1
|
Río-Bergé C, Cong Y, Reggiori F. Getting on the right track: Interactions between viruses and the cytoskeletal motor proteins. Traffic 2023; 24:114-130. [PMID: 35146839 DOI: 10.1111/tra.12835] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 11/29/2022]
Abstract
The cytoskeleton is an essential component of the cell and it is involved in multiple physiological functions, including intracellular organization and transport. It is composed of three main families of proteinaceous filaments; microtubules, actin filaments and intermediate filaments and their accessory proteins. Motor proteins, which comprise the dynein, kinesin and myosin superfamilies, are a remarkable group of accessory proteins that mainly mediate the intracellular transport of cargoes along with the cytoskeleton. Like other cellular structures and pathways, viruses can exploit the cytoskeleton to promote different steps of their life cycle through associations with motor proteins. The complexity of the cytoskeleton and the differences among viruses, however, has led to a wide diversity of interactions, which in most cases remain poorly understood. Unveiling the details of these interactions is necessary not only for a better comprehension of specific infections, but may also reveal new potential drug targets to fight dreadful diseases such as rabies disease and acquired immunodeficiency syndrome (AIDS). In this review, we describe a few examples of the mechanisms that some human viruses, that is, rabies virus, adenovirus, herpes simplex virus, human immunodeficiency virus, influenza A virus and papillomavirus, have developed to hijack dyneins, kinesins and myosins.
Collapse
Affiliation(s)
- Clàudia Río-Bergé
- Department of Biomedical Sciences of Cells & Systems, Molecular Cell Biology Section, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Yingying Cong
- Department of Biomedical Sciences of Cells & Systems, Molecular Cell Biology Section, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Fulvio Reggiori
- Department of Biomedical Sciences of Cells & Systems, Molecular Cell Biology Section, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
2
|
Li CC, Chi XJ, Wang J, Potter AL, Wang XJ, Yang CFJ. Small molecule RAF265 as an antiviral therapy acts against HSV-1 by regulating cytoskeleton rearrangement and cellular translation machinery. J Med Virol 2023; 95:e28226. [PMID: 36251738 DOI: 10.1002/jmv.28226] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 01/11/2023]
Abstract
Host-targeting antivirals (HTAs) have received increasing attention for their potential as broad-spectrum antivirals that pose relatively low risk of developing drug resistance. The repurposing of pharmaceutical drugs for use as antivirals is emerging as a cost- and time- efficient approach to developing HTAs for the treatment of a variety of viral infections. In this study, we used a virus titer method to screen 30 small molecules for antiviral activity against Herpes simplex virus-1 (HSV-1). We found that the small molecule RAF265, an anticancer drug that has been shown to be a potent inhibitor of B-RAF V600E, reduced viral loads of HSV-1 by 4 orders of magnitude in Vero cells and reduced virus proliferation in vivo. RAF265 mediated cytoskeleton rearrangement and targeted the host cell's translation machinery, which suggests that the antiviral activity of RAF265 may be attributed to a dual inhibition strategy. This study offers a starting point for further advances toward clinical development of antivirals against HSV-1.
Collapse
Affiliation(s)
- Cui-Cui Li
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, Department of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiao-Jing Chi
- Department of Pathogen Biology, Chinese Academy of Medical Sciences, Beijing, China
| | - Jing Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, Department of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Alexandra L Potter
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Xiao-Jia Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, Department of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chi-Fu Jeffrey Yang
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA.,Division of Thoracic Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Kumar R, Chander Y, Khandelwal N, Verma A, Rawat KD, Shringi BN, Pal Y, Tripathi BN, Barua S, Kumar N. ROCK1/MLC2 inhibition induces decay of viral mRNA in BPXV infected cells. Sci Rep 2022; 12:17811. [PMID: 36280692 PMCID: PMC9592580 DOI: 10.1038/s41598-022-21610-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 09/29/2022] [Indexed: 01/19/2023] Open
Abstract
Rho-associated coiled-coil containing protein kinase 1 (ROCK1) intracellular cell signaling pathway regulates cell morphology, polarity, and cytoskeletal remodeling. We observed the activation of ROCK1/myosin light chain (MLC2) signaling pathway in buffalopox virus (BPXV) infected Vero cells. ROCK1 depletion by siRNA and specific small molecule chemical inhibitors (Thiazovivin and Y27632) resulted in a reduced BPXV replication, as evidenced by reductions in viral mRNA/protein synthesis, genome copy numbers and progeny virus particles. Further, we demonstrated that ROCK1 inhibition promotes deadenylation of viral mRNA (mRNA decay), mediated via inhibiting interaction with PABP [(poly(A)-binding protein] and enhancing the expression of CCR4-NOT (a multi-protein complex that plays an important role in deadenylation of mRNA). In addition, ROCK1/MLC2 mediated cell contraction, and perinuclear accumulation of p-MLC2 was shown to positively correlate with viral mRNA/protein synthesis. Finally, it was demonstrated that the long-term sequential passage (P = 50) of BPXV in the presence of Thiazovivin does not select for any drug-resistant virus variants. In conclusion, ROCK1/MLC2 cell signaling pathway facilitates BPXV replication by preventing viral mRNA decay and that the inhibitors targeting this pathway may have novel therapeutic effects against buffalopox.
