1
|
Liu S, Han Y, Li WX, Ding SW. Infection Defects of RNA and DNA Viruses Induced by Antiviral RNA Interference. Microbiol Mol Biol Rev 2023; 87:e0003522. [PMID: 37052496 PMCID: PMC10304667 DOI: 10.1128/mmbr.00035-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023] Open
Abstract
Immune recognition of viral genome-derived double-stranded RNA (dsRNA) molecules and their subsequent processing into small interfering RNAs (siRNAs) in plants, invertebrates, and mammals trigger specific antiviral immunity known as antiviral RNA interference (RNAi). Immune sensing of viral dsRNA is sequence-independent, and most regions of viral RNAs are targeted by virus-derived siRNAs which extensively overlap in sequence. Thus, the high mutation rates of viruses do not drive immune escape from antiviral RNAi, in contrast to other mechanisms involving specific virus recognition by host immune proteins such as antibodies and resistance (R) proteins in mammals and plants, respectively. Instead, viruses actively suppress antiviral RNAi at various key steps with a group of proteins known as viral suppressors of RNAi (VSRs). Some VSRs are so effective in virus counter-defense that potent inhibition of virus infection by antiviral RNAi is undetectable unless the cognate VSR is rendered nonexpressing or nonfunctional. Since viral proteins are often multifunctional, resistance phenotypes of antiviral RNAi are accurately defined by those infection defects of VSR-deletion mutant viruses that are efficiently rescued by host deficiency in antiviral RNAi. Here, we review and discuss in vivo infection defects of VSR-deficient RNA and DNA viruses resulting from the actions of host antiviral RNAi in model systems.
Collapse
Affiliation(s)
- Si Liu
- Department of Microbiology & Plant Pathology, University of California, Riverside, California, USA
- Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, California, USA
| | - Yanhong Han
- Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Wan-Xiang Li
- Department of Microbiology & Plant Pathology, University of California, Riverside, California, USA
- Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, California, USA
| | - Shou-Wei Ding
- Department of Microbiology & Plant Pathology, University of California, Riverside, California, USA
- Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, California, USA
| |
Collapse
|
2
|
Zwolinski AM, Brigden A, Rey MEC. Differences in the 3' intergenic region and the V2 protein of two sequence variants of tomato curly stunt virus play an important role in disease pathology in Nicotiana benthamiana. PLoS One 2023; 18:e0286149. [PMID: 37220127 PMCID: PMC10205009 DOI: 10.1371/journal.pone.0286149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/10/2023] [Indexed: 05/25/2023] Open
Abstract
Tomato production in South Africa is threatened by the emergence of tomato curly stunt virus (ToCSV), a monopartite Begomovirus transmitted by the whitefly vector Bemisia tabaci (Genn.). We investigated the role of sequence differences present in the 3' intergenic region (IR) and the V2 coding region on the differing infectivity of ToCSV sequence variant isolates V30 and V22 in the model host Nicotiana benthamiana. Using virus mutant chimeras, we determined that the development of the upward leaf roll symptom phenotype is mediated by sequence differences present in the 3' IR containing the TATA-associated composite element. Sequence differences present in the V2 coding region are responsible for modulating disease severity and symptom recovery in V22-infected plants. Serine substitution of V22 V2 Val27 resulted in a significant increase in disease severity with reduced recovery, the first study to demonstrate the importance of this V2 residue in disease development. Two putative ORFs, C5 and C6, were identified using in silico analysis and detection of an RNA transcript spanning their coding region suggests that these ORFs may be transcribed during infection. Additional virus-derived RNA transcripts spanning multiple ORFs and crossing the boundaries of recognised polycistronic transcripts, as well as the origin of replication within the IR, were detected in ToCSV-infected plants providing evidence of bidirectional readthrough transcription. From our results, we conclude that the diverse responses of the model host to ToCSV infection is influenced by select sequence differences and our findings provide several avenues for further investigation into the mechanisms behind these responses to infection.
Collapse
Affiliation(s)
- Alexander M. Zwolinski
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| | - Alison Brigden
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| | - Marie E. C. Rey
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
3
|
Ding SW. Transgene Silencing, RNA Interference, and the Antiviral Defense Mechanism Directed by Small Interfering RNAs. PHYTOPATHOLOGY 2023; 113:616-625. [PMID: 36441873 DOI: 10.1094/phyto-10-22-0358-ia] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
One important discovery in plant pathology over recent decades is the natural antiviral defense mechanism mediated by RNA interference (RNAi). In antiviral RNAi, virus infection triggers Dicer processing of virus-specific double-stranded RNA into small interfering RNAs (siRNAs). Frequently, further amplified by host enzyme and cofactors, these virus-derived siRNAs direct specific virus clearance in an Argonaute protein-containing effector complex. The siRNAs derived from viruses and viroids accumulate to very high levels during infection. Because they overlap extensively in nucleotide sequence, this allows for deep sequencing and bioinformatics assembly of total small RNAs for rapid discovery and identification of viruses and viroids. Antiviral RNAi acts as the primary defense mechanism against both RNA and DNA viruses in plants, yet viruses still successfully infect plants. They do so because all currently recognized plant viruses combat the RNAi response by encoding at least one protein as a viral suppressor of RNAi (VSR) required for infection, even though plant viruses have small genome sizes with a limited coding capacity. This review article will recapitulate the key findings that have revealed the genetic pathway for the biogenesis and antiviral activity of viral siRNAs and the specific role of VSRs in infection by antiviral RNAi suppression. Moreover, early pioneering studies on transgene silencing, RNAi, and virus-plant/virus-virus interactions paved the road to the discovery of antiviral RNAi.
Collapse
Affiliation(s)
- Shou-Wei Ding
- Department of Microbiology & Plant Pathology and Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA
| |
Collapse
|
4
|
Kong X, Yang M, Le BH, He W, Hou Y. The master role of siRNAs in plant immunity. MOLECULAR PLANT PATHOLOGY 2022; 23:1565-1574. [PMID: 35869407 PMCID: PMC9452763 DOI: 10.1111/mpp.13250] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 06/01/2023]
Abstract
Gene silencing mediated by small noncoding RNAs (sRNAs) is a fundamental gene regulation mechanism in eukaryotes that broadly governs cellular processes. It has been established that sRNAs are critical regulators of plant growth, development, and antiviral defence, while accumulating studies support positive roles of sRNAs in plant defence against bacteria and eukaryotic pathogens such as fungi and oomycetes. Emerging evidence suggests that plant sRNAs move between species and function as antimicrobial agents against nonviral parasites. Multiple plant pathosystems have been shown to involve a similar exchange of small RNAs between species. Recent analysis about extracellular sRNAs shed light on the understanding of the selection and transportation of sRNAs moving from plant to parasites. In this review, we summarize current advances regarding the function and regulatory mechanism of plant endogenous small interfering RNAs (siRNAs) in mediating plant defence against pathogen intruders including viruses, bacteria, fungi, oomycetes, and parasitic plants. Beyond that, we propose potential mechanisms behind the sorting of sRNAs moving between species and the idea that engineering siRNA-producing loci could be a useful strategy to improve disease resistance of crops.
Collapse
Affiliation(s)
- Xiuzhen Kong
- Shanghai Collaborative Innovation Center of Agri‐Seeds/School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Meng Yang
- Shanghai Collaborative Innovation Center of Agri‐Seeds/School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Brandon H. Le
- Department of Botany and Plant Sciences, Institute of Integrative Genome BiologyUniversity of CaliforniaRiversideCaliforniaUSA
| | - Wenrong He
- Plant Molecular and Cellular Biology LaboratorySalk Institute for Biological StudiesLa JollaCaliforniaUSA
| | - Yingnan Hou
- Shanghai Collaborative Innovation Center of Agri‐Seeds/School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
5
|
Guyot V, Rajeswaran R, Chu HC, Karthikeyan C, Laboureau N, Galzi S, Mukwa LFT, Krupovic M, Kumar PL, Iskra-Caruana ML, Pooggin MM. A newly emerging alphasatellite affects banana bunchy top virus replication, transcription, siRNA production and transmission by aphids. PLoS Pathog 2022; 18:e1010448. [PMID: 35413079 PMCID: PMC9049520 DOI: 10.1371/journal.ppat.1010448] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 04/28/2022] [Accepted: 03/16/2022] [Indexed: 12/22/2022] Open
Abstract
Banana bunchy top virus (BBTV) is a six-component ssDNA virus (genus Babuvirus, family Nanoviridae) transmitted by aphids, infecting monocots (mainly species in the family Musaceae) and likely originating from South-East Asia where it is frequently associated with self-replicating alphasatellites. Illumina sequencing analysis of banana aphids and leaf samples from Africa revealed an alphasatellite that should be classified in a new genus, phylogenetically related to alphasatellites of nanoviruses infecting dicots. Alphasatellite DNA was encapsidated by BBTV coat protein and accumulated at high levels in plants and aphids, thereby reducing helper virus loads, altering relative abundance (formula) of viral genome components and interfering with virus transmission by aphids. BBTV and alphasatellite clones infected dicot Nicotiana benthamiana, followed by recovery and symptomless persistence of alphasatellite, and BBTV replication protein (Rep), but not alphasatellite Rep, induced leaf chlorosis. Transcriptome sequencing revealed 21, 22 and 24 nucleotide small interfering (si)RNAs covering both strands of the entire viral genome, monodirectional Pol II transcription units of viral mRNAs and pervasive transcription of each component and alphasatellite in both directions, likely generating double-stranded precursors of viral siRNAs. Consistent with the latter hypothesis, viral DNA formulas with and without alphasatellite resembled viral siRNA formulas but not mRNA formulas. Alphasatellite decreased transcription efficiency of DNA-N encoding a putative aphid transmission factor and increased relative siRNA production rates from Rep- and movement protein-encoding components. Alphasatellite itself spawned the most abundant siRNAs and had the lowest mRNA transcription rate. Collectively, following African invasion, BBTV got associated with an alphasatellite likely originating from a dicot plant and interfering with BBTV replication and transmission. Molecular analysis of virus-infected banana plants revealed new features of viral DNA transcription and siRNA biogenesis, both affected by alphasatellite. Costs and benefits of alphasatellite association with helper viruses are discussed. Self-replicating alphasatellites are frequently associated with plant ssDNA viruses. Their origin and costs versus benefits for helper virus replication, antiviral defense evasion and transmission by insect vectors are poorly understood. Here we describe identification in Africa and in depth molecular and biological characterization of a newly emerging alphasatellite of BBTV, a multicomponent ssDNA babuvirus causing one of the most economically-important diseases of monocotyledonous bananas and plantains. Phylogenetically, this alphasatellite represents a novel genus and is more related to alphasatellites of nanoviruses infecting dicot hosts than to other BBTV alphasatellites previously identified only in Asia. Consistent with its hypothetical dicot origin, cloned alphasatellite and BBTV can establish systemic infection in a model dicot plant, followed by recovery and symptomless alphasatellite persistence. In banana plants, alphasatellite competes for the host replication and transcription machinery and accumulates at high levels, thereby reducing loads of the helper virus, modifying relative abundance of its components and interfering with its acquisition and transmission by aphids. On the other hand, plant antiviral defenses silence alphasatellite gene expression at both transcriptional and posttranscriptional levels, generating highly-abundant 21, 22 and 24 nucleotide small interfering RNAs, suggesting that alphasatellite may serve as a decoy protecting its helper virus from gene silencing.
Collapse
Affiliation(s)
- Valentin Guyot
- PHIM Plant Health Institute, University of Montpellier, INRAE, CIRAD, IRD, Institute Agro, Montpellier, France
| | - Rajendran Rajeswaran
- PHIM Plant Health Institute, University of Montpellier, INRAE, CIRAD, IRD, Institute Agro, Montpellier, France
| | - Huong Cam Chu
- PHIM Plant Health Institute, University of Montpellier, INRAE, CIRAD, IRD, Institute Agro, Montpellier, France
| | - Chockalingam Karthikeyan
- PHIM Plant Health Institute, University of Montpellier, INRAE, CIRAD, IRD, Institute Agro, Montpellier, France
| | - Nathalie Laboureau
- PHIM Plant Health Institute, University of Montpellier, INRAE, CIRAD, IRD, Institute Agro, Montpellier, France
| | - Serge Galzi
- PHIM Plant Health Institute, University of Montpellier, INRAE, CIRAD, IRD, Institute Agro, Montpellier, France
| | - Lyna F. T. Mukwa
- Faculté des Sciences Agronomiques, Université Pédagogique Nationale, Kinshasa, Democratic Republic of the Congo
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris, France
| | - P. Lava Kumar
- International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| | - Marie-Line Iskra-Caruana
- PHIM Plant Health Institute, University of Montpellier, INRAE, CIRAD, IRD, Institute Agro, Montpellier, France
- CIRAD, DGD-RS, Montpellier, France
| | - Mikhail M. Pooggin
- PHIM Plant Health Institute, University of Montpellier, INRAE, CIRAD, IRD, Institute Agro, Montpellier, France
- * E-mail:
| |
Collapse
|
6
|
Voorburg CM, Bai Y, Kormelink R. Small RNA Profiling of Susceptible and Resistant Ty-1 Encoding Tomato Plants Upon Tomato Yellow Leaf Curl Virus Infection. FRONTIERS IN PLANT SCIENCE 2021; 12:757165. [PMID: 34868151 PMCID: PMC8637622 DOI: 10.3389/fpls.2021.757165] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
Ty-1 presents an atypical dominant resistance gene that codes for an RNA-dependent RNA polymerase (RDR) of the gamma class and confers resistance to tomato yellow leaf curl virus (TYLCV) and other geminiviruses. Tomato lines bearing Ty-1 not only produce relatively higher amounts of viral small interfering (vsi)RNAs, but viral DNA also exhibits a higher amount of cytosine methylation. Whether Ty-1 specifically enhances posttranscriptional gene silencing (PTGS), leading to a degradation of RNA target molecules and primarily relying on 21-22 nucleotides (nts) siRNAs, and/or transcriptional gene silencing (TGS), leading to the methylation of cytosines within DNA target sequences and relying on 24-nts siRNAs, was unknown. In this study, small RNAs were isolated from systemically TYLCV-infected leaves of Ty-1 encoding tomato plants and susceptible tomato Moneymaker (MM) and sequence analyzed. While in susceptible tomato plants vsiRNAs of the 21-nt size class were predominant, their amount was drastically reduced in tomato containing Ty-1. The latter, instead, revealed elevated levels of vsiRNAs of the 22- and 24-nt size classes. In addition, the genomic distribution profiles of the vsiRNAs were changed in Ty-1 plants compared with those from susceptible MM. In MM three clear hotspots were seen, but these were less pronounced in Ty-1 plants, likely due to enhanced transitive silencing to neighboring viral genomic sequences. The largest increase in the amount of vsiRNAs was observed in the intergenic region and the V1 viral gene. The results suggest that Ty-1 enhances an antiviral TGS response. Whether the elevated levels of 22 nts vsiRNAs contribute to an enhanced PTGS response or an additional TGS response involving a noncanonical pathway of RNA dependent DNA methylation remains to be investigated.
