USA.
| | - James G Beeson
- Department of Medicine, Clinical Sciences Building, The University of Melbourne, Royal Parade, Parkville, VIC, 3052, Australia. .,Macfarlane Burnet Institute of Medical Research, 85 Commercial Road, Melbourne, Australia.
| | - Kathryn G Dewey
- Department of Nutrition, University of California Davis, Davis, California, USA.
| | - Kenneth Maleta
- College of Medicine, University of Malawi, Blantyre, Malawi.
| | - Per Ashorn
- Department for International Health, University of Tampere School of Medicine, Tampere, Finland. .,Department of Paediatrics, Tampere University Hospital, Tampere, Finland.
| | - Stephen J Rogerson
- Department of Medicine, Clinical Sciences Building, The University of Melbourne, Royal Parade, Parkville, VIC, 3052, Australia.
| |
Collapse
|
28
|
Teo A, Hasang W, Boeuf P, Rogerson S. A Robust Phagocytosis Assay to Evaluate the Opsonic Activity of Antibodies against Plasmodium falciparum-Infected Erythrocytes. Methods Mol Biol 2015; 1325:145-52. [PMID: 26450386 DOI: 10.1007/978-1-4939-2815-6_12] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Infection with Plasmodium falciparum parasites causes the majority of malaria-related morbidity and mortality. Constant exposure to the pathogen leads to the acquisition of antibodies and high levels of antibodies have been associated with clinical protection against malaria. A possible protective mechanism is the opsonization of parasites, or malaria-infected erythrocytes (IEs), for phagocytic clearance. Current assays use adherent or chemically differentiated THP-1 cells to evaluate opsonic antibodies in patients' samples, but these assays are often time consuming and damage the effector cells. We have developed a high throughput flow cytometry-based phagocytosis assay using undifferentiated THP-1 cells to quantify the opsonic activity against late stage P. falciparum-IEs. Opsonic antibodies bound to IEs promote their phagocytic uptake through Fcγ receptors found on THP-1 cells. Moreover, undifferentiated THP-1 cells do not express CD36, a surface scavenger receptor that promotes non-opsonic phagocytosis. This technical advance allows quantification of opsonic antibodies and is an important tool for the performance of large, population-based studies of malaria immunity, and to provide a significant increase in the statistical power for such studies.
Collapse
Affiliation(s)
- Andrew Teo
- Department of Medicine, The University of Melbourne, The Doherty Institute Level 5, Parkville, VIC, 3010, Australia.
| | - Wina Hasang
- Department of Medicine, The University of Melbourne, The Doherty Institute Level 5, Parkville, VIC, 3010, Australia.,Victorian Infectious Diseases Service, The Doherty Institute, Parkville, VIC, Australia
| | - Philippe Boeuf
- Centre for Biomedical Research, Macfarlane Burnet Institute of Medical Research, Melbourne, VIC, 3004, Australia
| | - Stephen Rogerson
- Department of Medicine, The University of Melbourne, The Doherty Institute Level 5, Parkville, VIC, 3010, Australia.,Victorian Infectious Diseases Service, The Doherty Institute, Parkville, VIC, Australia
| |
Collapse
|
29
|
Antigen reversal identifies targets of opsonizing IgGs against pregnancy-associated malaria. Infect Immun 2014; 82:4842-53. [PMID: 25156731 DOI: 10.1128/iai.02097-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Clinical immunity to pregnancy associated-malaria (PAM) in multigravida women has been attributed to antibodies that recognize VAR2CSA on the infected erythrocyte (IE) surface. The size and complexity of VAR2CSA have focused efforts on selecting one or more of its six Duffy binding-like (DBL) domains for vaccine development. Presently, however, there is no consensus as to which DBL domain(s) would be most effective in eliciting immunity. This is because antibodies to a number of the DBL domains have been found to block the adhesion of VAR2CSA-expressing erythrocytes to chondroitin sulfate A (CSA)-a major criterion for evaluating vaccine candidacy. Opsonization of IEs by cytophilic antibodies that recognize VAR2CSA represents an important yet understudied effector mechanism in acquired immunity to PAM. To date, no studies have sought to determine the targets of those antibodies. In this study, we found that IgGs from multigravida Malian women showed (i) higher reactivity to recombinant DBL domains by enzyme-linked immunosorbent assay (ELISA), (ii) more binding to VAR2CSA-expressing IEs, and (iii) greater opsonization of these IEs by human monocytic cells than IgGs from malaria-exposed Malian men and malaria-naive American adults. Preincubation of IgGs from multigravida women with recombinant DBL2χ, DBL3χ, or DBL5ε domains significantly diminished opsonization of VAR2CSA-expressing IEs by human monocytes. These data identify the DBL2χ, DBL3χ, and DBL5ε domains as the primary targets of opsonizing IgGs for the first time. Our study introduces a new approach to determining the antigenic targets of opsonizing IgGs in phagocytosis assays.
