1
|
Jia W, Chan JC, Wong TY, Fisher EB. Diabetes in China: epidemiology, pathophysiology and multi-omics. Nat Metab 2025:10.1038/s42255-024-01190-w. [PMID: 39809974 DOI: 10.1038/s42255-024-01190-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 11/25/2024] [Indexed: 01/16/2025]
Abstract
Although diabetes is now a global epidemic, China has the highest number of affected people, presenting profound public health and socioeconomic challenges. In China, rapid ecological and lifestyle shifts have dramatically altered diabetes epidemiology and risk factors. In this Review, we summarize the epidemiological trends and the impact of traditional and emerging risk factors on Chinese diabetes prevalence. We also explore recent genetic, metagenomic and metabolomic studies of diabetes in Chinese, highlighting their role in pathogenesis and clinical management. Although heterogeneity across these multidimensional areas poses major analytic challenges in classifying patterns or features, they have also provided an opportunity to increase the accuracy and specificity of diagnosis for personalized treatment and prevention. National strategies and ongoing research are essential for improving diabetes detection, prevention and control, and for personalizing care to alleviate societal impacts and maintain quality of life.
Collapse
Affiliation(s)
- Weiping Jia
- Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Institute for Proactive Healthcare, Shanghai Jiao Tong University, Shanghai, China.
| | - Juliana Cn Chan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences and Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Tien Y Wong
- Tsinghua Medicine, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
- Singapore National Eye Center, SingHealth, Singapore, Singapore
| | - Edwin B Fisher
- Peers for Progress, Department of Health Behavior, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
2
|
Grieve LM, Rani A, ZeRuth GT. Downregulation of Glis3 in INS1 cells exposed to chronically elevated glucose contributes to glucotoxicity-associated β cell dysfunction. Islets 2024; 16:2344622. [PMID: 38652652 PMCID: PMC11042057 DOI: 10.1080/19382014.2024.2344622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/15/2024] [Indexed: 04/25/2024] Open
Abstract
Chronically elevated levels of glucose are deleterious to pancreatic β cells and contribute to β cell dysfunction, which is characterized by decreased insulin production and a loss of β cell identity. The Krüppel-like transcription factor, Glis3 has previously been shown to positively regulate insulin transcription and mutations within the Glis3 locus have been associated with the development of several pathologies including type 2 diabetes mellitus. In this report, we show that Glis3 is significantly downregulated at the transcriptional level in INS1 832/13 cells within hours of being subjected to high glucose concentrations and that diminished expression of Glis3 is at least partly attributable to increased oxidative stress. CRISPR/Cas9-mediated knockdown of Glis3 indicated that the transcription factor was required to maintain normal levels of both insulin and MafA expression and reduced Glis3 expression was concomitant with an upregulation of β cell disallowed genes. We provide evidence that Glis3 acts similarly to a pioneer factor at the insulin promoter where it permissively remodels the chromatin to allow access to a transcriptional regulatory complex including Pdx1 and MafA. Finally, evidence is presented that Glis3 can positively regulate MafA transcription through its pancreas-specific promoter and that MafA reciprocally regulates Glis3 expression. Collectively, these results suggest that decreased Glis3 expression in β cells exposed to chronic hyperglycemia may contribute significantly to reduced insulin transcription and a loss of β cell identity.
Collapse
Affiliation(s)
- LilyAnne M. Grieve
- Department of Biological Sciences, Murray State University, Murray, KY, USA
| | - Abhya Rani
- Department of Biological Sciences, Murray State University, Murray, KY, USA
| | - Gary T. ZeRuth
- Department of Biological Sciences, Murray State University, Murray, KY, USA
| |
Collapse
|
3
|
Hwang LD, Cuellar-Partida G, Yengo L, Zeng J, Toivonen J, Arvas M, Beaumont RN, Freathy RM, Moen GH, Warrington NM, Evans DM. DINGO: increasing the power of locus discovery in maternal and fetal genome-wide association studies of perinatal traits. Nat Commun 2024; 15:9255. [PMID: 39461952 PMCID: PMC11513127 DOI: 10.1038/s41467-024-53495-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Perinatal traits are influenced by fetal and maternal genomes. We investigate the performance of three strategies to detect loci in maternal and fetal genome-wide association studies (GWASs) of the same quantitative trait: (i) the traditional strategy of analysing maternal and fetal GWASs separately; (ii) a two-degree-of-freedom test which combines information from maternal and fetal GWASs; and (iii) a one-degree-of-freedom test where signals from maternal and fetal GWASs are meta-analysed together conditional on estimated sample overlap. We demonstrate that the optimal strategy depends on the extent of sample overlap, correlation between phenotypes, whether loci exhibit fetal and/or maternal effects, and whether these effects are directionally concordant. We apply our methods to summary statistics from a recent GWAS meta-analysis of birth weight. Both the two-degree-of-freedom and meta-analytic approaches increase the number of genetic loci for birth weight relative to separately analysing the scans. Our best strategy identifies an additional 62 loci compared to the most recently published meta-analysis of birth weight. We conclude that whilst the two-degree-of-freedom test may be useful for the analysis of certain perinatal phenotypes, for most phenotypes, a simple meta-analytic strategy is likely to perform best, particularly in situations where maternal and fetal GWASs only partially overlap.
Collapse
Affiliation(s)
- Liang-Dar Hwang
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Australia.
| | | | - Loic Yengo
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Australia
| | - Jian Zeng
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Australia
| | | | - Mikko Arvas
- Finnish Red Cross Blood Service, Vantaa, Finland
| | - Robin N Beaumont
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Rachel M Freathy
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Gunn-Helen Moen
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Australia
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Public Health and Nursing, K.G. Jebsen Center for Genetic Epidemiology, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- The Frazer Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Nicole M Warrington
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Australia
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Department of Public Health and Nursing, K.G. Jebsen Center for Genetic Epidemiology, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- The Frazer Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - David M Evans
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Australia.
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK.
- The Frazer Institute, The University of Queensland, Woolloongabba, QLD, Australia.
| |
Collapse
|
4
|
Pulli K, Saarimäki-Vire J, Ahonen P, Liu X, Ibrahim H, Chandra V, Santambrogio A, Wang Y, Vaaralahti K, Iivonen AP, Känsäkoski J, Tommiska J, Kemkem Y, Varjosalo M, Vuoristo S, Andoniadou CL, Otonkoski T, Raivio T. A splice site variant in MADD affects hormone expression in pancreatic β cells and pituitary gonadotropes. JCI Insight 2024; 9:e167598. [PMID: 38775154 PMCID: PMC11141940 DOI: 10.1172/jci.insight.167598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 04/12/2024] [Indexed: 06/02/2024] Open
Abstract
MAPK activating death domain (MADD) is a multifunctional protein regulating small GTPases RAB3 and RAB27, MAPK signaling, and cell survival. Polymorphisms in the MADD locus are associated with glycemic traits, but patients with biallelic variants in MADD manifest a complex syndrome affecting nervous, endocrine, exocrine, and hematological systems. We identified a homozygous splice site variant in MADD in 2 siblings with developmental delay, diabetes, congenital hypogonadotropic hypogonadism, and growth hormone deficiency. This variant led to skipping of exon 30 and in-frame deletion of 36 amino acids. To elucidate how this mutation causes pleiotropic endocrine phenotypes, we generated relevant cellular models with deletion of MADD exon 30 (dex30). We observed reduced numbers of β cells, decreased insulin content, and increased proinsulin-to-insulin ratio in dex30 human embryonic stem cell-derived pancreatic islets. Concordantly, dex30 led to decreased insulin expression in human β cell line EndoC-βH1. Furthermore, dex30 resulted in decreased luteinizing hormone expression in mouse pituitary gonadotrope cell line LβT2 but did not affect ontogeny of stem cell-derived GnRH neurons. Protein-protein interactions of wild-type and dex30 MADD revealed changes affecting multiple signaling pathways, while the GDP/GTP exchange activity of dex30 MADD remained intact. Our results suggest MADD-specific processes regulate hormone expression in pancreatic β cells and pituitary gonadotropes.
Collapse
Affiliation(s)
- Kristiina Pulli
- Stem Cells and Metabolism Research Program (STEMM), Research Programs Unit, Faculty of Medicine, and
| | - Jonna Saarimäki-Vire
- Stem Cells and Metabolism Research Program (STEMM), Research Programs Unit, Faculty of Medicine, and
| | - Pekka Ahonen
- Stem Cells and Metabolism Research Program (STEMM), Research Programs Unit, Faculty of Medicine, and
| | - Xiaonan Liu
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Hazem Ibrahim
- Stem Cells and Metabolism Research Program (STEMM), Research Programs Unit, Faculty of Medicine, and
| | - Vikash Chandra
- Stem Cells and Metabolism Research Program (STEMM), Research Programs Unit, Faculty of Medicine, and
| | - Alice Santambrogio
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, United Kingdom
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Yafei Wang
- Stem Cells and Metabolism Research Program (STEMM), Research Programs Unit, Faculty of Medicine, and
| | - Kirsi Vaaralahti
- Stem Cells and Metabolism Research Program (STEMM), Research Programs Unit, Faculty of Medicine, and
| | - Anna-Pauliina Iivonen
- Stem Cells and Metabolism Research Program (STEMM), Research Programs Unit, Faculty of Medicine, and
| | - Johanna Känsäkoski
- Stem Cells and Metabolism Research Program (STEMM), Research Programs Unit, Faculty of Medicine, and
- Department of Physiology, Faculty of Medicine
| | - Johanna Tommiska
- Stem Cells and Metabolism Research Program (STEMM), Research Programs Unit, Faculty of Medicine, and
- Department of Physiology, Faculty of Medicine
| | - Yasmine Kemkem
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, United Kingdom
| | - Markku Varjosalo
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Sanna Vuoristo
- Stem Cells and Metabolism Research Program (STEMM), Research Programs Unit, Faculty of Medicine, and
- Department of Obstetrics and Gynecology; and
- HiLIFE, University of Helsinki, Helsinki, Finland
| | - Cynthia L. Andoniadou
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, United Kingdom
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Timo Otonkoski
- Stem Cells and Metabolism Research Program (STEMM), Research Programs Unit, Faculty of Medicine, and
- New Children’s Hospital, Helsinki University Hospital, Pediatric Research Center, Helsinki, Finland
| | - Taneli Raivio
- Stem Cells and Metabolism Research Program (STEMM), Research Programs Unit, Faculty of Medicine, and
- Department of Physiology, Faculty of Medicine
- New Children’s Hospital, Helsinki University Hospital, Pediatric Research Center, Helsinki, Finland
| |
Collapse
|
5
|
Hwang LD, Cuellar-Partida G, Yengo L, Zeng J, Beaumont RN, Freathy RM, Moen GH, Warrington NM, Evans DM. Direct and INdirect effects analysis of Genetic lOci (DINGO): A software package to increase the power of locus discovery in GWAS meta-analyses of perinatal phenotypes and traits influenced by indirect genetic effects. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.22.23294446. [PMID: 37693475 PMCID: PMC10491281 DOI: 10.1101/2023.08.22.23294446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Perinatal traits are influenced by genetic variants from both fetal and maternal genomes. Genome-wide association studies (GWAS) of these phenotypes have typically involved separate fetal and maternal scans, however, this approach may be inefficient as it does not utilize the information shared across the individual GWAS. In this manuscript we investigate the performance of three strategies to detect loci in maternal and fetal GWAS of the same trait: (i) the traditional strategy of analysing maternal and fetal GWAS separately; (ii) a novel two degree of freedom test which combines information from maternal and fetal GWAS; and (iii) a novel one degree of freedom test where signals from maternal and fetal GWAS are meta-analysed together conditional on the estimated sample overlap. We demonstrate through a combination of analytical formulae and data simulation that the optimal strategy depends on the extent of sample overlap/relatedness between the maternal and fetal GWAS, the correlation between own and offspring phenotypes, whether loci jointly exhibit fetal and maternal effects, and if so, whether these effects are directionally concordant. We apply our methods to summary results statistics from a recent GWAS meta-analysis of birth weight from deCODE, the UK Biobank and the Early Growth Genetics (EGG) consortium. Both the two degree of freedom (213 loci) and meta-analytic approach (226 loci) dramatically increase the number of robustly associated genetic loci for birth weight relative to separately analysing the scans (183 loci). Our best strategy identifies an additional 62 novel loci compared to the most recent published meta-analysis of birth weight and implicates both known and new biological pathways in the aetiology of the trait. We implement our methods in the online DINGO (Direct and INdirect effects analysis of Genetic lOci) software package, which allows users to perform one and/or two degree of freedom tests easily and computationally efficiently across the genome. We conclude that whilst the novel two degree of freedom test may be particularly useful for the analysis of certain perinatal phenotypes where many loci exhibit discordant maternal and fetal genetic effects, for most phenotypes, a simple meta-analytic strategy is likely to perform best, particularly in situations where maternal and fetal GWAS only partially overlap.
Collapse
Affiliation(s)
- Liang-Dar Hwang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | | | - Loic Yengo
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Jian Zeng
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Robin N Beaumont
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Rachel M Freathy
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Gunn-Helen Moen
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Public Health and Nursing, K.G. Jebsen Center for Genetic Epidemiology, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- The Frazer Institute, The University of Queensland, 4102, Woolloongabba, QLD, Australia
| | - Nicole M Warrington
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Department of Public Health and Nursing, K.G. Jebsen Center for Genetic Epidemiology, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- The Frazer Institute, The University of Queensland, 4102, Woolloongabba, QLD, Australia
| | - David M Evans
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- The Frazer Institute, The University of Queensland, 4102, Woolloongabba, QLD, Australia
| |
Collapse
|
6
|
Boukhalfa W, Jmel H, Kheriji N, Gouiza I, Dallali H, Hechmi M, Kefi R. Decoding the genetic relationship between Alzheimer's disease and type 2 diabetes: potential risk variants and future direction for North Africa. Front Aging Neurosci 2023; 15:1114810. [PMID: 37342358 PMCID: PMC10277480 DOI: 10.3389/fnagi.2023.1114810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 04/11/2023] [Indexed: 06/22/2023] Open
Abstract
Introduction Alzheimer's disease (AD) and Type 2 diabetes (T2D) are both age-associated diseases. Identification of shared genes could help develop early diagnosis and preventive strategies. Although genetic background plays a crucial role in these diseases, we noticed an underrepresentation tendency of North African populations in omics studies. Materials and methods First, we conducted a comprehensive review of genes and pathways shared between T2D and AD through PubMed. Then, the function of the identified genes and variants was investigated using annotation tools including PolyPhen2, RegulomeDB, and miRdSNP. Pathways enrichment analyses were performed with g:Profiler and EnrichmentMap. Next, we analyzed variant distributions in 16 worldwide populations using PLINK2, R, and STRUCTURE software. Finally, we performed an inter-ethnic comparison based on the minor allele frequency of T2D-AD common variants. Results A total of 59 eligible papers were included in our study. We found 231 variants and 363 genes shared between T2D and AD. Variant annotation revealed six single nucleotide polymorphisms (SNP) with a high pathogenic score, three SNPs with regulatory effects on the brain, and six SNPs with potential effects on miRNA-binding sites. The miRNAs affected were implicated in T2D, insulin signaling pathways, and AD. Moreover, replicated genes were significantly enriched in pathways related to plasma protein binding, positive regulation of amyloid fibril deposition, microglia activation, and cholesterol metabolism. Multidimensional screening performed based on the 363 shared genes showed that main North African populations are clustered together and are divergent from other worldwide populations. Interestingly, our results showed that 49 SNP associated with T2D and AD were present in North African populations. Among them, 11 variants located in DNM3, CFH, PPARG, ROHA, AGER, CLU, BDNF1, CST9, and PLCG1 genes display significant differences in risk allele frequencies between North African and other populations. Conclusion Our study highlighted the complexity and the unique molecular architecture of North African populations regarding T2D-AD shared genes. In conclusion, we emphasize the importance of T2D-AD shared genes and ethnicity-specific investigation studies for a better understanding of the link behind these diseases and to develop accurate diagnoses using personalized genetic biomarkers.