Collapse
Affiliation(s)
- Corien M. Voorburg
- Laboratory of Virology, Department of Plant Sciences, Wageningen University and Research, Wageningen, Netherlands
| | - Yuling Bai
- Plant Breeding, Department of Plant Sciences, Wageningen University and Research, Wageningen, Netherlands
| | - Richard Kormelink
- Laboratory of Virology, Department of Plant Sciences, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
7
|
Coinfection of Cotton Plants with Watermelon Mosaic Virus and a Novel Polerovirus in China. Viruses 2021; 13:v13112210. [PMID: 34835016 PMCID: PMC8618073 DOI: 10.3390/v13112210] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 11/24/2022] Open
Abstract
Cotton is the most important fiber crop worldwide. To determine the presence of viruses in cotton plants showing leaf roll and vein yellowing symptoms in Henan Province of China, a small RNA-based deep sequencing approach was performed. Analysis of the de novo-assembled contigs followed by reverse transcription PCR allowed the reconstruction of watermelon mosaic virus and an unknown virus. The genome of the unknown virus was determined to be 5870 nucleotides in length, and has a genomic organization with characteristic features of previously reported poleroviruses. Sequence analysis revealed that the virus was closely related to, but significantly different from, cotton leafroll dwarf virus, a polerovirus of the family Solemoviridae. This virus had less than 90% amino acid sequence identity in the products of both ORF0 and ORF1. According to the polerovirus species demarcation criteria set by the International Committee on Taxonomy of Viruses, this virus should be assigned to a new polerovirus species, for which we propose the name “cotton leaf roll virus”.
Collapse
|
8
|
Akhtar S, Tahir MN, Amin I, Mansoor S. Amplicon-based RNAi construct targeting beta-C1 gene gives enhanced resistance against cotton leaf curl disease. 3 Biotech 2021; 11:256. [PMID: 33987073 PMCID: PMC8106552 DOI: 10.1007/s13205-021-02816-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/27/2021] [Indexed: 11/30/2022] Open
Abstract
Cotton leaf curl disease (CLCuD) is one of the major limiting factors affecting cotton production in Pakistan for the last three decades. The disease is caused by begomoviruses of the family Geminiviridae. RNA interference (RNAi) is a promising tool that has been proved effective against several pathogens. Using RNAi, different genomic regions of geminiviruses have been targeted to attain sustainable resistance. However, the silencing of the transgene upon virus infection is a limiting factor. Here, we have developed for the first time an amplicon-based RNAi construct to target βC1 gene of betasatellite associated with cotton leaf curl begomoviruses. In addition to producing short interfering (si) RNAs, Rep-based activation or looping out of the construct induced upon virus infection produces multiple copies of transgene that results in accumulation of defective molecules of betasatellite. Subsequent transcription gives rise to increased number of siRNAs that gives enhanced resistance. Transgenic Nicotiana benthamiana plants having RCβ (RNAi construct for betasatellite) were challenged against Cotton leaf curl Khokran virus (CLCuKV) and Cotton leaf curl Multan betasatellite (CLCuMB). Reduced titer of the virus and betasatellite were detected through Southern blot hybridization. Significance of the study has been discussed. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02816-6.
Collapse
Affiliation(s)
- Sohail Akhtar
- Molecular Virology and Gene Silencing Laboratory, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Postal code 38000 Pakistan
- Present Address: Sub-Campus Burewala, University of Agriculture, Faisalabad, Postal code 61010 Pakistan
| | - Muhammad Nouman Tahir
- Molecular Virology and Gene Silencing Laboratory, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Postal code 38000 Pakistan
- Present Address: Department of Plant Pathology, Bahauddin Zakariya University, Multan, Postal code 66000 Pakistan
| | - Imran Amin
- Molecular Virology and Gene Silencing Laboratory, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Postal code 38000 Pakistan
| | - Shahid Mansoor
- Molecular Virology and Gene Silencing Laboratory, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Postal code 38000 Pakistan
| |
Collapse
|
9
|
Veluthambi K, Sunitha S. Targets and Mechanisms of Geminivirus Silencing Suppressor Protein AC2. Front Microbiol 2021; 12:645419. [PMID: 33897657 PMCID: PMC8062710 DOI: 10.3389/fmicb.2021.645419] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/10/2021] [Indexed: 11/13/2022] Open
Abstract
Geminiviruses are plant DNA viruses that infect a wide range of plant species and cause significant losses to economically important food and fiber crops. The single-stranded geminiviral genome encodes a small number of proteins which act in an orchestrated manner to infect the host. The fewer proteins encoded by the virus are multifunctional, a mechanism uniquely evolved by the viruses to balance the genome-constraint. The host-mediated resistance against incoming virus includes post-transcriptional gene silencing, transcriptional gene silencing, and expression of defense responsive genes and other cellular regulatory genes. The pathogenicity property of a geminiviral protein is linked to its ability to suppress the host-mediated defense mechanism. This review discusses what is currently known about the targets and mechanism of the viral suppressor AC2/AL2/transcriptional activator protein (TrAP) and explore the biotechnological applications of AC2.
Collapse
Affiliation(s)
- Karuppannan Veluthambi
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai, India
| | - Sukumaran Sunitha
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
10
|
Chiumenti M, Greco C, De Stradis A, Loconsole G, Cavalieri V, Altamura G, Zicca S, Saldarelli P, Saponari M. Olea Europaea Geminivirus: A Novel Bipartite Geminivirid Infecting Olive Trees. Viruses 2021; 13:v13030481. [PMID: 33804134 PMCID: PMC8000510 DOI: 10.3390/v13030481] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/05/2021] [Accepted: 03/11/2021] [Indexed: 12/29/2022] Open
Abstract
In 2014, high-throughput sequencing of libraries of total DNA from olive trees allowed the identification of two geminivirus-like contigs. After conventional resequencing of the two genomic DNAs, their analysis revealed they belonged to the same viral entity, for which the provisional name of Olea europaea geminivirus (OEGV) was proposed. Although DNA-A showed a genome organization similar to that of New World begomoviruses, DNA-B had a peculiar ORF arrangement, consisting of a movement protein (MP) in the virion sense and a protein with unknown function on the complementary sense. Phylogenetic analysis performed either on full-length genome or on coat protein, replication associated protein (Rep), and MP sequences did not endorse the inclusion of this virus in any of the established genera in the family Geminiviridae. A survey of 55 plants revealed that the virus is widespread in Apulia (Italy) with 91% of the samples testing positive, although no correlation of OEGV with a disease or specific symptoms was encountered. Southern blot assay suggested that the virus is not integrated in the olive genome. The study of OEGV-derived siRNA obtained from small RNA libraries of leaves and fruits of three different cultivars, showed that the accumulation of the two genomic components is influenced by the plant genotype while virus-derived-siRNA profile is in line with other geminivirids reported in literature. Single-nucleotide polymorphism (SNP) analysis unveiled a low intra-specific variability.
Collapse
Affiliation(s)
- Michela Chiumenti
- Institute for Sustainable Plant Protection, CNR, Via Amendola 122/D, 70126 Bari, Italy; (C.G.); (A.D.S.); (V.C.); (G.A.); (S.Z.); (P.S.); (M.S.)
- Correspondence: (M.C.); (G.L.)
| | - Claudia Greco
- Institute for Sustainable Plant Protection, CNR, Via Amendola 122/D, 70126 Bari, Italy; (C.G.); (A.D.S.); (V.C.); (G.A.); (S.Z.); (P.S.); (M.S.)
- Dipartimento di Scienze del suolo, della Pianta e degli Alimenti, University of Bari “Aldo Moro”, Via Amendola, 165/A, 70126 Bari, Italy
| | - Angelo De Stradis
- Institute for Sustainable Plant Protection, CNR, Via Amendola 122/D, 70126 Bari, Italy; (C.G.); (A.D.S.); (V.C.); (G.A.); (S.Z.); (P.S.); (M.S.)
| | - Giuliana Loconsole
- Institute for Sustainable Plant Protection, CNR, Via Amendola 122/D, 70126 Bari, Italy; (C.G.); (A.D.S.); (V.C.); (G.A.); (S.Z.); (P.S.); (M.S.)
- Correspondence: (M.C.); (G.L.)
| | - Vincenzo Cavalieri
- Institute for Sustainable Plant Protection, CNR, Via Amendola 122/D, 70126 Bari, Italy; (C.G.); (A.D.S.); (V.C.); (G.A.); (S.Z.); (P.S.); (M.S.)
| | - Giuseppe Altamura
- Institute for Sustainable Plant Protection, CNR, Via Amendola 122/D, 70126 Bari, Italy; (C.G.); (A.D.S.); (V.C.); (G.A.); (S.Z.); (P.S.); (M.S.)
| | - Stefania Zicca
- Institute for Sustainable Plant Protection, CNR, Via Amendola 122/D, 70126 Bari, Italy; (C.G.); (A.D.S.); (V.C.); (G.A.); (S.Z.); (P.S.); (M.S.)
| | - Pasquale Saldarelli
- Institute for Sustainable Plant Protection, CNR, Via Amendola 122/D, 70126 Bari, Italy; (C.G.); (A.D.S.); (V.C.); (G.A.); (S.Z.); (P.S.); (M.S.)
| | - Maria Saponari
- Institute for Sustainable Plant Protection, CNR, Via Amendola 122/D, 70126 Bari, Italy; (C.G.); (A.D.S.); (V.C.); (G.A.); (S.Z.); (P.S.); (M.S.)
| |
Collapse
|
11
|
Sun S, Hu Y, Jiang G, Tian Y, Ding M, Yu C, Zhou X, Qian Y. Molecular Characterization and Genomic Function of Grapevine Geminivirus A. Front Microbiol 2020; 11:555194. [PMID: 32983075 PMCID: PMC7493466 DOI: 10.3389/fmicb.2020.555194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/12/2020] [Indexed: 11/20/2022] Open
Abstract
A new grapevine geminivirus A (GGVA) isolate (named as GGVA-17YM1) and its associated defective genome (GGVA-D) were identified from a grapevine sample collected in Yuanmou, Yunnan Province, using sRNA high throughput sequencing and traditional Sanger sequencing. To explore the pathogenicity of GGVA and GGVA-D, infectious clones of GGVA-17YM1 and GGVA-D-17YM1 were constructed. Infection assays indicated that Nicotiana benthamiana plants inoculated with GGVA alone or a combination of GGVA and GGVA-D exhibited upward curled apical leaves and dwarfism. Southern blotting and quantitative real-time polymerase chain reaction analysis revealed that GGVA-D increased the accumulation level of GGVA DNA. Transient expression using a PVX-derived recombinant vector indicated that C2 and C4 encoded by GGVA are involved in symptom induction in N. benthamiana. Furthermore, the V2 protein inhibited local RNA silencing in co-infiltration assays in GFP transgenic N. benthamiana plants. Subsequently, full-length genome sequencing resulted in the identification of 11 different isolates of GGVA and 9 associated defective DNA molecules. Phylogenetic analysis based on whole genome sequences showed that all GGVA isolates, including our sequences, clustered into two distinct branches with no geographical grouping. Analyses of molecular variation indicated single nucleotide polymorphisms (SNPs) with more transitions (55.97%) than transversions (44.03%). Furthermore, the main variants for ORF C1, C3, or V1 were synonymous mutations, and non-synonymous mutations for ORF C2, C4, and V2. Genetic selection analysis indicated that negative selection acted on four ORFs (V1, C1, C2, and C3), while V2 and C4 were under positive selection. Our results contribute to the characterization of the genetic diversity of GGVA and provide insights into its pathogenicity.
Collapse
Affiliation(s)
- Suwei Sun
- Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Ya Hu
- Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | | | - Yimin Tian
- Technical Center for Animal, Plant and Food Inspection and Quarantine, Shanghai Customs District, Shanghai, China
| | - Ming Ding
- Institute of Biotechnology and Germplasm Resources, Yunnan Academy of Agricultural Science, Kunming, China
| | - Cui Yu
- Technical Center for Animal, Plant and Food Inspection and Quarantine, Shanghai Customs District, Shanghai, China
| | - Xueping Zhou
- Institute of Biotechnology, Zhejiang University, Hangzhou, China.,Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yajuan Qian
- Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
12
|
Prakash V, Singh A, Singh AK, Dalmay T, Chakraborty S. Tobacco RNA-dependent RNA polymerase 1 affects the expression of defence-related genes in Nicotiana benthamiana upon Tomato leaf curl Gujarat virus infection. PLANTA 2020; 252:11. [PMID: 32613448 DOI: 10.1007/s00425-020-03417-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 06/26/2020] [Indexed: 05/25/2023]
Abstract
MAIN CONCLUSION RNA-dependent RNA polymerase 1 of Nicotiana tabacum modulates ToLCGV pathogenesis by influencing a number of defence-related genes in N. benthamiana plants. Key means of plants protecting themselves from the invading viruses is through RNA silencing. RNA-dependent RNA polymerase-1 (RDR1) is one of the crucial proteins of the RNA silencing pathway, which is induced after infection by viruses. RDR1 functions in the generation of small interfering RNAs (siRNAs) against the viral genome, thus it is antiviral in nature. Here, we used the transgenic Nicotiana benthamiana plant expressing N. tabacum NtRDR1 and observed reduced susceptibility towards Tomato leaf curl Gujarat virus (ToLCGV) infection compared to the wild-type N. benthamiana plants. To understand the reason for such reduced susceptibility, we prepared high-definition small RNA (sRNA) cDNA libraries from ToLCGV-infected wild-type N. benthamiana and NtRDR1 expressing N. benthamiana lines and carried out next-generation sequencing (NGS). We found that upon ToLCGV infection the majority of siRNAs generated from the host genome were of the 24 nucleotide (nt) class, while viral siRNAs (vsiRNAs) were of the 21-22-nt class, indicating that transcriptional gene silencing (TGS) is the major pathway for silencing of host genes while viral genes are silenced, predominantly, by post transcriptional gene silencing (PTGS) pathways. We estimated the changes in the expression of various defence-related genes, such as Constitutively Photomorphogenic-9 (COP9) signalosome (CSN) complex subunit-7, Pentatricopeptide repeat containing protein (PPRP), Laccase-3, Glutathione peroxidase-1 (GPX-1), Universal stress protein (USP) A-like protein, Heat shock transcription factor B4 (HSTF-B4), Auxin response factor-18 (ARF18), WRKY-6 and Short chain dehydrogenase reductase-3a. The differential expression of these genes might be linked with the enhanced tolerance of NtRDR1 N. benthamiana transgenic plants to ToLCGV. Our study suggests that reduced expression of subunit-7 of CSN complex and WRKY6, and increased expression of USPA-like protein might be linked with the reduced susceptibility of NtRDR1-transgenic N. benthamiana plants to ToLCGV.
Collapse
Affiliation(s)
- Ved Prakash
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Archana Singh
- School of Biological Sciences, University of East Anglia, Norwich, UK
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Ashish Kumar Singh
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Tamas Dalmay
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
13
|
Mubin M, Ijaz S, Nahid N, Hassan M, Younus A, Qazi J, Nawaz-Ul-Rehman MS. Journey of begomovirus betasatellite molecules: from satellites to indispensable partners. Virus Genes 2019; 56:16-26. [PMID: 31773493 DOI: 10.1007/s11262-019-01716-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 11/17/2019] [Indexed: 12/21/2022]
Abstract
Betasatellites are a group of circular, single-stranded DNA molecules that are frequently found to be associated with monopartite begomoviruses of the family Geminiviridae. Betasatellites require their helper viruses for replication, movement, and encapsidation and they are often essential for induction of typical disease symptoms. The βC1 protein encoded by betasatellites is multifunctional that participates in diverse cellular events. It interferes with several cellular processes like normal development, chloroplasts, and innate immune system of plants. Recent research has indicated βC1 protein interaction with cellular proteins and its involvement in modulation of the host's cell cycle and symptom determination. This article focuses on the functional mechanisms of βC1 and its interactions with other viral and host proteins.
