1
|
Saizonou H, Impoinvil LM, Derilus D, Omoke D, Okeyo S, Dada N, Corredor C, Mulder N, Lenhart A, Ochomo E, Djogbénou LS. Transcriptomic analysis of Anopheles gambiae from Benin reveals overexpression of salivary and cuticular proteins associated with cross-resistance to pyrethroids and organophosphates. BMC Genomics 2024; 25:348. [PMID: 38582836 PMCID: PMC10998338 DOI: 10.1186/s12864-024-10261-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 03/27/2024] [Indexed: 04/08/2024] Open
Abstract
BACKGROUND Insecticide resistance (IR) is one of the major threats to malaria vector control programs in endemic countries. However, the mechanisms underlying IR are poorly understood. Thus, investigating gene expression patterns related to IR can offer important insights into the molecular basis of IR in mosquitoes. In this study, RNA-Seq was used to characterize gene expression in Anopheles gambiae surviving exposure to pyrethroids (deltamethrin, alphacypermethrin) and an organophosphate (pirimiphos-methyl). RESULTS Larvae of An. gambiae s.s. collected from Bassila and Djougou in Benin were reared to adulthood and phenotyped for IR using a modified CDC intensity bottle bioassay. The results showed that mosquitoes from Djougou were more resistant to pyrethroids (5X deltamethrin: 51.7% mortality; 2X alphacypermethrin: 47.4%) than Bassila (1X deltamethrin: 70.7%; 1X alphacypermethrin: 77.7%), while the latter were more resistant to pirimiphos-methyl (1.5X: 48.3% in Bassila and 1X: 21.5% in Djougou). RNA-seq was then conducted on resistant mosquitoes, non-exposed mosquitoes from the same locations and the laboratory-susceptible An. gambiae s.s. Kisumu strain. The results showed overexpression of detoxification genes, including cytochrome P450s (CYP12F2, CYP12F3, CYP4H15, CYP4H17, CYP6Z3, CYP9K1, CYP4G16, and CYP4D17), carboxylesterase genes (COEJHE5E, COE22933) and glutathione S-transferases (GSTE2 and GSTMS3) in all three resistant mosquito groups analyzed. Genes encoding cuticular proteins (CPR130, CPR10, CPR15, CPR16, CPR127, CPAP3-C, CPAP3-B, and CPR76) were also overexpressed in all the resistant groups, indicating their potential role in cross resistance in An. gambiae. Salivary gland protein genes related to 'salivary cysteine-rich peptide' and 'salivary secreted mucin 3' were also over-expressed and shared across all resistant groups. CONCLUSION Our results suggest that in addition to metabolic enzymes, cuticular and salivary gland proteins could play an important role in cross-resistance to multiple classes of insecticides in Benin. These genes warrant further investigation to validate their functional role in An. gambiae resistance to insecticides.
Collapse
Affiliation(s)
- Helga Saizonou
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi (UAC), Abomey-Calavi, Benin.
| | - Lucy Mackenzie Impoinvil
- Entomology Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Dieunel Derilus
- Entomology Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Diana Omoke
- Kenya Medical Research Institute (KEMRI), Centre for Global Health Research (CGHR), Kisumu, Kenya
| | - Stephen Okeyo
- Kenya Medical Research Institute (KEMRI), Centre for Global Health Research (CGHR), Kisumu, Kenya
| | - Nsa Dada
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi (UAC), Abomey-Calavi, Benin
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Claudia Corredor
- Entomology Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Nicola Mulder
- Human, Heredity, and Health in Africa H3ABionet network, Cape Town, South Africa
| | - Audrey Lenhart
- Entomology Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Eric Ochomo
- Kenya Medical Research Institute (KEMRI), Centre for Global Health Research (CGHR), Kisumu, Kenya
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Luc S Djogbénou
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi (UAC), Abomey-Calavi, Benin.
- Regional Institute of Public Health (IRSP), Ouidah, Benin.
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK.
| |
Collapse
|
2
|
M J AW, G T, S AM, S M, A NA, A B, V R, A S SH. A comparative study on targeted gene expression in zebrafish and its gill cell line exposed to chlorpyrifos. In Vitro Cell Dev Biol Anim 2024; 60:397-410. [PMID: 38589735 DOI: 10.1007/s11626-024-00892-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/03/2024] [Indexed: 04/10/2024]
Abstract
Chlorpyrifos (CPF) is an organophosphorus-based insecticide, which is known to pose a serious risk to aquatic animals. However, the mechanisms of CPF toxicity in animals still remain unclear. The present investigation aimed to compare the potential effects of CPF in zebrafish (Danio rerio) and its gill cell line (DrG cells). Based on the in vivo study, the LC50 was calculated as 18.03 µg/L and the chronic toxic effect of CPF was studied by exposing the fish to 1/10th (1.8 µg/L) and 1/5th (3.6 µg/L) of the LC50 value. Morphological changes were observed in fish and DrG cells which were exposed to sublethal concentrations of CPF. The results of MTT and NR assays showed significant decline in the survival of cells exposed to CPF at 96 h. The production of reactive oxygen species in DrG cells and expression levels of antioxidant markers, inflammatory response genes (cox2a and cox2b), cyp1a, proapoptotic genes (bax), antiapoptotic gene (bcl2), apoptotic genes (cas3 and p53), and neuroprotective gene (ache) were determined in vivo using zebrafish and in vitro using DrG cells after exposure to CPF. Significant changes were found in the ROS production (DrG cells) and in the expression of inflammatory, proapoptotic, and apoptotic genes. This study showed that DrG cells are potential alternative tools to replace the use of whole fish for toxicological studies.
Collapse
Affiliation(s)
- Abdul Wazith M J
- Aquatic Animal Health Laboratory, PG and Research Department of Zoology, C. Abdul Hakeem College, Melvisharam, Tamil Nadu, 632509, India
| | - Taju G
- Aquatic Animal Health Laboratory, PG and Research Department of Zoology, C. Abdul Hakeem College, Melvisharam, Tamil Nadu, 632509, India.
| | - Abdul Majeed S
- Aquatic Animal Health Laboratory, PG and Research Department of Zoology, C. Abdul Hakeem College, Melvisharam, Tamil Nadu, 632509, India
| | - Mithra S
- Aquatic Animal Health Laboratory, PG and Research Department of Zoology, C. Abdul Hakeem College, Melvisharam, Tamil Nadu, 632509, India
| | - Nafeez Ahmed A
- Aquatic Animal Health Laboratory, PG and Research Department of Zoology, C. Abdul Hakeem College, Melvisharam, Tamil Nadu, 632509, India
| | - Badhusha A
- Aquatic Animal Health Laboratory, PG and Research Department of Zoology, C. Abdul Hakeem College, Melvisharam, Tamil Nadu, 632509, India
| | - Rajkumar V
- Aquatic Animal Health Laboratory, PG and Research Department of Zoology, C. Abdul Hakeem College, Melvisharam, Tamil Nadu, 632509, India
| | - Sahul Hameed A S
- Aquatic Animal Health Laboratory, PG and Research Department of Zoology, C. Abdul Hakeem College, Melvisharam, Tamil Nadu, 632509, India.
| |
Collapse
|
3
|
Curpan AS, Impellitteri F, Plavan G, Ciobica A, Faggio C. Review: Mytilus galloprovincialis: An essential, low-cost model organism for the impact of xenobiotics on oxidative stress and public health. Comp Biochem Physiol C Toxicol Pharmacol 2022; 256:109302. [PMID: 35202823 DOI: 10.1016/j.cbpc.2022.109302] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/01/2022] [Accepted: 02/16/2022] [Indexed: 12/11/2022]
Abstract
The level of pollution becomes more and more of a pressuring matter for humankind at a worldwide level. Often the focus is on the effects that we can directly and see such as decreased air quality and higher than normal temperatures and weather, but the effects we cannot see are frequently overlooked. For at least the past decade increasing importance has been given towards the effects of pollution of living animals or non-target organisms and plants. For this purpose, one model animal that surfaced is the purpose, one model animal surfaced is Mytilus galloprovincialis. As all mussels, this species is capable of bio-accumulating important quantities of different xenobiotics such as pesticides, paints, medicines, heavy metals, industrial compounds, and even compounds marketed as antioxidants and antivirals. Their toxic effects can be assessed through their impact on oxidative stress, lysosomal membrane stability, and cell viability through trypan blue exclusion test and neutral red retention assay techniques. The purpose of this paper is to highlight the benefits of using M. galloprovincialis as an animal model for toxicological assays of various classes of xenobiotics by bringing to light the studies that have approached the matter.
Collapse
Affiliation(s)
- Alexandrina-Stefania Curpan
- Department of Biology, Faculty of Biology, "Alexandru Ioan Cuza" University of Iasi, Carol I Avenue, 20A, Iasi, Romania
| | - Federica Impellitteri
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale, Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Gabriel Plavan
- Department of Biology, Faculty of Biology, "Alexandru Ioan Cuza" University of Iasi, Carol I Avenue, 20A, Iasi, Romania..
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, "Alexandru Ioan Cuza" University of Iasi, Carol I Avenue, 20A, Iasi, Romania..
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale, Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy..
| |
Collapse
|
4
|
Muñiz-González AB, Paoli F, Martínez-Guitarte JL, Lencioni V. Molecular biomarkers as tool for early warning by chlorpyrifos exposure on Alpine chironomids. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118061. [PMID: 34523523 DOI: 10.1016/j.envpol.2021.118061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Pesticides used in agriculture can be transported at a medium-high distance due to the drift effect, reaching even remote areas as mountain regions, glaciers, and snow cover. With the melting process, pesticides enter freshwater glacier ecosystems, becoming a threat to wildlife fauna, mainly dominated by Diptera Chironomidae. Chlorpyrifos (CPF), as one of the most commonly used pesticides in alpine vineyards and apple orchards, is frequently detected in icemelt waters. We selected as target species, larvae of the cold stenothermal chironomid Diamesa zernyi, collected in two glacier-fed streams (Presena and Amola) in the Italian Alps. Firstly, a de novo transcriptome was obtained, and secondly, a gene array was designed to study the molecular response of a wild population of D. zernyi exposed to three sub-lethal CPF concentrations corresponding to 1/100 LC10 (0.011 μg/L), 1/10 LC10 (0.11 μg/L), and LC10 (1.1 μg/L), for 24 h. The sub-organismal response was evaluated by Real-Time Polymerase Chain Reaction (RT-PCR), employing 40 genes related to essential metabolic routes as future candidates for biomarkers in wildlife chironomids. After 24 h, the endocrine system (E75, E93, EcR, and Met), detoxification response (GSTO3, GSTS1), and stress response (hsp75, hsp83, HYOU1) were altered. CPF seems to act as an endocrine disruptor and could lead to defective larval development, disrupted cellular homeostasis through heat shock proteins (HSPs) alteration (defective protein folding and mitochondrial functions), as well as oxidative damage (confirmed by increased GST expression). For the first time, molecular studies detected early alarm signals in wildlife in glacier environments. Our findings confirm the high environmental risk of CPF affecting aquatic insect metabolism and raise the level of concern about this pesticide in high altitude water bodies, generally considered pristine. Furthermore, this study emphasizes the incipient need to use non-model organisms for the evaluation of natural ecosystems. We also highlight the demand for research into new molecular biomarkers, and the importance of including molecular approaches in toxicology evaluations to detect the early adverse effects of pollutants.
Collapse
Affiliation(s)
- Ana-Belén Muñiz-González
- Biology and Toxicology Group, Dept. Physics, Mathematics and Fluids, UNED. Paseo Senda del Rey, 9, 28040, Madrid, Spain.
| | - Francesca Paoli
- Department of Invertebrate Zoology and Hydrobiology, MUSE-Museo delle Scienze, Corso del Lavoro e della Scienza 3, I-38122, Trento, Italy
| | - José-Luis Martínez-Guitarte
- Biology and Toxicology Group, Dept. Physics, Mathematics and Fluids, UNED. Paseo Senda del Rey, 9, 28040, Madrid, Spain
| | - Valeria Lencioni
- Department of Invertebrate Zoology and Hydrobiology, MUSE-Museo delle Scienze, Corso del Lavoro e della Scienza 3, I-38122, Trento, Italy
| |
Collapse
|
5
|
Tlili S, Mouneyrac C. New challenges of marine ecotoxicology in a global change context. MARINE POLLUTION BULLETIN 2021; 166:112242. [PMID: 33706213 DOI: 10.1016/j.marpolbul.2021.112242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 02/23/2021] [Accepted: 02/28/2021] [Indexed: 05/27/2023]
Abstract
Currently, research agenda in marine ecotoxicology is facing new challenges with the emergence of newly and complex synthetized chemicals. The study of the fate and adverse effects of toxicants remains increasingly complicated with global change events. Ecotoxicology had provided for a decades, precious scientific data and knowledge but also technical and management tools for the environmental community. Regarding those, it is necessary to update methodologies dealing with these issues such as combined effect of conventional and emergent stressors and global changes. In this point of view article, we discuss one hand the new challenges of ecotoxicology in this context, and in the other hand, the need of updating agenda and methodologies currently used in monitoring programs and finally recommendations and future research needs. Among recommendations, it could be cited the necessity to perform long-term experiments, the standardization of sentinel species and taking benefit from baseline studies and omics technologies.
