1
|
Riaz MA, Kary FL, Jensen A, Zeppernick F, Meinhold-Heerlein I, Konrad L. Long-Term Maintenance of Viable Human Endometrial Epithelial Cells to Analyze Estrogen and Progestin Effects. Cells 2024; 13:811. [PMID: 38786035 PMCID: PMC11120542 DOI: 10.3390/cells13100811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
There are fewer investigations conducted on human primary endometrial epithelial cells (HPEECs) compared to human primary endometrial stromal cells (HPESCs). One of the main reasons is the scarcity of protocols enabling prolonged epithelial cell culture. Even though it is possible to culture HPEECs in 3D over a longer period of time, it is technically demanding. In this study, we successfully established a highly pure, stable, and long-term viable human conditionally reprogrammed endometrial epithelial cell line, designated as eCRC560. These cells stained positive for epithelial markers, estrogen and progesterone receptors, and epithelial cell-cell contacts but negative for stromal and endothelial cell markers. Estradiol (ES) reduced the abundance of ZO-1 in a time- and dose-dependent manner, in contrast to the dose-dependent increase with the progestin dienogest (DNG) when co-cultured with HPESCs. Moreover, ES significantly increased cell viability, cell migration, and invasion of the eCRC560 cells; all these effects were inhibited by pretreatment with DNG. DNG withdrawal led to a significantly disrupted monolayer of eCRC560 cells in co-culture with HPESCs, yet it markedly increased the adhesion of eCRC560 to the human mesothelial MeT-5A cells. The long-term viable eCRC560 cells are suitable for in vitro analysis of HPEECs to study the epithelial compartment of the human endometrium and endometrial pathologies.
Collapse
Affiliation(s)
- Muhammad Assad Riaz
- Institute of Gynecology and Obstetrics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany; (M.A.R.); (F.L.K.); (F.Z.); (I.M.-H.)
| | - Franziska Louisa Kary
- Institute of Gynecology and Obstetrics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany; (M.A.R.); (F.L.K.); (F.Z.); (I.M.-H.)
| | - Alexandra Jensen
- Institute of Radiooncology and Radiotherapy, Clinic Fulda, 36043 Fulda, Germany;
| | - Felix Zeppernick
- Institute of Gynecology and Obstetrics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany; (M.A.R.); (F.L.K.); (F.Z.); (I.M.-H.)
| | - Ivo Meinhold-Heerlein
- Institute of Gynecology and Obstetrics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany; (M.A.R.); (F.L.K.); (F.Z.); (I.M.-H.)
| | - Lutz Konrad
- Institute of Gynecology and Obstetrics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany; (M.A.R.); (F.L.K.); (F.Z.); (I.M.-H.)
| |
Collapse
|
2
|
The Roles of Skin Langerhans Cells in Immune Tolerance and Cancer Immunity. Vaccines (Basel) 2022; 10:vaccines10091380. [PMID: 36146458 PMCID: PMC9503294 DOI: 10.3390/vaccines10091380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/14/2022] [Accepted: 08/19/2022] [Indexed: 12/19/2022] Open
Abstract
Langerhans cells (LC) are a unique population of tissue-resident macrophages with dendritic cell (DC) functionality that form a network of cells across the epidermis of the skin. Their location at the skin barrier suggests an important role for LC as immune sentinels at the skin surface. The classification of LC as DC over the past few decades has driven the scientific community to extensively study how LC function as DC-like cells that prime T cell immunity. However, LC are a unique type of tissue-resident macrophages, and recent evidence also supports an immunoregulatory role of LC at steady state and during specific inflammatory conditions, highlighting the impact of cutaneous environment in shaping LC functionality. In this mini review, we discuss the recent literature on the immune tolerance function of LC in homeostasis and disease conditions, including malignant transformation and progression; as well as LC functional plasticity for adaption to microenvironmental cues and the potential connection between LC population heterogeneity and functional diversity. Future investigation into the molecular mechanisms that LC use to integrate different microenvironment cues and adapt immunological responses for controlling LC functional plasticity is needed for future breakthroughs in tumor immunology, vaccine development, and treatments for inflammatory skin diseases.
Collapse
|
3
|
Zhu N, Yang X, Liu Q, Chen Y, Wang X, Li H, Gao H. “Iron triangle” of regulating the uterine microecology: Endometrial microbiota, immunity and endometrium. Front Immunol 2022; 13:928475. [PMID: 36016947 PMCID: PMC9396262 DOI: 10.3389/fimmu.2022.928475] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
The uterus is the core place for breeding new life. The balance and imbalance of uterine microecology can directly affect or even dominate the female reproductive health. Emerging data demonstrate that endometrial microbiota, endometrium and immunity play an irreplaceable role in regulating uterine microecology, forming a dynamic iron triangle relationship. Up to nowadays, it remains unclear how the three factors affect and interact with each other, which is also a frontier topic in the emerging field of reproductive tract microecology. From this new perspective, we aim to clarify the relationship and mechanism of the interaction of these three factors, especially their pairwise interactions. Finally, the limitations and future perspectives of the current studies are summarized. In general, these three factors have a dynamic relationship of mutual dependence, promotion and restriction under the physiological or pathological conditions of uterus, among which the regulatory mechanism of microbiota and immunity plays a role of bridge. These findings can provide new insights and measures for the regulation of uterine microecology, the prevention and treatment of endometrial diseases, and the further multi-disciplinary integration between microbiology, immunology and reproductive medicine.
Collapse
Affiliation(s)
- Na Zhu
- Department of Nursing, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- School of Nursing, University of South China, Hengyang, China
| | - Xuyan Yang
- Department of Nursing, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Qiao Liu
- School of Nursing, University of South China, Hengyang, China
| | - Yahui Chen
- School of Nursing, University of South China, Hengyang, China
| | - Xiaolan Wang
- Center for Reproductive Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Huanhuan Li
- Department of Gynecology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Hong Gao
- Department of Nursing, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- *Correspondence: Hong Gao,
| |
Collapse
|
4
|
Wong ME, Johnson CJ, Hearps AC, Jaworowski A. Development of a Novel In Vitro Primary Human Monocyte-Derived Macrophage Model To Study Reactivation of HIV-1 Transcription. J Virol 2021; 95:e0022721. [PMID: 34287050 PMCID: PMC8428379 DOI: 10.1128/jvi.00227-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 07/09/2021] [Indexed: 11/20/2022] Open
Abstract
Latent HIV reservoirs persist in people living with HIV despite effective antiretroviral therapy and contribute to rebound viremia upon treatment interruption. Macrophages are an important reservoir cell type, but analysis of agents that modulate latency in macrophages is limited by lack of appropriate in vitro models. We therefore generated an experimental system to investigate this by purifying nonproductively infected human monocyte-derived macrophages (MDM) following in vitro infection with an M-tropic enhanced green fluorescent protein reporter HIV clone and quantified activation of HIV transcription using live-cell fluorescence microscopy. The proportion of HIV-infected MDM was quantified by qPCR detection of HIV DNA, and GFP expression was validated as a marker of productive HIV infection by colabeling of HIV Gag protein. HIV transcription spontaneously reactivated in latently infected MDM at a rate of 0.22% ± 0.04% cells per day (mean ± the standard error of the mean, n = 10 independent donors), producing infectious virions able to infect heterologous T cells in coculture experiments, and both T cells and TZM-bl cells in a cell-free infection system using MDM culture supernatants. Polarization to an M1 phenotype with gamma interferon plus tumor necrosis factor resulted in a 2.3-fold decrease in initial HIV infection of MDM (P < 0.001, n = 8) and a 1.4-fold decrease in spontaneous reactivation (P = 0.025, n = 6), whereas M2 polarization using interleukin-4 prior to infection led to a 1.6-fold decrease in HIV infectivity (P = 0.028, n = 8) but a 2.0-fold increase in the rate of HIV reactivation in latently infected MDM (P = 0.023, n = 6). The latency reversing agents bryostatin and vorinostat, but not panobinostat, significantly induced HIV reactivation in latently infected MDM (P = 0.031 and P = 0.038, respectively, n = 6). IMPORTANCE Agents which modulate latent HIV reservoirs in infected cells are of considerable interest to HIV cure strategies. The present study characterizes a robust, reproducible model enabling quantification of HIV reactivation in primary HIV-infected human MDM which is relatively insensitive to the monocyte donor source and hence suitable for evaluating latency modifiers in MDM. The rate of initial viral infection was greater than the rate of HIV reactivation, suggesting that different mechanisms regulate these processes. HIV reactivation was sensitive to macrophage polarization, suggesting that cellular and tissue environments influence HIV reactivation in different macrophage populations. Importantly, latently infected MDM showed different susceptibilities to certain latency-reversing agents known to be effective in T cells, indicating that dedicated strategies may be required to target latently infected macrophage populations in vivo.