Collapse
Affiliation(s)
- Muhammad Mubin
- Virology Lab, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Sehrish Ijaz
- Virology Lab, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Nazia Nahid
- Department of Bioinformatics and Biotechnology, GC University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Hassan
- Virology Lab, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Ayesha Younus
- Laser Matter Interaction and Nano-sciences Lab, Department of Physics, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Javaria Qazi
- Department of Biotechnology, Quaid e Azam University, Islamabad, Pakistan
| | | |
Collapse
|
14
|
Gnanasekaran P, KishoreKumar R, Bhattacharyya D, Vinoth Kumar R, Chakraborty S. Multifaceted role of geminivirus associated betasatellite in pathogenesis. MOLECULAR PLANT PATHOLOGY 2019; 20:1019-1033. [PMID: 31210029 PMCID: PMC6589721 DOI: 10.1111/mpp.12800] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Begomoviruses have emerged as a group of plant pathogens that cause devastating diseases in a wide range of crops in tropical and subtropical regions of the world. Betasatellites, the circular single-stranded DNA molecules with the size of almost half of that of the associated helper begomoviruses, are often essential for the production of typical disease symptoms in several virus-host systems. Association of betasatellites with begomoviruses results in more severe symptoms in the plants and affects the yield of numerous crops leading to huge agroeconomic losses. βC1, the only protein encoded by betasatellites, plays a multifaceted role in the successful establishment of infection. This protein counteracts the innate defence mechanisms of the host, like RNA silencing, ubiquitin-proteasome system and defence responsive hormones. In the last two decades, the molecular aspect of betasatellite pathogenesis has attracted much attention from the researchers worldwide, and reports have shown that βC1 protein aggravates the helper begomovirus disease complex by modulating specific host factors. This review discusses the molecular aspects of the pathogenesis of betasatellites, including various βC1-host factor interactions and their effects on the suppression of defence responses of the plants.
Collapse
Affiliation(s)
- Prabu Gnanasekaran
- Molecular Virology Laboratory, School of Life SciencesJawaharlal Nehru UniversityNew Delhi110 067India
| | - Reddy KishoreKumar
- Molecular Virology Laboratory, School of Life SciencesJawaharlal Nehru UniversityNew Delhi110 067India
| | - Dhriti Bhattacharyya
- Molecular Virology Laboratory, School of Life SciencesJawaharlal Nehru UniversityNew Delhi110 067India
| | - R. Vinoth Kumar
- Molecular Virology Laboratory, School of Life SciencesJawaharlal Nehru UniversityNew Delhi110 067India
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life SciencesJawaharlal Nehru UniversityNew Delhi110 067India
| |
Collapse
|
15
|
Piedra-Aguilera Á, Jiao C, Luna AP, Villanueva F, Dabad M, Esteve-Codina A, Díaz-Pendón JA, Fei Z, Bejarano ER, Castillo AG. Integrated single-base resolution maps of transcriptome, sRNAome and methylome of Tomato yellow leaf curl virus (TYLCV) in tomato. Sci Rep 2019; 9:2863. [PMID: 30814535 PMCID: PMC6393547 DOI: 10.1038/s41598-019-39239-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/16/2019] [Indexed: 11/09/2022] Open
Abstract
Geminiviruses are plant ssDNA viruses that replicate through dsDNA intermediates and form minichromosomes which carry the same epigenetic marks as the host chromatin. During the infection, geminiviruses are targets of the post-transcriptional and transcriptional gene silencing machinery. To obtain insights into the connection between virus-derived small RNAs (vsRNAs), viral genome methylation and gene expression, we obtained the transcriptome, sRNAome and methylome from the geminivirus Tomato yellow leaf curl virus-infected tomato plants. The results showed accumulation of transcripts just at the viral ORFs, while vsRNAs spanned the entire genome, showing a prevalent accumulation at regions where the viral ORFs overlapped. The viral genome was not homogenously methylated showing two highly methylated regions located in the C1 ORF and around the intergenic region (IR). The compilation of those results showed a partial correlation between vsRNA accumulation, gene expression and DNA methylation. We could distinguish different epigenetic scenarios along the viral genome, suggesting that in addition to its function as a plant defence mechanism, DNA methylation could have a role in viral gene regulation. To our knowledge, this is the first report that shows integrative single-nucleotide maps of DNA methylation, vsRNA accumulation and gene expression from a plant virus.
Collapse
Affiliation(s)
- Álvaro Piedra-Aguilera
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM-UMA-CSIC), Área de Genética, Facultad de Ciencias, Universidad de Málaga, E-29071, Málaga, Spain
| | - Chen Jiao
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York, USA
| | - Ana P Luna
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM-UMA-CSIC), Área de Genética, Facultad de Ciencias, Universidad de Málaga, E-29071, Málaga, Spain
| | - Francisco Villanueva
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM-UMA-CSIC), Plant Virology group, E. E. La Mayora CSIC, Algarrobo-Costa, E-29750, Málaga, Spain
| | - Marc Dabad
- CNAG-CRG, Barcelona Institute of Science and Technology (BIST), E-08028, Barcelona, Spain
| | - Anna Esteve-Codina
- CNAG-CRG, Barcelona Institute of Science and Technology (BIST), E-08028, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), E-08003, Barcelona, Spain
| | - Juan A Díaz-Pendón
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM-UMA-CSIC), Plant Virology group, E. E. La Mayora CSIC, Algarrobo-Costa, E-29750, Málaga, Spain
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York, USA
| | - Eduardo R Bejarano
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM-UMA-CSIC), Área de Genética, Facultad de Ciencias, Universidad de Málaga, E-29071, Málaga, Spain
| | - Araceli G Castillo
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM-UMA-CSIC), Área de Genética, Facultad de Ciencias, Universidad de Málaga, E-29071, Málaga, Spain.
| |
Collapse
|
16
|
Yang Y, Liu T, Shen D, Wang J, Ling X, Hu Z, Chen T, Hu J, Huang J, Yu W, Dou D, Wang MB, Zhang B. Tomato yellow leaf curl virus intergenic siRNAs target a host long noncoding RNA to modulate disease symptoms. PLoS Pathog 2019; 15:e1007534. [PMID: 30668603 PMCID: PMC6366713 DOI: 10.1371/journal.ppat.1007534] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 02/07/2019] [Accepted: 12/16/2018] [Indexed: 11/19/2022] Open
Abstract
Tomato yellow leaf curl virus (TYLCV) and its related begomoviruses cause fast-spreading diseases in tomato worldwide. How this virus induces diseases remains largely unclear. Here we report a noncoding RNA-mediated model to elucidate the molecular mechanisms of TYLCV-tomato interaction and disease development. The circular ssDNA genome of TYLCV contains a noncoding intergenic region (IR), which is known to mediate viral DNA replication and transcription in host cells, but has not been reported to contribute directly to viral disease development. We demonstrate that the IR is transcribed in dual orientations during plant infection and confers abnormal phenotypes in tomato independently of protein-coding regions of the viral genome. We show that the IR sequence has a 25-nt segment that is almost perfectly complementary to a long noncoding RNA (lncRNA, designated as SlLNR1) in TYLCV-susceptible tomato cultivars but not in resistant cultivars which contains a 14-nt deletion in the 25-nt region. Consequently, we show that viral small-interfering RNAs (vsRNAs) derived from the 25-nt IR sequence induces silencing of SlLNR1 in susceptible tomato plants but not resistant plants, and this SlLNR1 downregulation is associated with stunted and curled leaf phenotypes reminiscent of TYLCV symptoms. These results suggest that the lncRNA interacts with the IR-derived vsRNAs to control disease development during TYLCV infection. Consistent with its possible function in virus disease development, over-expression of SlLNR1 in tomato reduces the accumulation of TYLCV. Furthermore, gene silencing of the SlLNR1 in the tomato plants induced TYLCV-like leaf phenotypes without viral infection. Our results uncover a previously unknown interaction between vsRNAs and host lncRNA, and provide a plausible model for TYLCV-induced diseases and host antiviral immunity, which would help to develop effective strategies for the control of this important viral pathogen.
Collapse
Affiliation(s)
- Yuwen Yang
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Tingli Liu
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Danyu Shen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Jinyan Wang
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xitie Ling
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zhongze Hu
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Tianzi Chen
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jieli Hu
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Junyu Huang
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Wengui Yu
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Daolong Dou
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- * E-mail: (DD); (MBW); (BZ)
| | - Ming-Bo Wang
- CSIRO Plant Industry, Canberra, Australia
- * E-mail: (DD); (MBW); (BZ)
| | - Baolong Zhang
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- * E-mail: (DD); (MBW); (BZ)
| |
Collapse
|
17
|
Pooggin MM. Small RNA-Omics for Plant Virus Identification, Virome Reconstruction, and Antiviral Defense Characterization. Front Microbiol 2018; 9:2779. [PMID: 30524398 PMCID: PMC6256188 DOI: 10.3389/fmicb.2018.02779] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 10/30/2018] [Indexed: 11/13/2022] Open
Abstract
RNA interference (RNAi)-based antiviral defense generates small interfering RNAs that represent the entire genome sequences of both RNA and DNA viruses as well as viroids and viral satellites. Therefore, deep sequencing and bioinformatics analysis of small RNA population (small RNA-ome) allows not only for universal virus detection and genome reconstruction but also for complete virome reconstruction in mixed infections. Viral infections (like other stress factors) can also perturb the RNAi and gene silencing pathways regulating endogenous gene expression and repressing transposons and host genome-integrated endogenous viral elements which can potentially be released from the genome and contribute to disease. This review describes the application of small RNA-omics for virus detection, virome reconstruction and antiviral defense characterization in cultivated and non-cultivated plants. Reviewing available evidence from a large and ever growing number of studies of naturally or experimentally infected hosts revealed that all families of land plant viruses, their satellites and viroids spawn characteristic small RNAs which can be assembled into contigs of sufficient length for virus, satellite or viroid identification and for exhaustive reconstruction of complex viromes. Moreover, the small RNA size, polarity and hotspot profiles reflect virome interactions with the plant RNAi machinery and allow to distinguish between silent endogenous viral elements and their replicating episomal counterparts. Models for the biogenesis and functions of small interfering RNAs derived from all types of RNA and DNA viruses, satellites and viroids as well as endogenous viral elements are presented and discussed.
Collapse
Affiliation(s)
- Mikhail M. Pooggin
- Institut National de la Recherche Agronomique, UMR BGPI, Montpellier, France
| |
Collapse
|
18
|
Mochama P, Jadhav P, Neupane A, Lee Marzano SY. Mycoviruses as Triggers and Targets of RNA Silencing in White Mold Fungus Sclerotinia sclerotiorum. Viruses 2018; 10:v10040214. [PMID: 29690568 PMCID: PMC5923508 DOI: 10.3390/v10040214] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/18/2018] [Accepted: 04/20/2018] [Indexed: 02/05/2023] Open
Abstract
This study aimed to demonstrate the existence of antiviral RNA silencing mechanisms in Sclerotinia sclerotiorum by infecting wild-type and RNA-silencing-deficient strains of the fungus with an RNA virus and a DNA virus. Key silencing-related genes were disrupted to dissect the RNA silencing pathway. Specifically, dicer genes (dcl-1, dcl-2, and both dcl-1/dcl-2) were displaced by selective marker(s). Disruption mutants were then compared for changes in phenotype, virulence, and susceptibility to virus infections. Wild-type and mutant strains were transfected with a single-stranded RNA virus, SsHV2-L, and copies of a single-stranded DNA mycovirus, SsHADV-1, as a synthetic virus constructed in this study. Disruption of dcl-1 or dcl-2 resulted in no changes in phenotype compared to wild-type S. sclerotiorum; however, the double dicer mutant strain exhibited significantly slower growth. Furthermore, the Δdcl-1/dcl-2 double mutant, which was slow growing without virus infection, exhibited much more severe debilitation following virus infections including phenotypic changes such as slower growth, reduced pigmentation, and delayed sclerotial formation. These phenotypic changes were absent in the single mutants, Δdcl-1 and Δdcl-2. Complementation of a single dicer in the double disruption mutant reversed viral susceptibility to the wild-type state. Virus-derived small RNAs were accumulated from virus-infected wild-type strains with strand bias towards the negative sense. The findings of these studies indicate that S. sclerotiorum has robust RNA silencing mechanisms that process both DNA and RNA mycoviruses and that, when both dicers are silenced, invasive nucleic acids can greatly debilitate the virulence of this fungus.
Collapse
Affiliation(s)
- Pauline Mochama
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
| | - Prajakta Jadhav
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
| | - Achal Neupane
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
| | - Shin-Yi Lee Marzano
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
- Department of Horticulture, Agronomy, and Plant Sciences, South Dakota State University, Brookings, SD 57007, USA.
| |
Collapse
|
19
|
Ramesh SV, Sahu PP, Prasad M, Praveen S, Pappu HR. Geminiviruses and Plant Hosts: A Closer Examination of the Molecular Arms Race. Viruses 2017; 9:E256. [PMID: 28914771 PMCID: PMC5618022 DOI: 10.3390/v9090256] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/02/2017] [Accepted: 09/06/2017] [Indexed: 11/24/2022] Open
Abstract
Geminiviruses are plant-infecting viruses characterized by a single-stranded DNA (ssDNA) genome. Geminivirus-derived proteins are multifunctional and effective regulators in modulating the host cellular processes resulting in successful infection. Virus-host interactions result in changes in host gene expression patterns, reprogram plant signaling controls, disrupt central cellular metabolic pathways, impair plant's defense system, and effectively evade RNA silencing response leading to host susceptibility. This review summarizes what is known about the cellular processes in the continuing tug of war between geminiviruses and their plant hosts at the molecular level. In addition, implications for engineered resistance to geminivirus infection in the context of a greater understanding of the molecular processes are also discussed. Finally, the prospect of employing geminivirus-based vectors in plant genome engineering and the emergence of powerful genome editing tools to confer geminivirus resistance are highlighted to complete the perspective on geminivirus-plant molecular interactions.
Collapse
Affiliation(s)
- Shunmugiah V Ramesh
- ICAR-Indian Institute of Soybean Research, Indian Council of Agricultural Research, Indore 452001, India.
- Department of Plant Pathology, Washington State University, Pullman, WA 99163, USA.
| | - Pranav P Sahu
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi110067, India.
| | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi110067, India.
| | - Shelly Praveen
- Division of Plant Pathology, Advanced Centre for Plant Virology, ICAR-Indian Agricultural Research Institute (IARI), New Delhi 110012, India.
| | - Hanu R Pappu
- Department of Plant Pathology, Washington State University, Pullman, WA 99163, USA.
| |
Collapse
|
20
|
Zhou B, Wang F, Zhang X, Zhang L, Lin H. Sequencing and phylogenetic analysis of tobacco virus 2, a polerovirus from Nicotiana tabacum. Arch Virol 2017; 162:2159-2162. [PMID: 28342033 DOI: 10.1007/s00705-017-3339-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 03/15/2017] [Indexed: 10/19/2022]
Abstract
The complete genome sequence of a new virus, provisionally named tobacco virus 2 (TV2), was determined and identified from leaves of tobacco (Nicotiana tabacum) exhibiting leaf mosaic, yellowing, and deformity, in Anhui Province, China. The genome sequence of TV2 comprises 5,979 nucleotides, with 87% nucleotide sequence identity to potato leafroll virus (PLRV). Its genome organization is similar to that of PLRV, containing six open reading frames (ORFs) that potentially encode proteins with putative functions in cell-to-cell movement and suppression of RNA silencing. Phylogenetic analysis of the nucleotide sequence placed TV2 alongside members of the genus Polerovirus in the family Luteoviridae. To the best our knowledge, this study is the first report of a complete genome sequence of a new polerovirus identified in tobacco.