Collapse
Affiliation(s)
- Sofiene Tlili
- Laboratoire Mer, Molécules, Santé (MMS, EA 2160), Université Catholique, de l'Ouest, 49000 Angers, France.
| | - Catherine Mouneyrac
- Laboratoire Mer, Molécules, Santé (MMS, EA 2160), Université Catholique, de l'Ouest, 49000 Angers, France
| |
Collapse
|
6
|
Ubaid Ur Rahman H, Asghar W, Nazir W, Sandhu MA, Ahmed A, Khalid N. A comprehensive review on chlorpyrifos toxicity with special reference to endocrine disruption: Evidence of mechanisms, exposures and mitigation strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142649. [PMID: 33059141 DOI: 10.1016/j.scitotenv.2020.142649] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/24/2020] [Accepted: 09/24/2020] [Indexed: 04/15/2023]
Abstract
Chlorpyrifos (CPF) is a broad-spectrum chlorinated organophosphate (OP) pesticide used for the control of a variety of insects and pathogens in crops, fruits, vegetables, as well as households, and various other locations. The toxicity of CPF has been associated with neurological dysfunctions, endocrine disruption, and cardiovascular diseases (CVDs). It can also induce developmental and behavioral anomalies, hematological malignancies, genotoxicity, histopathological aberrations, immunotoxicity, and oxidative stress as evidenced by animal modeling. Moreover, eye irritation and dermatological defects are also reported due to CPF toxicity. The mechanism of action of CPF involves blocking the active sites of the enzyme, acetylcholinesterase (AChE), thereby producing adverse nervous system effects. Although CPF has low persistence in the body, its active metabolites, 3,5,6-trichloro-2-pyridinol (TCP), and chlorpyrifos-oxon (CPO) are comparatively more persistent, albeit equally toxic, and thus produce serious health complications. The present review has been compiled taking into account the work related to CPF toxicity and provides a brief compilation of CPF-induced defects in animals and humans, emphasizing the abnormalities leading to endocrine disruption, neurotoxicity, reproductive carcinogenesis, and disruptive mammary gland functionality. Moreover, the clinical signs and symptoms associated with the CPF exposure along with the possible pharmacological treatment are reported in this treatise. Additionally, the effect of food processing methods in reducing CPF residues from different agricultural commodities and dietary interventions to curtail the toxicity of CPF has also been discussed.
Collapse
Affiliation(s)
- Hafiz Ubaid Ur Rahman
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore, Pakistan
| | - Waqas Asghar
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore, Pakistan
| | - Wahab Nazir
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore, Pakistan
| | - Mansur Abdullah Sandhu
- Department of Biomedical Sciences, Faculty of Veterinary & Animal Sciences, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Anwaar Ahmed
- Institute of Food and Nutrition Sciences, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Nauman Khalid
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore, Pakistan.
| |
Collapse
|
7
|
Liu L, Miao J, Pan L, Li Z, Sun Y. Characterization of sediment toxicity in Shanghai Harbor using toxicity tests and digital gene expression analysis based on clams Ruditapes phillipinarum. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 204:111065. [PMID: 32784014 DOI: 10.1016/j.ecoenv.2020.111065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/28/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
In the present study, chemical analysis of contaminants (three classes of organic pollutants and seven metals) and elutriate toxicity test were adopted to evaluate the potential environmental hazards of dredged sediment samples from five sites (SS1-5) along Huangpu River Channel (Shanghai Harbor, China). The metal Pb, Cu, Cr, Zn and the organic pollutants including total hexachlorocyclohexane (HCHs) and total dichlorodiphenyltrichloroethane (DDTs) in the five samples exceeded the threshold for effects level (TEL) to varying degrees. The probable effect concentration quotients (QPECm) of contaminants from the five dredged samples were all above 0.25, which means potential toxicity risks. Elutriate toxicity tests using medaka fish (Oryzias melastigma) and manila clam (Ruditapes philippinarum) showed that SS2 caused mortality to both species and SS1 caused mortality to fish. To explore the molecular biomarkers that may reflect the toxic effects, differential expressed genes were identified by RNA-Seq-based transcriptome profiling from the survived clams exposed to the two polluted elutriates (SS1, SS2). In clams exposed to SS1 and SS2 elutriate, 368 and 860 differential expressed genes (DEGs) were up-regulated, 199 and 1304 genes were down-regulated, respectively. Fourteen DEGs were selected from the enriched pathways that reflect cytotoxicity and responses to xenobiotics for the following quantitative real time PCR analysis. The transcriptomic profiling and the selected gene's expression patterns from clams exposed to SS1 and SS2 showed significant differences with the non-contaminated and control groups. Using the expression data of the selected gene battery in Factor Analysis allowed the discrimination between contaminated and non-contaminated sites and may reflect an influence gradient of sites. The development of the assay of these molecular biomarkers may provide a rapid and high-throughput tool for the quality assessment of the dredging sediments.
Collapse
Affiliation(s)
- Liru Liu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Jingjing Miao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China.
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Zhen Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Yawei Sun
- East China Sea Monitoring Center, State Oceanic Administration, Shanghai, 200137, PR China
| |
Collapse
|
8
|
Bellas J, Gil I. Polyethylene microplastics increase the toxicity of chlorpyrifos to the marine copepod Acartia tonsa. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:114059. [PMID: 32004970 DOI: 10.1016/j.envpol.2020.114059] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 12/18/2019] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
Ingestion of microplastics by marine organisms has been well documented, but their interaction with chemical pollutants has not been sufficiently addressed. The aim of this study was to determine the individual and combined effects of chlorpyrifos (CPF) and polyethylene microplastics (MP) on the survival, fecundity, feeding and egg viability of Acartia tonsa, a calanoid copepod widely distributed in planktonic communities. The median lethal concentration obtained for CPF was higher (LC50 = 1.34 μg/L) than for the combination with MP (LC50 = 0.37 μg/L), or CPF-loaded MP (LC50 = 0.26 μg/L). Significant effects were also observed for feeding and egg production (EC50 = 0.77 and 1.07 μg/L for CPF, 0.03 and 0.05 μg/L for CPF combined with MP, 0.18 and 0.20 μg/L for CPF-loaded MP). No significant effects were observed in the exposure to 'virgin' MP. This study confirms the role of MP as vectors of pollutants to marine organisms and supports the increased availability of certain toxicants carried out by MP. The effects observed in fitness-related responses suggest potential damage to A. tonsa populations. The comparison of the results obtained here with environmental concentrations indicates that the combined exposure to CPF and MP could constitute a risk to A. tonsa in the natural environment.
Collapse
Affiliation(s)
- Juan Bellas
- Instituto Español de Oceanografía, IEO, Centro Oceanográfico de Vigo, Subida a Radio Faro 50, 36390, Vigo, Spain.
| | - Irene Gil
- Instituto Español de Oceanografía, IEO, Centro Oceanográfico de Vigo, Subida a Radio Faro 50, 36390, Vigo, Spain
| |
Collapse
|
9
|
Shaw JP, Moore MN, Readman JW, Mou Z, Langston WJ, Lowe DM, Frickers PE, Al-Moosawi L, Pascoe C, Beesley A. Oxidative stress, lysosomal damage and dysfunctional autophagy in molluscan hepatopancreas (digestive gland) induced by chemical contaminants. MARINE ENVIRONMENTAL RESEARCH 2019; 152:104825. [PMID: 31668363 DOI: 10.1016/j.marenvres.2019.104825] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/10/2019] [Accepted: 10/13/2019] [Indexed: 06/10/2023]
Abstract
Autophagy is a highly conserved evolutionary survival or defence process that enables cells and organisms to survive periods of environmental stress by breaking down cellular organelles and macromolecules in autolysosomes to provide a supply of nutrients for cell maintenance. However, autophagy is also a part of normal cellular physiology that facilitates the turnover of cellular constituents under normal conditions: it can be readily augmented by mild environmental stress; but becomes dysfunctional with severe oxidative stress leading to cellular pathology. The molluscan hepatopancreas or digestive gland provides a versatile and environmentally relevant model to investigate lysosomal autophagy and stress-induced dysfunctional autophagy. This latter process has been implicated in many animal and human disease conditions, including degenerative and neurodegenerative diseases, as well as obesity related conditions. Many environmental pollutants have also been found to induce dysfunctional autophagy in molluscan hepatopancreatic digestive cells, and in this study, the marine blue mussel Mytilus galloprovincialis was exposed for 7 days to: 0.1 μM, 1 μM and 10 μM concentrations of fluoranthene and phenanthrene (PAHs); chlorpyrifos and malathion (organophosphorus compounds); atrazine (triazine herbicide); copper (transition metal) and dodecylbenzene sulphonic acid (LAS, surfactant). The marine snail or periwinkle, Littorina littorea, was also exposed to phenanthrene, chlorpyrifos and copper. Indices of oxidative stress, cell injury and dysfunctional autophagy were measured (i.e., lysosomal membrane stability, protein carbonyls, lipofuscin, and lysosomal accumulation of lipid or lipidosis). Evidence of oxidative stress, based on the elevation of lipofuscin and protein carbonyls, was found for all compounds tested; with chlorpyrifos being the most toxic to both species. Dysfunctional autophagy was induced by all of the compounds tested in both species, except for atrazine in mussels. This failure of normal autophagy was consistently associated with oxidative stress. Autophagic dysfunction is an important emerging feature in the aetiology of many disease conditions in animals and humans; and an explanatory conceptual mechanistic model has been developed for dysregulation of autophagy in response to oxidative stress.
Collapse
Affiliation(s)
- J P Shaw
- Plymouth Marine Laboratory, Prospect Place, the Hoe, Plymouth, Devon, PL1 3DH, UK
| | - M N Moore
- Plymouth Marine Laboratory, Prospect Place, the Hoe, Plymouth, Devon, PL1 3DH, UK; European Centre for Environment & Human Health (ECEHH), University of Exeter Medical School, Knowledge Spa, Royal Cornwall Hospital, Truro, TR1 3HD, UK; School of Biological & Marine Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK.
| | - J W Readman
- Plymouth Marine Laboratory, Prospect Place, the Hoe, Plymouth, Devon, PL1 3DH, UK; School of Biological & Marine Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK
| | - Z Mou
- Plymouth Marine Laboratory, Prospect Place, the Hoe, Plymouth, Devon, PL1 3DH, UK
| | - W J Langston
- Marine Biological Association UK, Citadel Hill, Plymouth, Devon, PL1 2PB, UK
| | - D M Lowe
- Plymouth Marine Laboratory, Prospect Place, the Hoe, Plymouth, Devon, PL1 3DH, UK
| | - P E Frickers
- Plymouth Marine Laboratory, Prospect Place, the Hoe, Plymouth, Devon, PL1 3DH, UK
| | - L Al-Moosawi
- Plymouth Marine Laboratory, Prospect Place, the Hoe, Plymouth, Devon, PL1 3DH, UK
| | - C Pascoe
- Plymouth Marine Laboratory, Prospect Place, the Hoe, Plymouth, Devon, PL1 3DH, UK
| | - A Beesley
- Plymouth Marine Laboratory, Prospect Place, the Hoe, Plymouth, Devon, PL1 3DH, UK
| |
Collapse
|
10
|
Świacka K, Maculewicz J, Smolarz K, Szaniawska A, Caban M. Mytilidae as model organisms in the marine ecotoxicology of pharmaceuticals - A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:113082. [PMID: 31472454 DOI: 10.1016/j.envpol.2019.113082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/17/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
Growing production and consumption of pharmaceuticals is a global problem. Due to insufficient data on the concentration and distribution of pharmaceuticals in the marine environment, there are no appropriate legal regulations concerning their emission. In order to understand all aspects of the fate of pharmaceuticals in the marine environment and their effect on marine biota, it is necessary to find the most appropriate model organism for this purpose. This paper presents an overview of the ecotoxicological studies of pharmaceuticals, regarding the assessment of Mytilidae as suitable organisms for biomonitoring programs and toxicity tests. The use of mussels in the monitoring of pharmaceuticals allows the observation of changes in the concentration and distribution of these compounds. This in turn gives valuable information on the amount of pharmaceutical pollutants released into the environment in different areas. In this context, information necessary for the assessment of risks related to pharmaceuticals in the marine environment are provided based on what effective management procedures can be developed. However, the accumulation capacity of individual Mytilidae species, the bioavailability of pharmaceuticals and their biological effects should be further scrutinized.
