1
|
Hoytema van Konijnenburg DP, Nigrovic PA, Zanoni I. Regional specialization within the mammalian respiratory immune system. Trends Immunol 2024:S1471-4906(24)00219-9. [PMID: 39438172 DOI: 10.1016/j.it.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024]
Abstract
The respiratory tract is exposed to infection from inhaled pathogens, including viruses, bacteria, and fungi. So far, a comprehensive assessment that integrates common and distinct aspects of the immune response along different areas of the respiratory tract has been lacking. Here, we discuss key recent findings regarding anatomical, functional, and microbial factors driving regional immune adaptation in the mammalian respiratory system, how they differ between mice and humans, and the similarities and differences with the gastrointestinal tract. We demonstrate that, under evolutionary pressure, mammals evolved spatially organized immune defenses that vary between the upper and lower respiratory tract. Overall, we propose that the functional specialization of the immune response along the respiratory tract has fundamental implications for the management of infectious or inflammatory diseases.
Collapse
Affiliation(s)
| | - Peter A Nigrovic
- Division of Immunology, Boston Children's Hospital, and Harvard Medical School, Boston, MA, USA; Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA, USA
| | - Ivan Zanoni
- Division of Immunology, Boston Children's Hospital, and Harvard Medical School, Boston, MA, USA; Division of Gastroenterology, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
2
|
Gutierrez-Camacho JR, Avila-Carrasco L, Gamón-Madrid A, Muñoz-Torres JR, Murillo-Ruiz-Esparza A, Garza-Veloz I, Trejo-Ortiz PM, Mollinedo-Montaño FE, Araujo-Espino R, Rodriguez-Sanchez IP, Delgado-Enciso I, Martinez-Fierro ML. Evaluation of the Effect of Influenza Vaccine on the Development of Symptoms in SARS-CoV-2 Infection and Outcome in Patients Hospitalized due to COVID-19. Vaccines (Basel) 2024; 12:765. [PMID: 39066403 PMCID: PMC11281370 DOI: 10.3390/vaccines12070765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/01/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND COVID-19 is an infectious disease caused by SARS-CoV-2. It is unclear whether influenza vaccination reduces the severity of disease symptoms. Previous studies have suggested a beneficial effect of influenza vaccination on the severity of COVID-19. The aim of this study was to evaluate the possible protective effect of the influenza vaccine on the occurrence of SARS-CoV-2 infection symptoms and prognosis in patients hospitalized with COVID-19. METHODS This was a retrospective cohort study of patients who tested positive for SARS-CoV-2, identified by quantitative real-time polymerase chain reaction. Chi-square tests, Kaplan-Meier analysis, and multivariate analysis were performed to assess the association between influenza vaccination and the presence of symptoms in hospitalized patients with COVID-19 and their outcome. RESULTS In this study, 1712 patients received positive laboratory tests for SARS-CoV-2; influenza vaccination was a protective factor against the presence of characteristic COVID-19 symptoms such as polypnea, anosmia, dysgeusia, and fever (p < 0.001). Influenza-vaccinated patients had fewer days of hospitalization (p = 0.029). CONCLUSIONS The findings of this study support that influenza vaccination is associated with a decrease in the number of symptoms in patients hospitalized due to COVID-19, with fewer days of hospitalization, but not with the outcome of disease.
Collapse
Affiliation(s)
- Jose Roberto Gutierrez-Camacho
- Doctorado en Ciencias con Orientación en Medicina Molecular, Unidad Academica de Medicina Humana y Ciencias de la Salud, Universidad Autonoma de Zacatecas, Zacatecas 98160, Mexico; (J.R.G.-C.); (A.G.-M.); (J.R.M.-T.); (I.G.-V.); (P.M.T.-O.); (F.E.M.-M.); (R.A.-E.)
| | - Lorena Avila-Carrasco
- Doctorado en Ciencias con Orientación en Medicina Molecular, Unidad Academica de Medicina Humana y Ciencias de la Salud, Universidad Autonoma de Zacatecas, Zacatecas 98160, Mexico; (J.R.G.-C.); (A.G.-M.); (J.R.M.-T.); (I.G.-V.); (P.M.T.-O.); (F.E.M.-M.); (R.A.-E.)
| | - Araceli Gamón-Madrid
- Doctorado en Ciencias con Orientación en Medicina Molecular, Unidad Academica de Medicina Humana y Ciencias de la Salud, Universidad Autonoma de Zacatecas, Zacatecas 98160, Mexico; (J.R.G.-C.); (A.G.-M.); (J.R.M.-T.); (I.G.-V.); (P.M.T.-O.); (F.E.M.-M.); (R.A.-E.)
| | - Jose Ramon Muñoz-Torres
- Doctorado en Ciencias con Orientación en Medicina Molecular, Unidad Academica de Medicina Humana y Ciencias de la Salud, Universidad Autonoma de Zacatecas, Zacatecas 98160, Mexico; (J.R.G.-C.); (A.G.-M.); (J.R.M.-T.); (I.G.-V.); (P.M.T.-O.); (F.E.M.-M.); (R.A.-E.)
| | | | - Idalia Garza-Veloz
- Doctorado en Ciencias con Orientación en Medicina Molecular, Unidad Academica de Medicina Humana y Ciencias de la Salud, Universidad Autonoma de Zacatecas, Zacatecas 98160, Mexico; (J.R.G.-C.); (A.G.-M.); (J.R.M.-T.); (I.G.-V.); (P.M.T.-O.); (F.E.M.-M.); (R.A.-E.)
| | - Perla M. Trejo-Ortiz
- Doctorado en Ciencias con Orientación en Medicina Molecular, Unidad Academica de Medicina Humana y Ciencias de la Salud, Universidad Autonoma de Zacatecas, Zacatecas 98160, Mexico; (J.R.G.-C.); (A.G.-M.); (J.R.M.-T.); (I.G.-V.); (P.M.T.-O.); (F.E.M.-M.); (R.A.-E.)
| | - Fabiana E. Mollinedo-Montaño
- Doctorado en Ciencias con Orientación en Medicina Molecular, Unidad Academica de Medicina Humana y Ciencias de la Salud, Universidad Autonoma de Zacatecas, Zacatecas 98160, Mexico; (J.R.G.-C.); (A.G.-M.); (J.R.M.-T.); (I.G.-V.); (P.M.T.-O.); (F.E.M.-M.); (R.A.-E.)
| | - Roxana Araujo-Espino
- Doctorado en Ciencias con Orientación en Medicina Molecular, Unidad Academica de Medicina Humana y Ciencias de la Salud, Universidad Autonoma de Zacatecas, Zacatecas 98160, Mexico; (J.R.G.-C.); (A.G.-M.); (J.R.M.-T.); (I.G.-V.); (P.M.T.-O.); (F.E.M.-M.); (R.A.-E.)
| | - Iram P. Rodriguez-Sanchez
- Laboratorio de Fisiologia Molecular y Estructural, Facultad de Ciencias Biologicas, Universidad Autonoma de Nuevo Leon, San Nicolas de Los Garza 66450, Mexico;
| | - Ivan Delgado-Enciso
- Department of Molecular Medicine, School of Medicine, Cancerology State Institute, IMSS-Bienestar, University of Colima, Colima 28040, Mexico;
| | - Margarita L. Martinez-Fierro
- Doctorado en Ciencias con Orientación en Medicina Molecular, Unidad Academica de Medicina Humana y Ciencias de la Salud, Universidad Autonoma de Zacatecas, Zacatecas 98160, Mexico; (J.R.G.-C.); (A.G.-M.); (J.R.M.-T.); (I.G.-V.); (P.M.T.-O.); (F.E.M.-M.); (R.A.-E.)
| |
Collapse
|
3
|
Iijima N. The emerging role of effector functions exerted by tissue-resident memory T cells. OXFORD OPEN IMMUNOLOGY 2024; 5:iqae006. [PMID: 39193473 PMCID: PMC11213632 DOI: 10.1093/oxfimm/iqae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/14/2024] [Accepted: 06/04/2024] [Indexed: 08/29/2024] Open
Abstract
The magnitude of the effector functions of memory T cells determines the consequences of the protection against invading pathogens and tumor development or the pathogenesis of autoimmune and allergic diseases. Tissue-resident memory T cells (TRM cells) are unique T-cell populations that persist in tissues for long periods awaiting re-encounter with their cognate antigen. Although TRM cell reactivation primarily requires the presentation of cognate antigens, recent evidence has shown that, in addition to the conventional concept, TRM cells can be reactivated without the presentation of cognate antigens. Non-cognate TRM cell activation is triggered by cross-reactive antigens or by several combinations of cytokines, including interleukin (IL)-2, IL-7, IL-12, IL-15 and IL-18. The activation mode of TRM cells reinforces their cytotoxic activity and promotes the secretion of effector cytokines (such as interferon-gamma and tumor necrosis factor-alpha). This review highlights the key features of TRM cell maintenance and reactivation and discusses the importance of effector functions that TRM cells exert upon being presented with cognate and/or non-cognate antigens, as well as cytokines secreted by TRM and non-TRM cells within the tissue microenvironment.
Collapse
Affiliation(s)
- Norifumi Iijima
- Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBN), Ibaraki, Osaka, Japan
| |
Collapse
|
4
|
Reddy KD, Bizymi N, Schweikert A, Ananth S, Lim CX, Lodge KM, Joannes A, Ubags N, van der Does AM, Cloonan SM, Mailleux A, Mansouri N, Reynaert NL, Heijink IH, Cuevas-Ocaña S. ERS International Congress 2023: highlights from the Basic and Translational Sciences Assembly. ERJ Open Res 2024; 10:00875-2023. [PMID: 38686182 PMCID: PMC11057505 DOI: 10.1183/23120541.00875-2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 05/02/2024] Open
Abstract
Early career members of Assembly 3 (Basic and Translational Sciences) of the European Respiratory Society (ERS) summarise the key messages discussed during six selected sessions that took place at the ERS International Congress 2023 in Milan, Italy. Aligned with the theme of the congress, the first session covered is "Micro- and macro-environments and respiratory health", which is followed by a summary of the "Scientific year in review" session. Next, recent advances in experimental methodologies and new technologies are discussed from the "Tissue modelling and remodelling" session and a summary provided of the translational science session, "What did you always want to know about omics analyses for clinical practice?", which was organised as part of the ERS Translational Science initiative's aims. The "Lost in translation: new insights into cell-to-cell crosstalk in lung disease" session highlighted how next-generation sequencing can be integrated with laboratory methods, and a final summary of studies is presented from the "From the transcriptome landscape to innovative preclinical models in lung diseases" session, which links the transcriptome landscape with innovative preclinical models. The wide range of topics covered in the selected sessions and the high quality of the research discussed demonstrate the strength of the basic and translational science being presented at the international respiratory conference organised by the ERS.
Collapse
Affiliation(s)
- Karosham Diren Reddy
- Epigenetics of Chronic Lung Disease Group, Forschungszentrum Borstel Leibniz Lungenzentrum, Borstel, Germany
- Division of Pediatric Pneumology and Allergology, University Medical Center Schleswig-Holstein, Lübeck, Germany
- These authors contributed equally
| | - Nikoleta Bizymi
- Laboratory of Molecular and Cellular Pneumonology, School of Medicine, University of Crete, Heraklion, Greece
- These authors contributed equally
| | - Anja Schweikert
- Department of Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- These authors contributed equally
| | - Sachin Ananth
- London North West University Healthcare NHS Trust, London, UK
- These authors contributed equally
| | - Clarice X. Lim
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Lung Health, Clinic Penzing, Vienna, Austria
- These authors contributed equally
| | - Katharine M. Lodge
- National Heart and Lung Institute, Imperial College London, London, UK
- These authors contributed equally
| | - Audrey Joannes
- Université de Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) – UMR_S 1085, Rennes, France
| | - Niki Ubags
- Division of Pulmonary Medicine, Department of Medicine, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Anne M. van der Does
- PulmoScience Lab, Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Suzanne M. Cloonan
- School of Medicine, Trinity Biosciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Arnaud Mailleux
- Université Paris Cité, Inserm, Physiopathologie et épidémiologie des maladies respiratoires, Paris, France
| | - Nahal Mansouri
- Division of Pulmonary Medicine, Department of Medicine, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Niki L. Reynaert
- Department of Respiratory Medicine and School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Irene H. Heijink
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pulmonary Diseases, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
| | - Sara Cuevas-Ocaña
- Biodiscovery Institute, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
5
|
Marchesini Tovar G, Gallen C, Bergsbaken T. CD8+ Tissue-Resident Memory T Cells: Versatile Guardians of the Tissue. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:361-368. [PMID: 38227907 PMCID: PMC10794029 DOI: 10.4049/jimmunol.2300399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/07/2023] [Indexed: 01/18/2024]
Abstract
Tissue-resident memory T (Trm) cells are a subset of T cells maintained throughout life within nonlymphoid tissues without significant contribution from circulating memory T cells. CD8+ Trm cells contribute to both tissue surveillance and direct elimination of pathogens through a variety of mechanisms. Reactivation of these Trm cells during infection drives systematic changes within the tissue, including altering the state of the epithelium, activating local immune cells, and contributing to the permissiveness of the tissue for circulating immune cell entry. Trm cells can be further classified by their functional outputs, which can be either subset- or tissue-specific, and include proliferation, tissue egress, and modulation of tissue physiology. These functional outputs of Trm cells are linked to the heterogeneity and plasticity of this population, and uncovering the unique responses of different Trm cell subsets and their role in immunity will allow us to modulate Trm cell responses for optimal control of disease.
Collapse
Affiliation(s)
- Giuseppina Marchesini Tovar
- Center for Immunity and Inflammation, Department of Pathology, Immunology, and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ
| | - Corey Gallen
- Center for Immunity and Inflammation, Department of Pathology, Immunology, and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ
| | - Tessa Bergsbaken
- Center for Immunity and Inflammation, Department of Pathology, Immunology, and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ
| |
Collapse
|
6
|
Kim SH, Lee SH. Updates on ankylosing spondylitis: pathogenesis and therapeutic agents. JOURNAL OF RHEUMATIC DISEASES 2023; 30:220-233. [PMID: 37736590 PMCID: PMC10509639 DOI: 10.4078/jrd.2023.0041] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 09/23/2023]
Abstract
Ankylosing spondylitis (AS) is an autoinflammatory disease that manifests with the unique feature of enthesitis. Gut microbiota, HLA-B*27, and biomechanical stress mutually influence and interact resulting in setting off a flame of inflammation. In the HLA-B*27 positive group, dysbiosis in the gut environment disrupts the barrier to exogenous bacteria or viruses. Additionally, biomechanical stress induces inflammation through enthesial resident or gut-origin immune cells. On this basis, innate and adaptive immunity can propagate inflammation and lead to chronic disease. Finally, bone homeostasis is regulated by cytokines, by which the inflamed region is substituted into new bone. Agents that block cytokines are constantly being developed to provide diverse therapeutic options for preventing the progression of inflammation. In addition, some antibodies have been shown to distinguish disease selectively, which support the involvement of autoimmune immunity in AS. In this review, we critically analyze the complexity and uniqueness of the pathogenesis with updates on the findings of immunity and provide new information about biologics and biomarkers.
