1
|
Ortiz-Moriano MP, Garcia-Vazquez E, Machado-Schiaffino G. Genes of filter-feeding species as a potential toolkit for monitoring microplastic impacts. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 279:107234. [PMID: 39787666 DOI: 10.1016/j.aquatox.2024.107234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/16/2024] [Accepted: 12/31/2024] [Indexed: 01/12/2025]
Abstract
Microplastics (MPs) are ubiquitous in the marine environment and impact organisms at multiple levels. Understanding their actual effects on wild populations is urgently needed. This study develops a toolkit to monitor changes in gene expression induced by MPs in natural environments, focusing on filter-feeding and bioindicator species from diverse ecological and taxonomic groups. Six candidate genes -Caspase, HSP70, HSP90, PK, SOD, and VTG- and nine filter-feeding species -two branchiopods, one copepod, five bivalves and one fish- were selected based on differential expression in response to MPs exposure (mainly the widely used polystyrene and polyethylene polymers) reported in over 30 publications. Some genes are particularly determinant, such as HSP70 and HSP90 (key to managing a wide range of stressors) and SOD (critical for addressing oxidative stress), as they are more directly related to stress. PK is related to carbohydrate metabolism (alterations in energy metabolism); VTG is associated with reproductive problems; Caspase mediates in apoptosis. Each gene in the toolkit plays a role depending on the type of stress assessed, and their combination provides a comprehensive understanding of the impacts of MPs. Differences in gene expressions between species and the exposure thresholds were found. These genes were examined in various scenarios with different types, concentrations, and sizes of MPs, alone or with other stressors. The toolkit offers significant advantages, allowing a comprehensive study of the impact of MPs and focusing on filtering bioindicator species, thus enabling pollution assessment and long-term monitoring. It will outperform traditional methods like tissue counts of MPs where only physical damage is visible, providing a deeper understanding. To our knowledge, this is the first toolkit of its kind.
Collapse
Affiliation(s)
- Marta Pilar Ortiz-Moriano
- Department of Functional Biology, Faculty of Medicine, University of Oviedo. C/ Julian Clavería s/n 33006 Oviedo, Spain
| | - Eva Garcia-Vazquez
- Department of Functional Biology, Faculty of Medicine, University of Oviedo. C/ Julian Clavería s/n 33006 Oviedo, Spain.
| | - Gonzalo Machado-Schiaffino
- Department of Functional Biology, Faculty of Medicine, University of Oviedo. C/ Julian Clavería s/n 33006 Oviedo, Spain
| |
Collapse
|
2
|
Li D, Xie C, Fan Z, Ding R, Wang X, Liao Y. Evidence that cadmium aggravate the toxicity of triphenyl phosphate in aquatic sediments to Corbicula fluminea. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136407. [PMID: 39522218 DOI: 10.1016/j.jhazmat.2024.136407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/02/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
The ubiquitous co-existence of triphenyl phosphate (TPhP) and heavy metals in sediments raises significant biotoxicity concerns. However, uncertainty still exists regarding their combined toxicity to benthic organisms. Therefore, this research was conducted to elucidate the influences of cadmium (Cd) on TPhP toxicity to Corbicula fluminea (C. fluminea) in sediments. As a result, Cd promoted the accumulation of TPhP in C. fluminea and enhanced TPhP toxicity, manifested by damaged cell membranes and pronounced histological alterations. Molecular docking revealed that TPhP-Cd complexes exhibit greater binding affinity to cytochrome P4501A1 (CYP1A1) compared to TPhP alone. With the activity of CYP1A1 increasing, the biotransformation of TPhP was promoted in low-TPhP+Cd treatments (T5C0/T5C5/T5C35). Additionally, metabolites related to antioxidant defence and repair processes were reinforced to alleviate the toxicity of TPhP and Cd. However, excessive oxidative stress impaired the CYP1A1 activity in high-TPhP+Cd treatments (T35C0/T35C5/T35C35). Furthermore, metabolic pathway analysis revealed significant perturbations in the citrate cycle, alanine, aspartate and glutamate metabolism, purine metabolism, and pyrimidine metabolism. These disruptions weakened the repair capacity and aggravated apoptosis in digestive glands, potentially contributing to the synergistic toxicity of TPhP and Cd. The results highlight the ecological risks posed by TPhP in combination with heavy metals to benthic organisms.
Collapse
Affiliation(s)
- Dandan Li
- Nanjing Hydraulic Research Institute, Nanjing 210029, China; Key Laboratory of Taihu Basin Water Resources Management, Ministry of Water Resources, Wuxi 214131, China
| | - Chen Xie
- Nanjing Hydraulic Research Institute, Nanjing 210029, China; Key Laboratory of Taihu Basin Water Resources Management, Ministry of Water Resources, Wuxi 214131, China
| | - Ziwu Fan
- Nanjing Hydraulic Research Institute, Nanjing 210029, China; Key Laboratory of Taihu Basin Water Resources Management, Ministry of Water Resources, Wuxi 214131, China.
| | - Rui Ding
- Nanjing Hydraulic Research Institute, Nanjing 210029, China; Key Laboratory of Taihu Basin Water Resources Management, Ministry of Water Resources, Wuxi 214131, China
| | - Xiaoyu Wang
- Nanjing Hydraulic Research Institute, Nanjing 210029, China; Key Laboratory of Taihu Basin Water Resources Management, Ministry of Water Resources, Wuxi 214131, China.
| | - Yipeng Liao
- Nanjing Hydraulic Research Institute, Nanjing 210029, China; Key Laboratory of Taihu Basin Water Resources Management, Ministry of Water Resources, Wuxi 214131, China
| |
Collapse
|
3
|
Wang C, Du M, Jiang Z, Cong R, Wang W, Zhang T, Chen J, Zhang G, Li L. PI3K-AKT-mediated phosphorylation of Thr260 in CgCaspase-3/6/7 regulates heat-induced activation in oysters. Commun Biol 2024; 7:1459. [PMID: 39511363 PMCID: PMC11543851 DOI: 10.1038/s42003-024-07184-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024] Open
Abstract
Cysteine-aspartic proteases (caspases) are critical drivers of apoptosis, exhibiting expansion and domain shuffling in mollusks. However, the functions and regulatory mechanisms of these caspases remain unclear. In this study, we identified a group of Caspase-3/6/7 in Bivalvia and Gastropoda with a long inter-subunit linker (IL) that inhibits cleavage activation. Within this region, we found that conserved phosphorylation at Thr260 in oysters, mediated by the PI3K-AKT pathway, suppresses heat-induced activation. This mechanism is involved in divergent temperature adaptation between two allopatric congeneric oyster species, the relatively cold-adapted Crassostrea gigas and warm-adapted Crassostrea angulata. Our study elucidates the role of these effector caspase members and their long IL in bivalves, revealing that the PI3K-AKT pathway phosphorylates Thr260 on CgCASP3/6/7's linker to inhibit heat-induced activation. These findings provide insights into the evolution and function of apoptotic regulatory mechanisms in bivalves.
Collapse
Affiliation(s)
- Chaogang Wang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture(CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
| | - Mingyang Du
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhuxiang Jiang
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Rihao Cong
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| | - Wei Wang
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Taiping Zhang
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jincheng Chen
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guofan Zhang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture(CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
- Shandong Technology Innovation Center of Oyster Seed Industry, Qingdao, China
| | - Li Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture(CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, China.
- Shandong Technology Innovation Center of Oyster Seed Industry, Qingdao, China.
| |
Collapse
|
4
|
Pérez-Polo S, Mena AR, Barros L, Borrajo P, Pazos M, Carrera M, Gestal C. Decoding Octopus Skin Mucus: Impact of Aquarium-Maintenance and Senescence on the Proteome Profile of the Common Octopus ( Octopus vulgaris). Int J Mol Sci 2024; 25:9953. [PMID: 39337441 PMCID: PMC11431876 DOI: 10.3390/ijms25189953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
The common octopus (Octopus vulgaris) is an excellent candidate for aquaculture diversification, due to its biological traits and high market demand. To ensure a high-quality product while maintaining welfare in captive environments, it is crucial to develop non-invasive methods for testing health biomarkers. Proteins found in skin mucus offer a non-invasive approach to monitoring octopus welfare. This study compares the protein profiles in the skin mucus of wild, aquarium-maintained, and senescent specimens to identify welfare biomarkers. A tandem mass tag (TMT) coupled with an Orbitrap Eclipse Tribrid mass spectrometer was used to create a reference dataset from octopus skin mucus, identifying 1496 non-redundant protein groups. Although similar profiles were observed, differences in relative abundances led to the identification of potential biomarkers, including caspase-3-like, protocadherin 4, deleted in malignant brain tumors, thioredoxin, papilin, annexin, cofilin and mucin-4 proteins. Some of these proteins also revealed potential as bioactive peptides. This investigation provides the most extensive analysis of the skin mucus proteome in the common octopus and is the first to explore how aquarium maintenance and senescence alter the mucus proteome. This research highlights the potential of skin mucus protein/peptides as non-invasive monitoring biomarkers in cultured animals.
Collapse
Affiliation(s)
| | | | | | | | | | - Mónica Carrera
- Instituto de Investigaciones Marinas (IIM-CSIC), Spanish National Research Council (CSIC), Eduardo Cabello 6, 36208 Vigo, Spain; (S.P.-P.); (A.R.M.); (L.B.); (P.B.); (M.P.)
| | - Camino Gestal
- Instituto de Investigaciones Marinas (IIM-CSIC), Spanish National Research Council (CSIC), Eduardo Cabello 6, 36208 Vigo, Spain; (S.P.-P.); (A.R.M.); (L.B.); (P.B.); (M.P.)
| |
Collapse
|
5
|
Wu F, Kong H, Xie L, Sokolova IM. Exposure to nanopollutants (nZnO) enhances the negative effects of hypoxia and delays recovery of the mussels' immune system. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124112. [PMID: 38705446 DOI: 10.1016/j.envpol.2024.124112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/03/2024] [Accepted: 05/03/2024] [Indexed: 05/07/2024]
Abstract
Aquatic environments face escalating challenges from multiple stressors like hypoxia and nanoparticle exposure, with impact of these combined stressors on mussel immunity being poorly understood. We investigated the individual and combined effects of short-term and long-term hypoxia and exposure to zinc oxide nanoparticles (nZnO) on immune system of the mussels (Mytilus edulis). Hemocyte functional traits (mortality, adhesion capacity, phagocytosis, lysosomal abundance, and oxidative burst), and transcript levels of immune-related genes involved in pathogen recognition (the Toll-like receptors, the complement system components, and the adaptor proteins MyD88) were assessed. Short-term hypoxia minimally affected hemocyte parameters, while prolonged exposure led to immunosuppression, impacting hemocyte abundance, viability, phagocytosis, and defensin gene expression. Under normoxia, nZnO stimulated immune responses of mussel hemocytes. However, combined nZnO and hypoxia induced more pronounced and rapid immunosuppression than hypoxia alone, indicating a synergistic interaction. nZnO exposure hindered immune parameter recovery during post-hypoxic reoxygenation, suggesting persistent impact. Opposing trends were observed in pathogen-sensing and pathogen-elimination mechanisms, with a positive correlation between pathogen-recognition system activation and hemocyte mortality. These findings underscore a complex relationship and potential conflict between pathogen-recognition ability, immune function, and cell survival in mussel hemocytes under hypoxia and nanopollutant stress, and emphasize the importance of considering multiple stressors in assessing the vulnerability and adaptability of mussel immune system under complex environmental conditions of anthropogenically modified coastal ecosystems.
Collapse
Affiliation(s)
- Fangli Wu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Hui Kong
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany
| | - Lingtian Xie
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Inna M Sokolova
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany; Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany.
| |
Collapse
|
6
|
Xu Y, Luo X, Masanja F, Deng Y, Zhao L. Transcriptomic insights into cessation of clam embryonic development following transgenerational exposure to ocean acidity extreme. MARINE ENVIRONMENTAL RESEARCH 2024; 198:106561. [PMID: 38788476 DOI: 10.1016/j.marenvres.2024.106561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/06/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
Ocean acidity extremes (OAX) events are becoming more frequent and intense in coastal areas in the context of climate change, generating widespread consequences on marine calcifying organisms and ecosystems they support. While transgenerational exposure to end-of-century scenario of ocean acidification (i.e., at pH 7.7) can confer calcifiers resilience, whether and to what extent such resilience holds true under OAX conditions is still poorly understood. Here, we found that transgenerational exposure of Ruditapes philippinarum to OAX resulted in cessation of embryonic development at the trochophore stage, implying devastating consequences of OAX on marine bivalves. We identified a large number of differentially expressed genes in embryos following transgenerationally exposed to OAX, which were mainly significantly enriched in KEGG pathways related to energy metabolism, immunity and apoptosis. These pathways were significantly activated, and genes involved in these processes were up-regulated, indicating strong cellular stress responses to OAX. These findings demonstrate that transgenerational exposure to OAX can result in embryonic developmental cessation by severe cellular damages, implying that transgenerational acclimation maybe not a panacea for marine bivalves to cope with OAX, and hence urgent efforts are required to understand consequences of intensifying OAX events in coastal ecosystems.
Collapse
Affiliation(s)
- Yang Xu
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Xin Luo
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | | | - Yuewen Deng
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Liqiang Zhao
- Fisheries College, Guangdong Ocean University, Zhanjiang, China; Guangdong Science and Technology Innovation Center of Marine Invertebrate, Guangdong Ocean University, Zhanjiang, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University, Zhanjiang, China.
| |
Collapse
|
7
|
Cao Y, Xu L, Xiong X, Liu X. Expansion and diversity of caspases in Mytilus coruscus contribute to larval metamorphosis and environmental adaptation. BMC Genomics 2024; 25:314. [PMID: 38532358 DOI: 10.1186/s12864-024-10238-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 03/18/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Apoptosis is involved (directly and indirectly) in several physiological processes including tissue remodeling during the development, the turnover of immune cells, and a defense against harmful stimuli. The disordered apoptotic process participates in the pathogenesis of various diseases, such as neoplasms, and chronic inflammatory or systemic autoimmune diseases, which are associated with its inadequate regulation. Caspases are vital components of the apoptotic pathway that are involved in developmental and immune processes. However, genome-wide identification and functional analysis of caspase have not been conducted in Mytilus coruscus, which is an economically important bivalve. RESULTS Here, 47 caspase genes were identified from the genomes of M. coruscus, and the expansion of caspase-2/9 and caspase-3/6/7 genes were observed. Tandem duplication acts as an essential driver of gene expansion. The expanded caspase genes were highly diverse in terms of sequence, domain structure, and spatiotemporal expression profiles, suggesting their functional differentiation. The high expression of the expanded caspase genes at the pediveliger larvae stage and the result of apoptosis location in the velum suggest that the apoptosis mediated by them plays a critical role in the metamorphosis of M. coruscus larvae. In gill, caspase genes respond differently to the challenge of different strains, and most caspase-2/9 and caspase-3/6/7 genes were induced by copper stress, whereas caspase-8/10 genes were suppressed. Additionally, most caspase genes were upregulated in the mantle under ocean acidification which could weaken the biomineralization capacity of the mantle tissue. CONCLUSIONS These results provide a comprehensive overview of the evolution and function of the caspase family and enhanced the understanding of the biological function of caspases in M. coruscus larval development and response to biotic and abiotic challenges.