Collapse
Affiliation(s)
- Michelle E. Wong
- Life Sciences Discipline, Burnet Institute, Melbourne, Australia
- Department of Immunology, Central Clinical School, Monash University, Melbourne, Australia
| | - Chad J. Johnson
- Bioimaging Platform, La Trobe University, Melbourne, Australia
| | - Anna C. Hearps
- Life Sciences Discipline, Burnet Institute, Melbourne, Australia
- Department of Infectious Diseases, Monash University, Melbourne, Australia
| | - Anthony Jaworowski
- Department of Infectious Diseases, Monash University, Melbourne, Australia
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
| |
Collapse
|
5
|
Polak ME, Singh H. Tolerogenic and immunogenic states of Langerhans cells are orchestrated by epidermal signals acting on a core maturation gene module. Bioessays 2021; 43:e2000182. [PMID: 33645739 DOI: 10.1002/bies.202000182] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/11/2022]
Abstract
Langerhans cells (LCs), residing in the epidermis, are able to induce potent immunogenic responses and also to mediate immune tolerance. We propose that tolerogenic and immunogenic responses of LCs are directed by signaling from the epidermis and involve counter-acting gene circuits that are coupled to a core maturation gene module. We base our analysis on recent genetic and genomic findings facilitating the understanding of the molecular mechanisms controlling these divergent immune functions. Comparing gene regulatory network (GRN) analyses of various types of dendritic cells (DCs) including LCs we integrate signaling-dependent (TGFβ, EpCAM, β-Catenin) and transcription factor (IRF4, IRF1, NFκB) regulated gene circuits that appear to orchestrate the distinctive LC functional states. Our model proposes, that while epidermal signaling in the steady-state promotes LC tolerogenic function, the disruption of cell-cell contacts coupled with inflammatory signaling induces LC immunogenic programing. The conceptual framework emphasizes the sensing of discrete epidermal and inflammatory cues by resident LCs in dictating their genomic programing and cell state dynamics.
Collapse
Affiliation(s)
- Marta E Polak
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton, UK.,Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Harinder Singh
- Center for Systems Immunology, Departments of Immunology and Computational and Systems Biology, The University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
6
|
Shen Z, Rodriguez-Garcia M, Patel MV, Wira CR. Direct and Indirect endocrine-mediated suppression of human endometrial CD8+T cell cytotoxicity. Sci Rep 2021; 11:1773. [PMID: 33469053 PMCID: PMC7815780 DOI: 10.1038/s41598-021-81380-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/04/2021] [Indexed: 02/07/2023] Open
Abstract
Regulation of endometrial (EM) CD8+T cells is essential for successful reproduction and protection against pathogens. Suppression of CD8+T cells is necessary for a tolerogenic environment that promotes implantation and pregnancy. However, the mechanisms regulating this process remain unclear. Sex hormones are known to control immune responses directly on immune cells and indirectly through the tissue environment. When the actions of estradiol (E2), progesterone (P) and TGFβ on EM CD8+T cells were evaluated, cytotoxic activity, perforin and granzymes were directly suppressed by E2 and TGFβ but not P. Moreover, incubation of polarized EM epithelial cells with P, but not E2, increased TGFβ secretion. These findings suggest that E2 acts directly on CD8+T cell to suppress cytotoxic activity while P acts indirectly through induction of TGFβ production. Understanding the mechanisms involved in regulating endometrial CD8+T cells is essential for optimizing reproductive success and developing protective strategies against genital infections and gynecological cancers.
Collapse
Affiliation(s)
- Z Shen
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, NH, 03756, USA
| | - M Rodriguez-Garcia
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | - M V Patel
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, NH, 03756, USA
| | - C R Wira
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, NH, 03756, USA.
| |
Collapse
|
7
|
Rodriguez-Garcia M, Shen Z, Fortier JM, Wira CR. Differential Cytotoxic Function of Resident and Non-resident CD8+ T Cells in the Human Female Reproductive Tract Before and After Menopause. Front Immunol 2020; 11:1096. [PMID: 32582183 PMCID: PMC7287154 DOI: 10.3389/fimmu.2020.01096] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/06/2020] [Indexed: 01/22/2023] Open
Abstract
The functional characterization and regulation of tissue resident and non-resident CD8+ T cells in the human female reproductive tract (FRT) as women age remains a gap in our knowledge. Here we characterized the cytotoxic activity and granular contents of CD8+ T cells from the FRT in pre- and postmenopausal women. We found that under steady-state conditions, CD8+ T cells from endometrium (EM), endocervix and ectocervix displayed direct cytotoxic activity, and that cytotoxicity increased in the EM after menopause. Cytotoxic activity was sensitive to suppression by TGFβ exclusively in the EM, and sensitivity to TGFβ was reduced after menopause. Under steady-state conditions, cytotoxic activity (measured as direct killing activity), cytotoxic potential (measured as content of cytotoxic molecules) and proliferation are enhanced in non-resident CD8+ (CD103−) T cells compared to tissue resident (CD103+) T cells. Upon activation, CD103+ T cells displayed greater degranulation compared to CD103− T cells, however the granular content of perforin, granzyme A (GZA) or granzyme B (GZB) was significantly lower. After menopause, degranulation significantly increased, and granular release switched from predominantly GZB in premenopausal to GZA in postmenopausal women. Postmenopausal changes affected both CD103+ and CD103− subpopulations. Finally, CD103+ T cells displayed reduced proliferation compared to CD103− T cells, but after proliferation, cytotoxic molecules were similar in each population. Our results highlight the complexity of regulation of cytotoxic function in the FRT before and after menopause, and are relevant to the development of protective strategies against genital infections and gynecological cancers as women age.
Collapse
Affiliation(s)
- Marta Rodriguez-Garcia
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States.,Department of Immunology, Tufts University School of Medicine, Boston, MA, United States
| | - Zheng Shen
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Jared M Fortier
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Charles R Wira
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| |
Collapse
|
8
|
Barr FD, Ochsenbauer C, Wira CR, Rodriguez-Garcia M. Neutrophil extracellular traps prevent HIV infection in the female genital tract. Mucosal Immunol 2018; 11:1420-1428. [PMID: 29875403 PMCID: PMC6162173 DOI: 10.1038/s41385-018-0045-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/18/2018] [Accepted: 04/29/2018] [Indexed: 02/04/2023]
Abstract
Women acquire human immunodeficiency virus (HIV) mainly through sexual intercourse. However, low transmission rates per sexual act indicate that local immune mechanisms contribute to HIV prevention. Neutrophils represent 10-20% of the genital immune cells in healthy women. Neutrophils mediate mucosal protection against bacterial and fungal pathogens through different mechanisms, including the release of neutrophil extracellular traps (NETs). NETs are DNA fragments associated with antimicrobial granular proteins. Despite neutrophil abundance and central contributions to innate immunity in the genital tract, their role in protection against HIV acquisition is unknown. We found that stimulation of human genital neutrophils with HIV viral-like particles (HIV-VLPs) induced NET release within minutes of viral exposure, through reactive oxygen species-independent mechanisms that resulted in immediate entrapment of HIV-VLPs. Incubation of infectious HIV with pre-formed genital NETs prevented infection of susceptible cells through irreversible viral inactivation. HIV inactivation by NETs from genital neutrophils could represent a previously unrecognized form of mucosal protection against HIV acquisition.