Collapse
Affiliation(s)
- Se Hee Kim
- Division of Rheumatology, Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Sang-Hoon Lee
- Division of Rheumatology, Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, Korea
| |
Collapse
|
7
|
Wang D, Deng Y, Zhou J, Wang W, Huang B, Wang W, Wei L, Ren J, Han R, Bing J, Zhai C, Guo X, Tan W. Single-Dose Intranasal Immunisation with Novel Chimeric H1N1 Expressing the Receptor-Binding Domain of SARS-CoV-2 Induces Robust Mucosal Immunity, Tissue-Resident Memory T Cells, and Heterologous Protection in Mice. Vaccines (Basel) 2023; 11:1453. [PMID: 37766130 PMCID: PMC10537001 DOI: 10.3390/vaccines11091453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/01/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
Current COVID-19 vaccines can effectively reduce disease severity and hospitalisation; however, they are not considerably effective in preventing infection and transmission. In this context, mucosal vaccines are pertinent to prevent SARS-CoV-2 infection and spread. In this study, we generated a replication-competent recombinant chimeric influenza A virus (IAV) expressing the receptor-binding domain (RBD) of a SARS-CoV-2 prototype in the C-terminus of the neuraminidase (NA) of A/Puerto Rico/08/1934 H1N1 (PR8). The remaining seven segments from A/WSN/1933 H1N1 (WSN) were named PR8NARBD/WSN. We observed that the recombinant virus with the WSN backbone demonstrated improved expression of NA and RBD. A single intranasal dose of PR8NARBD/WSN(103PFU) in mice generated robust mucosal immunity, neutralising antibodies, cellular immunity, and tissue-resident memory T cells specific to SARS-CoV-2 and IAV. Importantly, immunisation with PR8NARBD/WSN viruses effectively protected mice against lethal challenges with H1N1, H3N2 IAV, and SARS-CoV-2 Beta variant and significantly reduced lung viral loads. Overall, our research demonstrates the promising potential of PR8NARBD/WSN as an attractive vaccine against emerging SARS-CoV-2 variants and influenza A virus infections.
Collapse
Affiliation(s)
- Donghong Wang
- Key Laboratory of Biosafety, National Health Commissions, National Institute for Viral Disease Control and Prevention, China CDC, 155 Changbai Road, Beijing 102206, China; (D.W.)
| | - Yao Deng
- Key Laboratory of Biosafety, National Health Commissions, National Institute for Viral Disease Control and Prevention, China CDC, 155 Changbai Road, Beijing 102206, China; (D.W.)
| | - Jianfang Zhou
- State Key Laboratory for Molecular Virology and Genetic Engineering, Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, China CDC, 155 Changbai Road, Beijing 102206, China
| | - Wen Wang
- Key Laboratory of Biosafety, National Health Commissions, National Institute for Viral Disease Control and Prevention, China CDC, 155 Changbai Road, Beijing 102206, China; (D.W.)
| | - Baoying Huang
- Key Laboratory of Biosafety, National Health Commissions, National Institute for Viral Disease Control and Prevention, China CDC, 155 Changbai Road, Beijing 102206, China; (D.W.)
| | - Wenling Wang
- Key Laboratory of Biosafety, National Health Commissions, National Institute for Viral Disease Control and Prevention, China CDC, 155 Changbai Road, Beijing 102206, China; (D.W.)
| | - Lan Wei
- Key Laboratory of Biosafety, National Health Commissions, National Institute for Viral Disease Control and Prevention, China CDC, 155 Changbai Road, Beijing 102206, China; (D.W.)
| | - Jiao Ren
- Key Laboratory of Biosafety, National Health Commissions, National Institute for Viral Disease Control and Prevention, China CDC, 155 Changbai Road, Beijing 102206, China; (D.W.)
| | - Ruiwen Han
- Key Laboratory of Biosafety, National Health Commissions, National Institute for Viral Disease Control and Prevention, China CDC, 155 Changbai Road, Beijing 102206, China; (D.W.)
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Jialuo Bing
- Key Laboratory of Biosafety, National Health Commissions, National Institute for Viral Disease Control and Prevention, China CDC, 155 Changbai Road, Beijing 102206, China; (D.W.)
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Chengcheng Zhai
- Key Laboratory of Biosafety, National Health Commissions, National Institute for Viral Disease Control and Prevention, China CDC, 155 Changbai Road, Beijing 102206, China; (D.W.)
| | - Xiaoyan Guo
- Key Laboratory of Biosafety, National Health Commissions, National Institute for Viral Disease Control and Prevention, China CDC, 155 Changbai Road, Beijing 102206, China; (D.W.)
| | - Wenjie Tan
- Key Laboratory of Biosafety, National Health Commissions, National Institute for Viral Disease Control and Prevention, China CDC, 155 Changbai Road, Beijing 102206, China; (D.W.)
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| |
Collapse
|
8
|
Allais BS, Fay CJ, Kim DY, Semenov YR, LeBoeuf NR. Cutaneous immune-related adverse events from immune checkpoint inhibitor therapy: Moving beyond "maculopapular rash". Immunol Rev 2023; 318:22-36. [PMID: 37583051 DOI: 10.1111/imr.13257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/27/2023] [Indexed: 08/17/2023]
Abstract
Uncoupling toxicity from therapeutic effect lies at the foundation of the current state of the field of cutaneous immune-related adverse events to immune checkpoint inhibitor therapy. This will be achieved through understanding the drivers of toxicity, tumor response, and resistance via large, well-powered population-level studies, institutional cohort data, and cellular-level data. Increasing diagnostic specificity through the application of consensus disease definitions has the power to improve clinical care and each approach to research. Cutaneous immune-related adverse events are associated with increased survival, and their treatment must invoke the maintenance of a delicate balance between immunosuppression, anti-tumor effect of immune checkpoint inhibitor therapy, and quality of life. The multidisciplinary care of cancer patients with adverse events is critical to optimizing clinical and translational research outcomes and, as such, dermatologists are vital to moving the study of cutaneous adverse events forward.
Collapse
Affiliation(s)
- Blair S Allais
- Inova Schar Cancer Institute, Melanoma and Skin Cancer Center, Fairfax, Virginia, USA
| | - Christopher J Fay
- The Center for Cutaneous Oncology, Department of Dermatology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Daniel Y Kim
- Harvard-MIT Health Sciences and Technology Program, Harvard Medical School, Boston, Massachusetts, USA
| | - Yevgeniy R Semenov
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Nicole R LeBoeuf
- The Center for Cutaneous Oncology, Department of Dermatology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Miller YE, Ghosh M, Merrick DT, Kubala B, Szabo E, Bengtson L, Kocherginsky M, Helenowski IB, Benante K, Schering T, Kim J, Kim H, Ha D, Bergan RC, Khan SA, Keith RL. Phase Ib trial of inhaled iloprost for the prevention of lung cancer with predictive and response biomarker assessment. Front Oncol 2023; 13:1204726. [PMID: 37711198 PMCID: PMC10499515 DOI: 10.3389/fonc.2023.1204726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/26/2023] [Indexed: 09/16/2023] Open
Abstract
Introduction Iloprost, a prostacyclin analog, has lung cancerpreventive activity in preclinical models and improved dysplasia in former smokers in a phase IIb trial. Oral iloprost is currently unavailable. We performed a phase Ib trial of inhaled iloprost in former smokers to assess tolerance and compliance. Methods Participants self-administered nebulized iloprost (5ug) or placebo four (QID) or two (BID) times daily. As QID dose was well tolerated and due to expiration of the placebo, the BID dosing and placebo were eliminated early on in the trial. Bronchoscopy with biopsyat six standard sites was performed at treatment initiation and two months post-iloprost, with exploratory histological analysis. Bulk RNA sequencing, single cell RNA sequencing and an in vitro assay of epithelial progenitor cell iloprost response were performed on a subset of biopsies in an exploratory investigation of response mechanisms and predictive biomarkers. Results and discussion Thirty-four of a planned 48 participants were recruited to the trial.Inhaled iloprost was well tolerated with no adverse events > grade 2. Compliance was 67% in the QID group. The trial was not powered to detect histologic response and none was found. Bulk RNA sequencing of biopsies pre/post iloprost suggest that iloprost is immunomodulatory and downregulates cell proliferation pathways. Single cell RNA sequencing showed an increase in CD8-positive T cells with upregulation of genes in interferon γ signaling. In vitro iloprost response by epithelial progenitor cells correlated with histologic response with kappa coefficient of 0.81 (95% CI 0.47, 1.0). Inhaled iloprost was well tolerated with suboptimal compliance. Molecular analysis suggested that iloprosthas immunomodulatory and antiproliferative effects.The progenitor cell iloprost response assay may be a promising avenue to develop predictive biomarkers. Clinical trial registration https://clinicaltrials.gov/study/NCT02237183, identifier NCT02237183.
Collapse
Affiliation(s)
- York E. Miller
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Aurora, CO, United States
- Pulmonary and Critical Care Section, RMR VAMC Rocky Mountain Regional Veteran Administration Medical Center, Aurora, CO, United States
| | - Moumita Ghosh
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Aurora, CO, United States
| | - Daniel T. Merrick
- Department of Pathology, University of Colorado, Aurora, CO, United States
| | - Brandi Kubala
- Cancer Center Clinical Trial Core, University of Colorado, Aurora, CO, United States
| | - Eva Szabo
- Division of Cancer Prevention, National Cancer Institute, Bethesda, MD, United States
| | - Lisa Bengtson
- Division of Cancer Prevention, National Cancer Institute, Bethesda, MD, United States
| | - Masha Kocherginsky
- Department of Preventative Medicine, Northwestern University, Evanston, IL, United States
| | - Irene B. Helenowski
- Department of Preventative Medicine, Northwestern University, Evanston, IL, United States
| | - Kelly Benante
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL, United States
| | - Tia Schering
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL, United States
| | - Jihye Kim
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, United States
| | - Hyunmin Kim
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Duc Ha
- Pulmonary and Critical Care Section, RMR VAMC Rocky Mountain Regional Veteran Administration Medical Center, Aurora, CO, United States
| | - Raymond C. Bergan
- Fred and Pamela Buffett Cancer Center, Division of Oncology & Hematology, Genitourinary Oncology, University of Nebraska, Evanston, IL, United States
| | - Seema A. Khan
- Department of Surgery, Northwestern University, Omaha, NE, United States
| | - Robert L. Keith
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Aurora, CO, United States
- Pulmonary and Critical Care Section, RMR VAMC Rocky Mountain Regional Veteran Administration Medical Center, Aurora, CO, United States
| |
Collapse
|
10
|
Dhanushkodi NR, Prakash S, Quadiri A, Zayou L, Srivastava R, Tran J, Dang V, Shaik AM, Chilukurri A, Suzer B, De Vera P, Sun M, Nguyen P, Lee A, Salem A, Loi J, Singer M, Nakayama T, Vahed H, Nesburn AB, BenMohamed L. Mucosal CCL28 Chemokine Improves Protection against Genital Herpes through Mobilization of Antiviral Effector Memory CCR10+CD44+ CD62L-CD8+ T Cells and Memory CCR10+B220+CD27+ B Cells into the Infected Vaginal Mucosa. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:118-129. [PMID: 37222480 PMCID: PMC10330291 DOI: 10.4049/jimmunol.2300093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/26/2023] [Indexed: 05/25/2023]
Abstract
Four major mucosal-associated chemokines, CCL25, CCL28, CXCL14, and CXCL17, play an important role in protecting mucosal surfaces from infectious pathogens. However, their role in protection against genital herpes remains to be fully explored. The CCL28 is a chemoattractant for the CCR10 receptor-expressing immune cells and is produced homeostatically in the human vaginal mucosa (VM). In this study, we investigated the role of the CCL28/CCR10 chemokine axis in mobilizing protective antiviral B and T cell subsets into the VM site of herpes infection. We report a significant increase in the frequencies of HSV-specific memory CCR10+CD44+CD8+ T cells, expressing high levels of CCR10, in herpes-infected asymptomatic (ASYMP) women compared with symptomatic women. Similarly, a significant increase in the CCL28 chemokine (a ligand of CCR10), was detected in the VM of herpes-infected ASYMP C57BL/6 mice, associated with the mobilization of high frequencies of HSV-specific effector memory CCR10+CD44+CD62L-CD8+ TEM cells and memory CCR10+B220+CD27+ B cells in the VM of HSV-infected ASYMP mice. Inversely, compared with wild-type C57BL/6 mice, the CCL28 knockout (CCL28-/-) mice (1) appeared to be more susceptible to intravaginal infection and reinfection with HSV type 2, and (2) exhibited a significant decrease in the frequencies of HSV-specific effector memory CCR10+CD44+CD62L-CD8+ TEM cells and of memory CD27+B220+ B cells in the infected VM. These findings suggest a critical role of the CCL28/CCR10 chemokine axis in the mobilization of antiviral memory B and T cells within the VM to protect against genital herpes infection and disease.
Collapse
Affiliation(s)
- Nisha Rajeswari Dhanushkodi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Swayam Prakash
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Afshana Quadiri
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Latifa Zayou
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Ruchi Srivastava
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Jennifer Tran
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Vivian Dang
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Amin Mohammed Shaik
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Amruth Chilukurri
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Berfin Suzer
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Phil De Vera
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Miyo Sun
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Pauline Nguyen
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Ashley Lee
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Amirah Salem
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Joyce Loi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Mahmoud Singer
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | | | - Hawa Vahed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA 92660; USA
| | - Anthony B. Nesburn
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
- Department of Molecular Biology and Biochemistry
- Institute for Immunology; the University of California Irvine, School of Medicine, Irvine, CA 92697
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA 92660; USA
| |
Collapse
|
11
|
Cheon IS, Son YM, Sun J. Tissue-resident memory T cells and lung immunopathology. Immunol Rev 2023; 316:63-83. [PMID: 37014096 PMCID: PMC10524334 DOI: 10.1111/imr.13201] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/10/2023] [Accepted: 03/21/2023] [Indexed: 04/05/2023]
Abstract
Rapid reaction to microbes invading mucosal tissues is key to protect the host against disease. Respiratory tissue-resident memory T (TRM ) cells provide superior immunity against pathogen infection and/or re-infection, due to their presence at the site of pathogen entry. However, there has been emerging evidence that exuberant TRM -cell responses contribute to the development of various chronic respiratory conditions including pulmonary sequelae post-acute viral infections. In this review, we have described the characteristics of respiratory TRM cells and processes underlying their development and maintenance. We have reviewed TRM -cell protective functions against various respiratory pathogens as well as their pathological activities in chronic lung conditions including post-viral pulmonary sequelae. Furthermore, we have discussed potential mechanisms regulating the pathological activity of TRM cells and proposed therapeutic strategies to alleviate TRM -cell-mediated lung immunopathology. We hope that this review provides insights toward the development of future vaccines or interventions that can harness the superior protective abilities of TRM cells, while minimizing the potential for immunopathology, a particularly important topic in the era of coronavirus disease 2019 (COVID-19) pandemic.