Collapse
Affiliation(s)
- Yanfei Cao
- National Engineering Research Center For Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
| | - Linxiang Xu
- National Engineering Research Center For Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
| | - Xinwei Xiong
- National Engineering Research Center For Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
| | - Xiao Liu
- National Engineering Research Center For Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China.
| |
Collapse
|
8
|
Dalisay DS, Tenebro CP, Sabido EM, Suarez AFL, Paderog MJV, Reyes-Salarda R, Saludes JP. Marine-Derived Anticancer Agents Targeting Apoptotic Pathways: Exploring the Depths for Novel Cancer Therapies. Mar Drugs 2024; 22:114. [PMID: 38535455 PMCID: PMC10972102 DOI: 10.3390/md22030114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 04/13/2024] Open
Abstract
Extensive research has been conducted on the isolation and study of bioactive compounds derived from marine sources. Several natural products have demonstrated potential as inducers of apoptosis and are currently under investigation in clinical trials. These marine-derived compounds selectively interact with extrinsic and intrinsic apoptotic pathways using a variety of molecular mechanisms, resulting in cell shrinkage, chromatin condensation, cytoplasmic blebs, apoptotic bodies, and phagocytosis by adjacent parenchymal cells, neoplastic cells, or macrophages. Numerous marine-derived compounds are currently undergoing rigorous examination for their potential application in cancer therapy. This review examines a total of 21 marine-derived compounds, along with their synthetic derivatives, sourced from marine organisms such as sponges, corals, tunicates, mollusks, ascidians, algae, cyanobacteria, fungi, and actinobacteria. These compounds are currently undergoing preclinical and clinical trials to evaluate their potential as apoptosis inducers for the treatment of different types of cancer. This review further examined the compound's properties and mode of action, preclinical investigations, clinical trial studies on single or combination therapy, and the prospective development of marine-derived anticancer therapies.
Collapse
Affiliation(s)
- Doralyn S. Dalisay
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, Iloilo City 5000, Philippines; (C.P.T.); (E.M.S.); (M.J.V.P.)
- Department of Biology, University of San Agustin, Iloilo City 5000, Philippines;
- Balik Scientist Program, Department of Science and Technology, Philippine Council for Health Research and Development (DOST-PCHRD), Taguig 1631, Philippines;
| | - Chuckcris P. Tenebro
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, Iloilo City 5000, Philippines; (C.P.T.); (E.M.S.); (M.J.V.P.)
| | - Edna M. Sabido
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, Iloilo City 5000, Philippines; (C.P.T.); (E.M.S.); (M.J.V.P.)
| | - Angelica Faith L. Suarez
- Center for Natural Drug Discovery and Development (CND3), University of San Agustin, Iloilo City 5000, Philippines;
| | - Melissa June V. Paderog
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, Iloilo City 5000, Philippines; (C.P.T.); (E.M.S.); (M.J.V.P.)
- Department of Pharmacy, University of San Agustin, Iloilo City 5000, Philippines
| | - Rikka Reyes-Salarda
- Department of Biology, University of San Agustin, Iloilo City 5000, Philippines;
| | - Jonel P. Saludes
- Balik Scientist Program, Department of Science and Technology, Philippine Council for Health Research and Development (DOST-PCHRD), Taguig 1631, Philippines;
- Center for Natural Drug Discovery and Development (CND3), University of San Agustin, Iloilo City 5000, Philippines;
- Department of Chemistry, University of San Agustin, Iloilo City 5000, Philippines
| |
Collapse
|
9
|
Tu Z, Tang L, Khan FU, Hu M, Shen H, Wang Y. Low-frequency noise aggravates the toxicity of cadmium in sea slug Onchdium reevesii. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169558. [PMID: 38135081 DOI: 10.1016/j.scitotenv.2023.169558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/25/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023]
Abstract
Industrial development not only triggers heavy metal pollution but also introduces a less easily discernible disturbance: low-frequency noise pollution. Low-frequency noise can disrupt wildlife behavior, potentially exerting complex effects through interacting with heavy metals. Nevertheless, the cumulative impacts of low-frequency noise and cadmium (Cd) pollution on marine organisms remain largely unexplored. This study aimed to evaluate the immune defense response of sea slugs (Onchdium reevesii) exposed to Cd (1.32 mg/L) and low-frequency noise (500 Hz, 1000 Hz). Our results show that Cd exposure results in Cd2+ accumulation in the sea slug's hepatopancreas, leading to a decrease in total antioxidant capacity (TAC) and a significant increase in enzyme activities, including glutathione (GSH), lipid peroxidation (LPO), and aspartate transferase (AST). Additionally, there is a substantial upregulation in the expression of genes related to tumor protein p53 (p53), Cytochrome C (CytC), Caspase 3, and Caspase 9, as well as metallothionein (MT) and heat shock protein 70 (Hsp70) genes. Concurrently, an excessive production of reactive oxygen species (ROS) occurs in the hemocytes, resulting in apoptosis and subsequent diminished cell viability, with these effects positively correlating with the exposure duration. Furthermore, when sea slugs were exposed to both Cd and low-frequency noise, there was a decrease in the hepatopancreas's antioxidant capacity and an enhancement in hemocytes immune responses, which positively correlated with low-frequency noise frequency. The comprehensive assessment of biomarker responses highlights that low-frequency noise has the potential to amplify the deleterious effects of Cd on sea slug physiology, with this negative impact positively linked to noise frequency. Consequently, our study underscores that the combined influence of low-frequency noise and Cd pollution magnifies the effects on sea slug health. This could potentially disrupt the population stability of this species within its natural habitat, providing fresh insights into the evaluation of cumulative environmental pollution risks.
Collapse
Affiliation(s)
- Zhihan Tu
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Liusiqiao Tang
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Fahim Ullah Khan
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Menghong Hu
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Heding Shen
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| | - Youji Wang
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
10
|
Stojanović J, Savić-Zdravković D, Jovanović B, Vitorović J, Bašić J, Stojanović I, Popović AŽ, Duran H, Kolarević MK, Milošević Đ. Histopathology of chironomids exposed to fly ash and microplastics as a new biomarker of ecotoxicological assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166042. [PMID: 37543338 DOI: 10.1016/j.scitotenv.2023.166042] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
In the last few decades, industrial pollution has gained extensive attention in terms of its effect on the aquatic environment. This imposes the need to develop sensitive biomarkers for early detection of pollutant toxicity in ecotoxicological assessment. The advantages of histopathological biomarkers are many, including quick reaction to the presence of contaminants, and the small number of individuals needed for efficient analysis. The present study analyzed the negative effect of lignite coal fly ash (LCFA) and microplastic particles (MPs) on Chironomus riparius, a suggested model organism by the Organization for Economic Cooperation and Development (OECD). This study aimed to perform histological analyses of larval tissues and target potential changes in treated groups that could serve as promising histopathological biomarkers of the contaminant's negative effects. Following that, other known sensitive sub-organismal biomarkers were analyzed and paired with the histopathological ones. Histological analysis of larvae showed a significantly decreased length of microvilli in midgut regions II and III in both treatments. Treatments with MPs affected oxidative stress parameters: thiobarbituric acid reactive substances (TBARS), advanced oxidation protein products (AOPP), superoxide dismutase (SOD), and hemoglobin levels, while LCFA significantly affected all tested sub-organismal biomarkers (DNA damage, levels of AOPP, SOD, and hemoglobin), except catalase (CAT) and TBARS. When observing histological slides, a significant shortage of brush border length in the posterior parts of the midgut was detected in all treatments. In the case of LCFA, the appearance of intensive vacuolization of digestive cells with inclusions resembling apoptotic bodies, in mentioned regions was also detected. This study demonstrated high sensitivity of brush border length to the MPs and LCFA exposure, complementary to other tested sub-organismal biomarkers. Revealing the great potential of this histopathological biomarker in ecotoxicological studies contributes to the international standard ecotoxicology assessment of emerging pollutants.
Collapse
Affiliation(s)
- Jelena Stojanović
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, Niš, Serbia.
| | - Dimitrija Savić-Zdravković
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, Niš, Serbia
| | - Boris Jovanović
- Department of Natural Resource Ecology and Management, Iowa State University, Ames, IA, USA
| | - Jelena Vitorović
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, Niš, Serbia
| | - Jelena Bašić
- Department of Biochemistry, Faculty of Medicine, University of Nis, Bulevar dr Zorana Đinđića 81, 18000 Nis, Serbia
| | - Ivana Stojanović
- Department of Biochemistry, Faculty of Medicine, University of Nis, Bulevar dr Zorana Đinđića 81, 18000 Nis, Serbia
| | - Andrea Žabar Popović
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, Niš, Serbia
| | - Hatice Duran
- Department of Materials Science & Nanotechnology Engineering, TOBB University of Economics and Technology, Söğütözü Cad. 43, 06560 Ankara, Türkiye; UNAM - National Nanotechnology Research Center and Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Türkiye
| | - Margareta Kračun Kolarević
- Department of Hydroecology and water protection, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Đurađ Milošević
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, Niš, Serbia
| |
Collapse
|
11
|
Qin Y, Wan W, Li J, Wang Z, Yang Y, Li J, Ma H, Yu Z, Xiang Z, Zhang Y. A novel Fas ligand plays an important role in cell apoptosis of Crassostrea hongkongensis: molecular cloning, expression profiles and functional identification of ChFasL. Front Immunol 2023; 14:1267772. [PMID: 37868973 PMCID: PMC10585096 DOI: 10.3389/fimmu.2023.1267772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/06/2023] [Indexed: 10/24/2023] Open
Abstract
Background Apoptosis regulates normal development, homeostasis, immune tolerance and response to environmental stress by eliminating unwanted or diseased cells, and plays a key role in non-specific immunity of invertebrates. The exogenous pathway mediated by death receptors and death ligands is a very important pathway for cell apoptosis. Death ligands are mainly members of the tumour necrosis factor (TNF) family, of which FasL is an important member. The deep involvement of FasL in vertebrates cell apoptosis and immunity has been reported many times, but there is limited research on the FasL gene in shellfish, and its functional importance in oyster cell apoptosis and immunity remains unclear. Methods The full length of ChFasL was identified and cloned based on the genome of Crassostrea hongkongensis. Quantitative PCR was used to detect the relative expression of ChFasL in different developmental stages and tissues, as well as the changes of relative expression in hemocytes after bacterial infection. The expression position of ChFasL in HEK293T cells was also located by subcellular localization, and the effect of increased recombinant protein content on the activity of reporter genes p53 and p21 was studied by dual-fluorescence reporter gene. Finally, the changes of apoptosis rate in hemocytes after ChFasL silencing was identified by RNA interference technology. Results We identified a novel FasL gene from C. hongkongensis and named it ChFasL. We found that ChFasL has potential N-linked glycosylation site, a transmembrane domain and a TNF region, which was a typical characteristics of TNF family. ChFasL was expressed in all developmental stages of larvae and in all tissues of oysters. After stimulation by V. alginolyticus or S. haemolyticus, its relative expression in hemocytes increased significantly, suggesting that ChFasL was deeply engaged in the immune response process of C. hongkongensis to external microbial stimulation. The results of subcellular localization showed that ChFasL was mainly distributed in the cytoplasm of HEK293T cells. With the overexpression of the recombinant protein pcDNA3 1- ChFasL, the activity of p53 and p21 significantly increased, showing a positive regulatory effect. Moreover, after dsRNA successfully reduced the relative expression of ChFasL, the apoptosis rate of hemocytes was significantly lower than that the dsGFP group. Conclusion These results comprehensively confirmed the important role of ChFasL in the apoptosis process of C. hongkongensis, which provided the basis and premise for the in-depth understanding of the immune function of apoptosis in molluscs, and also contributed to the research on the pathogenic death mechanism and disease resistance breeding of marine bivalves.
Collapse
Affiliation(s)
- Yanping Qin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Hainan Provincial Key Laboratory of Tropical Marine Biology Technology, Sanya Research Institute of Marine Ecological Environment Engineering, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Weitao Wan
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiangwei Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Zhongyu Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yue Yang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Jun Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Hainan Provincial Key Laboratory of Tropical Marine Biology Technology, Sanya Research Institute of Marine Ecological Environment Engineering, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Haitao Ma
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Hainan Provincial Key Laboratory of Tropical Marine Biology Technology, Sanya Research Institute of Marine Ecological Environment Engineering, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Ziniu Yu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Hainan Provincial Key Laboratory of Tropical Marine Biology Technology, Sanya Research Institute of Marine Ecological Environment Engineering, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhiming Xiang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Hainan Provincial Key Laboratory of Tropical Marine Biology Technology, Sanya Research Institute of Marine Ecological Environment Engineering, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuehuan Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Hainan Provincial Key Laboratory of Tropical Marine Biology Technology, Sanya Research Institute of Marine Ecological Environment Engineering, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
12
|
Chi C, Giri SS, Yu XW, Liu Y, Chen KK, Liu WB, Zhang DD, Jiang GZ, Li XF, Gao X, Chen BL, Park SC. Lipid metabolism, immune and apoptosis transcriptomic responses of the hepatopancreas of Chinese mitten crab to the exposure to microcystin-LR. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113439. [PMID: 35367891 DOI: 10.1016/j.ecoenv.2022.113439] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Global warming is favouring the incidence, intensity and duration of harmful cyanobacterial blooms. Microcystin-LR (MC-LR), a hepatotoxic agent, is produced during cyanobacterial blooms. To understand the molecular mechanisms of acute hepatotoxic effect of low doses of MC-LR in crab, we examined differentially expressed genes in samples of the hepatopancreas of Chinese mitten crab (Eriocheir sinensis) collected in 48 h after injections of MC-LR at doses of 0, 25, 50, and 75 µg/kg. The results revealed that MC-LR induced changes in corresponding gene led to the accumulation of triglycerides. MC-LR exposure affected sterol metabolism. Apoptosis-related genes such as Fas-L, Bcl-XL, Cytc, AiF, p53, PERK, calpain, CASP2, CASP7, α-tubulin, PARP, GF, G12, and PKC were upregulated. Conversely, expression levels of CASP10 and ASK1 were downregulated. Genes related to the regulation of actin cytoskeleton (Rho, ROCK, MLCP, MLC, PAK, and PFN) were upregulated. Further, expression levels of genes encoding fatty acid elongation-related enzymes were upregulated, but the expression of genes related to fatty acid synthesis was slightly down regulated. Taken together, these results demonstrated the hepatic toxicity and molecular mechanisms of changes in lipid metabolism, immune and apoptosis in Chinese mitten crab under the MC-LR-induced stress, which is the first report on crabs and performs a comprehensive analysis and a new insight of the molecular toxicological responses in crabs.