Collapse
|
30
|
Hill DL, Eriksson EM, Schofield L. High yield purification of Plasmodium falciparum merozoites for use in opsonizing antibody assays. J Vis Exp 2014. [PMID: 25078358 PMCID: PMC4217647 DOI: 10.3791/51590] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Plasmodium falciparum merozoite antigens are under development as potential malaria vaccines. One aspect of immunity against malaria is the removal of free merozoites from the blood by phagocytic cells. However assessing the functional efficacy of merozoite specific opsonizing antibodies is challenging due to the short half-life of merozoites and the variability of primary phagocytic cells. Described in detail herein is a method for generating viable merozoites using the E64 protease inhibitor, and an assay of merozoite opsonin-dependent phagocytosis using the pro-monocytic cell line THP-1. E64 prevents schizont rupture while allowing the development of merozoites which are released by filtration of treated schizonts. Ethidium bromide labelled merozoites are opsonized with human plasma samples and added to THP-1 cells. Phagocytosis is assessed by a standardized high throughput protocol. Viable merozoites are a valuable resource for assessing numerous aspects of P. falciparum biology, including assessment of immune function. Antibody levels measured by this assay are associated with clinical immunity to malaria in naturally exposed individuals. The assay may also be of use for assessing vaccine induced antibodies.
Collapse
Affiliation(s)
- Danika L Hill
- Division of Infection and Immunity, Walter and Eliza Hall Institute of Medical Research; Department of Medical Biology, University of Melbourne
| | - Emily M Eriksson
- Division of Infection and Immunity, Walter and Eliza Hall Institute of Medical Research; Department of Medical Biology, University of Melbourne
| | - Louis Schofield
- Division of Infection and Immunity, Walter and Eliza Hall Institute of Medical Research; Department of Medical Biology, University of Melbourne;
| |
Collapse
|
31
|
Osier FH, Feng G, Boyle MJ, Langer C, Zhou J, Richards JS, McCallum FJ, Reiling L, Jaworowski A, Anders RF, Marsh K, Beeson JG. Opsonic phagocytosis of Plasmodium falciparum merozoites: mechanism in human immunity and a correlate of protection against malaria. BMC Med 2014; 12:108. [PMID: 24980799 PMCID: PMC4098671 DOI: 10.1186/1741-7015-12-108] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 06/06/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND An understanding of the mechanisms mediating protective immunity against malaria in humans is currently lacking, but critically important to advance the development of highly efficacious vaccines. Antibodies play a key role in acquired immunity, but the functional basis for their protective effect remains unclear. Furthermore, there is a strong need for immune correlates of protection against malaria to guide vaccine development. METHODS Using a validated assay to measure opsonic phagocytosis of Plasmodium falciparum merozoites, we investigated the potential role of this functional activity in human immunity against clinical episodes of malaria in two independent cohorts (n = 109 and n = 287) experiencing differing levels of malaria transmission and evaluated its potential as a correlate of protection. RESULTS Antibodies promoting opsonic phagocytosis of merozoites were cytophilic immunoglobulins (IgG1 and IgG3), induced monocyte activation and production of pro-inflammatory cytokines, and were directed against major merozoite surface proteins (MSPs). Consistent with protective immunity in humans, opsonizing antibodies were acquired with increasing age and malaria exposure, were boosted on re-infection, and levels were related to malaria transmission intensity. Opsonic phagocytosis was strongly associated with a reduced risk of clinical malaria in longitudinal studies in children with current or recent infections. In contrast, antibodies to the merozoite surface in standard immunoassays, or growth-inhibitory antibodies, were not significantly associated with protection. In multivariate analyses including several antibody responses, opsonic phagocytosis remained significantly associated with protection against malaria, highlighting its potential as a correlate of immunity. Furthermore, we demonstrate that human antibodies against MSP2 and MSP3 that are strongly associated with protection in this population are effective in opsonic phagocytosis of merozoites, providing a functional link between these antigen-specific responses and protection for the first time. CONCLUSIONS Opsonic phagocytosis of merozoites appears to be an important mechanism contributing to protective immunity in humans. The opsonic phagocytosis assay appears to be a strong correlate of protection against malaria, a valuable biomarker of immunity, and provides a much-needed new tool for assessing responses to blood-stage malaria vaccines and measuring immunity in populations.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - James G Beeson
- Centre for Biomedical Research, The Burnet Institute, 85 Commercial Road, 3004 Melbourne, Victoria, Australia.
| |
Collapse
|
32
|
Teo A, Hasang W, Randall LM, Feng G, Bell L, Unger H, Langer C, Beeson JG, Siba PM, Mueller I, Molyneux ME, Brown GV, Rogerson SJ. Decreasing malaria prevalence and its potential consequences for immunity in pregnant women. J Infect Dis 2014; 210:1444-55. [PMID: 24799599 DOI: 10.1093/infdis/jiu264] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND As malaria control is intensified, pregnant women may be less exposed to malaria, thus affecting the acquisition of protective antibody. METHODS Plasma samples were collected from Malawian and Papua New Guinean (PNG) pregnant women enrolled over 7-year periods, during which malaria prevalence fell by over two thirds. Immunoglobulin G (IgG) levels to schizont extract, merozoite antigens, and VAR2CSA-DBL5ε were measured by enzyme-linked immunosorbent assay (ELISA). Levels of IgG to variant surface antigens of infected erythrocytes (IEs) and merozoites and levels of opsonizing IgG to IEs were measured by flow cytometry. RESULTS In both settings, levels of antibodies in pregnant women to recombinant antigens and to intact IEs but not of opsonizing antibodies decreased over time. After adjustment for coverage with insecticide-treated bed nets (ITNs), these differences disappeared in the Malawian cohort, whereas in the PNG cohort, time was independently associated with a decrease in several antibody responses measured by ELISA. CONCLUSIONS The impact of falling parasite prevalence on anti-Plasmodium falciparum serological indicators in pregnant women varies by setting. Increased ITN coverage may affect development of antibodies to recombinant antigens, but levels of opsonizing IgG remained stable over time. Opsonizing IgG against placental-binding IEs may persist, thus offering longer-lasting protection against malaria during pregnancy.