Collapse
Affiliation(s)
- In Su Cheon
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Young Min Son
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Gyeonggi-do, Republic of Korea 17546
| | - Jie Sun
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
12
|
Strobl J, Haniffa M. Functional heterogeneity of human skin-resident memory T cells in health and disease. Immunol Rev 2023; 316:104-119. [PMID: 37144705 PMCID: PMC10952320 DOI: 10.1111/imr.13213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/11/2023] [Accepted: 04/15/2023] [Indexed: 05/06/2023]
Abstract
The human skin is populated by a diverse pool of memory T cells, which can act rapidly in response to pathogens and cancer antigens. Tissue-resident memory T cells (TRM ) have been implicated in range of allergic, autoimmune and inflammatory skin diseases. Clonal expansion of cells with TRM properties is also known to contribute to cutaneous T-cell lymphoma. Here, we review the heterogeneous phenotypes, transcriptional programs, and effector functions of skin TRM . We summarize recent studies on TRM formation, longevity, plasticity, and retrograde migration and contextualize the findings to skin TRM and their role in maintaining skin homeostasis and altered functions in skin disease.
Collapse
Affiliation(s)
- Johanna Strobl
- Department of DermatologyMedical University of ViennaViennaAustria
- CeMM Research Center for Molecular MedicineViennaAustria
| | - Muzlifah Haniffa
- Wellcome Sanger InstituteCambridgeUK
- Department of Dermatology and NIHR Newcastle Biomedical Research CentreNewcastle Hospitals NHS Foundation TrustNewcastle upon TyneUK
- Biosciences InstituteNewcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
13
|
Dhanushkodi NR, Prakash S, Quadiri A, Zayou L, Singer M, Takashi N, Vahed H, BenMohamed L. High Frequencies of Antiviral Effector Memory T EM Cells and Memory B Cells Mobilized into Herpes Infected Vaginal Mucosa Associated With Protection Against Genital Herpes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.23.542021. [PMID: 37292784 PMCID: PMC10245907 DOI: 10.1101/2023.05.23.542021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Vaginal mucosa-resident anti-viral effector memory B- and T cells appeared to play a crucial role in protection against genital herpes. However, how to mobilize such protective immune cells into the vaginal tissue close to infected epithelial cells remains to be determined. In the present study, we investigate whether and how, CCL28, a major mucosal-associated chemokine, mobilizes effector memory B- and T cells in leading to protecting mucosal surfaces from herpes infection and disease. The CCL28 is a chemoattractant for the CCR10 receptor-expressing immune cells and is produced homeostatically in the human vaginal mucosa (VM). We found the presence of significant frequencies of HSV-specific memory CCR10+CD44+CD8+ T cells, expressing high levels of CCR10 receptor, in herpes-infected asymptomatic (ASYMP) women compared to symptomatic (SYMP) women. A significant amount of the CCL28 chemokine (a ligand of CCR10), was detected in the VM of herpes-infected ASYMP B6 mice, associated with the mobilization of high frequencies of HSV-specific effector memory CCR10+CD44+ CD62L- CD8+ TEM cells and memory CCR10+B220+CD27+ B cells in the VM of HSV-infected asymptomatic mice. In contrast, compared to wild-type (WT) B6 mice, the CCL28 knockout (CCL28(-/-)) mice: (i) Appeared more susceptible to intravaginal infection and re-infection with HSV-2; (ii) Exhibited a significant decrease in the frequencies of HSV-specific effector memory CCR10+CD44+ CD62L- CD8+ TEM cells and of memory CD27+B220+ B cells in the infected VM. The results imply a critical role of the CCL28/CCR10 chemokine axis in the mobilization of anti-viral memory B and T cells within the VM to protect against genital herpes infection and disease.
Collapse
Affiliation(s)
- Nisha Rajeswari Dhanushkodi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Swayam Prakash
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Afshana Quadiri
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Latifa Zayou
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Mahmoud Singer
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | | | - Hawa Vahed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA 92660; USA
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
- Department of Molecular Biology and Biochemistry; the University of California Irvine, School of Medicine, Irvine, CA 92697
- Institute for Immunology; the University of California Irvine, School of Medicine, Irvine, CA 92697
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA 92660; USA
| |
Collapse
|
14
|
Humphries DC, O’Connor RA, Stewart HL, Quinn TM, Gaughan EE, Mills B, Williams GO, Stone JM, Finlayson K, Chabaud-Riou M, Boudet F, Dhaliwal K, Pavot V. Specific in situ immuno-imaging of pulmonary-resident memory lymphocytes in human lungs. Front Immunol 2023; 14:1100161. [PMID: 36845117 PMCID: PMC9951616 DOI: 10.3389/fimmu.2023.1100161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/30/2023] [Indexed: 02/12/2023] Open
Abstract
Introduction Pulmonary-resident memory T cells (TRM) and B cells (BRM) orchestrate protective immunity to reinfection with respiratory pathogens. Developing methods for the in situ detection of these populations would benefit both research and clinical settings. Methods To address this need, we developed a novel in situ immunolabelling approach combined with clinic-ready fibre-based optical endomicroscopy (OEM) to detect canonical markers of lymphocyte tissue residency in situ in human lungs undergoing ex vivo lung ventilation (EVLV). Results Initially, cells from human lung digests (confirmed to contain TRM/BRM populations using flow cytometry) were stained with CD69 and CD103/CD20 fluorescent antibodies and imaged in vitro using KronoScan, demonstrating it's ability to detect antibody labelled cells. We next instilled these pre-labelled cells into human lungs undergoing EVLV and confirmed they could still be visualised using both fluorescence intensity and lifetime imaging against background lung architecture. Finally, we instilled fluorescent CD69 and CD103/CD20 antibodies directly into the lung and were able to detect TRM/BRM following in situ labelling within seconds of direct intra-alveolar delivery of microdoses of fluorescently labelled antibodies. Discussion In situ, no wash, immunolabelling with intra-alveolar OEM imaging is a novel methodology with the potential to expand the experimental utility of EVLV and pre-clinical models.
Collapse
Affiliation(s)
- Duncan C. Humphries
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom,Research & Development, Sanofi, Marcy L’Etoile, France
| | - Richard A. O’Connor
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Hazel L. Stewart
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Tom M. Quinn
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Erin E. Gaughan
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Beth Mills
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Gareth O.S. Williams
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - James M. Stone
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom,Centre for Photonic and Physics, Bath University, Bath, United Kingdom
| | - Keith Finlayson
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | | | | | - Kevin Dhaliwal
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom,*Correspondence: Kevin Dhaliwal, ; Vincent Pavot,
| | - Vincent Pavot
- Research & Development, Sanofi, Marcy L’Etoile, France,*Correspondence: Kevin Dhaliwal, ; Vincent Pavot,
| |
Collapse
|
15
|
Mirsharif ES, Chenary MR, Bozorgmehr M, Mohammadi S, Hashemi SM, Ardestani SK, Beigmohammadi M, Abdollahi A, Sadeghipour A, Kariminia A, Tuserkani F, Ghazanfari T. Immunophenotyping characteristics of COVID-19 patients: Peripheral blood CD8+ HLA-DR+ T cells as a biomarker for mortality outcome. J Med Virol 2023; 95:e28192. [PMID: 36192361 PMCID: PMC9874930 DOI: 10.1002/jmv.28192] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 08/19/2022] [Accepted: 09/27/2022] [Indexed: 01/27/2023]
Abstract
INTRODUCTION The goal of this study was to identify biomarker(s) to assign risk of mortality in COVID-19 patients to improve intensive care unit (ICU) and coronary care unit management. A total of 100 confirmed COVID-19 patients admitted at Imam Khomeini Hospital in Tehran, were compared to 70 control subjects. Peripheral blood leukocyte was studied using staining reagents included CD3, CD4, CD8, HLA-DR, CD19, CD16, and CD56. The immunophenotyping analysis was evaluated using the FACSCalibur instrument. To investigate the cell density of lung infiltrating T cells, postmortem slides of needle necropsies taken from the lung tissue of 3 critical patients were evaluated by immunohistochemistry staining. The number of lymphocyte subpopulations was significantly lower in COVID-19 patients than in the control group. Regarding the disease severity, the absolute count of T, NK, and HLA-DR+ T cells were significantly reduced in severe patients compared to the moderate ones. The critical patients had a significantly lower count of CD8-HLA-DR+ T cells than the moderate cases. Regarding the disease mortality, based on univariate analysis, the count of HLA-DR+ T, CD8- HLA-DR+ T, and CD8+ HLA-DR+ T cells was associated with mortality in COVID-19 patients. Receiver operating characteristic curve analysis showed the count of CD8+ HLA-DR+ T cells is the best candidate as a biomarker for mortality outcome. Furthermore, pulmonary infiltration of T cells in the lung tissue showed only slight infiltrations of CD3+ T cells, with an equal percentage of CD4+ and CD8+ T cell subpopulation in the lung tissue. These findings suggest that close monitoring of the value of CD8+ HLA-DR+ T cells in COVID-19 patients may be helpful to identify high-risk patients. However, further studies with larger sample size are needed.
Collapse
Affiliation(s)
| | | | | | - Saeed Mohammadi
- Hematology‐Oncology and Stem Cell Transplantation Research CenterTehran University of Medical SciencesTehranIran
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | | | - Mohammad‐Taghi Beigmohammadi
- Department of Anesthesiology and Intensive Care, Imam Khomeini Hospital ComplexTehran University of Medical SciencesTehranIran
| | - Alireza Abdollahi
- Department of Pathology, School of Medicine, Imam Khomeini Hospital ComplexTehran University of Medical SciencesTehranIran
| | - Alireza Sadeghipour
- Medicine Department of Pathology, School of Medicine, Oncopathology Research CenterIran University of Medical SciencesTehranIran
| | - Amina Kariminia
- School of MedicineUniversity of WashingtonSeattleWashingtonUSA
| | | | - Tooba Ghazanfari
- Immunoregulation Research CenterShahed UniversityTehranIran,Simorgh Clinical LaboratoryTehranIran
| |
Collapse
|
16
|
Nagornykh AM, Tyumentseva MA, Tyumentsev AI, Akimkin VG. Anatomical and physiological aspects of the HIV infection pathogenesis in animal models. JOURNAL OF MICROBIOLOGY, EPIDEMIOLOGY AND IMMUNOBIOLOGY 2022. [DOI: 10.36233/0372-9311-307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Understanding the entire pathogenesis of HIV infection, from penetration at the gates of infection to the induction of severe immunodeficiency, is an essential tool for the development of new treatment methods. Less than 40 years of research into the mechanisms of HIV infection that lead to the development of acquired immunodeficiency syndrome have accumulated a huge amount of information, but HIV's own unique variability identifies new whitespaces.
Despite the constant improvement of the protocols of antiretroviral therapy and the success of its use, it has not yet been possible to stop the spread of HIV infection. The development of new protocols and the testing of new groups of antiretroviral drugs is possible, first of all, due to the improvement of animal models of the HIV infection pathogenesis. Their relevance, undoubtedly increases, but still depends on specific research tasks, since none of the in vivo models can comprehensively simulate the mechanism of the infection pathology in humans which leads to multi-organ damage.
The aim of the review was to provide up-to-date information on known animal models of HIV infection, focusing on the method of their infection and anatomical, physiological and pathological features.
Collapse
|
17
|
Gao A, Zhao W, Wu R, Su R, Jin R, Luo J, Gao C, Li X, Wang C. Tissue-resident memory T cells: The key frontier in local synovitis memory of rheumatoid arthritis. J Autoimmun 2022; 133:102950. [PMID: 36356551 DOI: 10.1016/j.jaut.2022.102950] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 11/09/2022]
Abstract
Rheumatoid arthritis (RA) is a highly disabling, systemic autoimmune disease. It presents a remarkable tendency to recur, which renders it almost impossible for patients to live without drugs. Under such circumstances, many patients have to suffer the pain of recurrent attacks as well as the side effects of long-term medication. Current therapies for RA are primarily systemic treatments without targeting the problem that RA is more likely to recur locally. Emerging studies suggest the existence of a mechanism mediating local memory during RA, which is closely related to the persistent residence of tissue-resident memory T cells (TRM). TRM, one of the memory T cell subsets, reside in tissues providing immediate immune protection but driving recurrent local inflammation on the other hand. The heterogeneity among synovial TRM is unclear, with the dominated CD8+ TRM observed in inflamed synovium of RA patients coming into focus. Besides local arthritis relapse, TRM may also contribute to extra-articular organ involvement in RA due to their migration potential. Future integration of single-cell RNA sequencing (scRNA-seq) with spatial transcriptomics to explore the gene expression patterns of TRM in both temporal dimension and spatial dimension may help us identify specific therapeutic targets. Targeting synovial TRM to suppress local arthritis flares while using systemic therapies to prevent extra-articular organ involvement may provide a new perspective to address RA recurrence.
