1
|
Wang W, Song W, Majzoub ME, Feng X, Xu B, Tao J, Zhu Y, Li Z, Qian PY, Webster NS, Thomas T, Fan L. Decoupling of strain- and intrastrain-level interactions of microbiomes in a sponge holobiont. Nat Commun 2024; 15:8205. [PMID: 39294150 PMCID: PMC11410982 DOI: 10.1038/s41467-024-52464-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 09/07/2024] [Indexed: 09/20/2024] Open
Abstract
Holobionts are highly organized assemblages of eukaryotic hosts, cellular microbial symbionts, and viruses, whose interactions and evolution involve complex biological processes. It is largely unknown which specific determinants drive similarity or individuality in genetic diversity between holobionts. Here, we combine short- and long-read sequencing and DNA-proximity-linkage technologies to investigate intraspecific diversity of the microbiomes, including host-resolved viruses, in individuals of a model marine sponge. We find strong impacts of the sponge host and the cellular hosts of viruses on strain-level organization of the holobiont, whereas substantial overlap in nucleotide diversity between holobionts suggests frequent exchanges of microbial cells and viruses at intrastrain level in the local sponge population. Immune-evasive arms races likely restricted virus-host co-evolution at the intrastrain level, generated holobiont-specific genome variations, and linked virus-host genetics through recombination. Our work shows that a decoupling of strain- and intrastrain-level interactions is a key factor in the genetic diversification of holobionts.
Collapse
Affiliation(s)
- Wenxiu Wang
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Weizhi Song
- Center for Marine Science and Innovation, University of New South Wales, Sydney, New South Wales, Australia
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Marwan E Majzoub
- Center for Marine Science and Innovation, University of New South Wales, Sydney, New South Wales, Australia
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Xiaoyuan Feng
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Bu Xu
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jianchang Tao
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yuanqing Zhu
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Zhiyong Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Minhang, Shanghai, China
| | - Pei-Yuan Qian
- Department of Ocean Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong, China
| | - Nicole S Webster
- The Australian Antarctic Division, Kingston, Tasmania, Australia
- Australian Centre for Ecogenomics, University of Queensland, Brisbane, Queensland, Australia
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Torsten Thomas
- Center for Marine Science and Innovation, University of New South Wales, Sydney, New South Wales, Australia.
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia.
| | - Lu Fan
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| |
Collapse
|
2
|
Vujić A, Djan M, Radenković S, Likov L, Ačanski J, Vujanović D, Veličković N, Pérez-Bañón C, Rojo S, Aracil A, Jordaens K, Ståhls G. A window on remarkable cryptic diversity of the Merodon planifacies subgroup (Diptera: Syrphidae) in the Afrotropical Region. JOURNAL OF INSECT SCIENCE (ONLINE) 2024; 24:4. [PMID: 39382173 PMCID: PMC11462455 DOI: 10.1093/jisesa/ieae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/31/2024] [Accepted: 08/22/2024] [Indexed: 10/10/2024]
Abstract
The genus Merodon Meigen (Diptera: Syrphidae) is one of the most species-rich hoverfly genera distributed across the Palaearctic and Afrotropical regions. In the Palaearctic, the genus Merodon boasts 195 described species, while its Afrotropical region pales in comparison, with a mere 17 species documented thus far. As a result of 8 years of fieldwork conducted in the Republic of South Africa, in this paper, we present the description of 11 new species for science with a description of immature stages for 2 species, which increases the diversity of this genus in the Afrotropical region by remarkable 39%. These revelations are based on integrating morphology, molecular analysis (COI gene and 28S rRNA) and geometric morphometry. All described species belong to the Merodon planifacies subgroup, the Merodon desuturinus lineage and, within that, to the Afrotropical Merodon melanocerus group. Additionally, we provide an illustrated key to 15 species belonging to the subgroup, a detailed discussion on relevant taxonomic characters, a morphological diagnosis, a distribution map and clarification of the association between M. capi complex and host plants from the genus Merwilla.
Collapse
Affiliation(s)
- Ante Vujić
- Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Mihajla Djan
- Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | | | - Laura Likov
- Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Jelena Ačanski
- University of Novi Sad, BioSense Institute, Novi Sad, Serbia
| | | | | | - Celeste Pérez-Bañón
- Department of Environmental Sciences and Natural Resources, Faculty of Sciences III, Campus of San Vicente, University of Alicante, Alicante, Spain
| | - Santos Rojo
- Department of Environmental Sciences and Natural Resources, Faculty of Sciences III, Campus of San Vicente, University of Alicante, Alicante, Spain
| | - Andrea Aracil
- Department of Environmental Sciences and Natural Resources, Faculty of Sciences III, Campus of San Vicente, University of Alicante, Alicante, Spain
| | - Kurt Jordaens
- Department of Biology, Invertebrates Unit, Royal Museum for Central Africa, Tervuren, Belgium
| | - Gunilla Ståhls
- Zoology Unit, University of Helsinki, Finnish Museum of Natural History, Helsinki, Finland
| |
Collapse
|
3
|
Vujić A, Radenković S, Likov L, Tubić NK, Popov G, Gilasian E, Djan M, Milosavljević MJ, Ačanski J. Revisions of the clavipes and pruni species groups of the genus Merodon Meigen, 1803 (Diptera, Syrphidae). Zookeys 2024; 1203:1-69. [PMID: 38846747 PMCID: PMC11150873 DOI: 10.3897/zookeys.1203.118842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/22/2024] [Indexed: 06/09/2024] Open
Abstract
This study focuses on the avidus-nigritarsis lineage within the genus Merodon, exploring morphological, genetic, and distributional aspects of two related assemblies within this lineage: the clavipes and pruni species groups. An integrative taxonomic approach was followed to ensure comprehensive species identification and validation, using adult morphology, wing geometric morphometrics, and genetic analysis of the mtDNA COI gene. In the clavipes group, seven species were identified, including three new species: M.aenigmaticus Vujić, Radenković & Likov, sp. nov., M.latens Vujić, Radenković & Likov, sp. nov., and M.rufofemoris Vujić, Radenković & Likov, sp. nov. In the pruni group, our revision revealed a new species, M.aequalis Vujić, Radenković & Likov, sp. nov., and the revalidation of Merodonobscurus Gil Collado, 1929, stat. rev. Merodonpallidus Macquart, 1842 is redescribed. Diagnoses, identification keys to species, and distribution maps are provided, and neotypes for Syrphusclavipes Fabricius, 1781 and Merodonquadrinotatus (Sack, 1931) are designated. Additionally, the following new synonyms are proposed: M.clavipesalbus syn. nov., M.clavipesater syn. nov., M.clavipesniger syn. nov., and M.splendens syn. nov. are junior synonyms of M.clavipes; and M.veloxarmeniacus syn. nov. and M.veloxanathema syn. nov. are junior synonyms of M.velox.
Collapse
Affiliation(s)
- Ante Vujić
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - Snežana Radenković
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - Laura Likov
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - Nataša Kočiš Tubić
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - Grigory Popov
- I.I. Schmalhausen Institute of Zoology, National Academy of Sciences of Ukraine, Bohdan Khmelnytsky Street 15, UA-01030 Kyiv, Ukraine
- Department of Environmental Sciences and Natural Resources, University of Alicante, PO Box. 99, 03080 Alicante, Spain
| | - Ebrahim Gilasian
- Insect Taxonomy Research Department, Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization, Tehran, 19395-1454, Iran
| | - Mihajla Djan
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - Marina Janković Milosavljević
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - Jelena Ačanski
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| |
Collapse
|
4
|
Yingning L, Shuhua W, Wenting D, Miao M, Ying W, Rong Z, Liping B. Chromosome-level genome assembly of Odontothrips loti Haliday (Thysanoptera: Thripidae). Sci Data 2024; 11:451. [PMID: 38704405 PMCID: PMC11069530 DOI: 10.1038/s41597-024-03289-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/22/2024] [Indexed: 05/06/2024] Open
Abstract
As the predominant pest of alfalfa, Odontothrips loti Haliday causes great damages over the major alfalfa-growing regions of China. The characteristics of strong mobility and fecundity make them develop rapidly in the field and hard to be controlled. There is a shortage of bioinformation and limited genomic resources available of O. loti for us to develop novel pest management strategies. In this study, we constructed a chromosome-level reference genome assembly of O. loti with a genome size of 346.59 Mb and scaffold N50 length of 18.52 Mb, anchored onto 16 chromosomes and contained 20128 genes, of which 93.59% were functionally annotated. The results of 99.20% complete insecta_odb10 genes in BUSCO analysis, 91.11% short reads mapped to the ref-genome, and the consistent tendency among the thrips in the distribution of gene length reflects the quality of genome. Our study provided the first report of genome for the genus Odontothrips, which offers a genomic resource for further investigations on evolution and molecular biology of O. loti, contributing to pest management.
Collapse
Affiliation(s)
- Luo Yingning
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Wei Shuhua
- Institute of Plant Protection, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Dai Wenting
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Miao Miao
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Wang Ying
- Institute of Plant Protection, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Zhang Rong
- Institute of Plant Protection, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Ban Liping
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
5
|
Jafar S, Jamil S, Yasin MS, Naseem A, Zahoor MY, Shehzad W, Imran M. Successful application of modified crude DNA extraction from muscle tissues for various types of PCR amplifications. Mol Biol Rep 2024; 51:490. [PMID: 38578476 DOI: 10.1007/s11033-024-09356-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 02/15/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND One of the most challenging aspects of nucleic acid amplification tests is the extraction of genomic DNA. However, achieving satisfactory quality and quantity of genomic DNA is not always easy, while the demand for rapid, low-cost and less laborious DNA isolation methods is ever-increasing. METHODS AND RESULTS We have developed a rapid (⁓2 min) crude DNA extraction method leading to direct-PCR that requires minimum reagents and laboratory equipment. It was developed by eliminating the time-consuming purification steps of DNA extraction, by processing the sample in optimized amounts of Taq KCl PCR buffer and DNARelease Additive/Proteinase K in only two minutes and carrying out amplification using conventional Taq DNA polymerase. The DNA preparation method was validated on muscle tissue samples from 12 different species as well as 48 cooked meat samples. Its compatibility was also successfully tested with different types of PCR amplification platforms extensively used for genetic analysis, such as simplex PCR, PCR-RFLP (Restriction Fragment Length Polymorphism), multiplex PCR, isothermal amplification, real-time PCR and DNA sequencing. CONCLUSIONS The developed protocol provides sufficient amount of crude DNA from muscle tissues of different species for PCR amplifications to identify species-of-origin via different techniques coupled with PCR. The simplicity and robustness of this protocol make nucleic acid amplification assays more accessible and affordable to researchers and authorities for both laboratory and point-of-care tests.
Collapse
Affiliation(s)
- Sana Jafar
- Molecular Diagnostics Laboratory, Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, 54000, Punjab, Pakistan
| | - Salman Jamil
- Molecular Diagnostics Laboratory, Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, 54000, Punjab, Pakistan
| | - Muhammad Sheraz Yasin
- Molecular Diagnostics Laboratory, Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, 54000, Punjab, Pakistan
| | - Asif Naseem
- Institute of Molecular Biology and Biotechnology, The University of Lahore (Sargodha campus), 10-km Lahore road, Sargodha, Punjab, Pakistan
| | - Muhammad Yasir Zahoor
- Molecular Diagnostics Laboratory, Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, 54000, Punjab, Pakistan
| | - Wasim Shehzad
- Molecular Diagnostics Laboratory, Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, 54000, Punjab, Pakistan
| | - Muhammad Imran
- Molecular Diagnostics Laboratory, Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, 54000, Punjab, Pakistan.
| |
Collapse
|
6
|
Weerakkody LR, Witharana C. A rapid, inexpensive and effective method for the efficient isolation of genomic DNA from Gram-negative bacteria. Mol Genet Genomics 2024; 299:26. [PMID: 38453747 DOI: 10.1007/s00438-024-02120-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/25/2024] [Indexed: 03/09/2024]
Abstract
Currently, there are several protocols to extract bacterial DNA based on different principles. However, the quantity and the quality of the DNA obtained by each method are highly variable and microorganism dependent. In most of these classical crude methods, highly toxic and hazardous organic solvents such as phenol and chloroform are used for deproteinization, whereas in certain protocols, expensive enzymes including RNases and Proteinases are used. This study was designed to introduce a simple, rapid, inexpensive and effective genomic DNA isolation procedure for Gram-negative bacteria, without the usage of toxic chemicals and costly enzymes. This novel method was compared with another classical method known as the salting-out method, which uses proteinase-K. Concentration and yield of the extracted DNA were determined by gel electrophoresis by comparing the gel band intensity of the sample DNA to that of a DNA quantitation standard and by the Quantus™ fluorometer. According to the results, the yield of extracted DNA was higher in the novel method compared to the salting-out method. Moreover, the entire process was accomplished in less than 2 h with the novel method. Purity and integrity of extracted genomic DNA by both methods were similar. In addition, the quality of DNA was determined using Multicopy Associated Filamentation (MAF) gene amplification by polymerase chain reaction (PCR). Thus, the described technique is non-toxic, less time and fund consuming, efficient and a well-suited method for routine DNA isolation from Gram negative bacteria.