Collapse
Affiliation(s)
- Fiona D. Barr
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Christina Ochsenbauer
- Department of Medicine and UAB Center for AIDS Research, University of Alabama at Birmingham, AL
| | - Charles R. Wira
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Marta Rodriguez-Garcia
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA,Corresponding author: Address correspondence to Dr. Marta Rodriguez-Garcia, Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, NH 03756. Fax number: 603-6507717. Telephone number: 603-6502583.
| |
Collapse
|
9
|
Patel MV, Shen Z, Wira CR. Poly (I:C) and LPS induce distinct immune responses by ovarian stromal fibroblasts. J Reprod Immunol 2018; 127:36-42. [PMID: 29758486 PMCID: PMC5991091 DOI: 10.1016/j.jri.2018.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 04/05/2018] [Accepted: 05/08/2018] [Indexed: 12/21/2022]
Abstract
Despite its anatomical location, the ovary is a site of pathogen exposure in the human female reproductive tract (FRT). However, the role of ovarian stromal fibroblasts in immune protection is unclear. We generated a population of ovarian stromal fibroblasts derived from normal human ovaries that expressed the pattern recognition receptors TLR3, TLR4, RIG-I, & MDA5. Poly (I:C) and LPS, respective mimics of viral and bacterial infections, selectively upregulated antiviral gene expression and secretion of chemokines and antimicrobials. Poly (I:C) exclusively stimulated the expression of interferon (IFN) β, IFNλ1, and the IFN-stimulated gene OAS2. Poly (I:C) also significantly increased secretion of elafin, CCL20, and RANTES, but had no effect on SDF-1α. In contrast, LPS had no effect on IFN or ISG expression but significantly increased secretion of RANTES and SDF-1α. Secretions from poly (I:C)-treated fibroblasts had both greater anti-HIV activity and induced higher levels of CD4 + T cell chemotaxis than those from LPS-treated cells. Our studies demonstrate a potential key role for ovarian fibroblasts in innate immune protection against incoming pathogens in the normal ovary.
Collapse
Affiliation(s)
- Mickey V Patel
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756, USA.
| | - Zheng Shen
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756, USA
| | - Charles R Wira
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756, USA
| |
Collapse
|
10
|
Rodriguez-Garcia M, Fortier JM, Barr FD, Wira CR. Aging impacts CD103 + CD8 + T cell presence and induction by dendritic cells in the genital tract. Aging Cell 2018; 17:e12733. [PMID: 29455474 PMCID: PMC5946085 DOI: 10.1111/acel.12733] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2018] [Indexed: 12/20/2022] Open
Abstract
As women age, susceptibility to systemic and genital infections increases. Tissue-resident memory T cells (TRMs) are CD103+ CD8+ long-lived lymphocytes that provide critical mucosal immune protection. Mucosal dendritic cells (DCs) are known to induce CD103 expression on CD8+ T cells. While CD103+ CD8+ T cells are found throughout the female reproductive tract (FRT), the extent to which aging impacts their presence and induction by DCs remains unknown. Using hysterectomy tissues, we found that endometrial CD103+ CD8+ T cells were increased in postmenopausal compared to premenopausal women. Endometrial DCs from postmenopausal women were significantly more effective at inducing CD103 expression on allogeneic naïve CD8+ T cells than DCs from premenopausal women; CD103 upregulation was mediated through membrane-bound TGFβ signaling. In contrast, cervical CD103+ T cells and DC numbers declined in postmenopausal women with age. Decreases in DCs correlated with decreased CD103+ T cells in endocervix, but not ectocervix. Our findings demonstrate a previously unrecognized compartmentalization of TRMs in the FRT of postmenopausal women, with loss of TRMs and DCs in the cervix with aging, and increased TRMs and DC induction capacity in the endometrium. These findings are relevant to understanding immune protection in the FRT and to the design of vaccines for women of all ages.
Collapse
Affiliation(s)
- Marta Rodriguez-Garcia
- Department of Microbiology and Immunology; Geisel School of Medicine at Dartmouth; Lebanon NH USA
| | - Jared M. Fortier
- Department of Microbiology and Immunology; Geisel School of Medicine at Dartmouth; Lebanon NH USA
| | - Fiona D. Barr
- Department of Microbiology and Immunology; Geisel School of Medicine at Dartmouth; Lebanon NH USA
| | - Charles R. Wira
- Department of Microbiology and Immunology; Geisel School of Medicine at Dartmouth; Lebanon NH USA
| |
Collapse
|
11
|
Shen Z, Rodriguez-Garcia M, Ochsenbauer C, Wira CR. Characterization of immune cells and infection by HIV in human ovarian tissues. Am J Reprod Immunol 2017; 78. [PMID: 28397318 DOI: 10.1111/aji.12687] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 03/20/2017] [Indexed: 01/02/2023] Open
Abstract
PROBLEM New HIV infections in women are predominantly spread through sexual intercourse. Recent non-human primate studies demonstrated that simian immunodeficiency virus (SIV) deposited in the vagina infected immune cells in the ovary. Whether immune cells in the human ovary are susceptible to HIV infection is unknown. METHOD OF STUDY Immune cells were isolated from ovaries and characterized by flow cytometry. Cells were exposed to HIV for 2 hours. HIV infection was measured by flow cytometry and p24 secretion following 6 days in culture. RESULTS CD4+ T cells and CD14+ cells are present in the ovary and susceptible to infection by HIV-BaL. Among the CD45+ cells present, 30% were CD3+ T cells (with similar proportions of CD4+ or CD8+ T cells), and 7%-10% were CD14+ cells. Both CD4+ T cells and CD14+ cells were productively infected and supported replication. CONCLUSION Immune cells in the ovary are potential targets for HIV infection.
Collapse
Affiliation(s)
- Zheng Shen
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Marta Rodriguez-Garcia
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Christina Ochsenbauer
- Department of Medicine and UAB Center for AIDS Research, University of Alabama, Birmingham, AL, USA
| | - Charles R Wira
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| |
Collapse
|
12
|
Rodriguez-Garcia M, Shen Z, Barr FD, Boesch AW, Ackerman ME, Kappes JC, Ochsenbauer C, Wira CR. Dendritic cells from the human female reproductive tract rapidly capture and respond to HIV. Mucosal Immunol 2017; 10:531-544. [PMID: 27579858 PMCID: PMC5332537 DOI: 10.1038/mi.2016.72] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 07/07/2016] [Indexed: 02/04/2023]
Abstract
Dendritic cells (DCs) throughout the female reproductive tract (FRT) were examined for phenotype, HIV capture ability and innate anti-HIV responses. Two main CD11c+ DC subsets were identified: CD11b+ and CD11blow DCs. CD11b+CD14+ DCs were the most abundant throughout the tract. A majority of CD11c+CD14+ cells corresponded to CD1c+ myeloid DCs, whereas the rest lacked CD1c and CD163 expression (macrophage marker) and may represent monocyte-derived cells. In addition, we identified CD103+ DCs, located exclusively in the endometrium, whereas DC-SIGN+ DCs were broadly distributed throughout the FRT. Following exposure to GFP-labeled HIV particles, CD14+ DC-SIGN+ as well as CD14+ DC-SIGN- cells captured virus, with ∼30% of these cells representing CD1c+ myeloid DCs. CD103+ DCs lacked HIV capture ability. Exposure of FRT DCs to HIV induced secretion of CCL2, CCR5 ligands, interleukin (IL)-8, elafin, and secretory leukocyte peptidase inhibitor (SLPI) within 3 h of exposure, whereas classical pro-inflammatory molecules did not change and interferon-α2 and IL-10 were undetectable. Furthermore, elafin and SLPI upregulation, but not CCL5, were suppressed by estradiol pre-treatment. Our results suggest that specific DC subsets in the FRT have the potential for capture and dissemination of HIV, exert antiviral responses and likely contribute to the recruitment of HIV-target cells through the secretion of innate immune molecules.