Collapse
Affiliation(s)
- Anqi Gao
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China; Shanxi Key Laboratory for Immunomicroecology, Shanxi, China
| | - Wenpeng Zhao
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China; Shanxi Key Laboratory for Immunomicroecology, Shanxi, China
| | - Ruihe Wu
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China; Shanxi Key Laboratory for Immunomicroecology, Shanxi, China
| | - Rui Su
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China; Shanxi Key Laboratory for Immunomicroecology, Shanxi, China
| | - Ruqing Jin
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China; Shanxi Key Laboratory for Immunomicroecology, Shanxi, China
| | - Jing Luo
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China; Shanxi Key Laboratory for Immunomicroecology, Shanxi, China
| | - Chong Gao
- Pathology, Joint Program in Transfusion Medicine, Brigham and Women's Hospital/Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xiaofeng Li
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China; Shanxi Key Laboratory for Immunomicroecology, Shanxi, China
| | - Caihong Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China; Shanxi Key Laboratory for Immunomicroecology, Shanxi, China.
| |
Collapse
|
18
|
Brumeanu TD, Vir P, Karim AF, Kar S, Benetiene D, Lok M, Greenhouse J, Putmon-Taylor T, Kitajewski C, Chung KK, Pratt KP, Casares SA. Human-Immune-System (HIS) humanized mouse model (DRAGA: HLA-A2.HLA-DR4.Rag1KO.IL-2RγcKO.NOD) for COVID-19. Hum Vaccin Immunother 2022; 18:2048622. [PMID: 35348437 PMCID: PMC9225593 DOI: 10.1080/21645515.2022.2048622] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/28/2022] [Indexed: 12/13/2022] Open
Abstract
We report a Human Immune System (HIS)-humanized mouse model ("DRAGA": HLA-A2.HLA-DR4.Rag1KO.IL-2 RγcKO.NOD) for COVID-19 research. DRAGA mice express transgenically HLA-class I and class-II molecules in the mouse thymus to promote human T cell development and human B cell Ig-class switching. When infused with human hematopoietic stem cells from cord blood reconstitute a functional human immune system, as well as human epi/endothelial cells in lung and upper respiratory airways expressing the human ACE2 receptor for SARS-CoV-2. The DRAGA mice were able to sustain SARS-CoV-2 infection for at least 25 days. Infected mice showed replicating virus in the lungs, deteriorating clinical condition, and human-like lung immunopathology including human lymphocyte infiltrates, microthrombi and pulmonary sequelae. Among the intra-alveolar and peri-bronchiolar lymphocyte infiltrates, human lung-resident (CD103+) CD8+ and CD4+ T cells were sequestered in epithelial (CD326+) lung niches and secreted granzyme B and perforin, suggesting anti-viral cytotoxic activity. Infected mice also mounted human IgG antibody responses to SARS-CoV-2 viral proteins. Hence, HIS-DRAGA mice showed unique advantages as a surrogate in vivo human model for studying SARS-CoV-2 immunopathological mechanisms and testing the safety and efficacy of candidate vaccines and therapeutics.
Collapse
Affiliation(s)
- Teodor-D. Brumeanu
- Department of Medicine, Division of Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Pooja Vir
- Department of Medicine, Division of Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Ahmad Faisal Karim
- Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD, USA
| | | | | | | | | | | | | | | | | | - Sofia A. Casares
- Department of Medicine, Division of Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD, USA
| |
Collapse
|
19
|
Neuwirth T, Knapp K, Stary G. (Not) Home alone: Antigen presenting cell - T Cell communication in barrier tissues. Front Immunol 2022; 13:984356. [PMID: 36248804 PMCID: PMC9556809 DOI: 10.3389/fimmu.2022.984356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/13/2022] [Indexed: 11/30/2022] Open
Abstract
Priming of T cells by antigen presenting cells (APCs) is essential for T cell fate decisions, enabling T cells to migrate to specific tissues to exert their effector functions. Previously, these interactions were mainly explored using blood-derived cells or animal models. With great advances in single cell RNA-sequencing techniques enabling analysis of tissue-derived cells, it has become clear that subsets of APCs are responsible for priming and modulating heterogeneous T cell effector responses in different tissues. This composition of APCs and T cells in tissues is essential for maintaining homeostasis and is known to be skewed in infection and inflammation, leading to pathological T cell responses. This review highlights the commonalities and differences of T cell priming and subsequent effector function in multiple barrier tissues such as the skin, intestine and female reproductive tract. Further, we provide an overview of how this process is altered during tissue-specific infections which are known to cause chronic inflammation and how this knowledge could be harnessed to modify T cell responses in barrier tissue.
Collapse
Affiliation(s)
- Teresa Neuwirth
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Katja Knapp
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Georg Stary
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| |
Collapse
|
20
|
Yaping W, Zhe W, Zhuling C, Ruolei L, Pengyu F, Lili G, Cheng J, Bo Z, Liuyin L, Guangdong H, Yaoling W, Niuniu H, Rui L. The soldiers needed to be awakened: Tumor-infiltrating immune cells. Front Genet 2022; 13:988703. [PMID: 36246629 PMCID: PMC9558824 DOI: 10.3389/fgene.2022.988703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/29/2022] [Indexed: 11/18/2022] Open
Abstract
In the tumor microenvironment, tumor-infiltrating immune cells (TIICs) are a key component. Different types of TIICs play distinct roles. CD8+ T cells and natural killer (NK) cells could secrete soluble factors to hinder tumor cell growth, whereas regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) release inhibitory factors to promote tumor growth and progression. In the meantime, a growing body of evidence illustrates that the balance between pro- and anti-tumor responses of TIICs is associated with the prognosis in the tumor microenvironment. Therefore, in order to boost anti-tumor response and improve the clinical outcome of tumor patients, a variety of anti-tumor strategies for targeting TIICs based on their respective functions have been developed and obtained good treatment benefits, including mainly immune checkpoint blockade (ICB), adoptive cell therapies (ACT), chimeric antigen receptor (CAR) T cells, and various monoclonal antibodies. In recent years, the tumor-specific features of immune cells are further investigated by various methods, such as using single-cell RNA sequencing (scRNA-seq), and the results indicate that these cells have diverse phenotypes in different types of tumors and emerge inconsistent therapeutic responses. Hence, we concluded the recent advances in tumor-infiltrating immune cells, including functions, prognostic values, and various immunotherapy strategies for each immune cell in different tumors.
Collapse
Affiliation(s)
- Wang Yaping
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Wang Zhe
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Chu Zhuling
- Department of General Surgery, Eastern Theater Air Force Hospital of PLA, Nanjing, China
| | - Li Ruolei
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Fan Pengyu
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Guo Lili
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Ji Cheng
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Zhang Bo
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Liu Liuyin
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Hou Guangdong
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Wang Yaoling
- Department of Geriatrics, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hou Niuniu
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- Department of General Surgery, Eastern Theater Air Force Hospital of PLA, Nanjing, China
- *Correspondence: Hou Niuniu, ; Ling Rui,
| | - Ling Rui
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- *Correspondence: Hou Niuniu, ; Ling Rui,
| |
Collapse
|
21
|
Magnusson R, Rundquist O, Kim MJ, Hellberg S, Na CH, Benson M, Gomez-Cabrero D, Kockum I, Tegnér JN, Piehl F, Jagodic M, Mellergård J, Altafini C, Ernerudh J, Jenmalm MC, Nestor CE, Kim MS, Gustafsson M. RNA-sequencing and mass-spectrometry proteomic time-series analysis of T-cell differentiation identified multiple splice variants models that predicted validated protein biomarkers in inflammatory diseases. Front Mol Biosci 2022; 9:916128. [PMID: 36106020 PMCID: PMC9465313 DOI: 10.3389/fmolb.2022.916128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/25/2022] [Indexed: 12/18/2022] Open
Abstract
Profiling of mRNA expression is an important method to identify biomarkers but complicated by limited correlations between mRNA expression and protein abundance. We hypothesised that these correlations could be improved by mathematical models based on measuring splice variants and time delay in protein translation. We characterised time-series of primary human naïve CD4+ T cells during early T helper type 1 differentiation with RNA-sequencing and mass-spectrometry proteomics. We performed computational time-series analysis in this system and in two other key human and murine immune cell types. Linear mathematical mixed time delayed splice variant models were used to predict protein abundances, and the models were validated using out-of-sample predictions. Lastly, we re-analysed RNA-seq datasets to evaluate biomarker discovery in five T-cell associated diseases, further validating the findings for multiple sclerosis (MS) and asthma. The new models significantly out-performing models not including the usage of multiple splice variants and time delays, as shown in cross-validation tests. Our mathematical models provided more differentially expressed proteins between patients and controls in all five diseases. Moreover, analysis of these proteins in asthma and MS supported their relevance. One marker, sCD27, was validated in MS using two independent cohorts for evaluating response to treatment and disease prognosis. In summary, our splice variant and time delay models substantially improved the prediction of protein abundance from mRNA expression in three different immune cell types. The models provided valuable biomarker candidates, which were further validated in MS and asthma.
Collapse
Affiliation(s)
- Rasmus Magnusson
- Bioinformatics, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Olof Rundquist
- Bioinformatics, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Min Jung Kim
- Department of Applied Chemistry, College of Applied Sciences, Kyung Hee University, Yong-in, South Korea
| | - Sandra Hellberg
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Chan Hyun Na
- Department of Neurology, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Mikael Benson
- Centre for Personalised Medicine, Linköping University, Linköping, Sweden
| | - David Gomez-Cabrero
- Navarrabiomed, Complejo Hospitalario de Navarra, Universidad Pública de Navarra, IdiSNA, Pamplona, Spain
| | - Ingrid Kockum
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Jesper N. Tegnér
- Biological and Environmental Sciences and Engineering Division, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Unit of Computational Medicine, Department of Medicine, Solna, Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden
- Science for Life Laboratory, Solna, Sweden
| | - Fredrik Piehl
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Maja Jagodic
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Johan Mellergård
- Department of Neurology, Linköping University, Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Claudio Altafini
- Department of Automatic Control, Linköping University, Linköping, Sweden
| | - Jan Ernerudh
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Linköping University, Linköping, Sweden
| | - Maria C. Jenmalm
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- *Correspondence: Maria C. Jenmalm, ; Mika Gustafsson,
| | - Colm E. Nestor
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Min-Sik Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Mika Gustafsson
- Bioinformatics, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
- *Correspondence: Maria C. Jenmalm, ; Mika Gustafsson,
| |
Collapse
|
22
|
Wiggins BG, Pallett LJ, Li X, Davies SP, Amin OE, Gill US, Kucykowicz S, Patel AM, Aliazis K, Liu YS, Reynolds GM, Davidson BR, Gander A, Luong TV, Hirschfield GM, Kennedy PTF, Huang Y, Maini MK, Stamataki Z. The human liver microenvironment shapes the homing and function of CD4 + T-cell populations. Gut 2022; 71:1399-1411. [PMID: 34548339 PMCID: PMC9185819 DOI: 10.1136/gutjnl-2020-323771] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 08/19/2021] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Tissue-resident memory T cells (TRM) are vital immune sentinels that provide protective immunity. While hepatic CD8+ TRM have been well described, little is known about the location, phenotype and function of CD4+ TRM. DESIGN We used multiparametric flow cytometry, histological assessment and novel human tissue coculture systems to interrogate the ex vivo phenotype, function and generation of the intrahepatic CD4+ T-cell compartment. We also used leukocytes isolated from human leukocyte antigen (HLA)-disparate liver allografts to assess long-term retention. RESULTS Hepatic CD4+ T cells were delineated into three distinct populations based on CD69 expression: CD69-, CD69INT and CD69HI. CD69HICD4+ cells were identified as tissue-resident CD4+ T cells on the basis of their exclusion from the circulation, phenotypical profile (CXCR6+CD49a+S1PR1-PD-1+) and long-term persistence within the pool of donor-derived leukcoocytes in HLA-disparate liver allografts. CD69HICD4+ T cells produced robust type 1 polyfunctional cytokine responses on stimulation. Conversely, CD69INTCD4+ T cells represented a more heterogenous population containing cells with a more activated phenotype, a distinct chemokine receptor profile (CX3CR1+CXCR3+CXCR1+) and a bias towards interleukin-4 production. While CD69INTCD4+ T cells could be found in the circulation and lymph nodes, these cells also formed part of the long-term resident pool, persisting in HLA-mismatched allografts. Notably, frequencies of CD69INTCD4+ T cells correlated with necroinflammatory scores in chronic hepatitis B infection. Finally, we demonstrated that interaction with hepatic epithelia was sufficient to generate CD69INTCD4+ T cells, while additional signals from the liver microenvironment were required to generate liver-resident CD69HICD4+ T cells. CONCLUSIONS High and intermediate CD69 expressions mark human hepatic CD4+ TRM and a novel functionally distinct recirculating population, respectively, both shaped by the liver microenvironment to achieve diverse immunosurveillance.
Collapse
Affiliation(s)
- Benjamin G Wiggins
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
- Centre for Liver and Gastrointestinal Research, University of Birmingham, Birmingham, UK
| | - Laura J Pallett
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
| | - Xiaoyan Li
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- Department of Infectious Diseases and Guangdong Provincial Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Scott P Davies
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- Centre for Liver and Gastrointestinal Research, University of Birmingham, Birmingham, UK
| | - Oliver E Amin
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
| | | | - Stephanie Kucykowicz
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
| | - Arzoo M Patel
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- Centre for Liver and Gastrointestinal Research, University of Birmingham, Birmingham, UK
| | - Konstantinos Aliazis
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- Centre for Liver and Gastrointestinal Research, University of Birmingham, Birmingham, UK
| | - Yuxin S Liu
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- Centre for Liver and Gastrointestinal Research, University of Birmingham, Birmingham, UK
| | - Gary M Reynolds
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- Centre for Liver and Gastrointestinal Research, University of Birmingham, Birmingham, UK
| | | | - Amir Gander
- Tissue Access for Patient Benefit, University College London, London, UK
| | - Tu Vinh Luong
- Department of Cellular Pathology, Royal Free Hospital, London, UK
| | - Gideon M Hirschfield
- Centre for Liver and Gastrointestinal Research, University of Birmingham, Birmingham, UK
- Centre for Liver Research, National Institute for Health Research Biomedical Research Unit, University of Birmingham, Birmingham, UK
| | | | - Yuehua Huang
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Mala K Maini
- Division of Infection and Immunity, Rayne Institute, University College London, London, UK
| | - Zania Stamataki
- Centre for Liver and Gastrointestinal Research, University of Birmingham, Birmingham, UK
| |
Collapse
|
23
|
Rahimi RA, Cho JL, Jakubzick CV, Khader SA, Lambrecht BN, Lloyd CM, Molofsky AB, Talbot S, Bonham CA, Drake WP, Sperling AI, Singer BD. Advancing Lung Immunology Research: An Official American Thoracic Society Workshop Report. Am J Respir Cell Mol Biol 2022; 67:e1-18. [PMID: 35776495 PMCID: PMC9273224 DOI: 10.1165/rcmb.2022-0167st] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The mammalian airways and lungs are exposed to a myriad of inhaled particulate matter, allergens, and pathogens. The immune system plays an essential role in protecting the host from respiratory pathogens, but a dysregulated immune response during respiratory infection can impair pathogen clearance and lead to immunopathology. Furthermore, inappropriate immunity to inhaled antigens can lead to pulmonary diseases. A complex network of epithelial, neural, stromal, and immune cells has evolved to sense and respond to inhaled antigens, including the decision to promote tolerance versus a rapid, robust, and targeted immune response. Although there has been great progress in understanding the mechanisms governing immunity to respiratory pathogens and aeroantigens, we are only beginning to develop an integrated understanding of the cellular networks governing tissue immunity within the lungs and how it changes after inflammation and over the human life course. An integrated model of airway and lung immunity will be necessary to improve mucosal vaccine design as well as prevent and treat acute and chronic inflammatory pulmonary diseases. Given the importance of immunology in pulmonary research, the American Thoracic Society convened a working group to highlight central areas of investigation to advance the science of lung immunology and improve human health.