Collapse
Affiliation(s)
- Benguo Zhou
- College of Plant Protection, Anhui Agricultural University, Hefei, 230036, Anhui, China
- Tobacco Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui, China
| | - Fang Wang
- Tobacco Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui, China
| | - Xuesong Zhang
- Anhui Province Tobacco Corporation, Hefei, 230071, Anhui, China
| | - Lina Zhang
- Anhui Province Tobacco Corporation, Hefei, 230071, Anhui, China
| | - Huafeng Lin
- College of Plant Protection, Anhui Agricultural University, Hefei, 230036, Anhui, China.
| |
Collapse
|
21
|
Ho ES, Newsom-Stewart CM, Diarra L, McCauley CS. gb4gv: a genome browser for geminivirus. PeerJ 2017; 5:e3165. [PMID: 28413726 PMCID: PMC5391787 DOI: 10.7717/peerj.3165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/09/2017] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Geminiviruses (family Geminiviridae) are prevalent plant viruses that imperil agriculture globally, causing serious damage to the livelihood of farmers, particularly in developing countries. The virus evolves rapidly, attributing to its single-stranded genome propensity, resulting in worldwide circulation of diverse and viable genomes. Genomics is a prominent approach taken by researchers in elucidating the infectious mechanism of the virus. Currently, the NCBI Viral Genome website is a popular repository of viral genomes that conveniently provides researchers a centralized data source of genomic information. However, unlike the genome of living organisms, viral genomes most often maintain peculiar characteristics that fit into no single genome architecture. By imposing a unified annotation scheme on the myriad of viral genomes may downplay their hallmark features. For example, the viron of begomoviruses prevailing in America encapsulates two similar-sized circular DNA components and both are required for systemic infection of plants. However, the bipartite components are kept separately in NCBI as individual genomes with no explicit association in linking them. Thus, our goal is to build a comprehensive Geminivirus genomics database, namely gb4gv, that not only preserves genomic characteristics of the virus, but also supplements biologically relevant annotations that help to interrogate this virus, for example, the targeted host, putative iterons, siRNA targets, etc. METHODS We have employed manual and automatic methods to curate 508 genomes from four major genera of Geminiviridae, and 161 associated satellites obtained from NCBI RefSeq and PubMed databases. RESULTS These data are available for free access without registration from our website. Besides genomic content, our website provides visualization capability inherited from UCSC Genome Browser. DISCUSSION With the genomic information readily accessible, we hope that our database will inspire researchers in gaining a better understanding of the incredible degree of diversity of these viruses, and of the complex relationships within and between the different genera in the Geminiviridae. AVAILABILITY AND IMPLEMENTATION The database can be found at: http://gb4gv.lafayette.edu.
Collapse
Affiliation(s)
- Eric S Ho
- Department of Biology, Lafayette College, Easton, PA, United States.,Department of Computer Science, Lafayette College, Easton, PA, United States
| | | | - Lysa Diarra
- Department of Biology, Lafayette College, Easton, PA, United States
| | | |
Collapse
|
22
|
Belabess Z, Peterschmitt M, Granier M, Tahiri A, Blenzar A, Urbino C. The non-canonical tomato yellow leaf curl virus recombinant that displaced its parental viruses in southern Morocco exhibits a high selective advantage in experimental conditions. J Gen Virol 2016; 97:3433-3445. [DOI: 10.1099/jgv.0.000633] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Zineb Belabess
- CIRAD-INRA-SupAgro, UMR BGPI, CIRAD, TA A -54K, Campus International de Baillarguet, F-34398 Montpellier, France
- Ecole Nationale d'Agriculture de Meknès, BPS 40, Meknès, Morocco
- Faculté des Sciences de Meknès BP 11201, Avenue Zitoune, Meknès, Morocco
| | - Michel Peterschmitt
- CIRAD-INRA-SupAgro, UMR BGPI, CIRAD, TA A -54K, Campus International de Baillarguet, F-34398 Montpellier, France
| | - Martine Granier
- CIRAD-INRA-SupAgro, UMR BGPI, CIRAD, TA A -54K, Campus International de Baillarguet, F-34398 Montpellier, France
| | | | - Abdelali Blenzar
- Faculté des Sciences de Meknès BP 11201, Avenue Zitoune, Meknès, Morocco
| | - Cica Urbino
- CIRAD-INRA-SupAgro, UMR BGPI, CIRAD, TA A -54K, Campus International de Baillarguet, F-34398 Montpellier, France
| |
Collapse
|
23
|
Li M, Li Y, Xia Z, Di D, Zhang A, Miao H, Zhou T, Fan Z. Characterization of small interfering RNAs derived from Rice black streaked dwarf virus in infected maize plants by deep sequencing. Virus Res 2016; 228:66-74. [PMID: 27888127 DOI: 10.1016/j.virusres.2016.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/01/2016] [Accepted: 11/01/2016] [Indexed: 12/18/2022]
Abstract
Rice black streaked dwarf virus (RBSDV) is the casual agent of maize rough dwarf disease, which frequently causes severe yield loss in China. However, the interaction between RBSDV and maize plants is largely unknown. RNA silencing is a conserved mechanism against viruses in plants. To understand the antiviral RNA interfering response in RBSDV-infected plants, the profile of virus-derived small interfering RNAs (vsiRNAs) from RBSDV in infected maize plants was obtained by deep sequencing in this study. Our data showed that vsiRNAs, accumulated preferentially as 21- and 22-nucleotide (nt) species, were mapped against all 10 genomic RNA segments of RBSDV and derived almost equally overall from both positive and negative strands, while there were significant differences in the accumulation level of vsiRNAs from segments 2, 4, 6, 7 and 10. The vsiRNAs (21 and 22 nt) generated from each segment of RBSDV genome had a 5'-terminal nucleotide bias toward adenine and uracil. The single-nucleotide resolution maps showed that RBSDV-derived siRNAs preferentially distributed in the 5'- or 3'-terminal regions of several genomic segments. In addition, our results showed that the mRNA levels of some components involved in antiviral RNA silencing pathway were differentially modified during RBSDV infection. Among them, the accumulation levels of ZmDCL1, ZmDCL2, ZmDCL3a, ZmAGO1a, ZmAGO1b, ZmAGO2a, ZmAGO18a and ZmRDR6 mRNAs were significantly up-regulated, while those of ZmDCL3b, ZmDCL4 and ZmAGO1c mRNAs showed no obvious changes in RBSDV-infected maize plants.
Collapse
Affiliation(s)
- Mingjun Li
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Yongqiang Li
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Zihao Xia
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Dianping Di
- Plant Protection Institute, Hebei Academy of Agricultural and Forestry Sciences, Baoding 071000, China
| | - Aihong Zhang
- Plant Protection Institute, Hebei Academy of Agricultural and Forestry Sciences, Baoding 071000, China
| | - Hongqin Miao
- Plant Protection Institute, Hebei Academy of Agricultural and Forestry Sciences, Baoding 071000, China
| | - Tao Zhou
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Zaifeng Fan
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
24
|
Akinyemi IA, Wang F, Zhou B, Qi S, Wu Q. Ecogenomic survey of plant viruses infecting Tobacco by Next generation sequencing. Virol J 2016; 13:181. [PMID: 27814723 PMCID: PMC5096307 DOI: 10.1186/s12985-016-0639-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/18/2016] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The invasion of plant by viruses cause major damage to plants and reduces crop yield and integrity. Devastating plant virus infection has been experienced at different times all over the world, which are attributed to different events of mutation, re-assortment and recombination occurring in the viruses. Strategies for proper virus management has been mostly limited to eradicating the vectors that spreads the plant viruses. However, development of prompt and effective diagnostic methods are required to monitor emerging and re-emerging diseases that may be symptomatic or asymptomatic in the plant as well as the genetic variation and evolution in the plant viruses. A survey of plant viruses infecting field-grown Tobacco crop was conducted in Anhui Province of China by the deep sequencing of sRNAs. METHODS Survey of plant viruses infecting Tobacco was carried based on 104 samples collected across the province. Nine different sRNA libraries was prepared and custom-made bioinformatics pipeline coupled with molecular techniques was developed to sequence, assemble and analyze the siRNAs for plant virus discovery. We also carried out phylogenetic and recombination analysis of the identified viruses. RESULTS Twenty two isolates from eight different virus species including Cucumber mosaic virus, Potato virus Y, Tobacco mosaic virus, Tobacco vein banding Mosaic virus, Pepper mottle virus, Brassica yellow virus, Chilli venial mottle virus, Broad bean wilt virus 2 were identified in tobacco across the survey area. The near-complete genome sequence of the 22 new isolates were determined and analyzed. The isolates were grouped together with known strains in the phylogenetic tree. Molecular variation in the isolates indicated the conserved coding regions have majorly a nucleotide sequence identity of 80-94 % with previously identified isolates. Various events of recombination were discovered among some of the isolates indicating that two or more viruses or different isolates of one virus infect the same host cell. CONCLUSION This study describes the discovery of a consortium of plant viruses infecting Tobacco that are broadly distributed in Anhui province of China. It also demonstrates the effectiveness of NGS in identifying plant viruses without a prior knowledge of the virus and the genetic diversity that enhanced mixed infection.
Collapse
Affiliation(s)
- Ibukun A Akinyemi
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Fang Wang
- Tobacco Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230031, China
| | - Benguo Zhou
- Tobacco Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230031, China
| | - Shuishui Qi
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Qingfa Wu
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, China.
| |
Collapse
|
25
|
Liu J, Zhang X, Yang Y, Hong N, Wang G, Wang A, Wang L. Characterization of virus-derived small interfering RNAs in Apple stem grooving virus-infected in vitro-cultured Pyrus pyrifolia shoot tips in response to high temperature treatment. Virol J 2016; 13:166. [PMID: 27716257 PMCID: PMC5053029 DOI: 10.1186/s12985-016-0625-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 09/27/2016] [Indexed: 11/10/2022] Open
Abstract
Background Heat treatment (known as thermotherapy) together with in vitro culture of shoot meristem tips is a commonly used technology to obtain virus-free germplasm for the effective control of virus diseases in fruit trees. RNA silencing as an antiviral defense mechanism has been implicated in this process. To understand if high temperature-mediated acceleration of the host antiviral gene silencing system in the meristem tip facilitates virus-derived small interfering RNAs (vsiRNA) accumulation to reduce the viral RNA titer in the fruit tree meristem tip cells, we used the Apple stem grooving virus (ASGV)–Pyrus pyrifolia pathosystem to explore the possible roles of vsiRNA in thermotherapy. Results At first we determined the full-length genome sequence of the ASGV-Js2 isolate and then profiled vsiRNAs in the meristem tip of in vitro-grown pear (cv. ‘Jinshui no. 2’) shoots infected by ASGV-Js2 and cultured at 24 and 37 °C. A total of 7,495 and 7,949 small RNA reads were obtained from the tips of pear shoots cultured at 24 and 37 °C, respectively. Mapping of the vsiRNAs to the ASGV-Js2 genome revealed that they were unevenly distributed along the ASGV-Js2 genome, and that 21- and 22-nt vsiRNAs preferentially accumulated at both temperatures. The 5′-terminal nucleotides of ASGV-specific siRNAs in the tips cultured under different temperatures had a similar distribution pattern, and the nucleotide U was the most frequent. RT-qPCR analyses suggested that viral genome accumulation was drastically compromised at 37 °C compared to 24 °C, which was accompanied with the elevated levels of vsiRNAs at 37 °C. As plant Dicer-like proteins (DCLs), Argonaute proteins (AGOs), and RNA-dependent RNA polymerases (RDRs) are implicated in vsiRNA biogenesis, we also cloned the partial sequences of PpDCL2,4, PpAGO1,2,4 and PpRDR1 genes, and found their expression levels were up-regulated in the ASGV-infected pear shoots at 37 °C. Conclusions Collectively, these results showed that upon high temperature treatment, the ASGV-infected meristem shoot tips up-regulated the expression of key genes in the RNA silencing pathway, induced the biogenesis of vsiRNAs and inhibited viral RNA accumulation. This study represents the first report on the characterization of the vsiRNA population in pear plants infected by ASGV-Js2, in response to high temperature treatment. Electronic supplementary material The online version of this article (doi:10.1186/s12985-016-0625-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Juan Liu
- State Key Laboratory of Agricultural Microbiology, Wuhan, Hubei, 430070, People's Republic of China.,Laboratory of Key Lab of Plant Pathology of Hubei Province, Wuhan, Hubei, 430070, People's Republic of China
| | - XueJiao Zhang
- Shihezi University, Shihezi City, Xinjiang Uyghur Autonomous Region, 832003, People's Republic of China
| | - YueKun Yang
- State Key Laboratory of Agricultural Microbiology, Wuhan, Hubei, 430070, People's Republic of China.,Laboratory of Key Lab of Plant Pathology of Hubei Province, Wuhan, Hubei, 430070, People's Republic of China
| | - Ni Hong
- State Key Laboratory of Agricultural Microbiology, Wuhan, Hubei, 430070, People's Republic of China.,Laboratory of Key Lab of Plant Pathology of Hubei Province, Wuhan, Hubei, 430070, People's Republic of China
| | - GuoPing Wang
- State Key Laboratory of Agricultural Microbiology, Wuhan, Hubei, 430070, People's Republic of China.,Laboratory of Key Lab of Plant Pathology of Hubei Province, Wuhan, Hubei, 430070, People's Republic of China
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, N5V 4 T3, Canada
| | - LiPing Wang
- State Key Laboratory of Agricultural Microbiology, Wuhan, Hubei, 430070, People's Republic of China. .,Laboratory of Key Lab of Plant Pathology of Hubei Province, Wuhan, Hubei, 430070, People's Republic of China.
| |
Collapse
|
26
|
Palma-Martínez I, Guerrero-Mandujano A, Ruiz-Ruiz MJ, Hernández-Cortez C, Molina-López J, Bocanegra-García V, Castro-Escarpulli G. Active Shiga-Like Toxin Produced by Some Aeromonas spp., Isolated in Mexico City. Front Microbiol 2016; 7:1552. [PMID: 27757103 PMCID: PMC5048074 DOI: 10.3389/fmicb.2016.01552] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/16/2016] [Indexed: 12/29/2022] Open
Abstract
RNA silencing is a conserved mechanism that utilizes small RNAs (sRNAs) to direct the regulation of gene expression at the transcriptional or post-transcriptional level. Plants utilizing RNA silencing machinery to defend pathogen infection was first identified in plant–virus interaction and later was observed in distinct plant–pathogen interactions. RNA silencing is not only responsible for suppressing RNA accumulation and movement of virus and viroid, but also facilitates plant immune responses against bacterial, oomycete, and fungal infection. Interestingly, even the same plant sRNA can perform different roles when encounters with different pathogens. On the other side, pathogens counteract by generating sRNAs that directly regulate pathogen gene expression to increase virulence or target host genes to facilitate pathogen infection. Here, we summarize the current knowledge of the characterization and biogenesis of host- and pathogen-derived sRNAs, as well as the different RNA silencing machineries that plants utilize to defend against different pathogens. The functions of these sRNAs in defense and counter-defense and their mechanisms for regulation during different plant–pathogen interactions are also discussed.