Collapse
Affiliation(s)
- M Rodriguez-Garcia
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA,Corresponding author. Address correspondence to Dr. Marta Rodriguez-Garcia, Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, NH 03756. Fax number: 603-6507717. Telephone number: 603-6502583.
| | - Zheng Shen
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Fiona D. Barr
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | | | | | - John C. Kappes
- Department of Medicine and UAB Center for AIDS Research, University of Alabama at Birmingham, AL,Birmingham Veterans Affairs Medical Center, Research Service Birmingham, AL
| | - Christina Ochsenbauer
- Department of Medicine and UAB Center for AIDS Research, University of Alabama at Birmingham, AL
| | - Charles R. Wira
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| |
Collapse
|
13
|
Robinson TO, Zhang M, Ochsenbauer C, Smythies LE, Cron RQ. CD4 regulatory T cells augment HIV-1 expression of polarized M1 and M2 monocyte derived macrophages. Virology 2017; 504:79-87. [PMID: 28157548 DOI: 10.1016/j.virol.2017.01.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 01/22/2017] [Accepted: 01/23/2017] [Indexed: 01/08/2023]
Abstract
Previous in vitro studies have shown that the HIV-1 virus can alter the cytokine/chemokine profile of polarized macrophages which may lead to their increased susceptibility to viral infection. Here, we found that M2 monocyte derived macrophages (MDM) were significantly more permissive to productive infection by R5-tropic HIV-1 strains, including transmitted founder (T/F) viruses, than M1 MDM. Previous in vitro studies by our lab showed that regulatory T cells (Tregs) suppress HIV-1 infection in non-Treg CD4 T cells. Here, we investigated potential inhibitory effects of Tregs on HIV-1 infection of polarized MDM. We found that Tregs significantly increased HIV-1 infection in M1 and M2 MDM via a mechanism that was cell contact dependent. These findings suggest a potential role for Tregs in HIV-1 infection of tissue resident macrophages of M1 and M2 phenotype, which may contribute to the establishment and pathogenesis of HIV-1 disease.
Collapse
Affiliation(s)
- Tanya O Robinson
- Department of Pediatrics, University of Alabama at Birmingham, Children's Hospital of Alabama, Children's Park Place, Suite 210, 1601 4th Avenue South, Birmingham, Alabama 35233, United States
| | - Mingce Zhang
- Department of Pediatrics, University of Alabama at Birmingham, Children's Hospital of Alabama, Children's Park Place, Suite 210, 1601 4th Avenue South, Birmingham, Alabama 35233, United States
| | - Christina Ochsenbauer
- Department of Medicine, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, Alabama 35294, United States; Center for AIDS Research, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, Alabama 35294, United States
| | - Lesley E Smythies
- Department of Medicine, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, Alabama 35294, United States
| | - Randall Q Cron
- Department of Pediatrics, University of Alabama at Birmingham, Children's Hospital of Alabama, Children's Park Place, Suite 210, 1601 4th Avenue South, Birmingham, Alabama 35233, United States.
| |
Collapse
|
14
|
Thomas T, Seay K, Zheng JH, Zhang C, Ochsenbauer C, Kappes JC, Goldstein H. High-Throughput Humanized Mouse Models for Evaluation of HIV-1 Therapeutics and Pathogenesis. Methods Mol Biol 2016; 1354:221-35. [PMID: 26714715 DOI: 10.1007/978-1-4939-3046-3_15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mice cannot be used as a model to evaluate HIV-1 therapeutics because they do not become infected by HIV-1 due to structural differences between several human and mouse proteins required for HIV-1 replication. This has limited their use for in vivo assessment of anti-HIV-1 therapeutics and the mechanism by which cofactors, such as illicit drug use accelerate HIV-1 replication and disease course in substance abusers. Here, we describe the development and application of two in vivo humanized mouse models that are highly sensitive and useful models for the in vivo evaluation of candidate anti-HIV therapeutics. The first model, hu-spl-PBMC-NSG mice, uses NOD-SCID IL2rγ(-/-) (NSG) mice intrasplenically injected with human peripheral blood mononuclear cells (PBMC) which develop productive splenic HIV-1 infection after intrasplenic inoculation with a replication-competent HIV-1 expressing Renilla reniformis luciferase (HIV-LucR) and enables investigators to use bioluminescence to visualize and quantitate the temporal effects of therapeutics on HIV-1 infection. The second model, hCD4/R5/cT1 mice, consists of transgenic mice carrying human CD4, CCR5 and cyclin T1 genes, which enables murine CD4-expressing cells to support HIV-1 entry, Tat-mediated LTR transcription and consequently develop productive infection. The hCD4/R5/cT1 mice develop disseminated infection of tissues including the spleen, small intestine, lymph nodes and lungs after intravenous injection with HIV-1-LucR. Because these mice can be infected with HIV-LucR expressing transmitted/founder and clade A/E and C Envs, these mouse models can also be used to evaluate the in vivo efficacy of broadly neutralizing antibodies and antibodies induced by candidate HIV-1 vaccines. Furthermore, because hCD4/R5/cT1 mice can be infected by vaginal inoculation with replication-competent HIV-1 expressing NanoLuc (HIV-nLucR)-, this mouse model can be used to evaluate the mechanisms by which substance abuse and other factors enhance mucosal transmission of HIV-1.