Collapse
Affiliation(s)
- Cheng Chi
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Centre for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Weigang Road 1, Nanjing 210095, China.
| | - Sib Sankar Giri
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Xia Wei Yu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Centre for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Weigang Road 1, Nanjing 210095, China
| | - Yuan Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Centre for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Weigang Road 1, Nanjing 210095, China
| | - Ke Ke Chen
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Centre for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Weigang Road 1, Nanjing 210095, China
| | - Wen Bin Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Centre for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Weigang Road 1, Nanjing 210095, China
| | - Ding Dong Zhang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Centre for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Weigang Road 1, Nanjing 210095, China
| | - Guang Zhen Jiang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Centre for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Weigang Road 1, Nanjing 210095, China
| | - Xiang Fei Li
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Centre for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Weigang Road 1, Nanjing 210095, China
| | - Xin Gao
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Centre for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Weigang Road 1, Nanjing 210095, China
| | - Bin Lin Chen
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Centre for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Weigang Road 1, Nanjing 210095, China
| | - Se Chang Park
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea.
| |
Collapse
|
13
|
de la Ballina NR, Maresca F, Cao A, Villalba A. Bivalve Haemocyte Subpopulations: A Review. Front Immunol 2022; 13:826255. [PMID: 35464425 PMCID: PMC9024128 DOI: 10.3389/fimmu.2022.826255] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/23/2022] [Indexed: 12/26/2022] Open
Abstract
Bivalve molluscs stand out for their ecological success and their key role in the functioning of aquatic ecosystems, while also constituting a very valuable commercial resource. Both ecological success and production of bivalves depend on their effective immune defence function, in which haemocytes play a central role acting as both the undertaker of the cellular immunity and supplier of the humoral immunity. Bivalves have different types of haemocytes, which perform different functions. Hence, identification of cell subpopulations and their functional characterisation in immune responses is essential to fully understand the immune system in bivalves. Nowadays, there is not a unified nomenclature that applies to all bivalves. Characterisation of bivalve haemocyte subpopulations is often combined with 1) other multiple parameter assays to determine differences between cell types in immune-related physiological activities, such as phagocytosis, oxidative stress and apoptosis; and 2) immune response to different stressors such as pathogens, temperature, acidification and pollution. This review summarises the major and most recent findings in classification and functional characterisation of the main haemocyte types of bivalve molluscs.
Collapse
Affiliation(s)
- Nuria R. de la Ballina
- Centro de Investigacións Mariñas (CIMA), Consellería do Mar, Xunta de Galicia, Vilanova de Arousa, Spain
| | - Francesco Maresca
- MARE - Marine and Environmental Sciences Centre, Laboratório de Ciências do Mar, Universidade de Évora, Sines, Portugal
| | - Asunción Cao
- Centro de Investigacións Mariñas (CIMA), Consellería do Mar, Xunta de Galicia, Vilanova de Arousa, Spain
| | - Antonio Villalba
- Centro de Investigacións Mariñas (CIMA), Consellería do Mar, Xunta de Galicia, Vilanova de Arousa, Spain
- Departamento de Ciencias de la Vida, Universidad de Alcalá, Alcalá de Henares, Spain
- Research Centre for Experimental Marine Biology and Biotechnology, Plentziako Itsas Estazioa (PIE), University of the Basque Country (UPV/EHU), Plentzia, Spain
- *Correspondence: Antonio Villalba,
| |
Collapse
|
14
|
Mona MH, El-Khodary GM, Abdel-Halim KY, Omran NE, Abd El-Aziz KK, El-Saidy SA. Histopathological alterations induced by marine environmental pollutants on the bivalve Cerastoderma glaucum (Bruguière 1789) from Temsah Lake, Suez Canal, Egypt. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:9971-9989. [PMID: 34510354 DOI: 10.1007/s11356-021-14966-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Bivalves are considered a main consumed matrix for coastal communities worldwide and classified as hyperaccumulators of pollutants. The present study aims to determine some micro-organisms, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and okadaic acid (OA) levels in Cerastoderma glaucum collected from Temsah Lake, Egypt, and their induction through histopathological damage and caspase-3 protein expression. During the autumn, it was found different types of biological and chemical pollutants, especially benzo[a]pyrene (BaP) that accumulated in C. glaucum soft tissues and exceeded the safety limit for shellfish consumption. Dioxin-like PCB3 was predominant in C. glaucum soft tissues during autumn, but the total levels of PCBs in these tissues have not exceeded the permissible limit. Chlorophyll-a (Chl. a), nutrient concentrations, and Prorocentrum lima dinoflagellates in the water significantly increased during autumn. High P. lima abundance was confirmed by high OA in the soft tissues during this season compared to the other seasons. The measured contaminants may render C. glaucum more susceptible to bacterial and fungal infections. The autumn season showed a significant increase in the colony-forming units (CFU). C. glaucum showed calcification abnormalities and adhering of abnormal brown organic material to the inner surface of the shell valves, which was related to poor water conditions and Vibrio infection. Damages or injuries on gills and digestive gland tissues indicated an impact of the pollutants on C. glaucum. Also, high expressions of caspase-3 were recorded in these tissues during all the seasons. So, C. glaucum cockles, collected from Temsah Lake, may induce serious diseases to consumers, especially when eaten raw or insufficient cooking.
Collapse
Affiliation(s)
- Mohamed H Mona
- Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt
| | - Gihan M El-Khodary
- Department of Zoology, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Khaled Y Abdel-Halim
- Mammalian & Aquatic Toxicology Department, Central Agriculural Pesticides Laboratory (CAPL), Agricultural Research Center (ARC),12618-Dokki, Giza, Egypt.
| | - Nahla E Omran
- Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt
| | | | - Salwa A El-Saidy
- Department of Zoology, Faculty of Science, Damanhour University, Damanhour, Egypt
| |
Collapse
|
15
|
Wei Z, Ding W, Li M, Shi J, Wang H, Wang Y, Li Y, Xu Y, Hu J, Bao Z, Hu X. The Caspase Homologues in Scallop Chlamys farreri and Their Expression Responses to Toxic Dinoflagellates Exposure. Toxins (Basel) 2022; 14:toxins14020108. [PMID: 35202135 PMCID: PMC8878197 DOI: 10.3390/toxins14020108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 02/04/2023] Open
Abstract
The cysteine aspartic acid-specific protease (caspase) family is distributed across vertebrates and invertebrates, and its members are involved in apoptosis and response to cellular stress. The Zhikong scallop (Chlamys farreri) is a bivalve mollusc that is well adapted to complex marine environments, yet the diversity of caspase homologues and their expression patterns in the Zhikong scallop remain largely unknown. Here, we identified 30 caspase homologues in the genome of the Zhikong scallop and analysed their expression dynamics during all developmental stages and following exposure to paralytic shellfish toxins (PSTs). The 30 caspase homologues were classified as initiators (caspases-2/9 and caspases-8/10) or executioners (caspases-3/6/7 and caspases-3/6/7-like) and displayed increased copy numbers compared to those in vertebrates. Almost all of the caspase-2/9 genes were highly expressed throughout all developmental stages from zygote to juvenile, and their expression in the digestive gland and kidney was slightly influenced by PSTs. The caspase-8/10 genes were highly expressed in the digestive gland and kidney, while PSTs inhibited their expression in these two organs. After exposure to different Alexandrium PST-producing algae (AM-1 and ACDH), the number of significantly up-regulated caspase homologues in the digestive gland increased with the toxicity level of PST derivatives, which might be due to the higher toxicity of GTXs produced by AM-1 compared to the N-sulphocarbamoyl analogues produced by ACDH. However, the effect of these two PST-producing algae strains on caspase expression in the kidney seemed to be stronger, possibly because the PST derivatives were transformed into highly toxic compounds in scallop kidney, and suggested an organ-dependent response to PSTs. These results indicate the dedicated control of caspase gene expression and highlight their contribution to PSTs in C. farreri. This work provides a further understanding of the role of caspase homologues in the Zhikong scallop and can guide future studies focussing on the role of caspases and their interactions with PSTs.
Collapse
Affiliation(s)
- Zhongcheng Wei
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (Z.W.); (W.D.); (M.L.); (J.S.); (Y.W.); (Y.L.); (Y.X.); (J.H.); (Z.B.)
| | - Wei Ding
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (Z.W.); (W.D.); (M.L.); (J.S.); (Y.W.); (Y.L.); (Y.X.); (J.H.); (Z.B.)
| | - Moli Li
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (Z.W.); (W.D.); (M.L.); (J.S.); (Y.W.); (Y.L.); (Y.X.); (J.H.); (Z.B.)
| | - Jiaoxia Shi
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (Z.W.); (W.D.); (M.L.); (J.S.); (Y.W.); (Y.L.); (Y.X.); (J.H.); (Z.B.)
| | - Huizhen Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (Z.W.); (W.D.); (M.L.); (J.S.); (Y.W.); (Y.L.); (Y.X.); (J.H.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Correspondence: (H.W.); (X.H.); Tel.: +86-0532-8203-1970 (X.H.)
| | - Yangrui Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (Z.W.); (W.D.); (M.L.); (J.S.); (Y.W.); (Y.L.); (Y.X.); (J.H.); (Z.B.)
| | - Yubo Li
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (Z.W.); (W.D.); (M.L.); (J.S.); (Y.W.); (Y.L.); (Y.X.); (J.H.); (Z.B.)
| | - Yiqiang Xu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (Z.W.); (W.D.); (M.L.); (J.S.); (Y.W.); (Y.L.); (Y.X.); (J.H.); (Z.B.)
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (Z.W.); (W.D.); (M.L.); (J.S.); (Y.W.); (Y.L.); (Y.X.); (J.H.); (Z.B.)
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (Z.W.); (W.D.); (M.L.); (J.S.); (Y.W.); (Y.L.); (Y.X.); (J.H.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Xiaoli Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (Z.W.); (W.D.); (M.L.); (J.S.); (Y.W.); (Y.L.); (Y.X.); (J.H.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Correspondence: (H.W.); (X.H.); Tel.: +86-0532-8203-1970 (X.H.)
| |
Collapse
|
16
|
Wynen H, Heyland A. Hormonal Regulation of Programmed Cell Death in Sea Urchin Metamorphosis. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.733787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Programmed cell death (PCD) has been identified as a key process in the metamorphic transition of indirectly developing organisms such as frogs and insects. Many marine invertebrate species with indirect development and biphasic life cycles face the challenge of completing the metamorphic transition of the larval body into a juvenile when they settle into the benthic habitat. Some key characteristics stand out during this transition in comparison to frogs and insects: (1) the transition is often remarkably fast and (2) the larval body is largely abandoned and few structures transition into the juvenile stage. In sea urchins, a group with a drastic and fast metamorphosis, development and destruction of the larval body is regulated by endocrine signals. Here we provide a brief review of the basic regulatory mechanisms of PCD in animals. We then narrow our discussion to metamorphosis with a specific emphasis on sea urchins with indirect life histories and discuss the function of thyroid hormones and histamine in larval development, metamorphosis and settlement of the sea urchin Strongylocentrotus purpuratus. We were able to annotate the large majority of PCD related genes in the sea urchin S. purpuratus and ongoing studies on sea urchin metamorphosis will shed light on the regulatory architecture underlying this dramatic life history transition. While we find overwhelming evidence for hormonal regulation of PCD in animals, especially in the context of metamorphosis, the mechanisms in many marine invertebrate groups with indirect life histories requires more work. Hence, we propose that studies of PCD in animals requires functional studies in whole organisms rather than isolated cells. We predict that future work, targeting a broader array of organisms will not only help to reveal important new functions of PCD but provide a fundamentally new perspective on its use in a diversity of taxonomic, developmental, and ecological contexts.
Collapse
|
17
|
Koagouw W, Stewart NA, Ciocan C. Long-term exposure of marine mussels to paracetamol: is time a healer or a killer? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:48823-48836. [PMID: 33928507 PMCID: PMC8084691 DOI: 10.1007/s11356-021-14136-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/22/2021] [Indexed: 04/16/2023]
Abstract
Pharmaceuticals pose a major threat to the marine environment, and several studies have recently described their negative effects on marine organisms. Pharmaceutical compounds are constantly being released into aquatic ecosystems, and chronic exposure, even at low concentrations, may have a major impact on marine organisms. The purpose of the present study is to evaluate the biological changes induced by one of the most widely used pharmaceuticals-paracetamol-in the blue mussel Mytilus edulis, after a long-term exposure at environmentally relevant concentrations. We present our data alongside and in comparison with results from a previous short-term exposure, to demonstrate the significance of exposure period on the effects of paracetamol in adult blue mussels. After 24 days of laboratory exposure, seven potential target genes were selected to examine toxicological effects in mussels' gonads and possible disruptive effects on reproductive processes. The results show the modulation of some important reproduction-related genes: estrogen receptor-2 (ER2), vitelline envelope zona pellucida domain-9 (V9), and vitellogenin (VTG). Variations in mRNA expression of four other genes involved in apoptosis (HSP70, CASP8, BCL2, and FAS) are also highlighted. Histopathological alterations caused by paracetamol, together with neutral red retention time response in mussels' hemocytes, are presented herein. Overall, this study highlights the exacerbated effects of low concentration of paracetamol after chronic exposure, similar to the damage induced by higher concentrations in a short exposure scenario, thus emphasizing the importance of length of exposure period when studying the effects of this substance. Additionally, this study also discusses the potential of paracetamol to inflict several major changes in the reproductive system of mussels and thus possibly affect the survival of populations.