Collapse
Affiliation(s)
- Lihini Ranesha Weerakkody
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Colombo, No 25, Kynsey Road, PO Box 271, Colombo 8, Sri Lanka
| | - Chamindri Witharana
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Colombo, No 25, Kynsey Road, PO Box 271, Colombo 8, Sri Lanka.
| |
Collapse
|
7
|
Sukmak R, Suttinun C, Kovitvadhi U, Kovitvadhi A, Vongsangnak W. Uncovering nutrients and energy related gene functions of black soldier fly Hermetia illucens strain KUP. Gene 2024; 896:148045. [PMID: 38042219 DOI: 10.1016/j.gene.2023.148045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/18/2023] [Accepted: 11/28/2023] [Indexed: 12/04/2023]
Abstract
The black soldier fly (Hermetia illucens) has emerged as a significant insect species in the decomposition of organic waste for sustainable agricultural practices. Due to its remarkable characteristics and performance, H. illucens is increasingly utilised for insect farming, particularly for industrial-scale rearing throughout the world. In this study, we employed whole-genome sequencing to annotate the gene and protein functions of H. illucens and to explore the functional genomics related to nutrients and energy. As a result, a genome size of H. illucens strain KUP 1.68 Gb with a GC content of 42.13 % was achieved. Of the 14,036 coding sequences, we determined the function of 12,046 protein-coding genes. Based on metabolic functional assignment, we classified 4,218 protein-coding genes; the main category was metabolism (32.86 %). Comparative genomic analysis across the other H. illucens strain and insect species revealed that the major metabolic gene functions and pathways related to nutrient and energy sources of H. illucens KUP are involved in key amino acid metabolism (e.g., cysteine and methionine) as well as fatty acid biosynthesis and glycerolipid metabolism. These findings underscore the metabolic capability and versatility of H. illucens, which is regarded as a potential source of proteins and lipids. Our study contributes to the knowledge regarding the feed utilisation of H. illucens and offers insights into transforming waste into valuable products. H. illucens has the potential to create globally sustainable nutrients and environmentally friendly solutions, aligning with the goal of responsible resource utilisation.
Collapse
Affiliation(s)
- Rachrapee Sukmak
- Graduate Student in Animal Health and Biomedical Science Program, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Chanaporn Suttinun
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Uthaiwan Kovitvadhi
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Attawit Kovitvadhi
- Department of Physiology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand.
| | - Wanwipa Vongsangnak
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, Thailand; Omics Center for Agriculture, Bioresources, Food, and Health, Kasetsart University (OmiKU), Bangkok, Thailand.
| |
Collapse
|
8
|
Thongseesuksai T, Boonmars T, Laummaunwai P. Comparison of Three Methods to Extract Plasmodium falciparum DNA from Whole Blood and Dried Blood Spots. Am J Trop Med Hyg 2024; 110:220-227. [PMID: 38227960 PMCID: PMC10859813 DOI: 10.4269/ajtmh.23-0612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/01/2023] [Indexed: 01/18/2024] Open
Abstract
This study aimed to compare the effectiveness of three DNA extraction methods: the GF-1 Blood DNA Extraction Kit (GF-1 BD Kit), which employs a spin column along with lysing and washing buffers; the tris-ethylenediaminetetraacetic acid and proteinase K (TE-pK) method, which utilizes a combination of TE buffer and proteinase K for cell lysis; and DNAzol® Direct (DN 131), a single reagent combined with heating for the extraction process. Plasmodium falciparum DNA was extracted from both whole blood and dried blook spots (DBSs), with consideration of DNA concentration, purity, cost, time requirement, and limit of parasite detection (LOD) for each method. The target gene in this study was 18S rRNA, resulting in a 395-bp product using specific primers. In the comparative analysis, the DN 131 method yielded significantly higher DNA quantities from whole blood and DBSs than the GF-1 BD Kit and TE-pK methods. In addition, the DNA purity obtained from whole blood and DBSs using the GF-1 BD Kit significantly exceeded that obtained using the TE-pK and DN 131 methods. For LOD, the whole blood extracted using the DN 131, GF-1 BD Kit, and TE-pK methods revealed 0.012, 0.012, and 1.6 parasites/µL, respectively. In the case of DBSs, the LODs for the DN 131, GF-1 BD Kit, and TE-pK methods were 1.6, 8, and 200 parasites/µL, respectively. The results revealed that the TE-pK method was the most cost-effective, whereas the DN 131 method showed the simplest protocol. These findings offer alternative approaches for extracting Plasmodium DNA that are particularly well-suited for large-scale studies conducted in resource-limited settings.
Collapse
Affiliation(s)
| | - Thidarut Boonmars
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Neglected Zoonosis and Vector-Borne Disease Research Group, Khon Kaen University, Khon Kaen, Thailand
| | - Porntip Laummaunwai
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Neglected Zoonosis and Vector-Borne Disease Research Group, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
9
|
Vujić A, Kočiš Tubić N, Radenković S, Ačanski J, Likov L, Arok M, Gorše I, Djan M. The Extraordinary Diversity of Merodon avidus Complex (Diptera: Syrphidae)-Adding New Areas, New Species and a New Molecular Marker. INSECTS 2024; 15:105. [PMID: 38392524 PMCID: PMC10888622 DOI: 10.3390/insects15020105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/24/2024]
Abstract
In this paper, the Merodon avidus (Diptera, Syrphidae) species complex was revised, whereupon we discovered and described four new species for science: Merodon atroavidus Vujić, Radenković et Likov sp. nov., M. magnus Vujić, Kočiš Tubić et Ačanski sp. nov., M. nigroscutum Vujić, Radenković et Likov sp. nov. and M. pseudomoenium Vujić, Kočiš Tubić et Ačanski sp. nov. An integrative taxonomy approach was used to delimit species boundaries. Two molecular markers (the mitochondrial COI gene and nuclear 28S rRNA gene-newly analysed marker for the complex) and geometric morphometry of the wing shape, together with morphological data and distribution, successfully separated all species from the complex. The morphological variability of the analysed species is described and discussed and an illustrated diagnostic key for typical morpho-forms of species from the M. avidus complex is presented. A distribution map of all investigated species from the complex is provided. The level of endemicity of the M. avidus complex was discussed.
Collapse
Affiliation(s)
- Ante Vujić
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - Nataša Kočiš Tubić
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - Snežana Radenković
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - Jelena Ačanski
- BioSense Institute, University of Novi Sad, Dr Zorana Ðinđića 1, 21000 Novi Sad, Serbia
| | - Laura Likov
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - Maja Arok
- BioSense Institute, University of Novi Sad, Dr Zorana Ðinđića 1, 21000 Novi Sad, Serbia
| | - Iva Gorše
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - Mihajla Djan
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| |
Collapse
|
10
|
Fu X, Meyer-Rochow VB, Ballantyne L, Zhu X, Zhang Q. Sperm Competition and Paternity in the Endangered Firefly Pyrocoelia pectoralis (Coleoptera: Lampyridae: Lampyrinae). INSECTS 2024; 15:66. [PMID: 38249072 PMCID: PMC10817000 DOI: 10.3390/insects15010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
The endangered terrestrial firefly Pyrocoelia pectoralis (Olivier) is endemic to China. Populations of P. pectoralis have decreased dramatically due to urbanization and pollution. Breeding and re-introduction to a suitable habitat may save the species from becoming extinct. Because of its polyandrous character, an investigation into the possibility of sperm competition and paternity outcomes from multiple matings was initiated to better understand its reproductive physiology. To achieve these goals, 13 SSR markers were developed. The results of paternity experiments indicate there is a significant difference between P3 and P1 or P2. The female reproductive system has three spermathecae which accept sperm from different matings, and no bursa or spermatophore-digesting organ is developed. Our research established that multiple inseminations with sperm from different males occur, leading to competition between ejaculates. The benefits of such competition include an increasing number of sperm in the ejaculates of competing males and the consequential increase in fertilized eggs (thus, fecundity), and thereby a higher chance of genetic diversity and fitness in the offspring of the firefly P. pectoralis.
Collapse
Affiliation(s)
- Xinhua Fu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
- Firefly Conservation Research Centre, Wuhan 430070, China;
| | - Victor Benno Meyer-Rochow
- Department of Ecology and Genetics, Oulu University, SF-90140 Oulu, Finland;
- Agricultural Science and Technology Research Institute, Andong National University, Andong 36729, Republic of Korea
| | - Lesley Ballantyne
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, P.O. Box 588, Wagga Wagga 2678, Australia;
| | - Xinlei Zhu
- Firefly Conservation Research Centre, Wuhan 430070, China;
| | - Qiyulu Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| |
Collapse
|
11
|
Brinker P, Chen F, Chehida YB, Beukeboom LW, Fontaine MC, Salles JF. Microbiome composition is shaped by geography and population structure in the parasitic wasp Asobara japonica, but not in the presence of the endosymbiont Wolbachia. Mol Ecol 2023; 32:6644-6658. [PMID: 36125236 DOI: 10.1111/mec.16699] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 09/11/2022] [Accepted: 09/15/2022] [Indexed: 11/28/2022]
Abstract
The microbial community composition is crucial for diverse life-history traits in many organisms. However, we still lack a sufficient understanding of how the host microbiome is acquired and maintained, a pressing issue in times of global environmental change. Here we investigated to what extent host genotype, environmental conditions, and the endosymbiont Wolbachia influence the bacterial communities in the parasitic wasp Asobara japonica. We sampled multiple wasp populations across 10 locations in their natural distribution range in Japan and sequenced the host genome (whole genome sequencing) and microbiome (16S rRNA gene). We compared the host population structure and bacterial community composition of wasps that reproduce sexually and are uninfected with Wolbachia with wasps that reproduce asexually and carry Wolbachia. The bacterial communities in asexual wasps were highly similar due to a strong effect of Wolbachia rather than host genomic structure. In contrast, in sexual wasps, bacterial communities appear primarily shaped by a combination of population structure and environmental conditions. Our research highlights that multiple factors shape the bacterial communities of an organism and that the presence of a single endosymbiont can strongly alter their compositions. This information is crucial to understanding how organisms and their associated microbiome will react in the face of environmental change.
Collapse
Affiliation(s)
- Pina Brinker
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Fangying Chen
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Yacine Ben Chehida
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
- Department of Animal and Plant Sciences, The University of Sheffield, Sheffield, UK
- Department of Biology, University of York, York, UK
| | - Leo W Beukeboom
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Michael C Fontaine
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
- MIVEGEC, Univ. Montpellier, CNRS, IRD, Montpellier, France
- Centre de Recherche en Écologie et Évolution de la Santé (CREES), Montpellier, France
| | - Joana Falcao Salles
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| |
Collapse
|
12
|
Oke CE, Reece SE, Schneider P. Testing a non-destructive assay to track Plasmodium sporozoites in mosquitoes over time. Parasit Vectors 2023; 16:401. [PMID: 37925480 PMCID: PMC10625196 DOI: 10.1186/s13071-023-06015-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/14/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND The extrinsic incubation period (EIP), defined as the time it takes for malaria parasites in a mosquito to become infectious to a vertebrate host, is one of the most influential parameters for malaria transmission but remains poorly understood. The EIP is usually estimated by quantifying salivary gland sporozoites in subsets of mosquitoes, which requires terminal sampling. However, assays that allow repeated sampling of individual mosquitoes over time could provide better resolution of the EIP. METHODS We tested a non-destructive assay to quantify sporozoites of two rodent malaria species, Plasmodium chabaudi and Plasmodium berghei, expelled throughout 24-h windows, from sugar-soaked feeding substrates using quantitative-PCR. RESULTS The assay is able to quantify sporozoites from sugar-soaked feeding substrates, but the prevalence of parasite-positive substrates was low. Various methods were attempted to increase the detection of expelled parasites (e.g. running additional technical replicates; using groups rather than individual mosquitoes), but these did not increase the detection rate, suggesting that expulsion of sporozoites is variable and infrequent. CONCLUSIONS We reveal successful detection of expelled sporozoites from sugar-soaked feeding substrates. However, investigations of the biological causes underlying the low detection rate of sporozoites (e.g. mosquito feeding behaviour, frequency of sporozoite expulsion or sporozoite clumping) are needed to maximise the utility of using non-destructive assays to quantify sporozoite dynamics. Increasing detection rates will facilitate the detailed investigation on infection dynamics within mosquitoes, which is necessary to explain the highly variable EIP of Plasmodium and to improve understanding of malaria transmission dynamics.