Collapse
Affiliation(s)
- Tynisha Thomas
- Departments of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Kieran Seay
- Departments of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Jian Hua Zheng
- Departments of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Cong Zhang
- Departments of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Christina Ochsenbauer
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - John C Kappes
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.,Birmingham Veterans Affairs Medical Center, Research Service, Birmingham, AL, 35294, USA
| | - Harris Goldstein
- Departments of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA. .,Departments of Pediatrics, Albert Einstein College of Medicine, Forchheimer Building, Room 408, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
| |
Collapse
|
15
|
Alberti MO, Jones JJ, Miglietta R, Ding H, Bakshi RK, Edmonds TG, Kappes JC, Ochsenbauer C. Optimized Replicating Renilla Luciferase Reporter HIV-1 Utilizing Novel Internal Ribosome Entry Site Elements for Native Nef Expression and Function. AIDS Res Hum Retroviruses 2015; 31:1278-96. [PMID: 26101895 DOI: 10.1089/aid.2015.0074] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We previously developed replication-competent reporter HIV-1 (referred to herein as LucR.T2A reporter viruses), utilizing a "ribosome skipping" T2A peptide strategy to link Renilla luciferase (LucR) with Nef expression. The demonstrated utility for HIV-1 vaccine and transmission study applications included measurement of neutralizing antibody (NAb) activity in vaccine sera, improved cell-mediated virus inhibition assays, such as T cell-mediated virus inhibition and antibody-dependent cell-mediated cytotoxicity (ADCC) assays, and humanized mouse models. Herein, we extend our prior work and introduce reporter virus technology for applications that require fully functional Nef. We demonstrate that in CD4(+) T cells productively infected with LucR.T2A reporter viruses, T2A peptide-driven Nef expression and function, such as down-regulation of surface CD4 and MHC-I, were impaired. We overcame this limitation of LucR.T2A reporter viruses and achieved physiological Nef expression and function by engineering novel LucR reporter HIV-1 comprising 11 different internal ribosome entry site (IRES) elements chosen for size and relative activity. A range of Nef expression was observed in 293T cells transfected with the different LucR.IRES reporter virus constructs. Iteratively, we identified IRES reporter genomes that expressed Nef closest to physiological levels and produced virus with infectivity, titers, and replication kinetics similar to nonreporter viruses. Our results demonstrated that LucR reporter activity was stable over multiple replication cycles in peripheral blood mononuclear cells (PBMCs). Furthermore, we analyzed Nef functionality, i.e., down-modulation of MHC-I and CD4, following infection of T cell lines and PBMCs. Unlike LucR.T2A reporter virus, one of the redesigned LucR.IRES reporter viruses [containing the modified encephalomyocarditis virus (EMCV) 6ATR IRES element, "6ATRi"] demonstrated Nef expression and function similar to parental "nonreporter" virus. In a previously validated (nef-independent) T cell-based NAb neutralization assay, LucR.6ATRi reporter virus performed indistinguishably from LucR.T2A reporter virus. In summary, reporter viruses comprising the "6ATRi" element promise to augment HIV-1 vaccine and transmission research approaches requiring a sensitive reporter readout combined with wild-type Nef function.
Collapse
Affiliation(s)
- Michael O. Alberti
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jennifer J. Jones
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Riccardo Miglietta
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Haitao Ding
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Rakesh K. Bakshi
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Tara G. Edmonds
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - John C. Kappes
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama
- Center for AIDS Research, University of Alabama at Birmingham, Birmingham, Alabama
- Birmingham Veterans Affairs Medical Center, Research Service, Birmingham, Alabama
| | - Christina Ochsenbauer
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Center for AIDS Research, University of Alabama at Birmingham, Birmingham, Alabama
- Birmingham Veterans Affairs Medical Center, Research Service, Birmingham, Alabama
| |
Collapse
|
16
|
Inhibitory Effect of Individual or Combinations of Broadly Neutralizing Antibodies and Antiviral Reagents against Cell-Free and Cell-to-Cell HIV-1 Transmission. J Virol 2015; 89:7813-28. [PMID: 25995259 DOI: 10.1128/jvi.00783-15] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 05/11/2015] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED To date, most therapeutic and vaccine candidates for human immunodeficiency virus type 1 (HIV-1) are evaluated preclinically for efficacy against cell-free viral challenges. However, cell-associated HIV-1 is suggested to be a major contributor to sexual transmission by mucosal routes. To determine if neutralizing antibodies or inhibitors block cell-free and cell-associated virus transmission of diverse HIV-1 strains with different efficiencies, we tested 12 different antibodies and five inhibitors against four green fluorescent protein (GFP)-labeled HIV-1 envelope (Env) variants from transmitted/founder (T/F) or chronic infection isolates. We evaluated antibody/inhibitor-mediated virus neutralization using either TZM-bl target cells, in which infectivity was determined by virus-driven luciferase expression, or A3R5 lymphoblastoid target cells, in which infectivity was evaluated by GFP expression. In both the TZM-bl and A3R5 assays, cell-free virus or infected CD4+ lymphocytes were used as targets for neutralization. We further hypothesized that the combined use of specific neutralizing antibodies targeting HIV-1 Env would more effectively prevent cell-associated virus transmission than the use of individual antibodies. The tested antibody combinations included two gp120-directed antibodies, VRC01 and PG9, or VRC01 with the gp41-directed antibody 10E8. Our results demonstrated that cell-associated virus was less sensitive to neutralizing antibodies and inhibitors, particularly using the A3R5 neutralization assay, and the potencies of these neutralizing agents differed among Env variants. A combination of different neutralizing antibodies that target specific sites on gp120 led to a significant reduction in cell-associated virus transmission. These assays will help identify ideal combinations of broadly neutralizing antibodies to use for passive preventive antibody administration and further characterize targets for the most effective neutralizing antibodies/inhibitors. IMPORTANCE Prevention of the transmission of human immunodeficiency virus type 1 (HIV-1) remains a prominent goal of HIV research. The relative contribution of HIV-1 within an infected cell versus cell-free HIV-1 to virus transmission remains debated. It has been suggested that cell-associated virus is more efficient at transmitting HIV-1 and more difficult to neutralize than cell-free virus. Several broadly neutralizing antibodies and retroviral inhibitors are currently being studied as potential therapies against HIV-1 transmission. The present study demonstrates a decrease in neutralizing antibody and inhibitor efficiencies against cell-associated compared to cell-free HIV-1 transmission among different strains of HIV-1. We also observed a significant reduction in virus transmission using a combination of two different neutralizing antibodies that target specific sites on the outermost region of HIV-1, the virus envelope. Therefore, our findings support the use of antibody combinations against both cell-free and cell-associated virus in future candidate therapy regimens.
Collapse
|
17
|
Wira CR, Rodriguez-Garcia M, Patel MV. The role of sex hormones in immune protection of the female reproductive tract. Nat Rev Immunol 2015; 15:217-30. [PMID: 25743222 PMCID: PMC4716657 DOI: 10.1038/nri3819] [Citation(s) in RCA: 274] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Within the human female reproductive tract (FRT), the challenge of protection against sexually transmitted infections (STIs) is coupled with the need to enable successful reproduction. Oestradiol and progesterone, which are secreted during the menstrual cycle, affect epithelial cells, fibroblasts and immune cells in the FRT to modify their functions and hence the individual's susceptibility to STIs in ways that are unique to specific sites in the FRT. The innate and adaptive immune systems are under hormonal control, and immune protection in the FRT varies with the phase of the menstrual cycle. Immune protection is dampened during the secretory phase of the cycle to optimize conditions for fertilization and pregnancy, which creates a 'window of vulnerability' during which potential pathogens can enter and infect the FRT.
Collapse
Affiliation(s)
- Charles R Wira
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire 03756, USA
| | - Marta Rodriguez-Garcia
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire 03756, USA
| | - Mickey V Patel
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire 03756, USA
| |
Collapse
|
18
|
Rodriguez Garcia M, Patel MV, Shen Z, Fahey JV, Biswas N, Mestecky J, Wira CR. Mucosal Immunity in the Human Female Reproductive Tract. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00108-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
19
|
Rodriguez-Garcia M, Barr FD, Crist SG, Fahey JV, Wira CR. Phenotype and susceptibility to HIV infection of CD4+ Th17 cells in the human female reproductive tract. Mucosal Immunol 2014; 7:1375-85. [PMID: 24759207 PMCID: PMC4205172 DOI: 10.1038/mi.2014.26] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 03/13/2014] [Indexed: 02/04/2023]
Abstract
Prevention of sexual acquisition of HIV in women requires a substantial increase in our knowledge about HIV-target cell availability and regulation in the female reproductive tract (FRT). In this study, we analyzed the phenotype and susceptibility to HIV infection of CD4(+) T cell in the endometrium (EM), endocervix (END), and ectocervix (ECT) of the FRT. We found that T helper type 17 (Th17) cells represent a major subset in FRT tissues analyzed and that Th17 cells were the main CD4(+) T-cell population expressing C-C motif chemokine receptor 5 (CCR5) and CD90. In premenopausal women, CD4(+) T cells and Th17 cells, in particular, were significantly lower in EM relative to END and ECT. Th17 cells were elevated in EM from postmenopausal women relative to premenopausal tissues but not changed in END and ECT. Susceptibility of CD4(+) T cells to HIV infection measured as intracellular p24 was lowest in the EM and highest in the ECT. Additionally, we found that Th17 cells co-expressing CCR5 and CD90 were the most susceptible to HIV infection. Our results provide valuable information for designing preventive strategies directed at targeting highly susceptible target cells in the FRT.