Collapse
Affiliation(s)
- Ingrid Palma-Martínez
- Laboratorio de Bacteriología Médica, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional Mexico City, Mexico
| | - Andrea Guerrero-Mandujano
- Laboratorio de Bacteriología Médica, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional Mexico City, Mexico
| | - Manuel J Ruiz-Ruiz
- Laboratorio de Bacteriología Médica, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico NacionalMexico City, Mexico; Laboratorio Central de Análisis Clínicos Unidad Médica de Alta Especialidad Hospital de Pediatría "Silvestre Frenk Freund," Centro Médico Nacional Siglo XXIMexico City, Mexico
| | - Cecilia Hernández-Cortez
- Laboratorio de Bacteriología Médica, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico NacionalMexico City, Mexico; Laboratorio de Bioquímica Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico NacionalMexico City, Mexico
| | - José Molina-López
- Departamento de Salud Pública, Facultad de Medicina, Universidad Nacional Autónoma de México Mexico City, Mexico
| | | | - Graciela Castro-Escarpulli
- Laboratorio de Bacteriología Médica, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional Mexico City, Mexico
| |
Collapse
|
27
|
Hadidi A, Flores R, Candresse T, Barba M. Next-Generation Sequencing and Genome Editing in Plant Virology. Front Microbiol 2016; 7:1325. [PMID: 27617007 PMCID: PMC4999435 DOI: 10.3389/fmicb.2016.01325] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 08/11/2016] [Indexed: 01/18/2023] Open
Abstract
Next-generation sequencing (NGS) has been applied to plant virology since 2009. NGS provides highly efficient, rapid, low cost DNA, or RNA high-throughput sequencing of the genomes of plant viruses and viroids and of the specific small RNAs generated during the infection process. These small RNAs, which cover frequently the whole genome of the infectious agent, are 21-24 nt long and are known as vsRNAs for viruses and vd-sRNAs for viroids. NGS has been used in a number of studies in plant virology including, but not limited to, discovery of novel viruses and viroids as well as detection and identification of those pathogens already known, analysis of genome diversity and evolution, and study of pathogen epidemiology. The genome engineering editing method, clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system has been successfully used recently to engineer resistance to DNA geminiviruses (family, Geminiviridae) by targeting different viral genome sequences in infected Nicotiana benthamiana or Arabidopsis plants. The DNA viruses targeted include tomato yellow leaf curl virus and merremia mosaic virus (begomovirus); beet curly top virus and beet severe curly top virus (curtovirus); and bean yellow dwarf virus (mastrevirus). The technique has also been used against the RNA viruses zucchini yellow mosaic virus, papaya ringspot virus and turnip mosaic virus (potyvirus) and cucumber vein yellowing virus (ipomovirus, family, Potyviridae) by targeting the translation initiation genes eIF4E in cucumber or Arabidopsis plants. From these recent advances of major importance, it is expected that NGS and CRISPR-Cas technologies will play a significant role in the very near future in advancing the field of plant virology and connecting it with other related fields of biology.
Collapse
Affiliation(s)
- Ahmed Hadidi
- United States Department of Agriculture – Agricultural Research ServiceBeltsville, MD, USA
| | - Ricardo Flores
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia–Consejo Superior de Investigaciones CientíficasValencia, Spain
| | - Thierry Candresse
- UMR 1332 Biologie du Fruit et Pathologie, Institut National de la Recherche Agronomique, Université de BordeauxBordeaux, France
| | - Marina Barba
- Consiglio per la Ricerca in Agricoltura e l’analisi dell’Economia Agraria, Centro di Ricerca per la Patologia VegetaleRome, Italy
| |
Collapse
|
28
|
Jackel JN, Storer JM, Coursey T, Bisaro DM. Arabidopsis RNA Polymerases IV and V Are Required To Establish H3K9 Methylation, but Not Cytosine Methylation, on Geminivirus Chromatin. J Virol 2016. [PMID: 27279611 DOI: 10.1128/jvi.00656-616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023] Open
Abstract
UNLABELLED In plants, RNA-directed DNA methylation (RdDM) employs small RNAs to target enzymes that methylate cytosine residues. Cytosine methylation and dimethylation of histone 3 lysine 9 (H3K9me2) are often linked. Together they condition an epigenetic defense that results in chromatin compaction and transcriptional silencing of transposons and viral chromatin. Canonical RdDM (Pol IV-RdDM), involving RNA polymerases IV and V (Pol IV and Pol V), was believed to be necessary to establish cytosine methylation, which in turn could recruit H3K9 methyltransferases. However, recent studies have revealed that a pathway involving Pol II and RNA-dependent RNA polymerase 6 (RDR6) (RDR6-RdDM) is likely responsible for establishing cytosine methylation at naive loci, while Pol IV-RdDM acts to reinforce and maintain it. We used the geminivirus Beet curly top virus (BCTV) as a model to examine the roles of Pol IV and Pol V in establishing repressive viral chromatin methylation. As geminivirus chromatin is formed de novo in infected cells, these viruses are unique models for processes involved in the establishment of epigenetic marks. We confirm that Pol IV and Pol V are not needed to establish viral DNA methylation but are essential for its amplification. Remarkably, however, both Pol IV and Pol V are required for deposition of H3K9me2 on viral chromatin. Our findings suggest that cytosine methylation alone is not sufficient to trigger de novo deposition of H3K9me2 and further that Pol IV-RdDM is responsible for recruiting H3K9 methyltransferases to viral chromatin. IMPORTANCE In plants, RNA-directed DNA methylation (RdDM) uses small RNAs to target cytosine methylation, which is often linked to H3K9me2. These epigenetic marks silence transposable elements and DNA virus genomes, but how they are established is not well understood. Canonical RdDM, involving Pol IV and Pol V, was thought to establish cytosine methylation that in turn could recruit H3K9 methyltransferases, but recent studies compel a reevaluation of this view. We used BCTV to investigate the roles of Pol IV and Pol V in chromatin methylation. We found that both are needed to amplify, but not to establish, DNA methylation. However, both are required for deposition of H3K9me2. Our findings suggest that cytosine methylation is not sufficient to recruit H3K9 methyltransferases to naive viral chromatin and further that Pol IV-RdDM is responsible.
Collapse
Affiliation(s)
- Jamie N Jackel
- Department of Molecular Genetics, Center for Applied Plant Sciences, Center for RNA Biology, and Graduate Program in Molecular, Cellular, and Developmental Biology, The Ohio State University, Columbus, Ohio, USA
| | - Jessica M Storer
- Department of Molecular Genetics, Center for Applied Plant Sciences, Center for RNA Biology, and Graduate Program in Molecular, Cellular, and Developmental Biology, The Ohio State University, Columbus, Ohio, USA
| | - Tami Coursey
- Department of Molecular Genetics, Center for Applied Plant Sciences, Center for RNA Biology, and Graduate Program in Molecular, Cellular, and Developmental Biology, The Ohio State University, Columbus, Ohio, USA
| | - David M Bisaro
- Department of Molecular Genetics, Center for Applied Plant Sciences, Center for RNA Biology, and Graduate Program in Molecular, Cellular, and Developmental Biology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
29
|
Arabidopsis RNA Polymerases IV and V Are Required To Establish H3K9 Methylation, but Not Cytosine Methylation, on Geminivirus Chromatin. J Virol 2016; 90:7529-7540. [PMID: 27279611 DOI: 10.1128/jvi.00656-16] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/01/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED In plants, RNA-directed DNA methylation (RdDM) employs small RNAs to target enzymes that methylate cytosine residues. Cytosine methylation and dimethylation of histone 3 lysine 9 (H3K9me2) are often linked. Together they condition an epigenetic defense that results in chromatin compaction and transcriptional silencing of transposons and viral chromatin. Canonical RdDM (Pol IV-RdDM), involving RNA polymerases IV and V (Pol IV and Pol V), was believed to be necessary to establish cytosine methylation, which in turn could recruit H3K9 methyltransferases. However, recent studies have revealed that a pathway involving Pol II and RNA-dependent RNA polymerase 6 (RDR6) (RDR6-RdDM) is likely responsible for establishing cytosine methylation at naive loci, while Pol IV-RdDM acts to reinforce and maintain it. We used the geminivirus Beet curly top virus (BCTV) as a model to examine the roles of Pol IV and Pol V in establishing repressive viral chromatin methylation. As geminivirus chromatin is formed de novo in infected cells, these viruses are unique models for processes involved in the establishment of epigenetic marks. We confirm that Pol IV and Pol V are not needed to establish viral DNA methylation but are essential for its amplification. Remarkably, however, both Pol IV and Pol V are required for deposition of H3K9me2 on viral chromatin. Our findings suggest that cytosine methylation alone is not sufficient to trigger de novo deposition of H3K9me2 and further that Pol IV-RdDM is responsible for recruiting H3K9 methyltransferases to viral chromatin. IMPORTANCE In plants, RNA-directed DNA methylation (RdDM) uses small RNAs to target cytosine methylation, which is often linked to H3K9me2. These epigenetic marks silence transposable elements and DNA virus genomes, but how they are established is not well understood. Canonical RdDM, involving Pol IV and Pol V, was thought to establish cytosine methylation that in turn could recruit H3K9 methyltransferases, but recent studies compel a reevaluation of this view. We used BCTV to investigate the roles of Pol IV and Pol V in chromatin methylation. We found that both are needed to amplify, but not to establish, DNA methylation. However, both are required for deposition of H3K9me2. Our findings suggest that cytosine methylation is not sufficient to recruit H3K9 methyltransferases to naive viral chromatin and further that Pol IV-RdDM is responsible.
Collapse
|
30
|
Zhang J, Borth WB, Lin B, Dey KK, Melzer MJ, Shen H, Pu X, Sun D, Hu JS. Deep sequencing of banana bract mosaic virus from flowering ginger (Alpinia purpurata) and development of an immunocapture RT-LAMP detection assay. Arch Virol 2016; 161:1783-95. [PMID: 27038825 DOI: 10.1007/s00705-016-2830-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 03/14/2016] [Indexed: 10/22/2022]
Abstract
Banana bract mosaic virus (BBrMV) has never been reported in banana plants in Hawaii. In 2010, however, it was detected in a new host, flowering ginger (Alpinia purpurata). In this study, we characterize the A. purpurata isolate and study its spread in flowering ginger in Hawaii. A laboratory study demonstrated that BBrMV could be transmitted from flowering ginger to its natural host, banana, therefore raising a serious concern about the potential risk to the rapidly growing banana industry of Hawaii. To quickly monitor this virus in the field, we developed a robust immunocapture reverse transcription loop-mediated isothermal amplification (IC-RT-LAMP) assay. Deep sequencing of the BBrMV isolate from A. purpurata revealed a single-stranded RNA virus with a genome of 9,713 nt potentially encoding a polyprotein of 3,124 aa, and another predicted protein, PIPO, in the +2 reading-frame shift. Most of the functional motifs in the Hawaiian isolate were conserved among the genomes of isolates from one found in the Philippines and India. However, the A. purpurata isolate had an amino acid deletion in the Pl protein that was most similar to the Philippine isolate. Phylogenetic analysis of an eastern Pacific subpopulation that included A. purpurata was closest in genetic distance to a Southeast Asian subpopulation, suggesting frequent gene flow and supporting the hypothesis that the A. purpurata isolate arrived in Hawaii from Southeast Asia.
Collapse
Affiliation(s)
- Jingxin Zhang
- Department of Plant and Environmental Protection Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii, Honolulu, HI, USA
- Key Laboratory of New Technique for Plant Protection in Guangdong, Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Wayne B Borth
- Department of Plant and Environmental Protection Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii, Honolulu, HI, USA
| | - Birun Lin
- Key Laboratory of New Technique for Plant Protection in Guangdong, Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Kishore K Dey
- Department of Plant and Environmental Protection Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii, Honolulu, HI, USA
| | - Michael J Melzer
- Department of Plant and Environmental Protection Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii, Honolulu, HI, USA
| | - Huifang Shen
- Key Laboratory of New Technique for Plant Protection in Guangdong, Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xiaoming Pu
- Key Laboratory of New Technique for Plant Protection in Guangdong, Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Dayuan Sun
- Key Laboratory of New Technique for Plant Protection in Guangdong, Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - John S Hu
- Department of Plant and Environmental Protection Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii, Honolulu, HI, USA.
| |
Collapse
|
31
|
Generation of a high resolution map of sRNAs from Fusarium graminearum and analysis of responses to viral infection. Sci Rep 2016; 6:26151. [PMID: 27189438 PMCID: PMC4870495 DOI: 10.1038/srep26151] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 04/28/2016] [Indexed: 01/18/2023] Open
Abstract
Previously, we characterized F. graminearum hypovirus 1 (FgHV1) and F. graminearum hypovirus 2 (FgHV2), which are the only two hypoviruses in F. graminearum that are closely related to Cryphonectria hypovirus 1 (CHV1) and Cryphonectria hypovirus 2 (CHV2) in the Hypoviridae family. In this study, we preliminarily elucidated the RNA silencing mechanism of the F. graminearum/hypovirus system from a small RNA (sRNA) perspective by using HiSeq deep sequencing. The length distributions of F. graminearum sRNA were altered by hypoviral infection. Potential microRNA-like (milRNA) candidates were differentially expressed between the hypovirus-free and hypovirus-infected library types. Extensive virus-derived small interfering RNAs (vsiRNAs) were also principally defined. The 1,831,081 and 3,254,758 total reads generated from the FgHV1 and FgHV2 genomes in F. graminearum yielded the first high-resolution sRNA maps of fungal viruses. In addition, extensive bioinformatics searches identified a large number of transcripts that are potentially targeted by vsiRNAs, several of which were effectively down-regulated. In particular, the RNA silencing-related genes FgDicer1 and FgRdRp5 were predicted targets of FgHV1- and FgHV2-derived siRNAs, possibly revealing a novel anti-RNA silencing strategy employed by mycoviruses.
Collapse
|
32
|
Chen S, Jiang G, Wu J, Liu Y, Qian Y, Zhou X. Characterization of a Novel Polerovirus Infecting Maize in China. Viruses 2016; 8:E120. [PMID: 27136578 PMCID: PMC4885075 DOI: 10.3390/v8050120] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 04/20/2016] [Accepted: 04/22/2016] [Indexed: 12/17/2022] Open
Abstract
A novel virus, tentatively named Maize Yellow Mosaic Virus (MaYMV), was identified from the field-grown maize plants showing yellow mosaic symptoms on the leaves collected from the Yunnan Province of China by the deep sequencing of small RNAs. The complete 5642 nucleotide (nt)-long genome of the MaYMV shared the highest nucleotide sequence identity (73%) to Maize Yellow Dwarf Virus-RMV. Sequence comparisons and phylogenetic analyses suggested that MaYMV represents a new member of the genus Polerovirus in the family Luteoviridae. Furthermore, the P0 protein encoded by MaYMV was demonstrated to inhibit both local and systemic RNA silencing by co-infiltration assays using transgenic Nicotiana benthamiana line 16c carrying the GFP reporter gene, which further supported the identification of a new polerovirus. The biologically-active cDNA clone of MaYMV was generated by inserting the full-length cDNA of MaYMV into the binary vector pCB301. RT-PCR and Northern blot analyses showed that this clone was systemically infectious upon agro-inoculation into N. benthamiana. Subsequently, 13 different isolates of MaYMV from field-grown maize plants in different geographical locations of Yunnan and Guizhou provinces of China were sequenced. Analyses of their molecular variation indicate that the 3' half of P3-P5 read-through protein coding region was the most variable, whereas the coat protein- (CP-) and movement protein- (MP-)coding regions were the most conserved.