Collapse
Affiliation(s)
- Andrew Teo
- Department of Medicine Doherty Institute
| | - Wina Hasang
- Department of Medicine Victorian Infectious Diseases Service Doherty Institute
| | - Louise M Randall
- Department of Medicine Victorian Infectious Diseases Service Doherty Institute
| | | | - Lauren Bell
- Nossal Institute for Global Health, University of Melbourne
| | | | | | | | - Peter M Siba
- Papua New Guinea Institute of Medical Research, Goroka
| | - Ivo Mueller
- Walter and Eliza Hall Institute of Medical Research, Parkville Barcelona Center for International Health Research, Spain
| | - Malcolm E Molyneux
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme College of Medicine, Blantyre Liverpool School of Tropical Medicine, United Kingdom
| | - Graham V Brown
- Nossal Institute for Global Health, University of Melbourne
| | - Stephen J Rogerson
- Department of Medicine Victorian Infectious Diseases Service Doherty Institute
| |
Collapse
|
33
|
Hasang W, Dembo EG, Wijesinghe R, Molyneux ME, Kublin JG, Rogerson S. HIV-1 infection and antibodies to Plasmodium falciparum in adults. J Infect Dis 2014; 210:1407-14. [PMID: 24795481 DOI: 10.1093/infdis/jiu262] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Coinfection with human immunodeficiency virus (HIV) may increase susceptibility to malaria by compromising naturally acquired immunity. METHODS In 339 adults (64% HIV infected), we measured antibodies to Plasmodium falciparum variant surface antigens (VSA) and antibodies that opsonise infected erythrocytes using parasite lines FCR3, E8B, and R29, and antibodies to merozoite antigens AMA-1 and MSP2. We determined the relationship between malaria antibodies, HIV infection, markers of immune compromise, and risk of incident parasitemia. RESULTS HIV-infected adults had significantly lower mean levels of opsonizing antibody to all parasite lines (P < .0001), and lower levels of antibody to AMA-1 (P = .01) and MSP2 (P < .0001). Levels of immunoglobulin G (IgG) to VSA were not affected by HIV status. Opsonising antibody titres against some isolates were positively correlated with CD4 count. There were negative associations between human immunodeficiency virus type 1 (HIV-1) viral load and opsonizing antibodies to FCR3 (P = .04), and levels of IgG to AMA-1 (P ≤ .03) and MSP2-3D7 (P = .05). Lower opsonizing antibody levels on enrollment were seen in those who became parasitemic during follow-up, independent of HIV infection (P ≤ .04 for each line). CONCLUSIONS HIV-1 infection decreases opsonizing antibodies to VSA, and antibody to merozoite antigens. Opsonizing antibodies were associated with lack of parasitemia during follow up, suggesting a role in protection.
Collapse
Affiliation(s)
- Wina Hasang
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne Victorian Infectious Diseases Service, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Edson G Dembo
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre
| | - Rushika Wijesinghe
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne
| | - Malcolm E Molyneux
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre The Liverpool School of Tropical Medicine, United Kingdom
| | - James G Kublin
- Fred Hutchison Cancer Research Center, Seattle, Washington
| | - Stephen Rogerson
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne Victorian Infectious Diseases Service, Royal Melbourne Hospital, Parkville, Victoria, Australia
| |
Collapse
|
34
|
Chan JA, Fowkes FJI, Beeson JG. Surface antigens of Plasmodium falciparum-infected erythrocytes as immune targets and malaria vaccine candidates. Cell Mol Life Sci 2014; 71:3633-57. [PMID: 24691798 PMCID: PMC4160571 DOI: 10.1007/s00018-014-1614-3] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 03/04/2014] [Accepted: 03/17/2014] [Indexed: 12/19/2022]
Abstract
Understanding the targets and mechanisms of human immunity to malaria caused by Plasmodium falciparum is crucial for advancing effective vaccines and developing tools for measuring immunity and exposure in populations. Acquired immunity to malaria predominantly targets the blood stage of infection when merozoites of Plasmodium spp. infect erythrocytes and replicate within them. During the intra-erythrocytic development of P. falciparum, numerous parasite-derived antigens are expressed on the surface of infected erythrocytes (IEs). These antigens enable P. falciparum-IEs to adhere in the vasculature and accumulate in multiple organs, which is a key process in the pathogenesis of disease. IE surface antigens, often referred to as variant surface antigens, are important targets of acquired protective immunity and include PfEMP1, RIFIN, STEVOR and SURFIN. These antigens are highly polymorphic and encoded by multigene families, which generate substantial antigenic diversity to mediate immune evasion. The most important immune target appears to be PfEMP1, which is a major ligand for vascular adhesion and sequestration of IEs. Studies are beginning to identify specific variants of PfEMP1 linked to disease pathogenesis that may be suitable for vaccine development, but overcoming antigenic diversity in PfEMP1 remains a major challenge. Much less is known about other surface antigens, or antigens on the surface of gametocyte-IEs, the effector mechanisms that mediate immunity, and how immunity is acquired and maintained over time; these are important topics for future research.