Collapse
Affiliation(s)
- Klaudia Świacka
- Department of Experimental Ecology of Marine Organisms, Institute of Oceanography, University of Gdansk, Av. Pilsudskiego 46, 81-378 Gdynia, Poland.
| | - Jakub Maculewicz
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Katarzyna Smolarz
- Department of Marine Ecosystems Functioning, Institute of Oceanography, University of Gdansk, Av. Pilsudskiego 46, 81-378 Gdynia, Poland
| | - Anna Szaniawska
- Department of Experimental Ecology of Marine Organisms, Institute of Oceanography, University of Gdansk, Av. Pilsudskiego 46, 81-378 Gdynia, Poland
| | - Magda Caban
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
11
|
Duroudier N, Markaide P, Cajaraville MP, Bilbao E. Season influences the transcriptomic effects of dietary exposure to PVP/PEI coated Ag nanoparticles on mussels Mytilus galloprovincialis. Comp Biochem Physiol C Toxicol Pharmacol 2019; 222:19-30. [PMID: 30940556 DOI: 10.1016/j.cbpc.2019.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/25/2019] [Accepted: 03/27/2019] [Indexed: 12/17/2022]
Abstract
Toxicity of AgNPs has been widely studied in waterborne exposed aquatic organisms. However, toxic effects caused by AgNPs ingested through the diet and depending on the season are still unexplored. The first cell response after exposure to xenobiotics occurs at gene transcription level. Thus, the aim of this study was to assess transcription level effects in the digestive gland of female mussels after dietary exposure to AgNPs both in autumn and in spring. Mussels were fed daily for 21 days with Isochrysis galbana microalgae previously exposed for 24 h to a dose close to environmentally relevant concentrations of 1 μg Ag/L PVP/PEI coated 5 nm AgNPs (in spring) and to a higher dose of 10 μg Ag/L of the same AgNPs both in autumn and in spring. After 1 and 21 days, mussels RNA was hybridized in a custom microarray containing 7806 annotated genes. Mussels were more responsive to the high dose compared to the low dose of AgNPs and a higher number of probes were altered in autumn than in spring. In both seasons, significantly regulated genes were involved in the cytoskeleton and lipid transport and metabolism COG categories, among others, while genes involved in carbohydrate transport and metabolism were specifically altered in autumn. Overall, transcription patterns were differently altered depending on the exposure time and season, indicating that season should be considered in ecotoxicological studies of metal nanoparticles in mussels.
Collapse
Affiliation(s)
- Nerea Duroudier
- CBET Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology, Research Centre for Experimental Marine Biology and Biotechnology PiE, University of the Basque Country (UPV/EHU), Basque Country, Spain
| | - Pablo Markaide
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Basque Country, Spain
| | - Miren P Cajaraville
- CBET Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology, Research Centre for Experimental Marine Biology and Biotechnology PiE, University of the Basque Country (UPV/EHU), Basque Country, Spain
| | - Eider Bilbao
- CBET Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology, Research Centre for Experimental Marine Biology and Biotechnology PiE, University of the Basque Country (UPV/EHU), Basque Country, Spain.
| |
Collapse
|
12
|
Balbi T, Ciacci C, Canesi L. Estrogenic compounds as exogenous modulators of physiological functions in molluscs: Signaling pathways and biological responses. Comp Biochem Physiol C Toxicol Pharmacol 2019; 222:135-144. [PMID: 31055067 DOI: 10.1016/j.cbpc.2019.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 04/30/2019] [Accepted: 05/01/2019] [Indexed: 12/21/2022]
Abstract
Molluscs have been widely utilized to evaluate the effects of estrogenic compounds, one of the most widespread classes of Endocrine Disrupting Chemicals-EDCs. However, knowledge on steroid signaling and metabolism in molluscs has considerably increased in the last decade: from these studies, a considerable debate emerged on the role of 'natural' steroids in physiology, in particular in reproduction, of this invertebrate group. In this work, available information on the effects and mechanisms of action of estrogens in molluscs will be reviewed, with particular emphasis on bivalves that, widespread in aquatic ecosystems, are most likely affected by exposure to estrogenic EDCs. Recent advances in steroid uptake and metabolism, and estrogen receptors-ERs in molluscs, as well as in estrogen signaling in vertebrates, will be considered. The results so far obtained with 17β-estradiol and different estrogenic compounds in the model bivalve Mytilus spp., demonstrate specific effects on immune function, development and metabolism. Transcriptomic data reveal non genomic estrogen signaling pathways in mussel tissues that are supported by new observations at the cellular level. In vitro and in vivo data show, through independent lines of evidence, that estrogens act through non-genomic signaling pathways in bivalves. In this light, regardless of whether molluscs synthesize estrogens de novo or not, and despite their ERs are not directly activated by ligand binding, estrogens can interact with multiple signaling components, leading to modulation of different physiological functions. Increasing knowledge in endocrine physiology of molluscs will provide a framework for a better evaluation and interpretation of data on the impact of estrogenic EDCs in this invertebrate group.
Collapse
Affiliation(s)
- Teresa Balbi
- Dept. of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| | - Caterina Ciacci
- Dept. of Biomolecular Sciences (DIBS), University 'Carlo Bo' of Urbino, Urbino, Italy
| | - Laura Canesi
- Dept. of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Genoa, Italy.
| |
Collapse
|
13
|
Revel M, Châtel A, Mouneyrac C. Omics tools: New challenges in aquatic nanotoxicology? AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 193:72-85. [PMID: 29049925 DOI: 10.1016/j.aquatox.2017.10.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 10/05/2017] [Accepted: 10/10/2017] [Indexed: 05/04/2023]
Abstract
In recent years, the implication of genomics into ecotoxicological studies has been studied closely to allow a better understanding of organism's responses to environmental contaminants including engineering nanomaterials (ENMs). ENMs are increasingly produced for various applications including cosmetics, electronics, sports equipment, biomedicine and agriculture. Because of their small size, ENMs possess chemical or physical characteristics improved compared to the corresponding macro-sized material. As their application expend, the release of manufactured ENMs into the environment is likely to increase and concern over impacts for the aquatic ecosystem is growing. Several studies reported deleterious effect of ENMs to aquatic organisms, but there is little information about the molecular mechanisms of toxicity. The development of ecotoxicogenomic approaches will improve the characterization of cellular and molecular modes of action of ENMs to aquatic organisms and allow a better prediction of contaminants toxicity. This paper presents an overview of transciptomic/proteomic studies in freshwater and marine organisms exposed to ENMs. Overall, induction of gene expression in relations to defense mechanisms, immune responses, growth and reproduction were measured after ENMs exposures of organisms, but with different patterns depending on exposure duration and concentrations used. In addition, some studies reported a positive correlation between gene expression and cellular modifications, but not at the individual level.
Collapse
Affiliation(s)
- Messika Revel
- Laboratoire Mer, Molécules, Santé (MMS, EA 2160), Université Catholique de l'Ouest, Angers F-49000, France.
| | - Amélie Châtel
- Laboratoire Mer, Molécules, Santé (MMS, EA 2160), Université Catholique de l'Ouest, Angers F-49000, France.
| | - Catherine Mouneyrac
- Laboratoire Mer, Molécules, Santé (MMS, EA 2160), Université Catholique de l'Ouest, Angers F-49000, France.
| |
Collapse
|
14
|
Beyer J, Green NW, Brooks S, Allan IJ, Ruus A, Gomes T, Bråte ILN, Schøyen M. Blue mussels (Mytilus edulis spp.) as sentinel organisms in coastal pollution monitoring: A review. MARINE ENVIRONMENTAL RESEARCH 2017; 130:338-365. [PMID: 28802590 DOI: 10.1016/j.marenvres.2017.07.024] [Citation(s) in RCA: 296] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/28/2017] [Accepted: 07/31/2017] [Indexed: 05/16/2023]
Abstract
The blue mussel (Mytilus spp.) is widely used as a bioindicator for monitoring of coastal water pollution (mussel watch programs). Herein we provide a review of this study field with emphasis on: the suitability of Mytilus spp. as environmental sentinels; uptake and bioaccumulation patterns of key pollutant classes; the use of Mytilus spp. in mussel watch programs; recent trends in Norwegian mussel monitoring; environmental quality standards and background concentrations of key contaminants; pollutant effect biomarkers; confounding factors; particulate contaminants (microplastics, engineered nanomaterials); climate change; harmonization of monitoring procedures; and the use of deployed mussels (transplant caging) in pollution monitoring. Lastly, the overall state of the art of blue mussel pollution monitoring is discussed and some important issues for future research and development are highlighted.
Collapse
Affiliation(s)
- Jonny Beyer
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349, Oslo, Norway.
| | - Norman W Green
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349, Oslo, Norway
| | - Steven Brooks
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349, Oslo, Norway
| | - Ian J Allan
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349, Oslo, Norway
| | - Anders Ruus
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349, Oslo, Norway; University of Oslo, Department of Biosciences, NO-0316, Oslo, Norway
| | - Tânia Gomes
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349, Oslo, Norway
| | - Inger Lise N Bråte
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349, Oslo, Norway
| | - Merete Schøyen
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349, Oslo, Norway
| |
Collapse
|
15
|
Burgos-Aceves MA, Faggio C. An approach to the study of the immunity functions of bivalve haemocytes: Physiology and molecular aspects. FISH & SHELLFISH IMMUNOLOGY 2017; 67:513-517. [PMID: 28625873 DOI: 10.1016/j.fsi.2017.06.042] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/12/2017] [Accepted: 06/15/2017] [Indexed: 05/19/2023]
Abstract
The Mediterranean mussel Mytilus galloprovincialis is an ecologically and economically important species. It has been used in programs of monitoring of pollution, since it is sessile organism that is capable of accumulating pollutants in tissues through filter feeding. Due to an increase of pollutants in the environment, marine mussels present physiological alterations that compromise their innate immune system, which can latter lead to opportunistic diseases. The haemocytes are the cells in charge of the immune response in the Mediterranean mussel and in other mollusks. In this review, we summarize the physiological and genetic response capacity of these immune cells to the presence of xenobiotics, pathogens and the interplay. The identification of the basic mechanisms of immunity and their modulation in mussels can give important information for the possible utilization of this species as an invertebrate model for studies on innate immunity, future immunotoxicological studies, and predict changes in the community for the future.
Collapse
Affiliation(s)
- Mario Alberto Burgos-Aceves
- Centro de Investigaciones Biológicas de Noroeste, S.C., Mar Bermejo 195, Col. Playa Palo de Sta. Rita, La Paz, BCS 23090, Mexico
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres, 31, 98166 Messina, Italy.
| |
Collapse
|
16
|
Banni M, Sforzini S, Arlt VM, Barranger A, Dallas LJ, Oliveri C, Aminot Y, Pacchioni B, Millino C, Lanfranchi G, Readman JW, Moore MN, Viarengo A, Jha AN. Assessing the impact of Benzo[a]pyrene on Marine Mussels: Application of a novel targeted low density microarray complementing classical biomarker responses. PLoS One 2017. [PMID: 28651000 PMCID: PMC5484464 DOI: 10.1371/journal.pone.0178460] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Despite the increasing use of mussels in environmental monitoring and ecotoxicological studies, their genomes and gene functions have not been thoroughly explored. Several cDNA microarrays were recently proposed for Mytilus spp., but putatively identified partial transcripts have rendered the generation of robust transcriptional responses difficult in terms of pathway identification. We developed a new low density oligonucleotide microarray with 465 probes covering the same number of genes. Target genes were selected to cover most of the well-known biological processes in the stress response documented over the last decade in bivalve species at the cellular and tissue levels. Our new ‘STressREsponse Microarray’ (STREM) platform consists of eight sub-arrays with three replicates for each target in each sub-array. To assess the potential use of the new array, we tested the effect of the ubiquitous environmental pollutant benzo[a]pyrene (B[a]P) at 5, 50, and 100 μg/L on two target tissues, the gills and digestive gland, of Mytilus galloprovincialis exposed invivo for three days. Bioaccumulation of B[a]P was also determined demonstrating exposure in both tissues. In addition to the well-known effects of B[a]P on DNA metabolism and oxidative stress, the new array data provided clues about the implication of other biological processes, such as cytoskeleton, immune response, adhesion to substrate, and mitochondrial activities. Transcriptional data were confirmed using qRT-PCR. We further investigated cellular functions and possible alterations related to biological processes highlighted by the microarray data using oxidative stress biomarkers (Lipofuscin content) and the assessment of genotoxicity. DNA damage, as measured by the alkaline comet assay, increased as a function of dose.DNA adducts measurements using 32P-postlabeling method also showed the presence of bulky DNA adducts (i.e. dG-N2-BPDE). Lipofiscin content increased significantly in B[a]P exposed mussels. Immunohistochemical analysis of tubulin and actin showed changes in cytoskeleton organisation. Our results adopting an integrated approach confirmed that the combination of newly developed transcriptomic approcah, classical biomarkers along with chemical analysis of water and tissue samples should be considered for environmental bioimonitoring and ecotoxicological studies to obtain holistic information to assess the impact of contaminants on the biota.