Collapse
Affiliation(s)
- Ram Kumar
- grid.462601.70000 0004 1768 7902Present Address: National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India ,grid.464655.00000 0004 1768 5915Department of Veterinary Microbiology and Biotechnology, Rajasthan University of Veterinary and Animal Sciences, Bikaner, India ,grid.418105.90000 0001 0643 7375Present Address: Animal Science Division, Indian Council of Agricultural Research, Krishi Bhawan, New Delhi, India
| | - Yogesh Chander
- grid.462601.70000 0004 1768 7902Present Address: National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India ,grid.418105.90000 0001 0643 7375Present Address: Animal Science Division, Indian Council of Agricultural Research, Krishi Bhawan, New Delhi, India ,grid.411892.70000 0004 0500 4297Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana India
| | - Nitin Khandelwal
- grid.462601.70000 0004 1768 7902Present Address: National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Assim Verma
- grid.462601.70000 0004 1768 7902Present Address: National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Krishan Dutt Rawat
- grid.411892.70000 0004 0500 4297Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana India
| | - Brij N. Shringi
- grid.464655.00000 0004 1768 5915Department of Veterinary Microbiology and Biotechnology, Rajasthan University of Veterinary and Animal Sciences, Bikaner, India
| | - Yash Pal
- grid.462601.70000 0004 1768 7902Present Address: National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Bhupendra N. Tripathi
- grid.462601.70000 0004 1768 7902Present Address: National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India ,grid.418105.90000 0001 0643 7375Present Address: Animal Science Division, Indian Council of Agricultural Research, Krishi Bhawan, New Delhi, India
| | - Sanjay Barua
- grid.462601.70000 0004 1768 7902Present Address: National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Naveen Kumar
- grid.462601.70000 0004 1768 7902Present Address: National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| |
Collapse
|
4
|
Shokouhi Targhi H, Mehrbod P, Fotouhi F, Amininasab M. In vitro anti-influenza assessment of anionic compounds ascorbate, acetate and citrate. Virol J 2022; 19:88. [PMID: 35606770 PMCID: PMC9125540 DOI: 10.1186/s12985-022-01823-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/11/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Influenza A virus (IAV) infection remains a serious public health threat. Due to drug resistance and side effects of the conventional antiviral drugs, repurposing the available natural compounds with high tolerability and fewer side effects has attracted researchers' attention. The aim of this study was to screen in vitro anti-influenza activity of three anionic compounds ascorbate, acetate, and citrate. METHODS The non-cytotoxic concentration of the compounds was determined by MTT assay and examined for the activity against IAV in simultaneous, pre-, and post-penetration combination treatments over 1 h incubation on Madin-Darby Canine Kidney (MDCK) cell line. The virus titer and viral load were determined using hemagglutination assay (HA) and qPCR, respectively. Few pro-inflammatory and anti-inflammatory cytokines were evaluated at RNA and protein levels by qPCR and ELISA, respectively. RESULTS The non-cytotoxic concentrations of the ascorbate (200 mg/ml), acetate and citrate (both 3 mg/ml) reduced the viral titer by 6.5, 4.5, and 1.5 logs in the simultaneous combination treatment. The M protein gene copy number decreased significantly in simultaneous treatment (P < 0.01). The expression of cytokines was also affected by the treatment of these compounds. CONCLUSIONS These anionic compounds could affect the influenza virus load, thereby reducing pro-inflammatory cytokines and increasing anti-inflammatory cytokines levels.