Collapse
|
35
|
Lu DR, Tan YC, Kongpachith S, Cai X, Stein EA, Lindstrom TM, Sokolove J, Robinson WH. Identifying functional anti-Staphylococcus aureus antibodies by sequencing antibody repertoires of patient plasmablasts. Clin Immunol 2014; 152:77-89. [PMID: 24589749 DOI: 10.1016/j.clim.2014.02.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 02/15/2014] [Accepted: 02/15/2014] [Indexed: 01/16/2023]
Abstract
Infection by Staphylococcus aureus is on the rise, and there is a need for a better understanding of host immune responses that combat S. aureus. Here we use DNA barcoding to enable deep sequencing of the paired heavy- and light-chain immunoglobulin genes expressed by individual plasmablasts derived from S. aureus-infected humans. Bioinformatic analysis of the antibody repertoires revealed clonal families of heavy-chain sequences and enabled rational selection of antibodies for recombinant expression. Of the ten recombinant antibodies produced, seven bound to S. aureus, of which four promoted opsonophagocytosis of S. aureus. Five of the antibodies bound to known S. aureus cell-surface antigens, including fibronectin-binding protein A. Fibronectin-binding protein A-specific antibodies were isolated from two independent S. aureus-infected patients and mediated neutrophil killing of S. aureus in in vitro assays. Thus, our DNA barcoding approach enabled efficient identification of antibodies involved in protective host antibody responses against S. aureus.
Collapse
Affiliation(s)
- Daniel R Lu
- Division of Immunology and Rheumatology, Stanford University, CCSR 4135, 269 Campus Dr., Stanford, CA 94305, USA; VA Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA 94304, USA; Stanford Immunology Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yann-Chong Tan
- Division of Immunology and Rheumatology, Stanford University, CCSR 4135, 269 Campus Dr., Stanford, CA 94305, USA; VA Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA 94304, USA; Stanford Immunology Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sarah Kongpachith
- Division of Immunology and Rheumatology, Stanford University, CCSR 4135, 269 Campus Dr., Stanford, CA 94305, USA; VA Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA 94304, USA; Stanford Immunology Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Xiaoyong Cai
- Division of Immunology and Rheumatology, Stanford University, CCSR 4135, 269 Campus Dr., Stanford, CA 94305, USA; VA Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA 94304, USA
| | - Emily A Stein
- Division of Immunology and Rheumatology, Stanford University, CCSR 4135, 269 Campus Dr., Stanford, CA 94305, USA; VA Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA 94304, USA
| | - Tamsin M Lindstrom
- Division of Immunology and Rheumatology, Stanford University, CCSR 4135, 269 Campus Dr., Stanford, CA 94305, USA
| | - Jeremy Sokolove
- Division of Immunology and Rheumatology, Stanford University, CCSR 4135, 269 Campus Dr., Stanford, CA 94305, USA; VA Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA 94304, USA
| | - William H Robinson
- Division of Immunology and Rheumatology, Stanford University, CCSR 4135, 269 Campus Dr., Stanford, CA 94305, USA; VA Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA 94304, USA; Stanford Immunology Program, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
36
|
Ludlow LE, Hasang W, Umbers AJ, Forbes EK, Ome M, Unger HW, Mueller I, Siba PM, Jaworowski A, Rogerson SJ. Peripheral blood mononuclear cells derived from grand multigravidae display a distinct cytokine profile in response to P. falciparum infected erythrocytes. PLoS One 2014; 9:e86160. [PMID: 24465935 PMCID: PMC3899203 DOI: 10.1371/journal.pone.0086160] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 12/06/2013] [Indexed: 12/02/2022] Open
Abstract
Immunopathology of placental malaria is most significant in women in their first pregnancy especially in endemic areas, due to a lack of protective immunity to Plasmodium falciparum, which is acquired in successive pregnancies. In some studies (but not all), grand multigravidae (defined as 5 or more pregnancies, G5–7) are more susceptible to poor birth outcomes associated with malaria compared to earlier gravidities. By comparing peripheral cellular responses in primigravidae (G1), women in their second to fourth pregnancy (G2–4) and grand multigravidae we sought to identify key components of the dysregulated immune response. PBMC were exposed to CS2-infected erythrocytes (IE) opsonised with autologous plasma or unopsonised IE, and cytokine and chemokine secretion was measured. Higher levels of opsonising antibody were present in plasma derived from multigravid compared to primigravid women. Significant differences in the levels of cytokines and chemokines secreted in response to IE were observed. Less IL-10, IL-1β, IL-6 and TNF but more CXCL8, CCL8, IFNγ and CXCL10 were detected in G5–7 compared to G2–4 women. Our study provides fresh insight into the modulation of peripheral blood cell function and effects on the balance between host protection and immunopathology during placental malaria infection.