Collapse
Affiliation(s)
- Wided Boukhalfa
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis, Tunisia
- Tunis El Manar University, Tunis, Tunisia
- Faculty of Medicine of Tunis, Tunis, Tunisia
| | - Haifa Jmel
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis, Tunisia
- Tunis El Manar University, Tunis, Tunisia
| | - Nadia Kheriji
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis, Tunisia
- Tunis El Manar University, Tunis, Tunisia
- Faculty of Medicine of Tunis, Tunis, Tunisia
| | - Ismail Gouiza
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis, Tunisia
- Tunis El Manar University, Tunis, Tunisia
- Faculty of Medicine of Tunis, Tunis, Tunisia
- University of Angers, MitoLab Team, Unité MitoVasc, UMR CNRS 6015, INSERM U1083, SFR ICAT, Angers, France
| | - Hamza Dallali
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis, Tunisia
- Tunis El Manar University, Tunis, Tunisia
| | - Mariem Hechmi
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis, Tunisia
- Tunis El Manar University, Tunis, Tunisia
| | - Rym Kefi
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis, Tunisia
- Tunis El Manar University, Tunis, Tunisia
| |
Collapse
|
7
|
Liu P, Li D, Zhang J, He M, Gao D, Wang Y, Lin Y, Pan D, Li P, Wang T, Li J, Kong F, Zeng B, Lu L, Ma J, Long K, Li G, Tang Q, Jin L, Li M. Comparative three-dimensional genome architectures of adipose tissues provide insight into human-specific regulation of metabolic homeostasis. J Biol Chem 2023; 299:104757. [PMID: 37116707 PMCID: PMC10245122 DOI: 10.1016/j.jbc.2023.104757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/22/2023] [Accepted: 04/19/2023] [Indexed: 04/30/2023] Open
Abstract
Elucidating the regulatory mechanisms of human adipose tissues (ATs) evolution is essential for understanding human-specific metabolic regulation, but the functional importance and evolutionary dynamics of three-dimensional (3D) genome organizations of ATs are not well defined. Here, we compared the 3D genome architectures of anatomically distinct ATs from humans and six representative mammalian models. We recognized evolutionarily conserved and human-specific chromatin conformation in ATs at multiple scales, including compartmentalization, topologically associating domain (TAD), and promoter-enhancer interactions (PEI), which have not been described previously. We found PEI are much more evolutionarily dynamic with respect to compartmentalization and topologically associating domain. Compared to conserved PEIs, human-specific PEIs are enriched for human-specific sequence, and the binding motifs of their potential mediators (transcription factors) are less conserved. Our data also demonstrated that genes involved in the evolutionary dynamics of chromatin organization have weaker transcriptional conservation than those associated with conserved chromatin organization. Furthermore, the genes involved in energy metabolism and the maintenance of metabolic homeostasis are enriched in human-specific chromatin organization, while housekeeping genes, health-related genes, and genetic variations are enriched in evolutionarily conserved compared to human-specific chromatin organization. Finally, we showed extensively divergent human-specific 3D genome organizations among one subcutaneous and three visceral ATs. Together, these findings provide a global overview of 3D genome architecture dynamics between ATs from human and mammalian models and new insights into understanding the regulatory evolution of human ATs.
Collapse
Affiliation(s)
- Pengliang Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Diyan Li
- School of Pharmacy, Chengdu University, Chengdu, Sichuan, China.
| | - Jiaman Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mengnan He
- Wildlife Conservation Research Department, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
| | - Dengfeng Gao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yujie Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yu Lin
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Dengke Pan
- Institute of Organ Transplantation, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Penghao Li
- Jinxin Research Institute for Reproductive Medicine & Genetics, Chengdu Xi'nan Gynecology Hospital, Chengdu, Sichuan, China
| | - Tao Wang
- School of Pharmacy, Chengdu University, Chengdu, Sichuan, China
| | - Jing Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Fanli Kong
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bo Zeng
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lu Lu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jideng Ma
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Keren Long
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Guisen Li
- Renal Department & Nephrology Institute, Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Qianzi Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Long Jin
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mingzhou Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China.
| |
Collapse
|
8
|
Ren X, Guan Z, Zhao X, Zhang X, Wen J, Cheng H, Zhang Y, Cheng X, Liu Y, Ning Z, Qu L. Systematic Selection Signature Analysis of Chinese Gamecocks Based on Genomic and Transcriptomic Data. Int J Mol Sci 2023; 24:ijms24065868. [PMID: 36982941 PMCID: PMC10059269 DOI: 10.3390/ijms24065868] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/30/2023] Open
Abstract
Selection pressures driven by natural causes or human interference are key factors causing genome variants and signatures of selection in specific regions of the genome. Gamecocks were bred for cockfighting, presenting pea-combs, larger body sizes, stronger limbs, and higher levels of aggression than other chickens. In this study, we aimed to explore the genomic differences between Chinese gamecocks and commercial, indigenous, foreign, and cultivated breeds by detecting the regions or sites under natural or artificial selection using genome-wide association studies (GWAS), genome-wide selective sweeps based on the genetic differentiation index (FST), and transcriptome analyses. Ten genes were identified using GWAS and FST: gga-mir-6608-1, SOX5, DGKB, ISPD, IGF2BP1, AGMO, MEOX2, GIP, DLG5, and KCNMA1. The ten candidate genes were mainly associated with muscle and skeletal development, glucose metabolism, and the pea-comb phenotype. Enrichment analysis results showed that the differentially expressed genes between the Luxi (LX) gamecock and Rhode Island Red (RIR) chicken were mainly related to muscle development and neuroactive-related pathways. This study will help to understand the genetic basis and evolution of Chinese gamecocks and support the further use of gamecocks as an excellent breeding material from a genetic perspective.
Collapse
Affiliation(s)
- Xufang Ren
- National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zi Guan
- National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiurong Zhao
- National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xinye Zhang
- National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Junhui Wen
- National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Huan Cheng
- National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yalan Zhang
- National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xue Cheng
- National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yuchen Liu
- National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhonghua Ning
- National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Lujiang Qu
- National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
9
|
Genetic Variants of HNF4A, WFS1, DUSP9, FTO, and ZFAND6 Genes Are Associated with Prediabetes Susceptibility and Inflammatory Markers in the Saudi Arabian Population. Genes (Basel) 2023; 14:genes14030536. [PMID: 36980809 PMCID: PMC10048403 DOI: 10.3390/genes14030536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Prediabetes is a reversible, intermediate stage of type 2 diabetes mellitus (T2DM). Lifestyle changes that include healthy diet and exercise can substantially reduce progression to T2DM. The present study explored the association of 37 T2DM- and obesity-linked single nucleotide polymorphisms (SNPs) with prediabetes risk in a homogenous Saudi Arabian population. A total of 1129 Saudi adults [332 with prediabetes (29%) and 797 normoglycemic controls] were randomly selected and genotyped using the KASPar SNP genotyping method. Anthropometric and various serological parameters were measured following standard procedures. Heterozygous GA of HNF4A-rs4812829 (0.64; 95% CI 0.47–0.86; p < 0.01), heterozygous TC of WFS1-rs1801214 (0.60; 95% confidence interval (CI) 0.44–0.80; p < 0.01), heterozygous GA of DUSP9-rs5945326 (0.60; 95% CI 0.39–0.92; p = 0.01), heterozygous GA of ZFAND6-rs11634397 (0.75; 95% CI 0.56–1.01; p = 0.05), and homozygous AA of FTO-rs11642841 (1.50; 95% CI 0.8–1.45; p = 0.03) were significantly associated with prediabetes, independent of age and body mass index (BMI). Additionally, C-reactive protein (CRP) levels in rs11634397 (AA) with a median of 5389.0 (2767.4–7412.8) were significantly higher than in the heterozygous GA genotype with a median of 1736.3 (1024.4–4452.0) (p < 0.01). In conclusion, only five of the 37 genetic variants previously linked to T2DM and obesity in the Saudi Arabian population [HNF4A-rs4812829, WFS1-rs1801214, DUSP9-rs5945326, ZFAND6-rs11634397, FTO-rs11642841] were associated with prediabetes susceptibility. Prospective studies are needed to confirm the potential clinical value of the studied genetic variants of interest.
Collapse
|
10
|
Goyal Y, Verma AK, Kumar S, Bhatt D, Ahmad F, Dev K. Association of SLC30A8 (rs13266634) and GLIS3 (rs7034200) gene variant in development of type 2 diabetes mellitus in Indian population: A case-control study. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
11
|
Yang M, Huang L, Huang H, Tang H, Zhang N, Yang H, Wu J, Mu F. Integrating convolution and self-attention improves language model of human genome for interpreting non-coding regions at base-resolution. Nucleic Acids Res 2022; 50:e81. [PMID: 35536244 PMCID: PMC9371931 DOI: 10.1093/nar/gkac326] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 02/22/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022] Open
Abstract
Interpretation of non-coding genome remains an unsolved challenge in human genetics due to impracticality of exhaustively annotating biochemically active elements in all conditions. Deep learning based computational approaches emerge recently to help interpret non-coding regions. Here, we present LOGO (Language of Genome), a self-attention based contextualized pre-trained language model containing only two self-attention layers with 1 million parameters as a substantially light architecture that applies self-supervision techniques to learn bidirectional representations of the unlabelled human reference genome. LOGO is then fine-tuned for sequence labelling task, and further extended to variant prioritization task via a special input encoding scheme of alternative alleles followed by adding a convolutional module. Experiments show that LOGO achieves 15% absolute improvement for promoter identification and up to 4.5% absolute improvement for enhancer-promoter interaction prediction. LOGO exhibits state-of-the-art multi-task predictive power on thousands of chromatin features with only 3% parameterization benchmarking against the fully supervised model, DeepSEA and 1% parameterization against a recent BERT-based DNA language model. For allelic-effect prediction, locality introduced by one dimensional convolution shows improved sensitivity and specificity for prioritizing non-coding variants associated with human diseases. In addition, we apply LOGO to interpret type 2 diabetes (T2D) GWAS signals and infer underlying regulatory mechanisms. We make a conceptual analogy between natural language and human genome and demonstrate LOGO is an accurate, fast, scalable, and robust framework to interpret non-coding regions for global sequence labeling as well as for variant prioritization at base-resolution.
Collapse
Affiliation(s)
- Meng Yang
- MGI, BGI-Shenzhen, Shenzhen 518083, China.,Department of Biology, University of Copenhagen, Copenhagen DK-2200, Denmark
| | | | | | - Hui Tang
- MGI, BGI-Shenzhen, Shenzhen 518083, China
| | - Nan Zhang
- MGI, BGI-Shenzhen, Shenzhen 518083, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen 518083, China.,Guangdong Provincial Academician Workstation of BGI Synthetic Genomics, BGI-Shenzhen, Shenzhen, 518120, China
| | - Jihong Wu
- Department of Ophthalmology, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China.,Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, National Health Commission, Shanghai, China
| | - Feng Mu
- MGI, BGI-Shenzhen, Shenzhen 518083, China
| |
Collapse
|
12
|
Xu J, Jin L, Chen J, Zhang R, Zhang H, Li Y, Peng D, Gu Y, Wheeler MB, Hu C. Common variants in genes involved in islet amyloid polypeptide (IAPP) processing and the degradation pathway are associated with T2DM risk: A Chinese population study. Diabetes Res Clin Pract 2022; 185:109235. [PMID: 35131375 DOI: 10.1016/j.diabres.2022.109235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 01/22/2022] [Accepted: 01/31/2022] [Indexed: 11/28/2022]
Abstract
AIM To explore the genetic effects of SLC30A8, IAPP, PCSK1, PCSK2, CPE, PAM and IDE, key genes involved in IAPP processing and degradation pathway on T2DM risk and metabolic traits in Chinese population. METHODS Common variants were genotyped in 10936 Chinese subjects by Asian Screening Array and Multi-Ethnic Global Array. Associations of SNPs with occurrences of T2DM and related traits were evaluated through logistic and multiple linear regression. Genetic risk score (GRS) model was constructed based on 6 T2DM-variants, and its relationship with T2DM and related traits was assessed. RESULTS SLC30A8-rs13266634, PCSK1-rs155980, PCSK2-rs6136035, CPE-rs532192464, PAM-rs7716941, and IDE-rs117929184 were the top SNPs significantly associated with T2DM after adjusting for age, sex, and BMI, associated with blood glucose level, insulin secretion, and insulin sensitivity (all FDR p < 0.05). GRS calculated based on the above SNPs was remarkably correlated with T2DM, blood glucose, and insulin secretion. Furthermore, there was a significant interaction between SLC30A8 and IAPP in patients with T2DM (P = 0.0083). CONCLUSION Our study showed that common variants in genes involved in IAPP processing and the degradation pathway were associated with T2DM in Chinese population. Subjects with high GRS exhibited poorer glucose metabolism and insulin secretion.