Collapse
Affiliation(s)
- Marta Rodriguez-Garcia
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Fiona D. Barr
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Sarah G. Crist
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - John V. Fahey
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Charles R. Wira
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| |
Collapse
|
20
|
Wira CR, Fahey JV, Rodriguez-Garcia M, Shen Z, Patel MV. Regulation of mucosal immunity in the female reproductive tract: the role of sex hormones in immune protection against sexually transmitted pathogens. Am J Reprod Immunol 2014; 72:236-58. [PMID: 24734774 PMCID: PMC4351777 DOI: 10.1111/aji.12252] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 03/15/2014] [Indexed: 01/01/2023] Open
Abstract
The immune system in the female reproductive tract (FRT) does not mount an attack against human immunodeficiency virus (HIV) or other sexually transmitted infections (STI) with a single endogenously produced microbicide or with a single arm of the immune system. Instead, the body deploys dozens of innate antimicrobials to the secretions of the FRT. Working together, these antimicrobials along with mucosal antibodies attack viral, bacterial, and fungal targets. Within the FRT, the unique challenges of protection against sexually transmitted pathogens coupled with the need to sustain the development of an allogeneic fetus, has evolved in such a way that sex hormones precisely regulate immune function to accomplish both tasks. The studies presented in this review demonstrate that estradiol (E2 ) and progesterone secreted during the menstrual cycle act both directly and indirectly on epithelial cells, fibroblasts and immune cells in the reproductive tract to modify immune function in a way that is unique to specific sites throughout the FRT. As presented in this review, studies from our laboratory and others demonstrate that the innate and adaptive immune systems are under hormonal control, that protection varies with the stage of the menstrual cycle and as such, is dampened during the secretory stage of the cycle to optimize conditions for fertilization and pregnancy. In doing so, a window of STI vulnerability is created during which potential pathogens including HIV enter the reproductive tract to infect host targets.
Collapse
Affiliation(s)
- Charles R Wira
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, NH, USA
| | | | | | | | | |
Collapse
|
21
|
Ghosh M, Rodriguez-Garcia M, Wira CR. The immune system in menopause: pros and cons of hormone therapy. J Steroid Biochem Mol Biol 2014; 142:171-5. [PMID: 24041719 PMCID: PMC3954964 DOI: 10.1016/j.jsbmb.2013.09.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 08/26/2013] [Accepted: 09/04/2013] [Indexed: 02/07/2023]
Abstract
With aging, a general decline in immune function is observed leading to immune-senescence. Several of these changes are gender specific affecting postmenopausal women. Menopause is a normal part of a woman's lifecycle and consists of a series of body changes that can last from one to ten years. It is known that loss of sex hormones due to aging results in a reduction of immune functions. However, there remains a major gap in our understanding regarding the loss of immune functions particularly in the female reproductive tract (FRT) following menopause and the role of menopausal hormone therapy (MHT) in protecting against immune senescence. The current review presents an overview of changes in the immune system due to aging, focusing on genital tract immunity in menopausal women and the risks and benefits of using MHT. This article is part of a Special Issue entitled 'Menopause'.
Collapse
Affiliation(s)
- Mimi Ghosh
- Department of Epidemiology and Biostatistics, The George Washington University, Washington, DC 20037, USA.
| | - Marta Rodriguez-Garcia
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Charles R Wira
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| |
Collapse
|
22
|
Van Breedam W, Pöhlmann S, Favoreel HW, de Groot RJ, Nauwynck HJ. Bitter-sweet symphony: glycan-lectin interactions in virus biology. FEMS Microbiol Rev 2014; 38:598-632. [PMID: 24188132 PMCID: PMC7190080 DOI: 10.1111/1574-6976.12052] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 09/27/2013] [Accepted: 10/14/2013] [Indexed: 01/01/2023] Open
Abstract
Glycans are carbohydrate modifications typically found on proteins or lipids, and can act as ligands for glycan-binding proteins called lectins. Glycans and lectins play crucial roles in the function of cells and organs, and in the immune system of animals and humans. Viral pathogens use glycans and lectins that are encoded by their own or the host genome for their replication and spread. Recent advances in glycobiological research indicate that glycans and lectins mediate key interactions at the virus-host interface, controlling viral spread and/or activation of the immune system. This review reflects on glycan-lectin interactions in the context of viral infection and antiviral immunity. A short introduction illustrates the nature of glycans and lectins, and conveys the basic principles of their interactions. Subsequently, examples are discussed highlighting specific glycan-lectin interactions and how they affect the progress of viral infections, either benefiting the host or the virus. Moreover, glycan and lectin variability and their potential biological consequences are discussed. Finally, the review outlines how recent advances in the glycan-lectin field might be transformed into promising new approaches to antiviral therapy.
Collapse
Affiliation(s)
- Wander Van Breedam
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center, Göttingen, Germany
| | - Herman W. Favoreel
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Raoul J. de Groot
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Hans J. Nauwynck
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
23
|
Wira CR, Rodriguez-Garcia M, Shen Z, Patel M, Fahey JV. The role of sex hormones and the tissue environment in immune protection against HIV in the female reproductive tract. Am J Reprod Immunol 2014; 72:171-81. [PMID: 24661500 DOI: 10.1111/aji.12235] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 02/21/2014] [Indexed: 02/06/2023] Open
Abstract
Despite extensive studies of the mucosal immune system in the female reproductive tract (FRT) and its regulation by sex hormones, relatively little attention has been paid to the tissue environment in the FRT that regulates immune cell function. Consisting of secretions from epithelial cells (EC), stromal fibroblasts, and immune cells in tissues from the upper (Fallopian tubes, uterus, and endocervix) and lower (ectocervix and vagina) tracts, each tissue compartment is unique and precisely regulates immune cells to optimize conditions for successful pregnancy and protection against sexually transmitted diseases including HIV. Our goal in this review is to focus on the mucosal (tissue) environment in the upper and lower FRT. Specifically, this review will identify the contributions of EC and fibroblasts to the tissue environment and examine the impact of this environment on HIV-target cells. Much remains to be learned about the complex interactions with the tissue environment at different sites in the FRT and the ways in which they are regulated by sex hormones and chemical contraceptives. Awareness of the involvement of the tissue environment in determining immune cell function and HIV acquisition is crucial for understanding the mechanisms that lead to HIV prevention, acquisition, and the development of new therapeutic modalities of immune protection.