Collapse
Affiliation(s)
- Louise E Ludlow
- Department of Medicine (RMH), University of Melbourne, Post Office Royal Melbourne Hospital, Melbourne, Victoria, Australia ; Victorian Infectious Diseases Service, Royal Melbourne Hospital, Grattan Street, Parkville, Victoria, Australia
| | - Wina Hasang
- Department of Medicine (RMH), University of Melbourne, Post Office Royal Melbourne Hospital, Melbourne, Victoria, Australia ; Victorian Infectious Diseases Service, Royal Melbourne Hospital, Grattan Street, Parkville, Victoria, Australia
| | - Alexandra J Umbers
- Department of Medicine (RMH), University of Melbourne, Post Office Royal Melbourne Hospital, Melbourne, Victoria, Australia ; Victorian Infectious Diseases Service, Royal Melbourne Hospital, Grattan Street, Parkville, Victoria, Australia ; Papua New Guinea Institute of Medical Research, Vector Borne Disease Unit, Madang, PNG
| | - Emily K Forbes
- Department of Medicine (RMH), University of Melbourne, Post Office Royal Melbourne Hospital, Melbourne, Victoria, Australia ; Victorian Infectious Diseases Service, Royal Melbourne Hospital, Grattan Street, Parkville, Victoria, Australia
| | - Maria Ome
- Papua New Guinea Institute of Medical Research, Vector Borne Disease Unit, Madang, PNG
| | - Holger W Unger
- Department of Medicine (RMH), University of Melbourne, Post Office Royal Melbourne Hospital, Melbourne, Victoria, Australia ; Victorian Infectious Diseases Service, Royal Melbourne Hospital, Grattan Street, Parkville, Victoria, Australia ; Papua New Guinea Institute of Medical Research, Vector Borne Disease Unit, Madang, PNG
| | - Ivo Mueller
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia ; Barcelona Centre for International Health Research (CRESIB), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Peter M Siba
- Papua New Guinea Institute of Medical Research, Vector Borne Disease Unit, Madang, PNG
| | - Anthony Jaworowski
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria, Australia ; Department of Infectious Diseases, Monash University, Victoria, Australia ; Department of Immunology, Monash University, Victoria, Australia
| | - Stephen J Rogerson
- Department of Medicine (RMH), University of Melbourne, Post Office Royal Melbourne Hospital, Melbourne, Victoria, Australia ; Victorian Infectious Diseases Service, Royal Melbourne Hospital, Grattan Street, Parkville, Victoria, Australia
| |
Collapse
|
37
|
Ataíde R, Mayor A, Rogerson SJ. Malaria, primigravidae, and antibodies: knowledge gained and future perspectives. Trends Parasitol 2013; 30:85-94. [PMID: 24388420 DOI: 10.1016/j.pt.2013.12.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 12/08/2013] [Accepted: 12/08/2013] [Indexed: 10/25/2022]
Abstract
Pregnant women have an increased risk of malaria infection, independent of previously acquired immunity. Women in their first pregnancy and children under the age of five are the primary victims of malaria worldwide. Pregnant women develop antibodies against placenta-adhesive parasites in a parity-dependent manner. Various efforts to understand the targets, quality, and quantity of this antibody response could aid the design of an effective vaccine against placental malaria. This review focuses on the research that has led to the current understanding of the antibody response that primigravidae (PG) acquire to Plasmodium falciparum malaria and draws from this knowledge to suggest serology and PG as sentinels for malaria transmission.
Collapse
Affiliation(s)
- Ricardo Ataíde
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Melbourne, Australia.
| | - Alfredo Mayor
- Barcelona Centre for International Health Research (CRESIB), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain; Centro de Investigação em Saúde da Manhiça (CISM), Manhiça, Mozambique
| | - Stephen J Rogerson
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
38
|
Chandrasiri UP, Randall LM, Saad AA, Bashir AM, Rogerson SJ, Adam I. Low antibody levels to pregnancy-specific malaria antigens and heightened cytokine responses associated with severe malaria in pregnancy. J Infect Dis 2013; 209:1408-17. [PMID: 24277742 DOI: 10.1093/infdis/jit646] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Pregnant women living in unstable malaria transmission settings may develop severe malaria (SM). The pathogenesis of SM in pregnancy is poorly understood. METHODS To determine whether SM in pregnancy is associated with lower malarial antibody responses and higher cytokine responses, plasma samples were collected from 121 Sudanese pregnant women of whom 39 were diagnosed with SM. Antibodies to pregnancy-specific and non-pregnancy-specific Plasmodium falciparum variant surface antigens (VSA) and concentrations of cytokines TNF, IFNγ, IL-1β, IL-6, IL-8 and IL-10 were measured. RESULTS Pregnant women with SM demonstrated significantly lower antibody levels to pregnancy-specific VSA (P = .020) and higher plasma IFNγ (P = .020), IL-10 (P = .0002) and IL-6 levels (P < .0001) than uninfected pregnant women. Concentrations of inflammatory cytokines IL-1β (P = .001), IL-6 (P = .004) and IL-8 (P = .020) were inversely correlated with antibodies to VAR2CSA-DBL5 in pregnant women with SM. Lower haemoglobin levels and higher parasite densities were associated with lack of pregnancy-specific antibodies (P = .028) and higher levels of inflammatory cytokines, in particular IL-6 and IL-8. CONCLUSIONS Pregnant women with SM lack pregnancy-specific malaria immunity, and this correlates with heightened inflammatory cytokine concentrations, low haemoglobin levels and high parasite density, suggesting that failure of antibody to control parasitaemia may contribute to SM pathogenesis.
Collapse
Affiliation(s)
- Upeksha P Chandrasiri
- Department of Medicine, The University of Melbourne, Melbourne Victoria 3052, Australia
| | | | | | | | | | | |
Collapse
|
39
|
Chang CC, Crane M, Zhou J, Mina M, Post JJ, Cameron BA, Lloyd AR, Jaworowski A, French MA, Lewin SR. HIV and co-infections. Immunol Rev 2013; 254:114-42. [PMID: 23772618 PMCID: PMC3697435 DOI: 10.1111/imr.12063] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite significant reductions in morbidity and mortality secondary to availability of effective combination anti-retroviral therapy (cART), human immunodeficiency virus (HIV) infection still accounts for 1.5 million deaths annually. The majority of deaths occur in sub-Saharan Africa where rates of opportunistic co-infections are disproportionately high. In this review, we discuss the immunopathogenesis of five common infections that cause significant morbidity in HIV-infected patients globally. These include co-infection with Mycobacterium tuberculosis, Cryptococcus neoformans, hepatitis B virus, hepatitis C virus, and Plasmodium falciparum. Specifically, we review the natural history of each co-infection in the setting of HIV, the specific immune defects induced by HIV, the effects of cART on the immune response to the co-infection, the pathogenesis of immune restoration disease (IRD) associated with each infection, and advances in the areas of prevention of each co-infection via vaccination. Finally, we discuss the opportunities and gaps in knowledge for future research.