Collapse
Affiliation(s)
- Catherine E Oke
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
| | - Sarah E Reece
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Petra Schneider
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
13
|
Pichler V, Sanou A, Love RR, Caputo B, Pombi M, Toe KH, Guelbeogo MW, Sagnon N, Ferguson HM, Ranson H, Torre AD, Besansky NJ. A novel tetra-primer ARMS-PCR approach for the molecular karyotyping of chromosomal inversion 2Ru in the main malaria vectors Anopheles gambiae and Anopheles coluzzii. Parasit Vectors 2023; 16:388. [PMID: 37891582 PMCID: PMC10605393 DOI: 10.1186/s13071-023-06014-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Chromosomal inversion polymorphisms have been associated with adaptive behavioral, physiological, morphological and life history traits in the two main Afrotropical malaria vectors, Anopheles coluzzii and Anopheles gambiae. The understanding of the adaptive value of chromosomal inversion systems is constrained by the feasibility of cytological karyotyping. In recent years in silico and molecular approaches have been developed for the genotyping of most widespread inversions (2La, 2Rb and 2Rc). The 2Ru inversion, spanning roughly 8% of chromosome 2R, is commonly polymorphic in West African populations of An. coluzzii and An. gambiae and shows clear increases in frequency with increasing rainfall seasonally and geographically. The aim of this work was to overcome the constraints of currently available cytological and high-throughput molecular assays by developing a simple PCR assay for genotyping the 2Ru inversion in individual specimens of both mosquito species. METHODS We designed tetra-primer amplification refractory mutation system (ARMS)-PCR assays based on five tag single-nucleotide polymorphisms (SNPs) previously shown to be strongly correlated with 2Ru inversion orientation. The most promising assay was validated against laboratory and field samples of An. coluzzii and An. gambiae karyotyped either cytogenetically or molecularly using a genotyping-in-thousands by sequencing (GT-seq) high-throughput approach that employs targeted sequencing of multiplexed PCR amplicons. RESULTS A successful assay was designed based on the tag SNP at position 2R, 31710303, which is highly predictive of the 2Ru genotype. The assay, which requires only one PCR, and no additional post-PCR processing other than electrophoresis, produced a clear banding pattern for 98.5% of the 454 specimens tested, which is a 96.7% agreement with established karyotyping methods. Sequences were obtained for nine of the An. coluzzii specimens manifesting 2Ru genotype discrepancies with GT-seq. Possible sources of these discordances are discussed. CONCLUSIONS The tetra-primer ARMS-PCR assay represents an accurate, streamlined and cost-effective method for the molecular karyotyping of the 2Ru inversion in An. coluzzii and An. gambiae. Together with approaches already available for the other common polymorphic inversions, 2La, 2Rb and 2Rc, this assay will allow investigations of the adaptive value of the complex set of inversion systems observed in the two major malaria vectors in the Afrotropical region.
Collapse
Affiliation(s)
- Verena Pichler
- Dipartimento di Sanità Pubblica e Malattie Infettive, Istituto Pasteur-Fondazione Cenci-Bolognetti, Università "La Sapienza", 00185, Rome, Italy.
| | - Antoine Sanou
- Centre National de Recherche et de Formation Sur le Paludisme, Ouagadougou, Burkina Faso
- Institute of Biodiversity, Animal Health & Comparative Medicine, Glasgow University, Glasgow, G128QQ, UK
| | - R Rebecca Love
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556, USA
- Entomology Branch, Division of Parasitic Diseases and Malaria, U.S. Centers for Disease Control and Prevention (CDC), Atlanta, GA, 30333, USA
| | - Beniamino Caputo
- Dipartimento di Sanità Pubblica e Malattie Infettive, Istituto Pasteur-Fondazione Cenci-Bolognetti, Università "La Sapienza", 00185, Rome, Italy
| | - Marco Pombi
- Dipartimento di Sanità Pubblica e Malattie Infettive, Istituto Pasteur-Fondazione Cenci-Bolognetti, Università "La Sapienza", 00185, Rome, Italy
| | - Kobie Hyacinth Toe
- Centre National de Recherche et de Formation Sur le Paludisme, Ouagadougou, Burkina Faso
| | - Moussa W Guelbeogo
- Centre National de Recherche et de Formation Sur le Paludisme, Ouagadougou, Burkina Faso
| | - N'Fale Sagnon
- Centre National de Recherche et de Formation Sur le Paludisme, Ouagadougou, Burkina Faso
| | - Heather M Ferguson
- Institute of Biodiversity, Animal Health & Comparative Medicine, Glasgow University, Glasgow, G128QQ, UK
| | - Hilary Ranson
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Alessandra Della Torre
- Dipartimento di Sanità Pubblica e Malattie Infettive, Istituto Pasteur-Fondazione Cenci-Bolognetti, Università "La Sapienza", 00185, Rome, Italy
| | - Nora J Besansky
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA.
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
14
|
Vásquez C, Leyton-Carcaman B, Cid-Alda FP, Segovia I, Pinto F, Abanto M. Physical Pretreatments Applied in Three Commercial Kits for the Extraction of High-Quality DNA from Activated Sewage Sludge. Int J Mol Sci 2023; 24:15243. [PMID: 37894923 PMCID: PMC10607799 DOI: 10.3390/ijms242015243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Obtaining sufficient and high-quality genomic DNA from sludge samples is a fundamental issue of feasibility and comparability in genomic studies of microbial diversity. Commercial kits for soil are often used for the extraction of gDNA from sludge samples due to the lack of specific kits. However, the evaluation of the performance of commercial kits for sludge DNA extraction is scarce and optimization of these methods to obtain a high quantity and quality of DNA is necessary, especially for downstream genomic sequencing. Sequential batch reactors (SBRs) loaded with lignocellulosic biomass are used for the synthesis of renewable resources such as levulinic acid (LA), adipic acid (AA), and polyhydroxyalkanoates (PHAs), and the biochemical synthesis of these compounds is conducted through the inoculation of microbes present in the residual activated sludge (AS) obtained from a municipal wastewater treatment plant. To characterize these microbes, the extraction of DNA from residual sewage sludge was conducted with three different commercial kits: Nucleospin® Soil from Macherey-Nagel, DNEasy® PowerSoil® from Qiagen, and E.Z.N.A.® Plant DNA Kit from Omega BIO-TEK. Nevertheless, to obtain the highest load and quality of DNA for next-generation sequencing (NGS) analysis, different pretreatments and different combinations of these pretreatments were used. The pretreatments considered were an ultrasonic bath and a temperature of 80 °C, together and separately with different incubation time periods of 30, 60, and 90 min. The results obtained suggest a significant improvement in the efficiency and quality of DNA extraction with the three commercial extraction kits when used together with the ultrasonic bath and 80 °C for 60 min. Here, we were able to prove that physical pretreatments are a viable alternative to chemical lysis for DNA extraction from complex samples such as sludge.
Collapse
Affiliation(s)
- Claudio Vásquez
- Doctorado en Ciencias Mención Biología Celular y Molecular Aplicada, Universidad de La Frontera, Temuco 4811230, Chile; (C.V.); (B.L.-C.)
- Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Benjamín Leyton-Carcaman
- Doctorado en Ciencias Mención Biología Celular y Molecular Aplicada, Universidad de La Frontera, Temuco 4811230, Chile; (C.V.); (B.L.-C.)
- Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Fernanda P. Cid-Alda
- Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Iñaky Segovia
- Carrera de Tecnología Médica, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile;
| | - Fernanda Pinto
- Departamento de Procesos Industriales, Facultad de Ingeniería, Universidad Católica de Temuco, Casilla 15-D, Temuco 4780000, Chile;
| | - Michel Abanto
- Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
15
|
Sperling AL, Fabian DK, Garrison E, Glover DM. A genetic basis for facultative parthenogenesis in Drosophila. Curr Biol 2023; 33:3545-3560.e13. [PMID: 37516115 PMCID: PMC11044649 DOI: 10.1016/j.cub.2023.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/04/2023] [Accepted: 07/05/2023] [Indexed: 07/31/2023]
Abstract
Facultative parthenogenesis enables sexually reproducing organisms to switch between sexual and asexual parthenogenetic reproduction. To gain insights into this phenomenon, we sequenced the genomes of sexually reproducing and parthenogenetic strains of Drosophila mercatorum and identified differences in the gene expression in their eggs. We then tested whether manipulating the expression of candidate gene homologs identified in Drosophila mercatorum could lead to facultative parthenogenesis in the non-parthenogenetic species Drosophila melanogaster. This identified a polygenic system whereby increased expression of the mitotic protein kinase polo and decreased expression of a desaturase, Desat2, caused facultative parthenogenesis in the non-parthenogenetic species that was enhanced by increased expression of Myc. The genetically induced parthenogenetic Drosophila melanogaster eggs exhibit de novo centrosome formation, fusion of the meiotic products, and the onset of development to generate predominantly triploid offspring. Thus, we demonstrate a genetic basis for sporadic facultative parthenogenesis in an animal.
Collapse
Affiliation(s)
- Alexis L Sperling
- University of Cambridge, Department of Genetics, Downing Street, Cambridge CB2 3EH, UK.
| | - Daniel K Fabian
- University of Cambridge, Department of Genetics, Downing Street, Cambridge CB2 3EH, UK
| | - Erik Garrison
- University of Tennessee Health Science Center, S Manassas Street, Memphis, TN 38103, USA
| | - David M Glover
- University of Cambridge, Department of Genetics, Downing Street, Cambridge CB2 3EH, UK; Division of Biology and Biological Engineering, California Institute of Technology, East California Boulevard, Pasadena, CA 91125, USA.
| |
Collapse
|
16
|
Wanere SS, Phad AP, Jagtap RK, Rawal SK, Pyati PS, Lomate PR. Cost-effective and reliable genomic DNA extraction from plant seedlings for high-throughput genotyping in seed industries. Anal Biochem 2023; 676:115245. [PMID: 37429485 DOI: 10.1016/j.ab.2023.115245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/13/2023] [Accepted: 07/06/2023] [Indexed: 07/12/2023]
Abstract
Genetic purity of seeds is one of the critical aspects in the seed industry. Molecular seed testing laboratories are utilizing PCR based diagnostic tools for genetic purity analysis. High quality DNA is an essential prerequisite for such analyses. Here, we demonstrate a robust and inexpensive DNA extraction method to isolate genomic DNA from variety of crops. Current method (M2) was compared with four commonly used DNA isolation methods for PCR-based genetic characterization and High Resolution Melt (HRM) based hybridity analysis of cotton, okra, tomato and maize using SSR markers. DNA extracted through current method showed excellent yield and quality as compared to other methods. High quality, PCR ready DNA was isolated within 30-50 min and displayed best results for genetic purity analysis using HRM. In contrast, several genomic DNA samples extracted using other methods were found unsuitable for HRM analysis. Our method can be a perfect choice in seed industry, where thousands of samples are processed every day. Notably, using our method single technician can extract DNA from 96 leaf samples within 30-50 min, at a cost of only $0.11/sample. Overall, current DNA extraction method is a reliable and cost-effective solution for large-scale genotyping experiments in the agricultural industry.
Collapse
Affiliation(s)
- Shyamkumar S Wanere
- Plant Biotechnology Research Center, Ajeet Seeds Private Limited, Gut No. 233, Chitegaon Tal., Paithan Dist., Aurangabad, 431105, MS, India
| | - Archana P Phad
- Plant Biotechnology Research Center, Ajeet Seeds Private Limited, Gut No. 233, Chitegaon Tal., Paithan Dist., Aurangabad, 431105, MS, India
| | - Rameshwar K Jagtap
- Plant Biotechnology Research Center, Ajeet Seeds Private Limited, Gut No. 233, Chitegaon Tal., Paithan Dist., Aurangabad, 431105, MS, India
| | - Shuban K Rawal
- Plant Biotechnology Research Center, Ajeet Seeds Private Limited, Gut No. 233, Chitegaon Tal., Paithan Dist., Aurangabad, 431105, MS, India
| | - Prashant S Pyati
- Plant Biotechnology Research Center, Ajeet Seeds Private Limited, Gut No. 233, Chitegaon Tal., Paithan Dist., Aurangabad, 431105, MS, India.
| | - Purushottam R Lomate
- Plant Biotechnology Research Center, Ajeet Seeds Private Limited, Gut No. 233, Chitegaon Tal., Paithan Dist., Aurangabad, 431105, MS, India.
| |
Collapse
|
17
|
Wu Y, Domingue MJ, McGraw AR, Vieira KA, Palmeri MZ, Myers SW. Development of an array of molecular tools for the identification of khapra beetle (Trogoderma granarium), a destructive beetle of stored food products. Sci Rep 2023; 13:3327. [PMID: 36849552 PMCID: PMC9971273 DOI: 10.1038/s41598-023-29842-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/10/2023] [Indexed: 03/01/2023] Open
Abstract
Trogoderma granarium Everts, the khapra beetle, native to the Indian subcontinent, is one of the world's most destructive pests of stored food products. Early detection of this pest facilitates prompt response towards the invasion and prevents the need for costly eradication efforts. Such detection requires proper identification of T. granarium, which morphologically resembles some more frequently encountered, non-quarantine congeners. All life stages of these species are difficult to distinguish using morphological characters. Additionally, biosurveillance trapping can result in the capture of large numbers of specimens awaiting identification. To address these issues, we aim to develop an array of molecular tools to rapidly and accurately identify T. granarium among non-target species. Our crude, cheap DNA extraction method performed well for Trogoderma spp. and is suitable for downstream analyses including sequencing and real-time PCR (qPCR). We developed a simple quick assay usingrestriction fragment length polymorphism to distinguish between T. granarium and the closely related, congeneric T. variabile Ballion and T. inclusum LeConte. Based on newly generated and published mitochondrial sequence data, we developed a new multiplex TaqMan qPCR assay for T. granarium with improved efficiency and sensitivity over existing qPCR assays. These new tools benefit regulatory agencies and the stored food products industry by providing cost- and time-effective solutions to enhance the identification of T. granarium from related species. They can be added to the existing pest detection toolbox. The selection of which method to use would depend on the intended application.
Collapse
Affiliation(s)
- Yunke Wu
- United States Department of Agriculture, Animal and Plant Health Inspection Services, Plant Protection and Quarantine, Science and Technology, Forest Pest Methods Laboratory, 1398 West Truck Road, Buzzards Bay, MA, 02542, USA.