Collapse
|
24
|
Patra V, Strobl J, Atzmüller D, Reininger B, Kleissl L, Gruber-Wackernagel A, Nicolas JF, Stary G, Vocanson M, Wolf P. Accumulation of Cytotoxic Skin Resident Memory T Cells and Increased Expression of IL-15 in Lesional Skin of Polymorphic Light Eruption. Front Med (Lausanne) 2022; 9:908047. [PMID: 35755042 PMCID: PMC9226321 DOI: 10.3389/fmed.2022.908047] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/16/2022] [Indexed: 11/18/2022] Open
Abstract
Patients with polymorphic light eruption (PLE) develop lesions upon the first exposure to sun in spring/summer, but lesions usually subside during season due to the natural (or medical) photohardening. However, these lesions tend to reappear the following year and continue to do so in most patients, suggesting the presence of a disease memory. To study the potential role of skin resident memory T cells (Trm), we investigated the functional phenotype of Trm and the expression of IL-15 in PLE. IL-15 is known to drive Trm proliferation and survival. Multiplex immunofluorescence was used to quantify the expression of CD3, CD4, CD8, CD69, CD103, CD49a, CD11b, CD11c, CD68, granzyme B (GzmB), interferon-gamma (IFN-γ), and IL-15 in formalin-fixed, paraffin-embedded lesional skin samples from PLE patients and healthy skin from control subjects. Unlike the constitutive T cell population in healthy skin, a massive infiltration of T cells in the dermis and epidermis was observed in PLE, and the majority of these belonged to CD8+ T cells which express Trm markers (CD69, CD103, CD49a) and produced cytotoxic effector molecules GzmB and IFN-γ. Higher numbers of CD3+ T cells and CD11b+CD68+ macrophages produced IL-15 in the dermis as compared to healthy skin. The dominant accumulation of cytotoxic Trm cells and increased expression of IL-15 in lesional skin of PLE patients strongly indicates the potential role of skin Trm cells in the disease manifestation and recurrence.
Collapse
Affiliation(s)
- VijayKumar Patra
- Centre International de Recherche en Infectiologie, Institut National de la Santé et de la Recherche Médicale, U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, UMR 5308, Ecole Normale Supérieure de Lyon, Université de Lyon, Lyon, France.,Research Unit for Photodermatology, Medical University of Graz, Graz, Austria
| | - Johanna Strobl
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Denise Atzmüller
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Bärbel Reininger
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Lisa Kleissl
- Department of Dermatology, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | | | - Jean-Francois Nicolas
- Allergy and Clinical Immunology Department, Lyon Sud University Hospital, Pierre-Bénite, France
| | - Georg Stary
- Department of Dermatology, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Marc Vocanson
- Centre International de Recherche en Infectiologie, Institut National de la Santé et de la Recherche Médicale, U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, UMR 5308, Ecole Normale Supérieure de Lyon, Université de Lyon, Lyon, France
| | - Peter Wolf
- Research Unit for Photodermatology, Medical University of Graz, Graz, Austria
| |
Collapse
|
25
|
Wu Y, Biswas D, Usaite I, Angelova M, Boeing S, Karasaki T, Veeriah S, Czyzewska-Khan J, Morton C, Joseph M, Hessey S, Reading J, Georgiou A, Al-Bakir M, McGranahan N, Jamal-Hanjani M, Hackshaw A, Quezada SA, Hayday AC, Swanton C. A local human Vδ1 T cell population is associated with survival in nonsmall-cell lung cancer. NATURE CANCER 2022; 3:696-709. [PMID: 35637401 PMCID: PMC9236901 DOI: 10.1038/s43018-022-00376-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/11/2022] [Indexed: 01/26/2023]
Abstract
Murine tissues harbor signature γδ T cell compartments with profound yet differential impacts on carcinogenesis. Conversely, human tissue-resident γδ cells are less well defined. In the present study, we show that human lung tissues harbor a resident Vδ1 γδ T cell population. Moreover, we demonstrate that Vδ1 T cells with resident memory and effector memory phenotypes were enriched in lung tumors compared with nontumor lung tissues. Intratumoral Vδ1 T cells possessed stem-like features and were skewed toward cytolysis and helper T cell type 1 function, akin to intratumoral natural killer and CD8+ T cells considered beneficial to the patient. Indeed, ongoing remission post-surgery was significantly associated with the numbers of CD45RA-CD27- effector memory Vδ1 T cells in tumors and, most strikingly, with the numbers of CD103+ tissue-resident Vδ1 T cells in nonmalignant lung tissues. Our findings offer basic insights into human body surface immunology that collectively support integrating Vδ1 T cell biology into immunotherapeutic strategies for nonsmall cell lung cancer.
Collapse
Affiliation(s)
- Yin Wu
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK.
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, UK.
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK.
| | - Dhruva Biswas
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Bill Lyons Informatics Centre, University College London Cancer Institute, London, UK
| | - Ieva Usaite
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Mihaela Angelova
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Stefan Boeing
- Bioinformatics & Biostatistics and Software Development & Machine Learning Team, The Francis Crick Institute, London, UK
| | - Takahiro Karasaki
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Selvaraju Veeriah
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Justyna Czyzewska-Khan
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Cienne Morton
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Magdalene Joseph
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, UK
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| | - Sonya Hessey
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Metastasis Lab, University College London Cancer Institute, London, UK
| | - James Reading
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
| | - Andrew Georgiou
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
| | - Maise Al-Bakir
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Nicholas McGranahan
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Genome Evolution Research Group, University College London Cancer Institute, London, UK
| | - Mariam Jamal-Hanjani
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Metastasis Lab, University College London Cancer Institute, London, UK
| | - Allan Hackshaw
- Cancer Research UK & University College London Cancer Trials Centre, University College London, London, UK
| | - Sergio A Quezada
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
| | - Adrian C Hayday
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, UK.
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK.
| | - Charles Swanton
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
26
|
Mettelman RC, Allen EK, Thomas PG. Mucosal immune responses to infection and vaccination in the respiratory tract. Immunity 2022; 55:749-780. [PMID: 35545027 PMCID: PMC9087965 DOI: 10.1016/j.immuni.2022.04.013] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 01/25/2023]
Abstract
The lungs are constantly exposed to inhaled debris, allergens, pollutants, commensal or pathogenic microorganisms, and respiratory viruses. As a result, innate and adaptive immune responses in the respiratory tract are tightly regulated and are in continual flux between states of enhanced pathogen clearance, immune-modulation, and tissue repair. New single-cell-sequencing techniques are expanding our knowledge of airway cellular complexity and the nuanced connections between structural and immune cell compartments. Understanding these varied interactions is critical in treatment of human pulmonary disease and infections and in next-generation vaccine design. Here, we review the innate and adaptive immune responses in the lung and airways following infection and vaccination, with particular focus on influenza virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The ongoing SARS-CoV-2 pandemic has put pulmonary research firmly into the global spotlight, challenging previously held notions of respiratory immunity and helping identify new populations at high risk for respiratory distress.
Collapse
Affiliation(s)
- Robert C Mettelman
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - E Kaitlynn Allen
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
27
|
Szylar G, Wysoczanski R, Marshall H, Marks DJB, José R, Ehrenstein MR, Brown JS. A novel Streptococcus pneumoniae human challenge model demonstrates Treg lymphocyte recruitment to the infection site. Sci Rep 2022; 12:3990. [PMID: 35256717 PMCID: PMC8901783 DOI: 10.1038/s41598-022-07914-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/14/2022] [Indexed: 12/04/2022] Open
Abstract
To investigate local tissue responses to infection we have developed a human model of killed Streptococcus pneumoniae challenge by intradermal injection into the forearm. S. pneumoniae intradermal challenge caused an initial local influx of granulocytes and increases in TNF, IL6 and CXCL8. However, by 48 h lymphocytes were the dominant cell population, mainly consisting of CD4 and CD8 T cells. Increases in local levels of IL17 and IL22 and the high proportion of CD4 cells that were CCR6+ suggested a significant Th17 response. Furthermore, at 48 h the CD4 population contained a surprisingly high proportion of likely memory Treg cells (CCR6 positive and CD45RA negative CD4+CD25highCD127low cells) at 39%. These results demonstrate that the intradermal challenge model can provide novel insights into the human response to S. pneumoniae and that Tregs form a substantial contribution of the normal human lymphocyte response to infection with this important pathogen.
Collapse
Affiliation(s)
- Gabriella Szylar
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, Rayne Building, 5 University Street, London, WC1E 6JF, UK
| | - Riccardo Wysoczanski
- Centre for Molecular Medicine, UCL Division of Medicine, Rayne Institute, 5 University Street, London, WC1E 6JF, UK
| | - Helina Marshall
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, Rayne Building, 5 University Street, London, WC1E 6JF, UK
| | - Daniel J B Marks
- Centre for Molecular Medicine, UCL Division of Medicine, Rayne Institute, 5 University Street, London, WC1E 6JF, UK
| | - Ricardo José
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, Rayne Building, 5 University Street, London, WC1E 6JF, UK
| | - Michael R Ehrenstein
- Centre for Rheumatology, UCL Division of Medicine, Rayne Building, 5 University Street, London, WC1E 6JF, UK
| | - Jeremy S Brown
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, Rayne Building, 5 University Street, London, WC1E 6JF, UK.
| |
Collapse
|
28
|
Cendón C, Du W, Durek P, Liu YC, Alexander T, Serene L, Yang X, Gasparoni G, Salhab A, Nordström K, Lai T, Schulz AR, Rao A, Heinz GA, Stefanski AL, Claußnitzer A, Siewert K, Dörner T, Chang HD, Volk HD, Romagnani C, Qin Z, Hardt S, Perka C, Reinke S, Walter J, Mashreghi MF, Thurley K, Radbruch A, Dong J. Resident memory CD4+ T lymphocytes mobilize from bone marrow to contribute to a systemic secondary immune reaction. Eur J Immunol 2022; 52:737-752. [PMID: 35245389 DOI: 10.1002/eji.202149726] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/27/2022] [Accepted: 03/01/2022] [Indexed: 11/12/2022]
Abstract
Resident memory T lymphocytes (TRM ) of epithelial tissues and the bone marrow protect their host tissue. To what extent these cells are mobilized and contribute to systemic immune reactions is less clear. Here we show that in secondary immune reactions to the measles-mumps-rubella (MMR) vaccine, CD4+ TRM are mobilized into the blood within 16 to 48 hours after immunization in humans. This mobilization of TRM is cognate: TRM recognizing other antigens are not mobilized, unless they cross-react with the vaccine. We also demonstrate through methylome analyses that TRM are mobilized from the bone marrow. These mobilized cells make significant contribution to the systemic immune reaction, as evidenced by their T-cell receptor Vβ clonotypes represented among the newly generated circulating memory T-cells, 14 days after vaccination. Thus, TRM of the bone marrow confer not only local, but also systemic immune memory. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Carla Cendón
- Cell Biology, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Weijie Du
- Cell Biology, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Pawel Durek
- Cell Biology, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Yuk-Chien Liu
- Cell Biology, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Tobias Alexander
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Lindsay Serene
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Xinyi Yang
- Otto-Warburg-Laboratory, Computational Epigenomics, Max Planck Institute for Molecular Genetics, Berlin, 14195, Germany
| | - Gilles Gasparoni
- Department of Genetics, University of Saarland (UdS), Campus, Saarbrücken, 66123, Germany
| | - Abdulrahman Salhab
- Department of Genetics, University of Saarland (UdS), Campus, Saarbrücken, 66123, Germany
| | - Karl Nordström
- Department of Genetics, University of Saarland (UdS), Campus, Saarbrücken, 66123, Germany
| | - Tina Lai
- Cell Biology, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Axel R Schulz
- Mass Cytometry, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Anna Rao
- Cell Biology, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Gitta A Heinz
- Therapeutic Gene Regulation, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Ana L Stefanski
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Anne Claußnitzer
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Katherina Siewert
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Thomas Dörner
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Hyun-Dong Chang
- Cell Biology, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany.,Schwiete-Laboratory for Microbiota and Inflammation, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Hans-Dieter Volk
- Institute for Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,BIH Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Chiara Romagnani
- Innate Immunity, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany.,Medical Department / Gastroenterology, Infectiology and Rheumatology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Zhihai Qin
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Bejing, China.,University of Chinese Academy of Sciences, Bejing, China.,Zhengzhou University, Zhengzhou, China
| | - Sebastian Hardt
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Carsten Perka
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Simon Reinke
- BIH Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jörn Walter
- Department of Genetics, University of Saarland (UdS), Campus, Saarbrücken, 66123, Germany
| | - Mir-F Mashreghi
- Therapeutic Gene Regulation, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany.,BIH Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Kevin Thurley
- Systems Biology of Inflammation, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany.,Institute for Theoretical Biology, Humboldt University Berlin, Germany
| | - Andreas Radbruch
- Cell Biology, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Jun Dong
- Cell Biology, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| |
Collapse
|
29
|
Martini V, Edmans M, Gubbins S, Jayaraman S, Paudyal B, Morgan S, McNee A, Morin T, Rijal P, Gerner W, Sewell AK, Inoue R, Bailey M, Connelley T, Charleston B, Townsend A, Beverley P, Tchilian E. Spatial, temporal and molecular dynamics of swine influenza virus-specific CD8 tissue resident memory T cells. Mucosal Immunol 2022; 15:428-442. [PMID: 35145208 PMCID: PMC9038527 DOI: 10.1038/s41385-021-00478-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/23/2021] [Accepted: 12/08/2021] [Indexed: 02/04/2023]
Abstract
For the first time we have defined naïve, central memory, effector memory and differentiated effector porcine CD8 T cells and analyzed their distribution in lymphoid and respiratory tissues after influenza infection or immunization, using peptide-MHC tetramers of three influenza nucleoprotein (NP) epitopes. The hierarchy of response to the three epitopes changes during the response in different tissues. Most NP-specific CD8 T cells in broncho-alveolar lavage (BAL) and lung are tissue resident memory cells (TRM) that express CD69 and downregulate CD45RA and CCR7. NP-specific cells isolated from BAL express genes characteristic of TRM, but gene expression differs at 7, 21 and 63 days post infection. In all tissues the frequency of NP-specific CD8 cells declines over 63 days almost to background levels but is best maintained in BAL. The kinetic of influenza specific memory CD8 T cell in this natural host species differs from that in small animal models.
Collapse
Affiliation(s)
- Veronica Martini
- The Pirbright Institute, Pirbright, UK.