Collapse
Affiliation(s)
- Christina C Chang
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Regev-Rudzki N, Wilson DW, Carvalho TG, Sisquella X, Coleman BM, Rug M, Bursac D, Angrisano F, Gee M, Hill AF, Baum J, Cowman AF. Cell-cell communication between malaria-infected red blood cells via exosome-like vesicles. Cell 2013; 153:1120-33. [PMID: 23683579 DOI: 10.1016/j.cell.2013.04.029] [Citation(s) in RCA: 426] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 03/12/2013] [Accepted: 04/16/2013] [Indexed: 12/27/2022]
Abstract
Cell-cell communication is an important mechanism for information exchange promoting cell survival for the control of features such as population density and differentiation. We determined that Plasmodium falciparum-infected red blood cells directly communicate between parasites within a population using exosome-like vesicles that are capable of delivering genes. Importantly, communication via exosome-like vesicles promotes differentiation to sexual forms at a rate that suggests that signaling is involved. Furthermore, we have identified a P. falciparum protein, PfPTP2, that plays a key role in efficient communication. This study reveals a previously unidentified pathway of P. falciparum biology critical for survival in the host and transmission to mosquitoes. This identifies a pathway for the development of agents to block parasite transmission from the human host to the mosquito.
Collapse
Affiliation(s)
- Neta Regev-Rudzki
- Division of Infection and Immunity, the Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Mayor A, Kumar U, Bardají A, Gupta P, Jiménez A, Hamad A, Sigaúque B, Singh B, Quintó L, Kumar S, Gupta PK, Chauhan VS, Dobaño C, Alonso PL, Menéndez C, Chitnis CE. Improved Pregnancy Outcomes in Women Exposed to Malaria With High Antibody Levels Against Plasmodium falciparum. J Infect Dis 2013; 207:1664-74. [DOI: 10.1093/infdis/jit083] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
42
|
Efficient measurement of opsonising antibodies to Plasmodium falciparum merozoites. PLoS One 2012; 7:e51692. [PMID: 23300556 PMCID: PMC3530572 DOI: 10.1371/journal.pone.0051692] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 11/05/2012] [Indexed: 12/03/2022] Open
Abstract
Background Antibodies targeting merozoites are important in protection from malaria. Therefore, merozoite surface proteins are attractive vaccine candidates. There is a need for robust functional assays to investigate mechanisms of acquired immunity and vaccine efficacy. To date, the study of merozoite phagocytosis has been confounded by the complexity and variability of in vitro assays. Methodology/Principal findings We have developed a new flow cytometry-based merozoite phagocytosis assay. An optimized merozoite preparation technique produced high yields of merozoites separated from haemozoin. Phagocytosis by the undifferentiated THP-1 monocytic cell line was mediated only by Fc Receptors, and was therefore ideal for studying opsonising antibody responses. The assay showed robust phagocytosis with highly diluted immune sera and strong inter-assay correlation. The assay effectively measured differences in opsonisation-dependent phagocytosis among individuals. Conclusions/Significance This highly reproducible assay has potential applications in assessing the role of opsonic phagocytosis in naturally acquired immunity and vaccine trials.
Collapse
|
43
|
Chan JA, Howell KB, Reiling L, Ataide R, Mackintosh CL, Fowkes FJI, Petter M, Chesson JM, Langer C, Warimwe GM, Duffy MF, Rogerson SJ, Bull PC, Cowman AF, Marsh K, Beeson JG. Targets of antibodies against Plasmodium falciparum-infected erythrocytes in malaria immunity. J Clin Invest 2012; 122:3227-38. [PMID: 22850879 DOI: 10.1172/jci62182] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 06/21/2012] [Indexed: 11/17/2022] Open
Abstract
Plasmodium falciparum is the major cause of malaria globally and is transmitted by mosquitoes. During parasitic development, P. falciparum-infected erythrocytes (P. falciparum-IEs) express multiple polymorphic proteins known as variant surface antigens (VSAs), including the P. falciparum erythrocyte membrane protein 1 (PfEMP1). VSA-specific antibodies are associated with protection from symptomatic and severe malaria. However, the importance of the different VSA targets of immunity to malaria remains unclear, which has impeded an understanding of malaria immunity and vaccine development. In this study, we developed assays using transgenic P. falciparum with modified PfEMP1 expression to quantify serum antibodies to VSAs among individuals exposed to malaria. We found that the majority of the human antibody response to the IE targets PfEMP1. Furthermore, our longitudinal studies showed that individuals with PfEMP1-specific antibodies had a significantly reduced risk of developing symptomatic malaria, whereas antibodies to other surface antigens were not associated with protective immunity. Using assays that measure antibody-mediated phagocytosis of IEs, an important mechanism in parasite clearance, we identified PfEMP1 as the major target of these functional antibodies. Taken together, these data demonstrate that PfEMP1 is a key target of humoral immunity. These findings advance our understanding of the targets and mediators of human immunity to malaria and have major implications for malaria vaccine development.