Collapse
Affiliation(s)
- Hadiseh Shokouhi Targhi
- Department of Cell and Molecular Biology, Kish International Campus, University of Tehran, Kish Island, Iran
- Influenza and Respiratory Viruses Department, Pasteur Institute of Iran, Tehran, Iran
| | - Parvaneh Mehrbod
- Influenza and Respiratory Viruses Department, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Fotouhi
- Influenza and Respiratory Viruses Department, Pasteur Institute of Iran, Tehran, Iran
| | - Mehriar Amininasab
- Department of Cell and Molecular Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
5
|
Oh TK, Song IA, Jeon YT. Statin Therapy and the Risk of COVID-19: A Cohort Study of the National Health Insurance Service in South Korea. J Pers Med 2021; 11:116. [PMID: 33578937 PMCID: PMC7916713 DOI: 10.3390/jpm11020116] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 12/21/2022] Open
Abstract
We aimed to investigate whether statin therapy is associated with the incidence of coronavirus disease 2019 (COVID-19) among the South Korean population. In addition, we examined whether statin therapy affects hospital mortality among COVID-19 patients. The National Health Insurance Service (NHIS)-COVID-19 database in South Korea was used for data extraction for this population-based cohort study. A total of 122,040 adult individuals, with 22,633 (18.5%) in the statin therapy group and 101,697 (91.5%) in the control group, were included in the analysis. Among them, 7780 (6.4%) individuals were diagnosed with COVID-19 and hospital mortality occurred in 251 (3.2%) COVID-19 cases. After propensity score matching, logistic regression analysis showed that the odds of developing COVID-19 were 35% lower in the statin therapy group than in the control group (odds ratio: 0.65, 95% confidence interval: 0.60 to 0.71; p < 0.001). Regarding hospital mortality among COVID-19 patients, the multivariable model indicated that there were no differences between the statin therapy and control groups (odds ratio: 0.74, 95% confidence interval: 0.52 to 1.05; p = 0.094). Statin therapy may have potential benefits for the prevention of COVID-19 in South Korea. However, we found that statin therapy does not affect the hospital mortality of patients who are diagnosed with COVID-19.
Collapse
Affiliation(s)
- Tak Kyu Oh
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13620, Korea; (T.K.O.); (I.-A.S.)
| | - In-Ae Song
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13620, Korea; (T.K.O.); (I.-A.S.)
| | - Young-Tae Jeon
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13620, Korea; (T.K.O.); (I.-A.S.)
- Department of Anesthesiology and Pain Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Korea
| |
Collapse
|
6
|
Wang S, Wang R, Li GQ, Cho JL, Deng Y, Li Y. Myosin light chain kinase mediates intestinal barrier dysfunction following simulated microgravity based on proteomic strategy. J Proteomics 2020; 231:104001. [PMID: 33035716 DOI: 10.1016/j.jprot.2020.104001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/25/2020] [Accepted: 09/29/2020] [Indexed: 01/30/2023]
Abstract
Microgravity induces injury of intestinal barrier. However, the underlying mechanism remains unclear. The present study aimed to investigate the pathological change of intestinal mucosa induced by long term simulated microgravity and to explore its etiological mechanism using a proteomic approach. The well accepted tail-suspended rat model was used to simulate microgravity. The damage of rat small intestine was evaluated via histological and molecular test, and a label-free comparative proteomic strategy was used to determine the molecular mechanism. Simulated microgravity for 21 days damaged intestine barrier with decreased numbers of the goblet cells, large intercellular space, and down-regulated adhesion molecules, accompanied by increased intestinal permeability. Proteomic analysis identified 416 differentially expressed proteins and showed simulated microgravity dramatically down-regulated the adhesion molecules and deteriorated several pathways for metabolism, focal adhesion, and regulation of actin cytoskeleton. Western-blot analysis confirmed that myosin regulatory light chain (MLC) 12B was significantly down-regulated, while rho-associated protein kinase, myosin light chain kinase (MLCK), and phosphorylated MLC were dramatically up-regulated. Taken together, these data reveal that down-regulation of adhesion molecules and MLCK dependent up-regulation MLC phosphorylation mediate intestinal barrier dysfunction during simulated microgravity injury. Our results also indicate that regulation of epithelial MLCK is a potential target for the therapeutic treatment of microgravity injury.