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853, USA.
| | - Michael J Domingue
- United States Department of Agriculture, Animal and Plant Health Inspection Services, Plant Protection and Quarantine, Science and Technology, Forest Pest Methods Laboratory, 1398 West Truck Road, Buzzards Bay, MA, 02542, USA
- Department of Entomology, Kansas State University, Manhattan, KS, 66502, USA
| | - Alana R McGraw
- United States Department of Agriculture, Animal and Plant Health Inspection Services, Plant Protection and Quarantine, Science and Technology, Forest Pest Methods Laboratory, 1398 West Truck Road, Buzzards Bay, MA, 02542, USA
- Department of Entomology, Kansas State University, Manhattan, KS, 66502, USA
| | - Kendra A Vieira
- United States Department of Agriculture, Animal and Plant Health Inspection Services, Plant Protection and Quarantine, Science and Technology, Forest Pest Methods Laboratory, 1398 West Truck Road, Buzzards Bay, MA, 02542, USA
| | - Marjorie Z Palmeri
- United States Department of Agriculture, Animal and Plant Health Inspection Services, Plant Protection and Quarantine, Science and Technology, Forest Pest Methods Laboratory, 1398 West Truck Road, Buzzards Bay, MA, 02542, USA
- Department of Environmental Conservation, University of Massachusetts, Amherst, Amherst, MA, 01003, USA
| | - Scott W Myers
- United States Department of Agriculture, Animal and Plant Health Inspection Services, Plant Protection and Quarantine, Science and Technology, Forest Pest Methods Laboratory, 1398 West Truck Road, Buzzards Bay, MA, 02542, USA
| |
Collapse
|
18
|
Zheng X, Lu X, Hu Y. Distinct respiratory microbiota associates with lung cancer clinicopathological characteristics. Front Oncol 2023; 13:847182. [PMID: 36816941 PMCID: PMC9932187 DOI: 10.3389/fonc.2023.847182] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 01/09/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction Commensal microbiota dysbiosis is associated with the development of lung cancer. The current studies about composition of respiratory microbiota in lung cancer patients yielded inconsistent results. This study aimed to examine the association between airway microbiota and lung cancer clinicopathological characteristics. Methods Surgically removed lesion tissues from 75 non-small cell lung cancer patients and 7 patients with benign pulmonary diseases were analyzed by 16S rRNA sequencing. Taxonomy, relative abundance, and diversity of respiratory microbiota were compared among lung cancer of different pathology and TNM stages. The effects of antibiotic and cigarette exposure on respiratory microbiota in lung cancer patients were also evaluated. Results Bacterial relative abundance and alpha- and beta-diversity analysis of lung microbiota showed significant differences among lung cancer of different pathology and benign pulmonary diseases. At the genus level, the abundance differences of 13 taxa between lung squamous cell carcinoma and lung adenocarcinoma, 63 taxa between lung squamous cell carcinoma and benign pulmonary diseases, and 4 taxa between lung adenocarcinoma and benign pulmonary diseases reached statistical significance. In contrast, diversity differences were not as significant across lung cancer of different stages. No significant differences were observed in tissue taxonomic abundances and diversity at all taxonomic levels between lung cancer patients with and without antibiotic exposure 3 months prior to surgery. For lung adenocarcinoma, respiratory bacterial abundance and diversity at all taxonomic levels did not show significant differences between smokers and non-smokers. Conclusions Our results confirm significantly differential respiratory microbiome taxa, abundance, and diversity in lung cancer of different pathology and some stages. Short-term antibiotic application might play a minor role in molding airway microbiota in lung cancer patients. Composition and diversity of respiratory microbiota in lung adenocarcinoma are not affected by cigarette exposure.
Collapse
Affiliation(s)
- Xi Zheng
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xingbing Lu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Hu
- Department of Thoracic surgery, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Yang Hu,
| |
Collapse
|
19
|
Rahman MM, Nam H, Choi N, Kim J. Development of Molecular-Based Species Identification and Optimization of Reaction Conditions for Molecular Diagnosis of Three Major Asian Planthoppers (Hemiptera: Delphacidae). INSECTS 2023; 14:124. [PMID: 36835693 PMCID: PMC9962309 DOI: 10.3390/insects14020124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Asian planthoppers (Hemiptera: Delphacidae) that include brown planthoppers (BPH, Nilaparvata lugens, Stål), white-backed planthoppers (WBPH, Sogatella furcifera, Horváth), and small brown planthoppers (SBPH, Laodelphax striatellus, Fallén) are the primary sucking-type pests of rice. These three insects share morphological and sequence similarities. As insecticide resistance patterns and control strategies vary according to species, the accurate discrimination of these species is important. Here, we developed six species-specific primers based on partial mitochondrial genome sequences. The primers were successfully used in multiplex PCR, loop-mediated isothermal amplification (LAMP) assays, and conventional PCR. Here, we used genomic DNA obtained using the DNA-releasing technique (tissue samples were incubated at 95 °C for 5 min with 30 μL nuclease-free water, and the supernatant was used). We showed that multiplex PCR could analyze the density of each species following a mass collection in the field; the LAMP assay can diagnose the species within 40 min; conventional PCR can be widely applied to a large number of field samples, as well as individuals or mass collections. In conclusion, these results demonstrate the potential of the species-specific primers and DNA-releasing technique for accurate multiplex PCR and LAMP assays, which may assist the intensive field monitoring of integrated management of these species.
Collapse
Affiliation(s)
- Md-Mafizur Rahman
- Agriculture and Life Sciences Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia 7003, Bangladesh
| | - Hwayeun Nam
- Agriculture and Life Sciences Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea
- Incheon International Airport Regional Office, Animal and Plant Quarantine Agency, Incheon 22382, Republic of Korea
| | - Nakjung Choi
- National Institute of Crop Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Juil Kim
- Agriculture and Life Sciences Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea
- Program of Applied Biology, Division of Bio-Resource Sciences, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
20
|
Bias in sex ratios and polyandry rate in reproduction of Leptinotarsa decemlineata. Sci Rep 2022; 12:21637. [PMID: 36517541 PMCID: PMC9751100 DOI: 10.1038/s41598-022-26177-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
The Colorado potato beetle (CPB, Leptinotarsa decemlineata Slechtd.) is an invasive pest with economic importance worldwide. Sex ratios during egg-hatching and a frequency of polyandry in single-female families were analysed to clarify the reproduction strategy of CPB, which was still known only in fragments. 1296 just hatching 1st instar CPB larvae were collected from 19 single-female families, of which 13 were random families collected from potato fields and 6 were families produced by laboratory farming of naturally fertilised females. All larvae were analysed to detect a sex using a qPCR-based method and to detect polymorphisms in genotypes of 9 microsatellite (SSR) markers. The bias in sex ratio in favour of females was confirmed using linear mixed-effects model in both experimental groups of families: field collections (F = 36.39; P = 0.0001) and laboratory farming (F = 13.74; P = 0.0139). The analysis of diversity in microsatellites proved the polyandry in all progenies as 73% of analysed segregation patterns did not match with the patterns expected for full-sib progenies; on average per locus, 46% of allelic and 49.7% of genotype ratios showed irregular segregation. Both findings contribute toward understanding CPB success rate as an invasive species, as the preferential bearing of females with polyandry has a great potential to keep fitness of progenies, to maintain and operate population diversity, and to accelerate the reproduction of the pest.
Collapse
|
21
|
Yan J, Pan Y, Shao W, Wang C, Wang R, He Y, Zhang M, Wang Y, Li T, Wang Z, Liu W, Wang Z, Sun X, Dong S. Beneficial effect of the short-chain fatty acid propionate on vascular calcification through intestinal microbiota remodelling. MICROBIOME 2022; 10:195. [PMID: 36380385 PMCID: PMC9667615 DOI: 10.1186/s40168-022-01390-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Vascular calcification is a major cause of the high morbidity and mortality of cardiovascular diseases and is closely associated with the intestinal microbiota. Short-chain fatty acids (SCFAs) are derived from the intestinal microbiota and can also regulate intestinal microbiota homeostasis. However, it remains unclear whether exogenous supplementation with propionate, a SCFA, can ameliorate vascular calcification by regulating the intestinal microbiota. This study was conducted to explore the roles of propionate and the intestinal microbiota in the process of vascular calcification. METHODS In total, 92 patients were enrolled consecutively as the observational cohort to analyse the relationship between SCFAs and vascular calcification in both blood and faecal samples. A rat model of vascular calcification was induced by vitamin D3 and nicotine (VDN) to validate the effect of propionate. Differences in the intestinal microbiota were analysed by 16S ribosomal RNA gene sequencing. Faecal microbiota transplantation and Akkermansia muciniphila transplantation experiments were performed to evaluate the functions of the intestinal microbiota. RESULTS The results of the observational cohort study revealed that the levels of SCFAs (particularly propionate) in both blood and faecal samples independently correlated negatively with calcification scores (P < 0.01). To verify the activities of propionate, it was provided to VDN-treated rats, and oral or rectal propionate delivery reshaped the intestinal microbiota, resulted in elevated SCFA production, improved intestinal barrier function and alleviated inflammation, ultimately ameliorating vascular calcification. Furthermore, we demonstrated that transplantation of the propionate-modulated intestinal microbiota induced beneficial outcomes similar to those with oral or rectal propionate administration. Interestingly, linear discriminant analysis (LDA) effect size (LEfSe) revealed that oral or rectal propionate administration and propionate-modulated intestinal microbiota transplantation both enriched primarily Akkermansia. Subsequently, we demonstrated that Akkermansia supplementation could ameliorate VDN-induced vascular calcification in rats. CONCLUSIONS Propionate can significantly ameliorate vascular calcification in VDN-treated rats, and this effect is mediated by intestinal microbiota remodelling. The findings in our study indicate that the intestinal tract-vessel axis is a promising target for alleviating vascular calcification. Video Abstract.
Collapse
Affiliation(s)
- Jianlong Yan
- Department of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical Engineering Technology Research and Development Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
| | - Yanbin Pan
- Department of health management center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
| | - Wenming Shao
- Department of Emergency, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, Guangdong, China
| | - Caiping Wang
- Department of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical Engineering Technology Research and Development Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
| | - Rongning Wang
- Department of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical Engineering Technology Research and Development Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
| | - Yaqiong He
- Department of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical Engineering Technology Research and Development Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
| | - Min Zhang
- Department of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical Engineering Technology Research and Development Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
| | - Yongshun Wang
- Department of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical Engineering Technology Research and Development Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
| | - Tangzhiming Li
- Department of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical Engineering Technology Research and Development Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
| | - Zhefeng Wang
- Department of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical Engineering Technology Research and Development Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
| | - Wenxing Liu
- Department of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical Engineering Technology Research and Development Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
| | - Zhenmin Wang
- Department of Spine Surgery, the Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Shenzhen, 518020, China
| | - Xin Sun
- Department of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical Engineering Technology Research and Development Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China.
| | - Shaohong Dong
- Department of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical Engineering Technology Research and Development Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China.
| |
Collapse
|
22
|
Ali S, Sajjad A, Shakeel Q, Farooqi MA, Aqueel MA, Tariq K, Ullah MI, Iqbal A, Jamal A, Saeed MF, Manachini B. Influence of Bacterial Secondary Symbionts in Sitobion avenae on Its Survival Fitness against Entomopathogenic Fungi, Beauveria bassiana and Metarhizium brunneum. INSECTS 2022; 13:insects13111037. [PMID: 36354861 PMCID: PMC9696637 DOI: 10.3390/insects13111037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 05/12/2023]
Abstract
The research was focused on the ability of wheat aphids Sitobion avenae, harboring bacterial secondary symbionts (BSS) Hamiltonella defensa or Regiella insecticola, to withstand exposure to fungal isolates of Beauveria bassiana and Metarhizium brunneum. In comparison to aphids lacking bacterial secondary symbionts, BSS considerably increased the lifespan of wheat aphids exposed to B. bassiana strains (Bb1022, EABb04/01-Tip) and M. brunneum strains (ART 2825 and BIPESCO 5) and also reduced the aphids' mortality. The wheat aphid clones lacking bacterial secondary symbionts were shown to be particularly vulnerable to M. brunneum strain BIPESCO 5. As opposed to wheat aphids carrying bacterial symbionts, fungal pathogens infected the wheat aphids lacking H. defensa and R. insecticola more quickly. When treated with fungal pathogens, bacterial endosymbionts had a favorable effect on the fecundity of their host aphids compared to the aphids lacking these symbionts, but there was no change in fungal sporulation on the deceased aphids. By defending their insect hosts against natural enemies, BSS increase the population of their host society and may have a significant impact on the development of their hosts.