Collapse
Affiliation(s)
- Jo-Anne Chan
- Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
González R, Ataíde R, Naniche D, Menéndez C, Mayor A. HIV and malaria interactions: where do we stand? Expert Rev Anti Infect Ther 2012; 10:153-65. [PMID: 22339190 DOI: 10.1586/eri.11.167] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Reversing the spread of HIV infection and the incidence of malaria constitute two of the Millenium Development Goals. However, despite recent achievements, both diseases still entail global heath problems. Furthermore, their overlapping geographical distribution raises concerns and challenges for potential immunological, clinical and therapeutic interactions. It has been reported that HIV infection increases malaria susceptibility and reduces the efficacy of antimalarial drugs. On the other hand, the effect of malaria on HIV-infected individuals has also been explored, with the parasitic infection increasing the risk of HIV disease progression and mother-to-child transmission of HIV. The spread of malaria and parasite resistance to antimalarials could also be accelerated by HIV-associated immunosuppresion. Current knowledge of the epidemiological, clinical, immunological and therapeutic interactions of the two diseases is reviewed in this article. We focus on the latest available data, pointing out key future research areas and challenges of the field.
Collapse
Affiliation(s)
- Raquel González
- Barcelona Centre for International Heath Research (CRESIB), Hospital Clínic/IDIBAPS, Universitat de Barcelona, Spain
| | | | | | | | | |
Collapse
|
45
|
Hochman S, Kim K. The Impact of HIV Coinfection on Cerebral Malaria Pathogenesis. JOURNAL OF NEUROPARASITOLOGY 2012; 3:235547. [PMID: 22545215 PMCID: PMC3336366 DOI: 10.4303/jnp/235547] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
HIV infection is widespread throughout the world and is especially prevalent in sub-Saharan Africa and Asia. Similarly, Plasmodium falciparum, the most common cause of severe malaria, affects large areas of sub-Saharan Africa, the Indian subcontinent, and Southeast Asia. Although initial studies suggested that HIV and malaria had independent impact upon patient outcomes, recent studies have indicated a more significant interaction. Clinical studies have shown that people infected with HIV have more frequent and severe episodes of malaria, and parameters of HIV disease progression worsen in individuals during acute malaria episodes. However, the effect of HIV on development of cerebral malaria, a manifestation of P. falciparum infection that is frequently fatal, has not been characterized. We review clinical and basic science studies pertaining to HIV and malaria coinfection and cerebral malaria in particular in order to highlight the likely role HIV plays in exacerbating cerebral malaria pathogenesis.
Collapse
Affiliation(s)
- Sarah Hochman
- Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | | |
Collapse
|
46
|
Ludlow LE, Zhou J, Tippett E, Cheng WJ, Hasang W, Rogerson SJ, Jaworowski A. HIV-1 inhibits phagocytosis and inflammatory cytokine responses of human monocyte-derived macrophages to P. falciparum infected erythrocytes. PLoS One 2012; 7:e32102. [PMID: 22363802 PMCID: PMC3283736 DOI: 10.1371/journal.pone.0032102] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 01/23/2012] [Indexed: 11/21/2022] Open
Abstract
HIV-1 infection increases the risk and severity of malaria by poorly defined mechanisms. We investigated the effect of HIV-1Ba-L infection of monocyte-derived macrophages (MDM) on phagocytosis of opsonised P. falciparum infected erythrocytes (IE) and subsequent proinflammatory cytokine secretion. Compared to mock-infected MDM, HIV-1 infection significantly inhibited phagocytosis of IE (median (IQR) (10 (0–28) versus (34 (27–108); IE internalised/100 MDM; p = 0.001) and decreased secretion of IL-6 (1,116 (352–3,387) versus 1,552 (889–6,331); pg/mL; p = 0.0078) and IL-1β (16 (7–21) versus 33 (27–65); pg/mL; p = 0.0078). Thus inadequate phagocytosis and cytokine production may contribute to impaired control of malaria in HIV-1 infected individuals.
Collapse
Affiliation(s)
- Louise E Ludlow
- Department of Medicine (RMH), University of Melbourne, Post Office Royal Melbourne Hospital, Melbourne, Victoria, Australia.
| | | | | | | | | | | | | |
Collapse
|
47
|
Hviid L. The case for PfEMP1-based vaccines to protect pregnant women against Plasmodium falciparum malaria. Expert Rev Vaccines 2012; 10:1405-14. [PMID: 21988306 DOI: 10.1586/erv.11.113] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Vaccines are very cost-effective tools in combating infectious disease mortality and morbidity. Unfortunately, vaccines efficiently protecting against infection with malaria parasites are not available and are not likely to appear in the near future. An alternative strategy would be vaccines protecting against the disease and its consequences rather than against infection per se, by accelerating the development of the protective immunity that is normally acquired after years of exposure to malaria parasites in areas of stable transmission. This latter strategy is being energetically pursued to develop a vaccine protecting pregnant women and their offspring against mortality and morbidity caused by the accumulation of Plasmodium falciparum-infected erythrocytes in the placenta. It is based on a detailed understanding of the parasite antigen and the host receptor involved in this accumulation, as well as knowledge regarding the protective immune response that is acquired in response to placental P. falciparum infection. Nevertheless, it remains controversial in some quarters whether such a vaccine would have the desired impact, or indeed whether the strategy is meaningful. This article critically examines the relevance of several perceived obstacles to development of a vaccine against placental malaria.