Collapse
Affiliation(s)
- Jie Xu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China; Department of Physiology, 1 King's College Circle, University of Toronto, Toronto, Ontario M5S4L5, Canada
| | - Li Jin
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Jie Chen
- Department of Clinical Laboratory, Shanghai Xuhui Central Hospital, Shanghai 200020, China
| | - Rong Zhang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Hong Zhang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Yangyang Li
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Danfeng Peng
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Yunjuan Gu
- Department of Endocrinology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu 226001, China.
| | - Michael B Wheeler
- Department of Physiology, 1 King's College Circle, University of Toronto, Toronto, Ontario M5S4L5, Canada.
| | - Cheng Hu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China; Institute for Metabolic Disease, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai 201499, China.
| |
Collapse
|
13
|
Wang T, Maimaitituersun G, Shi H, Chen C, Ma Q, Su Y, Yao H, Zhu J. The relationship between polymorphism of insulin-like growth factor I gene and susceptibility to type 2 diabetes in Uygur population, Xinjiang, China. Genes Genomics 2022; 44:499-508. [PMID: 35094288 PMCID: PMC8921155 DOI: 10.1007/s13258-021-01209-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 12/17/2021] [Indexed: 12/23/2022]
Abstract
Background Type 2 diabetes (T2DM) susceptibility varies among different populations and is affected by gene single nucleotide polymorphism (SNP). Insulin-like growth factor (IGF)-1 gene, which has many SNP loci, is involved in T2DM pathogenesis. However, the relationship of IGF-1 gene polymorphism with T2DM in Uyghur population is less studied. Objective To investigate the relationship between T2DM susceptibility and polymorphism of IGF-1 gene in Uyghur population of Xinjiang, China. Methods This study enrolled 220 cases (122 males (55.46%) and 98 females (44.54%); mean age of 53.40 ± 10.94 years) of T2DM patients (T2DM group) and 229 (124 males (54.15%) and 105 females (45.85%); mean age of 51.64 ± 10.48 years) healthy controls (control group). Biochemical indexes were determined. IGF-1 gene polymorphism was analyzed by SNP genotyping. Results The levels of TG, HDL, LDL, BUN, and Cr were statistically significant between the T2DM group and the control group. In terms of IGF-1 polymorphism, T2DM group had higher frequency of AA genotype (OR = 2.40, 95% CI = 1.19–4.84) and allele A (OR = 1.55, 95% CI = 1.17–2.06) of rs35767 loci, suggesting that rs35767 is related to the occurrence of T2DM. A total of 5 gene interaction models was obtained through analyzing the interaction of 5 SNP loci with the GMDR method. Among them, the two-factor model that included rs35767 locus and rs5742694 locus had statistical difference with a large cross-validation consistency (10/10). The combination of GG/CC, GA/AA, AA/AA, and AA/AC genotype was in high-risk group, whereas the combination of GG/AA, GG/AC, GA/AC and GA/CC genotype was in the low-risk group. The risk of T2DM in the high-risk group was 2.165 times than that of the low-risk group (OR = 2.165, 95% CI = 1.478–3.171). Conclusion TG, HDL, LDL, BUN, and Cr are influencing factors of T2DM in Uyghur population. The rs35767 locus of IGF-1 gene may be associated with T2DM in Uyghur population. The high-risk group composing of rs35767 locus and rs5742694 locus has a higher risk of T2DM.
Collapse
Affiliation(s)
- Tingting Wang
- School of Nursing and Health Management, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | | | - Haonan Shi
- School of Public Health, Xinjiang Medical University, Urumqi, 830054, China
| | - Cheng Chen
- Clinical Laboratory Center, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, China
| | - Qi Ma
- Xinjiang Key Laboratory of Metabolic Disease, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, No.137. Liyushan road, Xinshi District, Urumqi, 830001, China.
| | - Yinxia Su
- School of Public Health, Xinjiang Medical University, Urumqi, 830054, China
- Health Management Institute, Xinjiang Medical University, Urumqi, 830054, China
| | - Hua Yao
- School of Public Health, Xinjiang Medical University, Urumqi, 830054, China
- Health Management Institute, Xinjiang Medical University, Urumqi, 830054, China
| | - Jia Zhu
- Cadre Health Center, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91, Tianchi Road, Tianshan District, Urumqi, 830001, China.
| |
Collapse
|
14
|
Škrlec I, Talapko J, Džijan S, Cesar V, Lazić N, Lepeduš H. The Association between Circadian Clock Gene Polymorphisms and Metabolic Syndrome: A Systematic Review and Meta-Analysis. BIOLOGY 2021; 11:biology11010020. [PMID: 35053018 PMCID: PMC8773381 DOI: 10.3390/biology11010020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/11/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023]
Abstract
Metabolic syndrome (MetS) is a combination of cardiovascular risk factors associated with type 2 diabetes, obesity, and cardiovascular diseases. The circadian clock gene polymorphisms are very likely to participate in metabolic syndrome genesis and development. However, research findings of the association between circadian rhythm gene polymorphisms and MetS and its comorbidities are not consistent. In this study, a review of the association of circadian clock gene polymorphisms with overall MetS risk was performed. In addition, a meta-analysis was performed to clarify the association between circadian clock gene polymorphisms and MetS susceptibility based on available data. The PubMed and Scopus databases were searched for studies reporting the association between circadian rhythm gene polymorphisms (ARNTL, BMAL1, CLOCK, CRY, PER, NPAS2, REV-ERBα, REV-ERBβ, and RORα) and MetS, and its comorbidities diabetes, obesity, and hypertension. Thirteen independent studies were analyzed with 17,381 subjects in total. The results revealed that the BMAL1 rs7950226 polymorphism was associated with an increased risk of MetS in the overall population. In contrast, the CLOCK rs1801260 and rs6850524 polymorphisms were not associated with MetS. This study suggests that some circadian rhythm gene polymorphisms might be associated with MetS in different populations and potentially used as predictive biomarkers for MetS.
Collapse
Affiliation(s)
- Ivana Škrlec
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (J.T.); (S.D.); (V.C.); (N.L.); (H.L.)
- Correspondence:
| | - Jasminka Talapko
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (J.T.); (S.D.); (V.C.); (N.L.); (H.L.)
| | - Snježana Džijan
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (J.T.); (S.D.); (V.C.); (N.L.); (H.L.)
- Genos Ltd., DNA Laboratory, 10000 Zagreb, Croatia
| | - Vera Cesar
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (J.T.); (S.D.); (V.C.); (N.L.); (H.L.)
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Ul. Cara Hadrijana 8/A, 31000 Osijek, Croatia
| | - Nikolina Lazić
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (J.T.); (S.D.); (V.C.); (N.L.); (H.L.)
| | - Hrvoje Lepeduš
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (J.T.); (S.D.); (V.C.); (N.L.); (H.L.)
- Faculty of Humanities and Social Sciences Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| |
Collapse
|
15
|
Zeng Q, Zou D, Zeng Q, Chen X, Wei Y, Guo R. Association Between Insulin-like Growth Factor-1 rs35767 Polymorphism and Type 2 Diabetes Mellitus Susceptibility: A Meta-Analysis. Front Genet 2021; 12:774489. [PMID: 34880907 PMCID: PMC8646032 DOI: 10.3389/fgene.2021.774489] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 10/25/2021] [Indexed: 12/17/2022] Open
Abstract
Background: Insulin-like growth factor-1 (IGF-1) has been demonstrated to increase fatty acid β oxidation during fasting, and play an important role in regulating lipid metabolism and type 2 diabetes mellitus (T2DM). The rs35767 (T > C) polymorphism, a functional SNP was found in IGF-1 promoter, which may directly affect IGF-1 expression. However, the inconsistent findings showed on the IGF-1 rs35767 polymorphism and T2DM risk. Methods: We performed a comprehensive meta-analysis to estimate the association between the IGF-1 rs35767 and T2DM risk among four genetic models (the allele, additive, recessive and dominant models). Results: A total 49,587 T2DM cases and 97,906 NDM controls were included in the allele model, a total 2256 T2DM cases and 2228 NDM controls were included in the other three genetic models (the additive; recessive and dominant models). In overall analysis, the IGF-1 rs35767 was shown to be significantly associated with increased T2DM risk for the allele model (T vs. C: OR = 1.251, 95% CI: 1.082–1.447, p = 0.002), additive model (homozygote comparisons: TT vs. CC: OR = 2.433, 95% CI: 1.095–5.405, p = 0.029; heterozygote comparisons: TC vs. CC: OR = 1.623, 95% CI: 1.055–2.495, p = 0.027) and dominant model (TT + CT vs. CC: OR = 1.934, 95% CI: 1.148–3.257, p = 0.013) with random effects model. After omitting Gouda’s study could reduce the heterogeneity, especially in the recessive model (TT vs. CC + CT: I2 = 38.7%, p = 0.163), the fixed effects model for recessive effect of the T allele (TT vs. CC + CT) produce results that were of borderline statistical significance (OR = 1.206, 95% CI: 1.004–1.448, p = 0.045). And increasing the risk of T2DM in Uyghur population of subgroup for the allele model. Conclusion: The initial analyses that included all studies showed statistically significant associations between the rs35767 SNP and type 2 diabetes, but after removing the Gouda et al. study produced results that were mostly not statistically significant. Therefore, there is not enough evidence from the results of the meta-analysis to indicate that the rs35767 SNP has a statistically significant association with type 2 diabetes.
Collapse
Affiliation(s)
- Qiaoli Zeng
- Department of Internal Medicine, Shunde Women and Children's Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, China.,Key Laboratory of Research in Maternal and Child Medicine and Birth Defects, Guangdong Medical University, Foshan, China.,Shunde Women and Children's Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Matenal and Child Research Institute, Guangdong Medical University, Foshan, China
| | - Dehua Zou
- Key Laboratory of Research in Maternal and Child Medicine and Birth Defects, Guangdong Medical University, Foshan, China.,Shunde Women and Children's Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Matenal and Child Research Institute, Guangdong Medical University, Foshan, China.,State Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Taipa, Macau (SAR) China
| | - Qiaodi Zeng
- Department of Clinical Laboratory, People's Hospital of Haiyuan County, Zhongwei, China
| | - Xiaoming Chen
- Department of Endocrinology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yue Wei
- Department of Ultrasound, Shunde Women and Children's Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, China
| | - Runmin Guo
- Department of Internal Medicine, Shunde Women and Children's Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, China.,Key Laboratory of Research in Maternal and Child Medicine and Birth Defects, Guangdong Medical University, Foshan, China.,Shunde Women and Children's Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Matenal and Child Research Institute, Guangdong Medical University, Foshan, China.,Department of Endocrinology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
16
|
Kizilkaya HS, Sørensen KV, Kibsgaard CJ, Gasbjerg LS, Hauser AS, Sparre-Ulrich AH, Grarup N, Rosenkilde MM. Loss of Function Glucose-Dependent Insulinotropic Polypeptide Receptor Variants Are Associated With Alterations in BMI, Bone Strength and Cardiovascular Outcomes. Front Cell Dev Biol 2021; 9:749607. [PMID: 34760890 PMCID: PMC8573201 DOI: 10.3389/fcell.2021.749607] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/16/2021] [Indexed: 12/25/2022] Open
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) and its receptor (GIPR) are involved in multiple physiological systems related to glucose metabolism, bone homeostasis and fat deposition. Recent research has surprisingly indicated that both agonists and antagonists of GIPR may be useful in the treatment of obesity and type 2 diabetes, as both result in weight loss when combined with GLP-1 receptor activation. To understand the receptor signaling related with weight loss, we examined the pharmacological properties of two rare missense GIPR variants, R190Q (rs139215588) and E288G (rs143430880) linked to lower body mass index (BMI) in carriers. At the molecular and cellular level, both variants displayed reduced G protein coupling, impaired arrestin recruitment and internalization, despite maintained high GIP affinity. The physiological phenotyping revealed an overall impaired bone strength, increased systolic blood pressure, altered lipid profile, altered fat distribution combined with increased body impedance in human carriers, thereby substantiating the role of GIP in these physiological processes.
Collapse
Affiliation(s)
- Hüsün Sheyma Kizilkaya
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kimmie Vestergaard Sørensen
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Camilla J Kibsgaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Laerke Smidt Gasbjerg
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alexander S Hauser
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Alexander Hovard Sparre-Ulrich
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Antag Therapeutics ApS, Copenhagen, Denmark
| | - Niels Grarup
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
17
|
Polymorphisms in GLIS3 and susceptibility to diabetes mellitus: A systematic review and meta-analysis. Meta Gene 2021. [DOI: 10.1016/j.mgene.2021.100898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
18
|
Xu J, Wijesekara N, Regeenes R, Rijjal DA, Piro AL, Song Y, Wu A, Bhattacharjee A, Liu Y, Marzban L, Rocheleau JV, Fraser PE, Dai FF, Hu C, Wheeler MB. Pancreatic β cell-selective zinc transporter 8 insufficiency accelerates diabetes associated with islet amyloidosis. JCI Insight 2021; 6:143037. [PMID: 34027899 PMCID: PMC8262350 DOI: 10.1172/jci.insight.143037] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 04/21/2021] [Indexed: 01/25/2023] Open
Abstract
GWAS have shown that the common R325W variant of SLC30A8 (ZnT8) increases the risk of type 2 diabetes (T2D). However, ZnT8 haploinsufficiency is protective against T2D in humans, counterintuitive to earlier work in humans and mouse models. Therefore, whether decreasing ZnT8 activity is beneficial or detrimental to β cell function, especially under conditions of metabolic stress, remains unknown. In order to examine whether the existence of human islet amyloid polypeptide (hIAPP), a coresident of the insulin granule, affects the role of ZnT8 in regulating β cell function, hIAPP-expressing transgenics were generated with reduced ZnT8 (ZnT8B+/– hIAPP) or null ZnT8 (ZnT8B–/– hIAPP) expression specifically in β cells. We showed that ZnT8B–/– hIAPP mice on a high-fat diet had intensified amyloid deposition and further impaired glucose tolerance and insulin secretion compared with control, ZnT8B–/–, and hIAPP mice. This can in part be attributed to impaired glucose sensing and islet cell synchronicity. Importantly, ZnT8B+/– hIAPP mice were also glucose intolerant and had reduced insulin secretion and increased amyloid aggregation compared with controls. These data suggest that loss of or reduced ZnT8 activity in β cells heightened the toxicity induced by hIAPP, leading to impaired β cell function and glucose homeostasis associated with metabolic stress.