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
- Institute for Research in Biomedicine, Bellinzona, Switzerland.
| | | | | | | | | | | | | | - Théo Morin
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Pramila Rijal
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | | | - Andrew K Sewell
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Ryo Inoue
- Laboratory of Animal Science, Setsunan University, Osaka, Japan
| | - Mick Bailey
- Bristol Veterinary School, University of Bristol, Langford, UK
| | | | | | - Alain Townsend
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Peter Beverley
- National Heart and Lung Institute, St Mary's Campus, Imperial College, London, UK
| | | |
Collapse
|
30
|
Whitesell JC, Lindsay RS, Olivas-Corral JG, Yannacone SF, Schoenbach MH, Lucas ED, Friedman RS. Islet Lymphocytes Maintain a Stable Regulatory Phenotype Under Homeostatic Conditions and Metabolic Stress. Front Immunol 2022; 13:814203. [PMID: 35145521 PMCID: PMC8821107 DOI: 10.3389/fimmu.2022.814203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/04/2022] [Indexed: 11/25/2022] Open
Abstract
T cells and B cells have been identified in human and murine islets, but the phenotype and role of islet lymphocytes is unknown. Resident immune populations set the stage for responses to inflammation in the islets during homeostasis and diabetes. Thus, we sought to identify the phenotype and effector function of islet lymphocytes to better understand their role in normal islets and in islets under metabolic stress. Lymphocytes were located in the islet parenchyma, and were comprised of a mix of naïve, activated, and memory T cell and B cell subsets, with an enrichment for regulatory B cell subsets. Use of a Nur77 reporter indicated that CD8 T cells and B cells both received local antigen stimulus, indicating that they responded to antigens present in the islets. Analysis of effector function showed that islet T cells and B cells produced the regulatory cytokine IL-10. The regulatory phenotype of islet T cells and B cells and their response to local antigenic stimuli remained stable under conditions of metabolic stress in the diet induced obesity (DIO) model. T cells present in human islets retained a similar activated and memory phenotype in non-diabetic and T2D donors. Under steady-state conditions, islet T cells and B cells have a regulatory phenotype, and thus may play a protective role in maintaining tissue homeostasis.
Collapse
Affiliation(s)
- Jennifer C. Whitesell
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Barbara Davis Center for Diabetes, Aurora, CO, United States
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, United States
| | - Robin S. Lindsay
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, United States
| | - Jessica G. Olivas-Corral
- Barbara Davis Center for Diabetes, Aurora, CO, United States
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, United States
| | - Seth F. Yannacone
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, United States
| | - Mary H. Schoenbach
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, United States
| | - Erin D. Lucas
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Rachel S. Friedman
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Barbara Davis Center for Diabetes, Aurora, CO, United States
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, United States
| |
Collapse
|
31
|
Wang Y, Wang L, Fu C, Wang X, Zuo S, Shu C, Shan Y, He J, Zhou Q, Li W, Yang YG, Hu Z, Hua S. Exploration of Human Lung-Resident Immunity and Response to Respiratory Viral Immunization in a Humanized Mouse Model. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:420-428. [PMID: 34903640 DOI: 10.4049/jimmunol.2100122] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 11/04/2021] [Indexed: 06/14/2023]
Abstract
There are urgent needs for humanized mouse models of viral respiratory diseases to study immunopathogenesis and therapeutic interventions. Although human immune system (HIS) mice permit analysis in real time of human immune responses in vivo, evolutionary divergences preclude their usefulness for the respiratory viruses that do not infect mouse lungs. In this study, we sought to use HIS mice with human lung (HL) tissue xenografts (HISL mice) to address this issue. The grafted HL tissue maintained histologically normal structure, and populated with human tissue-resident immune cells, including CD11c+ dendritic cells and CD4+ and CD8+ tissue-resident memory T cells. HISL mice showed a marked expansion of tissue-resident memory T cells and generation of viral Ag-specific T cells in the HL xenografts, and production of antiviral IgM and IgG Abs upon immunization of the HL xenograft by H1N1 influenza viruses. RNA-seq analysis on H1N1-infected and control HL xenografts identified a total of 5089 differentially expressed genes with enrichments for genes involved in respiratory diseases, viral infections, and associated immune responses. Furthermore, prophylactic viral exposures resulted in protection against subsequent lethal challenge by intranasal viral inoculation. This study supports the usefulness of this preclinical model in exploring the immunopathology and therapies of respiratory viral diseases.
Collapse
Affiliation(s)
- Yixin Wang
- Department of Respiration, Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Lei Wang
- Department of Respiration, Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Cong Fu
- Department of Respiration, Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Xue Wang
- Department of Respiration, Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Siyao Zuo
- Department of Respiration, Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Chang Shu
- Department of Respiration, Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Yanhong Shan
- Department of Respiration, Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Jin He
- Department of Respiration, Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China; and
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China; and
| | - Yong-Guang Yang
- Department of Respiration, Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, China;
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
- International Center of Future Science, Jilin University, Changchun, China
| | - Zheng Hu
- Department of Respiration, Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, China;
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Shucheng Hua
- Department of Respiration, Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, China;
| |
Collapse
|
32
|
Zheng MZM, Wakim LM. Tissue resident memory T cells in the respiratory tract. Mucosal Immunol 2022; 15:379-388. [PMID: 34671115 PMCID: PMC8526531 DOI: 10.1038/s41385-021-00461-z] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/27/2021] [Accepted: 10/01/2021] [Indexed: 02/04/2023]
Abstract
Owing to their capacity to rapidly spread across the population, airborne pathogens represent a significant risk to global health. Indeed, several of the past major global pandemics have been instigated by respiratory pathogens. A greater understanding of the immune cells tasked with protecting the airways from infection will allow for the development of strategies that curb the spread and impact of these airborne diseases. A specific subset of memory T-cell resident in both the upper and lower respiratory tract, termed tissue-resident memory (Trm), have been shown to play an instrumental role in local immune responses against a wide breadth of both viral and bacterial infections. In this review, we discuss factors that influence respiratory tract Trm development, longevity, and immune surveillance and explore vaccination regimes that harness these cells, such approaches represent exciting new strategies that may be utilized to tackle the next global pandemic.
Collapse
Affiliation(s)
- Ming Z. M. Zheng
- grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000 Australia
| | - Linda M. Wakim
- grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000 Australia
| |
Collapse
|
33
|
Omokanye A, Ong LC, Lebrero-Fernandez C, Bernasconi V, Schön K, Strömberg A, Bemark M, Saelens X, Czarnewski P, Lycke N. Clonotypic analysis of protective influenza M2e-specific lung resident Th17 memory cells reveals extensive functional diversity. Mucosal Immunol 2022; 15:717-729. [PMID: 35260804 PMCID: PMC8903128 DOI: 10.1038/s41385-022-00497-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 01/31/2022] [Accepted: 02/06/2022] [Indexed: 02/06/2023]
Abstract
The fate of tissue-resident memory CD4 T cells (Trm) has been incompletely investigated. Here we show that intranasal, but not parenteral, immunization with CTA1-3M2e-DD stimulated M2e-specific Th17 Trm cells, which conferred strong protection against influenza virus infection in the lung. These cells rapidly expanded upon infection and effectively restricted virus replication as determined by CD4 T cell depletion studies. Single-cell RNAseq transcriptomic and TCR VDJ-analysis of M2e-tetramer-sorted CD4 T cells on day 3 and 8 post infection revealed complete Th17-lineage dominance (no Th1 or Tregs) with extensive functional diversity and expression of gene markers signifying mature resident Trm cells (Cd69, Nfkbid, Brd2, FosB). Unexpectedly, the same TCR clonotype hosted cells with different Th17 subcluster functions (IL-17, IL-22), regulatory and cytotoxic cells, suggesting a tissue and context-dependent differentiation of reactivated Th17 Trm cells. A gene set enrichment analysis demonstrated up-regulation of regulatory genes (Lag3, Tigit, Ctla4, Pdcd1) in M2e-specific Trm cells on day 8, indicating a tissue damage preventing function. Thus, contrary to current thinking, lung M2e-specific Th17 Trm cells are sufficient for controlling infection and for protecting against tissue injury. These findings will have strong implications for vaccine development against respiratory virus infections and influenza virus infections, in particular.
Collapse
Affiliation(s)
- Ajibola Omokanye
- grid.8761.80000 0000 9919 9582Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Li Ching Ong
- grid.8761.80000 0000 9919 9582Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Cristina Lebrero-Fernandez
- grid.8761.80000 0000 9919 9582Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Valentina Bernasconi
- grid.8761.80000 0000 9919 9582Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Karin Schön
- grid.8761.80000 0000 9919 9582Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Anneli Strömberg
- grid.8761.80000 0000 9919 9582Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Mats Bemark
- grid.8761.80000 0000 9919 9582Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Xavier Saelens
- grid.5342.00000 0001 2069 7798VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium and Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Paulo Czarnewski
- grid.10548.380000 0004 1936 9377Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Nils Lycke
- grid.8761.80000 0000 9919 9582Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
34
|
Chang MH, Levescot A, Nelson-Maney N, Blaustein RB, Winden KD, Morris A, Wactor A, Balu S, Grieshaber-Bouyer R, Wei K, Henderson LA, Iwakura Y, Clark RA, Rao DA, Fuhlbrigge RC, Nigrovic PA. Arthritis flares mediated by tissue-resident memory T cells in the joint. Cell Rep 2021; 37:109902. [PMID: 34706228 DOI: 10.1016/j.celrep.2021.109902] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 08/20/2021] [Accepted: 10/05/2021] [Indexed: 11/17/2022] Open
Abstract
Rheumatoid arthritis is a systemic autoimmune disease, but disease flares typically affect only a subset of joints, distributed in a distinctive pattern for each patient. Pursuing this intriguing pattern, we show that arthritis recurrence is mediated by long-lived synovial resident memory T cells (TRM). In three murine models, CD8+ cells bearing TRM markers remain in previously inflamed joints during remission. These cells are bona fide TRM, exhibiting a failure to migrate between joints, preferential uptake of fatty acids, and long-term residency. Disease flares result from TRM activation by antigen, leading to CCL5-mediated recruitment of circulating effector cells. Correspondingly, TRM depletion ameliorates recurrence in a site-specific manner. Human rheumatoid arthritis joint tissues contain a comparable CD8+-predominant TRM population, which is most evident in late-stage leukocyte-poor synovium, exhibiting limited T cell receptor diversity and a pro-inflammatory transcriptomic signature. Together, these findings establish synovial TRM as a targetable mediator of disease chronicity in autoimmune arthritis.
Collapse
Affiliation(s)
- Margaret H Chang
- Division of Immunology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Anaïs Levescot
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Nathan Nelson-Maney
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Rachel B Blaustein
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Kellen D Winden
- Department of Neurology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Allyn Morris
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Alexandra Wactor
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Spoorthi Balu
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Ricardo Grieshaber-Bouyer
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Kevin Wei
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Lauren A Henderson
- Division of Immunology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Yoichiro Iwakura
- Center for Experimental Animal Models, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba 278-0022, Japan
| | - Rachael A Clark
- Department of Dermatology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Deepak A Rao
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Robert C Fuhlbrigge
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| | - Peter A Nigrovic
- Division of Immunology, Boston Children's Hospital, Boston, MA 02115, USA; Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
35
|
Dornieden T, Sattler A, Pascual-Reguant A, Ruhm AH, Thiel LG, Bergmann YS, Thole LML, Köhler R, Kühl AA, Hauser AE, Boral S, Friedersdorff F, Kotsch K. Signatures and Specificity of Tissue-Resident Lymphocytes Identified in Human Renal Peritumor and Tumor Tissue. J Am Soc Nephrol 2021; 32:2223-2241. [PMID: 34074699 PMCID: PMC8729844 DOI: 10.1681/asn.2020101528] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 04/21/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Tissue-resident memory T (TRM) cells are known to be important for the first line of defense in mucosa-associated tissues. However, the composition, localization, effector function, and specificity of TRM cells in the human kidney and their relevance for renal pathology have not been investigated. METHODS Lymphocytes derived from blood, renal peritumor samples, and tumor samples were phenotypically and functionally assessed by applying flow cytometry and highly advanced histology (multi-epitope ligand cartography) methods. RESULTS CD69+CD103+CD8+ TRM cells in kidneys display an inflammatory profile reflected by enhanced IL-2, IL-17, and TNFα production, and their frequencies correlate with increasing age and kidney function. We further identified mucosa-associated invariant T and CD56dim and CD56bright natural killer cells likewise expressing CD69 and CD103, the latter significantly enriched in renal tumor tissues. CD8+ TRM cell frequencies were not elevated in kidney tumor tissue, but they coexpressed PD-1 and TOX and produced granzyme B. Tumor-derived CD8+ TRM cells from patients with metastases were functionally impaired. Both CD69+CD103-CD4+ and CD69+CD103-CD8+ TRM cells form distinct clusters in tumor tissues in proximity to antigen-presenting cells. Finally, EBV, CMV, BKV, and influenza antigen-specific CD8+ T cells were enriched in the effector memory T cell population in the kidney. CONCLUSIONS Our data provide an extensive overview of TRM cells' phenotypes and functions in the human kidney for the first time, pointing toward their potential relevance in kidney transplantation and kidney disease.
Collapse
Affiliation(s)
- Theresa Dornieden
- Department of General and Visceral Surgery, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Arne Sattler
- Department of General and Visceral Surgery, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | | | - Annkathrin Helena Ruhm
- Department of General and Visceral Surgery, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Lion Gabriel Thiel
- Department of General and Visceral Surgery, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Yasmin Samira Bergmann
- Department of General and Visceral Surgery, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Linda Marie Laura Thole
- Department of General and Visceral Surgery, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ralf Köhler
- German Rheumatism Research Centre Berlin, Leibniz Institute, Berlin, Germany
| | - Anja Andrea Kühl
- iPath.Berlin—Immunopathology for Experimental Models, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Anja Erika Hauser
- German Rheumatism Research Centre Berlin, Leibniz Institute, Berlin, Germany,Department of Rheumatology and Clinical Immunology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sengül Boral
- Department of Pathology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Frank Friedersdorff
- Department of Urology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Katja Kotsch
- Department of General and Visceral Surgery, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
36
|
Schunkert EM, Shah PN, Divito SJ. Skin Resident Memory T Cells May Play Critical Role in Delayed-Type Drug Hypersensitivity Reactions. Front Immunol 2021; 12:654190. [PMID: 34497600 PMCID: PMC8419326 DOI: 10.3389/fimmu.2021.654190] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 08/06/2021] [Indexed: 12/31/2022] Open
Abstract
Delayed-type drug hypersensitivity reactions (dtDHR) are immune-mediated reactions with skin and visceral manifestations ranging from mild to severe. Clinical care is negatively impacted by a limited understanding of disease pathogenesis. Though T cells are believed to orchestrate disease, the type of T cell and the location and mechanism of T cell activation remain unknown. Resident memory T cells (TRM) are a unique T cell population potentially well situated to act as key mediators in disease pathogenesis, but significant obstacles to defining, identifying, and testing TRM in dtDHR preclude definitive conclusions at this time. Deeper mechanistic interrogation to address these unanswered questions is necessary, as involvement of TRM in disease has significant implications for prediction, diagnosis, and treatment of disease.