Collapse
Affiliation(s)
- Charles R Wira
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | | | | | | | | |
Collapse
|
24
|
Seay K, Qi X, Zheng JH, Zhang C, Chen K, Dutta M, Deneroff K, Ochsenbauer C, Kappes JC, Littman DR, Goldstein H. Mice transgenic for CD4-specific human CD4, CCR5 and cyclin T1 expression: a new model for investigating HIV-1 transmission and treatment efficacy. PLoS One 2013; 8:e63537. [PMID: 23691059 PMCID: PMC3655194 DOI: 10.1371/journal.pone.0063537] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 04/03/2013] [Indexed: 12/16/2022] Open
Abstract
Mice cannot be used to evaluate HIV-1 therapeutics and vaccines because they are not infectible by HIV-1 due to structural differences between several human and mouse proteins required for HIV-1 entry and replication including CD4, CCR5 and cyclin T1. We overcame this limitation by constructing mice with CD4 enhancer/promoter-regulated human CD4, CCR5 and cyclin T1 genes integrated as tightly linked transgenes (hCD4/R5/cT1 mice) promoting their efficient co-transmission and enabling the murine CD4-expressing cells to support HIV-1 entry and Tat-mediated LTR transcription. All of the hCD4/R5/cT1 mice developed disseminated infection of tissues that included the spleen, small intestine, lymph nodes and lungs after intravenous injection with an HIV-1 infectious molecular clone (HIV-IMC) expressing Renilla reniformis luciferase (LucR). Furthermore, localized infection of cervical-vaginal mucosal leukocytes developed after intravaginal inoculation of hCD4/R5/cT1 mice with the LucR-expressing HIV-IMC. hCD4/R5/cT1 mice reproducibly developed in vivo infection after inoculation with LucR-expressing HIV-IMC which could be bioluminescently quantified and visualized with a high sensitivity and specificity which enabled them to be used to evaluate the efficacy of HIV-1 therapeutics. Treatment with highly active anti-retroviral therapy or one dose of VRC01, a broadly neutralizing anti-HIV-1 antibody, almost completed inhibited acute systemic HIV-1 infection of the hCD4/R5/cT1 mice. hCD4/R5/cT1 mice could also be used to evaluate the capacity of therapies delivered by gene therapy to inhibit in vivo HIV infection. VRC01 secreted in vivo by primary B cells transduced with a VRC01-encoding lentivirus transplanted into hCD4/R5/cT1 mice markedly inhibited infection after intravenous challenge with LucR-expressing HIV-IMC. The reproducible infection of CD4/R5/cT1 mice with LucR-expressing HIV-IMC after intravenous or mucosal inoculation combined with the availability of LucR-expressing HIV-IMC expressing transmitted/founder and clade A/E and C Envs will provide researchers with a highly accessible pre-clinical in vivo HIV-1-infection model to study HIV-1 acquisition, treatment, and prevention.
Collapse
Affiliation(s)
- Kieran Seay
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Xiaohua Qi
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Jian Hua Zheng
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Cong Zhang
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Ken Chen
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Monica Dutta
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Kathryn Deneroff
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Christina Ochsenbauer
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - John C. Kappes
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Birmingham Veterans Affairs Medical Center, Research Service, Birmingham, Alabama, United States of America
| | - Dan R. Littman
- Molecular Pathogenesis Program, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York, United States of America
- Howard Hughes Medical Institute, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York, United States of America
| | - Harris Goldstein
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail:
| |
Collapse
|
25
|
Rinaldo CR. HIV-1 Trans Infection of CD4(+) T Cells by Professional Antigen Presenting Cells. SCIENTIFICA 2013; 2013:164203. [PMID: 24278768 PMCID: PMC3820354 DOI: 10.1155/2013/164203] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 04/09/2013] [Indexed: 06/02/2023]
Abstract
Since the 1990s we have known of the fascinating ability of a complex set of professional antigen presenting cells (APCs; dendritic cells, monocytes/macrophages, and B lymphocytes) to mediate HIV-1 trans infection of CD4(+) T cells. This results in a burst of virus replication in the T cells that is much greater than that resulting from direct, cis infection of either APC or T cells, or trans infection between T cells. Such APC-to-T cell trans infection first involves a complex set of virus subtype, attachment, entry, and replication patterns that have many similarities among APC, as well as distinct differences related to virus receptors, intracellular trafficking, and productive and nonproductive replication pathways. The end result is that HIV-1 can sequester within the APC for several days and be transmitted via membrane extensions intracellularly and extracellularly to T cells across the virologic synapse. Virus replication requires activated T cells that can develop concurrently with the events of virus transmission. Further research is essential to fill the many gaps in our understanding of these trans infection processes and their role in natural HIV-1 infection.
Collapse
Affiliation(s)
- Charles R. Rinaldo
- Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA
| |
Collapse
|
26
|
Rodriguez-Garcia M, Biswas N, Patel MV, Barr FD, Crist SG, Ochsenbauer C, Fahey JV, Wira CR. Estradiol reduces susceptibility of CD4+ T cells and macrophages to HIV-infection. PLoS One 2013; 8:e62069. [PMID: 23614015 PMCID: PMC3629151 DOI: 10.1371/journal.pone.0062069] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 03/18/2013] [Indexed: 12/21/2022] Open
Abstract
The magnitude of the HIV epidemic in women requires urgent efforts to find effective preventive methods. Even though sex hormones have been described to influence HIV infection in epidemiological studies and regulate different immune responses that may affect HIV infection, the direct role that female sex hormones play in altering the susceptibility of target cells to HIV-infection is largely unknown. Here we evaluated the direct effect of 17-β-estradiol (E2) and ethinyl estradiol (EE) in HIV-infection of CD4+ T-cells and macrophages. Purified CD4+ T-cells and monocyte-derived macrophages were generated in vitro from peripheral blood and infected with R5 and X4 viruses. Treatment of CD4+ T-cells and macrophages with E2 prior to viral challenge reduced their susceptibility to HIV infection in a dose-dependent manner. Addition of E2 2 h after viral challenge however did not result in reduced infection. In contrast, EE reduced infection in macrophages to a lesser extent than E2 and had no effect on CD4+ T-cell infection. Reduction of HIV-infection induced by E2 in CD4+ T-cells was not due to CCR5 down-regulation, but was an entry-mediated mechanism since infection with VSV-G pseudotyped HIV was not modified by E2. In macrophages, despite the lack of an effect of E2 on CCR5 expression, E2–treatment reduced viral entry 2 h after challenge and increased MIP-1β secretion. These results demonstrate the direct effect of E2 on susceptibility of HIV-target cells to infection and indicate that inhibition of target cell infection involves cell-entry related mechanisms.
Collapse
Affiliation(s)
- Marta Rodriguez-Garcia
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Rodriguez-Garcia M, Patel MV, Wira CR. Innate and adaptive anti-HIV immune responses in the female reproductive tract. J Reprod Immunol 2013; 97:74-84. [PMID: 23432874 PMCID: PMC3581821 DOI: 10.1016/j.jri.2012.10.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 10/08/2012] [Accepted: 10/15/2012] [Indexed: 01/17/2023]
Abstract
The mucosal surface of the female reproductive tract (FRT) is the primary site of transmission for a plethora of sexually transmitted infections, including human immunodeficiency virus (HIV), that represent a significant burden upon womens' health worldwide. However, fundamental aspects of innate and adaptive immune protection against HIV infection in the FRT are poorly understood. The FRT immune system is regulated by the cyclical changes of the sex hormones estradiol and progesterone across the menstrual cycle, which as we have hypothesized, leads to the creation of a window of vulnerability during the secretory stage of the menstrual cycle, when the risk of HIV transmission is increased. The goal of this review is to summarize the multiple levels of protection against HIV infection in the FRT, the contribution of different cell types including epithelial cells, macrophages, T cells, and dendritic cells to this, and their regulation by estradiol and progesterone. Understanding the unique immune environment in the FRT will allow for the potential development of novel therapeutic interventions such as vaccines and microbicides that may reduce or prevent HIV transmission in women.