Collapse
Affiliation(s)
- Wulan Koagouw
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Lewes Road, Brighton, UK
- Centre for Aquatic Environments, University of Brighton, Lewes Road, Brighton, UK
- Research Center for Oceanography, Indonesian Institute of Sciences, Jakarta, Indonesia
| | - Nicolas A. Stewart
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Lewes Road, Brighton, UK
| | - Corina Ciocan
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Lewes Road, Brighton, UK
- Centre for Aquatic Environments, University of Brighton, Lewes Road, Brighton, UK
| |
Collapse
|
18
|
Trestrail C, Walpitagama M, Miranda A, Nugegoda D, Shimeta J. Microplastics alter digestive enzyme activities in the marine bivalve, Mytilus galloprovincialis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146418. [PMID: 33744572 DOI: 10.1016/j.scitotenv.2021.146418] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
Microplastics are eaten by many invertebrates, particularly filter-feeding organisms like mussels. Since microplastics can be retained in the digestive system for extended periods, there is ample opportunity for them to interact with the functions of digestive enzymes. This study determined how the polymer type, size and concentration of ingested spherical microplastics affects the activities of seven key digestive enzymes in the digestive gland of Mytilus galloprovincialis, a common marine mussel. Polymer type significantly affected the activities of carbohydrase enzymes: polystyrene reduced amylase and xylanase activities, and increased cellulase activity. High concentrations of microplastics (5 × 104 microplastics L-1) caused a 2.5-fold increase in total protease activity. The activities of laminarinase, lipases and lipolytic esterases were unaffected by the polymer type, size or concentration of microplastics. Microplastics-induced changes to digestive enzyme activities can affect mussels' ability to acquire energy from food and reduce their energy reserves.
Collapse
Affiliation(s)
- Charlene Trestrail
- Ecotoxicology Research Group, RMIT University, Bundoora West Campus, VIC, Australia; School of Science, RMIT University, Bundoora West Campus, VIC, Australia.
| | - Milanga Walpitagama
- School of Science, RMIT University, Bundoora West Campus, VIC, Australia; Aquatic Environmental Stress research group (AQUEST), RMIT University, Bundoora West Campus, VIC, Australia
| | - Ana Miranda
- Aquatic Environmental Stress research group (AQUEST), RMIT University, Bundoora West Campus, VIC, Australia
| | - Dayanthi Nugegoda
- Ecotoxicology Research Group, RMIT University, Bundoora West Campus, VIC, Australia; Aquatic Environmental Stress research group (AQUEST), RMIT University, Bundoora West Campus, VIC, Australia
| | - Jeff Shimeta
- School of Science, RMIT University, Bundoora West Campus, VIC, Australia
| |
Collapse
|
19
|
Bernardini I, Matozzo V, Valsecchi S, Peruzza L, Rovere GD, Polesello S, Iori S, Marin MG, Fabrello J, Ciscato M, Masiero L, Bonato M, Santovito G, Boffo L, Bargelloni L, Milan M, Patarnello T. The new PFAS C6O4 and its effects on marine invertebrates: First evidence of transcriptional and microbiota changes in the Manila clam Ruditapes philippinarum. ENVIRONMENT INTERNATIONAL 2021; 152:106484. [PMID: 33740673 DOI: 10.1016/j.envint.2021.106484] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/16/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
There is growing concern for the wide use ofperfluorooctanoic acid (PFOA) because of its toxic effects on the environment and on human health. A new compound - the so called C6O4 (perfluoro ([5-methoxy-1,3-dioxolan-4-yl]oxy) acetic acid) - was recently introduced as one of the alternative to traditional PFOA, however this was done without any scientific evidence of the effects of C6O4 when dispersed into the environment. Recently, the Regional Agency for the Protection of the Environment of Veneto (Italy) detected high levels of C6O4 in groundwater and in the Po river, increasing the alarm for the potential effects of this chemical into the natural environment. The present study investigates for the first time the effects of C6O4 on the Manila clam Ruditapes philippinarum exposed to environmental realistic concentrations of C6O4 (0.1 µg/L and 1 µg/L) for 7 and 21 days. Furthermore, in order to better understand if C6O4 is a valid and less hazardous alternative to its substitute, microbial and transcriptomic alterations were also investigated in clams exposed to 1 µg/L ofPFOA. Results indicate that C6O4 may cause significant perturbations to the digestive gland microbiota, likely determining the impairment of host physiological homeostasis. Despite chemical analyses suggest a 5 times lower accumulation potential of C604 as compared to PFOA in clam soft tissues, transcriptional analyses reveal several alterations of gene expression profile. A large part of the altered pathways, including immune response, apoptosis regulation, nervous system development, lipid metabolism and cell membrane is the same in C6O4 and PFOA exposed clams. In addition, clams exposed to C6O4 showed dose-dependent responses as well as possible narcotic or neurotoxic effects and reduced activation of genes involved in xenobiotic metabolism. Overall, the present study suggests that the potential risks for marine organism following environmental contamination are not reduced by replacing PFOA with C6O4. In addition, the detection of both C6O4 and PFOA into tissues of clams inhabiting the Lagoon of Venice - where there are no point sources of either compounds - recommends a similar capacity to spread throughout the environment. These results prompt the urgent need to re-evaluate the use of C6O4 as it may represent not only an environmental hazard but also a potential risk for human health.
Collapse
Affiliation(s)
- Ilaria Bernardini
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| | - Valerio Matozzo
- Department of Biology, University of Padova, Via Bassi 58/B, 35131 Padova, Italy
| | - Sara Valsecchi
- Water Research Institute, Italian National Research Council (IRSA-CNR), Via Mulino 19, 20861 Brugherio, MB, Italy
| | - Luca Peruzza
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| | - Giulia Dalla Rovere
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| | - Stefano Polesello
- Water Research Institute, Italian National Research Council (IRSA-CNR), Via Mulino 19, 20861 Brugherio, MB, Italy
| | - Silvia Iori
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| | | | - Jacopo Fabrello
- Department of Biology, University of Padova, Via Bassi 58/B, 35131 Padova, Italy
| | - Maria Ciscato
- Department of Biology, University of Padova, Via Bassi 58/B, 35131 Padova, Italy
| | - Luciano Masiero
- Department of Biology, University of Padova, Via Bassi 58/B, 35131 Padova, Italy
| | - Marco Bonato
- Department of Biology, University of Padova, Via Bassi 58/B, 35131 Padova, Italy
| | - Gianfranco Santovito
- Department of Biology, University of Padova, Via Bassi 58/B, 35131 Padova, Italy
| | | | - Luca Bargelloni
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| | - Massimo Milan
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy.
| | - Tomaso Patarnello
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| |
Collapse
|
20
|
Estrada N, Núñez-Vázquez EJ, Palacios A, Ascencio F, Guzmán-Villanueva L, Contreras RG. In vitro Evaluation of Programmed Cell Death in the Immune System of Pacific Oyster Crassostrea gigas by the Effect of Marine Toxins. Front Immunol 2021; 12:634497. [PMID: 33868255 PMCID: PMC8047078 DOI: 10.3389/fimmu.2021.634497] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/24/2021] [Indexed: 01/09/2023] Open
Abstract
Programmed cell death (PCD) is an essential process for the immune system's development and homeostasis, enabling the remotion of infected or unnecessary cells. There are several PCD's types, depending on the molecular mechanisms, such as non-inflammatory or pro-inflammatory. Hemocytes are the main component of cellular immunity in bivalve mollusks. Numerous infectious microorganisms produce toxins that impair hemocytes functions, but there is little knowledge on the role of PCD in these cells. This study aims to evaluate in vitro whether marine toxins induce a particular type of PCD in hemocytes of the bivalve mollusk Crassostrea gigas during 4 h at 25°C. Hemocytes were incubated with two types of marine toxins: non-proteinaceous toxins from microalgae (saxitoxin, STX; gonyautoxins 2 and 3, GTX2/3; okadaic acid/dynophysistoxin-1, OA/DTX-1; brevetoxins 2 and 3, PbTx-2,-3; brevetoxin 2, PbTx-2), and proteinaceous extracts from bacteria (Vibrio parahaemolyticus, Vp; V. campbellii, Vc). Also, we used the apoptosis inducers, staurosporine (STP), and camptothecin (CPT). STP, CPT, STX, and GTX 2/3, provoked high hemocyte mortality characterized by apoptosis hallmarks such as phosphatidylserine translocation into the outer leaflet of the cell membrane, exacerbated chromatin condensation, DNA oligonucleosomal fragments, and variation in gene expression levels of apoptotic caspases 2, 3, 7, and 8. The mixture of PbTx-2,-3 also showed many apoptosis features; however, they did not show apoptotic DNA oligonucleosomal fragments. Likewise, PbTx-2, OA/DTX-1, and proteinaceous extracts from bacteria Vp, and Vc, induced a minor degree of cell death with high gene expression of the pro-inflammatory initiator caspase-1, which could indicate a process of pyroptosis-like PCD. Hemocytes could carry out both PCD types simultaneously. Therefore, marine toxins trigger PCD's signaling pathways in C. gigas hemocytes, depending on the toxin's nature, which appears to be highly conserved both structurally and functionally.
Collapse
Affiliation(s)
- Norma Estrada
- Programa Cátedras CONACyT (Consejo Nacional de Ciencia y Tecnología), Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), La Paz, Mexico
| | - Erick J. Núñez-Vázquez
- Laboratorio de Toxinas Marinas y Aminoácidos, Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), La Paz, Mexico
| | - Alejandra Palacios
- Laboratorio de Patogénesis Microbiana, Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), La Paz, Mexico
| | - Felipe Ascencio
- Laboratorio de Patogénesis Microbiana, Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), La Paz, Mexico
| | - Laura Guzmán-Villanueva
- Programa Cátedras CONACyT (Consejo Nacional de Ciencia y Tecnología), Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), La Paz, Mexico
| | - Rubén G. Contreras
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV), Mexico City, Mexico
| |
Collapse
|
21
|
Vogeler S, Carboni S, Li X, Joyce A. Phylogenetic analysis of the caspase family in bivalves: implications for programmed cell death, immune response and development. BMC Genomics 2021; 22:80. [PMID: 33494703 PMCID: PMC7836458 DOI: 10.1186/s12864-021-07380-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/08/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Apoptosis is an important process for an organism's innate immune system to respond to pathogens, while also allowing for cell differentiation and other essential life functions. Caspases are one of the key protease enzymes involved in the apoptotic process, however there is currently a very limited understanding of bivalve caspase diversity and function. RESULTS In this work, we investigated the presence of caspase homologues using a combination of bioinformatics and phylogenetic analyses. We blasted the Crassostrea gigas genome for caspase homologues and identified 35 potential homologues in the addition to the already cloned 23 bivalve caspases. As such, we present information about the phylogenetic relationship of all identified bivalve caspases in relation to their homology to well-established vertebrate and invertebrate caspases. Our results reveal unexpected novelty and complexity in the bivalve caspase family. Notably, we were unable to identify direct homologues to the initiator caspase-9, a key-caspase in the vertebrate apoptotic pathway, inflammatory caspases (caspase-1, - 4 or - 5) or executioner caspases-3, - 6, - 7. We also explored the fact that bivalves appear to possess several unique homologues to the initiator caspase groups - 2 and - 8. Large expansions of caspase-3 like homologues (caspase-3A-C), caspase-3/7 group and caspase-3/7-like homologues were also identified, suggesting unusual roles of caspases with direct implications for our understanding of immune response in relation to common bivalve diseases. Furthermore, we assessed the gene expression of two initiator (Cg2A, Cg8B) and four executioner caspases (Cg3A, Cg3B, Cg3C, Cg3/7) in C. gigas late-larval development and during metamorphosis, indicating that caspase expression varies across the different developmental stages. CONCLUSION Our analysis provides the first overview of caspases across different bivalve species with essential new insights into caspase diversity, knowledge that can be used for further investigations into immune response to pathogens or regulation of developmental processes.
Collapse
Affiliation(s)
- Susanne Vogeler
- Department of Marine Science, University of Gothenburg, Carl Skottbergsgata 22 B, 41319, Gothenburg, Sweden
| | - Stefano Carboni
- Institute of Aquaculture, University of Stirling, Stirling, Scotland, FK9 4LA, UK
| | - Xiaoxu Li
- South Australia Research and Development Institute Aquatic Sciences Centre, 2 Hamra Ave, West Beach, SA, 5024, Australia
| | - Alyssa Joyce
- Department of Marine Science, University of Gothenburg, Carl Skottbergsgata 22 B, 41319, Gothenburg, Sweden.
| |
Collapse
|
22
|
Li D, Wang P, Wang X, Hu B, Li D. Elucidating multilevel toxicity response differences between tris(1,3-dichloro-2-propyl) phosphate and its primary metabolite in Corbicula fluminea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 749:142049. [PMID: 33370921 DOI: 10.1016/j.scitotenv.2020.142049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/21/2020] [Accepted: 08/27/2020] [Indexed: 06/12/2023]
Abstract
Tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) and its primary metabolite, bis(1,3-dichloro-2-propyl) phosphate (BDCIPP) are frequently detected in aquatic environments. However, information regarding the biotoxicity of these compounds to bivalves is limited. We explored the multilevel physiological responses of Corbicula fluminea to TDCIPP and BDCIPP. The results indicated that TDCIPP/BDCIPP bioaccumulation in bivalves was positively correlated with their hydrophobicity. Furthermore, the higher body burden of TDCIPP in digestive glands led to significantly higher levels of ethoxyresorufin-O-deethylase (EROD), glutathione S-transferase (GST), and P-glycoprotein (p < 0.05). Owing to different molecular structures of inducers, upregulations of cyp4, gstm1, and abcb1 mRNA exhibited different sensitivities to TDCIPP and BDCIPP. Although Phase-I and Phase-II biotransformation and the multixenobiotic resistance (MXR) system were activated to protect bivalves from TDCIPP or BDCIPP, digestive glands produced large amounts of reactive oxygen species (ROS). Moreover, oxidative stress, the percentage of apoptotic cells in digestive glands, and inhibition of siphoning behaviour in TDCIPP treatments were higher than those in BDCIPP treatments (p < 0.05), indicating that TDCIPP was more toxic to bivalves than BDCIPP. Lower bioaccumulation and rapid metabolism of BDCIPP in vivo may contribute to alleviating its toxicity. This research establishes a foundation for further understanding the differences between the toxic mechanisms of TDCIPP and its metabolites.