Collapse
Affiliation(s)
- Mohamed Banni
- Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale "A. Avogadro", Alessandria, Italy
- Laboratory of Biochemistry and Environmental Toxicology, ISA chott-Mariem, Sousse University, Sousse, Tunisia
- * E-mail: (MB); (ANJ)
| | - Susanna Sforzini
- Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale "A. Avogadro", Alessandria, Italy
| | - Volker M. Arlt
- Analytical and Environmental Sciences Division, King's College London, MRC-PHE Centre for Environmental & Health, London, United Kingdom
- NIHR Health Protection Research Unit in Health Impact of Environmental Hazards at King’s College London in partnership with Public Health England, London, United Kingdom
| | - Audrey Barranger
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, United Kingdom
| | - Lorna J. Dallas
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, United Kingdom
| | - Caterina Oliveri
- Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale "A. Avogadro", Alessandria, Italy
| | - Yann Aminot
- Centre for Chemical Sciences, University of Plymouth, Plymouth, United Kingdom
| | | | | | | | - James W. Readman
- Centre for Chemical Sciences, University of Plymouth, Plymouth, United Kingdom
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, United Kingdom
| | - Michael N. Moore
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, United Kingdom
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, United Kingdom
- European Centre for Environment & Human Health (ECEHH), University of Exeter Medical School, Knowledge Spa, Royal Cornwall Hospital, Truro, Cornwall, United Kingdom
| | - Aldo Viarengo
- Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale "A. Avogadro", Alessandria, Italy
| | - Awadhesh N. Jha
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, United Kingdom
- * E-mail: (MB); (ANJ)
| |
Collapse
|
17
|
Yurdakök-Dikmen B, Arslan P, Kuzukıran Ö, Filazi A, Erkoç F. Unio sp. primary cell culture potential in ecotoxicology research. TOXIN REV 2017. [DOI: 10.1080/15569543.2017.1331360] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Begüm Yurdakök-Dikmen
- Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Ankara University, Ankara, Turkey,
| | - Pınar Arslan
- Faculty of Science, Department of Biology, Ankara University, Ankara, Turkey,
| | - Özgür Kuzukıran
- Etlik Veterinary Control Central Research Institute, Ankara, Turkey, and
| | - Ayhan Filazi
- Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Ankara University, Ankara, Turkey,
| | - Figen Erkoç
- Gazi Faculty of Education, Department of Biology Education, Gazi University, Ankara, Turkey
| |
Collapse
|
18
|
Cocci P, Capriotti M, Mosconi G, Palermo FA. Transcriptional variations in biomarkers of Mytilus galloprovincialis sampled from Central Adriatic coastal waters (Marche region, Italy). Biomarkers 2017; 22:537-547. [DOI: 10.1080/1354750x.2017.1315614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Paolo Cocci
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Martina Capriotti
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Gilberto Mosconi
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | | |
Collapse
|
19
|
Boukadida K, Cachot J, Clérandeaux C, Gourves PY, Banni M. Early and efficient induction of antioxidant defense system in Mytilus galloprovincialis embryos exposed to metals and heat stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 138:105-112. [PMID: 28033516 DOI: 10.1016/j.ecoenv.2016.12.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 12/12/2016] [Accepted: 12/16/2016] [Indexed: 06/06/2023]
Abstract
UNLABELLED The present study aims to elucidate the stress response of early life stages of Mytilus galloprovincialis to the combine effects of selected metals and elevated temperature. For this purpose, we investigated the response of a large panel of oxidative stress markers such as catalase (CAT), superoxide dismutase (SOD), glutathione-S-transferase (GST) activities and lipid peroxidation (thiobarbituric acid reactive substrates (TBARS) concentration) and metallothionein accumulation (MT) as well as selected gene transcription level and metal accumulation in mussels larvae exposed to a sub-lethal concentration of Cu (9.54µg/L), Ag (2.55µg/L) and mixture of the two metals (Cu (6.67µg/L)+Ag (1.47µg/L)) along with a temperature gradient (18, 20 and 22°C) for 48h. Cu and Ag applied as single or mixture were differentially accumulated in mussel larvae according to the exposure temperature. Sod, cat, gst and mt-10 gene transcription levels showed an important increase in larvae exposed to Cu, Ag or to the mix compared to the control condition at 18°C. The same pattern but with higher induction levels was recorded in larvae co-exposed to metals at 20°C. At 22°C, a significant decrease in mRNA abundance of cat, gst and sod and a significant up-regulation of mts targets (mt10 and mt20) were observed. RESULTS suggest that co-exposure to metals and moderate elevated temperature (20 and 22°C) significantly increased the antioxidant enzyme activities of catalase (CAT), and glutathione-S-transferase (GST) and caused an increase of metal and metallothionein concentrations. In contrast, no significant change in lipid peroxidation products measured as TBARS content was observed indicating a protective response of anti-oxidative system. This study provides first evidences of the early and efficient protective response of antioxidant defense mechanisms in mussel's early life stages facing in multi stressors situations.
Collapse
Affiliation(s)
- Khouloud Boukadida
- Laboratory of Biochemistry and Environmental Toxicology, ISA, Chott-Mariem, 4042, Sousse, Tunisia; University Bordeaux I, Laboratory of Oceanic and Continental Environments and Paleoenvironments, EPOC, UMR 5805, F-33400, Talence, France
| | - Jérôme Cachot
- University Bordeaux I, Laboratory of Oceanic and Continental Environments and Paleoenvironments, EPOC, UMR 5805, F-33400, Talence, France
| | - Christelle Clérandeaux
- University Bordeaux I, Laboratory of Oceanic and Continental Environments and Paleoenvironments, EPOC, UMR 5805, F-33400, Talence, France
| | - Pierre-Yves Gourves
- University Bordeaux I, Laboratory of Oceanic and Continental Environments and Paleoenvironments, EPOC, UMR 5805, F-33400, Talence, France
| | - Mohamed Banni
- Laboratory of Biochemistry and Environmental Toxicology, ISA, Chott-Mariem, 4042, Sousse, Tunisia; Department of Environmental and Life Sciences, University of Piemonte Orientale Amedeo Avogadro, Via Bellini 25 G, 15100, Alessandria, Italy.
| |
Collapse
|
20
|
Balbi T, Ciacci C, Grasselli E, Smerilli A, Voci A, Canesi L. Utilization of Mytilus digestive gland cells for the in vitro screening of potential metabolic disruptors in aquatic invertebrates. Comp Biochem Physiol C Toxicol Pharmacol 2017; 191:26-35. [PMID: 27626137 DOI: 10.1016/j.cbpc.2016.08.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 08/30/2016] [Accepted: 08/30/2016] [Indexed: 12/31/2022]
Abstract
In vertebrate systems, many endocrine disruptors (EDs) can also interfere with energy and lipid metabolism, thus acting as metabolic disruptors. At the cellular level, these effects are mainly mediated by interactions with nuclear receptors/transcription factors, leading to the modulation of genes involved in lipid homeostasis, as well as by rapid, receptor-independent pathways. Several potential metabolic disruptors are found in aquatic environments. In fish, different EDs have been shown to affect hepatic lipid homeostasis both in vivo and in vitro. However, little information is available in aquatic invertebrates due to our poor knowledge of the regulatory pathways of lipid metabolism. In this work, primary cell cultures from the digestive gland of the bivalve Mytilus galloprovincialis were utilized to investigate the effects of model EDs (bisphenol A (BPA) and perfluorooctane sulphonate (PFOS)) on lipid homeostasis. Both compounds (at 24 and 3h of exposure) increased intracellular lipid and tryglyceride-TAG content, with strongest effects of PFOS at 10-7M. Acyl-CoA oxidase activity was unaffected, whereas some changes in the activity of glycolytic, antioxidant/biotransformation enzymes were observed; however, no clear relationship was found with lipid accumulation. Evaluation of mitochondrial membrane potential Δψm and determination of extracellular TAG content indicate that PFOS interferes with mitochondrial function and lipid secretion, whereas BPA mainly affects lipid secretion. Experiments with specific inhibitors showed that activation of PI-3 kinase and extracellularly regulated mitogen-activated protein kinase (ERK MAPK) plays a key role in mediating lipid accumulation. Mussel digestive gland cells represent a simple in vitro model for screening the metabolic effects of EDs in marine invertebrates.
Collapse
Affiliation(s)
- Teresa Balbi
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Corso Europa 26, 16132 Genova, Italy
| | - Caterina Ciacci
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Corso Europa 26, 16132 Genova, Italy
| | - Elena Grasselli
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Corso Europa 26, 16132 Genova, Italy
| | - Arianna Smerilli
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Corso Europa 26, 16132 Genova, Italy
| | - Adriana Voci
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Corso Europa 26, 16132 Genova, Italy
| | - Laura Canesi
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Corso Europa 26, 16132 Genova, Italy.
| |
Collapse
|
21
|
Balbi T, Franzellitti S, Fabbri R, Montagna M, Fabbri E, Canesi L. Impact of bisphenol A (BPA) on early embryo development in the marine mussel Mytilus galloprovincialis: Effects on gene transcription. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 218:996-1004. [PMID: 27569056 DOI: 10.1016/j.envpol.2016.08.050] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/18/2016] [Accepted: 08/21/2016] [Indexed: 05/20/2023]
Abstract
Bisphenol A (BPA), a monomer used in plastic manufacturing, is weakly estrogenic and a potential endocrine disruptor in mammals. Although it degrades quickly, it is pseudo-persistent in the environment because of continual inputs, with reported concentrations in aquatic environments between 0.0005 and 12 μg/L. BPA represents a potential concern for aquatic ecosystems, as shown by its reproductive and developmental effects in aquatic vertebrates. In invertebrates, endocrine-related effects of BPA were observed in different species and experimental conditions, with often conflicting results, indicating that the sensitivity to this compound can vary considerably among related taxa. In the marine mussel Mytilus galloprovincialis BPA was recently shown to affect early development at environmental concentrations. In this work, the possible effects of BPA on mussel embryos were investigated at the molecular level by evaluating transcription of 13 genes, selected on the basis of their biological functions in adult mussels. Gene expression was first evaluated in trocophorae and D-veligers (24 and 48 h post fertilization) grown in physiological conditions, in comparison with unfertilized eggs. Basal expressions showed a general up-regulation during development, with distinct transcript levels in trocophorae and D-veligers. Exposure of fertilized eggs to BPA (10 μg/L) induced a general upregulation at 24 h pf, followed by down regulation at 48 h pf. Mytilus Estrogen Receptors, serotonin receptor and genes involved in biomineralization (Carbonic Anydrase and Extrapallial Protein) were the most affected by BPA exposure. At 48 h pf, changes in gene expression were associated with irregularities in shell formation, as shown by scanning electron microscopy (SEM), indicating that the formation of the first shelled embryo, a key step in mussel development, represents a sensitive target for BPA. Similar results were obtained with the natural estrogen 17β-estradiol. The results demonstrate that BPA and E2 can affect Mytilus early development through dysregulation of gene transcription.
Collapse
Affiliation(s)
- Teresa Balbi
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Corso Europa 26, 16132, Genova, Italy
| | - Silvia Franzellitti
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Campus of Ravenna, via S. Alberto 163, 48123 Ravenna, Italy
| | - Rita Fabbri
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Corso Europa 26, 16132, Genova, Italy
| | - Michele Montagna
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Corso Europa 26, 16132, Genova, Italy
| | - Elena Fabbri
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Campus of Ravenna, via S. Alberto 163, 48123 Ravenna, Italy.
| | - Laura Canesi
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Corso Europa 26, 16132, Genova, Italy
| |
Collapse
|
22
|
Maria VL, Amorim MJB, Bebianno MJ, Dondero F. Transcriptomic effects of the non-steroidal anti-inflammatory drug Ibuprofen in the marine bivalve Mytilus galloprovincialis Lam. MARINE ENVIRONMENTAL RESEARCH 2016; 119:31-39. [PMID: 27209120 DOI: 10.1016/j.marenvres.2016.05.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 05/04/2016] [Accepted: 05/05/2016] [Indexed: 06/05/2023]
Abstract
The transcriptomic effects of Ibuprofen (IBU) in the digestive gland tissue of Mytilus galloprovincialis Lam. specimens exposed at low environmental concentrations (250 ng L(-1)) are presented. Using a 1.7 K feature cDNA microarray along with linear models and empirical Bayes statistical methods 225 differentially expressed genes were identified in mussels treated with IBU across a 15-day period. Transcriptional dynamics were typical of an adaptive response with a peak of gene expression change at day-7 (177 features, representing about 11% of sequences available for analysis) and an almost full recovery at the end of the exposure period. Functional genomics by means of Gene Ontology term analysis unraveled typical mussel stress responses i.e. aminoglycan (chitin) metabolic processes but also more specific effects such as the regulation of NF-κB transcription factor activity.