Collapse
Affiliation(s)
- Sha Chen
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Guangzhuang Jiang
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Jianxiang Wu
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Yong Liu
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha 410125, China.
| | - Yajuan Qian
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Xueping Zhou
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
33
|
Fuentes A, Carlos N, Ruiz Y, Callard D, Sánchez Y, Ochagavía ME, Seguin J, Malpica-López N, Hohn T, Lecca MR, Pérez R, Doreste V, Rehrauer H, Farinelli L, Pujol M, Pooggin MM. Field Trial and Molecular Characterization of RNAi-Transgenic Tomato Plants That Exhibit Resistance to Tomato Yellow Leaf Curl Geminivirus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:197-209. [PMID: 26713353 DOI: 10.1094/mpmi-08-15-0181-r] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
RNA interference (RNAi) is a widely used approach to generate virus-resistant transgenic crops. However, issues of agricultural importance like the long-term durability of RNAi-mediated resistance under field conditions and the potential side effects provoked in the plant by the stable RNAi expression remain poorly investigated. Here, we performed field trials and molecular characterization studies of two homozygous transgenic tomato lines, with different selection markers, expressing an intron-hairpin RNA cognate to the Tomato yellow leaf curl virus (TYLCV) C1 gene. The tested F6 and F4 progenies of the respective kanamycin- and basta-resistant plants exhibited unchanged field resistance to TYLCV and stably expressed the transgene-derived short interfering RNA (siRNAs) to represent 6 to 8% of the total plant small RNAs. This value outnumbered the average percentage of viral siRNAs in the nontransformed plants exposed to TYLCV-infested whiteflies. As a result of the RNAi transgene expression, a common set of up- and downregulated genes was revealed in the transcriptome profile of the plants selected from either of the two transgenic events. A previously unidentified geminivirus causing no symptoms of viral disease was detected in some of the transgenic plants. The novel virus acquired V1 and V2 genes from TYLCV and C1, C2, C3, and C4 genes from a distantly related geminivirus and, thereby, it could evade the repressive sequence-specific action of transgene-derived siRNAs. Our findings shed light on the mechanisms of siRNA-directed antiviral silencing in transgenic plants and highlight the applicability limitations of this technology as it may alter the transcriptional pattern of nontarget genes.
Collapse
Affiliation(s)
- Alejandro Fuentes
- 1 Center for Genetic Engineering and Biotechnology, calle 31 entre 158 y 190, Cubanacan Playa, Apdo 6162, Habana 10600, Cuba
| | - Natacha Carlos
- 1 Center for Genetic Engineering and Biotechnology, calle 31 entre 158 y 190, Cubanacan Playa, Apdo 6162, Habana 10600, Cuba
| | - Yoslaine Ruiz
- 1 Center for Genetic Engineering and Biotechnology, calle 31 entre 158 y 190, Cubanacan Playa, Apdo 6162, Habana 10600, Cuba
| | - Danay Callard
- 1 Center for Genetic Engineering and Biotechnology, calle 31 entre 158 y 190, Cubanacan Playa, Apdo 6162, Habana 10600, Cuba
| | - Yadira Sánchez
- 1 Center for Genetic Engineering and Biotechnology, calle 31 entre 158 y 190, Cubanacan Playa, Apdo 6162, Habana 10600, Cuba
| | - María Elena Ochagavía
- 1 Center for Genetic Engineering and Biotechnology, calle 31 entre 158 y 190, Cubanacan Playa, Apdo 6162, Habana 10600, Cuba
| | - Jonathan Seguin
- 2 University of Basel, Department of Environmental Sciences, Botany, Hebelstrasse 1, 4056 Basel, Switzerland
- 3 FASTERIS SA, Ch. Du Pont-du-Centenaire 109, 1228 Plan-les-Ouates, Switzerland; and
| | - Nachelli Malpica-López
- 2 University of Basel, Department of Environmental Sciences, Botany, Hebelstrasse 1, 4056 Basel, Switzerland
| | - Thomas Hohn
- 2 University of Basel, Department of Environmental Sciences, Botany, Hebelstrasse 1, 4056 Basel, Switzerland
| | - Maria Rita Lecca
- 4 Functional Genomics Center ETH Zurich, University of Zurich, Winterthurerstrasse 190/Y32 H80, 8057 Zurich, Switzerland
| | - Rosabel Pérez
- 1 Center for Genetic Engineering and Biotechnology, calle 31 entre 158 y 190, Cubanacan Playa, Apdo 6162, Habana 10600, Cuba
| | - Vivian Doreste
- 1 Center for Genetic Engineering and Biotechnology, calle 31 entre 158 y 190, Cubanacan Playa, Apdo 6162, Habana 10600, Cuba
| | - Hubert Rehrauer
- 4 Functional Genomics Center ETH Zurich, University of Zurich, Winterthurerstrasse 190/Y32 H80, 8057 Zurich, Switzerland
| | - Laurent Farinelli
- 3 FASTERIS SA, Ch. Du Pont-du-Centenaire 109, 1228 Plan-les-Ouates, Switzerland; and
| | - Merardo Pujol
- 1 Center for Genetic Engineering and Biotechnology, calle 31 entre 158 y 190, Cubanacan Playa, Apdo 6162, Habana 10600, Cuba
| | - Mikhail M Pooggin
- 2 University of Basel, Department of Environmental Sciences, Botany, Hebelstrasse 1, 4056 Basel, Switzerland
| |
Collapse
|
34
|
Wang B, Wang L, Chen F, Yang X, Ding M, Zhang Z, Liu SS, Wang XW, Zhou X. MicroRNA profiling of the whitefly Bemisia tabaci Middle East-Aisa Minor I following the acquisition of Tomato yellow leaf curl China virus. Virol J 2016; 13:20. [PMID: 26837429 PMCID: PMC4736103 DOI: 10.1186/s12985-016-0469-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/17/2016] [Indexed: 12/19/2022] Open
Abstract
Background The begomoviruses are the largest and most economically important group of plant viruses exclusively vectored by whitefly (Bemisia tabaci) in a circulative, persistent manner. During this process, begomoviruses and whitefly vectors have developed close relationships and complex interactions. However, the molecular mechanisms underlying these interactions remain largely unknown, and the microRNA profiles for viruliferous and nonviruliferous whiteflies have not been studied. Methods Sequences of Argonaute 1(Ago1) and Dicer 1 (Dcr1) genes were cloned from B. tabaci MEAM1 cDNAs. Subsequently, deep sequencing of small RNA libraries from uninfected and Tomato yellow leaf curl China virus (TYLCCNV)-infected whiteflies was performed. The conserved and novel miRNAs were identified using the release of miRBase Version 19.0 and the prediction software miRDeep2, respectively. The sequencing results of selected deregulated and novel miRNAs were further confirmed using quantitative reverse transcription-PCR. Moreover, the previously published B. tabaci MEAM1 transcriptome database and the miRNA target prediction algorithm miRanda 3.1 were utilized to predict potential targets for miRNAs. Gene Ontology (GO) analysis was also used to classify the potential enriched functional groups of their putative targets. Results Ago1 and Dcr1orthologs with conserved domains were identified from B. tabaci MEAM1. BLASTn searches and sequence analysis identified 112 and 136 conserved miRNAs from nonviruliferous and viruliferous whitefly libraries respectively, and a comparison of the conserved miRNAs of viruliferous and nonviruliferous whiteflies revealed 15 up- and 9 down-regulated conserved miRNAs. 7 novel miRNA candidates with secondary pre-miRNA hairpin structures were also identified. Potential targets of conserved and novel miRNAs were predicted using GO analysis, for the targets of up- and down-regulated miRNAs, eight and nine GO terms were significantly enriched. Conclusions We identified Ago1 and Dcr1 orthologs from whiteflies, which indicated that miRNA-mediated silencing is present in whiteflies. Our comparative analysis of miRNAs from TYLCCNV viruliferous and nonviruliferous whiteflies revealed the relevance of deregulated miRNAs for the post-transcriptional gene regulation in these whiteflies. The potential targets of all expressed miRNAs were also predicted. These results will help to acquire a better understanding of the molecular mechanism underlying the complex interactions between begomoviruses and whiteflies. Electronic supplementary material The online version of this article (doi:10.1186/s12985-016-0469-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bi Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, People's Republic of China. .,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China.
| | - Lanlan Wang
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| | - Fangyuan Chen
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| | - Xiuling Yang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, People's Republic of China. .,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China.
| | - Ming Ding
- Institute of Biotechnology and Genetic Resources, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, 650223, People's Republic of China.
| | - Zhongkai Zhang
- Institute of Biotechnology and Genetic Resources, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, 650223, People's Republic of China.
| | - Shu-Sheng Liu
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| | - Xiao-Wei Wang
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| | - Xueping Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, People's Republic of China. .,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China.
| |
Collapse
|
35
|
Margaria P, Miozzi L, Ciuffo M, Rosa C, Axtell MJ, Pappu HR, Turina M. Comparison of small RNA profiles in Nicotiana benthamiana and Solanum lycopersicum infected by polygonum ringspot tospovirus reveals host-specific responses to viral infection. Virus Res 2016; 211:38-45. [PMID: 26432447 DOI: 10.1016/j.virusres.2015.09.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/22/2015] [Accepted: 09/25/2015] [Indexed: 11/19/2022]
Abstract
Viral small RNAs (vsRNAs) are one of the key elements involved in RNA silencing-based defense against viruses in plants. We analyzed the vsRNA profiles in Nicotiana benthamiana and Solanum lycopersicum infected by polygonum ringspot virus (PolRSV) (Tospovirus, Bunyaviridae). VsRNAs were abundant in both hosts, but a different size profile was observed, with an abundance peak at 21 in N. benthamiana and at 22 nt in tomato. VsRNAs mapping to the PolRSV L genomic segment were under-represented in both hosts, while S and M segments were differentially and highly targeted in N. benthamiana and tomato, respectively. Differences in preferential targeting of single ORFs were observed, with over-representation of NSs ORF-derived reads in N. benthamiana. Intergenic regions (IGRs)-mapping vsRNAs were under-represented, while enrichment of vsRNAs reads mapping to the NSs positive sense strand was observed in both hosts. Comparison with a previous study on tomato spotted wilt virus (TSWV) under the same experimental conditions, showed that the relative accumulation of PolRSV-specific and endogenous sRNAs was similar to the one observed for silencing suppressor-deficient TSWV strains, suggesting possible different properties of PolRSV NSs silencing suppressor compared to that of TSWV.
Collapse
Affiliation(s)
- Paolo Margaria
- Istituto per la Protezione Sostenibile delle Piante, CNR, Strada delle Cacce 73, 10135 Torino, Italy; Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, USA
| | - Laura Miozzi
- Istituto per la Protezione Sostenibile delle Piante, CNR, Strada delle Cacce 73, 10135 Torino, Italy
| | - Marina Ciuffo
- Istituto per la Protezione Sostenibile delle Piante, CNR, Strada delle Cacce 73, 10135 Torino, Italy
| | - Cristina Rosa
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, USA
| | - Michael J Axtell
- Department of Biology, and The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Hanu R Pappu
- Department of Plant Pathology, Washington State University, PO Box 646430, Pullman, WA 99164, USA
| | - Massimo Turina
- Istituto per la Protezione Sostenibile delle Piante, CNR, Strada delle Cacce 73, 10135 Torino, Italy.
| |
Collapse
|
36
|
Wang J, Tang Y, Yang Y, Ma N, Ling X, Kan J, He Z, Zhang B. Cotton Leaf Curl Multan Virus-Derived Viral Small RNAs Can Target Cotton Genes to Promote Viral Infection. FRONTIERS IN PLANT SCIENCE 2016; 7:1162. [PMID: 27540385 PMCID: PMC4972823 DOI: 10.3389/fpls.2016.01162] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 07/19/2016] [Indexed: 05/19/2023]
Abstract
RNA silencing is a conserved mechanism in plants that targets viruses. Viral small RNAs (vsiRNAs) can be generated from viral double-stranded RNA replicative intermediates within the infected host, or from host RNA-dependent RNA polymerases activity on viral templates. The abundance and profile of vsiRNAs in viral infections have been reported previously. However, the involvement of vsiRNAs during infection of the Geminiviridae family member cotton leaf curl virus (CLCuD), which causes significant economic losses in cotton growing regions, remains largely uncharacterized. Cotton leaf curl Multan virus (CLCuMuV) associated with a betasatellite called Cotton leaf curl Multan betasatellite (CLCuMuB) is a major constraint to cotton production in South Asia and is now established in Southern China. In this study, we obtained the profiles of vsiRNAs from CLCuMV and CLCuMB in infected upland cotton (Gossypium hirsutum) plants by deep sequencing. Our data showed that vsiRNA that were derived almost equally from sense and antisense CLCuD DNA strands accumulated preferentially as 21- and 22-nucleotide (nt) small RNA population and had a cytosine bias at the 5'-terminus. Polarity distribution revealed that vsiRNAs were almost continuously present along the CLCuD genome and hotspots of sense and antisense strands were mainly distributed in the Rep proteins region of CLCuMuV and in the C1 protein of CLCuMuB. In addition, hundreds of host transcripts targeted by vsiRNAs were predicted, many of which encode transcription factors associated with biotic and abiotic stresses. Quantitative real-time polymerase chain reaction analysis of selected potential vsiRNA targets showed that some targets were significantly down-regulated in CLCuD-infected cotton plants. We also verified the potential function of vsiRNA targets that may be involved in CLCuD infection by virus-induced gene silencing (VIGS) and 5'-rapid amplification of cDNA end (5'-RACE). Here, we provide the first report on vsiRNAs responses to CLCuD infection in cotton.
Collapse
Affiliation(s)
- Jinyan Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural SciencesNanjing, China
| | - Yafei Tang
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural SciencesGuangzhou, China
| | - Yuwen Yang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural SciencesNanjing, China
| | - Na Ma
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural SciencesNanjing, China
| | - Xitie Ling
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural SciencesNanjing, China
| | - Jialiang Kan
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural SciencesNanjing, China
| | - Zifu He
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural SciencesGuangzhou, China
- *Correspondence: Baolong Zhang, Zifu He,
| | - Baolong Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural SciencesNanjing, China
- *Correspondence: Baolong Zhang, Zifu He,
| |
Collapse
|
37
|
Chen S, Huang Q, Wu L, Qian Y. Identification and characterization of a maize-associated mastrevirus in China by deep sequencing small RNA populations. Virol J 2015; 12:156. [PMID: 26437663 PMCID: PMC4594918 DOI: 10.1186/s12985-015-0384-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 09/16/2015] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Maize streak Reunion virus (MSRV) is a member of the Mastrevirus genus in the family Geminiviridae. Of the diverse and increasing number of mastrevirus species found so far, only Wheat dwarf virus and Sweetpotato symptomless virus 1 have been discovered in China. Recently, a novel, unbiased approach based on deep sequencing of small interfering RNAs followed by de novo assembly of siRNA, has greatly offered opportunities for plant virus identification. METHODS Samples collected from maize leaves was deep sequencing for virus identification. Subsequently, the assay of PCR, rolling circle amplification and Southern blot were used to confirm the presence of a mastrevirus. RESULTS Maize streak Reunion virus Yunnan isolate (MSRV-[China:Yunnan 06:2014], abbreviated to MSRV-YN) was identified from maize collected from Yunnan Province, China, by small RNA deep sequencing. The complete genome of this virus was ascertained as 2,880 nucleotides long by conventional sequencing. A phylogenetic analysis showed it shared 96.3 % nucleotide sequence identity with the isolate of Maize streak Reunion virus from La Reunion Island. To our knowledge, this is the first identification of MSRV in China. Analyses of the viral derived small interfering RNAs (vsiRNAs) profile showed that the most abundant MSRV-YN vsiRNAs were 21, 22 and 24 nt long and biased for A and G at their 5' terminal residue. There was a slightly higher representation of MSRV-YN siRNAs derived from the virion-sense strand genome than the complementary-sense strand genome. Moreover, MSRV-YN vsiRNAs were not uniformly distributed along the genome, and hotspots were detected in the movement protein and coat protein-coding region. CONCLUSIONS A mastrevirus MSRV-YN collected in Yunnan Province, China, was identified by small RNA deep sequencing. This vsiRNAs profile derived from MSRV-YN was characterized, which might contribute to get an insight into the host RNA silencing defense induced by MSRV-YN, and provide guidelines on designing antiviral strategies using RNAi against MSRV-YN.