Collapse
Affiliation(s)
- Dandan Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Xun Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Bin Hu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Dingxin Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
23
|
Moreira R, Romero A, Rey-Campos M, Pereiro P, Rosani U, Novoa B, Figueras A. Stimulation of Mytilus galloprovincialis Hemocytes With Different Immune Challenges Induces Differential Transcriptomic, miRNomic, and Functional Responses. Front Immunol 2020; 11:606102. [PMID: 33391272 PMCID: PMC7773633 DOI: 10.3389/fimmu.2020.606102] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
Mediterranean mussels (Mytilus galloprovincialis) are marine bivalve molluscs with high resilience to biotic and abiotic stress. This resilience is one of the reasons why this species is such an interesting model for studying processes such as the immune response. In this work, we stimulated mussel hemocytes with poly I:C, β-glucans, and LPS and then sequenced hemocyte mRNAs (transcriptome) and microRNAs (miRNome) to investigate the molecular basis of the innate immune responses against these pathogen-associated molecular patterns (PAMPs). An immune transcriptome comprising 219,765 transcripts and an overview of the mussel miRNome based on 5,175,567 non-redundant miRNA reads were obtained. The expression analyses showed opposite results in the transcriptome and miRNome; LPS was the stimulus that triggered the highest transcriptomic response, with 648 differentially expressed genes (DEGs), while poly I:C was the stimulus that triggered the highest miRNA response, with 240 DE miRNAs. Our results reveal a powerful immune response to LPS as well as activation of certain immunometabolism- and ageing/senescence-related processes in response to all the immune challenges. Poly I:C exhibited powerful stimulating properties in mussels, since it triggered the highest miRNomic response and modulated important genes related to energy demand; these effects could be related to the stronger activation of these hemocytes (increased phagocytosis, increased NO synthesis, and increased velocity and accumulated distance). The transcriptome results suggest that after LPS stimulation, pathogen recognition, homeostasis and cell survival processes were activated, and phagocytosis was induced by LPS. β-glucans elicited a response related to cholesterol metabolism, which is important during the immune response, and it was the only stimulus that induced the synthesis of ROS. These results suggest a specific and distinct response of hemocytes to each stimulus from a transcriptomic, miRNomic, and functional point of view.
Collapse
Affiliation(s)
- Rebeca Moreira
- Institute of Marine Research (IIM), Spanish National Research Council (CSIC), Vigo, Spain
| | - Alejandro Romero
- Institute of Marine Research (IIM), Spanish National Research Council (CSIC), Vigo, Spain
| | - Magalí Rey-Campos
- Institute of Marine Research (IIM), Spanish National Research Council (CSIC), Vigo, Spain
| | - Patricia Pereiro
- Institute of Marine Research (IIM), Spanish National Research Council (CSIC), Vigo, Spain
| | - Umberto Rosani
- Department of Biology, University of Padova, Padova, Italy.,Helmholtz Centre for Polar and Marine Research, Alfred Wegener Institute (AWI), List auf Sylt, Germany
| | - Beatriz Novoa
- Institute of Marine Research (IIM), Spanish National Research Council (CSIC), Vigo, Spain
| | - Antonio Figueras
- Institute of Marine Research (IIM), Spanish National Research Council (CSIC), Vigo, Spain
| |
Collapse
|
24
|
Sendra M, Saco A, Rey-Campos M, Novoa B, Figueras A. Immune-responsive gene 1 (IRG1) and dimethyl itaconate are involved in the mussel immune response. FISH & SHELLFISH IMMUNOLOGY 2020; 106:645-655. [PMID: 32798695 DOI: 10.1016/j.fsi.2020.07.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/18/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
Immune-responsive gene 1 (irg1) is a gene that is well-conserved among different taxa and is highly expressed in the mussel Mytilus galloprovincialis at the constitutive level. The expression of this gene increases after a bacterial infection, primarily in haemocytes. irg1 catalyses the production of itaconic acid from cis-aconitic acid in the Krebs cycle. Recently, itaconate has been revealed as an immune metabolite involved in macrophage polarization. In this work, we studied the effects of exogenous dimethyl itaconate (DI) on mussels in vitro and in vivo at relevant previously described endogenous concentrations and in mussels infected with Vibrio splendidus. DI did not have adverse effects on the haemocytes viability, apoptotic cells, proliferation and phagocytic activity; however, haemocyte size, velocity and accumulated distance were decreased. The antibacterial activity of DI in vitro and in vivo was observed with high concentrations of DI, that is, 30 and 50 mM, respectively. Furthermore, DI inhibited total ROS, increased mitochondrial ROS and modulated antioxidant genes, such as SOD and CAT, related to Nrf2 activation. In this research, we have demonstrated some important pathways in haemocytes in which itaconate can be involved after its production in a bacterial infection.
Collapse
Affiliation(s)
- M Sendra
- Institute of Marine Research (IIM), National Research Council (CSIC), Eduardo Cabello 6, 36208, Vigo, Spain
| | - A Saco
- Institute of Marine Research (IIM), National Research Council (CSIC), Eduardo Cabello 6, 36208, Vigo, Spain
| | - M Rey-Campos
- Institute of Marine Research (IIM), National Research Council (CSIC), Eduardo Cabello 6, 36208, Vigo, Spain
| | - B Novoa
- Institute of Marine Research (IIM), National Research Council (CSIC), Eduardo Cabello 6, 36208, Vigo, Spain.
| | - A Figueras
- Institute of Marine Research (IIM), National Research Council (CSIC), Eduardo Cabello 6, 36208, Vigo, Spain
| |
Collapse
|
25
|
Boroda AV, Kipryushina YO, Odintsova NA. The effects of cold stress on Mytilus species in the natural environment. Cell Stress Chaperones 2020; 25:821-832. [PMID: 32297161 PMCID: PMC7591686 DOI: 10.1007/s12192-020-01109-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 03/26/2020] [Accepted: 04/01/2020] [Indexed: 10/24/2022] Open
Abstract
Environmental stressors induce changes in marine mussels from molecular (e.g., neurotransmitter and chaperone concentration, and expression of immune- and heat-shock protein-related genes) to physiological (e.g., filtration and heart rates, the number of circulating hemocytes) levels. Temperature directly affects the biogeographic distribution of mussels. Chaperones might form an essential part of endogenous protective mechanisms for the adaptation of these animals to low temperatures in nature. Here, we review the available studies dealing with cold stress responses of Mytilidae family members in their natural environment.
Collapse
Affiliation(s)
- Andrey Victorovich Boroda
- National Scientific Center of Marine Biology of the Far Eastern Branch of the Russian Academy of Sciences, 17 Palchevsky St, Vladivostok, Primorsky Krai, 690041, Russia.
| | - Yulia Olegovna Kipryushina
- National Scientific Center of Marine Biology of the Far Eastern Branch of the Russian Academy of Sciences, 17 Palchevsky St, Vladivostok, Primorsky Krai, 690041, Russia
| | - Nelly Adolphovna Odintsova
- National Scientific Center of Marine Biology of the Far Eastern Branch of the Russian Academy of Sciences, 17 Palchevsky St, Vladivostok, Primorsky Krai, 690041, Russia
| |
Collapse
|
26
|
Feidantsis K, Kalogiannis S, Marinoni A, Vasilogianni AM, Gkanatsiou C, Kastrinaki G, Dendrinou-Samara C, Kaloyianni M. Toxicity assessment and comparison of the land snail's Cornu aspersum responses against CuO nanoparticles and ZnO nanoparticles. Comp Biochem Physiol C Toxicol Pharmacol 2020; 236:108817. [PMID: 32502603 DOI: 10.1016/j.cbpc.2020.108817] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/25/2020] [Accepted: 05/29/2020] [Indexed: 11/21/2022]
Abstract
The goal of the present study was to examine the effects of ZnO NPs and CuO NPs on Cornu aspersum land snail, enlightening their cytotoxic profile. ZnO NPs and CuO NPs were synthesized and thoroughly characterized. Α series of concentrations of either ZnO NPs or CuO NPs were administered in the feed of snails for 20 days. Thereafter, neutral red retention assay was conducted, in order to estimate NRRT50 values. Subsequently, snails were fed with NPs concentrations slightly lower than the concentrations that were corresponding to the NRRT50 values, i.e. 3 mg·L-1 ZnO NPs and 6 mg·L-1 CuO NPs, for 1, 5, 10 and 20 days. Both NPs agglomerates were detected in hemocytes by Transmission Electron Microscopy. Moreover, both effectors resulted to toxicity in the snails' hemocytes. The latter was shown by changes in the NRRT50 values, increased reactive oxygen species (ROS) production, lipid peroxidation, DNA integrity loss, protein carbonyl content, ubiquitin conjugates and cleaved caspases conjugates levels compared to the untreated animals. Although ZnO NPs exhibited higher toxicity, as indicated by the NRRT50 values, both NPs affected similarly a wide range of the cellular parameters mentioned above. The latter parameters could constitute sensitive biomarkers in biomonitoring studies of terrestrial environment against nanoparticles.
Collapse
Affiliation(s)
- Konstantinos Feidantsis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Stavros Kalogiannis
- Department of Sciences of Nutrition and Dietetics, International Hellenic University, Thessaloniki 57400, Greece
| | - Angela Marinoni
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Areti-Maria Vasilogianni
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Christina Gkanatsiou
- Inorganic Chemistry Lab, Chemistry Department, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Georgia Kastrinaki
- Aerosol & Particle Technology Laboratory, CERTH/CPERI, P.O. Box 60361, 57001 Thessaloniki, Greece
| | - Catherine Dendrinou-Samara
- Inorganic Chemistry Lab, Chemistry Department, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Martha Kaloyianni
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| |
Collapse
|
27
|
A Comparative Transcriptomics Approach to Analyzing the Differences in Cold Resistance in Pomacea canaliculata between Guangdong and Hunan. J Immunol Res 2020; 2020:8025140. [PMID: 32832573 PMCID: PMC7422425 DOI: 10.1155/2020/8025140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 11/17/2022] Open
Abstract
Pomacea canaliculata, known as an invasive freshwater snail, is also called a golden apple snail; its survival and expansion are greatly affected by temperature. In this study, high-throughput sequencing (RNA-seq) was used to perform comparative transcriptome analysis on the muscular tissue (G_M) of snails in Guangdong and Hunan. Differential gene screening was performed with FDR <0.05 and |log2FoldChange| >1 as the threshold, and a total of 1,368 differential genes were obtained (671 genes showed upregulation in snails from Guangdong, and 697 genes displayed upregulation in snails from Hunan). Fifteen genes were identified as candidate genes for the cold hardiness of Pomacea canaliculata. Among them, three genes were involved in energy metabolism (glycogen synthase, 1; DGK, 1; G6PD, 1); seven genes were involved in homeostasis regulation (HSP70, 2; BIP, 1; GPX, 1; GSTO 1, G6PD, 1; caspase-9, 1); two genes were involved in amino acid metabolism (glutamine synthetase, 1; PDK, 1); and four genes were involved in membrane metabolism (inositol-3-phosphate synthase, 1; Na+/K+-ATPase, 1; calcium-binding protein, 2). This study presents the molecular mechanisms for the cold hardiness of Pomacea canaliculata, which could provide a scientific basis for the forecast and prevention of harm from Pomacea canaliculata.
Collapse
|
28
|
Gnatyshyna L, Falfushynska H, Stoliar O, Dallinger R. Preliminary Study of Multiple Stress Response Reactions in the Pond Snail Lymnaea stagnalis Exposed to Trace Metals and a Thiocarbamate Fungicide at Environmentally Relevant Concentrations. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 79:89-100. [PMID: 32274555 DOI: 10.1007/s00244-020-00728-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 03/23/2020] [Indexed: 05/24/2023]
Abstract
Gastropod mollusks have achieved an eminent importance as biological indicators of environmental quality. In the present study, we applied a multibiomarker approach to evaluate its applicability for the pond snail Lymnaea stagnalis, exposed to common industrial and agricultural pollutants at environmentally relevant concentrations. The snails were exposed to copper (Cu2+, 10 µg L-1), zinc (Zn2+, 130 µg L-1), cadmium (Cd2+, 15 µg L-1), or the thiocarbamate fungicide "Tattoo" (91 µg L-1) during 14 days. Metal treatment and exposure to "Tattoo" caused variable patterns of increase or decrease of metal levels in the digestive gland, with a clear accumulation of only Cd and Zn after respective metal exposure. Treatment with Cu and "Tattoo" caused an increase of cytochrome P450-related EROD activity. Glutathione S-transferase was inhibited by exposure to Cu, Zn, and "Tattoo." Treatment with the "Tattoo" led to an inhibition of cholinesterase activity, whereas Cu and Cd increased its activity. Caspase-3 activity was enhanced by up to 3.3 times in all treatments. A nearly uniform inhibitory effect for oxidative stress response parameters was observed in all kinds of exposure, revealing an inhibition of superoxide dismutase (Mn-SOD) activity, a depression of glutathione (GSH and GSSG) and of protein carbonyl levels. Pollutant-specific effects were observed for the catalase activity, superoxide anion production, and lipid peroxidation levels. Due to the high response sensitivity of Lymnaea stagnalis to chemical impacts, we suggest our study as a contribution for biomarker studies with this species under field conditions.
Collapse
Affiliation(s)
- Lesya Gnatyshyna
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine.
- I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine.
| | - Halina Falfushynska
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine
| | - Oksana Stoliar
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine
| | | |
Collapse
|
29
|
Khoma V, Gnatyshyna L, Martinyuk V, Rarok Y, Mudra A, Stoliar O. Biochemical Responses of the Bivalve Mollusk Unio tumidus Inhabiting a Small Power Plant Reservoir on the Dniester River Basin, Ukraine. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 105:67-75. [PMID: 32409854 DOI: 10.1007/s00128-020-02873-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/02/2020] [Indexed: 06/11/2023]
Abstract
Hydropower plants (HPPs) can affect the hydrological regime. However, biochemical responses of aquatic animals for the evaluation of this disturbing are not applied yet. The specimens of Unio tumidus were sampled in a reservoir (R) of a small HPP as well as downstream from the dam (DS). Biochemical indexes in the digestive gland and alkali labile phosphates (ALP) in the gonads were examined. The R-mollusks showed low cholinesterase, catalase and caspase-3 activities, and metallothionein concentration, but elevated levels of zinc and copper, oxidized glutathione and protein carbonyls. Concentrations of lactate, pyruvate and ALP, activity of superoxide dismutase and glutathione S-transferase, and lipid peroxidation level were similar in both groups. Integrated biomarker response (IBR/n) index (n = 13) was 2.17 and 0.29 in the R- and DS-groups correspondingly. We suggest that using integrative biological response based on the biochemical markers of bivalve mollusks can be a valid early warning step in assessing 'environmental flow' impact.