Collapse
Affiliation(s)
- Vera L Maria
- CIMA, Faculty of Science and Technology, University of Algarve, 8005-139 Faro, Portugal; CESAM, Department of Biology, University of Aveiro, 3830-169 Aveiro, Portugal
| | - Mónica J B Amorim
- CESAM, Department of Biology, University of Aveiro, 3830-169 Aveiro, Portugal
| | - Maria João Bebianno
- CIMA, Faculty of Science and Technology, University of Algarve, 8005-139 Faro, Portugal
| | - Francesco Dondero
- Department of Science and Technological Innovation (DISIT), Università del Piemonte Orientale Amedeo Avogadro, 15121 Alessandria, Italy.
| |
Collapse
|
23
|
Ricciardi KL, Poynton HC, Duphily BJ, Blalock BJ, Robinson WE. Bioconcentration and depuration of (14)C-labeled 17α-ethinyl estradiol and 4-nonylphenol in individual organs of the marine bivalve Mytilus edulis L. . ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:863-873. [PMID: 26126666 DOI: 10.1002/etc.3137] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 05/13/2015] [Accepted: 06/26/2015] [Indexed: 06/04/2023]
Abstract
Endocrine-disrupting compounds (EDCs), including 17α-ethinyl estradiol (EE2) and 4-nonylphenol (4-NP), enter coastal environments primarily in effluents of wastewater treatment facilities and have become ubiquitous in marine surface waters, sediments, and biota. Although EE2 and 4-NP have been detected in marine shellfish, the kinetics of bioconcentration and their tissue distribution have not been thoroughly investigated. The authors performed bioconcentration and depuration experiments in the blue mussel, Mytilus edulis, with 3.37 nM EE2 (0.999 μg/L) and 454 nM 4-NP (100.138 µg/L). Mussels and seawater were sampled throughout a 38-d exposure and a 35-d depuration period, and 6 tissues were individually assayed. Uptake of EE2 and 4-NP was curvilinear throughout exposure and followed a similar uptake pattern: digestive gland > gill ≥ remaining viscera > gonad > adductor > plasma. Depuration varied, however, with half-lives ranging from 2.7 d (plasma) to 92 d (gill) for EE2 and 15 d (plasma) to 57 d (gill) for 4-NP. An innovative modeling approach, with 3 coupled mathematical models, was developed to differentiate the unique roles of the gill and plasma in distributing the EDCs to internal tissues. Plasma appears pivotal in regulating EDC uptake and depuration within the whole mussel.
Collapse
Affiliation(s)
- Karen L Ricciardi
- The School for the Environment, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Helen C Poynton
- The School for the Environment, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Brian J Duphily
- The School for the Environment, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Bonnie J Blalock
- The School for the Environment, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - William E Robinson
- The School for the Environment, University of Massachusetts Boston, Boston, Massachusetts, USA
| |
Collapse
|
24
|
Banni M, Sforzini S, Balbi T, Corsi I, Viarengo A, Canesi L. Combined effects of n-TiO2 and 2,3,7,8-TCDD in Mytilus galloprovincialis digestive gland: A transcriptomic and immunohistochemical study. ENVIRONMENTAL RESEARCH 2016; 145:135-144. [PMID: 26687187 DOI: 10.1016/j.envres.2015.12.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/01/2015] [Accepted: 12/04/2015] [Indexed: 06/05/2023]
Abstract
Despite the growing concern over the potential biological impact of nanoparticles (NPs) in the aquatic environment, little is known about their interactions with other pollutants. In the marine mussel Mytilus galloprovincialis, exposure to nanosized titanium dioxide (n-TiO2), one of the most widespread type of NPs in use, in combination with and 2,3,7,8-tetrachlorodibenzo-p-dioxins (TCDD), chosen as model organic xenobiotic, was shown to induce significant changes in different biomarkers in hemocytes, gills and digestive gland, with distinct effects depending on cell/tissue and type of response measured. In this work, the interactive effects of n-TiO2 and TCDD at the tissue level were further investigated in mussel digestive gland using an integrated approach transcriptomics/immunohistochemistry. Mussels were exposed to n-TiO2 (100μgL(-1)) and TCDD (0.25μgL(-1)), alone and in combination, for 96h. Transcriptomic analysis identified 48-, 49- and 62 Differentially Expressed Genes (DEGs) in response to n-TiO2, TCDD and n-TiO2/TCDD, respectively. Gene Ontology (GO) term analysis revealed distinct biological processes affected in different experimental conditions. n-TiO2 mainly up-regulated cytoskeletal genes, while TCDD up-regulated endocrine and signal transduction related processes. Co-exposure induced transcriptional changes common to individual treatments, and identified a newly generated process, response to chemical stimulus. Transcription of selected genes was verified by qPCR. Moreover, expression of tubulin, as an example of target protein of interest identified by gene transcription data, was evaluated in tissue sections by immunolabelling. Tissue TCDD accumulation was evaluated by immunofluorescence with an anti-dioxins antibody. The results demonstrate both distinct and interactive effects of n-TiO2 and TCDD in mussel digestive gland at the molecular and tissue level, identify the main molecular targets involved, and underline how exposure to the n-TiO2/TCDD mixture does not result in increased TCDD accumulation and overall stressful conditions in the tissue. These represent the first data on transcriptional responses of marine invertebrates to exposure not only to n-TiO2 as a model of NP, but also to a legacy contaminant like TCDD.
Collapse
Affiliation(s)
- Mohamed Banni
- Laboratory of Biochemistry and Environmental Toxicology, ISA, Chott-Mariem, Sousse, Tunisia
| | - Susanna Sforzini
- Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale "A. Avogadro", Alessandria, Italy
| | - Teresa Balbi
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa Corso Europa 26, 16132 Genoa, Italy
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences (DSFTA), University of Siena, Italy
| | - Aldo Viarengo
- Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale "A. Avogadro", Alessandria, Italy
| | - Laura Canesi
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa Corso Europa 26, 16132 Genoa, Italy.
| |
Collapse
|
25
|
Dallas LJ, Jha AN. Applications of biological tools or biomarkers in aquatic biota: A case study of the Tamar estuary, South West England. MARINE POLLUTION BULLETIN 2015; 95:618-633. [PMID: 25817310 DOI: 10.1016/j.marpolbul.2015.03.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 02/15/2015] [Accepted: 03/09/2015] [Indexed: 06/04/2023]
Abstract
Biological systems are the ultimate recipients of pollutant-induced damage. Consequently, our traditional reliance on analytical tools is not enough to assess ecosystem health. Biological responses or biomarkers are therefore also considered to be important tools for environmental hazard and risk assessments. Due to historical mining, other anthropogenic activities, and its conservational importance (e.g. NATURA sites, SACs), the Tamar estuary in South West England is an ideal environment in which to examine applications of such biological tools. This review presents a thorough and critical evaluation of the different biological tools used in the Tamar estuary thus far, while also discussing future perspectives for biomarker studies from a global perspective. In particular, we focus on the challenges which hinder applications of biological tools from being more readily incorporated into regulatory frameworks, with the aim of enabling both policymakers and primary stakeholders to maximise the environmental relevance and regulatory usefulness of such tools.
Collapse
Affiliation(s)
- Lorna J Dallas
- School of Biological Sciences, Plymouth University, Drake Circus, Plymouth PL4 8AA, UK
| | - Awadhesh N Jha
- School of Biological Sciences, Plymouth University, Drake Circus, Plymouth PL4 8AA, UK.
| |
Collapse
|
26
|
Banni M, Sforzini S, Franzellitti S, Oliveri C, Viarengo A, Fabbri E. Molecular and Cellular Effects Induced in Mytilus galloprovincialis Treated with Oxytetracycline at Different Temperatures. PLoS One 2015; 10:e0128468. [PMID: 26067465 PMCID: PMC4466256 DOI: 10.1371/journal.pone.0128468] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 04/27/2015] [Indexed: 11/17/2022] Open
Abstract
The present study evaluated the interactive effects of temperature (16°C and 24°C) and a 4-day treatment with the antibiotic oxytetracycline (OTC) at 1 and 100 μg/L on cellular and molecular parameters in the mussel Mytilus galloprovincialis. Lysosomal membrane stability (LMS), a sensitive biomarker of impaired health status in this organism, was assessed in the digestive glands. In addition, oxidative stress markers and the expression of mRNAs encoding proteins involved in antioxidant defense (catalase (cat) and glutathione-S-transferase (gst)) and the heat shock response (hsp90, hsp70, and hsp27) were evaluated in the gills, the target tissue of soluble chemicals. Finally, cAMP levels, which represent an important cell signaling pathway related to oxidative stress and the response to temperature challenges, were also determined in the gills. Exposure to heat stress as well as to OTC rendered a decrease in LMS and an increase in malonedialdehyde accumulation (MDA). CAT activity was not significantly modified, whereas GST activity decreased at 24°C. Cat and gst expression levels were reduced in animals kept at 24°C compared to 16°C in the presence or absence of OTC. At 16°C, treatment with OTC caused a significant increase in cat and gst transcript levels. Hsp27 mRNA was significantly up-regulated at all conditions compared to controls at 16°C. cAMP levels were increased at 24°C independent of the presence of OTC. PCA analysis showed that 37.21% and 25.89% of the total variance was explained by temperature and OTC treatment, respectively. Interestingly, a clear interaction was observed in animals exposed to both stressors increasing LMS and MDA accumulation and reducing hsp27 gene expression regulation. These interactions may suggest a risk for the organisms due to temperature increases in contaminated seawaters.
Collapse
Affiliation(s)
- Mohamed Banni
- Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale "A. Avogadro", V.le T. Michel 11, 15121, Alessandria, Italy; Laboratory of Biochemistry and Environmental Toxicology, ISA, Chott-Mariem, 4042, Sousse, Tunisia
| | - Susanna Sforzini
- Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale "A. Avogadro", V.le T. Michel 11, 15121, Alessandria, Italy
| | - Silvia Franzellitti
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via Selmi 3, 40100, Bologna, Italy; Interdepartment Centre for Environmental Science Research, University of Bologna, via S. Alberto 163, 48123, Ravenna, Italy
| | - Caterina Oliveri
- Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale "A. Avogadro", V.le T. Michel 11, 15121, Alessandria, Italy
| | - Aldo Viarengo
- Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale "A. Avogadro", V.le T. Michel 11, 15121, Alessandria, Italy
| | - Elena Fabbri
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via Selmi 3, 40100, Bologna, Italy; Interdepartment Centre for Environmental Science Research, University of Bologna, via S. Alberto 163, 48123, Ravenna, Italy
| |
Collapse
|
27
|
Poynton HC, Robinson WE, Blalock BJ, Hannigan RE. Correlation of transcriptomic responses and metal bioaccumulation in Mytilus edulis L. reveals early indicators of stress. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 155:129-141. [PMID: 25016106 DOI: 10.1016/j.aquatox.2014.06.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 06/23/2014] [Accepted: 06/24/2014] [Indexed: 06/03/2023]
Abstract
Marine biomonitoring programs in the U.S. and Europe have historically relied on monitoring tissue concentrations of bivalves to monitor contaminant levels and ecosystem health. By integrating 'omic methods with these tissue residue approaches we can uncover mechanistic insight to link tissue concentrations to potential toxic effects. In an effort to identify novel biomarkers and better understand the molecular toxicology of metal bioaccumulation in bivalves, we exposed the blue mussel, Mytilus edulis L., to sub-lethal concentrations (0.54 μM) of cadmium, lead, and a Cd+Pb mixture. Metal concentrations were measured in gill tissues at 1, 2, and 4 weeks, and increased linearly over the 4 week duration. In addition, there was evidence that Pb interfered with Cd uptake in the mixture treatment. Using a 3025 sequence microarray for M. edulis, we performed transcriptomic analysis, identifying 57 differentially expressed sequences. Hierarchical clustering of these sequences successfully distinguished the different treatment groups demonstrating that the expression profiles were reproducible among the treatments. Enrichment analysis of gene ontology terms identified several biological processes that were perturbed by the treatments, including nucleoside phosphate biosynthetic processes, mRNA metabolic processes, and response to stress. To identify transcripts whose expression level correlated with metal bioaccumulation, we performed Pearson correlation analysis. Several transcripts correlated with gill metal concentrations including mt10, mt20, and contig 48, an unknown transcript containing a wsc domain. In addition, three transcripts directly involved in the unfolded protein response (UPR) were induced in the metal treatments at 2 weeks and were further up-regulated at 4 weeks. Overall, correlation of tissue concentrations and gene expression responses indicates that as mussels accumulate higher concentrations of metals, initial stress responses are mobilized to protect tissues. However, given the role of UPR in apoptosis, it serves as an early indicator of stress, which once overwhelmed will result in adverse physiological effects.