Collapse
Affiliation(s)
- Sha Chen
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, People's Republic of China.
| | - Qingqing Huang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, People's Republic of China.
| | - Liqi Wu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, People's Republic of China.
| | - Yajuan Qian
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, People's Republic of China.
| |
Collapse
|
38
|
Margaria P, Miozzi L, Rosa C, Axtell MJ, Pappu HR, Turina M. Small RNA profiles of wild-type and silencing suppressor-deficient tomato spotted wilt virus infected Nicotiana benthamiana. Virus Res 2015; 208:30-8. [PMID: 26047586 DOI: 10.1016/j.virusres.2015.05.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 05/25/2015] [Accepted: 05/25/2015] [Indexed: 01/01/2023]
Abstract
Tospoviruses are plant-infecting viruses belonging to the family Bunyaviridae. We used a collection of wild-type, phylogenetically distinct tomato spotted wilt virus isolates and related silencing-suppressor defective mutants to study the effects on the small RNA (sRNA) accumulation during infection of Nicotiana benthamiana. Our data showed that absence of a functional silencing suppressor determined a marked increase of the total amount of viral sRNAs (vsRNAs), and specifically of the 21 nt class. We observed a common under-representation of vsRNAs mapping to the intergenic region of S and M genomic segments, and preferential mapping of the reads against the viral sense open reading frames, with the exception of the NSs gene. The NSs-mutant strains showed enrichment of NSm-derived vsRNA compared to the expected amount based on gene size. Analysis of 5' terminal nucleotide preference evidenced a significant enrichment in U for the 21 nt- and in A for 24 nt-long endogenous sRNAs in all the samples. Hotspot analysis revealed a common abundant accumulation of reads at the 5' end of the L segment, mostly in the antiviral sense, for the NSs-defective isolates, suggesting that absence of the silencing suppressor can influence preferential targeting of the viral genome.
Collapse
Affiliation(s)
- Paolo Margaria
- Istituto per la Protezione Sostenibile delle Piante, CNR, Strada delle Cacce 73, 10135 Torino, Italy; Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, USA
| | - Laura Miozzi
- Istituto per la Protezione Sostenibile delle Piante, CNR, Strada delle Cacce 73, 10135 Torino, Italy
| | - Cristina Rosa
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, USA
| | - Michael J Axtell
- Department of Biology, and The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Hanu R Pappu
- Department of Plant Pathology, Washington State University, PO Box 646430, Pullman, WA 99164, USA
| | - Massimo Turina
- Istituto per la Protezione Sostenibile delle Piante, CNR, Strada delle Cacce 73, 10135 Torino, Italy.
| |
Collapse
|
39
|
Leibman D, Prakash S, Wolf D, Zelcer A, Anfoka G, Haviv S, Brumin M, Gaba V, Arazi T, Lapidot M, Gal-On A. Immunity to tomato yellow leaf curl virus in transgenic tomato is associated with accumulation of transgene small RNA. Arch Virol 2015; 160:2727-39. [PMID: 26255053 DOI: 10.1007/s00705-015-2551-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 07/20/2015] [Indexed: 12/11/2022]
Abstract
Gene silencing is a natural defense response of plants against invading RNA and DNA viruses. The RNA post-transcriptional silencing system has been commonly utilized to generate transgenic crop plants that are "immune" to plant virus infection. Here, we applied this approach against the devastating DNA virus tomato yellow leaf curl virus (TYLCV) in its host tomato (Solanum lycopersicum L.). To generate broad resistance to a number of different TYLCV viruses, three conserved sequences (the intergenic region [NCR], V1-V2 and C1-C2 genes) from the genome of the severe virus (TYLCV) were synthesized as a single insert and cloned into a hairpin configuration in a binary vector, which was used to transform TYLCV-susceptible tomato plants. Eight of 28 independent transgenic tomato lines exhibited immunity to TYLCV-Is and to TYLCV-Mld, but not to tomato yellow leaf curl Sardinia virus, which shares relatively low sequence homology with the transgene. In addition, a marker-free (nptII-deleted) transgenic tomato line was generated for the first time by Agrobacterium-mediated transformation without antibiotic selection, followed by screening of 1180 regenerated shoots by whitefly-mediated TYLCV inoculation. Resistant lines showed a high level of transgene-siRNA (t-siRNA) accumulation (22% of total small RNA) with dominant sizes of 21 nt (73%) and 22 nt (22%). The t-siRNA displayed hot-spot distribution ("peaks") along the transgene, with different distribution patterns than the viral-siRNA peaks observed in TYLCV-infected tomato. A grafting experiment demonstrated the mobility of 0.04% of the t-siRNA from transgenic rootstock to non-transformed scion, even though scion resistance against TYLCV was not achieved.
Collapse
Affiliation(s)
- Diana Leibman
- Department of Plant Pathology and Weed Science, ARO, Volcani Center, 50250, Bet Dagan, Israel
| | - Shanmugam Prakash
- Department of Plant Pathology and Weed Science, ARO, Volcani Center, 50250, Bet Dagan, Israel
| | - Dalia Wolf
- Department of Vegetable Research, ARO, Volcani Center, 50250, Bet Dagan, Israel
| | - Aaron Zelcer
- Department of Vegetable Research, ARO, Volcani Center, 50250, Bet Dagan, Israel
| | - Ghandi Anfoka
- Department of Biotechnology, Al-Balqa' Applied University, Al-Salt, 19117, Jordan
| | - Sabrina Haviv
- Department of Plant Pathology and Weed Science, ARO, Volcani Center, 50250, Bet Dagan, Israel
| | - Marina Brumin
- Department of Plant Pathology and Weed Science, ARO, Volcani Center, 50250, Bet Dagan, Israel
| | - Victor Gaba
- Department of Plant Pathology and Weed Science, ARO, Volcani Center, 50250, Bet Dagan, Israel
| | - Tzahi Arazi
- Department of Ornamental Horticulture, ARO, Volcani Center, 50250, Bet Dagan, Israel
| | - Moshe Lapidot
- Department of Vegetable Research, ARO, Volcani Center, 50250, Bet Dagan, Israel
| | - Amit Gal-On
- Department of Plant Pathology and Weed Science, ARO, Volcani Center, 50250, Bet Dagan, Israel.
| |
Collapse
|
40
|
Involvement of host regulatory pathways during geminivirus infection: a novel platform for generating durable resistance. Funct Integr Genomics 2015; 14:47-58. [PMID: 24233104 DOI: 10.1007/s10142-013-0346-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 10/04/2013] [Accepted: 10/21/2013] [Indexed: 12/20/2022]
Abstract
Geminiviruses are widely distributed throughout the world and cause devastating yield losses in almost all the economically important crops. In this review, the newly identified roles of various novel plant factors and pathways participating in plant–virus interaction are summarized with a particular focus on the exploitation of various pathways involving ubiquitin/26S proteasome pathway, small RNA pathways, cell division cycle components, and the epigenetic mechanism as defense responses during plant–pathogen interactions. Capturing the information on these pathways for the development of strategies against geminivirus infection is argued to provide the basis for new genetic approaches to resistance.
Collapse
|
41
|
Ma Y, Navarro B, Zhang Z, Lu M, Zhou X, Chi S, Di Serio F, Li S. Identification and molecular characterization of a novel monopartite geminivirus associated with mulberry mosaic dwarf disease. J Gen Virol 2015; 96:2421-2434. [PMID: 25953916 DOI: 10.1099/vir.0.000175] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
High-throughput sequencing of small RNAs allowed the identification of a novel DNA virus in a Chinese mulberry tree affected by a disease showing mosaic and dwarfing symptoms. Rolling-circle amplification and PCR with specific primers, followed by sequencing of eleven independent full-length clones, showed that this virus has a monopartite circular DNA genome (∼ 2.95 kb) containing ORFs in both polarity strands, as reported previously for geminiviruses. A field survey showed the close association of the virus with diseased mulberries, so we tentatively named the virus mulberry mosaic dwarf-associated virus (MMDaV). The MMDaV genome codes for five and two putative proteins in the virion-sense and in the complementary-sense strands, respectively. Although three MMDaV virion-sense putative proteins did not share sequence homology with any protein in the databases, functional domains [coiled-coil and transmembrane (TM) domains] were identified in two of them. In addition, the protein containing a TM domain was encoded by an ORF located in a similar genomic position in MMDaV and in several other geminiviruses. As reported for members of the genera Mastrevirus and Becurtovirus, MMDaV replication-associated proteins are expressed through the alternative splicing of an intron, which was shown to be functional in vivo. A similar intron was found in the genome of citrus chlorotic dwarf-associated virus (CCDaV), a divergent geminivirus found recently in citrus. On the basis of pairwise comparisons and phylogenetic analyses, CCDaV and MMDaV appear to be closely related to each other, thus supporting their inclusion in a putative novel genus in the family Geminiviridae.
Collapse
Affiliation(s)
- Yuxin Ma
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road No. 2, Haidian District, Beijing 100193, PR China
| | - Beatriz Navarro
- Istituto per la Protezione Sostenibile delle Piante CNR, UO Bari, Via Amendola, 70126 Bari, Italy
| | - Zhixiang Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road No. 2, Haidian District, Beijing 100193, PR China
| | - Meiguang Lu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road No. 2, Haidian District, Beijing 100193, PR China
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road No. 2, Haidian District, Beijing 100193, PR China
| | - Shengqi Chi
- College of Agronomy and Plant Protection, Qingdao Agricultural University, Changcheng Road No. 700, Chengyang District, Qingdao 266000, PR China
| | - Francesco Di Serio
- Istituto per la Protezione Sostenibile delle Piante CNR, UO Bari, Via Amendola, 70126 Bari, Italy
| | - Shifang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road No. 2, Haidian District, Beijing 100193, PR China
| |
Collapse
|
42
|
Liang P, Navarro B, Zhang Z, Wang H, Lu M, Xiao H, Wu Q, Zhou X, Di Serio F, Li S. Identification and characterization of a novel geminivirus with a monopartite genome infecting apple trees. J Gen Virol 2015; 96:2411-2420. [PMID: 25934791 DOI: 10.1099/vir.0.000173] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel circular DNA virus sequence has been identified through next-generation sequencing and in silico assembly of small RNAs of 21-24 nt from an apple tree grown in China. The virus genome was cloned using two independent approaches and sequenced. With a size of 2932 nt, it showed the same genomic structure and conserved origin of replication reported for members of the family Geminiviridae. However, the low nucleotide and amino acid sequence identity with known geminiviruses indicated that it was a novel virus, for which the provisional name apple geminivirus (AGV) is proposed. Rolling circle amplification followed by RFLP analyses indicated that AGV was a virus with a monopartite DNA genome. This result was in line with bioassays showing that the cloned viral genome was infectious in several herbaceous plants (Nicotiana bethamiana, Nicotiana glutinosa and Solanum lycopersicum), thus confirming it was complete and biologically active, although no symptoms were observed in these experimental hosts. AGV genome structure and phylogenetic analyses did not support the inclusion of this novel species in any of the established genera in the family Geminiviridae. A survey of 165 apple trees grown in four Chinese provinces showed a prevalence of 7.2% for AGV, confirming its presence in several cultivars and geographical areas in China, although no obvious relationship between virus infection and specific symptoms was found.
Collapse
Affiliation(s)
- Pengbo Liang
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road No. 2, Haidian District, Beijing 100193, PR China.,College of Agronomy and Biotechnology, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing 100193, PR China
| | - Beatriz Navarro
- Istituto per la Protezione Sostenibile delle Piante, UOS Bari, Consiglio Nazionale delle Ricerche (IPSP-CNR), Via Amendola, 70126 Bari, Italy
| | - Zhixiang Zhang
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road No. 2, Haidian District, Beijing 100193, PR China
| | - Hongqing Wang
- College of Agronomy and Biotechnology, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing 100193, PR China
| | - Meiguang Lu
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road No. 2, Haidian District, Beijing 100193, PR China
| | - Hong Xiao
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road No. 2, Haidian District, Beijing 100193, PR China
| | - Qingfa Wu
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, Anhui, PR China
| | - Xueping Zhou
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road No. 2, Haidian District, Beijing 100193, PR China
| | - Francesco Di Serio
- Istituto per la Protezione Sostenibile delle Piante, UOS Bari, Consiglio Nazionale delle Ricerche (IPSP-CNR), Via Amendola, 70126 Bari, Italy
| | - Shifang Li
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road No. 2, Haidian District, Beijing 100193, PR China
| |
Collapse
|
43
|
Marais A, Faure C, Mustafayev E, Barone M, Alioto D, Candresse T. Characterization by Deep Sequencing of Prunus virus T, a Novel Tepovirus Infecting Prunus Species. PHYTOPATHOLOGY 2015; 105:135-140. [PMID: 25054616 DOI: 10.1094/phyto-04-14-0125-r] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Double-stranded RNAs purified from a cherry tree collected in Italy and a plum tree collected in Azerbaijan were submitted to deep sequencing. Contigs showing weak but significant identity with various members of the family Betaflexiviridae were reconstructed. Sequence comparisons led to the conclusion that the viral isolates identified in the analyzed Prunus plants belong to the same viral species. Their genome organization is similar to that of some members of the family Betaflexiviridae, with three overlapping open reading frames (RNA polymerase, movement protein, and capsid protein). Phylogenetic analyses of the deduced encoded proteins showed a clustering with the sole member of the genus Tepovirus, Potato virus T (PVT). Given these results, the name Prunus virus T (PrVT) is proposed for the new virus. It should be considered as a new member of the genus Tepovirus, even if the level of nucleotide identity with PVT is borderline with the genus demarcation criteria for the family Betaflexiviridae. A reverse-transcription polymerase chain reaction detection assay was developed and allowed the identification of two other PrVT isolates and an estimate of 1% prevalence in the large Prunus collection screened. Due to the mixed infection status of all hosts identified to date, it was not possible to correlate the presence of PrVT with specific symptoms.