Collapse
Affiliation(s)
- Vira Khoma
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Kryvonosa Str 2, Ternopil, 46027, Ukraine
| | - Lesya Gnatyshyna
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Kryvonosa Str 2, Ternopil, 46027, Ukraine
- I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Viktoria Martinyuk
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Kryvonosa Str 2, Ternopil, 46027, Ukraine
| | - Yulya Rarok
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Kryvonosa Str 2, Ternopil, 46027, Ukraine
| | - Alla Mudra
- I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Oksana Stoliar
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Kryvonosa Str 2, Ternopil, 46027, Ukraine.
| |
Collapse
|
30
|
Chao YC, Merritt M, Schaefferkoetter D, Evans TG. High-throughput quantification of protein structural change reveals potential mechanisms of temperature adaptation in Mytilus mussels. BMC Evol Biol 2020; 20:28. [PMID: 32054457 PMCID: PMC7020559 DOI: 10.1186/s12862-020-1593-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/05/2020] [Indexed: 11/10/2022] Open
Abstract
Background Temperature exerts a strong influence on protein evolution: species living in thermally distinct environments often exhibit adaptive differences in protein structure and function. However, previous research on protein temperature adaptation has focused on small numbers of proteins and on proteins adapted to extreme temperatures. Consequently, less is known about the types and quantity of evolutionary change that occurs to proteins when organisms adapt to small shifts in environmental temperature. In this study, these uncertainties were addressed by developing software that enabled comparison of structural changes associated with temperature adaptation (hydrogen bonding, salt bridge formation, and amino acid use) among large numbers of proteins from warm- and cold-adapted species of marine mussels, Mytilus galloprovincialis and Mytilus trossulus, respectively. Results Small differences in habitat temperature that characterize the evolutionary history of Mytilus mussels were sufficient to cause protein structural changes consistent with temperature adaptation. Hydrogen bonds and salt bridges that increase stability and protect against heat-induced denaturation were more abundant in proteins from warm-adapted M. galloprovincialis compared with proteins from cold-adapted M. trossulus. These structural changes were related to deviations in the use of polar and charged amino acids that facilitate formation of hydrogen bonds and salt bridges within proteins, respectively. Enzymes, in particular those within antioxidant and cell death pathways, were over-represented among proteins with the most hydrogen bonds and salt bridges in warm-adapted M. galloprovincialis. Unlike extremophile proteins, temperature adaptation in Mytilus proteins did not involve substantial changes in the number of hydrophobic or large volume amino acids, nor in the content of glycine or proline. Conclusions Small shifts in organism temperature tolerance, such as that needed to cope with climate warming, may result from structural and functional changes to a small percentage of the proteome. Proteins in which function is dependent on large conformational change, notably enzymes, may be particularly sensitive to temperature perturbation and represent foci for natural selection. Protein temperature adaptation can occur through different types and frequencies of structural change, and adaptive mechanisms used to cope with small shifts in habitat temperature appear different from mechanisms used to retain protein function at temperature extremes.
Collapse
Affiliation(s)
- Ying-Chen Chao
- Department of Biological Sciences, California State University East Bay, Hayward, CA, 94542, USA
| | - Melanie Merritt
- Department of Biological Sciences, California State University East Bay, Hayward, CA, 94542, USA
| | - Devin Schaefferkoetter
- Department of Biological Sciences, California State University East Bay, Hayward, CA, 94542, USA
| | - Tyler G Evans
- Department of Biological Sciences, California State University East Bay, Hayward, CA, 94542, USA.
| |
Collapse
|
31
|
Van Nguyen T, Alfaro AC. Applications of flow cytometry in molluscan immunology: Current status and trends. FISH & SHELLFISH IMMUNOLOGY 2019; 94:239-248. [PMID: 31491532 DOI: 10.1016/j.fsi.2019.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/05/2019] [Accepted: 09/02/2019] [Indexed: 06/10/2023]
Abstract
Flow cytometry (FCM) is routinely used in fundamental and applied research, clinical practice, and clinical trials. In the last three decades, this technique has also become a routine tool used in immunological studies of molluscs to analyse physical and chemical characteristics of haemocytes. Here, we briefly review the current implementation of FCM in the field of molluscan immunology. These applications cover a diverse range of practices from straightforward total cell counts and cell viability to characterize cell subpopulations, and further extend to analyses of DNA content, phagocytosis, oxidative stress and apoptosis. The challenges and prospects of FCM applications in immunological studies of molluscs are also discussed.
Collapse
Affiliation(s)
- Thao Van Nguyen
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, New Zealand
| | - Andrea C Alfaro
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, New Zealand.
| |
Collapse
|
32
|
Counihan KL, Bowen L, Ballachey B, Coletti H, Hollmen T, Pister B, Wilson TL. Physiological and gene transcription assays to assess responses of mussels to environmental changes. PeerJ 2019; 7:e7800. [PMID: 31592166 PMCID: PMC6779115 DOI: 10.7717/peerj.7800] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 08/31/2019] [Indexed: 01/05/2023] Open
Abstract
Coastal regions worldwide face increasing management concerns due to natural and anthropogenic forces that have the potential to significantly degrade nearshore marine resources. The goal of our study was to develop and test a monitoring strategy for nearshore marine ecosystems in remote areas that are not readily accessible for sampling. Mussel species have been used extensively to assess ecosystem vulnerability to multiple, interacting stressors. We sampled bay mussels (Mytilus trossulus) in 2015 and 2016 from six intertidal sites in Lake Clark and Katmai National Parks and Preserves, in south-central Alaska. Reference ranges for physiological assays and gene transcription were determined for use in future assessment efforts. Both techniques identified differences among sites, suggesting influences of both large-scale and local environmental factors and underscoring the value of this combined approach to ecosystem health monitoring.
Collapse
Affiliation(s)
| | - Lizabeth Bowen
- US Geological Survey, Western Ecological Research Center, Davis, CA, United States of America
| | - Brenda Ballachey
- US Geological Survey, Alaska Science Center, Anchorage, AK, United States of America
| | - Heather Coletti
- Inventory and Monitoring Program, Southwest Alaska Network, National Park Service, Anchorage, AK, United States of America
| | - Tuula Hollmen
- College of Fisheries and Ocean Sciences, University of Alaska-Fairbanks and Alaska SeaLife Center, Seward, AK, United States of America
| | - Benjamin Pister
- Ocean Alaska Science and Learning Center, National Park Service, Anchorage, AK, United States of America
| | - Tammy L Wilson
- Inventory and Monitoring Program, Southwest Alaska Network, National Park Service, Anchorage, AK, United States of America.,Department of Natural Resource Management, South Dakota State University, Brookings, SD, United States of America
| |
Collapse
|
33
|
Martins E, Bettencourt R. Gene expression study in Bathymodiolus azoricus populations from three North Atlantic hydrothermal vent sites. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 99:103390. [PMID: 31077690 DOI: 10.1016/j.dci.2019.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/05/2019] [Accepted: 05/05/2019] [Indexed: 06/09/2023]
Abstract
The deep-sea hydrothermal vents are known as harsh environments, abundant in animal diversity surrounded by fluids with specific physiological and chemical composition. Bathymodiolus azoricus mussels are endemic species dwelling at hydrothermal vent sites and at distinct depth ranges. Mussels from Menez Gwen (MG), Lucky Strike (LS), Rainbow (Rb) were collected at 800 m, 1730 m and 2310 m depths respectively, along the Mid-Atlantic Ridge. Five different tissues including gill, digestive gland, mantle, adductor muscle and foot from MG, LS and Rb mussels were selected for gene expression analyses by qPCR. 30 genes were tested to investigate the level of immune and apoptotic gene expression among B. azoricus populations. Statistical analyses confirmed tissue-specific gene expression differences among the five tissues. The digestive gland tissue showed a higher transcriptional activity characterized by an up-regulation of gene activities, contrary to what was assessed in the adductor muscle tissue. Five categories included recognition, signaling, transcription, effector and apoptotic genes were analyzed in this study. The majority of genes differed in levels of expression between MG/LS and LS/Rb in the digestive gland. Our findings suggest that gene expression profiles are inherent to the tissue analyzed, thus implying an immune tissue-specificity controlling defense responses across B. azoricus mussel body as a whole.
Collapse
Affiliation(s)
- Eva Martins
- MARE - Marine and Environmental Sciences Centre, Rua Prof. Dr. Frederico Machado, 9901-862, Horta, Portugal; IMAR - Institute of Marine Research-Azores, 9901-862, Horta, Portugal.
| | - Raul Bettencourt
- OKEANOS Marine Research Center/Department of Oceanography and Fisheries, Faculty of Science and Technology, University of the Azores, Horta, Portugal
| |
Collapse
|
34
|
Boroda AV, Kipryushina YO, Odintsova NA. Chemical modulation of apoptosis in molluscan cell cultures. Cell Stress Chaperones 2019; 24:905-916. [PMID: 31230213 PMCID: PMC6717236 DOI: 10.1007/s12192-019-01014-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/28/2019] [Accepted: 05/31/2019] [Indexed: 12/11/2022] Open
Abstract
This study focused on the alterations that occur in larval molluscan cells after administration of apoptotic inducers and inhibitors used in mammalian cells in response to cold stress. This is the first report on apoptosis modulation in molluscan cells assessed by flow cytometry. Mitochondrial activity, general caspase activation, and membrane integrity of control molluscan cells were compared to those processes in frozen-thawed molluscan cells, primary mouse embryonic fibroblasts, and human colon tumor cells prior to treatment and after incubation with apoptotic inducers or inhibitors. We tested three apoptotic inducers (staurosporine, camptothecin, and mitomycin C, routinely used for the chemical induction of apoptosis in different mammalian cells) and found that only staurosporine resulted in an evident apoptotic increase in molluscan cell cultures: 9.06% early apoptotic cells in comparison with 5.63% in control frozen-thawed cells and 20.6% late apoptotic cells in comparison with 10.68% in controls. Camptothecin did not significantly induce molluscan cell apoptosis but did cause a slight increase in the number of active cells after thawing. Mitomycin C produced similar results, but its effect was less pronounced. In addition, we hypothesize that the use of the apoptotic inhibitors could reduce apoptosis, which is significant after cryopreservation in molluscan cells; however, our attempts failed. Development in this direction is important for understanding the mechanisms of marine organisms' cold susceptibility.
Collapse
Affiliation(s)
- Andrey Victorovich Boroda
- National Scientific Center of Marine Biology of the Far Eastern Branch of the Russian Academy of Sciences, 17 Palchevsky St, Vladivostok, Primorsky krai, 690041, Russia.
| | - Yulia Olegovna Kipryushina
- National Scientific Center of Marine Biology of the Far Eastern Branch of the Russian Academy of Sciences, 17 Palchevsky St, Vladivostok, Primorsky krai, 690041, Russia
- Far Eastern Federal University, Vladivostok, Russia
| | - Nelly Adolphovna Odintsova
- National Scientific Center of Marine Biology of the Far Eastern Branch of the Russian Academy of Sciences, 17 Palchevsky St, Vladivostok, Primorsky krai, 690041, Russia
- Far Eastern Federal University, Vladivostok, Russia
| |
Collapse
|
35
|
López-Galindo L, Juárez OE, Larios-Soriano E, Del Vecchio G, Ventura-López C, Lago-Lestón A, Galindo-Sánchez C. Transcriptomic Analysis Reveals Insights on Male Infertility in Octopus maya Under Chronic Thermal Stress. Front Physiol 2019; 9:1920. [PMID: 30697164 PMCID: PMC6341066 DOI: 10.3389/fphys.2018.01920] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 12/20/2018] [Indexed: 11/25/2022] Open
Abstract
Octopus maya endemic to the Yucatan Peninsula, Mexico, is an ectotherm organism particularly temperature-sensitive. Studies in O. maya females show that temperatures above 27°C reduce the number of eggs per spawn, fertilization rate and the viability of embryos. High temperatures also reduce the male reproductive performance and success. However, the molecular mechanisms are still unknown. The transcriptomic profiles of testes from thermally stressed (30°C) and not stressed (24°C) adult male octopuses were compared, before and after mating to understand the molecular bases involved in the low reproductive performance at high temperature. The testis paired-end cDNA libraries were sequenced using the Illumina MiSeq platform. Then, the transcriptome was assembled de novo using Trinity software. A total of 53,214,611 high-quality paired reads were used to reconstruct 85,249 transcripts and 77,661 unigenes with an N50 of 889 bp length. Later, 13,154 transcripts were annotated implementing Blastx searches in the UniProt database. Differential expression analysis revealed 1,881 transcripts with significant difference among treatments. Functional annotation and pathway mapping of differential expressed transcripts revealed significant enrichment for biological processes involved in spermatogenesis, gamete generation, germ cell development, spermatid development and differentiation, response to stress, inflammatory response and apoptosis. Remarkably, the transcripts encoding genes such as ZMYND15, KLHL10, TDRD1, TSSK2 and DNAJB13, which are linked to male infertility in other species, were differentially expressed among the treatments. The expression levels of these key genes, involved in sperm motility and spermatogenesis were validated by quantitative real-time PCR. The results suggest that the reduction in male fertility at high temperature can be related to alterations in spermatozoa development and motility.