Collapse
Affiliation(s)
- Helen C Poynton
- School for the Environment, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, United States.
| | - William E Robinson
- School for the Environment, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, United States
| | - Bonnie J Blalock
- School for the Environment, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, United States
| | - Robyn E Hannigan
- School for the Environment, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, United States
| |
Collapse
|
28
|
Leonard JA, Cope WG, Barnhart MC, Bringolf RB. Metabolomic, behavioral, and reproductive effects of the aromatase inhibitor fadrozole hydrochloride on the unionid mussel Lampsilis fasciola. Gen Comp Endocrinol 2014; 206:213-26. [PMID: 25072892 DOI: 10.1016/j.ygcen.2014.07.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 07/12/2014] [Accepted: 07/21/2014] [Indexed: 01/15/2023]
Abstract
Androgen-induced masculinization of female aquatic biota poses concerns for natural population stability. This research evaluated the effects of a twelve day exposure of fadrozole hydrochloride on the metabolism and reproductive status of the unionid mussel Lampsilis fasciola. Although this compound is not considered to be widespread in the aquatic environment, it was selected as a model aromatase (enzyme that converts testosterone to estradiol) inhibitor. Adult mussels were exposed to a control and 3 concentrations of fadrozole (2μg/L, 20μg/L, and 50μg/L), and samples of gill tissue were taken on days 4 and 12 for metabolomics analysis. Gills were used because of the variety of critical processes they mediate, such as feeding, ion exchange, and siphoning. Daily observed mussel behavior included female mantle display, foot protrusion, siphoning, and larval (glochidia) releases. Glochidia mortality was significantly higher in the 20μg/L treatment. Fewer conglutinate (packets of glochidia) releases were observed in the 50μg/L treatment, and mortality was highly correlated to release numbers. Foot protrusion was significantly higher in females in nearly all treatments, including the control, during the first 4days of observations. However, this sex difference was observed only in the 50μg/L treatment during the last 8days. Generally, metabolites were significantly altered in female gill tissue in the 2μg/L treatment whereas males were mostly affected only at the highest (50μg/L) treatment. Both sexes also revealed significant reductions in fadrozole-induced metabolic effects in gill tissue sampled after 12days compared to tissue sampled after 4days, indicating time-dependent mechanisms of disruptions in metabolic pathways and homeostatic processes to compensate for such disruptions.
Collapse
Affiliation(s)
- Jeremy A Leonard
- Department of Applied Ecology, Box 7617, North Carolina State University, Raleigh, NC 27695, United States.
| | - W Gregory Cope
- Department of Applied Ecology, Box 7617, North Carolina State University, Raleigh, NC 27695, United States
| | - M Christopher Barnhart
- Department of Biology, 901 South Avenue, Missouri State University, Springfield, MO 65897, United States
| | - Robert B Bringolf
- Warnell School of Forestry and Natural Resources, University of Georgia, 180 East Green Street, Athens, GA 30602, United States
| |
Collapse
|
29
|
Moro I, Matozzo V, Piovan A, Moschin E, Vecchia FD. Morpho-physiological effects of ibuprofen on Scenedesmus rubescens. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 38:379-387. [PMID: 25128768 DOI: 10.1016/j.etap.2014.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 06/09/2014] [Accepted: 06/15/2014] [Indexed: 06/03/2023]
Abstract
The pollution of aquatic bodies by drugs is an emerging environmental problem, because of their extensive use in animal and human context. Ibuprofen, 2-[4-(2-methylpropyl)phenyl]propanoic acid, is the non-steroidal anti-inflammatory drug mainly present both in wastewater and in rivers and lakes in Europe. Since in literature there is little information about the effects of ibuprofen on microalgae, in this paper we presented the results on the effects of this molecule at different concentrations (62.5μgL(-1), 250μgL(-1) and 1000μgL(-1)) on cultures of the freshwater microalga Scenedesmus rubescens (P.J.L. Dangeard) E. Kesslet et al. Ibuprofen effects on the alga were assayed at first through analyses of the growth curve. Moreover, analyses of cell morphology, ultrastructure, and photosynthetic pigments were additionally performed. The first negative effect of the drug was on the microalga growth, suggesting a drug action dose-dependent mechanism type, more evident at the concentration of 1000μgL(-1) ibuprofen and in the last phase of the growth curve. In support of this, following ibuprofen exposure, the cells exhibited morphological and ultrastructural alterations, mainly consisting in large cytoplasmic inclusions, probably of lipids and/or carotenoids. The decrease of chlorophyll amounts and, on the contrary, the increase of carotenoids were correlated with a stressful condition induced by drug.
Collapse
Affiliation(s)
- Isabella Moro
- Department of Biology, University of Padova, via Ugo Bassi, 58/B, 35131 Padova, Italy
| | - Valerio Matozzo
- Department of Biology, University of Padova, via Ugo Bassi, 58/B, 35131 Padova, Italy
| | - Anna Piovan
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131 Padova, Italy
| | - Emanuela Moschin
- Department of Biology, University of Padova, via Ugo Bassi, 58/B, 35131 Padova, Italy
| | | |
Collapse
|
30
|
Lu MX, Jiang WW, Wang JL, Jian Q, Shen Y, Liu XJ, Yu XY. Persistence and dissipation of chlorpyrifos in Brassica chinensis, lettuce, celery, asparagus lettuce, eggplant, and pepper in a greenhouse. PLoS One 2014; 9:e100556. [PMID: 24967589 PMCID: PMC4072623 DOI: 10.1371/journal.pone.0100556] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 05/25/2014] [Indexed: 11/18/2022] Open
Abstract
The residue behavior of chlorpyrifos, which is one of the extensively used insecticides all around the world, in six vegetable crops was assessed under greenhouse conditions. Each of the vegetables was subjected to a foliar treatment with chlorpyrifos. Two analytical methods were developed using gas chromatography equipped with a micro-ECD detector (LOQ = 0.05 mg kg(-1)) and liquid chromatography with a tandem mass spectrometry (LOQ = 0.01 mg kg(-1)). The initial foliar deposited concentration of chlorpyrifos (mg kg(-1)) on the six vegetables followed the increasing order of brassica chinensis
Collapse
Affiliation(s)
- Meng-Xiao Lu
- Pesticide Biology and Ecology Research Center, Nanjing, Jiangsu, China
- Key Laboratory of Food Safety Monitoring and Management of Ministry of Agriculture, Nanjing, Jiangsu, China
| | - Wayne W. Jiang
- Department of Entomology, Michigan State University, East Lansing, Michigan, United States of America
| | - Jia-Lei Wang
- Pesticide Biology and Ecology Research Center, Nanjing, Jiangsu, China
| | - Qiu Jian
- Institute for the Control of Agrochemicals, Ministry of Agriculture, Beijing, China
| | - Yan Shen
- Key Laboratory of Food Safety Monitoring and Management of Ministry of Agriculture, Nanjing, Jiangsu, China
| | - Xian-Jin Liu
- Pesticide Biology and Ecology Research Center, Nanjing, Jiangsu, China
- Key Laboratory of Food Safety Monitoring and Management of Ministry of Agriculture, Nanjing, Jiangsu, China
| | - Xiang-Yang Yu
- Pesticide Biology and Ecology Research Center, Nanjing, Jiangsu, China
- Key Laboratory of Food Safety Monitoring and Management of Ministry of Agriculture, Nanjing, Jiangsu, China
| |
Collapse
|
31
|
Mohamed B, Hajer A, Susanna S, Caterina O, Flavio M, Hamadi B, Aldo V. Transcriptomic responses to heat stress and nickel in the mussel Mytilus galloprovincialis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 148:104-112. [PMID: 24468838 DOI: 10.1016/j.aquatox.2014.01.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 12/31/2013] [Accepted: 01/05/2014] [Indexed: 06/03/2023]
Abstract
The exposure of marine organisms to stressing agents may affect the level and pattern of gene expression. Although many studies have examined the ecological effects of heat stress on mussels, little is known about the physiological mechanisms that maybe affected by co-exposure to heat stress and environmental contaminants such as nickel (Ni). In the present work, we investigated the effects of simultaneous changes in temperature and Ni supply on lysosomal membrane stability (LMS) and malondialdehyde accumulation (MDA) in the digestive gland (DG) of the blue mussel Mytilus galloprovincialis (Lam.). To elucidate how the molecular response to environmental stressors is modulated, we employed a cDNA microarray with 1673 sequences to measure relative transcript abundances in the DG of mussels exposed to Ni along with a temperature increase. A two-way ANOVA revealed that temperature and Ni rendered additive effects on LMS and MDA accumulation, increasing the toxic effects of metal cations. Ni loads in the DG were also affected by co-exposure to 26°C. In animals exposed only to heat stress, functional genomics analysis of the microarray data (171 differentially expressed genes (DEGs)) highlighted seven biological processes, largely dominated by the up-regulation of folding protein-related genes and the down-regulation of genes involved in cell migration and cellular component assembly. Exposure to Ni at 18°C and 26°C yielded 188 and 262 DEGs, respectively, exhibiting distinct patterns in terms of biological processes. In particular, the response of mussels exposed to Ni at 26°C was characterized by the up-regulation of proteolysis, ribosome biogenesis, response to unfolded proteins, and catabolic-related genes, as well as the down-regulation of genes encoding cellular metabolic processes. Our data provide new insights into the transcriptomic response in mussels experiencing temperature increases and Ni exposure; these data should be carefully considered in view of the biological effects of heat stress, particularly in polluted areas.
Collapse
Affiliation(s)
- Banni Mohamed
- Department of Environmental and Life Sciences, Università del Piemonte Orientale Vercelli Novara Alessandria, Via Michel 11, 15121 Alessandria, Italy; Laboratory of Biochemistry and Environmental Toxicology, ISA, Chott-Mariem, 4042 Sousse, Tunisia.
| | - Attig Hajer
- Laboratory of Biochemistry and Environmental Toxicology, ISA, Chott-Mariem, 4042 Sousse, Tunisia
| | - Sforzini Susanna
- Department of Environmental and Life Sciences, Università del Piemonte Orientale Vercelli Novara Alessandria, Via Michel 11, 15121 Alessandria, Italy
| | - Oliveri Caterina
- Department of Environmental and Life Sciences, Università del Piemonte Orientale Vercelli Novara Alessandria, Via Michel 11, 15121 Alessandria, Italy
| | - Mignone Flavio
- Department of Environmental and Life Sciences, Università del Piemonte Orientale Vercelli Novara Alessandria, Via Michel 11, 15121 Alessandria, Italy
| | - Boussetta Hamadi
- Laboratory of Biochemistry and Environmental Toxicology, ISA, Chott-Mariem, 4042 Sousse, Tunisia
| | - Viarengo Aldo
- Department of Environmental and Life Sciences, Università del Piemonte Orientale Vercelli Novara Alessandria, Via Michel 11, 15121 Alessandria, Italy
| |
Collapse
|
32
|
Attig H, Kamel N, Sforzini S, Dagnino A, Jamel J, Boussetta H, Viarengo A, Banni M. Effects of thermal stress and nickel exposure on biomarkers responses in Mytilus galloprovincialis (Lam). MARINE ENVIRONMENTAL RESEARCH 2014; 94:65-71. [PMID: 24424117 DOI: 10.1016/j.marenvres.2013.12.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 12/07/2013] [Accepted: 12/09/2013] [Indexed: 06/03/2023]
Abstract
The present work aimed to assess the Mytilus galloprovincialis digestive gland biomarkers responses to nickel (Ni) exposure along with a heat stress gradient. Mussels were exposed to a sublethal dose of nickel (13 μM) along with a temperature gradient (18 °C, 20 °C, 22 °C, 24 °C and 26 °C) for 4 days. Metallothionein (MTs) content was assessed as specific response to metals. Catalase (CAT), glutathione S-transferase (GST) activities and malondialdehyde (MDA) were measured as biomarkers of oxidative stress and lipid peroxidation. The cholinergic system was monitored using the acetylcholinesterase activity (AChE). Moreover, Ni uptakes along with the exposure temperatures were assessed. A correlation matrix (CM) between the investigated biomarkers and the exposure temperatures and a Principal Component Analysis (PCA) were achieved. Our data showed a negative effect of temperature increase on mussel's antioxidant and detoxification response to Ni exposure being more pronounced in animals exposed to the 24 °C and 26 °C.