Collapse
Affiliation(s)
- Jie Xu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Nadeeja Wijesekara
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto Western Hospital, Toronto, Ontario Canada
| | - Romario Regeenes
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Dana Al Rijjal
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Anthony L Piro
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Youchen Song
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Anne Wu
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Alpana Bhattacharjee
- Division of Advanced Diagnostics, Toronto General Hospital Research Institute, Toronto General Hospital, Toronto, Ontario, Canada
| | - Ying Liu
- Division of Advanced Diagnostics, Toronto General Hospital Research Institute, Toronto General Hospital, Toronto, Ontario, Canada
| | - Lucy Marzban
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jonathan V Rocheleau
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.,Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Paul E Fraser
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto Western Hospital, Toronto, Ontario Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Feihan F Dai
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Cheng Hu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Institute for Metabolic Disease, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai, China
| | - Michael B Wheeler
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
19
|
Incretin Hormones in Obesity and Related Cardiometabolic Disorders: The Clinical Perspective. Nutrients 2021; 13:nu13020351. [PMID: 33503878 PMCID: PMC7910956 DOI: 10.3390/nu13020351] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 02/06/2023] Open
Abstract
The prevalence of obesity continues to grow rapidly worldwide, posing many public health challenges of the 21st century. Obese subjects are at major risk for serious diet-related noncommunicable diseases, including type 2 diabetes mellitus, cardiovascular disease, and non-alcoholic fatty liver disease. Understanding the mechanisms underlying obesity pathogenesis is needed for the development of effective treatment strategies. Dysregulation of incretin secretion and actions has been observed in obesity and related metabolic disorders; therefore, incretin-based therapies have been developed to provide new therapeutic options. Incretin mimetics present glucose-lowering properties, together with a reduction of appetite and food intake, resulting in weight loss. In this review, we describe the physiology of two known incretins—glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1), and their role in obesity and related cardiometabolic disorders. We also focus on the available and incoming incretin-based medications that can be used in the treatment of the above-mentioned conditions.
Collapse
|
20
|
Scoville DW, Kang HS, Jetten AM. Transcription factor GLIS3: Critical roles in thyroid hormone biosynthesis, hypothyroidism, pancreatic beta cells and diabetes. Pharmacol Ther 2020; 215:107632. [PMID: 32693112 PMCID: PMC7606550 DOI: 10.1016/j.pharmthera.2020.107632] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/15/2020] [Indexed: 12/16/2022]
Abstract
GLI-Similar 3 (GLIS3) is a member of the GLIS subfamily of Krüppel-like zinc finger transcription factors that functions as an activator or repressor of gene expression. Study of GLIS3-deficiency in mice and humans revealed that GLIS3 plays a critical role in the regulation of several biological processes and is implicated in the development of various diseases, including hypothyroidism and diabetes. This was supported by genome-wide association studies that identified significant associations of common variants in GLIS3 with increased risk of these pathologies. To obtain insights into the causal mechanisms underlying these diseases, it is imperative to understand the mechanisms by which this protein regulates the development of these pathologies. Recent studies of genes regulated by GLIS3 led to the identification of a number of target genes and have provided important molecular insights by which GLIS3 controls cellular processes. These studies revealed that GLIS3 is essential for thyroid hormone biosynthesis and identified a critical function for GLIS3 in the generation of pancreatic β cells and insulin gene transcription. These observations raised the possibility that the GLIS3 signaling pathway might provide a potential therapeutic target in the management of diabetes, hypothyroidism, and other diseases. To develop such strategies, it will be critical to understand the upstream signaling pathways that regulate the activity, expression and function of GLIS3. Here, we review the recent progress on the molecular mechanisms by which GLIS3 controls key functions in thyroid follicular and pancreatic β cells and how this causally relates to the development of hypothyroidism and diabetes.
Collapse
Affiliation(s)
- David W Scoville
- Cell Biology Group, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Hong Soon Kang
- Cell Biology Group, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Anton M Jetten
- Cell Biology Group, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
21
|
Zhang JL, Zhang CL, Zhou BG, Lei BY, Zhang B, Yang HT. Association study of the functional variants of the GLIS3 gene with risk of knee osteoarthritis. Clin Rheumatol 2020; 40:1039-1046. [PMID: 32681364 DOI: 10.1007/s10067-019-04871-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/31/2019] [Accepted: 11/22/2019] [Indexed: 10/23/2022]
Abstract
INTRODUCTION/OBJECTIVES Osteoarthritis (OA) ranks the most common joint disorder and the leading cause of disability. Growing evidence has revealed that OA has a strong genetic background, except for aging and obesity. The aim of this study is to determine the associations between potential functional variants of the GLIS3 and GLIS3-AS1 gene and risk of knee OA among a Chinese population. METHODS In this case-control study with 810 knee OA cases and 900 healthy controls, seven selected functional SNPs of the GLIS3 and GLIS3-AS1 gene were evaluated. RESULTS We found minor alleles of rs10116772 (OR: 0.80, 95% CI: 0.69-0.92, P = 0.002), rs7045410 (OR: 0.74, 95% CI: 0.61-0.92, P = 0.005), and rs7032713 (OR: 0.76, 95% CI: 0.63-0.93, P = 0.006) were significantly associated with decreased risk of knee OA. Results of the dominant and recessive model, stratified analyses using Kellgren-Lawrence (KL) grading presented that the significant associations were not materially changed. Haplotype analysis indicated that haplotype CGT (OR: 0.66, 95% CI: 0.46-0.96, P = 0.031) and ATT (OR: 0.76, 95% CI: 0.6-0.95, P = 0.017) were significantly associated with decreased risk of knee OA. Further, they were also significantly associated with lower expression level of GLIS3, as well as higher expression level of GLIS3-AS1 in the articular cartilage specimens. Genotype-tissue expression (GTEX) data also validated that minor alleles of rs7045410 and rs7032713 were significantly associated with higher expression level of GLIS3-AS1 in thyroid and pituitary tissues (P < 0.001). CONCLUSIONS These findings revealed the essential role of genetic variants of the GLIS3 and GLIS3-AS1 gene in the occurrence of knee OA together. Key Point • Functional variants of the GLIS3 and GLIS3-AS1 gene were significantly associated with decreased risk of knee OA.
Collapse
Affiliation(s)
- Jian-Luo Zhang
- Department of Bone and Joint Surgery, No.215 Hospital of Shaanxi Nuclear Industry, Xianyang City, 712000, Shaanxi Province, China
| | - Cun-Li Zhang
- Medical School of Xianyang Vocational and Technical College, Xianyang City, 712000, Shaanxi Province, China
| | - Bai-Gang Zhou
- Department of Bone and Joint Surgery, No.215 Hospital of Shaanxi Nuclear Industry, Xianyang City, 712000, Shaanxi Province, China
| | - Bo-Yi Lei
- Department of Bone and Joint Surgery, No.215 Hospital of Shaanxi Nuclear Industry, Xianyang City, 712000, Shaanxi Province, China
| | - Bo Zhang
- Department of Bone and Joint Surgery, No.215 Hospital of Shaanxi Nuclear Industry, Xianyang City, 712000, Shaanxi Province, China
| | - Hong-Tao Yang
- Department of Sports Medicine, Xi'an International Rehabilitation Medicine Center, East of Xi-Tai Road, Chang'an District, Xi'an City, 710126, Shaanxi Province, China.
| |
Collapse
|
22
|
A Replication Study Identified Seven SNPs Associated with Quantitative Traits of Type 2 Diabetes among Chinese Population in A Cross-Sectional Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17072439. [PMID: 32260174 PMCID: PMC7177704 DOI: 10.3390/ijerph17072439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 12/17/2022]
Abstract
Genome-wide association studies (GWAS) have identified common variants for quantitative traits (insulin resistance and impaired insulin release) of type 2 diabetes (T2D) across different ethnics including China, but results were inconsistent. The study included 1654 subjects who were selected from the 2010–2012 China National Nutrition and Health Surveillance (CNNHS). Insulin resistance and impaired insulin release were assessed by homeostasis model assessment (HOMA). The study included 64 diabetes-related single nucleotide polymorphisms (SNPs), which were done using Mass ARRAY. A logistic regression model was employed to explore the associations of SNPs with insulin resistance and impaired insulin release by correcting for the confounders. The 5q11.2-rs4432842, RASGRP1-rs7403531, and SEC16B-rs574367 increased the risk of insulin resistance with OR = 1.23 (95% CI: 1.04–1.45, OR = 1.35 (95% CI: 1.13–1.62), OR = 1.34 (95% CI: 1.07–1.67), respectively, while MAEA-rs6815464 decreased the risk of insulin resistance (OR = 0.84, 95% CI: 0.71–1.00). CENTD2-rs1552224, TSPAN8-rs7961581 and ANK1-rs516946 was associated with increased risk of impaired insulin release with OR = 1.47 (95% CI: 1.09–1.99), OR = 1.25 (95% CI: 1.03–1.51), OR = 1.39 (95% CI: 1.07–1.81), respectively. Our findings would provide insight into the pathogenesis of individual SNPs and T2D.
Collapse
|
23
|
Common genetic variants in ADCY5 and gestational glycemic traits. PLoS One 2020; 15:e0230032. [PMID: 32163478 PMCID: PMC7067392 DOI: 10.1371/journal.pone.0230032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 02/19/2020] [Indexed: 01/04/2023] Open
Abstract
Two meta-analysis of genome wide association studies identified two variants at adenylate cyclase 5 (ADCY5) associated with type 2 diabetes mellitus, fasting and 2-hour glucose in non-pregnant individuals of European descent. The objective of our study was to explore the role of common variants in ADCY5 on gestational glycemic traits, including plasma glucose, insulin values, β cell function and insulin resistance in the fasted state as well as plasma glucose 1 hour after a 50-gram glucose challenge test among Chinese Han women. Homoeostasis model assessment (HOMA) was used to quantify β cell function (HOMA1-β and HOMA2-β) and insulin resistance (HOMA1-IR and HOMA2-IR). Thirty-five single nucleotide polymorphisms (SNPs) in ADCY5 were genotyped in 929 unrelated Chinese Han women with singleton pregnancies. Three SNPs (rs6797915, rs9856662 and rs9875803) displayed evidence for association with plasma glucose 1 hour after a 50-gram glucose challenge test (P = 0.042, 0.018 and 0.018, respectively), one (rs6777397) displayed evidence for association with HOMA1-β (P = 0.014), and one (rs6762009) displayed evidence for association with HOMA1-IR (P = 0.033). These results provide additional insight into the effects of genetic variation within ADCY5 in glucose metabolism, especially during pregnancy and in non-European descent populations.
Collapse
|
24
|
Adamska-Patruno E, Godzien J, Ciborowski M, Samczuk P, Bauer W, Siewko K, Gorska M, Barbas C, Kretowski A. The Type 2 Diabetes Susceptibility PROX1 Gene Variants Are Associated with Postprandial Plasma Metabolites Profile in Non-Diabetic Men. Nutrients 2019; 11:nu11040882. [PMID: 31010169 PMCID: PMC6520869 DOI: 10.3390/nu11040882] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/04/2019] [Accepted: 04/17/2019] [Indexed: 02/07/2023] Open
Abstract
The prospero homeobox 1 (PROX1) gene may show pleiotropic effects on metabolism. We evaluated postprandial metabolic alterations dependently on the rs340874 genotypes, and 28 non-diabetic men were divided into two groups: high-risk (HR)-genotype (CC-genotype carriers, n = 12, 35.3 ± 9.5 years old) and low-risk (LR)-genotype (allele T carriers, n = 16, 36.3 ± 7.0 years old). Subjects participated in two meal-challenge-tests with high-carbohydrate (HC, carbohydrates 89%) and normo-carbohydrate (NC, carbohydrates 45%) meal intake. Fasting and 30, 60, 120, and 180 min after meal intake plasma samples were fingerprinted by liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF-MS). In HR-genotype men, the area under the curve (AUC) of acetylcarnitine levels was higher after the HC-meal [+92%, variable importance in the projection (VIP) = 2.88] and the NC-meal (+55%, VIP = 2.00) intake. After the NC-meal, the HR-risk genotype carriers presented lower AUCs of oxidized fatty acids (−81–66%, VIP = 1.43–3.16) and higher linoleic acid (+80%, VIP = 2.29), while after the HC-meal, they presented lower AUCs of ornithine (−45%, VIP = 1.83), sphingosine (−48%, VIP = 2.78), linoleamide (−45%, VIP = 1.51), and several lysophospholipids (−40–56%, VIP = 1.72–2.16). Moreover, lower AUC (−59%, VIP = 2.43) of taurocholate after the HC-meal and higher (+70%, VIP = 1.42) glycodeoxycholate levels after the NC-meal were observed. Our results revealed differences in postprandial metabolites from inflammatory and oxidative stress pathways, bile acids signaling, and lipid metabolism in PROX1 HR-genotype men. Further investigations of diet–genes interactions by which PROX1 may promote T2DM development are needed.
Collapse
Affiliation(s)
- Edyta Adamska-Patruno
- Clinical Research Centre, Medical University of Bialystok, 15-089 Bialystok, Poland.
| | - Joanna Godzien
- Clinical Research Centre, Medical University of Bialystok, 15-089 Bialystok, Poland.
| | - Michal Ciborowski
- Clinical Research Centre, Medical University of Bialystok, 15-089 Bialystok, Poland.
| | - Paulina Samczuk
- Clinical Research Centre, Medical University of Bialystok, 15-089 Bialystok, Poland.
| | - Witold Bauer
- Clinical Research Centre, Medical University of Bialystok, 15-089 Bialystok, Poland.
| | - Katarzyna Siewko
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15-089 Bialystok, Poland.
| | - Maria Gorska
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15-089 Bialystok, Poland.
| | - Coral Barbas
- Center for Metabolomics and Bioanalysis (CEMBIO), Universidad CEU San Pablo, 28003 Madrid, Spain.
| | - Adam Kretowski
- Clinical Research Centre, Medical University of Bialystok, 15-089 Bialystok, Poland.
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15-089 Bialystok, Poland.
| |
Collapse
|
25
|
Huang Q, Du J, Merriman C, Gong Z. Genetic, Functional, and Immunological Study of ZnT8 in Diabetes. Int J Endocrinol 2019; 2019:1524905. [PMID: 30936916 PMCID: PMC6413397 DOI: 10.1155/2019/1524905] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/14/2018] [Accepted: 12/05/2018] [Indexed: 12/11/2022] Open
Abstract
Zinc level in the body is finely regulated to maintain cellular function. Dysregulation of zinc metabolism may induce a variety of diseases, e.g., diabetes. Zinc participates in insulin synthesis, storage, and secretion by functioning as a "cellular second messenger" in the insulin signaling pathway and glucose homeostasis. The highest zinc concentration is in the pancreas islets. Zinc accumulation in cell granules is manipulated by ZnT8, a zinc transporter expressed predominately in pancreatic α and β cells. A common ZnT8 gene (SLC30A8) polymorphism increases the risk of type 2 diabetes mellitus (T2DM), and rare mutations may present protective effects. In type 1 diabetes mellitus (T1DM), autoantibodies show specificity for binding two variants of ZnT8 (R or W at amino acid 325) dictated by a polymorphism in SLC30A8. In this review, we summarize the structure, feature, functions, and polymorphisms of ZnT8 along with its association with diabetes and explore future study directions.