Collapse
Affiliation(s)
- Sajjad Ali
- Department of Entomology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Asif Sajjad
- Department of Entomology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Qaiser Shakeel
- Department of Plant Pathology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - M. Aslam Farooqi
- Department of Entomology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - M. Anjum Aqueel
- Department of Entomology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Kaleem Tariq
- Department of Agriculture Entomology, Abdul Wali Khan University, Mardan 23200, Pakistan
| | | | - Aamir Iqbal
- Department of Crop Sciences, Georg-August University, 37073 Goettingen, Germany
| | - Aftab Jamal
- Department of Soil and Environmental Sciences, Faculty of Crop Production Sciences, The University of Agriculture, Peshawar 25130, Pakistan
| | - Muhammad Farhan Saeed
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari 61100, Pakistan
- Correspondence: (M.F.S.); (B.M.)
| | - Barbara Manachini
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze 13, 90128 Palermo, Italy
- Correspondence: (M.F.S.); (B.M.)
| |
Collapse
|
23
|
Vujić A, Radenković S, Tubić NK, Likov L, Popov G, Rojo S, Miličić M. Integrative taxonomy of the Merodon aberrans (Diptera, Syrphidae) species group: distribution patterns and description of three new species. CONTRIBUTIONS TO ZOOLOGY 2022. [DOI: 10.1163/18759866-bja10037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
In this paper, we revise the Merodon aberrans species group of the genus Merodon Meigen, 1803 (Diptera: Syrphidae), providing morphological diagnoses and descriptions, molecular data for three species, as well as an illustrated key and a discussion of the different taxonomic characters used. We also discuss distribution patterns for this species group. The results revealed that the M. aberrans group is composed of five described species (M. aberrans Egger, 1860, M. brevis Paramonov, 1926, M. flavitibius Paramonov, 1926, M. hamifer Sack, 1913, and M. warnckei Hurkmans, 1993) and three new ones, namely M. hermonensis Vujić, Radenković et Likov sp. nov., M. petiolatus Vujić, Radenković et Rojo sp. nov., and M. retectus Vujić, Radenković et Likov sp. nov. Following a detailed study of the type material in different entomological collections, the status of several species is revised, one new synonym is proposed (subspecies M. aberrans isperensis Hurkmans, 1993 as junior synonym of M. flavitibius), lectotypes are designated for M. kneri Mik, 1867 and M. flavitibius, and paralectotypes are designated for M. hamifer and M. flavitibius. Seven out of eight species from the M. aberrans group are distributed in the Asian continent, namely all Caucasian countries, Turkey and Iran, confirming the notion about high diversity of Merodon species in these regions, but also highlighting the need for a systematic faunistic research.
Collapse
Affiliation(s)
- Ante Vujić
- Department of Biology and Ecology, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - Snežana Radenković
- Department of Biology and Ecology, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - Nataša Kočiš Tubić
- Department of Biology and Ecology, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - Laura Likov
- Department of Biology and Ecology, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia,
| | - Grigory Popov
- I.I. Schmalhausen Institute of Zoology, National Academy of Sciences of Ukraine, Bohdan Khmelnytsky Street 15, UA-01030 Kyiv, Ukraine
| | - Santos Rojo
- Department of Environmental Sciences and Natural Resources, Faculty of Sciences III, Campus of San Vicente, University of Alicante, Alicante, Spain
| | - Marija Miličić
- University of Novi Sad, BioSense Institute Research Institute for Information Technologies in Biosystems, Dr Zorana Ðinđića 1, 21000 Novi Sad, Serbia
| |
Collapse
|
24
|
Molecular tools for resolving Merodon ruficornis group (Diptera, Syrphidae) taxonomy. ORG DIVERS EVOL 2022. [DOI: 10.1007/s13127-022-00571-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
25
|
Chen H, Qiao G, Liang A. Chromosome-Level Genome Assembly of Callitettix versicolor (Rice Spittlebug). Genome Biol Evol 2022; 14:6672863. [PMID: 35986913 PMCID: PMC9447855 DOI: 10.1093/gbe/evac130] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2022] [Indexed: 12/14/2022] Open
Abstract
The spittlebug family Cercopidae (Hemiptera: Auchenorrhyncha: Cicadomorpha: Cercopoidea) is distributed worldwide. Some Cercopidae species are agricultural pests that are responsible for substantial economic damage. However, the genomics of spittlebugs has rarely been studied and their complete genome assembly is yet to be reported. Here, we present the draft reference genome of Callitettix versicolor Fabricius (Hemiptera: Cercopidae) at the chromosome level. The assembled draft genome was 974.99 Mb with a contig N50 of 5.63 Mb, and the longest contig being 24.54 Mb. Hi-C technology was used to obtain an approximately 958.71 Mb chromosome-level genome on 10 pseudochromosomes, which covered 98.33% of the assembly. Repeat sequences accounted for 38.88% of the genomic sequences. A total of 21,937 protein-coding genes were detected in the reference genome, 89.97% of which were annotated in public databases. The high-quality reference genome of C. versicolor reported in this study will provide a valuable genomic resource for future ecological and evolutionary studies of spittlebugs.
Collapse
Affiliation(s)
- Hong Chen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China,College of Life Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Gexia Qiao
- Corresponding authors: E-mails: (G.Q.), (A.L.)
| | | |
Collapse
|
26
|
Ward AKG, Bagley RK, Egan SP, Hood GR, Ott JR, Prior KM, Sheikh SI, Weinersmith KL, Zhang L, Zhang YM, Forbes AA. Speciation in Nearctic oak gall wasps is frequently correlated with changes in host plant, host organ, or both. Evolution 2022; 76:1849-1867. [PMID: 35819249 PMCID: PMC9541853 DOI: 10.1111/evo.14562] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/21/2022] [Accepted: 04/28/2022] [Indexed: 01/22/2023]
Abstract
Quantifying the frequency of shifts to new host plants within diverse clades of specialist herbivorous insects is critically important to understand whether and how host shifts contribute to the origin of species. Oak gall wasps (Hymenoptera: Cynipidae: Cynipini) comprise a tribe of ∼1000 species of phytophagous insects that induce gall formation on various organs of trees in the family Fagacae-primarily the oaks (genus Quercus; ∼435 sp.). The association of oak gall wasps with oaks is ancient (∼50 my), and most oak species are galled by one or more gall wasp species. Despite the diversity of both gall wasp species and their plant associations, previous phylogenetic work has not identified the strong signal of host plant shifting among oak gall wasps that has been found in other phytophagous insect systems. However, most emphasis has been on the Western Palearctic and not the Nearctic where both oaks and oak gall wasps are considerably more species rich. We collected 86 species of Nearctic oak gall wasps from most of the major clades of Nearctic oaks and sequenced >1000 Ultraconserved Elements (UCEs) and flanking sequences to infer wasp phylogenies. We assessed the relationships of Nearctic gall wasps to one another and, by leveraging previously published UCE data, to the Palearctic fauna. We then used phylogenies to infer historical patterns of shifts among host tree species and tree organs. Our results indicate that oak gall wasps have moved between the Palearctic and Nearctic at least four times, that some Palearctic wasp clades have their proximate origin in the Nearctic, and that gall wasps have shifted within and between oak tree sections, subsections, and organs considerably more often than previous data have suggested. Given that host shifts have been demonstrated to drive reproductive isolation between host-associated populations in other phytophagous insects, our analyses of Nearctic gall wasps suggest that host shifts are key drivers of speciation in this clade, especially in hotspots of oak diversity. Although formal assessment of this hypothesis requires further study, two putatively oligophagous gall wasp species in our dataset show signals of host-associated genetic differentiation unconfounded by geographic distance, suggestive of barriers to gene flow associated with the use of alternative host plants.
Collapse
Affiliation(s)
| | - Robin K. Bagley
- Department of BiologyUniversity of IowaIowa CityIowa52245
- Department of Evolution, Ecology, and Organismal BiologyThe Ohio State UniversityLimaOhio45804
| | - Scott P. Egan
- Department of BioSciencesRice UniversityHoustonTexas77005
| | - Glen Ray Hood
- Department of BioSciencesRice UniversityHoustonTexas77005
- Department of Biological ScienceWayne State UniversityDetroitMichigan48202
| | - James R. Ott
- Department of BiologyTexas State UniversitySan MarcosTexas78666
| | - Kirsten M. Prior
- Department of Biological SciencesBinghamton UniversityBinghamtonNew York13902
| | - Sofia I. Sheikh
- Department of BiologyUniversity of IowaIowa CityIowa52245
- Department of Ecology and EvolutionUniversity of ChicagoChicagoIllinois60637
| | | | - Linyi Zhang
- Department of BioSciencesRice UniversityHoustonTexas77005
- Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoONM5S 3B2Canada
| | - Y. Miles Zhang
- Systematic Entomology Laboratory, USDA‐ARSc/o National Museum of Natural HistoryWashingtonD.C.20560
| | | |
Collapse
|
27
|
Zhang YM, Sheikh SI, Ward AKG, Forbes AA, Prior KM, Stone GN, Gates MW, Egan SP, Zhang L, Davis C, Weinersmith KL, Melika G, Lucky A. Delimiting the cryptic diversity and host preferences of Sycophila parasitoid wasps associated with oak galls using phylogenomic data. Mol Ecol 2022; 31:4417-4433. [PMID: 35762844 DOI: 10.1111/mec.16582] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/06/2022] [Accepted: 06/23/2022] [Indexed: 11/28/2022]
Abstract
Cryptic species diversity is a major challenge for the species-rich community of parasitoids attacking oak gall wasps due to a high degree of sexual dimorphism, morphological plasticity, small size, and poorly known biology. As such, we know very little about the number of species present, nor the evolutionary forces responsible for generating this diversity. One hypothesis is that trait diversity in the gall wasps, including the morphology of the galls they induce, has evolved in response to selection imposed by the parasitoid community, with reciprocal selection driving diversification of the parasitoids. Using a rare, continental-scale data set of Sycophila parasitoid wasps reared from 44 species of cynipid galls from 18 species of oak across the US, we combined mitochondrial DNA barcodes, Ultraconserved Elements (UCEs), morphological, and natural history data to delimit putative species. Using these results, we generate the first large-scale assessment of ecological specialization and host association in this species-rich group, with implications for evolutionary ecology and biocontrol. We find most Sycophila target specific subsets of available cynipid host galls with similar morphologies, and generally attack larger galls. Our results suggest that parasitoid wasps such as Sycophila have adaptations allowing them to exploit particular host trait combinations, while hosts with contrasting traits are resistant to attack. These findings support the tritrophic niche concept for the structuring of plant-herbivore-parasitoid communities.
Collapse
Affiliation(s)
- Y Miles Zhang
- Systematic Entomology Laboratory, USDA-ARS, c/o National Museum of Natural History, Washington, DC, USA.,Entomology and Nematology Department, University of Florida, Gainesville, FL, USA
| | - Sofia I Sheikh
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA
| | - Anna K G Ward
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA
| | - Andrew A Forbes
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA
| | - Kirsten M Prior
- Department of Biological Sciences, Binghamton University, Binghamton, NY, USA
| | - Graham N Stone
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Michael W Gates
- Systematic Entomology Laboratory, USDA-ARS, c/o National Museum of Natural History, Washington, DC, USA
| | - Scott P Egan
- Department of BioSciences, Rice University, Houston, TX, USA
| | - Linyi Zhang
- Department of BioSciences, Rice University, Houston, TX, USA.,Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Charles Davis
- Department of BioSciences, Rice University, Houston, TX, USA.,Department of Entomology, Pennsylvania State University, University Park, PA, USA
| | | | - George Melika
- Plant Health and Molecular Biology Laboratory, Directorate of Plant Protection, Budapest, Hungary
| | - Andrea Lucky
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA
| |
Collapse
|
28
|
Butterwort V, Dansby H, Zink FA, Tembrock LR, Gilligan TM, Godoy A, Braswell WE, Kawahara AY. A DNA Extraction Method for Insects From Sticky Traps: Targeting a Low Abundance Pest, Phthorimaea absoluta (Lepidoptera: Gelechiidae), in Mixed Species Communities. JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:844-851. [PMID: 35391487 DOI: 10.1093/jee/toac046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Invasive insects can cause catastrophic damage to ecosystems and cost billions of dollars each year due to management expenses and lost revenue. Rapid detection is an important step to prevent invasive insects from spreading, but improvements in detection capabilities are needed for bulk collections like those from sticky traps. Here we present a bulk DNA extraction method designed for the detection of Phthorimaea absoluta Meyrick (Lepidoptera: Gelechiidae), an invasive moth that can decimate tomato crops. We test the extraction method for insect specimens on sticky traps, subjected to different temperature and humidity conditions, and among mock insect communities left in the field for up to 21 d. We find that the extraction method yielded high success (>92%) in recovering target DNA across field and lab trials, without a decline in recovery after three weeks, across all treatments. These results may have a large impact on tomato growing regions where P. absoluta is in the early stages of invasion or not yet present. The extraction method can also be used to improve detection capabilities for other bulk insect collections, especially those using sticky traps, to the benefit of pest surveys and biodiversity studies.