Collapse
Affiliation(s)
- Hajer Attig
- Laboratory of Biochemistry and Environmental Toxicology, ISA, Chott-Mariem, 4042 Sousse, Tunisia
| | - Naouel Kamel
- Laboratory of Biochemistry and Environmental Toxicology, ISA, Chott-Mariem, 4042 Sousse, Tunisia
| | - Susanna Sforzini
- Department of Environmental and Life Sciences, University of Piemonte Orientale Amedeo Avogadro, Via Bellini 25 G, 15100 Alessandria, Italy
| | - Alessandro Dagnino
- Department of Environmental and Life Sciences, University of Piemonte Orientale Amedeo Avogadro, Via Bellini 25 G, 15100 Alessandria, Italy
| | - Jebali Jamel
- Laboratory of Biochemistry and Environmental Toxicology, ISA, Chott-Mariem, 4042 Sousse, Tunisia
| | - Hamadi Boussetta
- Laboratory of Biochemistry and Environmental Toxicology, ISA, Chott-Mariem, 4042 Sousse, Tunisia
| | - Aldo Viarengo
- Department of Environmental and Life Sciences, University of Piemonte Orientale Amedeo Avogadro, Via Bellini 25 G, 15100 Alessandria, Italy
| | - Mohamed Banni
- Laboratory of Biochemistry and Environmental Toxicology, ISA, Chott-Mariem, 4042 Sousse, Tunisia; Department of Environmental and Life Sciences, University of Piemonte Orientale Amedeo Avogadro, Via Bellini 25 G, 15100 Alessandria, Italy.
| |
Collapse
|
33
|
Maria VL, Gomes T, Barreira L, Bebianno MJ. Impact of benzo(a)pyrene, Cu and their mixture on the proteomic response of Mytilus galloprovincialis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 144-145:284-295. [PMID: 24211336 DOI: 10.1016/j.aquatox.2013.10.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 10/07/2013] [Accepted: 10/08/2013] [Indexed: 06/02/2023]
Abstract
In natural waters, chemical interactions between mixtures of contaminants can result in potential synergistic and/or antagonic effects in aquatic animals. Benzo(a)pyrene (BaP) and copper (Cu) are two widespread environmental contaminants with known toxicity towards mussels Mytilus spp. The effects of the individual and the interaction of BaP and Cu exposures were assessed in mussels Mytilus galloprovincialis using proteomic analysis. Mussels were exposed to BaP [10 μg L(-1) (0.396 μM)], and Cu [10 μg L(-1) (0.16 μM)], as well as to their binary mixture (mixture) for a period of 7 days. Proteomic analysis showed different protein expression profiles associated to each selected contaminant condition. A non-additive combined effect was observed in mixture in terms of new and suppressed proteins. Proteins more drastically altered (new, suppressed and 2-fold differentially expressed) were excised and analyzed by mass spectrometry, and eighteen putatively identified. Protein identification demonstrated the different accumulation, metabolism and chemical interactions of BaP, Cu and their mixture, resulting in different modes of action. Proteins associated with adhesion and motility (catchin, twitchin and twitchin-like protein), cytoskeleton and cell structure (α-tubulin and actin), stress response (heat shock cognate 71, heat shock protein 70, putative C1q domain containing protein), transcription regulation (zinc-finger BED domain-containing and nuclear receptor subfamily 1G) and energy metabolism (ATP synthase F0 subunit 6 protein and mannose-6-phosphate isomerase) were assigned to all three conditions. Cu exposure alone altered proteins associated with oxidative stress (glutathione-S-transferase) and digestion, growth and remodelling processes (chitin synthase), while the mixture affected only one protein (major vault protein) possibly related to multi drug resistance. Overall, new candidate biomarkers, namely zinc-finger BED domain-containing protein, chitin synthase and major vault protein, were also identified for BaP, Cu and mixture, respectively.
Collapse
Affiliation(s)
- V L Maria
- CIMA, Faculty of Sciences and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | | | | | | |
Collapse
|
34
|
Suárez-Ulloa V, Fernández-Tajes J, Manfrin C, Gerdol M, Venier P, Eirín-López JM. Bivalve omics: state of the art and potential applications for the biomonitoring of harmful marine compounds. Mar Drugs 2013; 11:4370-89. [PMID: 24189277 PMCID: PMC3853733 DOI: 10.3390/md11114370] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 09/27/2013] [Accepted: 10/09/2013] [Indexed: 12/26/2022] Open
Abstract
The extraordinary progress experienced by sequencing technologies and bioinformatics has made the development of omic studies virtually ubiquitous in all fields of life sciences nowadays. However, scientific attention has been quite unevenly distributed throughout the different branches of the tree of life, leaving molluscs, one of the most diverse animal groups, relatively unexplored and without representation within the narrow collection of well established model organisms. Within this Phylum, bivalve molluscs play a fundamental role in the functioning of the marine ecosystem, constitute very valuable commercial resources in aquaculture, and have been widely used as sentinel organisms in the biomonitoring of marine pollution. Yet, it has only been very recently that this complex group of organisms became a preferential subject for omic studies, posing new challenges for their integrative characterization. The present contribution aims to give a detailed insight into the state of the art of the omic studies and functional information analysis of bivalve molluscs, providing a timely perspective on the available data resources and on the current and prospective applications for the biomonitoring of harmful marine compounds.
Collapse
Affiliation(s)
- Victoria Suárez-Ulloa
- Chromatin Structure and Evolution (CHROMEVOL) Group, Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA; E-Mail:
| | - Juan Fernández-Tajes
- Wellcome Trust Center for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; E-Mail:
| | - Chiara Manfrin
- Department of Life Sciences, University of Trieste, Trieste 34127, Italy; E-Mails: (C.M.); (M.G.)
| | - Marco Gerdol
- Department of Life Sciences, University of Trieste, Trieste 34127, Italy; E-Mails: (C.M.); (M.G.)
| | - Paola Venier
- Department of Biology, University of Padova, Padova 35121, Italy; E-Mail:
| | - José M. Eirín-López
- Chromatin Structure and Evolution (CHROMEVOL) Group, Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-305-919-4000; Fax: +1-305-919-4030
| |
Collapse
|
35
|
Abdullah L, Evans JE, Montague H, Reed JM, Moser A, Crynen G, Gonzalez A, Zakirova Z, Ross I, Mullan C, Mullan M, Ait-Ghezala G, Crawford F. Chronic elevation of phosphocholine containing lipids in mice exposed to Gulf War agents pyridostigmine bromide and permethrin. Neurotoxicol Teratol 2013; 40:74-84. [PMID: 24140745 DOI: 10.1016/j.ntt.2013.10.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Revised: 10/02/2013] [Accepted: 10/08/2013] [Indexed: 01/15/2023]
Abstract
For two decades, 25% of the veterans who served in the 1991 Gulf War (GW) have been living with Gulf War Illness (GWI), a chronic multisymptom illness. Evidence suggests that brain structures involved in cognitive function may be affected in GWI. Gulf War agents such as the acetylcholinesterase (AChE) inhibitor pyridostigmine bromide (PB) and the pesticide permethrin (PER) are considered key etiogenic factors in GWI. We therefore developed a mouse model of GW agent exposure by co-administering PB and PER and showed that this model exhibits cognitive impairment and anxiety, and increased astrogliosis at chronic post-exposure time-points. Since GW agents inhibit AChE, we hypothesized that PB+PER exposure will modulate phosphatidylcholine (PC) and sphingomyelin (SM), which are reservoirs of phosphocholine required for endogenous ACh synthesis. Lipidomic analyses showed that PC and SM were elevated in the brains of exposed compared to control mice. Brain ether PC (ePC) species were increased but lyso-platelet activating factors (lyso-PAF) that are products of ePC were decreased in exposed animals compared to controls. Catalase expression (a marker for peroxisomes) was increased in GW agent exposed mice compared to controls. Ether PC and lyso-PAF modulation was also evident in the plasma of GW agent exposed mice compared to controls. These studies suggest peroxisomal and lysosomal dysfunction in the brain at a chronic post-exposure timepoint following GW agent exposure. Our studies provide a new direction for GWI research, which will be useful for developing suitable therapies for treating GWI.
Collapse
Affiliation(s)
- Laila Abdullah
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL 34243, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Franzellitti S, Buratti S, Valbonesi P, Fabbri E. The mode of action (MOA) approach reveals interactive effects of environmental pharmaceuticals on Mytilus galloprovincialis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 140-141:249-256. [PMID: 23831970 DOI: 10.1016/j.aquatox.2013.06.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 06/04/2013] [Accepted: 06/07/2013] [Indexed: 06/02/2023]
Abstract
Aquatic organisms are unintentionally exposed to a large number of pharmaceutical residues in their natural habitats. Ecotoxicological studies have agreed that these compounds are not harmful to aquatic organisms, as their environmental concentrations are typically too low. However, recent reports have shown biological effects at such low concentrations when biological endpoints related to the therapeutic effects are assessed. Therefore, conservation of molecular targets is now addressed as a key aspect for the development of more efficient test strategies for pharmaceutical environmental risk assessment, providing the rationale for the mode of action (MOA) approach. In the present study the MOA approach was used to investigate the interactive effects of fluoxetine (FX) and propranolol (PROP) on the Mediterranean mussels (Mytilus galloprovincialis). Indeed, organisms in the environment are exposed to pharmaceutical mixtures throughout their lifetime, and particular combinations may be of concern. The antidepressant FX increases serotonin (5-HT) levels in the synaptic cleft by inhibiting 5-HT reuptake. PROP, a prototypical β-adrenoceptor antagonist, also blocks 5-HT1 receptors, which are negatively coupled to cAMP-mediated signaling. Cell signaling alterations potentially triggered by 5-HT1 receptor occupation were therefore assessed after a 7-day mussel exposure to FX or PROP, alone or in combination, each at 0.3 ng/L concentration. FX decreased cAMP levels and PKA activities in digestive gland and mantle/gonads, in agreement with an increased occupation of 5-HT1 receptors. PROP caused a decrease in cAMP levels and PKA activities in digestive gland and an increase in cAMP levels in mantle/gonads, consistent with a differential expression of adrenergic and 5-HT receptors in the two tissues. Co-exposure to FX and PROP provides significant indications for antagonistic effects of the pharmaceuticals, consistent with a direct (PROP) and indirect (FX) action on the same molecular target. Interestingly, FX induced over-expression of a 5-HT1 gene product, and PROP counteracted such increase when the mixture was administered, while having per se no effect. Finally, mRNA expression of the ABCB gene encoding the MXR-related transporter P-glycoprotein was reduced by both pharmaceuticals in the digestive gland, while decreased by FX, increased by PROP, and not affected by the mixture in mantle/gonads. Since transcription of this gene product is under cAMP/PKA modulation, the impairment of regulatory pathways triggered by low concentrations of pharmaceuticals have the potential to affect the ability of animals to elaborate strategies of defense or adaptation toward further stress factors. In this specific case, the pharmaceutical mixture limits the detrimental effects of the single compounds.
Collapse
Affiliation(s)
- Silvia Franzellitti
- University of Bologna, Interdepartment Centre for Environmental Science Research, via S. Alberto 163, 48123 Ravenna, Italy.
| | | | | | | |
Collapse
|
37
|
Negri A, Oliveri C, Sforzini S, Mignione F, Viarengo A, Banni M. Transcriptional response of the mussel Mytilus galloprovincialis (Lam.) following exposure to heat stress and copper. PLoS One 2013; 8:e66802. [PMID: 23825565 PMCID: PMC3692493 DOI: 10.1371/journal.pone.0066802] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 05/15/2013] [Indexed: 11/19/2022] Open
Abstract
Global warming is a major factor that may affect biological organization, especially in marine ecosystems and in coastal areas that are particularly subject to anthropogenic pollution. We evaluated the effects of simultaneous changes in temperature and copper concentrations on lysosomal membrane stability (N-acetyl-hexosaminidase activity) and malondialdehyde accumulation (MDA) in the gill of the blue mussel Mytilus galloprovincialis (Lam.). Temperature and copper exerted additive effects on lysosomal membrane stability, exacerbating the toxic effects of metal cations present in non-physiological concentrations. Mussel lysosomal membrane stability is known to be positively related to scope for growth, indicating possible effects of increasing temperature on mussel populations in metal-polluted areas. To clarify the molecular response to environmental stressors, we used a cDNA microarray with 1,673 sequences to measure the relative transcript abundances in the gills of mussels exposed to copper (40 µg/L) and a temperature gradient (16°C, 20°C, and 24°C). In animals exposed only to heat stress, hierarchical clustering of the microarray data revealed three main clusters, which were largely dominated by down-regulation of translation-related differentially expressed genes, drastic up-regulation of protein folding related genes, and genes involved in chitin metabolism. The response of mussels exposed to copper at 24°C was characterized by an opposite pattern of the genes involved in translation, most of which were up-regulated, as well as the down-regulation of genes encoding heat shock proteins and "microtubule-based movement" proteins. Our data provide novel information on the transcriptomic modulations in mussels facing temperature increases and high copper concentrations; these data highlight the risk of marine life exposed to toxic chemicals in the presence of temperature increases due to climate change.
Collapse
Affiliation(s)
- Alessandro Negri
- Department of Environmental and Life Sciences, Università del Piemonte Orientale Vercelli Novara Alessandria, Alessandria, Italy
| | - Catherina Oliveri
- Department of Environmental and Life Sciences, Università del Piemonte Orientale Vercelli Novara Alessandria, Alessandria, Italy
| | - Susanna Sforzini
- Department of Environmental and Life Sciences, Università del Piemonte Orientale Vercelli Novara Alessandria, Alessandria, Italy
| | - Flavio Mignione
- Department of Environmental and Life Sciences, Università del Piemonte Orientale Vercelli Novara Alessandria, Alessandria, Italy
| | - Aldo Viarengo
- Department of Environmental and Life Sciences, Università del Piemonte Orientale Vercelli Novara Alessandria, Alessandria, Italy
| | - Mohamed Banni
- Department of Environmental and Life Sciences, Università del Piemonte Orientale Vercelli Novara Alessandria, Alessandria, Italy
- Laboratory of Biochemistry and Environmental Toxicology, ISA, Chott-Mariem, Sousse, Tunisia
- * E-mail:
| |
Collapse
|
38
|
Wang Q, Wang C, Mu C, Wu H, Zhang L, Zhao J. A novel C-type lysozyme from Mytilus galloprovincialis: insight into innate immunity and molecular evolution of invertebrate C-type lysozymes. PLoS One 2013; 8:e67469. [PMID: 23818979 PMCID: PMC3688608 DOI: 10.1371/journal.pone.0067469] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 05/18/2013] [Indexed: 11/19/2022] Open
Abstract
A c-type lysozyme (named as MgCLYZ) gene was cloned from the mussel Mytilus galloprovincialis. Blast analysis indicated that MgCLYZ was a salivary c-type lysozyme which was mainly found in insects. The nucleotide sequence of MgCLYZ was predicted to encode a polypeptide of 154 amino acid residues with the signal peptide comprising the first 24 residues. The deduced mature peptide of MgCLYZ was of a calculated molecular weight of 14.4 kD and a theoretical isoelectric point (pI) of 8.08. Evolution analysis suggested that bivalve branch of the invertebrate c-type lysozymes phylogeny tree underwent positive selection during evolution. By quantitative real-time RT-PCR (qRT-PCR) analysis, MgCLYZ transcript was widely detected in all examined tissues and responded sensitively to bacterial challenge in hemocytes and hepatopancreas. The optimal temperature and pH of recombinant MgCLYZ (rMgCLYZ) were 20°C and 4, respectively. The rMgCLYZ displayed lytic activities against Gram-positive bacteria including Micrococcus luteus and Staphyloccocus aureus, and Gram-negative bacteria including Vibrio anguillarum, Enterobacter cloacae, Pseudomonas putida, Proteus mirabilis and Bacillus aquimaris. These results suggest that MgCLYZ perhaps play an important role in innate immunity of M. galloprovincialis, and invertebrate c-type lysozymes might be under positive selection in a species-specific manner during evolution for undergoing adaptation to different environment and diverse pathogens.