Collapse
Affiliation(s)
- Marta Rodriguez-Garcia
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | | | | |
Collapse
|
28
|
Patel MV, Fahey JV, Rossoll RM, Wira CR. Innate immunity in the vagina (part I): estradiol inhibits HBD2 and elafin secretion by human vaginal epithelial cells. Am J Reprod Immunol 2013; 69:463-74. [PMID: 23398087 DOI: 10.1111/aji.12078] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 01/01/2013] [Indexed: 12/30/2022] Open
Abstract
PROBLEM Vaginal epithelial cells (VEC) are the first line of defense against incoming pathogens in the female reproductive tract. Their ability to produce the anti-HIV molecules elafin and HBD2 under hormonal stimulation is unknown. METHOD OF STUDY Vaginal epithelial cells were recovered using a menstrual cup and cultured overnight prior to treatment with estradiol (E₂), progesterone (P₄) or a panel of selective estrogen response modulators (SERMs). Conditioned media were recovered and analyzed for protein concentration and anti-HIV activity. RESULTS E₂ significantly decreased the secretion of HBD2 and elafin by VEC over 48 hrs, while P4 and the SERMs (tamoxifen, PHTTP, ICI or Y134) had no effect. VEC conditioned media from E₂ -treated cells had no anti-HIV activity, while that from E₂ /P₄ -treated cells significantly inhibited HIV-BaL infection. CONCLUSION The menstrual cup allows for effective recovery of primary VEC. Their production of HBD2 and elafin is sensitive to E₂, suggesting that innate immune protection varies in the vagina across the menstrual cycle.
Collapse
Affiliation(s)
- Mickey V Patel
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA.
| | | | | | | |
Collapse
|
29
|
Introini A, Vanpouille C, Lisco A, Grivel JC, Margolis L. Interleukin-7 facilitates HIV-1 transmission to cervico-vaginal tissue ex vivo. PLoS Pathog 2013; 9:e1003148. [PMID: 23408885 PMCID: PMC3567179 DOI: 10.1371/journal.ppat.1003148] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 12/07/2012] [Indexed: 11/30/2022] Open
Abstract
The majority of HIV-1 infections in women occur through vaginal intercourse, in which virus-containing semen is deposited on the cervico-vaginal mucosa. Semen is more than a mere carrier of HIV-1, since it contains many biological factors, in particular cytokines, that may affect HIV-1 transmission. The concentration of interleukin (IL)-7, one of the most prominent cytokines in semen of healthy individuals, is further increased in semen of HIV-1-infected men. Here, we investigated the potential role of IL-7 in HIV-1 vaginal transmission in an ex vivo system of human cervico-vaginal tissue. We simulated an in vivo situation by depositing HIV-1 on cervico-vaginal tissue in combination with IL-7 at concentrations comparable with those measured in semen of HIV-1-infected individuals. We found that IL-7 significantly enhanced virus replication in ex vivo infected cervico-vaginal tissue. Similarly, we observed an enhancement of HIV-1 replication in lymphoid tissue explants. Analysis of T cells isolated from infected tissues showed that IL-7 reduced CD4+ T cell depletion preventing apoptosis, as shown by the decrease in the number of cells expressing the apoptotic marker APO2.7 and the increase in the expression of the anti-apoptotic protein B-cell lymphoma (Bcl)-2. Also, IL-7 increased the fraction of cycling CD4+ T cells, as evidenced by staining for the nuclear factor Ki-67. High levels of seminal IL-7 in vivo may be relevant to the survival of the founder pool of HIV-1-infected cells in the cervico-vaginal mucosa at the initial stage of infection, promoting local expansion and dissemination of HIV infection. Male-to-female HIV-1 transmission occurs predominantly through vaginal intercourse when the virus is transmitted with seminal fluid. The identification of the determinants of HIV-1 transmission to the female lower genital tract is of pivotal importance for understanding the basic mechanisms of HIV-1 infection. This understanding is necessary for the development of new strategies to prevent or contain this infection. Semen of HIV-1-infected individuals is highly enriched with IL-7, a crucial cytokine for the life cycle of CD4+ T cells, the primary target of HIV-1. Here, we utilized a system of human cervico-vaginal and lymphoid tissues ex vivo to study the effect of IL-7 on HIV-1 transmission and dissemination. Our results show that IL-7 at concentrations comparable to those found in semen of HIV-1-infected individuals enhanced HIV-1 replication by preventing the death and by stimulating the proliferation of CD4+ T cells. This allows sustained viral production by infected cells and provides new cellular targets for propagation of infection. The concentration of IL-7 in semen of HIV-1-infected men may be a key determinant of the efficiency of HIV-1 transmission to an uninfected female partner through vaginal intercourse.
Collapse
Affiliation(s)
- Andrea Introini
- Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
- Department of Biomedical Sciences and Technology, University of Milan, Milan, Italy
- * E-mail:
| | - Christophe Vanpouille
- Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Andrea Lisco
- Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jean-Charles Grivel
- Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Leonid Margolis
- Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
30
|
Ghosh M, Rodriguez-Garcia M, Wira CR. Immunobiology of genital tract trauma: endocrine regulation of HIV acquisition in women following sexual assault or genital tract mutilation. Am J Reprod Immunol 2012; 69 Suppl 1:51-60. [PMID: 23034063 DOI: 10.1111/aji.12027] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Accepted: 09/07/2012] [Indexed: 01/10/2023] Open
Abstract
Studies on HIV acquisition and transmission in women exposed to sexual trauma throughout their life cycle are lacking, but some findings suggest that rates of HIV acquisition through coercive sex are significantly higher than that seen in consensual sex. Sexual trauma can also occur as a result of female genital mutilation, which makes sex extremely painful and can cause increased abrasions, lacerations, and inflammation, which enhances the risk of HIV acquisition. This review presents an overview of the immune system in the human female reproductive tract (FRT) from adolescence, through puberty to pregnancy and menopause. What is clear is that the foundation of information on immune protection in the FRT throughout the life cycle of women is extremely limited and at some stages such as adolescence and menopause are grossly lacking. Against this backdrop, forced or coercive sexual intercourse as well as genital mutilation further complicates our understanding of the biological risk factors that can result in transmission of HIV and other sexually transmitted infections.
Collapse
Affiliation(s)
- Mimi Ghosh
- Department of Epidemiology and Biostatistics, The George Washington University, Washington, DC 20037, USA.
| | | | | |
Collapse
|
31
|
|
32
|
Hickey DK, Patel MV, Fahey JV, Wira CR. Innate and adaptive immunity at mucosal surfaces of the female reproductive tract: stratification and integration of immune protection against the transmission of sexually transmitted infections. J Reprod Immunol 2011; 88:185-94. [PMID: 21353708 PMCID: PMC3094911 DOI: 10.1016/j.jri.2011.01.005] [Citation(s) in RCA: 172] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 01/13/2011] [Accepted: 01/16/2011] [Indexed: 01/31/2023]
Abstract
This review examines the multiple levels of pre-existing immunity in the upper and lower female reproductive tract. In addition, we highlight the need for further research of innate and adaptive immune protection of mucosal surfaces in the female reproductive tract. Innate mechanisms include the mucus lining, a tight epithelial barrier and the secretion of antimicrobial peptides and cytokines by epithelial and innate immune cells. Stimulation of the innate immune system also serves to bridge the adaptive arm resulting in the generation of pathogen-specific humoral and cell-mediated immunity. Less understood are the multiple components that act in a coordinated way to provide a network of ongoing protection. Innate and adaptive immunity in the human female reproductive tract are influenced by the stage of menstrual cycle and are directly regulated by the sex steroid hormones, progesterone and estradiol. Furthermore, the effect of hormones on immunity is mediated both directly on immune and epithelial cells and indirectly by stimulating growth factor secretion from stromal cells. The goal of this review is to focus on the diverse aspects of the innate and adaptive immune systems that contribute to a unique network of protection throughout the female reproductive tract.
Collapse
Affiliation(s)
- D K Hickey
- Department of Physiology and Neurobiology, Dartmouth Medical School, One Medical Center Drive, Lebanon, NH 03756, USA
| | | | | | | |
Collapse
|