Collapse
Affiliation(s)
- V Butterwort
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL 32511, USA
| | - H Dansby
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL 32511, USA
| | - F A Zink
- Department of Agricultural Biology, 1177 Campus Delivery, Colorado State University, Fort Collins, CO 80523, USA
| | - L R Tembrock
- Department of Agricultural Biology, 1177 Campus Delivery, Colorado State University, Fort Collins, CO 80523, USA
| | - T M Gilligan
- USDA-APHIS-PPQ-Science & Technology, Identification Technology Program, 2301 Research Boulevard, Suite 108, Fort Collins, CO 80526, USA
| | - A Godoy
- USDA-APHIS-PPQ-Science & Technology, Insect Management and Molecular Diagnostics Laboratory, 22675 N. Moorfield Road, Building 6414, Edinburg, TX 78541, USA
| | - W E Braswell
- USDA-APHIS-PPQ-Science & Technology, Insect Management and Molecular Diagnostics Laboratory, 22675 N. Moorfield Road, Building 6414, Edinburg, TX 78541, USA
| | - A Y Kawahara
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL 32511, USA
| |
Collapse
|
29
|
Quintana M, de-León L, Cubero J, Siverio F. Assessment of Psyllid Handling and DNA Extraction Methods in the Detection of ‘Candidatus Liberibacter Solanacearum’ by qPCR. Microorganisms 2022; 10:microorganisms10061104. [PMID: 35744622 PMCID: PMC9230594 DOI: 10.3390/microorganisms10061104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 02/01/2023] Open
Abstract
‘Candidatus Liberibacter solanacearum’ (CaLsol) is an uncultured bacterium, transmitted by psyllids and associated with several diseases in Solanaceae and Apiaceae crops. CaLsol detection in psyllids often requires insect destruction, preventing a subsequent morphological identification. In this work, we have assessed the influence on the detection of CaLsol by PCR in Bactericera trigonica (Hemiptera: Psyllidae), of four specimen preparations (entire body, ground, cut-off head, and punctured abdomen) and seven DNA extraction methods (PBS suspension, squashing on membrane, CTAB, Chelex, TRIsureTM, HotSHOT, and DNeasy®). DNA yield and purity ratios, time consumption, cost, and residues generated were also evaluated. Optimum results were obtained through grinding, but it is suggested that destructive procedures are not essential in order to detect CaLsol. Although CaLsol was detected by qPCR with DNA obtained by the different procedures, HotSHOT was the most sensitive method. In terms of time consumption and cost, squashed on membrane, HotSHOT, and PBS were the fastest, while HotSHOT and PBS were the cheapest. In summary, HotSHOT was accurate, fast, simple, and sufficiently sensitive to detect this bacterium within the vector. Additionally, cross-contamination with CaLsol was assessed in the ethanol solutions where B. trigonica specimens were usually collected and preserved. CaLsol-free psyllids were CaLsol-positive after incubation with CaLsol-positive specimens. This work provides a valuable guide when choosing a method to detect CaLsol in vectors according to the purpose of the study.
Collapse
Affiliation(s)
- María Quintana
- Unidad de Protección Vegetal, Instituto Canario de Investigaciones Agrarias, 38270 San Cristóbal de La Laguna, Spain;
- Correspondence:
| | - Leandro de-León
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Facultad de Farmacia, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain;
| | - Jaime Cubero
- Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), 28040 Madrid, Spain;
| | - Felipe Siverio
- Unidad de Protección Vegetal, Instituto Canario de Investigaciones Agrarias, 38270 San Cristóbal de La Laguna, Spain;
- Sección de Laboratorio de Sanidad Vegetal, Consejería de Agricultura, Ganadería, Pesca y Aguas del Gobierno de Canarias, 38270 San Cristóbal de La Laguna, Spain
| |
Collapse
|
30
|
Sudo M, Osakabe M. freqpcr: Estimation of population allele frequency using qPCR ΔΔCq measures from bulk samples. Mol Ecol Resour 2022; 22:1380-1393. [PMID: 34882971 PMCID: PMC9300209 DOI: 10.1111/1755-0998.13554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 10/28/2021] [Accepted: 11/03/2021] [Indexed: 11/29/2022]
Abstract
PCR techniques, both quantitative (qPCR) and nonquantitative, have been used to estimate the frequency of a specific allele in a population. However, the labour required to sample numerous individuals and subsequently handle each sample renders the quantification of rare mutations (e.g., pesticide resistance gene mutations at the early stages of resistance development) challenging. Meanwhile, pooling DNA from multiple individuals as a "bulk sample" combined with qPCR may reduce handling costs. The qPCR output for a bulk sample, however, contains uncertainty owing to variations in DNA yields from each individual, in addition to measurement errors. In this study, we have developed a statistical model to estimate the frequency of the specific allele and its confidence interval when the sample allele frequencies are obtained in the form of ΔΔCq in the qPCR analyses on multiple bulk samples collected from a population. We assumed a gamma distribution as the individual DNA yield and developed an R package for parameter estimation, which was verified using real DNA samples from acaricide-resistant spider mites, as well as a numerical simulation. Our model resulted in unbiased point estimates of the allele frequency compared with simple averaging of the ΔΔCq values. The confidence intervals suggest that dividing the bulk samples into more parts will improve precision if the total number of individuals is equal; however, if the cost of PCR analysis is higher than that of sampling, increasing the total number and pooling them into a few bulk samples may also yield comparable precision.
Collapse
Affiliation(s)
- Masaaki Sudo
- Division of Fruit Tree and Tea Pest Control ResearchInstitute for Plant ProtectionNARO: Kanaya Tea Research StationShimadaJapan
| | - Masahiro Osakabe
- Laboratory of Ecological InformationGraduate School of AgricultureKyoto UniversityKyotoJapan
| |
Collapse
|
31
|
Nanfack CDV, Yang J, Yuan X, Sun J, Sun X, Ji J. 3, 4-Dihydroxy-l-phenylalanine Biopolymer Cellulose DNA Adhesive Card as an Enhanced Solid-Phase One-Step DNA Extraction Method from Foodborne Pathogens in Food Samples. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-021-02177-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Detection of sex in adults and larvae of Leptinotarsa decemlineata on principle of copy number variation. Sci Rep 2022; 12:4602. [PMID: 35301399 PMCID: PMC8931150 DOI: 10.1038/s41598-022-08642-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/10/2022] [Indexed: 12/02/2022] Open
Abstract
The identification of sex in larvae of insects is usually challenging or even impossible, while in adults the sexual dimorphism is usually evident. Here, we used copy number analysis to develop a method of sex detection in Colorado potato beetle (Leptinotarsa decemlineata), which has an X0 sex determination system. The X linked gene LdVssc and autosomal gene LdUBE3B were identified as appropriate target and reference loci, respectively. The copy numbers (CNV) of LdVssc in males and females were estimated using standard droplet digital PCR (ddPCR) and real-time PCR (qPCR). With both methods, CNVs were bimodally distributed (BAddPCR = 0.709 and BAqPCR = 0.683) with 100% ability to distinguish females from males. The use of qPCR-based sex detection in a broad collection of 448 random CPB adults showed a perfect association (Phi = 1.0, p < 0.05) with the true sexes of adults, with mean CNV in females of 2.032 (SD = 0.227) and 0.989 in males (SD = 0.147). In the collection of 50 random 4th instar larvae, 27 females and 23 males were identified, consistent with the expected 1:1 sex ratio (p = 0.689). The method is suitable for sexing in all stages of ontogenesis. The optimal cost-effective application of the method in large populations requires the DNA extraction using CTAB, the qPCR assay in one biological replicate and three technical replicates of each marker, and the use of one randomly chosen male per run to calibrate calculation of CNV.
Collapse
|
33
|
Bendall EE, Bagley RK, Sousa VC, Linnen CR. Faster-haplodiploid evolution under divergence-with-gene-flow: simulations and empirical data from pine-feeding hymenopterans. Mol Ecol 2022; 31:2348-2366. [PMID: 35231148 DOI: 10.1111/mec.16410] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/10/2022] [Accepted: 02/21/2022] [Indexed: 11/28/2022]
Abstract
Although haplodiploidy is widespread in nature, the evolutionary consequences of this mode of reproduction are not well characterized. Here, we examine how genome-wide hemizygosity and a lack of recombination in haploid males affects genomic differentiation in populations that diverge via natural selection while experiencing gene flow. First, we simulated diploid and haplodiploid "genomes" (500-kb loci) evolving under an isolation-with-migration model with mutation, drift, selection, migration, and recombination; and examined differentiation at neutral sites both tightly and loosely linked to a divergently selected site. So long as there is divergent selection and migration, sex-limited hemizygosity and recombination cause elevated differentiation (i.e., produce a "faster-haplodiploid effect") in haplodiploid populations relative to otherwise equivalent diploid populations, for both recessive and codominant mutations. Second, we used genome-wide SNP data to model divergence history and describe patterns of genomic differentiation between sympatric populations of Neodiprion lecontei and N. pinetum, a pair of pine sawfly species (order: Hymenoptera; family: Diprionidae) that are specialized on different pine hosts. These analyses support a history of continuous gene exchange throughout divergence and reveal a pattern of heterogeneous genomic differentiation that is consistent with divergent selection on many unlinked loci. Third, using simulations of haplodiploid and diploid populations evolving according to the estimated divergence history of N. lecontei and N. pinetum, we found that divergent selection would lead to higher differentiation in haplodiploids. Based on these results, we hypothesize that haplodiploids undergo divergence-with-gene-flow and sympatric speciation more readily than diploids.
Collapse
Affiliation(s)
- Emily E Bendall
- Department of Biology, University of Kentucky, Lexington, Kentucky, 40506, USA.,Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Robin K Bagley
- Department of Biology, University of Kentucky, Lexington, Kentucky, 40506, USA.,Department of Evolution, Ecology, and Organismal Biology, The Ohio State University at Lima, Lima, OH, 45804, USA
| | - Vitor C Sousa
- CE3C - Centre for Ecology, Evolution and Environmental Changes, Department of Animal Biology, Faculdade de Ciências da Universidade de Lisboa, University of Lisbon, Campo Grande 1749-016, Lisboa, Portugal
| | - Catherine R Linnen
- Department of Biology, University of Kentucky, Lexington, Kentucky, 40506, USA
| |
Collapse
|
34
|
A new species of Eumerus from Montenegro, belonging to newly established torsicus species group (Diptera: Syrphidae). ZOOL ANZ 2022. [DOI: 10.1016/j.jcz.2022.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
35
|
Ačanski J, Vujić A, Zorić LŠ, Radenković S, Djan M, Ristić ZM, Ståhls G. Merodon chalybeus Subgroup: An Additional Piece of the M. aureus Group (Diptera, Syrphidae) Puzzle. ANN ZOOL FENN 2022. [DOI: 10.5735/086.059.0109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Jelena Ačanski
- BioSense Institute, University of Novi Sad, Dr Zorana Đinđića 1, RS-21000 Novi Sad, Serbia
| | - Ante Vujić
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, RS-21000 Novi Sad, Serbia
| | - Ljiljana Šašić Zorić
- BioSense Institute, University of Novi Sad, Dr Zorana Đinđića 1, RS-21000 Novi Sad, Serbia
| | - Snežana Radenković
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, RS-21000 Novi Sad, Serbia
| | - Mihajla Djan
- BioSense Institute, University of Novi Sad, Dr Zorana Đinđića 1, RS-21000 Novi Sad, Serbia
| | - Zlata Markov Ristić
- BioSense Institute, University of Novi Sad, Dr Zorana Đinđića 1, RS-21000 Novi Sad, Serbia
| | - Gunilla Ståhls
- Zoology Unit, Finnish Museum of Natural History, P.O. Box 17, FI-00014 University of Helsinki, Helsinki, Finland
| |
Collapse
|
36
|
Kottaipalayam-Somasundaram SR, Jacob JP, Aiyar B, Merzendorfer H, Nambiar-Veetil M. Chitin metabolism as a potential target for RNAi-based control of the forestry pest Hyblaea puera Cramer (Lepidoptera: Hyblaeidae). PEST MANAGEMENT SCIENCE 2022; 78:296-303. [PMID: 34487617 DOI: 10.1002/ps.6634] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Hyblaea puera, commonly known as the teak defoliator, is a serious pest in teak plantations. Despite the availability of control measures, this pest causes losses in yield and quality of timber through voracious feeding. RNA interference (RNAi) is a promising strategy for the control of this pest. Chitin metabolism, which is vital for the growth and development of arthropods, is a potential target for developing RNAi-based insecticides. RESULTS To assess the effects of chitin metabolism inhibition, H. puera larvae were treated with a chitin synthesis inhibitor, diflubenzuron (DFB). DFB treatment caused pupal deformities and disrupted eclosion. Partial gene sequences for three key genes of H. puera chitin metabolism were cloned and sequenced: chitin synthase 1 (HpCHS1), chitinase-h (HpChi-h) and ecdysone receptor (HpEcR). Feeding dsRNA cognate for these three target genes to the first instar of H. puera resulted in mortality and reduction in the corresponding transcript levels as assessed through qRT-PCR. This is the first report of RNAi in this forestry pest. The highest mortality was 45.9%, in response to dsHpEcR treatment; HpChi-h transcripts were the most down-regulated in response to dsHpEcR feeding. DsHpEcR RNAi resulted in growth inhibition and molting arrest. The mortalities were 29.7% and 32.4% for dsHpCHS1 and dsHpChi-h feeding, respectively. CONCLUSION Chitin metabolism could be a potential target for RNAi-based control of H. puera, and HpCHS1, HpChi-h and HpEcR could be suitable target genes. However, the RNAi efficacy needs to be improved through formulations that improve stability and uptake, and employing better delivery strategies. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sowmiya R Kottaipalayam-Somasundaram
- Plant Biotechnology and Cytogenetics Division, Institute of Forest Genetics and Tree Breeding, Coimbatore, India
- Department Biology/Chemistry, Animal Physiology, University of Osnabrück, Osnabrück, Germany
| | - John P Jacob
- Forest Protection Division, Institute of Forest Genetics and Tree Breeding, Coimbatore, India
| | - Balasubramanian Aiyar
- Plant Biotechnology and Cytogenetics Division, Institute of Forest Genetics and Tree Breeding, Coimbatore, India
| | - Hans Merzendorfer
- Department Biology/Chemistry, Animal Physiology, University of Osnabrück, Osnabrück, Germany
| | - Mathish Nambiar-Veetil
- Plant Biotechnology and Cytogenetics Division, Institute of Forest Genetics and Tree Breeding, Coimbatore, India
| |
Collapse
|
37
|
EXTRACTION AND PURITY DNA OF Culex spp MOSQUITO IN KEMELAK VILLAGE, BINDUNG LANGIT, OGAN KOMERING ULU. BIOVALENTIA: BIOLOGICAL RESEARCH JOURNAL 2021. [DOI: 10.24233/biov.7.2.2021.217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Culex spp are mosquito vectors that have a very wide distribution capability and are carriers of pathogens that can interfere with human and animal health. The wide distribution makes Culex spp a dangerous threat. DNA extraction is one of the important steps in obtaining genetic information and genetic analysis. Good quality DNA is used for activities such as the use of molecular markers, genome library creation, and sequencing. This study aims to determine the quality, concentration and purity of Culex spp mosquito DNA in Kemelak Bindung Langit Village, OKU Regency. It is hoped that the sample can be used for further research analysis on Mitochondria D-Loop Sequences in Culex spp mosquitoes. Quantitative measurement of DNA in the form of concentration and purity of DNA using Nanodrop Thermo cycle while qualitative DNA using electrophoresis technique. The results of the isolation of the mosquito genome DNA, obtained clear DNA bands without any degradation (smear) and the concentration results for the four samples ranged from 10-100 ng/µL and the DNA purity was good, ranging from 1.8 to 2.00.