Collapse
Affiliation(s)
- Laura López-Galindo
- Laboratorio de Genómica Funcional, Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Mexico
| | - Oscar E Juárez
- Laboratorio de Genómica Funcional, Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Mexico
| | - Ernesto Larios-Soriano
- Laboratorio de Fisiología Integrativa de Organismos Marinos, Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Mexico
| | - Giulia Del Vecchio
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Claudia Ventura-López
- Laboratorio de Genómica Funcional, Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Mexico
| | - Asunción Lago-Lestón
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Mexico
| | - Clara Galindo-Sánchez
- Laboratorio de Genómica Funcional, Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Mexico
| |
Collapse
|
36
|
Qu C, Yang W, Xu Q, Sun J, Lu M, Wang Y, Liu C, Wang W, Wang L, Song L. A novel effector caspase (Caspase-3/7-1) involved in the regulation of immune homeostasis in Chinese mitten crab Eriocheir sinensis. FISH & SHELLFISH IMMUNOLOGY 2018; 83:76-83. [PMID: 30195917 DOI: 10.1016/j.fsi.2018.09.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/26/2018] [Accepted: 09/05/2018] [Indexed: 06/08/2023]
Abstract
Caspases are a conserved family of cysteine proteases characterized by specificity for aspartic acid and play an essential role in cell apoptosis. In the present study, a novel effector caspase (designated as EsCaspase-3/7-1) was identified from Chinese mitten crab Eriocheir sinensis. The open reading frame of EsCaspase-3/7-1 cDNA was of 972 bp, encoding a polypeptide of 323 amino acids. EsCaspase-3/7-1 contained an N-terminal prodomain and a conservative C-terminal CASc domain, with the conserved active site "QACRG". The mRNA transcripts of EsCaspase-3/7-1 were constitutively expressed in all the examined tissues with high expression level in hemocytes, hepatopancreas and gill. The EsCaspase-3/7-1 protein was mainly distributed in the cytoplasm of hemocytes. After Aeromonas hydrophila and lipopolysaccharide (LPS) stimulations, the mRNA expression level of EsCaspase-3/7-1 in hemocytes increased significantly. The mRNA expression level of EsCaspase-3/7-1 in hemocytes was significantly up-regulated after H2O2 treatment in vitro. The recombinant EsCaspase-3/7-1 protein (rEsCaspase-3/7-1) was capable of hydrolyzing the substrate Ac-DEVD-pNA rather than Ac-YVAD-pNA and Ac-VEID-pNA in vitro, and exhibited binding activity to LPS. These results demonstrated that EsCaspase-3/7-1 might act as an LPS receptor, and play an important role in the regulation of immune homeostasis of E. sinensis.
Collapse
Affiliation(s)
- Chen Qu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Wen Yang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Qingsong Xu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Jiejie Sun
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Mengmeng Lu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Ying Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Chao Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Weilin Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
37
|
Rizk EST, Hamada SF, Abd-ElGhany SR, Ramez AM. Biological investigations on the freshwater snail Pirenella conica (Blainville, 1829) infected with the developmental stages of Heterophyes sp. THE JOURNAL OF BASIC AND APPLIED ZOOLOGY 2018; 79:4. [DOI: 10.1186/s41936-018-0016-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 01/05/2018] [Indexed: 09/02/2023]
|
38
|
Molecular and cellular characterization of apoptosis in flat oyster a key mechanisms at the heart of host-parasite interactions. Sci Rep 2018; 8:12494. [PMID: 30131502 PMCID: PMC6104086 DOI: 10.1038/s41598-018-29776-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/14/2018] [Indexed: 01/09/2023] Open
Abstract
Bonamia ostreae has been associated with the decline of flat oyster Ostrea edulis populations in some European countries. This obligatory intracellular parasite persists and multiplies into hemocytes. Previous in vitro experiments showed that apoptosis is activated in hemocytes between 1 h and 4 h of contact with the parasite. The flat oyster uses the apoptosis pathway to defend against B. ostreae. However, the parasite might be also able to modulate this response in order to survive in its host. In order to investigate this hypothesis the apoptotic response of the host was evaluated using flow cytometry, transmission electron microscopy and by measuring the response of genes involved in the apoptotic pathway after 4 h. In parallel, the parasite response was investigated by measuring the expression of B. ostreae genes involved in different biological functions including cell cycle and cell death. Obtained results allow describing molecular apoptotic pathways in O. edulis and confirm that apoptosis is early activated in hemocytes after a contact with B. ostreae. Interestingly, at cellular and molecular levels this process appeared downregulated after 44 h of contact. Concurrently, parasite gene expression appeared reduced suggesting that the parasite could inhibit its own metabolism to escape the immune response.
Collapse
|
39
|
Wang F, Yu Z, Wang W, Li Y, Lu G, Qu C, Wang H, Lu M, Wang L, Song L. A novel caspase-associated recruitment domain (CARD) containing protein (CgCARDCP-1) involved in LPS recognition and NF-κB activation in oyster (Crassostrea gigas). FISH & SHELLFISH IMMUNOLOGY 2018; 79:120-129. [PMID: 29751033 DOI: 10.1016/j.fsi.2018.05.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 05/04/2018] [Accepted: 05/08/2018] [Indexed: 06/08/2023]
Abstract
Caspase-associated recruitment domain (CARD) containing proteins play critical roles in molecular interaction and regulation of various signaling pathways, such as the activation of caspase and NF-κB singling pathway in the process of apoptosis or inflammation. In the present study, a novel CARD containing protein (designed CgCARDCP-1) was identified and characterized from oyster Crassostrea gigas. Molecular feature analysis revealed that, the open reading frame (ORF) of CgCARDCP-1 gene was 759 bp encoding a polypeptide of 253 amino acids with a conserved N-terminal CARD domain and two transcriptional coactivator p15 (PC4) domains in C-terminus. Homologous alignment showed that the amino acid sequence of CgCARDCP-1 shared 30%-46% identity with that of caspase-2. By RT-PCR detection, the mRNA transcripts of CgCARDCP-1 were found to be widely distributed in various tissues of oyster with the highest expression level in hemocytes and mantle. And CgCARDCP-1 protein was mostly distributed in the cytoplasm of oyster hemocytes as shown by immunohistochemistry. Moreover, the CgCARDCP-1 mRNA expression level in hemocytes was significantly up-regulated after lipopolysaccharide (LPS) and Vibrio splendidus stimulations. The recombinant CgCARDCP-1 displayed strong binding activity with LPS in vitro. In addition, after transfected into the HEK-293T cell with luciferase reporter system, CgCARDCP-1 could significantly promote the NF-κB activation (1.29-fold, p < 0.05) compared to that in the control group. These results collectively demonstrated that the CgCARDCP-1 might serve as a recognition molecule for LPS and a regulator of NF-κB activation in the immune response of oyster.
Collapse
Affiliation(s)
- Feifei Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Zichao Yu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Marine Science and Technology, Qingdao, 266235, China
| | - Weilin Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Yiqun Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Guangxia Lu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Chen Qu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Hui Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Mengmeng Lu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Disease Prevention and Control for Aquaculture Animals, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Marine Science and Technology, Qingdao, 266235, China.
| |
Collapse
|
40
|
Wu H, Zhong M, Lu Z, Shan X, Li F, Ji C, Cong M. Biological effects of tris (1-chloro-2-propyl) phosphate (TCPP) on immunity in mussel Mytilus galloprovincialis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 61:102-106. [PMID: 29879610 DOI: 10.1016/j.etap.2018.05.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 06/08/2023]
Abstract
Organophosphate flame retardants (OPFRs) are increasingly produced and used as alternatives of brominated flame-retardants (BFRs) and have become emerging marine environmental contaminants. So far, however, little is known regarding the biological effects of OPFRs in marine organisms. In this study, the biological effects of one of the most abundant OPFRs, tris (1-chloro-2-propyl) phosphate (TCPP), on the immunity in mussel Mytilus galloprovincialis were characterized by testing the reactive oxygen species, apoptosis, antioxidant system and immunity related gene expressions. Results indicated that both TCPP exposures (10 and 100 nmol L-1) significantly (p < 0.01) enhanced reactive oxygen species production and the high dose of TCPP induced more apoptosis and oxidative stress in mussel hemocytes. TCPP also induced an obvious hormesis phenomenon (low dose inhibition and high dose stimulation) in mussel hemocytes, as indicated by the gene expression profiles of caspase 8 and mytimacin. The down-regulated gene expression levels of lysozymes suggested that both TCPP exposures inhibited the innate immunity in mussel M. galloprovincialis. The significantly (p < 0.01) increased gene expression levels of TLR, galectin, PGRP and LITAF demonstrated that TCPP induced dose-dependent immune stress in mussels. Overall, this work suggested that TCPP could influence the immune system in marine mussel M. galloprovincialis.
Collapse
Affiliation(s)
- Huifeng Wu
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences(CAS), Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, YICCAS, Yantai, 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China
| | - Mingyu Zhong
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences(CAS), Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, YICCAS, Yantai, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Zhen Lu
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences(CAS), Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, YICCAS, Yantai, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xiujuan Shan
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China
| | - Fei Li
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences(CAS), Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, YICCAS, Yantai, 264003, PR China
| | - Chenglong Ji
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences(CAS), Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, YICCAS, Yantai, 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China
| | - Ming Cong
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences(CAS), Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, YICCAS, Yantai, 264003, PR China.
| |
Collapse
|
41
|
Yan A, Ren C, Chen T, Jiang X, Sun H, Huo D, Hu C, Wen J. The first tropical sea cucumber caspase-8 from Holothuria leucospilota: Molecular characterization, involvement of apoptosis and inducible expression by immune challenge. FISH & SHELLFISH IMMUNOLOGY 2018; 72:124-131. [PMID: 29097321 DOI: 10.1016/j.fsi.2017.10.050] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/28/2017] [Accepted: 10/27/2017] [Indexed: 06/07/2023]
Abstract
In this study, the first tropical sea cucumber caspase-8 named HLcaspase-8 was identified from Holothuria leucospilota. The full-length cDNA of HLcaspase-8 is 2293 bp in size, containing a 245 bp 5'-untranslated region (UTR), a 521 bp 3'-UTR and a 1527 bp open reading frame (ORF) encoding a protein of 508 amino acids with a deduced molecular weight of 57.47 kDa. Besides the common signatures of caspase family including conserved cysteine active site pentapeptide motif QACQG, P20 domain and P10 domain, HLcaspase-8 also contains a characteristic DED domain. The over-expression of HLcaspase-8 in HEK293T cells showed that HLcaspase-8 protein could induce apoptosis and the apoptosis could be promoted by TNF-α, indicating that the apoptosis induced by HLcaspase-8 might also be triggered via a receptor-mediated pathway. Moreover, the expression of HLcaspase-8 in in vitro experiments performed in coelomocytes was significantly up-regulated by lipopolysaccharides (LPS) or polyriboinosinic-polyribocytidylic Acid [poly (I:C)] challenge, suggesting that the sea cucumber caspase-8 might play some important roles in the innate immune defense against bacterial and viral infections.
Collapse
Affiliation(s)
- Aifen Yan
- School of Stomatology and Medicine, Foshan University, Foshan, 528000, PR China.
| | - Chunhua Ren
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, PR China.
| | - Ting Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, PR China.
| | - Xiao Jiang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China.
| | - Hongyan Sun
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China.
| | - Da Huo
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China.
| | - Chaoqun Hu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, PR China.
| | - Jing Wen
- Department of Biology, Lingnan Normal University, Zhanjiang, 524048, China.
| |
Collapse
|
42
|
Détrée C, López-Landavery E, Gallardo-Escárate C, Lafarga-De la Cruz F. Transcriptome mining of immune-related genes in the muricid snail Concholepas concholepas. FISH & SHELLFISH IMMUNOLOGY 2017; 71:69-75. [PMID: 28962882 DOI: 10.1016/j.fsi.2017.09.061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 08/30/2017] [Accepted: 09/25/2017] [Indexed: 06/07/2023]
Abstract
The population of the Chilean endemic marine gastropod Concholepas concholepas locally called "loco" has dramatically decreased in the past 50 years as a result of intense activity of local fisheries and high environmental variability observed along the Chilean coast, including episodes of hypoxia, changes in sea surface temperature, ocean acidification and diseases. In this study, we set out to explore the molecular basis of C. concholepas to cope with biotic stressors such as exposure to the pathogenic bacterium Vibrio anguillarum. Here, 454pyrosequencing was conducted and 61 transcripts related to the immune response in this muricid species were identified. Among these, the expression of six genes (CcNFκβ, CcIκβ, CcLITAF, CcTLR, CcCas8 and CcCath) involved in the regulation of inflammatory, apoptotic and immune processes upon stimuli, were evaluated during the first 33 h post challenge (hpc). The results showed that CcTLR, CcCas8 and CcCath have an initial response at 4 hpc, evidencing an up-regulation from 4 to 24 hpc. Notably, the response of CcNFKB occurred 2 h later with a statistically significant up-regulation at 6 hpc and 10 hpc. Furthermore, the challenge with V. anguillarum induced a statistically significant down-regulation of CcIKB between 2 and 10 hpc as well as a down-regulation of CcLITAF between 2 and 4 hpc followed in both cases by an up-regulation between 24 and 33 hpc. This work describes the first transcriptomic effort to characterize the immune response of C. concholepas and constitutes a valuable transcriptomic resource for future efforts to develop sustainable aquaculture and conservations tools for this endemic marine snail species.
Collapse
Affiliation(s)
- Camille Détrée
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, P.O. Box 160-C, Concepción, Chile
| | - Edgar López-Landavery
- Department of Marine Biotechnology, Center for Scientific Research and Higher Education of Ensenada (CICESE), Ensenada, BC, Mexico
| | - Cristian Gallardo-Escárate
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, P.O. Box 160-C, Concepción, Chile
| | - Fabiola Lafarga-De la Cruz
- Laboratory of Aquatic Genomics, Aquaculture Department, Center for Scientific Research and Higher Education at Ensenada (CICESE), Ensenada, BC, Mexico.
| |
Collapse
|
43
|
Lu G, Yu Z, Lu M, Liu D, Wang F, Wu Y, Liu Y, Liu C, Wang L, Song L. The self-activation and LPS binding activity of executioner caspase-1 in oyster Crassostrea gigas. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 77:330-339. [PMID: 28888538 DOI: 10.1016/j.dci.2017.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 09/05/2017] [Accepted: 09/05/2017] [Indexed: 06/07/2023]
Abstract
Executioner caspases play important roles in apoptotic pathway and immune defense, which is considered to coordinate the execution phase of apoptosis by cleaving multiple structural and repair proteins. However, the knowledge about the activation mechanism and function of executioner caspases in mollusks, especially marine bivalves is limited. In the present study, the full-length cDNA sequence of caspase-1 was cloned from oyster Crassostrea gigas, which encoded a predicted protein containing a small subunit (p10) and large subunit (p20) with a conserved caspase active site QACRG similar to that of human executioner caspase-3/7. SDS-polyacrylamide gel electrophoresis and western blot results demonstrated that the CgCaspase-1 zymogen could be cleaved into p20p10, p20 and p10 in prokaryotic expression systems, and the C-terminus of CgCaspase-1 was also cleaved into p20 and p10. Both of the recombinant CgCaspase-1 (rCgCaspase-1) and the C-terminus of CgCaspase-1 (rCgCaspase-1-C) exhibited similar caspase activity towards proteolytic substrate Ac-DMQD-pNA and Ac-DEVD-pNA. However, the recombinant N-terminus of CgCaspase-1 (rCgCaspase-1-N) did not display any caspase activity. Moreover, the inhibitor of both caspase-3/7 and pan-caspase could significantly inhibit the proteolytic activity of rCgCaspase-1. The strong binding activities towards lipopolysaccharide (LPS) of both rCgCaspase-1 and rCgCaspase-1-C were revealed by ELISA techniques and western blotting. A high level of CgCaspase-1 mRNA transcripts was detected in the gills and hemocytes by quantitative real-time PCR, and the CgCaspase-1 protein was mainly located in the cytoplasm of oyster hemocytes by immunofluorescence assay. These results collectively suggested that CgCaspase-1 was a homolog of executioner caspase-3/7, which could be self-activated through proteolytic cleavage in prokaryotic expression systems, and performed caspase and LPS binding activities in the innate immune response of oyster.