Collapse
Affiliation(s)
- Qiong Huang
- Department of Pharmacy, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Jie Du
- Department of Pharmacy, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Chengfeng Merriman
- Department of Physiology, Johns Hopkins School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | - Zhicheng Gong
- Department of Pharmacy, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| |
Collapse
|
26
|
Khan IA, Jahan P, Hasan Q, Rao P. Genetic confirmation of T2DM meta-analysis variants studied in gestational diabetes mellitus in an Indian population. Diabetes Metab Syndr 2019; 13:688-694. [PMID: 30641791 DOI: 10.1016/j.dsx.2018.11.035] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 11/11/2018] [Indexed: 01/25/2023]
Abstract
BACKGROUND Meta-analysis is useful for combining the results of different studies statistically to confirm genuine associations in genetics. Based on earlier reports, we aimed to investigate the association between type 2 diabetes mellitus (T2DM) genetic variants identified in a previous meta-analysis in gestational diabetes mellitus (GDM) in an Indian woman. MATERIAL AND METHODS In this study, 137 pregnant women with GDM and 150 pregnant women were selected on the basis of their serum glucose levels. The six single nucleotide polymorphisms (SNPs) of different genes studied had known involvement in pancreatic β-cell function, particular pathways linked to T2DM, and other biological functions. Genomic DNA was isolated from the 287 women for polymerase chain reaction and restriction fragment length polymorphism analyses. RESULTS The rs7903146, rs13266634, rs2283228, rs5210 and rs179881 SNPs were found to be positively associated with GDM when calculated for genotype and allele frequencies (p < 0.05), but rs680 (ApaI) variant did not show statistically significant association (p = 0.31). The rs7903146, rs2283228, rs5210 and rs680 variants showed a strong association with oral glucose tolerance test values. CONCLUSION The SNPs studied in this GDM had the same role as those identified in a previous T2DM meta-analysis, and showed positive association in the Indian women. Meta-analyses should be implemented to assess the IGF2 gene in GDM subjects.
Collapse
Affiliation(s)
- Imran Ali Khan
- Department of Genetics and Molecular Medicine, Kamineni Hospitals, LB Nagar, Hyderabad, India; Department of Genetics, Vasavi Medical and Research Centre, Khairathabad, Hyderabad, India; Department of Genetics and Biotechnology, Osmania University, Tarnaka, Hyderabad, India
| | - Parveen Jahan
- Department of Genetics and Biotechnology, Osmania University, Tarnaka, Hyderabad, India
| | - Qurratulain Hasan
- Department of Genetics and Molecular Medicine, Kamineni Hospitals, LB Nagar, Hyderabad, India; Department of Genetics, Vasavi Medical and Research Centre, Khairathabad, Hyderabad, India
| | - Pragna Rao
- Department of Biochemistry, Kasturba Medical College, Manipal University, Manipal, Karnataka, India.
| |
Collapse
|
27
|
Jetten AM. GLIS1-3 transcription factors: critical roles in the regulation of multiple physiological processes and diseases. Cell Mol Life Sci 2018; 75:3473-3494. [PMID: 29779043 PMCID: PMC6123274 DOI: 10.1007/s00018-018-2841-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/07/2018] [Accepted: 05/14/2018] [Indexed: 12/12/2022]
Abstract
Krüppel-like zinc finger proteins form one of the largest families of transcription factors. They function as key regulators of embryonic development and a wide range of other physiological processes, and are implicated in a variety of pathologies. GLI-similar 1-3 (GLIS1-3) constitute a subfamily of Krüppel-like zinc finger proteins that act either as activators or repressors of gene transcription. GLIS3 plays a critical role in the regulation of multiple biological processes and is a key regulator of pancreatic β cell generation and maturation, insulin gene expression, thyroid hormone biosynthesis, spermatogenesis, and the maintenance of normal kidney functions. Loss of GLIS3 function in humans and mice leads to the development of several pathologies, including neonatal diabetes and congenital hypothyroidism, polycystic kidney disease, and infertility. Single nucleotide polymorphisms in GLIS3 genes have been associated with increased risk of several diseases, including type 1 and type 2 diabetes, glaucoma, and neurological disorders. GLIS2 plays a critical role in the kidney and GLIS2 dysfunction leads to nephronophthisis, an end-stage, cystic renal disease. In addition, GLIS1-3 have regulatory functions in several stem/progenitor cell populations. GLIS1 and GLIS3 greatly enhance reprogramming efficiency of somatic cells into induced embryonic stem cells, while GLIS2 inhibits reprogramming. Recent studies have obtained substantial mechanistic insights into several physiological processes regulated by GLIS2 and GLIS3, while a little is still known about the physiological functions of GLIS1. The localization of some GLIS proteins to the primary cilium suggests that their activity may be regulated by a downstream primary cilium-associated signaling pathway. Insights into the upstream GLIS signaling pathway may provide opportunities for the development of new therapeutic strategies for diabetes, hypothyroidism, and other diseases.
Collapse
Affiliation(s)
- Anton M Jetten
- Cell Biology Group, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
28
|
Hoard TM, Yang XP, Jetten AM, ZeRuth GT. PIAS-family proteins negatively regulate Glis3 transactivation function through SUMO modification in pancreatic β cells. Heliyon 2018; 4:e00709. [PMID: 30094379 PMCID: PMC6077130 DOI: 10.1016/j.heliyon.2018.e00709] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/09/2018] [Accepted: 07/23/2018] [Indexed: 11/28/2022] Open
Abstract
Gli-similar 3 (Glis3) is Krüppel-like transcription factor associated with the transcriptional regulation of insulin. Mutations within the Glis3 locus have been implicated in a number of pathologies including diabetes mellitus and hypothyroidism. Despite its clinical significance, little is known about the proteins and posttranslational modifications that regulate Glis3 transcriptional activity. In this report, we demonstrate that the SUMO-pathway associated proteins, PIASy and Ubc9 are capable of regulating Glis3 transactivation function through a SUMO-dependent mechanism. We present evidence that SUMOylation of Glis3 by PIAS-family proteins occurs at two conserved lysine residues within the Glis3 N-terminus and modification of Glis3 by SUMO dramatically inhibited insulin transcription. Finally, we provide evidence that Glis3 SUMOylation increases under conditions of chronically elevated glucose and correlates with decreased insulin transcription. Collectively, these results indicate that SUMOylation may serve as a mechanism to regulate Glis3 activity in β cells.
Collapse
Affiliation(s)
- Tyler M Hoard
- Department of Biological Sciences, Murray State University, Murray, KY, USA
| | - Xiao Ping Yang
- Cell Biology Group, Immunity, Inflammation, and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Anton M Jetten
- Cell Biology Group, Immunity, Inflammation, and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Gary T ZeRuth
- Department of Biological Sciences, Murray State University, Murray, KY, USA.,Cell Biology Group, Immunity, Inflammation, and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| |
Collapse
|
29
|
Yan J, Jiang F, Zhang R, Xu T, Zhou Z, Ren W, Peng D, Liu Y, Hu C, Jia W. Whole-exome sequencing identifies a novel INS mutation causative of maturity-onset diabetes of the young 10. J Mol Cell Biol 2018; 9:376-383. [PMID: 28992123 DOI: 10.1093/jmcb/mjx039] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 08/18/2017] [Indexed: 12/28/2022] Open
Abstract
Monogenic diabetes is often misdiagnosed with type 2 diabetes due to overlapping characteristics. This study aimed to discover novel causative mutations of monogenic diabetes in patients with clinically diagnosed type 2 diabetes and to explore potential molecular mechanisms. Whole-exome sequencing was performed on 31 individuals clinically diagnosed with type 2 diabetes. One novel heterozygous mutation (p.Ala2Thr) in INS was identified. It was further genotyped in an additional case-control population (6523 cases and 4635 controls), and this variant was observed in 0.09% of cases. Intracellular trafficking of insulin proteins was assessed in INS1-E and HEK293T cells. p.Ala2Thr preproinsulin-GFP was markedly retained in the endoplasmic reticulum (ER) in INS1-E cells. Activation of the PERK-eIF2α-ATF4, IRE1α-XBP1, and ATF6 pathways as well as upregulated ER chaperones were detected in INS1-E cells transfected with the p.Ala2Thr mutant. In conclusion, we identified a causative mutation in INS responsible for maturity-onset diabetes of the young 10 (MODY10) in a Chinese population and demonstrated that this mutation affected β cell function by inducing ER stress.
Collapse
Affiliation(s)
- Jing Yan
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Feng Jiang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Rong Zhang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Tongfu Xu
- The Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, China
| | - Zhou Zhou
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Wei Ren
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Danfeng Peng
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yong Liu
- The Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, China
| | - Cheng Hu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Institute for Metabolic Disease, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai, China
| | - Weiping Jia
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
30
|
Maagensen H, Junker AE, Jørgensen NR, Gluud LL, Knop FK, Vilsbøll T. Bone Turnover Markers in Patients With Nonalcoholic Fatty Liver Disease and/or Type 2 Diabetes During Oral Glucose and Isoglycemic Intravenous Glucose. J Clin Endocrinol Metab 2018; 103:2042-2049. [PMID: 29506157 DOI: 10.1210/jc.2018-00176] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 02/26/2018] [Indexed: 02/07/2023]
Abstract
CONTEXT Nonalcoholic fatty liver disease (NAFLD) is associated with type 2 diabetes (T2D) and vice versa, and both conditions are associated with an increased risk of fractures and altered bone turnover. Although patients with NAFLD typically suffer from decreased bone mineral density (BMD), T2D is associated with normal to high BMD. The pathophysiology is uncertain but may involve the gut-bone axis. OBJECTIVE We investigated the influence of the gut on glucose-induced changes in plasma bone turnover markers in healthy controls and patients with T2D and/or biopsy-verified NAFLD. DESIGN Cross-sectional cohort study. PATIENTS Patients with NAFLD with normal glucose tolerance, patients with NAFLD and T2D, patients with T2D without liver disease, and healthy controls. INTERVENTIONS Four-hour 50-g oral glucose tolerance test (OGTT) and an isoglycemic intravenous glucose infusion (IIGI). MAIN OUTCOME MEASURES Collagen type 1 C-telopeptide (CTX), osteocalcin, procollagen type 1 N-terminal propeptide (P1NP), and parathyroid hormone. RESULTS Plasma glucose levels achieved during OGTTs were successfully matched on corresponding IIGI days. Patients with NAFLD and T2D exhibited similar CTX suppression during the two glucose challenges (P = 0.46) and pronounced suppression of P1NP during IIGI compared with OGTT. Conversely, remaining groups showed greater (P < 0.05) CTX suppression during OGTT and similar suppression of bone formation markers during IIGI and OGTT. CONCLUSIONS OGTT-induced CTX suppression seems to be impaired in patients with NAFLD and T2D, but preserved in patients with either NAFLD or T2D, suggesting that coexistence of T2D and NAFLD may affect gut-bone axis.
Collapse
Affiliation(s)
- Henrik Maagensen
- Clinical Metabolic Physiology, Steno Diabetes Center Copenhagen, University of Copenhagen, Hellerup, Denmark
| | - Anders E Junker
- Clinical Metabolic Physiology, Steno Diabetes Center Copenhagen, University of Copenhagen, Hellerup, Denmark
| | - Niklas R Jørgensen
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Odense Patient data Explorative Network, Odense University Hospital/Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Lise L Gluud
- Gastrounit, Medical Division, Hvidovre Hospital, University of Copenhagen, Hvidovre, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Filip K Knop
- Clinical Metabolic Physiology, Steno Diabetes Center Copenhagen, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tina Vilsbøll
- Clinical Metabolic Physiology, Steno Diabetes Center Copenhagen, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
31
|
Hu C, Jia W. Diabetes in China: Epidemiology and Genetic Risk Factors and Their Clinical Utility in Personalized Medication. Diabetes 2018; 67:3-11. [PMID: 29263166 DOI: 10.2337/dbi17-0013] [Citation(s) in RCA: 254] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/03/2017] [Indexed: 12/15/2022]
Abstract
The incidence of type 2 diabetes (T2D) has rapidly increased over recent decades, and T2D has become a leading public health challenge in China. Compared with European descents, Chinese patients with T2D are diagnosed at a relatively young age and low BMI. A better understanding of the factors contributing to the diabetes epidemic is crucial for determining future prevention and intervention programs. In addition to environmental factors, genetic factors contribute substantially to the development of T2D. To date, more than 100 susceptibility loci for T2D have been identified. Individually, most T2D genetic variants have a small effect size (10-20% increased risk for T2D per risk allele); however, a genetic risk score that combines multiple T2D loci could be used to predict the risk of T2D and to identify individuals who are at a high risk. Furthermore, individualized antidiabetes treatment should be a top priority to prevent complications and mortality. In this article, we review the epidemiological trends and recent progress in the understanding of T2D genetic etiology and further discuss personalized medicine involved in the treatment of T2D.
Collapse
Affiliation(s)
- Cheng Hu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
- Institute for Metabolic Disease, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai, People's Republic of China
| | - Weiping Jia
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| |
Collapse
|
32
|
Perelis M, Ramsey KM, Marcheva B, Bass J. Circadian Transcription from Beta Cell Function to Diabetes Pathophysiology. J Biol Rhythms 2017; 31:323-36. [PMID: 27440914 DOI: 10.1177/0748730416656949] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The mammalian circadian clock plays a central role in the temporal coordination of physiology across the 24-h light-dark cycle. A major function of the clock is to maintain energy constancy in anticipation of alternating periods of fasting and feeding that correspond with sleep and wakefulness. While it has long been recognized that humans exhibit robust variation in glucose tolerance and insulin sensitivity across the sleep-wake cycle, experimental genetic analysis has now revealed that the clock transcription cycle plays an essential role in insulin secretion and metabolic function within pancreatic beta cells. This review addresses how studies of the beta cell clock may elucidate the etiology of subtypes of diabetes associated with circadian and sleep cycle disruption, in addition to more general forms of the disease.