Collapse
|
38
|
Tang M, He S, Gong X, Lü P, Taha RH, Chen K. High-Quality de novo Chromosome-Level Genome Assembly of a Single Bombyx mori With BmNPV Resistance by a Combination of PacBio Long-Read Sequencing, Illumina Short-Read Sequencing, and Hi-C Sequencing. Front Genet 2021; 12:718266. [PMID: 34603381 PMCID: PMC8481875 DOI: 10.3389/fgene.2021.718266] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/05/2021] [Indexed: 12/17/2022] Open
Abstract
The reference genomes of Bombyx mori (B. mori), Silkworm Knowledge-based database (SilkDB) and SilkBase, have served as the gold standard for nearly two decades. Their use has fundamentally shaped model organisms and accelerated relevant studies on lepidoptera. However, the current reference genomes of B. mori do not accurately represent the full set of genes for any single strain. As new genome-wide sequencing technologies have emerged and the cost of high-throughput sequencing technology has fallen, it is now possible for standard laboratories to perform full-genome assembly for specific strains. Here we present a high-quality de novo chromosome-level genome assembly of a single B. mori with nuclear polyhedrosis virus (BmNPV) resistance through the integration of PacBio long-read sequencing, Illumina short-read sequencing, and Hi-C sequencing. In addition, regular bioinformatics analyses, such as gene family, phylogenetic, and divergence analyses, were performed. The sample was from our unique B. mori species (NB), which has strong inborn resistance to BmNPV. Our genome assembly showed good collinearity with SilkDB and SilkBase and particular regions. To the best of our knowledge, this is the first genome assembly with BmNPV resistance, which should be a more accurate insect model for resistance studies.
Collapse
Affiliation(s)
- Min Tang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Suqun He
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Xun Gong
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China.,Department of Medical Rheumatology, Columbia University, New York, NY, United States
| | - Peng Lü
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Rehab H Taha
- Department of Sericulture, Plant Protection Research Institute, Agricultural Research Center, Giza, Egypt
| | - Keping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
39
|
Marín DV, Castillo DK, López-Lavalle LAB, Chalarca JR, Pérez CR. An optimized high-quality DNA isolation protocol for spodoptera frugiperda J. E. smith (Lepidoptera: Noctuidae). MethodsX 2021; 8:101255. [PMID: 34434778 PMCID: PMC8374285 DOI: 10.1016/j.mex.2021.101255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 01/28/2021] [Indexed: 11/27/2022] Open
Abstract
An optimized high-quality DNA isolation protocol was developed using body segment tissue from the Fall Armyworm (Spodoptera frugiperda), that will allow documenting genetic variability based on biotypes, facilitating studies on the appearance, distribution and population dynamics of the fall armyworm at the molecular level. The resulting protocol is an easy-to-use, timesaving method that can rapidly achieve high quality, high-yielding total genomic DNA, using chemicals and everyday consumables available in a molecular laboratory. This new method of DNA extraction avoids the contamination of polysaccharides, salts, phenols, proteins and other cellular by-products that can interfere with subsequent reactions. DNA purity estimates reveal A260: A280 ratios greater than 1.9, which were evidenced by quality test on agarose gel, observing complete integrity and high purity of the resulting samples, and yielded 30–99 µg/g of total DNA. Therefore, the quality of the DNA produced from this extraction is suitable for subsequent molecular applications: (i) next generation whole genome sequencing, (ii) conventional polymerase chain reaction for genotyping, (iii) barcodes and (iv) gene cloning. In addition, to become an anticipating diagnostic tool for invasive lepidopteran larval stages:The resulting protocol is an easy-to-use time-saving method. This new extraction method prevents contamination from polysaccharides, salts, phenols, proteins, and other cellular sub-products. DNA purity estimations reveal A260:A280 ratios above 1.9.
Collapse
Affiliation(s)
- Diana Victoria Marín
- Universidad Nacional de Colombia, Sede Palmira, Palmira, Valle del Cauca, Colombia.,The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Recta Cali-Palmira km 17, Valle del Cauca, Colombia
| | - Diana Katherine Castillo
- The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Recta Cali-Palmira km 17, Valle del Cauca, Colombia
| | - Luis Augusto Becerra López-Lavalle
- The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Recta Cali-Palmira km 17, Valle del Cauca, Colombia
| | - Jairo Rodríguez Chalarca
- The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Recta Cali-Palmira km 17, Valle del Cauca, Colombia
| | | |
Collapse
|
40
|
Masiá P, Ardura A, García-Vázquez E. Virgin Polystyrene Microparticles Exposure Leads to Changes in Gills DNA and Physical Condition in the Mediterranean Mussel Mytilus Galloprovincialis. Animals (Basel) 2021; 11:ani11082317. [PMID: 34438773 PMCID: PMC8388471 DOI: 10.3390/ani11082317] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 11/29/2022] Open
Abstract
Simple Summary Microplastic pollution is damaging ecosystems and marine organisms worldwide, and, as this problem is becoming greater, the fate of these marine organisms should be studied. In this study, the physical condition and the DNA integrity of gills of Mediterranean mussels (Mytilus galloprovincialis) have been studied under four microplastic concentrations for 21 days. A worse physical status was shown at the end of the experiment when exposed to highest concentrations; however, DNA damage was higher when exposed to lower concentrations. These results prove that mussels can be affected by direct exposure even at a low microplastic concentration due to their filter-feeding behavior, making them more vulnerable to this type of pollution. Abstract The ever-growing concentration of microplastics in the marine environment is leading to a plethora of questions regarding marine organisms’ present and future health status. In this article, the Mediterranean mussel (Mytilus galloprovincialis), a commercial species distributed worldwide, has been exposed to 21 daily doses of polystyrene microparticles (10 µm) at four different concentrations that are environmentally realistic (control: no microplastics, C1: 0.02 mg/L, C2: 0.2 mg/L, and C3: 2 mg/L). The physical status through the condition index, and damages in DNA integrity in gills, through DNA fragmentation, were determined. Results showed a minor effect on DNA integrity but a worse physical status at higher doses. Results could be interpreted as a decrease in mussel feeding activity/filtration rates when exposed to high microplastic concentrations, thus reducing the direct exposure to microplastics in gills. These effects could be happening currently and/or may happen in the near future, threatening populations inhabiting microplastics-polluted environments.
Collapse
|
41
|
Volarić M, Veseljak D, Mravinac B, Meštrović N, Despot-Slade E. Isolation of High Molecular Weight DNA from the Model Beetle Tribolium for Nanopore Sequencing. Genes (Basel) 2021; 12:1114. [PMID: 34440288 PMCID: PMC8394269 DOI: 10.3390/genes12081114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 12/31/2022] Open
Abstract
The long-read Nanopore sequencing has been recently applied for assembly of complex genomes and analysis of linear genome organization. The most critical factor for successful long-read sequencing is extraction of high molecular weight (HMW) DNA of sufficient purity and quantity. The challenges associated with input DNA quality are further amplified when working with extremely small insects with hard exoskeletons. Here, we optimized the isolation of HMW DNA from the model beetle Tribolium and tested for use in Nanopore sequencing. We succeeded in overcoming all the difficulties in HMW handling and library preparation that were encountered when using published protocols and commercial kits. Isolation of nuclei and subsequent purification of DNA on an anion-exchange chromatography column resulted in genomic HMW DNA that was efficiently relaxed, of optimal quality and in sufficient quantity for Nanopore MinION sequencing. DNA shearing increased average N50 read values up to 26 kb and allowed us to use a single flow cell in multiple library loads for a total output of more than 13 Gb. Although our focus was on T. castaneum and closely related species, we expect that this protocol, with appropriate modifications, could be extended to other insects, particularly beetles.
Collapse
Affiliation(s)
| | | | | | | | - Evelin Despot-Slade
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (M.V.); (D.V.); (B.M.); (N.M.)
| |
Collapse
|
42
|
Optimum DNA Extraction Methods for Edible Bird's Nest Identification Using Simple Additive Weighting Technique. FOODS (BASEL, SWITZERLAND) 2021; 10:foods10051086. [PMID: 34068860 PMCID: PMC8153580 DOI: 10.3390/foods10051086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/28/2021] [Accepted: 05/04/2021] [Indexed: 11/22/2022]
Abstract
A simple additive weighting (SAW) technique was used to determine and compare the overall performance of five DNA extraction methods from conventional (SDS method) to commercial kits (Qiagen, Wizard, and NucleoSpin) for identifying origins of edible bird’s nest (EBN) using end-point polymerase chain reaction (PCR). A hybrid method (SDS/Qiagen) which has been developed by combining the conventional SDS method with commercialised Qiagen was determined as the most suitable in terms of speed and cost-effectiveness. The determination of optimum extraction method was by the performances on efficiency and feasibility, extracted DNA concentration, purity, PCR amplifiability, handling time and safety of reagents used. The hybrid SDS/Qiagen method is less costly compared to the commercial kits and offered a more rapid alternative to the conventional SDS method with significant improvement in the yield, purity and PCR amplifiability. The developed hybrid SDS/Qiagen method provides a more practical alternative over the lengthy process using conventional method and expensive process using commercial kits. Using the simple additive weighting (SAW) technique and analysis, the Qiagen method is considered the most efficient and feasible method without consideration of cost as it yielded the purest extracted DNA and achieved the highest PCR amplifiability with the shortest turnaround time.
Collapse
|
43
|
Adema CM. Sticky problems: extraction of nucleic acids from molluscs. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200162. [PMID: 33813891 DOI: 10.1098/rstb.2020.0162] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Traditional molecular methods and omics-techniques across molluscan taxonomy increasingly inform biology of Mollusca. Recovery of DNA and RNA for such studies is challenged by common biological properties of the highly diverse molluscs. Molluscan biomineralization, adhesive structures and mucus involve polyphenolic proteins and mucopolysaccharides that hinder DNA extraction or copurify to inhibit enzyme-catalysed molecular procedures. DNA extraction methods that employ the detergent hexadecyltrimethylammoniumbromide (CTAB) to remove these contaminants importantly facilitate molecular-level study of molluscs. Molluscan pigments may stain DNA samples and interfere with spectrophotometry, necessitating gel electrophoresis or fluorometry for accurate quantification. RNA can reliably be extracted but the 'hidden break' in 28S rRNA of molluscs (like most protostomes) causes 18S and 28S rRNA fragments to co-migrate electrophoretically. This challenges the standard quality control based on the ratio of 18S and 28S rRNA, developed for deuterostome animals. High-AT content in molluscan rRNA prevents the effective purification of polyadenylated mRNA. Awareness of these matters aids the continuous expansion of molecular malacology, enabling work also with museum specimens and next-generation sequencing, with the latter imposing unprecedented demands on DNA quality. Alternative methods to extract nucleic acids from molluscs are available from literature and, importantly, from communications with others who study the molecular biology of molluscs. This article is part of the Theo Murphy meeting issue 'Molluscan genomics: broad insights and future directions for a neglected phylum'.
Collapse
Affiliation(s)
- Coen M Adema
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87112, USA
| |
Collapse
|
44
|
The Multiomics Analyses of Fecal Matrix and Its Significance to Coeliac Disease Gut Profiling. Int J Mol Sci 2021; 22:ijms22041965. [PMID: 33671197 PMCID: PMC7922330 DOI: 10.3390/ijms22041965] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 12/15/2022] Open
Abstract
Gastrointestinal (GIT) diseases have risen globally in recent years, and early detection of the host’s gut microbiota, typically through fecal material, has become a crucial component for rapid diagnosis of such diseases. Human fecal material is a complex substance composed of undigested macromolecules and particles, and the processing of such matter is a challenge due to the unstable nature of its products and the complexity of the matrix. The identification of these products can be used as an indication for present and future diseases; however, many researchers focus on one variable or marker looking for specific biomarkers of disease. Therefore, the combination of genomics, transcriptomics, proteomics and metabonomics can give a detailed and complete insight into the gut environment. The proper sample collection, sample preparation and accurate analytical methods play a crucial role in generating precise microbial data and hypotheses in gut microbiome research, as well as multivariate data analysis in determining the gut microbiome functionality in regard to diseases. This review summarizes fecal sample protocols involved in profiling coeliac disease.