Collapse
Affiliation(s)
- Lars Hviid
- Centre for Medical Parasitology, University of Copenhagen and Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark.
| |
Collapse
|
48
|
Menéndez C, Moorthy VS, Reed Z, Bardají A, Alonso P, Brown GV. Development of vaccines to prevent malaria in pregnant women: WHO MALVAC meeting report. Expert Rev Vaccines 2012; 10:1271-80. [PMID: 21919617 DOI: 10.1586/erv.11.95] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The major public health consequences of malaria in pregnancy have long been acknowledged. However, further information is still required for development and implementation of a malaria vaccine specifically directed to prevent malaria in pregnant women and improve maternal, fetal and infant outcomes. The WHO Malaria Vaccine Advisory Committee (MALVAC) provides guidance to the WHO on strategic priorities and research needs for development of vaccines to prevent malaria. Here we summarize the discussions and conclusions of a MALVAC scientific forum meeting on considerations in the development of vaccines to prevent malaria in pregnant women. This report includes brief summaries of what is known, and major knowledge gaps in disease burden estimation, pathogenesis and immunity, and the challenges with current preventive strategies for malaria in pregnancy. We conclude with the formulation of a conceptual framework for research and development for vaccines to prevent malaria in pregnant women.
Collapse
Affiliation(s)
- Clara Menéndez
- Barcelona Center for International Health Research (CRESIB), Hospital Clinic/Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
49
|
Ataíde R, Mwapasa V, Molyneux ME, Meshnick SR, Rogerson SJ. Antibodies that induce phagocytosis of malaria infected erythrocytes: effect of HIV infection and correlation with clinical outcomes. PLoS One 2011; 6:e22491. [PMID: 21811621 PMCID: PMC3139654 DOI: 10.1371/journal.pone.0022491] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 06/28/2011] [Indexed: 12/05/2022] Open
Abstract
HIV infection increases the burden of disease of malaria in pregnancy, in part by impairing the development of immunity. We measured total IgG and phagocytic antibodies against variant surface antigens of placental-type CS2 parasites in 187 secundigravidae (65% HIV infected). In women with placental malaria infection, phagocytic antibodies to CS2VSA were decreased in the presence of HIV (p = 0.011) and correlated positively with infant birth weight (coef = 3.57, p = 0.025), whereas total IgG to CS2VSA did not. Phagocytic antibodies to CS2VSA are valuable tools to study acquired immunity to malaria in the context of HIV co-infection. Secundigravidae may be an informative group for identification of correlates of immunity.
Collapse
Affiliation(s)
- Ricardo Ataíde
- Department of Medicine (RMH/WH), University of Melbourne, Post Office Royal Melbourne Hospital, Melbourne, Victoria, Australia.
| | | | | | | | | |
Collapse
|
50
|
Ghumra A, Khunrae P, Ataide R, Raza A, Rogerson SJ, Higgins MK, Rowe JA. Immunisation with recombinant PfEMP1 domains elicits functional rosette-inhibiting and phagocytosis-inducing antibodies to Plasmodium falciparum. PLoS One 2011; 6:e16414. [PMID: 21305024 PMCID: PMC3031562 DOI: 10.1371/journal.pone.0016414] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 12/14/2010] [Indexed: 11/24/2022] Open
Abstract
Background Rosetting is a Plasmodium falciparum virulence factor implicated in the pathogenesis of life-threatening malaria. Rosetting occurs when parasite–derived P. falciparum Erythrocyte Membrane Protein One (PfEMP1) on the surface of infected erythrocytes binds to human receptors on uninfected erythrocytes. PfEMP1 is a possible target for a vaccine to induce antibodies to inhibit rosetting and prevent severe malaria. Methodology/Findings We examined the vaccine potential of the six extracellular domains of a rosette-mediating PfEMP1 variant (ITvar9/R29var1 from the R29 parasite strain) by immunizing rabbits with recombinant proteins expressed in E. coli. Antibodies raised to each domain were tested for surface fluorescence with live infected erythrocytes, rosette inhibition and phagocytosis-induction. Antibodies to all PfEMP1 domains recognized the surface of live infected erythrocytes down to low concentrations (0.02–1.56 µg/ml of total IgG). Antibodies to all PfEMP1 domains except for the second Duffy-Binding-Like region inhibited rosetting (50% inhibitory concentration 0.04–4 µg/ml) and were able to opsonize and induce phagocytosis of infected erythrocytes at low concentrations (1.56–6.25 µg/ml). Antibodies to the N-terminal region (NTS-DBL1α) were the most effective in all assays. All antibodies were specific for the R29 parasite strain, and showed no functional activity against five other rosetting strains. Conclusions/Significance These results are encouraging for vaccine development as they show that potent antibodies can be generated to recombinant PfEMP1 domains that will inhibit rosetting and induce phagocytosis of infected erythrocytes. However, further work is needed on rosetting mechanisms and cross-reactivity in field isolates to define a set of PfEMP1 variants that could induce functional antibodies against a broad range of P. falciparum rosetting parasites.
Collapse
Affiliation(s)
- Ashfaq Ghumra
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Pongsak Khunrae
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Ricardo Ataide
- Department of Medicine, University of Melbourne, Post Office Royal Melbourne Hospital, Melbourne, Australia
- Graduate Program in Areas of Basic and Applied Biology, Universidade do Porto, Porto, Portugal
| | - Ahmed Raza
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Stephen J. Rogerson
- Department of Medicine, University of Melbourne, Post Office Royal Melbourne Hospital, Melbourne, Australia
| | - Matthew K. Higgins
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - J. Alexandra Rowe
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|