Collapse
Affiliation(s)
- Mark Perelis
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Kathryn Moynihan Ramsey
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Biliana Marcheva
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Joseph Bass
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
33
|
Scoville DW, Kang HS, Jetten AM. GLIS1-3: emerging roles in reprogramming, stem and progenitor cell differentiation and maintenance. Stem Cell Investig 2017; 4:80. [PMID: 29057252 DOI: 10.21037/sci.2017.09.01] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 08/27/2017] [Indexed: 12/12/2022]
Abstract
Recent studies have provided evidence for a regulatory role of GLI-similar (GLIS) transcription factors in reprogramming, maintenance and differentiation of several stem and progenitor cell populations. GLIS1, in conjunction with several other reprogramming factors, was shown to markedly increase the efficiency of generating induced pluripotent stem cells (iPSC) from somatic cells. GLIS2 has been reported to contribute to the maintenance of the pluripotent state in hPSCs. In addition, GLIS2 has a function in regulating self-renewal of hematopoietic progenitors and megakaryocytic differentiation. GLIS3 plays a critical role during the development of several tissues. GLIS3 is able to promote reprogramming of human fibroblasts into retinal pigmented epithelial (RPE) cells. Moreover, GLIS3 is essential for spermatogonial stem cell renewal and spermatogonial progenitor cell differentiation. During pancreas development, GLIS3 protein is first detectable in bipotent pancreatic progenitors and pro-endocrine progenitors and plays a critical role in the generation of pancreatic beta cells. Here, we review the current status of the roles of GLIS proteins in the maintenance and differentiation of these different stem and progenitor cells.
Collapse
Affiliation(s)
- David W Scoville
- Cell Biology Section, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Hong Soon Kang
- Cell Biology Section, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Anton M Jetten
- Cell Biology Section, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
34
|
Shalaby SM, Zidan HE, Shokry A, Saeed J, El-Sokkary RH. Association of incretin receptors genetic polymorphisms with type 2 diabetes mellitus in Egyptian patients. J Gene Med 2017; 19:e2973. [DOI: 10.1002/jgm.2973] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Affiliation(s)
- Sally M. Shalaby
- Medical Biochemistry Department, Faculty of Medicine; Zagazig University; Zagazig Egypt
| | - Haidy E. Zidan
- Medical Biochemistry Department, Faculty of Medicine; Zagazig University; Zagazig Egypt
| | - Amira Shokry
- Internal Medicine Department, Faculty of Medicine; Zagazig University; Zagazig Egypt
| | - Jehan Saeed
- Internal Medicine Department, Faculty of Medicine; Zagazig University; Zagazig Egypt
| | - Rehab H. El-Sokkary
- Microbiology & Immunolgy Department, Faculty of Medicine; Zagazig University; Zagazig Egypt
| |
Collapse
|
35
|
Wood AR, Jonsson A, Jackson AU, Wang N, van Leewen N, Palmer ND, Kobes S, Deelen J, Boquete-Vilarino L, Paananen J, Stančáková A, Boomsma DI, de Geus EJC, Eekhoff EMW, Fritsche A, Kramer M, Nijpels G, Simonis-Bik A, van Haeften TW, Mahajan A, Boehnke M, Bergman RN, Tuomilehto J, Collins FS, Mohlke KL, Banasik K, Groves CJ, McCarthy MI, Pearson ER, Natali A, Mari A, Buchanan TA, Taylor KD, Xiang AH, Gjesing AP, Grarup N, Eiberg H, Pedersen O, Chen YD, Laakso M, Norris JM, Smith U, Wagenknecht LE, Baier L, Bowden DW, Hansen T, Walker M, Watanabe RM, 't Hart LM, Hanson RL, Frayling TM. A Genome-Wide Association Study of IVGTT-Based Measures of First-Phase Insulin Secretion Refines the Underlying Physiology of Type 2 Diabetes Variants. Diabetes 2017; 66:2296-2309. [PMID: 28490609 PMCID: PMC5521867 DOI: 10.2337/db16-1452] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 05/02/2017] [Indexed: 01/19/2023]
Abstract
Understanding the physiological mechanisms by which common variants predispose to type 2 diabetes requires large studies with detailed measures of insulin secretion and sensitivity. Here we performed the largest genome-wide association study of first-phase insulin secretion, as measured by intravenous glucose tolerance tests, using up to 5,567 individuals without diabetes from 10 studies. We aimed to refine the mechanisms of 178 known associations between common variants and glycemic traits and identify new loci. Thirty type 2 diabetes or fasting glucose-raising alleles were associated with a measure of first-phase insulin secretion at P < 0.05 and provided new evidence, or the strongest evidence yet, that insulin secretion, intrinsic to the islet cells, is a key mechanism underlying the associations at the HNF1A, IGF2BP2, KCNQ1, HNF1B, VPS13C/C2CD4A, FAF1, PTPRD, AP3S2, KCNK16, MAEA, LPP, WFS1, and TMPRSS6 loci. The fasting glucose-raising allele near PDX1, a known key insulin transcription factor, was strongly associated with lower first-phase insulin secretion but has no evidence for an effect on type 2 diabetes risk. The diabetes risk allele at TCF7L2 was associated with a stronger effect on peak insulin response than on C-peptide-based insulin secretion rate, suggesting a possible additional role in hepatic insulin clearance or insulin processing. In summary, our study provides further insight into the mechanisms by which common genetic variation influences type 2 diabetes risk and glycemic traits.
Collapse
Affiliation(s)
- Andrew R Wood
- Genetics of Complex Traits, Institute of Biomedical and Clinical Science, University of Exeter Medical School, Royal Devon and Exeter Hospital, Exeter, U.K
| | - Anna Jonsson
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne U Jackson
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI
| | - Nan Wang
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
- Diabetes & Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Nienke van Leewen
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Nicholette D Palmer
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC
| | - Sayuko Kobes
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ
| | - Joris Deelen
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Lorena Boquete-Vilarino
- Genetics of Complex Traits, Institute of Biomedical and Clinical Science, University of Exeter Medical School, Royal Devon and Exeter Hospital, Exeter, U.K
| | - Jussi Paananen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Alena Stančáková
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Dorret I Boomsma
- Department of Biological Psychology, VU University, Amsterdam, the Netherlands
| | - Eco J C de Geus
- Department of Biological Psychology, VU University, Amsterdam, the Netherlands
| | - Elisabeth M W Eekhoff
- Diabetes Center, Internal Medicine Unit, VU University Medical Center, Amsterdam, the Netherlands
| | - Andreas Fritsche
- Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Department of Internal Medicine IV, University of Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich, University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD e.V.), Tübingen, Germany
| | - Mark Kramer
- Diabetes Center, Internal Medicine Unit, VU University Medical Center, Amsterdam, the Netherlands
| | - Giel Nijpels
- EMGO+ Institute for Health and Care Research, VU University Medical Center, Department of General Practice, Amsterdam, the Netherlands
| | - Annemarie Simonis-Bik
- Diabetes Center, Internal Medicine Unit, VU University Medical Center, Amsterdam, the Netherlands
| | - Timon W van Haeften
- Department of Internal Medicine, Utrecht University Medical Center, Utrecht, the Netherlands
| | - Anubha Mahajan
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, U.K
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI
| | - Richard N Bergman
- Diabetes & Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Jaakko Tuomilehto
- Department of Health, National Institute for Health and Welfare, Helsinki, Finland
- Dasman Diabetes Institute, Dasman, Kuwait
- Department of Clinical Neurosciences and Preventive Medicine, Danube University Krems, Krems, Austria
- Saudi Diabetes Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Francis S Collins
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, NC
| | - Karina Banasik
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, U.K
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Christopher J Groves
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, U.K
| | - Mark I McCarthy
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, U.K
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, U.K
- Oxford Biomedical Research Centre, National Institute for Health Research, Churchill Hospital, Oxford, U.K
| | | | - Andrea Natali
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Andrea Mari
- Institute of Neuroscience, National Research Council, Padova, Italy
| | - Thomas A Buchanan
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
- Diabetes & Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA
- Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Kent D Taylor
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA
- Department of Pediatrics, University of California, Los Angeles, Los Angeles, CA
| | - Anny H Xiang
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, CA
| | - Anette P Gjesing
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hans Eiberg
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yii-Derr Chen
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA
| | - Markku Laakso
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Jill M Norris
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Denver, Aurora, CO
| | - Ulf Smith
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Leslie Baier
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ
| | - Donald W Bowden
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mark Walker
- Institute of Cellular Medicine, Newcastle University, Newcastle, U.K.
| | - Richard M Watanabe
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
- Diabetes & Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA
- Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Leen M 't Hart
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
- Section of Molecular Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Epidemiology and Biostatistics, EMGO+ Institute for Health and Care Research, VU University Medical Center, Amsterdam, the Netherlands
| | - Robert L Hanson
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ
| | - Timothy M Frayling
- Genetics of Complex Traits, Institute of Biomedical and Clinical Science, University of Exeter Medical School, Royal Devon and Exeter Hospital, Exeter, U.K.
| |
Collapse
|
36
|
Sikhayeva N, Iskakova A, Saigi-Morgui N, Zholdybaeva E, Eap CB, Ramanculov E. Association between 28 single nucleotide polymorphisms and type 2 diabetes mellitus in the Kazakh population: a case-control study. BMC MEDICAL GENETICS 2017; 18:76. [PMID: 28738793 PMCID: PMC5525290 DOI: 10.1186/s12881-017-0443-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 07/13/2017] [Indexed: 02/06/2023]
Abstract
Background We evaluated the associations between single nucleotide polymorphisms and different clinical parameters related to type 2 diabetes mellitus (T2DM), obesity risk, and metabolic syndrome (MS) in a Kazakh cohort. Methods A total of 1336 subjects, including 408 T2DM patients and 928 control subjects, were recruited from an outpatient clinic and genotyped for 32 polymorphisms previously associated with T2DM and obesity-related phenotypes in other ethnic groups. For association studies, the chi-squared test or Fisher’s exact test for binomial variables were used. Logistic regression was conducted to explore associations between the studied SNPs and the risk of developing T2DM, obesity, and MS, after adjustments for age and sex. Results After excluding four SNPs due to Hardy-Weinberg disequilibrium, significant associations in age-matched cohorts were found betweenT2DM and the following SNPs: rs9939609 (FTO), rs13266634 (SLC30A8), rs7961581 (TSPAN8/LGR5), and rs1799883 (FABP2). In addition, examination of general unmatched T2DM and control cohorts revealed significant associations between T2DM and SNPsrs1799883 (FABP2) and rs9939609 (FTO). Furthermore, polymorphisms in the FTO gene were associated with increased obesity risk, whereas polymorphisms in the FTO and FABP2 genes were also associated with the risk of developing MS in general unmatched cohorts. Conclusion We confirmed associations between polymorphisms within the SLC30A8, TSPAN8/LGR5, FABP2, and FTO genes and susceptibility to T2DM in a Kazakh cohort, and revealed significant associations with anthropometric and metabolic traits. In particular, FTO and FABP2 gene polymorphisms were significantly associated with susceptibility to MS and obesity in this cohort. Electronic supplementary material The online version of this article (doi:10.1186/s12881-017-0443-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nurgul Sikhayeva
- National Center for Biotechnology, 13/5 Korgalzhyn str, Astana, 010000, Kazakhstan. .,L.N. Gumilyov Eurasian National University, Astana, Kazakhstan.
| | - Aisha Iskakova
- National Center for Biotechnology, 13/5 Korgalzhyn str, Astana, 010000, Kazakhstan
| | - Nuria Saigi-Morgui
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Centre for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, 1008, Prilly-Lausanne, Switzerland
| | - Elena Zholdybaeva
- National Center for Biotechnology, 13/5 Korgalzhyn str, Astana, 010000, Kazakhstan
| | - Chin-Bin Eap
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Centre for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, 1008, Prilly-Lausanne, Switzerland.,School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
| | - Erlan Ramanculov
- National Center for Biotechnology, 13/5 Korgalzhyn str, Astana, 010000, Kazakhstan.,L.N. Gumilyov Eurasian National University, Astana, Kazakhstan.,School of Science and Technology, Nazarbayev University, Astana, Kazakhstan
| |
Collapse
|
37
|
Wen X, Yang Y. Emerging roles of GLIS3 in neonatal diabetes, type 1 and type 2 diabetes. J Mol Endocrinol 2017; 58:R73-R85. [PMID: 27899417 DOI: 10.1530/jme-16-0232] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 11/25/2016] [Indexed: 12/26/2022]
Abstract
GLI-similar 3 (GLIS3), a member of the Krüppel-like zinc finger protein subfamily, is predominantly expressed in the pancreas, thyroid and kidney. Glis3 mRNA can be initially detected in mouse pancreas at embryonic day 11.5 and is largely restricted to β cells, pancreatic polypeptide-expressing cells, as well as ductal cells at later stage of pancreas development. Mutations in GLIS3 cause a neonatal diabetes syndrome, characterized by neonatal diabetes, congenital hypothyroidism and polycystic kidney. Importantly, genome-wide association studies showed that variations of GLIS3 are strongly associated with both type 1 diabetes (T1D) and type 2 diabetes (T2D) in multiple populations. GLIS3 cooperates with pancreatic and duodenal homeobox 1 (PDX1), v-maf musculoaponeurotic fibrosarcoma oncogene family, protein A (MAFA), as well as neurogenic differentiation 1 (NEUROD1) and potently controls insulin gene transcription. GLIS3 also plays a role in β cell survival and likely in insulin secretion. Any perturbation of these functions may underlie all three forms of diabetes. GLIS3, synergistically with hepatocyte nuclear factor 6 (HNF6) and forkhead box A2 (FOXA2), controls fetal islet differentiation via transactivating neurogenin 3 (NGN3) and impairment of this function leads to neonatal diabetes. In addition, GLIS3 is also required for the compensatory β cell proliferation and mass expansion in response to insulin resistance, which if disrupted may predispose to T2D. The increasing understanding of the mechanisms of GLIS3 in β cell development, survival and function maintenance will provide new insights into disease pathogenesis and potential therapeutic target identification to combat diabetes.