Collapse
|
37
|
Emmanuel T, Mistegård J, Bregnhøj A, Johansen C, Iversen L. Tissue-Resident Memory T Cells in Skin Diseases: A Systematic Review. Int J Mol Sci 2021; 22:ijms22169004. [PMID: 34445713 PMCID: PMC8396505 DOI: 10.3390/ijms22169004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/09/2021] [Accepted: 08/17/2021] [Indexed: 02/06/2023] Open
Abstract
In health, the non-recirculating nature and long-term persistence of tissue-resident memory T cells (TRMs) in tissues protects against invading pathogens. In disease, pathogenic TRMs contribute to the recurring traits of many skin diseases. We aimed to conduct a systematic literature review on the current understanding of the role of TRMs in skin diseases and identify gaps as well as future research paths. EMBASE, PubMed, SCOPUS, Web of Science, Clinicaltrials.gov and WHO Trials Registry were searched systematically for relevant studies from their inception to October 2020. Included studies were reviewed independently by two authors. This study was conducted in accordance with the PRISMA-S guidelines. This protocol was registered with the PROSPERO database (ref: CRD42020206416). We identified 96 studies meeting the inclusion criteria. TRMs have mostly been investigated in murine skin and in relation to infectious skin diseases. Pathogenic TRMs have been characterized in various skin diseases including psoriasis, vitiligo and cutaneous T-cell lymphoma. Studies are needed to discover biomarkers that may delineate TRMs poised for pathogenic activity in skin diseases and establish to which extent TRMs are contingent on the local skin microenvironment. Additionally, future studies may investigate the effects of current treatments on the persistence of pathogenic TRMs in human skin.
Collapse
|
38
|
Intranasal Nanoparticle Vaccination Elicits a Persistent, Polyfunctional CD4 T Cell Response in the Murine Lung Specific for a Highly Conserved Influenza Virus Antigen That Is Sufficient To Mediate Protection from Influenza Virus Challenge. J Virol 2021; 95:e0084121. [PMID: 34076479 DOI: 10.1128/jvi.00841-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Lung-localized CD4 T cells play a critical role in the control of influenza virus infection and can provide broadly protective immunity. However, current influenza vaccination strategies primarily target influenza hemagglutinin (HA) and are administered peripherally to induce neutralizing antibodies. We have used an intranasal vaccination strategy targeting the highly conserved influenza nucleoprotein (NP) to elicit broadly protective lung-localized CD4 T cell responses. The vaccine platform consists of a self-assembling nanolipoprotein particle (NLP) linked to NP with an adjuvant. We have evaluated the functionality, in vivo localization, and persistence of the T cells elicited. Our study revealed that intranasal vaccination elicits a polyfunctional subset of lung-localized CD4 T cells that persist long term. A subset of these lung CD4 T cells localize to the airway, where they can act as early responders following encounter with cognate antigen. Polyfunctional CD4 T cells isolated from airway and lung tissue produce significantly more effector cytokines IFN-γ and TNF-α, as well as cytotoxic functionality. When adoptively transferred to naive recipients, CD4 T cells from NLP:NP-immunized lung were sufficient to mediate 100% survival from lethal challenge with H1N1 influenza virus. IMPORTANCE Exploiting new, more efficacious strategies to potentiate influenza virus-specific immune responses is important, particularly for at-risk populations. We have demonstrated the promise of direct intranasal protein vaccination to establish long-lived immunity in the lung with CD4 T cells that possess features and positioning in the lung that are associated with both immediate and long-term immunity, as well as demonstrating direct protective potential.
Collapse
|
39
|
Del Campo J, Bouley J, Chevandier M, Rousset C, Haller M, Indalecio A, Guyon-Gellin D, Le Vert A, Hill F, Djebali S, Leverrier Y, Marvel J, Combadière B, Nicolas F. OVX836 Heptameric Nucleoprotein Vaccine Generates Lung Tissue-Resident Memory CD8+ T-Cells for Cross-Protection Against Influenza. Front Immunol 2021; 12:678483. [PMID: 34177921 PMCID: PMC8223747 DOI: 10.3389/fimmu.2021.678483] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/18/2021] [Indexed: 11/23/2022] Open
Abstract
Tissue-resident memory (TRM) CD8+ T-cells play a crucial role in the protection against influenza infection but remain difficult to elicit using recombinant protein vaccines. OVX836 is a recombinant protein vaccine, obtained by the fusion of the DNA sequence of the influenza A nucleoprotein (NP) to the DNA sequence of the OVX313 heptamerization domain. We previously demonstrated that OVX836 provides broad-spectrum protection against influenza viruses. Here, we show that OVX836 intramuscular (IM) immunization induces higher numbers of NP-specific IFNγ-producing CD8+ T-cells in the lung, compared to mutant NP (NPm) and wild-type NP (NPwt), which form monomeric and trimeric structures, respectively. OVX836 induces cytotoxic CD8+ T-cells and high frequencies of lung TRM CD8+ T-cells, while inducing solid protection against lethal influenza virus challenges for at least 90 days. Adoptive transfer experiments demonstrated that protection against diverse influenza subtypes is mediated by NP-specific CD8+ T-cells isolated from the lung and spleen following OVX836 vaccination. OVX836 induces a high number of NP-specific lung CD8+ TRM-cells for long-term protection against influenza viruses.
Collapse
Affiliation(s)
| | - Julien Bouley
- Research and Development Department, Osivax, Lyon, France
| | | | - Carine Rousset
- Research and Development Department, Osivax, Lyon, France
| | | | | | | | | | - Fergal Hill
- Research and Development Department, Osivax, Lyon, France
| | - Sophia Djebali
- Immunity and Cytotoxic Lymphocytes Team, Centre International de Recherche en Infectiologie, INSERM, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Université de Lyon, Lyon, France
| | - Yann Leverrier
- Immunity and Cytotoxic Lymphocytes Team, Centre International de Recherche en Infectiologie, INSERM, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Université de Lyon, Lyon, France
| | - Jacqueline Marvel
- Immunity and Cytotoxic Lymphocytes Team, Centre International de Recherche en Infectiologie, INSERM, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Université de Lyon, Lyon, France
| | - Béhazine Combadière
- Sorbonne Université, Inserm, Centre d'Immunologie et des Maladies Infectieuses (Cimi-Paris), Paris, France
| | | |
Collapse
|
40
|
Marceaux C, Weeden CE, Gordon CL, Asselin-Labat ML. Holding our breath: the promise of tissue-resident memory T cells in lung cancer. Transl Lung Cancer Res 2021; 10:2819-2829. [PMID: 34295680 PMCID: PMC8264348 DOI: 10.21037/tlcr-20-819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 08/10/2020] [Indexed: 12/12/2022]
Abstract
T cell memory is critical in controlling infection and plays an important role in anti-tumor responses in solid cancers. While effector memory and central memory T cells circulate and patrol non-lymphoid and lymphoid organs respectively, tissue resident memory T cells (TRM) permanently reside in tissues and provide local protective immune responses. In a number of solid tumors, tumor-specific T cell memory responses likely play an important role in keeping tumors in check, limiting cancer cell dissemination and reducing risk of relapse. In non-small cell lung cancer (NSCLC), a subset of tumor infiltrating lymphocytes (TILs) display phenotypic and functional characteristics associated with lung TRM (TRM-like TILs), including the expression of tissue-specific homing molecules and immune exhaustion markers. High infiltration of TRM-like TILs correlates with better survival outcomes for lung cancer patients, indicating that TRM-like TILs may contribute to anti-tumor responses. However, a number of TRM-like TILs do not display tumor specificity and the exact role of TRM-like TILs in mediating anti-tumor response in lung cancer is unclear. Here we review the characteristics of TRM-like TILs in lung cancer, the role these cells play in mediating anti-tumor immunity and the therapeutic implications of TRM-like TILs in the use and development of immunotherapy for lung cancer.
Collapse
Affiliation(s)
- Claire Marceaux
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Clare E Weeden
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Claire L Gordon
- Department of Microbiology and Immunology, The Peter Doherty Institute, The University of Melbourne, Parkville, Australia.,Department of Infectious Diseases, Austin Health, Heidelberg, Australia
| | - Marie-Liesse Asselin-Labat
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Australia.,Cancer Early Detection and Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
41
|
Chang HD, Radbruch A. Maintenance of quiescent immune memory in the bone marrow. Eur J Immunol 2021; 51:1592-1601. [PMID: 34010475 DOI: 10.1002/eji.202049012] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Indexed: 12/25/2022]
Abstract
The adaptive immune system has the important ability to generate and maintain a memory for antigens once encountered. Recent progress in understanding the organization of immunological memory has challenged the established paradigm of maintenance of memory by restless, circulating, and "homeostatically" proliferating lymphocytes. Among other tissues, the bone marrow has emerged as a preferred resting place for memory lymphocytes providing both local and systemic long-term protection. Why the bone marrow? There, mesenchymal stromal cells provide a privileged environment for quiescent memory B and T lymphocytes, the protagonists of secondary immune reactions, and for memory plasma cells providing persistent humoral immunity. In this review, we discuss the dedicated role of the bone marrow for the maintenance of memory lymphocytes and its implications for immunological memory.
Collapse
Affiliation(s)
- Hyun-Dong Chang
- Deutsches Rheuma-Forschungszentrum Berlin, a Leibniz Institute, Berlin, Germany.,Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Andreas Radbruch
- Deutsches Rheuma-Forschungszentrum Berlin, a Leibniz Institute, Berlin, Germany.,Charité Universitätsmedizin, Berlin, Germany
| |
Collapse
|
42
|
Barker KA, Etesami NS, Shenoy AT, Arafa EI, Lyon de Ana C, Smith NM, Martin IM, Goltry WN, Barron AM, Browning JL, Kathuria H, Belkina AC, Guillon A, Zhong X, Crossland NA, Jones MR, Quinton LJ, Mizgerd JP. Lung-resident memory B cells protect against bacterial pneumonia. J Clin Invest 2021; 131:e141810. [PMID: 34060477 DOI: 10.1172/jci141810] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 04/14/2021] [Indexed: 12/22/2022] Open
Abstract
Lung-resident memory B cells (BRM cells) are elicited after influenza infections of mice, but connections to other pathogens and hosts - as well as their functional significance - have yet to be determined. We postulate that BRM cells are core components of lung immunity. To test this, we examined whether lung BRM cells are elicited by the respiratory pathogen pneumococcus, are present in humans, and are important in pneumonia defense. Lungs of mice that had recovered from pneumococcal infections did not contain organized tertiary lymphoid organs, but did have plasma cells and noncirculating memory B cells. The latter expressed distinctive surface markers (including CD69, PD-L2, CD80, and CD73) and were poised to secrete antibodies upon stimulation. Human lungs also contained B cells with a resident memory phenotype. In mice recovered from pneumococcal pneumonia, depletion of PD-L2+ B cells, including lung BRM cells, diminished bacterial clearance and the level of pneumococcus-reactive antibodies in the lung. These data define lung BRM cells as a common feature of pathogen-experienced lungs and provide direct evidence of a role for these cells in pulmonary antibacterial immunity.
Collapse
Affiliation(s)
| | | | | | | | | | - Nicole Ms Smith
- Pulmonary Center.,Department of Pathology and Laboratory Medicine, and
| | | | | | | | | | | | - Anna C Belkina
- Pulmonary Center.,Department of Pathology and Laboratory Medicine, and.,Flow Cytometry Core Facility, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Antoine Guillon
- Pulmonary Center.,Centre Hospitalier Régional Universitaire de (CHRU) de Tours, Service de Médecine Intensive Réanimation, INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, University of Tours, Tours, France
| | | | | | | | - Lee J Quinton
- Pulmonary Center.,Department of Microbiology.,Department of Medicine.,Department of Pathology and Laboratory Medicine, and
| | - Joseph P Mizgerd
- Pulmonary Center.,Department of Microbiology.,Department of Medicine.,Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
43
|
Santoni M, Tombesi F, Cimadamore A, Montironi R, Piva F. Conceptual Analogies Between Multi-Scale Feeding and Feedback Cycles in Supermassive Black Hole and Cancer Environments. Front Oncol 2021; 11:634818. [PMID: 34046340 PMCID: PMC8144721 DOI: 10.3389/fonc.2021.634818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 04/15/2021] [Indexed: 11/24/2022] Open
Abstract
Adopting three physically-motivated scales (“micro” – “meso” – “macro”, which refer to mpc – kpc – Mpc, respectively) is paramount for achieving a unified theory of multiphase active galactic nuclei feeding and feedback, and it represents a keystone for astrophysical simulations and observations in the upcoming years. In order to promote this multi-scale idea, we have decided to adopt an interdisciplinary approach, exploring the possible conceptual similarities between supermassive black hole feeding and feedback cycles and the dynamics occurring in human cancer microenvironment.
Collapse
Affiliation(s)
| | - Francesco Tombesi
- Physics Department, University of Rome "Tor Vergata", Rome, Italy.,Istituto Nazionale di Astrofisica, Astronomical Observatory of Rome, Monte Porzio Catone, Italy.,Department of Astronomy, University of Maryland Department of Astronomy, College Park, Maryland, MD, United States.,National Aeronautics and Space Administration/Goddard Space Flight Center, Greenbelt, MD, United States
| | - Alessia Cimadamore
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, United Hospitals, Ancona, Italy
| | - Rodolfo Montironi
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, United Hospitals, Ancona, Italy
| | - Francesco Piva
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
44
|
van Gisbergen KPJM, Zens KD, Münz C. T-cell memory in tissues. Eur J Immunol 2021; 51:1310-1324. [PMID: 33837521 DOI: 10.1002/eji.202049062] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/01/2021] [Accepted: 04/07/2021] [Indexed: 12/15/2022]
Abstract
Immunological memory equips our immune system to respond faster and more effectively against reinfections. This acquired immunity was originally attributed to long-lived, memory T and B cells with body wide access to peripheral and secondary lymphoid tissues. In recent years, it has been realized that both innate and adaptive immunity to a large degree depends on resident immune cells that act locally in barrier tissues including tissue-resident memory T cells (Trm). Here, we will discuss the phenotype of these Trm in mice and humans, the tissues and niches that support them, and their function, plasticity, and transcriptional control. Their unique properties enable Trm to achieve long-lived immunological memory that can be deposited in nearly every organ in response to acute and persistent infection, and in response to cancer. However, Trm may also induce substantial immunopathology in allergic and autoimmune disease if their actions remain unchecked. Therefore, inhibitory and activating stimuli appear to balance the actions of Trm to ensure rapid proinflammatory responses upon infection and to prevent damage to host tissues under steady state conditions.