Collapse
Affiliation(s)
- Qing Wang
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, People’s Republic of China
| | - Chunyan Wang
- School of Marine Science, Ningbo University, Ningbo, People’s Republic of China
| | - Changkao Mu
- School of Marine Science, Ningbo University, Ningbo, People’s Republic of China
| | - Huifeng Wu
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, People’s Republic of China
| | - Linbao Zhang
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, People’s Republic of China
| | - Jianmin Zhao
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, People’s Republic of China
| |
Collapse
|
39
|
Giuliani ME, Benedetti M, Arukwe A, Regoli F. Transcriptional and catalytic responses of antioxidant and biotransformation pathways in mussels, Mytilus galloprovincialis, exposed to chemical mixtures. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 134-135:120-127. [PMID: 23612242 DOI: 10.1016/j.aquatox.2013.03.012] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 03/08/2013] [Accepted: 03/13/2013] [Indexed: 06/02/2023]
Abstract
Antioxidant and biotransformation pathways are widely studied in marine organisms exposed to environmental stressors. However, mechanisms of responses and links between different intracellular levels are not always easy to elucidate and conflicting results are frequently observed between molecular and enzymatic data. In this study, transcriptional and catalytic responses of antioxidant and biotransformation parameters were analyzed after a 4-week exposure of a marine invertebrate, Mytilus galloprovincialis, to chemical mixtures from low polluted and highly polluted sediments. A significant, dose-dependent bioaccumulation was observed for polycyclic aromatic hydrocarbons, especially low molecular weight compounds. Among antioxidant defences, catalase and glutathione peroxidases did not exhibit variations in enzymatic activity, while the corresponding gene transcriptions were up- and down-regulated, respectively; unchanged mRNA levels of superoxide dismutase confirmed the non-synchronous pathways of variations for such antioxidants. Biotransformation responses also revealed inconsistent trends between transcriptional and catalytic variations of glutathione S-transferases, and a significant increase in mRNA levels for cytochrome P450 3A1. The overall results indicated that transcriptional responses might be sensitive but do not necessarily correspond to functional changes, being more useful as "exposure" rather than "effect" biomarkers. Data on gene transcription and catalytic activities should be carefully interpreted when assessing the impact of chemical pollutants and additional studies are needed on modulation of post-transcriptional mechanisms by environmental stressors.
Collapse
Affiliation(s)
- Maria Elisa Giuliani
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60130 Ancona, Italy
| | | | | | | |
Collapse
|
40
|
Franzellitti S, Fabbri E. Cyclic-AMP mediated regulation of ABCB mRNA expression in mussel haemocytes. PLoS One 2013; 8:e61634. [PMID: 23593491 PMCID: PMC3625153 DOI: 10.1371/journal.pone.0061634] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 03/11/2013] [Indexed: 11/29/2022] Open
Abstract
Background The multixenobiotic resistance system (MXR) allows aquatic organisms to cope with their habitat despite high pollution levels by over-expressing membrane and intracellular transporters, including the P-glycoprotein (Pgp). In mammals transcription of the ABCB1 gene encoding Pgp is under cAMP/PKA-mediated regulation; whether this is true in mollusks is not fully clarified. Methodology/Principal Findings cAMP/PKA regulation and ABCB mRNA expression were assessed in haemocytes from Mediterranean mussels (Mytilus galloprovincialis) exposed in vivo for 1 week to 0.3 ng/L fluoxetine (FX) alone or in combination with 0.3 ng/L propranolol (PROP). FX significantly decreased cAMP levels and PKA activity, and induced ABCB mRNA down-regulation. FX effects were abolished in the presence of PROP. In vitro experiments using haemocytes treated with physiological agonists (noradrenaline and serotonin) and pharmacological modulators (PROP, forskolin, dbcAMP, and H89) of the cAMP/PKA system were performed to obtain clear evidence about the involvement of the signaling pathway in the transcriptional regulation of ABCB. Serotonin (5-HT) decreased cAMP levels, PKA activity and ABCB mRNA expression but increased the mRNA levels for a putative 5-HT1 receptor. Interestingly, 5-HT1 was also over-expressed after in vivo exposures to FX. 5-HT effects were counteracted by PROP. Forskolin and dbcAMP increased PKA activity as well as ABCB mRNA expression; the latter effect was abolished in the presence of the PKA inhibitor H89. Conclusions This study provides the first direct evidence for the cAMP/PKA-mediated regulation of ABCB transcription in mussels.
Collapse
MESH Headings
- 5' Untranslated Regions/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Animals
- Bucladesine/pharmacology
- Colforsin/pharmacology
- Cyclic AMP/pharmacology
- Cyclic AMP-Dependent Protein Kinases/antagonists & inhibitors
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Fluoxetine/pharmacology
- Gene Expression Regulation/drug effects
- Hemocytes/drug effects
- Hemocytes/metabolism
- Humans
- Isoquinolines/pharmacology
- Models, Biological
- Mytilus/drug effects
- Mytilus/enzymology
- Mytilus/genetics
- Norepinephrine/pharmacology
- Promoter Regions, Genetic/genetics
- Propranolol/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Serotonin, 5-HT1/genetics
- Receptors, Serotonin, 5-HT1/metabolism
- Sequence Analysis, DNA
- Serotonin/metabolism
- Serotonin Receptor Agonists/pharmacology
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Sulfonamides/pharmacology
- Up-Regulation/drug effects
- Up-Regulation/genetics
Collapse
Affiliation(s)
- Silvia Franzellitti
- Interdepartment Centre for Environmental Science Research, University of Bologna, Ravenna, Italy.
| | | |
Collapse
|
41
|
Patetsini E, Dimitriadis VK, Kaloyianni M. Biomarkers in marine mussels, Mytilus galloprovincialis, exposed to environmentally relevant levels of the pesticides, chlorpyrifos and penoxsulam. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 126:338-45. [PMID: 23063002 DOI: 10.1016/j.aquatox.2012.09.009] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 09/10/2012] [Accepted: 09/15/2012] [Indexed: 05/04/2023]
Abstract
The present study examines the influence of environmentally relevant concentrations of two pesticides, chlorpyrifos and penoxsulam on mussel physiological status. For this reason, lysosomal membrane stability (LMS), reactive oxygen species (ROS), DNA damage, protein carbonylation (PCC) and antioxidant capacity (TAC) in hemaolymph and hemocytes of the mussels was measured. Mussels were exposed to a range of concentrations of the pesticides chlorpyrifos and penoxsulam and the response of animals to the destabilization of lysosomal membrane in hemocytes (LMS) was studied. Subsequently, the half maximal effective concentration (EC50) for both pesticides was calculated. The animals were subsequently exposed for 0, 1, 3, 5, 7, 15 and 30 days to 10 times less concentration than EC50 of each pesticide (0.05 μg/l) and changes in LMS, ROS, DNA damage, protein carbonylation and antioxidant capacity of mussels was evaluated. Our results showed a significant change in the response of mussels for all parameters tested after 30 days exposure, in relation to the controls. The pesticides at the environmental concentrations used induced changes to the animal physiology through causing oxidative stress and lysosomal abnormalities and their usage in the agriculture demands great care. In addition, the results show that ROS, DNA damage, protein carbonylation and antioxidant capacity could constitute, after further investigation, reliable biomarkers for the evaluation of pollution or other environmental stressors.
Collapse
Affiliation(s)
- E Patetsini
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Greece
| | | | | |
Collapse
|
42
|
Chen S, Liu C, Peng C, Liu H, Hu M, Zhong G. Biodegradation of chlorpyrifos and its hydrolysis product 3,5,6-trichloro-2-pyridinol by a new fungal strain Cladosporium cladosporioides Hu-01. PLoS One 2012; 7:e47205. [PMID: 23056611 PMCID: PMC3466218 DOI: 10.1371/journal.pone.0047205] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 09/10/2012] [Indexed: 12/02/2022] Open
Abstract
Intensive use of chlorpyrifos has resulted in its ubiquitous presence as a contaminant in surface streams and soils. It is thus critically essential to develop bioremediation methods to degrade and eliminate this pollutant from environments. We present here that a new fungal strain Hu-01 with high chlorpyrifos-degradation activity was isolated and identified as Cladosporium cladosporioides based on the morphology and 5.8S rDNA gene analysis. Strain Hu-01 utilized 50 mg·L−1 of chlorpyrifos as the sole carbon of source, and tolerated high concentration of chlorpyrifos up to 500 mg·L−1. The optimum degradation conditions were determined to be 26.8°C and pH 6.5 based on the response surface methodology (RSM). Under these conditions, strain Hu-01 completely metabolized the supplemented chlorpyrifos (50 mg·L−1) within 5 d. During the biodegradation process, transient accumulation of 3,5,6-trichloro-2-pyridinol (TCP) was observed. However, this intermediate product did not accumulate in the medium and disappeared quickly. No persistent accumulative metabolite was detected by gas chromatopraphy-mass spectrometry (GC-MS) analysis at the end of experiment. Furthermore, degradation kinetics of chlorpyrifos and TCP followed the first-order model. Compared to the non-inoculated controls, the half-lives (t1/2) of chlorpyrifos and TCP significantly reduced by 688.0 and 986.9 h with the inoculum, respectively. The isolate harbors the metabolic pathway for the complete detoxification of chlorpyrifos and its hydrolysis product TCP, thus suggesting the fungus may be a promising candidate for bioremediation of chlorpyrifos-contaminated water, soil or crop.
Collapse
Affiliation(s)
- Shaohua Chen
- Laboratory of Insect Toxicology, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Chenglan Liu
- Laboratory of Insect Toxicology, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Chuyan Peng
- Laboratory of Insect Toxicology, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Hongmei Liu
- Laboratory of Insect Toxicology, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Meiying Hu
- Laboratory of Insect Toxicology, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Guohua Zhong
- Laboratory of Insect Toxicology, South China Agricultural University, Guangzhou, People’s Republic of China
- * E-mail:
| |
Collapse
|
43
|
Ventura C, Núñez M, Miret N, Martinel Lamas D, Randi A, Venturino A, Rivera E, Cocca C. Differential mechanisms of action are involved in chlorpyrifos effects in estrogen-dependent or -independent breast cancer cells exposed to low or high concentrations of the pesticide. Toxicol Lett 2012; 213:184-93. [DOI: 10.1016/j.toxlet.2012.06.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 06/23/2012] [Accepted: 06/26/2012] [Indexed: 01/16/2023]
|
44
|
Falugi C, Aluigi MG. Early appearance and possible functions of non-neuromuscular cholinesterase activities. Front Mol Neurosci 2012; 5:54. [PMID: 22529777 PMCID: PMC3330712 DOI: 10.3389/fnmol.2012.00054] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Accepted: 04/02/2012] [Indexed: 12/20/2022] Open
Abstract
The biological function of the cholinesterase (ChE) enzymes has been studied since the beginning of the twentieth century. Acetylcholinesterase plays a key role in the modulation of neuromuscular impulse transmission in vertebrates, while in invertebrates pseudo cholinesterases are preeminently represented. During the last 40 years, awareness of the role of ChEs role in regulating non-neuromuscular cell-to-cell interactions has been increasing such as the ones occurring during gamete interaction and embryonic development. Moreover, ChE activities are responsible for other relevant biological events, including regulation of the balance between cell proliferation and cell death, as well as the modulation of cell adhesion and cell migration. Understanding the mechanisms of the regulation of these events can help us foresee the possible impact of neurotoxic substances on the environmental and human health.
Collapse
Affiliation(s)
- Carla Falugi
- Dipartimento per lo studio del Territorio e delle sue Risorse, Laboratory of Experimental Embryology, Università di Genova Genova, Italy
| | | |
Collapse
|