Collapse
Affiliation(s)
- Xianjie Wen
- Division of EndocrinologyDepartment of Medicine, MetroHealth Medical Center, Case Western Reserve University, Cleveland, Ohio, USA
- Department of AnesthesiologyThe First People's Hospital of Foshan & Foshan Hospital of Sun Yat-sen University, Guangdong, China
| | - Yisheng Yang
- Division of EndocrinologyDepartment of Medicine, MetroHealth Medical Center, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
38
|
Tarnowski M, Malinowski D, Safranow K, Dziedziejko V, Czerewaty M, Pawlik A. Hematopoietically expressed homeobox (HHEX) gene polymorphism (rs5015480) is associated with increased risk of gestational diabetes mellitus. Clin Genet 2016; 91:843-848. [PMID: 27684496 DOI: 10.1111/cge.12875] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 09/21/2016] [Accepted: 09/25/2016] [Indexed: 01/01/2023]
Abstract
Gestational diabetes mellitus (GDM) is a metabolic disorder that occurs during pregnancy. HHEX and PROX1 are genetic loci associated with diabetes mellitus type 2. HHEX and PROX1 play significant roles in carbohydrate intolerance and diabetes because these transcription factors may be involved in the regulation of insulin secretion and in glucose and lipid metabolism. The aim of this study was to examine the association between HHEX (rs5015480) and PROX1 (rs340874) gene polymorphisms and GDM. This study included 204 pregnant women with GDM and 207 pregnant women with the normal glucose tolerance (NGT). The diagnosis of GDM was based on a 75-g oral glucose tolerance test at 24-28 weeks' gestation. There was a statistically significant prevalence of the HHEX rs5015480 CC genotype and C allele among women with GDM (C vs T allele, p = 0.021, odds ratio OR = 1.40, 95% CI: 1.05-1.87). Statistically significant higher increase of body mass and BMI during pregnancy was found in women with the HHEX rs5015480 CC genotype. The results of our study suggest an association between the HHEX gene rs5015480 polymorphism and risk of GDM. The HHEX gene rs5015480 C allele may be a risk allele of GDM that is associated with increased BMI during pregnancy.
Collapse
Affiliation(s)
- M Tarnowski
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - D Malinowski
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - K Safranow
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Szczecin, Poland
| | - V Dziedziejko
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Szczecin, Poland
| | - M Czerewaty
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - A Pawlik
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
39
|
Ye D, Cai S, Jiang X, Ding Y, Chen K, Fan C, Jin M. Associations of polymorphisms in circadian genes with abdominal obesity in Chinese adult population. Obes Res Clin Pract 2016; 10 Suppl 1:S133-S141. [DOI: 10.1016/j.orcp.2016.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 01/07/2016] [Accepted: 02/02/2016] [Indexed: 11/25/2022]
|
40
|
Kang HS, Takeda Y, Jeon K, Jetten AM. The Spatiotemporal Pattern of Glis3 Expression Indicates a Regulatory Function in Bipotent and Endocrine Progenitors during Early Pancreatic Development and in Beta, PP and Ductal Cells. PLoS One 2016; 11:e0157138. [PMID: 27270601 PMCID: PMC4896454 DOI: 10.1371/journal.pone.0157138] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/25/2016] [Indexed: 11/21/2022] Open
Abstract
The transcription factor Glis-similar 3 (Glis3) has been implicated in the development of neonatal, type 1 and type 2 diabetes. In this study, we examined the spatiotemporal expression of Glis3 protein during embryonic and neonatal pancreas development as well as its function in PP cells. To obtain greater insights into the functions of Glis3 in pancreas development, we examined the spatiotemporal expression of Glis3 protein in a knockin mouse strain expressing a Glis3-EGFP fusion protein. Immunohistochemistry showed that Glis3-EGFP was not detectable during early pancreatic development (E11.5 and E12.5) and at E13.5 and 15.5 was not expressed in Ptf1a+ cells in the tip domains indicating that Glis3 is not expressed in multipotent pancreatic progenitors. Glis3 was first detectable at E13.5 in the nucleus of bipotent progenitors in the trunk domains, where it co-localized with Sox9, Hnf6, and Pdx1. It remained expressed in preductal and Ngn3+ endocrine progenitors and at later stages becomes restricted to the nucleus of pancreatic beta and PP cells as well as ductal cells. Glis3-deficiency greatly reduced, whereas exogenous Glis3, induced Ppy expression, as reported for insulin. Collectively, our study demonstrates that Glis3 protein exhibits a temporal and cell type-specific pattern of expression during embryonic and neonatal pancreas development that is consistent with a regulatory role for Glis3 in promoting endocrine progenitor generation, regulating insulin and Ppy expression in beta and PP cells, respectively, and duct morphogenesis.
Collapse
Affiliation(s)
- Hong Soon Kang
- Cell Biology Group, Immunity, Inflammation, and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, 27709, NC, United States of America
| | - Yukimasa Takeda
- Cell Biology Group, Immunity, Inflammation, and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, 27709, NC, United States of America
| | - Kilsoo Jeon
- Cell Biology Group, Immunity, Inflammation, and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, 27709, NC, United States of America
| | - Anton M. Jetten
- Cell Biology Group, Immunity, Inflammation, and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, 27709, NC, United States of America
- * E-mail:
| |
Collapse
|
41
|
Yang Y, Chan L. Monogenic Diabetes: What It Teaches Us on the Common Forms of Type 1 and Type 2 Diabetes. Endocr Rev 2016; 37:190-222. [PMID: 27035557 PMCID: PMC4890265 DOI: 10.1210/er.2015-1116] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
To date, more than 30 genes have been linked to monogenic diabetes. Candidate gene and genome-wide association studies have identified > 50 susceptibility loci for common type 1 diabetes (T1D) and approximately 100 susceptibility loci for type 2 diabetes (T2D). About 1-5% of all cases of diabetes result from single-gene mutations and are called monogenic diabetes. Here, we review the pathophysiological basis of the role of monogenic diabetes genes that have also been found to be associated with common T1D and/or T2D. Variants of approximately one-third of monogenic diabetes genes are associated with T2D, but not T1D. Two of the T2D-associated monogenic diabetes genes-potassium inward-rectifying channel, subfamily J, member 11 (KCNJ11), which controls glucose-stimulated insulin secretion in the β-cell; and peroxisome proliferator-activated receptor γ (PPARG), which impacts multiple tissue targets in relation to inflammation and insulin sensitivity-have been developed as major antidiabetic drug targets. Another monogenic diabetes gene, the preproinsulin gene (INS), is unique in that INS mutations can cause hyperinsulinemia, hyperproinsulinemia, neonatal diabetes mellitus, one type of maturity-onset diabetes of the young (MODY10), and autoantibody-negative T1D. Dominant heterozygous INS mutations are the second most common cause of permanent neonatal diabetes. Moreover, INS gene variants are strongly associated with common T1D (type 1a), but inconsistently with T2D. Variants of the monogenic diabetes gene Gli-similar 3 (GLIS3) are associated with both T1D and T2D. GLIS3 is a key transcription factor in insulin production and β-cell differentiation during embryonic development, which perturbation forms the basis of monogenic diabetes as well as its association with T1D. GLIS3 is also required for compensatory β-cell proliferation in adults; impairment of this function predisposes to T2D. Thus, monogenic forms of diabetes are invaluable "human models" that have contributed to our understanding of the pathophysiological basis of common T1D and T2D.
Collapse
Affiliation(s)
- Yisheng Yang
- Division of Endocrinology (Y.Y.), Department of Medicine, MetroHealth Medical Center, Case Western Reserve University, Cleveland, Ohio 44109; and Diabetes and Endocrinology Research Center (L.C.), Division of Diabetes, Endocrinology and Metabolism, Departments of Medicine, Molecular and Cellular Biology, Biochemistry and Molecular Biology, and Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | - Lawrence Chan
- Division of Endocrinology (Y.Y.), Department of Medicine, MetroHealth Medical Center, Case Western Reserve University, Cleveland, Ohio 44109; and Diabetes and Endocrinology Research Center (L.C.), Division of Diabetes, Endocrinology and Metabolism, Departments of Medicine, Molecular and Cellular Biology, Biochemistry and Molecular Biology, and Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
42
|
Paul L, Walker EM, Drosos Y, Cyphert HA, Neale G, Stein R, South J, Grosveld G, Herrera PL, Sosa-Pineda B. Lack of Prox1 Downregulation Disrupts the Expansion and Maturation of Postnatal Murine β-Cells. Diabetes 2016; 65:687-98. [PMID: 26631740 PMCID: PMC4764148 DOI: 10.2337/db15-0713] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 11/20/2015] [Indexed: 12/18/2022]
Abstract
Transcription factor expression fluctuates during β-cell ontogeny, and disruptions in this pattern can affect the development or function of those cells. Here we uncovered that murine endocrine pancreatic progenitors express high levels of the homeodomain transcription factor Prox1, whereas both immature and mature β-cells scarcely express this protein. We also investigated if sustained Prox1 expression is incompatible with β-cell development or maintenance using transgenic mouse approaches. We discovered that Prox1 upregulation in mature β-cells has no functional consequences; in contrast, Prox1 overexpression in immature β-cells promotes acute fasting hyperglycemia. Using a combination of immunostaining and quantitative and comparative gene expression analyses, we determined that Prox1 upregulation reduces proliferation, impairs maturation, and enables apoptosis in postnatal β-cells. Also, we uncovered substantial deficiency in β-cells that overexpress Prox1 of the key regulator of β-cell maturation MafA, several MafA downstream targets required for glucose-stimulated insulin secretion, and genes encoding important components of FGF signaling. Moreover, knocking down PROX1 in human EndoC-βH1 β-cells caused increased expression of many of these same gene products. These and other results in our study indicate that reducing the expression of Prox1 is beneficial for the expansion and maturation of postnatal β-cells.
Collapse
Affiliation(s)
- Leena Paul
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN
| | - Emily M Walker
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical School, Nashville, TN
| | - Yiannis Drosos
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN
| | - Holly A Cyphert
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical School, Nashville, TN
| | - Geoffrey Neale
- Hartwell Center for Bioinformatics & Biotechnology, St. Jude Children's Research Hospital, Memphis, TN
| | - Roland Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical School, Nashville, TN
| | - Jack South
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN
| | - Gerard Grosveld
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN
| | - Pedro L Herrera
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Beatriz Sosa-Pineda
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
43
|
Powell DR, Gay JP, Smith M, Wilganowski N, Harris A, Holland A, Reyes M, Kirkham L, Kirkpatrick LL, Zambrowicz B, Hansen G, Platt KA, van Sligtenhorst I, Ding ZM, Desai U. Fatty acid desaturase 1 knockout mice are lean with improved glycemic control and decreased development of atheromatous plaque. Diabetes Metab Syndr Obes 2016; 9:185-99. [PMID: 27382320 PMCID: PMC4922822 DOI: 10.2147/dmso.s106653] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Delta-5 desaturase (D5D) and delta-6 desaturase (D6D), encoded by fatty acid desaturase 1 (FADS1) and FADS2 genes, respectively, are enzymes in the synthetic pathways for ω3, ω6, and ω9 polyunsaturated fatty acids (PUFAs). Although PUFAs appear to be involved in mammalian metabolic pathways, the physiologic effect of isolated D5D deficiency on these pathways is unclear. After generating >4,650 knockouts (KOs) of independent mouse genes and analyzing them in our high-throughput phenotypic screen, we found that Fads1 KO mice were among the leanest of 3,651 chow-fed KO lines analyzed for body composition and were among the most glucose tolerant of 2,489 high-fat-diet-fed KO lines analyzed by oral glucose tolerance test. In confirmatory studies, chow- or high-fat-diet-fed Fads1 KO mice were leaner than wild-type (WT) littermates; when data from multiple cohorts of adult mice were combined, body fat was 38% and 31% lower in Fads1 male and female KO mice, respectively. Fads1 KO mice also had lower glucose and insulin excursions during oral glucose tolerance tests along with lower fasting glucose, insulin, triglyceride, and total cholesterol levels. In additional studies using a vascular injury model, Fads1 KO mice had significantly decreased femoral artery intima/media ratios consistent with a decreased inflammatory response in their arterial wall. Based on this result, we bred Fads1 KO and WT mice onto an ApoE KO background and fed them a Western diet for 14 weeks; in this atherogenic environment, aortic trees of Fads1 KO mice had 40% less atheromatous plaque compared to WT littermates. Importantly, PUFA levels measured in brain and liver phospholipid fractions of Fads1 KO mice were consistent with decreased D5D activity and normal D6D activity. The beneficial metabolic phenotype demonstrated in Fads1 KO mice suggests that selective D5D inhibitors may be useful in the treatment of human obesity, diabetes, and atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- David R Powell
- Metabolism Research, Lexicon Pharmaceuticals, Inc., The Woodlands, TX, USA
- Correspondence: David R Powell, Lexicon Pharmaceuticals, Inc., 8800 Technology Forest Place, The Woodlands, TX 77381, USA, Tel +1 281 863 3060, Fax +1 281 863 8115, Email
| | - Jason P Gay
- Metabolism Research, Lexicon Pharmaceuticals, Inc., The Woodlands, TX, USA
| | - Melinda Smith
- Metabolism Research, Lexicon Pharmaceuticals, Inc., The Woodlands, TX, USA
| | | | - Angela Harris
- Metabolism Research, Lexicon Pharmaceuticals, Inc., The Woodlands, TX, USA
| | - Autumn Holland
- Metabolism Research, Lexicon Pharmaceuticals, Inc., The Woodlands, TX, USA
| | - Maricela Reyes
- Metabolism Research, Lexicon Pharmaceuticals, Inc., The Woodlands, TX, USA
| | - Laura Kirkham
- Metabolism Research, Lexicon Pharmaceuticals, Inc., The Woodlands, TX, USA
| | | | - Brian Zambrowicz
- Metabolism Research, Lexicon Pharmaceuticals, Inc., The Woodlands, TX, USA
| | - Gwenn Hansen
- Metabolism Research, Lexicon Pharmaceuticals, Inc., The Woodlands, TX, USA
| | - Kenneth A Platt
- Metabolism Research, Lexicon Pharmaceuticals, Inc., The Woodlands, TX, USA
| | | | - Zhi-Ming Ding
- Metabolism Research, Lexicon Pharmaceuticals, Inc., The Woodlands, TX, USA
| | - Urvi Desai
- Metabolism Research, Lexicon Pharmaceuticals, Inc., The Woodlands, TX, USA
| |
Collapse
|
44
|
Villegas R, Delahanty R, Williams S, Li H, O'Brian R, Shi J, Cai Q, Xiang YB, Shu XO. Genetic Variation and Insulin Resistance in Middle-Aged Chinese Men. Ann Hum Genet 2015; 79:357-365. [PMID: 26252243 PMCID: PMC4949159 DOI: 10.1111/ahg.12124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 04/09/2015] [Indexed: 12/27/2022]
Abstract
We investigated the effect of variants in the first three genes in the insulin signaling pathway and genes identified from genome wide association studies (GWAS) of T2D quantitative traits with IR (fasting insulin and the homeostasis model assessment of IR, HOMA-IR) and evaluated gene-environment interactions with IR traits among 1879 nondiabetic middle-aged men from a population-based study conducted in Shanghai, China. One candidate gene, IGF1, was associated with fasting insulin and HOMA-IR. We observed four BMI-gene interactions (P < 0.05) with HOMA-IR (INRS rs7254060, INRS rs7254358, GLU4 rs2113050, and GLU4 rs7713127) and seven BMI-gene interactions with fasting insulin (INRS rs7254060, INRS rs7254358, INRS rs10417205, INRS rs1799817, GLU4 rs12054720 GLU4 rs2113050, and GLU4 rs7713127). There were four WHR-gene interactions with HOMA-IR (INRS rs10417205, INRS rs12971499, INRS rs7254060, and INRS rs7254358), five WHR-gene interactions with fasting insulin (INRS rs10417205, INRS rs7254060, INRS rs7254358, GLU4 rs2113050, and GLU4 rs7713127), eight physical activity-gene interactions with HOMA-IR (INRS rs10411676, INRS rs11671297, INRS rs2229431, INRS rs12461909, INRS rs6510950, INRS rs10420382, IRS2 rs913949, and IRS2 rs2241745) and five physical activity-gene interactions with fasting insulin (INRS rs2229431, INRS rs12461909, INRS rs10420382, IRS2 rs913949, and IRS2 rs2241745). Our results suggest that BMI, WHR and physical activity may modify IR-associated variants.