Collapse
Affiliation(s)
- Klaas P J M van Gisbergen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Kyra D Zens
- Viral Immunobiology, University of Zurich, Zurich, Switzerland.,Department of Public and Global Health, Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland.,Department of Infectious Diseases and Hospital Epidemiology, University Hospital, Zurich, Switzerland
| | - Christian Münz
- Viral Immunobiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
45
|
Blair TC, Alice AF, Zebertavage L, Crittenden MR, Gough MJ. The Dynamic Entropy of Tumor Immune Infiltrates: The Impact of Recirculation, Antigen-Specific Interactions, and Retention on T Cells in Tumors. Front Oncol 2021; 11:653625. [PMID: 33968757 PMCID: PMC8101411 DOI: 10.3389/fonc.2021.653625] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
Analysis of tumor infiltration using conventional methods reveals a snapshot view of lymphocyte interactions with the tumor environment. However, lymphocytes have the unique capacity for continued recirculation, exploring varied tissues for the presence of cognate antigens according to inflammatory triggers and chemokine gradients. We discuss the role of the inflammatory and cellular makeup of the tumor environment, as well as antigen expressed by cancer cells or cross-presented by stromal antigen presenting cells, on recirculation kinetics of T cells. We aim to discuss how current cancer therapies may manipulate lymphocyte recirculation versus retention to impact lymphocyte exclusion in the tumor.
Collapse
Affiliation(s)
- Tiffany C Blair
- Molecular Microbiology and Immunology, Oregon Health and Sciences University (OHSU), Portland, OR, United States.,Earle A. Chiles Research Institute, Providence Cancer Institute, Providence Portland Medical Center, Portland, OR, United States
| | - Alejandro F Alice
- Earle A. Chiles Research Institute, Providence Cancer Institute, Providence Portland Medical Center, Portland, OR, United States
| | - Lauren Zebertavage
- Molecular Microbiology and Immunology, Oregon Health and Sciences University (OHSU), Portland, OR, United States.,Earle A. Chiles Research Institute, Providence Cancer Institute, Providence Portland Medical Center, Portland, OR, United States
| | - Marka R Crittenden
- Earle A. Chiles Research Institute, Providence Cancer Institute, Providence Portland Medical Center, Portland, OR, United States.,The Oregon Clinic, Portland, OR, United States
| | - Michael J Gough
- Earle A. Chiles Research Institute, Providence Cancer Institute, Providence Portland Medical Center, Portland, OR, United States
| |
Collapse
|
46
|
Goplen NP, Cheon IS, Sun J. Age-Related Dynamics of Lung-Resident Memory CD8 + T Cells in the Age of COVID-19. Front Immunol 2021; 12:636118. [PMID: 33854506 PMCID: PMC8039372 DOI: 10.3389/fimmu.2021.636118] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/26/2021] [Indexed: 12/13/2022] Open
Abstract
Following respiratory viral infections or local immunizations, lung resident-memory T cells (TRM) of the CD8 lineage provide protection against the same pathogen or related pathogens with cross-reactive T cell epitopes. Yet, it is now clear that, if homeostatic controls are lost following viral pneumonia, CD8 TRM cells can mediate pulmonary pathology. We recently showed that the aging process can result in loss of homeostatic controls on CD8 TRM cells in the respiratory tract. This may be germane to treatment modalities in both influenza and coronavirus disease 2019 (COVID-19) patients, particularly, the portion that present with symptoms linked to long-lasting lung dysfunction. Here, we review the developmental cues and functionalities of CD8 TRM cells in viral pneumonia models with a particular focus on their capacity to mediate heterogeneous responses of immunity and pathology depending on immune status.
Collapse
Affiliation(s)
- Nick P Goplen
- Division of Pulmonary and Critical Medicine, Department of Medicine, Mayo Clinic, Rochester, MN, United States
| | - In Su Cheon
- Division of Pulmonary and Critical Medicine, Department of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Jie Sun
- Division of Pulmonary and Critical Medicine, Department of Medicine, Mayo Clinic, Rochester, MN, United States.,The Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, United States.,Department of Immunology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
47
|
Elashiry M, Elsayed R, Elashiry MM, Rashid MH, Ara R, Arbab AS, Elawady AR, Hamrick M, Liu Y, Zhi W, Lucas R, Vazquez J, Cutler CW. Proteomic Characterization, Biodistribution, and Functional Studies of Immune-Therapeutic Exosomes: Implications for Inflammatory Lung Diseases. Front Immunol 2021; 12:636222. [PMID: 33841418 PMCID: PMC8027247 DOI: 10.3389/fimmu.2021.636222] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/25/2021] [Indexed: 12/12/2022] Open
Abstract
Dendritic cell (DC)-derived exosomes (DC EXO), natural nanoparticles of endosomal origin, are under intense scrutiny in clinical trials for various inflammatory diseases. DC EXO are eobiotic, meaning they are well-tolerated by the host; moreover, they can be custom-tailored for immune-regulatory or -stimulatory functions, thus presenting attractive opportunities for immune therapy. Previously we documented the efficacy of immunoregulatory DCs EXO (regDCs EXO) as immunotherapy for inflammatory bone disease, in an in-vivo model. We showed a key role for encapsulated TGFβ1 in promoting a bone sparing immune response. However, the on- and off-target effects of these therapeutic regDC EXO and how target signaling in acceptor cells is activated is unclear. In the present report, therapeutic regDC EXO were analyzed by high throughput proteomics, with non-therapeutic EXO from immature DCs and mature DCs as controls, to identify shared and distinct proteins and potential off-target proteins, as corroborated by immunoblot. The predominant expression in regDC EXO of immunoregulatory proteins as well as proteins involved in trafficking from the circulation to peripheral tissues, cell surface binding, and transmigration, prompted us to investigate how these DC EXO are biodistributed to major organs after intravenous injection. Live animal imaging showed preferential accumulation of regDCs EXO in the lungs, followed by spleen and liver tissue. In addition, TGFβ1 in regDCs EXO sustained downstream signaling in acceptor DCs. Blocking experiments suggested that sustaining TGFβ1 signaling require initial interaction of regDCs EXO with TGFβ1R followed by internalization of regDCs EXO with TGFβ1-TGFβ1R complex. Finally, these regDCs EXO that contain immunoregulatory cargo and showed biodistribution to lungs could downregulate the main severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) target receptor, ACE2 on recipient lung parenchymal cells via TGFβ1 in-vitro. In conclusion, these results in mice may have important immunotherapeutic implications for lung inflammatory disorders.
Collapse
Affiliation(s)
- Mahmoud Elashiry
- Department of Periodontics, Dental College of Georgia at Augusta University, Augusta, GA, United States
| | - Ranya Elsayed
- Department of Periodontics, Dental College of Georgia at Augusta University, Augusta, GA, United States
| | - Mohamed M Elashiry
- Department of Periodontics, Dental College of Georgia at Augusta University, Augusta, GA, United States.,Department of Endodontics, College of Dentistry, Ainshams University, Cairo, Egypt
| | - Mohammad H Rashid
- Georgia Cancer Center, Department of Biochemistry and Molecular Biology, at Augusta University, Augusta, GA, United States
| | - Roxan Ara
- Georgia Cancer Center, Department of Biochemistry and Molecular Biology, at Augusta University, Augusta, GA, United States
| | - Ali S Arbab
- Georgia Cancer Center, Department of Biochemistry and Molecular Biology, at Augusta University, Augusta, GA, United States
| | - Ahmed R Elawady
- Department of Periodontics, Dental College of Georgia at Augusta University, Augusta, GA, United States
| | - Mark Hamrick
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Yutao Liu
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Wenbo Zhi
- Center of Biotechnology and Genomic Medicine, at Augusta University, Augusta, GA, United States
| | - Rudolf Lucas
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, United States.,Division of Pulmonary and Critical Care Medicine, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Jose Vazquez
- Division of Infectious Diseases, Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Christopher W Cutler
- Department of Periodontics, Dental College of Georgia at Augusta University, Augusta, GA, United States
| |
Collapse
|
48
|
Du W, Lenz D, Köhler R, Zhang E, Cendon C, Li J, Massoud M, Wachtlin J, Bodo J, Hauser AE, Radbruch A, Dong J. Rapid Isolation of Functional ex vivo Human Skin Tissue-Resident Memory T Lymphocytes. Front Immunol 2021; 12:624013. [PMID: 33828548 PMCID: PMC8019735 DOI: 10.3389/fimmu.2021.624013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/23/2021] [Indexed: 12/21/2022] Open
Abstract
Studies in animal models have shown that skin tissue-resident memory T (TRM) cells provide enhanced and immediate effector function at the site of infection. However, analyses of skin TRM cells in humans have been hindered by the lack of an optimized isolation protocol. Here, we present a combinatorial strategy-the 6-h collagenase IV digestion and gentle tissue dissociation – for rapid and efficient isolation of skin TRM cells with skin tissue-specific immune features. In comparison with paired blood circulating memory T cells, these ex vivo isolated skin T cells express typical TRM cell markers and display higher polyfunctional properties. Moreover, these isolated cells can also be assessed for longer periods of time in ex vivo cultures. Thus, the optimized isolation protocol provides a valuable tool for further understanding of human skin TRM cells, especially for direct comparison with peripheral blood T cells at the same sample collection time.
Collapse
Affiliation(s)
- Weijie Du
- Cell Biology, Deutsches Rheuma-Forschungszentrum Berlin, Institute of the Leibniz Association, Berlin, Germany
| | - Daniel Lenz
- Cell Biology, Deutsches Rheuma-Forschungszentrum Berlin, Institute of the Leibniz Association, Berlin, Germany
| | - Ralf Köhler
- Central Lab for Microscopy, Deutsches Rheuma-Forschungszentrum Berlin, Institute of the Leibniz Association, Berlin, Germany
| | | | - Carla Cendon
- Cell Biology, Deutsches Rheuma-Forschungszentrum Berlin, Institute of the Leibniz Association, Berlin, Germany
| | - Jinchan Li
- Cell Biology, Deutsches Rheuma-Forschungszentrum Berlin, Institute of the Leibniz Association, Berlin, Germany
| | - Mona Massoud
- Cell Biology, Deutsches Rheuma-Forschungszentrum Berlin, Institute of the Leibniz Association, Berlin, Germany
| | - Joachim Wachtlin
- Sankt Gertrauden Krankenhaus, Berlin, Germany.,Medizinische Hochschule Brandenburg, Neurrupin, Germany
| | - Juliane Bodo
- Plastische und Ästhetische Chirurgie, Berlin, Germany
| | - Anja E Hauser
- Central Lab for Microscopy, Deutsches Rheuma-Forschungszentrum Berlin, Institute of the Leibniz Association, Berlin, Germany.,Immune Dynamics, Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Radbruch
- Cell Biology, Deutsches Rheuma-Forschungszentrum Berlin, Institute of the Leibniz Association, Berlin, Germany
| | - Jun Dong
- Cell Biology, Deutsches Rheuma-Forschungszentrum Berlin, Institute of the Leibniz Association, Berlin, Germany
| |
Collapse
|
49
|
Rakhra K, Abraham W, Wang C, Moynihan KD, Li N, Donahue N, Baldeon AD, Irvine DJ. Exploiting albumin as a mucosal vaccine chaperone for robust generation of lung-resident memory T cells. Sci Immunol 2021; 6:eabd8003. [PMID: 33741657 PMCID: PMC8279396 DOI: 10.1126/sciimmunol.abd8003] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 02/18/2021] [Indexed: 12/21/2022]
Abstract
Tissue-resident memory T cells (TRMs) can profoundly enhance mucosal immunity, but parameters governing TRM induction by vaccination remain poorly understood. Here, we describe an approach exploiting natural albumin transport across the airway epithelium to enhance mucosal TRM generation by vaccination. Pulmonary immunization with albumin-binding amphiphile conjugates of peptide antigens and CpG adjuvant (amph-vaccines) increased vaccine accumulation in the lung and mediastinal lymph nodes (MLNs). Amph-vaccines prolonged antigen presentation in MLNs over 2 weeks, leading to 25-fold increased lung-resident T cell responses over traditional immunization and enhanced protection from viral or tumor challenge. Mimicking such prolonged exposure through repeated administration of soluble vaccine revealed that persistence of both antigen and adjuvant was critical for optimal TRM induction, mediated through T cell priming in MLNs after prime, and directly in the lung tissue after boost. Thus, vaccine persistence strongly promotes TRM induction, and amph-conjugates may provide a practical approach to achieve such kinetics in mucosal vaccines.
Collapse
Affiliation(s)
- Kavya Rakhra
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - Wuhbet Abraham
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - Chensu Wang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - Kelly D Moynihan
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Na Li
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - Nathan Donahue
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alexis D Baldeon
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Darrell J Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
50
|
Morgan J, Muskat K, Tippalagama R, Sette A, Burel J, Lindestam Arlehamn CS. Classical CD4 T cells as the cornerstone of antimycobacterial immunity. Immunol Rev 2021; 301:10-29. [PMID: 33751597 PMCID: PMC8252593 DOI: 10.1111/imr.12963] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/11/2021] [Accepted: 02/13/2021] [Indexed: 12/13/2022]
Abstract
Tuberculosis is a significant health problem without an effective vaccine to combat it. A thorough understanding of the immune response and correlates of protection is needed to develop a more efficient vaccine. The immune response against Mycobacterium tuberculosis (Mtb) is complex and involves all aspects of the immune system, however, the optimal protective, non‐pathogenic T cell response against Mtb is still elusive. This review will focus on discussing CD4 T cell immunity against mycobacteria and its importance in Mtb infection with a primary focus on human studies. We will in particular discuss the large heterogeneity of immune cell subsets that have been revealed by recent immunological investigations at an unprecedented level of detail. These studies have identified specific classical CD4 T cell subsets important for immune responses against Mtb in various states of infection. We further discuss the functional attributes that have been linked to the various subsets such as upregulation of activation markers and cytokine production. Another important topic to be considered is the antigenic targets of Mtb‐specific immune responses, and how antigen reactivity is influenced by both disease state and environmental exposure(s). These are key points for both vaccines and immune diagnostics development. Ultimately, these factors are holistically considered in the definition and investigations of what are the correlates on protection and resolution of disease.
Collapse
Affiliation(s)
- Jeffrey Morgan
- Center for Infectious Disease, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Kaylin Muskat
- Center for Infectious Disease, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Rashmi Tippalagama
- Center for Infectious Disease, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Alessandro Sette
- Center for Infectious Disease, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Julie Burel
- Center for Infectious Disease, La Jolla Institute for Immunology, La Jolla, CA, USA
| | | |
Collapse
|