Collapse
|
44
|
Wieczorek P, Obrępalska-Stęplowska A. Suppress to Survive-Implication of Plant Viruses in PTGS. PLANT MOLECULAR BIOLOGY REPORTER 2015; 33:335-346. [PMID: 25999662 PMCID: PMC4432016 DOI: 10.1007/s11105-014-0755-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
In higher plants, evolutionarily conserved processes playing an essential role during gene expression rely on small noncoding RNA molecules (sRNA). Within a wide range of sRNA-dependent cellular events, there is posttranscriptional gene silencing, the process that is activated in response to the presence of double-stranded RNAs (dsRNAs) in planta. The sequence-specific mechanism of silencing is based on RNase-mediated trimming of dsRNAs into translationally inactive short molecules. Viruses invading and replicating in host are also a source of dsRNAs and are recognized as such by cellular posttranscriptional silencing machinery leading to degradation of the pathogenic RNA. However, viruses are not totally defenseless. In parallel with evolving plant defense strategies, viruses have managed a wide range of multifunctional proteins that efficiently impede the posttranscriptional gene silencing. These viral counteracting factors are known as suppressors of RNA silencing. The aim of this review is to summarize the role and the mode of action of several functionally characterized RNA silencing suppressors encoded by RNA viruses directly involved in plant-pathogen interactions. Additionally, we point out that the widely diverse functions, structures, and modes of action of viral suppressors can be performed by different proteins, even in related viruses. All those adaptations have been evolved to achieve the same goal: to maximize the rate of viral genetic material replication by interrupting the evolutionary conserved plant defense mechanism of posttranscriptional gene silencing.
Collapse
Affiliation(s)
- Przemysław Wieczorek
- Interdepartmental Laboratory of Molecular Biology, Institute of Plant Protection-National Research Institute, 20 Władysława Węgorka St, 60-318 Poznań, Poland
| | - Aleksandra Obrępalska-Stęplowska
- Interdepartmental Laboratory of Molecular Biology, Institute of Plant Protection-National Research Institute, 20 Władysława Węgorka St, 60-318 Poznań, Poland
| |
Collapse
|
45
|
Tatineni S, Riethoven JJM, Graybosch RA, French R, Mitra A. Dynamics of small RNA profiles of virus and host origin in wheat cultivars synergistically infected by Wheat streak mosaic virus and Triticum mosaic virus: virus infection caused a drastic shift in the endogenous small RNA profile. PLoS One 2014; 9:e111577. [PMID: 25365307 PMCID: PMC4218773 DOI: 10.1371/journal.pone.0111577] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 10/06/2014] [Indexed: 11/18/2022] Open
Abstract
Co-infection of wheat (Triticum aestivum L.) by Wheat streak mosaic virus (WSMV, a Tritimovirus) and Triticum mosaic virus (TriMV, a Poacevirus) of the family Potyviridae causes synergistic interaction. In this study, the effects of the synergistic interaction between WSMV and TriMV on endogenous and virus-derived small interfering RNAs (vsiRNAs) were examined in susceptible ('Arapahoe') and temperature-sensitive resistant ('Mace') wheat cultivars at 18°C and 27°C. Single and double infections in wheat caused a shift in the profile of endogenous small RNAs from 24 nt being the most predominant in healthy plants to 21 nt in infected wheat. Massive amounts of 21 and 22 nt vsiRNAs accumulated in singly and doubly infected Arapahoe at both temperatures and in Mace at 27°C but not 18°C. The plus- and minus-sense vsiRNAs were distributed throughout the genomic RNAs in Arapahoe at both temperature regimens and in Mace at 27°C, although some regions served as hot-spots, spawning an excessive number of vsiRNAs. The vsiRNA peaks were conserved among cultivars, suggesting that the Dicer-like enzymes in susceptible and resistant cultivars similarly accessed the genomic RNAs of WSMV or TriMV. Accumulation of large amounts of vsiRNAs in doubly infected plants suggests that the silencing suppressor proteins encoded by TriMV and WSMV do not prevent the formation of vsiRNAs; thus, the synergistic effect observed is independent from RNA-silencing mediated vsiRNA biogenesis. The high-resolution map of endogenous and vsiRNAs from WSMV- and/or TriMV-infected wheat cultivars may form a foundation for understanding the virus-host interactions, the effect of synergistic interactions on host defense, and virus resistance mechanisms in wheat.
Collapse
Affiliation(s)
- Satyanarayana Tatineni
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS) and Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Jean-Jack M. Riethoven
- Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Robert A. Graybosch
- USDA-ARS and Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Roy French
- USDA-ARS, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Amitava Mitra
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| |
Collapse
|
46
|
Evasion of short interfering RNA-directed antiviral silencing in Musa acuminata persistently infected with six distinct banana streak pararetroviruses. J Virol 2014; 88:11516-28. [PMID: 25056897 DOI: 10.1128/jvi.01496-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Vegetatively propagated crop plants often suffer from infections with persistent RNA and DNA viruses. Such viruses appear to evade the plant defenses that normally restrict viral replication and spread. The major antiviral defense mechanism is based on RNA silencing generating viral short interfering RNAs (siRNAs) that can potentially repress viral genes posttranscriptionally through RNA cleavage and transcriptionally through DNA cytosine methylation. Here we examined the RNA silencing machinery of banana plants persistently infected with six pararetroviruses after many years of vegetative propagation. Using deep sequencing, we reconstructed consensus master genomes of the viruses and characterized virus-derived and endogenous small RNAs. Consistent with the presence of endogenous siRNAs that can potentially establish and maintain DNA methylation, the banana genomic DNA was extensively methylated in both healthy and virus-infected plants. A novel class of abundant 20-nucleotide (nt) endogenous small RNAs with 5'-terminal guanosine was identified. In all virus-infected plants, 21- to 24-nt viral siRNAs accumulated at relatively high levels (up to 22% of the total small RNA population) and covered the entire circular viral DNA genomes in both orientations. The hotspots of 21-nt and 22-nt siRNAs occurred within open reading frame (ORF) I and II and the 5' portion of ORF III, while 24-nt siRNAs were more evenly distributed along the viral genome. Despite the presence of abundant viral siRNAs of different size classes, the viral DNA was largely free of cytosine methylation. Thus, the virus is able to evade siRNA-directed DNA methylation and thereby avoid transcriptional silencing. This evasion of silencing likely contributes to the persistence of pararetroviruses in banana plants. IMPORTANCE We report that DNA pararetroviruses in Musa acuminata banana plants are able to evade DNA cytosine methylation and transcriptional gene silencing, despite being targeted by the host silencing machinery generating abundant 21- to 24-nucleotide short interfering RNAs. At the same time, the banana genomic DNA is extensively methylated in both healthy and virus-infected plants. Our findings shed light on the siRNA-generating gene silencing machinery of banana and provide a possible explanation why episomal pararetroviruses can persist in plants whereas true retroviruses with an obligatory genome-integration step in their replication cycle do not exist in plants.
Collapse
|
47
|
Naveed K, Mitter N, Harper A, Dhingra A, Pappu HR. Comparative analysis of virus-specific small RNA profiles of three biologically distinct strains of Potato virus Y in infected potato (Solanum tuberosum) cv. Russet Burbank. Virus Res 2014; 191:153-60. [PMID: 25036885 DOI: 10.1016/j.virusres.2014.07.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 07/02/2014] [Accepted: 07/07/2014] [Indexed: 11/17/2022]
Abstract
Deep sequencing technology has enabled the analysis of small RNA profiles of virus-infected plants and could provide insights into virus-host interactions. Potato virus Y is an economically important viral pathogen of potato worldwide. In this study, we investigated the nature and relative levels of virus-derived small interfering RNAs (vsiRNAs) in potato cv. Russet Burbank infected with three biologically distinct and economically important strains of PVY, the ordinary strain (PVY-O), tobacco veinal-necrotic strain (PVY-N) and tuber necrotic strain (PVY-NTN). The analysis showed an overall abundance of vsiRNAs of 20-24nt in PVY-infected plants. Considerable differences were present in the distribution of vsiRNAs as well as total small RNAs. The 21nt class was the most prevalent in PVY-infected plants irrespective of the virus strain, whereas in healthy potato plants, the 24nt class was the most dominant. vsiRNAs were derived from every position in the PVY genome, though certain hotspots were identified for each of the PVY strains. Among the three strains used, the population of vsiRNAs of different size classes was relatively different with PVY-NTN accumulating the highest level of vsiRNAs, while PVY-N infected plants had the least population of vsiRNAs. Unique vsiRNAs mapping to PVY genome in PVY-infected plants amounted to 3.13, 1.93 and 1.70% for NTN, N and O, respectively. There was a bias in the generation of vsiRNAs from the plus strand of the genome in comparison to the negative strand. The highest number of total vsiRNAs was from the cytoplasmic inclusion protein gene (CI) in PVY-O and PVY-NTN strains, whereas from PVY-N, the NIb gene produced maximum total vsiRNAs. These findings indicate that the three PVY strains interact differently in the same host genetic background and provided insights into virus-host interactions in an important food crop.
Collapse
Affiliation(s)
- Khalid Naveed
- Department of Plant Pathology, Washington State University, Pullman, WA, USA
| | - Neena Mitter
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
| | - Artemus Harper
- Department of Horticulture, Washington State University, Pullman, USA
| | - Amit Dhingra
- Department of Horticulture, Washington State University, Pullman, USA
| | - Hanu R Pappu
- Department of Plant Pathology, Washington State University, Pullman, WA, USA.
| |
Collapse
|
48
|
Wang Y, Cheng X, Wu X, Wang A, Wu X. Characterization of complete genome and small RNA profile of pagoda yellow mosaic associated virus, a novel badnavirus in China. Virus Res 2014; 188:103-8. [PMID: 24751798 DOI: 10.1016/j.virusres.2014.04.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 04/06/2014] [Accepted: 04/09/2014] [Indexed: 12/16/2022]
Abstract
A new badnavirus was discovered from pagoda trees showing yellow mosaic symptoms on the leaves by high throughput sequencing of small RNAs. The complete genome of this virus was determined to comprise 7424 nucleotides, and the virus shared 40.4-45.1% identity with that of other badnaviruses. The genome encodes five open reading frames (ORFs) on the plus strand, which includes three conserved badnaviral ORFs. These results suggest that this virus is a new member of the genus Badnavirus in the family Caulimoviridae. The virus is tentatively named pagoda yellow mosaic associated virus (PYMAV). Phylogenetic analysis suggested that this virus together with gooseberry vein banding virus (GVBV) and grapevine vein-clearing virus (GVCV) forms a separate group that is distinct two other well characterized badnaviral groups. Additionally, the viral derived small RNA (vsRNA) profile of PYMAV was analyzed and compared with that of viruses within the same family. Results showed that the most abundant PYMAV vsRNAs were 21-nt, whereas other viruses in the same family have a predominance of 22- or 24-nt vsRNA. The percentage of sense PYMAV vsRNA was almost equal to that of antisense vsRNA, whereas vsRNAs of other viruses in the family display preferences toward the sense strand of their genome. Furthermore, PYMAV vsRNAs were symmetrically distributed along the genome with no obvious vsRNA generating hotspots.
Collapse
Affiliation(s)
- Yilun Wang
- College of Agricultural and Food Science, Zhejiang Agricultural and Forestry University, Lin'an 311300, Zhejiang, PR China
| | - Xiaofei Cheng
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 310036, Zhejiang, PR China; Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London N5V 4T3, Ontario, Canada
| | - Xiaoxia Wu
- College of Agriculture, Northeast Agricultural University, Key Laboratory of Soybean Biology, Ministry of Education, Harbin 150030, Heilongjiang, PR China
| | - Aiming Wang
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London N5V 4T3, Ontario, Canada
| | - Xiaoyun Wu
- College of Agricultural and Food Science, Zhejiang Agricultural and Forestry University, Lin'an 311300, Zhejiang, PR China.
| |
Collapse
|
49
|
Xiao B, Yang X, Ye CY, Liu Y, Yan C, Wang Y, Lu X, Li Y, Fan L. A diverse set of miRNAs responsive to begomovirus-associated betasatellite in Nicotiana benthamiana. BMC PLANT BIOLOGY 2014; 14:60. [PMID: 24618068 PMCID: PMC4008317 DOI: 10.1186/1471-2229-14-60] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 03/04/2014] [Indexed: 05/22/2023]
Abstract
BACKGROUND Roles of microRNAs (miRNAs) and short interfering RNAs (siRNAs) in biotic stress responses, e.g., viral infection, have been demonstrated in plants by many studies. Tomato yellow leaf curl China virus (TYLCCNV) is a monopartite begomovirus that can systemically infect Solanaceae plants, and induces leaf curling, yellowing and enation symptoms when co-inoculated with a betasatellite (TYLCCNB). The released genome sequence of Nicotiana benthamiana provides an opportunity to identify miRNAs and siRNAs responsive to begomovirus-associated betasatellite in N. benthamiana. RESULTS miRNAs were identified in three small RNA libraries generated using RNA isolated from N. benthamiana plants systemically infected with TYLCCNV (Y10A) alone, co-infected with Y10A and its betasatellite TYLCCNB (Y10β) or a TYLCCNB mutant (Y10mβ) that contains a mutated βC1, the sole betasatellite-encoded protein. A total of 196 conserved miRNAs from 38 families and 197 novel miRNAs from 160 families were identified. Northern blot analysis confirmed that expression of species-specific miRNAs was much lower than that of conserved miRNAs. Several conserved and novel miRNAs were found to be responsive to co-infection of Y10A and Y10β but not to co-infection of Y10A and Y10mβ, suggesting that these miRNAs might play a role unique to interaction between Y10β and N. benthamiana. Additionally, we identified miRNAs that can trigger the production of phased secondary siRNAs (phasiRNAs). CONCLUSIONS Identification of miRNAs with differential expression profiles in N. benthamiana co-infected with Y10A and Y10β and co-infected with Y10A and Y10mβ indicates that these miRNAs are betasatellite-responsive. Our result also suggested a potential role of miRNA-mediated production of phasiRNAs in interaction between begomovirus and N. benthamiana.
Collapse
Affiliation(s)
- Bingguang Xiao
- Yunnan Academy of Tobacco Agricultural Sciences and China Tobacco Breeding Research Center at Yunnan, Yuxi 653100, China
| | - Xiuling Yang
- Department of Agronomy & James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Chu-Yu Ye
- Department of Agronomy & James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yang Liu
- Department of Agronomy & James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chenhai Yan
- Department of Agronomy & James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yu Wang
- Department of Agronomy & James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiuping Lu
- Yunnan Academy of Tobacco Agricultural Sciences and China Tobacco Breeding Research Center at Yunnan, Yuxi 653100, China
| | - Yongping Li
- Yunnan Academy of Tobacco Agricultural Sciences and China Tobacco Breeding Research Center at Yunnan, Yuxi 653100, China
| | - Longjiang Fan
- Department of Agronomy & James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
50
|
Chen W, Qian Y, Wu X, Sun Y, Wu X, Cheng X. Inhibiting replication of begomoviruses using artificial zinc finger nucleases that target viral-conserved nucleotide motif. Virus Genes 2014; 48:494-501. [PMID: 24474330 DOI: 10.1007/s11262-014-1041-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 01/16/2014] [Indexed: 11/26/2022]
Abstract
Geminiviridae consists of a large group of single-stranded DNA viruses that cause tremendous losses worldwide. Frequent mixed infection and high rates of recombination and mutation allow them to adapt rapidly to new hosts and overcome hosts' resistances. Therefore, an effective strategy able to confer plants with resistance against multiple begomoviruses is needed. In the present study, artificial zinc finger proteins were designed based on a conserved sequence motif of begomoviruses. DNA-binding affinities and specificities of these artificial zinc fingers were evaluated using electrophoretic mobility shift assay. Artificial zinc finger nuclease (AZFNs) were then constructed based on the ones with the highest DNA-binding affinities. In vitro digest and transient expression assay showed that these AZFNs can efficiently cleave the target sequence and inhibit the replication of different begomoviruses. These results suggest that artificial zinc finger protein technology may be used to achieve resistance against multiple begomoviruses.
Collapse
Affiliation(s)
- Wei Chen
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, 310036, Zhejiang, People's Republic of China
| | | | | | | | | | | |
Collapse
|