Collapse
Affiliation(s)
- Guangxia Lu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Zichao Yu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Mengmeng Lu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Dongyang Liu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Feifei Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Yichen Wu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Yu Liu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Chao Liu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| |
Collapse
|
44
|
Xu K, Yu Q, Zhang J, Lv Z, Fu W, Wang T. Cell loss by apoptosis is involved in the intestinal degeneration that occurs during aestivation in the sea cucumber Apostichopus japonicus. Comp Biochem Physiol B Biochem Mol Biol 2017; 216:25-31. [PMID: 29128641 DOI: 10.1016/j.cbpb.2017.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 11/05/2017] [Accepted: 11/05/2017] [Indexed: 12/14/2022]
Abstract
The sea cucumber Apostichopus japonicus (Selenka) commonly undergoes aestivation in response to high water temperatures. This process is accompanied by tissue regression and body mass reduction. Previous studies have suggested that apoptosis may play a role in the tissue remodeling that occurs during aestivation, although this has not definitively been shown. To investigate this hypothesis, the present study used A. japonicus as a model organism to examine cell loss through apoptosis in intestinal degeneration during aestivation. Apostichopus japonicus individuals were collected from Yellow Sea (N 36° 05' 44.87″, E 120° 31' 58.51″), China in April 2016 and split into two groups. Aestivation was induced in the experimental group by incubation at 25°C. This resulted in a significant decrease in body mass and increased evidence of intestinal degeneration in hematoxylin and eosin, Hoechst 33342, and in situ TUNEL analyses of tissue sections. Along with further Hoechst 33342 analysis using intestinal cell smears, these results showed that A. japonicus intestinal cell apoptosis occurred soon after the initial temperature increase, with most apoptotic events completing within 20days. Transcriptional quantification of the Ajcaspase-8 (CASP8) and Ajcaspase-3 (CASP3) apoptotic genes demonstrated that their expression was significantly elevated at the beginning of the experiment but was decreased at later stages of aestivation. The results of this study strongly suggest that apoptosis is involved in the intestinal regression of A. japonicus during aestivation, and play important role in understanding fundamental cellular events in tissue regression under environmental stress.
Collapse
Affiliation(s)
- Ke Xu
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Sciences, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Qiuhan Yu
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Sciences, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Jianshe Zhang
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Sciences, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Zhenming Lv
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Sciences, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Wandong Fu
- Zhejiang Marine Development Research Insititute, Zhoushan, Zhejiang 316021, China
| | - Tianming Wang
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Sciences, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China.
| |
Collapse
|
45
|
Tong Q, Zhang M, Cao X, Xu S, Wang D, Zhao Y. Expression and activation of Daphnia pulex Caspase-3 are involved in regulation of aging. Gene 2017; 634:37-46. [DOI: 10.1016/j.gene.2017.08.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 08/18/2017] [Accepted: 08/24/2017] [Indexed: 12/17/2022]
|
46
|
Dong W, Chen Y, Lu W, Wu B, Qi P. Transcriptome analysis of Mytilus coruscus hemocytes in response to Vibrio alginnolyficus infection. FISH & SHELLFISH IMMUNOLOGY 2017; 70:560-567. [PMID: 28863889 DOI: 10.1016/j.fsi.2017.08.034] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/21/2017] [Accepted: 08/27/2017] [Indexed: 06/07/2023]
Abstract
As an economically important bivalve, the Mytilus coruscus is cultured widely in the eastern coast of China. In recent years, this bivalve has been seriously affected by the pathogenic infections. To elucidate the host defense mechanisms of M. coruscus against pathogenic challenge, the hemocyte transcriptomes of M. coruscus before and after Vibrio alginnolyficus infection were analyzed using the deep-sequencing platform Illumina/HiSeq-2500, meanwhile the differentially expressed genes (DEGs) were investigated. In total, 130,031,083 clean reads were obtained and then assembled into 63,942 unigenes with an average length of 810 bp and an N50 of 1056 bp. Unigenes were annotated by comparing against nr, Swiss-Prot, KEGG, COG, KOG, GO, and Pfam databases, and 27,345 unigenes (42.77%) were annotated in at least one database. After bacterial challenge, 1270 and 265 genes were identified as remarkably up- or down-regulated, respectively, amongst 1154 were associated with 122 pathways, including classical immune-related pathways, such as 'Toll-like receptor signaling', 'the complement cascades', 'MAPK signaling pathway', 'Apoptosis' and 'Wnt signaling pathway'. Besides, nine genes which were differently-expressed immuno-related were confirmed by using quantitative real-time PCR. These findings would provide new insights on the M. coruscus innate immunity, based on which, some novel strategies for management of diseases and long-term sustainability of M. coruscus culture could be developed.
Collapse
Affiliation(s)
- Wenqiang Dong
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316004, China
| | - Yongxia Chen
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316004, China
| | - Weixiao Lu
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316004, China
| | - Bin Wu
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316004, China
| | - Pengzhi Qi
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316004, China.
| |
Collapse
|
47
|
Schramm H, Jaramillo ML, Quadros TD, Zeni EC, Müller YMR, Ammar D, Nazari EM. Effect of UVB radiation exposure in the expression of genes and proteins related to apoptosis in freshwater prawn embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 191:25-33. [PMID: 28780296 DOI: 10.1016/j.aquatox.2017.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 06/07/2023]
Abstract
Our previous studies showed that embryos of the freshwater prawn Macrobrachium olfersii exposed to ultraviolet B (UVB) radiation exhibited DNA damage, excessive ROS production, mitochondrial dysfunction and increased hsp70 expression, which are able, independently or together, to induce apoptosis. Thus, we attempted to elucidate some key apoptosis-related genes (ARG) and apoptosis-related proteins (ARP) and their expression during different stages of embryonic development, as well as to characterize the chronology of ARG expression and ARP contents after UVB radiation insult. We demonstrate that p53, Bax and Caspase3 genes are active in the embryonic cells at early embryonic developmental stages, and that the Bcl2 gene is active from the mid-embryonic stage. After UVB radiation exposure, we found an increase in ARP such as p53 and Bak after 3h of exposure. Moreover, an increase in ARG transcript levels for p53, Bax, Bcl2 and Caspase3 was observed at 6h after UVB exposure. Then, after 12h of UVB radiation exposure, an increase in Caspase3 gene expression and protein was observed, concomitantly with an increased number of apoptotic cells. Our data reveal that ARG and ARP are developmentally regulated in embryonic cells of M. olfersii and that UVB radiation causes apoptosis after 12h of exposure. Overall, we demonstrate that embryonic cells of M. olfersii are able to active the cell machinery against environmental changes, such as increased incidence of UVB radiation in aquatic ecosystems.
Collapse
Affiliation(s)
- Heloísa Schramm
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Michael L Jaramillo
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Thaline de Quadros
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Eliane C Zeni
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Yara M R Müller
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Dib Ammar
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil; Centro Universitário Católica de Santa Catarina, Joinville, Santa Catarina, Brazil
| | - Evelise M Nazari
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
48
|
Granger Joly de Boissel P, Fournier M, Rodriguez-Lecompte JC, McKenna P, Kibenge F, Siah A. Functional and molecular responses of the blue mussel Mytilus edulis' hemocytes exposed to cadmium - An in vitro model and transcriptomic approach. FISH & SHELLFISH IMMUNOLOGY 2017; 67:575-585. [PMID: 28600193 DOI: 10.1016/j.fsi.2017.06.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 05/21/2017] [Accepted: 06/03/2017] [Indexed: 05/24/2023]
Abstract
The bivalve mollusk, Mytilus edulis, is used as a sentinel species in several monitoring programs due to its ability to bio-accumulate contaminants. Its immune system consists of hemocytes and humoral components, which constitute the main part of the hemolymph. The present study is aimed at understanding the effects of Cd on the differentially expressed genes involved in the phagocytosis of M. edulis' hemocytes. Our approach focuses on an in vitro model by exposing hemocytes to different concentrations of Cd ranging from 10-9 M to 10-3 M. Phagocytosis and cell viability as functional markers were measured using flow cytometry. The molecular mechanisms regulated by Cd were investigated using RNA-seq and DGE analysis. Results showed that viability and phagocytosis of hemocytes exposed to 10-3 M of Cd were significantly decreased after 21 h of exposure. RNA sequencing data showed that 1112 transcripts (out of 352,976 contigs) were differentially regulated by the highest concentration of Cd. Among these identified transcripts, 1028 and 84 were up and down-regulated respectively. The induction of super oxide dismutase (SOD), glutathion-s-transferase (GST), cytochrome P450 2C8 (CYP2C8), multidrug resistance protein (MRP1) and heat shock protein 70 (HSP70) suggests that Cd can regulate key molecular mechanisms. In addition, several toll-like receptors (TLR) as well as genes involved in phagocytosis (actin and CDC42) and apoptosis (caspase 8 and XIAP/IAP) were induced by Cd. Thus, our model highlights the effect of Cd on the phagocytic function of M. edulis' hemocytes along with the regulation of gene expression involved in innate immunity, detoxification and apoptosis. Further investigations need to be pursued to unravel the effects of Cd on the molecular mechanisms identified in this study.
Collapse
Affiliation(s)
- Philippine Granger Joly de Boissel
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
| | - Michel Fournier
- INRS - Institut Armand-Frappier, Université du Québec, 531 boulevard des Prairies, Laval, QC H7V 1B7, Canada.
| | - Juan Carlos Rodriguez-Lecompte
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
| | - Patty McKenna
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - Frederick Kibenge
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
| | - Ahmed Siah
- British Columbia Centre for Aquatic Health Sciences, 871A Island Highway, Campbell River, BC V9W 2C2, Canada.
| |
Collapse
|
49
|
Li Y, Zhang L, Qu T, Tang X, Li L, Zhang G. Conservation and divergence of mitochondrial apoptosis pathway in the Pacific oyster, Crassostrea gigas. Cell Death Dis 2017; 8:e2915. [PMID: 28682310 PMCID: PMC5550854 DOI: 10.1038/cddis.2017.307] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 05/27/2017] [Accepted: 05/31/2017] [Indexed: 02/07/2023]
Abstract
Apoptosis is considered a crucial part of the host defense system in oysters according to previous reports; however, the exact process by which this occurs remains unclear. Besides, mitochondrial apoptosis is the primary method of apoptosis in vertebrate cells, but has been poorly studied in invertebrates and is quite controversial. In this study, we investigated the molecular mechanism of mitochondrial apoptosis in the Pacific oyster Crassostrea gigas. Notably, we show that most key elements involved in the vertebrate mitochondrial apoptosis pathway – including mitochondrial outer membrane permeabilization, cytochrome c release, and caspase activation – are also present in C. gigas. In contrast, the lack of Bcl-2 homology 3-only subfamily members and apoptotic protease activating factor-1 (APAF-1) protein revealed evolutionary diversity from other phyla. Our results support that mitochondrial apoptosis in animals predates the emergence of vertebrates, but suggest that an unexpectedly diverse mitochondrial apoptosis pathway may exist in invertebrates. In addition, our work provided new clues for an improved understanding of how bivalve acclimate themselves to an inconstant environment.
Collapse
Affiliation(s)
- Yingxiang Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,National &Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Linlin Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,National &Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Tao Qu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,National &Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Xueying Tang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,National &Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Li Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,National &Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Guofan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,National &Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
50
|
Odintsova NA, Boroda AV, Maiorova MA, Yakovlev KV. The death pathways in mussel larval cells after a freeze-thaw cycle. Cryobiology 2017; 77:41-49. [PMID: 28564580 DOI: 10.1016/j.cryobiol.2017.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/28/2017] [Accepted: 05/27/2017] [Indexed: 11/25/2022]
Abstract
We analyzed cell viability, caspase activity, plasma membrane alterations and cell ultrastructure morphology to estimate the morphological and biochemical alterations that occur in bivalve molluscan cell cultures during cryopreservation. The use of 5% dymethyl sulfoxide as a cryoprotectant resulted in greater cell survival and a scarcity of destroyed cells lacking cytosol among dead cells. In this case, almost all cells died through necrosis or apoptosis, which appeared to increase in mussel cell cultures after a freeze-thaw cycle. Apoptosis was not a main death pathway in mussel cells, but it was induced in a significant part of these cells (up to 24%) immediately after thawing and depended mostly on the cryoprotectant used. Regardless of the type of the used cryoprotectant, we observed some nuclear aberrations in cells after freezing-thawing, such as few multipolar mitoses or the absence of a division spindle in mitotic cells. After analyzing different methods for assessing cell damage, the best results were obtained from optimal approaches that could provide information regarding the cell disruption level after freezing-thawing and could be considered for future studies.
Collapse
Affiliation(s)
- Nelly A Odintsova
- Laboratory of Cytotechnology, National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690041, Russia; Far Eastern Federal University, Vladivostok 690922, Russia.
| | - Andrey V Boroda
- Laboratory of Cytotechnology, National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690041, Russia
| | - Mariia A Maiorova
- Laboratory of Cytotechnology, National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690041, Russia; Far Eastern Federal University, Vladivostok 690922, Russia
| | - Konstantin V Yakovlev
- Laboratory of Cytotechnology, National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690041, Russia
| |
Collapse
|