Collapse
Affiliation(s)
- Raquel Villegas
- Vanderbilt Epidemiology Center, Department of Medicine, Vanderbilt University Medical Center, TN, USA
| | - Ryan Delahanty
- Vanderbilt Epidemiology Center, Department of Medicine, Vanderbilt University Medical Center, TN, USA
| | - Scott Williams
- Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Honglan Li
- Department of Epidemiology, Shanghai Cancer Institute, Shanghai, P.R. China
| | - Richard O'Brian
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jiajun Shi
- Vanderbilt Epidemiology Center, Department of Medicine, Vanderbilt University Medical Center, TN, USA
| | - Qiuyin Cai
- Vanderbilt Epidemiology Center, Department of Medicine, Vanderbilt University Medical Center, TN, USA
| | - Yong-Bing Xiang
- Department of Epidemiology, Shanghai Cancer Institute, Shanghai, P.R. China
| | - Xiao Ou Shu
- Vanderbilt Epidemiology Center, Department of Medicine, Vanderbilt University Medical Center, TN, USA
| |
Collapse
|
45
|
HECT E3 Ubiquitin Ligase Itch Functions as a Novel Negative Regulator of Gli-Similar 3 (Glis3) Transcriptional Activity. PLoS One 2015; 10:e0131303. [PMID: 26147758 PMCID: PMC4493090 DOI: 10.1371/journal.pone.0131303] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 06/01/2015] [Indexed: 12/30/2022] Open
Abstract
The transcription factor Gli-similar 3 (Glis3) plays a critical role in the generation of pancreatic ß cells and the regulation insulin gene transcription and has been implicated in the development of several pathologies, including type 1 and 2 diabetes and polycystic kidney disease. However, little is known about the proteins and posttranslational modifications that regulate or mediate Glis3 transcriptional activity. In this study, we identify by mass-spectrometry and yeast 2-hybrid analyses several proteins that interact with the N-terminal region of Glis3. These include the WW-domain-containing HECT E3 ubiquitin ligases, Itch, Smurf2, and Nedd4. The interaction between Glis3 and the HECT E3 ubiquitin ligases was verified by co-immunoprecipitation assays and mutation analysis. All three proteins interact through their WW-domains with a PPxY motif located in the Glis3 N-terminus. However, only Itch significantly contributed to Glis3 polyubiquitination and reduced Glis3 stability by enhancing its proteasomal degradation. Itch-mediated degradation of Glis3 required the PPxY motif-dependent interaction between Glis3 and the WW-domains of Itch as well as the presence of the Glis3 zinc finger domains. Transcription analyses demonstrated that Itch dramatically inhibited Glis3-mediated transactivation and endogenous Ins2 expression by increasing Glis3 protein turnover. Taken together, our study identifies Itch as a critical negative regulator of Glis3-mediated transcriptional activity. This regulation provides a novel mechanism to modulate Glis3-driven gene expression and suggests that it may play a role in a number of physiological processes controlled by Glis3, such as insulin transcription, as well as in Glis3-associated diseases.
Collapse
|
46
|
Wang J, Yan G, Zhang J, Gao K, Zhang M, Li L, Wang Y, Wang Q, Zhai Y, You H, Ren Y, Wang B, Hu D. Association of LRP5, TCF7L2, and GCG variants and type 2 diabetes mellitus as well as fasting plasma glucose and lipid metabolism indexes. Hum Immunol 2015; 76:339-43. [PMID: 25863010 DOI: 10.1016/j.humimm.2015.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 01/19/2015] [Accepted: 03/11/2015] [Indexed: 12/27/2022]
Abstract
Recent data puts WNT signaling pathway in a pivotal role in regulating pancreas development as well as islet function, insulin production and secretion. The key effectors in the WNT signaling pathway are low-density lipoprotein receptor-related protein 5 (LRP5), transcription factor 7-like 2 (TCF7L2), and downstream-regulated glucagon (GCG). Our previous studies suggest that the WNT signaling pathway plays a significant role in risk of type 2 diabetes mellitus (T2DM) in Chinese population. The main purpose of the present study was to investigate the associations of single nucleotide polymorphisms (SNPs) in LRP5, TCF7L2 and glucagon (GCG) and quantitative traits in a healthy population. We used tag SNP to screen candidate SNPs for LRP5 and GCG; for TCF7L2, used the confirmed SNP rs11196218. A total of 1842 patients with T2DM and 7777 healthy controls underwent genotyping for the SNPs. We found a significant association of rs3758644 in LRP5 and fasting plasma glucose (p=0.006), and rs11196218 in TCF7L2 and triglycerides level (p=0.004). Among the SNPs in LRP5, TCF7L2, and GCG analyzed, only rs3758644 of LRP5 and rs11196218 of TCF7L2 were significantly associated with fasting plasma glucose and triglycerides index, respectively, in a healthy population.
Collapse
Affiliation(s)
- Jinjin Wang
- Department of Traditional Chinese Medicine Prevention, Preventive Medicine Research Evaluation Center, Henan University of Traditional Chinese Medicine, Zhengzhou 450008, People's Republic of China.
| | - Guoli Yan
- Department of Traditional Chinese Medicine Prevention, Preventive Medicine Research Evaluation Center, Henan University of Traditional Chinese Medicine, Zhengzhou 450008, People's Republic of China.
| | - Jianfeng Zhang
- Henan Armed Police Corps Hospital, Zhengzhou 450000, People's Republic of China.
| | - Kaiping Gao
- Shenzhen University School of Medicine, Shenzhen 518060, People's Republic of China.
| | - Ming Zhang
- Shenzhen University School of Medicine, Shenzhen 518060, People's Republic of China.
| | - Linlin Li
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, People's Republic of China.
| | - Yan Wang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, People's Republic of China.
| | - Qian Wang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, People's Republic of China.
| | - Yujia Zhai
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, People's Republic of China.
| | - Haifei You
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, People's Republic of China.
| | - Yongcheng Ren
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, People's Republic of China.
| | - Bingyuan Wang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, People's Republic of China.
| | - Dongsheng Hu
- Shenzhen University School of Medicine, Shenzhen 518060, People's Republic of China.
| |
Collapse
|
47
|
Song M, Zhao F, Ran L, Dolikun M, Wu L, Ge S, Dong H, Gao Q, Zhai Y, Zhang L, Yan Y, Liu F, Yang X, Guo X, Wang Y, Wang W. The Uyghur population and genetic susceptibility to type 2 diabetes: potential role for variants in CDKAL1, JAZF1, and IGF1 genes. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2015; 19:230-7. [PMID: 25785549 DOI: 10.1089/omi.2014.0162] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Substantial evidence suggests that type 2 diabetes mellitus (T2DM) is a multi-factorial disease with a strong genetic component. A list of genetic susceptibility loci in populations of European and Asian ancestry has been established in the literature. Little is known on the inter-ethnic contribution of such established functional polymorphic variants. We performed a case-control study to explore the genetic susceptibility of 16 selected T2DM-related SNPs in a cohort of 102 Uyghur objects (51 cases and 51 controls). Three of the 16 SNPs showed significant association with T2DM in the Uyghur population. There were significant differences between the T2DM and control groups in frequencies of the risk allelic distributions of rs7754840 (CDKAL1) (p=0.014), rs864745 (JAZF1) (p=0.032), and rs35767 (IGF1) (p=0.044). Carriers of rs7754840-C, rs35767-A, and rs864745-C risk alleles had a 2.32-fold [OR (95% CI): 1.19-4.54], 2.06-fold [OR (95% CI): 1.02-4.17], 0.48-fold [OR (95% CI): 0.24-0.94] increased risk for T2DM, respectively. The cumulative risk allelic scores of these 16 SNPs differed significantly between the T2DM patients and the controls [17.1±8.1 vs. 15.4±7.3; OR (95%CI): 1.27(1.07-1.50), p=0.007]. This is the first study to evaluate genomic variation at 16 SNPs in respective T2DM candidate genes for the Uyghur population compared with other ethnic groups. The SNP rs7754840 in CDKAL1, rs864745 in JAZF1, and rs35767 in IGF1 might serve as potential susceptibility loci for T2DM in Uyghurs. We suggest a broader capture and study of the world populations, including who that are hitherto understudied, are essential for a comprehensive understanding of the genetic/genomic basis of T2DM.
Collapse
Affiliation(s)
- Manshu Song
- 1 School of Public Health, Capital Medical University , Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Moons T, De Hert M, Kenis G, Viechtbauer W, van Os J, Gohlke H, Claes S, van Winkel R. No association between genetic or epigenetic variation in insulin growth factors and antipsychotic-induced metabolic disturbances in a cross-sectional sample. Pharmacogenomics 2015; 15:951-62. [PMID: 24956249 DOI: 10.2217/pgs.14.46] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
AIM Second-generation antipsychotics (SGA) are known to induce metabolic disturbances. Genetic pathways, such as the IGF pathway could be associated with increased metabolic syndrome (MetS). Additionally, IGF2 methylation varies as a function of environmental influences and is associated with schizophrenia and MetS. The current study aims to evaluate whether genetic and epigenetic variation in genes of the IGF pathway are associated with metabolic disturbances in patients under treatment with SGAs. METHODS Cross-sectional metabolic data from 438 patients with schizophrenia spectrum disorder was analyzed. Using the Sequenom MassARRAY iPLEX(TM) platform, 27 SNPs of the IGF1 and IGF2 genes and the IGF receptors IGF1R and IGF2R were genotyped. Methylation status of seven IGF2 CpG dinucleotides was evaluated using a Sequenom MALDI-TOF spectrometer. RESULTS & CONCLUSION There was a significant association between IGF2 methylation and genotype, but no significant association between genetic or epigenetic variability and metabolic parameters in the present study.
Collapse
Affiliation(s)
- Tim Moons
- GRASP Research Unit, University Psychiatric Centre Catholic University Leuven, Herestraat 49, 3000 Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Yan J, Hu C, Jiang F, Zhang R, Wang J, Tang S, Peng D, Chen M, Bao Y, Jia W. Genetic variants of PLA2G6 are associated with Type 2 diabetes mellitus and triglyceride levels in a Chinese population. Diabet Med 2015; 32:280-6. [PMID: 25207958 DOI: 10.1111/dme.12587] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 07/15/2014] [Accepted: 09/01/2014] [Indexed: 01/24/2023]
Abstract
AIM To test the association of PLA2G6 variants with Type 2 diabetes and clinical characteristics in large Chinese population-based samples. METHODS A total of 6822 people were recruited. In the first stage, 15 single nucleotide polymorphisms within the PLA2G6 region were selected and genotyped in 3700 Chinese Han people. In the second stage, the single nucleotide polymorphisms that showed a significant association were genotyped in an additional 3122 samples for replication. Genotype-phenotype association studies and meta-analyses were performed after combining data from the two stages. RESULTS In the first stage, we detected rs132984 and rs2284060 as significantly associated with Type 2 diabetes with odds ratios of 1.247 (95% CI 1.074-1.449, P = 0.004, empirical P = 0.047) and 1.173 (95% CI 1.059-1.299, P = 0.002, empirical P = 0.029), respectively. In the second stage, a similar effect of rs132984 on Type 2 diabetes was observed (odds ratio 1.280, 95% CI 1.094-1.497, P = 0.002). The meta-analysis showed a significant effect of the two single nucleotide polymorphisms on Type 2 diabetes (odds ratio 1.254, 95% CI 1.104-1.451, P = 4.85 × 10⁻⁵ for rs132984; odds ratio 1.120, 95% CI 1.046-1.195, P = 0.003 for rs2284060). Moreover, genotype-phenotype association analysis showed that rs132984 was associated with triglyceride levels (P = 0.022, empirical P = 0.044) and area under the curve for glucose (P = 0.015, empirical P = 0.030). CONCLUSIONS Our data imply that common single nucleotide polymorphisms within the PLA2G6 region are associated with Type 2 diabetes and triglyceride levels in the Chinese population.
Collapse
Affiliation(s)
- J Yan
- Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Centre for Metabolic Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Cho YM. Incretin physiology and pathophysiology from an Asian perspective. J Diabetes Investig 2014; 6:495-507. [PMID: 26417406 PMCID: PMC4578486 DOI: 10.1111/jdi.12305] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 10/21/2014] [Indexed: 12/25/2022] Open
Abstract
Incretin hormones, such as glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1, are secreted on oral nutrient ingestion and regulate postprandial glucose homeostasis by conveying the signal of intestinal glucose flux. In East Asians, the secretion of glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1 is not reduced in type 2 diabetes relative to normal glucose tolerance. Although the incretin effect is blunted in European patients with type 2 diabetes, a few East Asian studies showed no difference in the incretin effect between type 2 diabetes and normal glucose tolerance. Interestingly, the glucose-lowering efficacy of dipeptidyl peptidase-4 inhibitors or glucagon-like peptide-1 receptor agonists was reported to be greater in Asians than in non-Asians. The difference in the treatment responses could be ascribed to a different pathophysiology of type 2 diabetes (lower insulin secretory function and less insulin resistance), lower body mass index, different genetic makeups, preserved incretin effect and different food compositions in East Asians compared with other ethnic groups. Based on the currently available data, incretin-based therapies appear to be safe and well tolerated in East Asians. Nevertheless, continuous pharmacovigilance is required. The characteristics of incretin biology and treatment responses to incretin-based therapies should be considered in developing ethnicity-specific treatment guidelines and making patient-centered decisions for patients with type 2 diabetes.
Collapse
Affiliation(s)
- Young Min Cho
- Department of Internal Medicine, Seoul National University College of Medicine Seoul, Korea
| |
Collapse
|