Collapse
|
45
|
Izraeli Y, Lalzar M, Netanel N, Mozes-Daube N, Steinberg S, Chiel E, Zchori-Fein E. Wolbachia influence on the fitness of Anagyrus vladimiri (Hymenoptera: Encyrtidae), a bio-control agent of mealybugs. PEST MANAGEMENT SCIENCE 2021; 77:1023-1034. [PMID: 33002324 DOI: 10.1002/ps.6117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/17/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Like numerous other animals, biocontrol agents (BCAs) of arthropod pests carry various microorganisms that may have diverse effects on the biology of their eukaryote hosts. We postulated that it is possible to improve the efficacy of BCAs by manipulating the composition of their associated microbiota. The parasitoid wasp Anagyrus vladimiri (Hymenoptera: Encyrtidae) from a mass-rearing facility was chosen for testing this hypothesis. RESULTS High-throughput sequencing analysis indicated that fungal abundance in A. vladimiri was low and variable, whereas the bacterial community was dominated by the endosymbiont Wolbachia. Wolbachia was fixed in the mass-rearing population, whereas in field-collected A. vladimiri Wolbachia's prevalence was only approximately 20%. Identification of Wolbachia strains from the two populations by Multi Locus Sequence Typing, revealed two closely related but unique strains. A series of bioassays with the mass-rearing Wolbachia-fixed (W+ ) and a derived antibiotic-treated Wolbachia-free (W- ) lines revealed that: (i) Wolbachia does not induce reproductive manipulations; (ii) W- females have higher fecundity when reared individually, but not when reared with conspecifics; (iii) W+ females outcompete W- when they share hosts for oviposition; (iv) longevity and developmental time were similar in both lines. CONCLUSIONS The findings suggest that W+ A. vladimiri have no clear fitness benefit under mass-rearing conditions and may be disadvantageous under lab-controlled conditions. In a broader view, the results suggest that augmentative biological control can benefit from manipulation of the microbiome of natural enemies.
Collapse
Affiliation(s)
- Yehuda Izraeli
- Department of Evolution and Environmental Biology, University of Haifa, Haifa, Israel
- Department of Entomology, ARO Newe Ya'ar Research Center, Ramat Yishay, Israel
| | - Maya Lalzar
- Bioinformatic Department, University of Haifa, Haifa, Israel
| | - Nir Netanel
- Department of Evolution and Environmental Biology, University of Haifa, Haifa, Israel
- Department of Entomology, ARO Newe Ya'ar Research Center, Ramat Yishay, Israel
| | - Netta Mozes-Daube
- Department of Entomology, ARO Newe Ya'ar Research Center, Ramat Yishay, Israel
| | | | - Elad Chiel
- Department of Biology and Environment, University of Haifa-Oranim, Kiryat Tiv'on, Israel
| | - Einat Zchori-Fein
- Department of Entomology, ARO Newe Ya'ar Research Center, Ramat Yishay, Israel
| |
Collapse
|
46
|
Lin YH, Shen SM, Wen CJ, Lin YJ, Chang TD, Chu SC. Molecular Detection Assays for Rapid Field-Detection of Rice Sheath Blight. FRONTIERS IN PLANT SCIENCE 2021; 11:552916. [PMID: 33505407 PMCID: PMC7829186 DOI: 10.3389/fpls.2020.552916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
Rhizoctonia solani (Rs), a soil-borne fungal pathogen, can result in rice sheath blight (ShB), which causes yield loss. To prevent outbreaks of ShB and enhance the sustainability of rice production, it is critical to develop a rapid ShB detection method for specific, fast, and on-site disease management. In this study, a reagent for the rapid extraction of this pathogen was developed for on-site detection. The specificity and sensitivity of a novel SMS RS1-F/SMS RS1-R primer set and a ITS1/GMRS-3 reference primer set were tested, while four different extraction protocols for ShB were developed. Moreover, intraday and interday assays were performed to evaluate the reproducibility of the detection methods developed. The results indicated that all of the developed protocols are suitable for use in detecting ShB. In addition, all the samples of infected rice yielded positive Rs detection results when subjected to TaqMan probe-based real-time PCR and SYBR green-based real-time PCR (SMS RS1-F/SMS RS1-R) tests in which automatic magnetic bead-based DNA extraction was performed. These results indicated that the two molecular detection protocols were suitable for the field diagnosis of ShB for all asymptomatic and symptomatic rice samples.
Collapse
Affiliation(s)
- Ying-Hong Lin
- Department of Plant Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Plant Medicine Teaching Hospital, General Research Service Center, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Shih-Mao Shen
- Department of Plant Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Chen-Jie Wen
- Department of Plant Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Yi-Jia Lin
- Department of Plant Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Tsai-De Chang
- Department of Plant Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Sheng-Chi Chu
- Biological Control Branch Station, Miaoli District Agricultural Research and Extension Station, Council of Agriculture, Miaoli, Taiwan
| |
Collapse
|
47
|
Sosiawan A, Yudianto A, Furqoni A, Masjkur I, Huda Q. Allelic sharing among madurese as a tool of madurese identification using 11 short tandem repeats and amelogenin gene: An observational analytical study. J Int Oral Health 2021. [DOI: 10.4103/jioh.jioh_177_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
48
|
François C, Martinez C, Faye C, Pansu N, Dunyach-Remy C, Garrelly L, Roig B, Cadiere A. The Utilization of Linear Polylysine Coupled with Mechanic Forces to Extract Microbial DNA from Different Matrices. Microorganisms 2020; 8:microorganisms8121901. [PMID: 33266082 PMCID: PMC7760326 DOI: 10.3390/microorganisms8121901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 11/16/2022] Open
Abstract
Molecular approaches are powerful tools that are used for medical or environmental diagnoses. However, the main limitations of such a tools are that they extract low levels of DNA and they do not remove the inhibitors of polymerase chain reaction (PCR). Although the use of polycation to complex and purify DNA has been described in the literature, elution often requires a high ionic strength or pH levels not compatible with molecular analyses. In this paper, we described a new process that is based on the complexation of DNA with linear polylysine, followed by capturing the complex by a cation exchange resin. The originality of the process consisted of using mechanic force to elute DNA from the complex. The extraction method showed several advantages when compared to existing methods, such as being compatible with pH levels that range from 5 to 11, as well as high levels of DNA recovery and elimination of PCR inhibitors from complex samples. This method was successfully applied to different types of samples, such as environmental samples, beverage samples, and medical samples. Furthermore, it was proven to be a good solution for removing PCR inhibitors and assuring good DNA recovery yield.
Collapse
Affiliation(s)
- Celia François
- Gl-Biocontrol, 34830 Clapiers, France; (C.F.); (C.M.); (C.F.); (L.G.)
| | - Celia Martinez
- Gl-Biocontrol, 34830 Clapiers, France; (C.F.); (C.M.); (C.F.); (L.G.)
| | - Clement Faye
- Gl-Biocontrol, 34830 Clapiers, France; (C.F.); (C.M.); (C.F.); (L.G.)
| | - Nathalie Pansu
- Institute National de la Santé et de la Recherche Médicale, U1047, University Montpellier, UFR de Médecine, 30908 Nimes, France; (N.P.); (C.D.-R.)
- Department of Microbiology, CHU Nimes, University Montpellier, 30029 Nimes, France
| | - Catherine Dunyach-Remy
- Institute National de la Santé et de la Recherche Médicale, U1047, University Montpellier, UFR de Médecine, 30908 Nimes, France; (N.P.); (C.D.-R.)
- Department of Microbiology, CHU Nimes, University Montpellier, 30029 Nimes, France
| | - Laurent Garrelly
- Gl-Biocontrol, 34830 Clapiers, France; (C.F.); (C.M.); (C.F.); (L.G.)
| | - Benoit Roig
- EA7352 CHROME, University Nimes, Rue du Dr G. Salan, CEDEX 1, 30021 Nimes, France;
| | - Axelle Cadiere
- EA7352 CHROME, University Nimes, Rue du Dr G. Salan, CEDEX 1, 30021 Nimes, France;
- Correspondence: ; Tel.: +33-466-27-95-71
| |
Collapse
|
49
|
Hippee AC, Beer MA, Bagley RK, Condon MA, Kitchen A, Lisowski EA, Norrbom AL, Forbes AA. Host shifting and host sharing in a genus of specialist flies diversifying alongside their sunflower hosts. J Evol Biol 2020; 34:364-379. [PMID: 33190382 DOI: 10.1111/jeb.13740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/02/2020] [Accepted: 10/30/2020] [Indexed: 11/30/2022]
Abstract
Congeneric parasites are unlikely to specialize on the same tissues of the same host species, likely because of strong multifarious selection against niche overlap. Exceptions where >1 congeneric species use the same tissues reveal important insights into ecological factors underlying the origins and maintenance of diversity. Larvae of sunflower maggot flies in the genus Strauzia feed on plants in the family Asteraceae. Although Strauzia tend to be host specialists, some species specialize on the same hosts. To resolve the origins of host sharing among these specialist flies, we used reduced representation genomic sequencing to infer the first multilocus phylogeny of genus Strauzia. Our results show that Helianthus tuberosus and Helianthus grosseserratus each host three different Strauzia species and that the flies co-occurring on a host are not one another's closest relatives. Though this pattern implies that host sharing is most likely the result of host shifts, these may not all be host shifts in the conventional sense of an insect moving onto an entirely new plant. Many hosts of Strauzia belong to a clade of perennial sunflowers that arose 1-2 MYA and are noted for frequent introgression and hybrid speciation events. Our divergence time estimates for all of the Helianthus-associated Strauzia are within this same time window (<1 MYA), suggesting that rapid and recent adaptive introgression and speciation in Helianthus may have instigated the diversification of Strauzia, with some flies converging upon a single plant host after their respective ancestral host plants hybridized to form a new sunflower species.
Collapse
Affiliation(s)
- Alaine C Hippee
- Department of Biology, University of Iowa, Iowa City, IA, USA
| | - Marc A Beer
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Robin K Bagley
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University at Lima, Lima, OH, USA
| | - Marty A Condon
- Department of Biology, Cornell College, Mount Vernon, IA, USA
| | - Andrew Kitchen
- Department of Anthropology, University of Iowa, Iowa City, IA, USA
| | | | - Allen L Norrbom
- Systematic Entomology Laboratory, USDA, ARS, PSI, c/o National Museum of Natural History, Washington, DC, USA
| | - Andrew A Forbes
- Department of Biology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
50
|
Lukindu M, Love RR, Guelbeogo MW, Small ST, Stephens MT, Campbell NR, Sagnon N, Costantini C, Besansky NJ. High-Throughput Genotyping of Common Chromosomal Inversions in the Afrotropical Malaria Mosquito Anopheles Funestus. INSECTS 2020; 11:E693. [PMID: 33065978 PMCID: PMC7650614 DOI: 10.3390/insects11100693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/02/2020] [Accepted: 10/07/2020] [Indexed: 11/16/2022]
Abstract
Polymorphic chromosomal inversions have been implicated in local adaptation. In anopheline mosquitoes, inversions also contribute to epidemiologically relevant phenotypes such as resting behavior. Progress in understanding these phenotypes and their mechanistic basis has been hindered because the only available method for inversion genotyping relies on traditional cytogenetic karyotyping, a rate-limiting and technically difficult approach that is possible only for the fraction of the adult female population at the correct gonotrophic stage. Here, we focus on an understudied malaria vector of major importance in sub-Saharan Africa, Anopheles funestus. We ascertain and validate tag single nucleotide polymorphisms (SNPs) using high throughput molecular assays that allow rapid inversion genotyping of the three most common An. funestus inversions at scale, overcoming the cytogenetic karyotyping barrier. These same inversions are the only available markers for distinguishing two An. funestus ecotypes that differ in indoor resting behavior, Folonzo and Kiribina. Our new inversion genotyping tools will facilitate studies of ecotypic differentiation in An. funestus and provide a means to improve our understanding of the roles of Folonzo and Kiribina in malaria transmission.
Collapse
Affiliation(s)
- Martin Lukindu
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA; (M.L.); (R.R.L.); (S.T.S.)
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA;
| | - R. Rebecca Love
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA; (M.L.); (R.R.L.); (S.T.S.)
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA;
| | - Moussa W. Guelbeogo
- Centre National de Recherche et Formation sur le Paludisme (CNRFP), Ouagadougou, Burkina Faso; (M.W.G.); (N.S.); (C.C.)
| | - Scott T. Small
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA; (M.L.); (R.R.L.); (S.T.S.)
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA;
| | - Melissa T. Stephens
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA;
| | | | - N’Fale Sagnon
- Centre National de Recherche et Formation sur le Paludisme (CNRFP), Ouagadougou, Burkina Faso; (M.W.G.); (N.S.); (C.C.)
| | - Carlo Costantini
- Centre National de Recherche et Formation sur le Paludisme (CNRFP), Ouagadougou, Burkina Faso; (M.W.G.); (N.S.); (C.C.)
- 5 MIVEGEC, University of Montpellier, CNRS 5290, IRD 224, F-34394 Montpellier, France
| | - Nora J. Besansky
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA; (M.L.); (R.R.L.); (S.T.S.)
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA;
| |
Collapse
|