Collapse
Affiliation(s)
- Shibo Wang
- School of Life Science, Beijing Institute of Technology, No.5 Zhongguangcun South Street, Haidian District, Beijing 100081, China
| | - Rui Wang
- School of Life Science, Beijing Institute of Technology, No.5 Zhongguangcun South Street, Haidian District, Beijing 100081, China
| | - George Q Li
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia
| | - Jun-Lae Cho
- Centre for Advanced Food Enginomics, School of Chemical and Biomolecular Engineering, University of Sydney, NSW 2006, Australia
| | - Yulin Deng
- School of Life Science, Beijing Institute of Technology, No.5 Zhongguangcun South Street, Haidian District, Beijing 100081, China
| | - Yujuan Li
- School of Life Science, Beijing Institute of Technology, No.5 Zhongguangcun South Street, Haidian District, Beijing 100081, China.
| |
Collapse
|
7
|
Hu J, Zhang L, Liu X. Role of Post-translational Modifications in Influenza A Virus Life Cycle and Host Innate Immune Response. Front Microbiol 2020; 11:517461. [PMID: 33013775 PMCID: PMC7498822 DOI: 10.3389/fmicb.2020.517461] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 08/14/2020] [Indexed: 01/01/2023] Open
Abstract
Throughout various stages of its life cycle, influenza A virus relies heavily on host cellular machinery, including the post-translational modifications (PTMs) system. During infection, influenza virus interacts extensively with the cellular PTMs system to aid in its successful infection and dissemination. The complex interplay between viruses and the PTMs system induces global changes in PTMs of the host proteome as well as modifications of specific host or viral proteins. The most common PTMs include phosphorylation, ubiquitination, SUMOylation, acetylation, methylation, NEDDylation, and glycosylation. Many PTMs directly support influenza virus infection, whereas others contribute to modulating antiviral responses. In this review, we describe current knowledge regarding the role of PTMs in different stages of the influenza virus replication cycle. We also discuss the concerted role of PTMs in antagonizing host antiviral responses, with an emphasis on their impact on viral pathogenicity and host range.
Collapse
Affiliation(s)
- Jiao Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Lei Zhang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
8
|
Mehrbod P, Ebrahimi SN, Fotouhi F, Eskandari F, Eloff JN, McGaw LJ, Fasina FO. Experimental validation and computational modeling of anti-influenza effects of quercetin-3-O-α-L-rhamnopyranoside from indigenous south African medicinal plant Rapanea melanophloeos. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:346. [PMID: 31791311 PMCID: PMC6888925 DOI: 10.1186/s12906-019-2774-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 11/27/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Influenza A virus (IAV) is still a major health threat. The clinical manifestations of this infection are related to immune dysregulation, which causes morbidity and mortality. The usage of traditional medication with immunomodulatory properties against influenza infection has been increased recently. Our previous study showed antiviral activity of quercetin-3-O-α-L-rhamnopyranoside (Q3R) isolated from Rapanea melanophloeos (RM) (L.) Mez (family Myrsinaceae) against H1N1 (A/PR/8/34) infection. This study aimed to confirm the wider range of immunomodulatory effect of Q3R on selective pro- and anti-inflammatory cytokines against IAV in vitro, to evaluate the effect of Q3R on apoptosis pathway in combination with H1N1, also to assess the physical interaction of Q3R with virus glycoproteins and RhoA protein using computational docking. METHODS MDCK cells were exposed to Q3R and 100CCID50/100 μl of H1N1 in combined treatments (co-, pre- and post-penetration treatments). The treatments were tested for the cytokines evaluation at RNA and protein levels by qPCR and ELISA, respectively. In another set of treatment, apoptosis was examined by detecting RhoA GTPase protein and caspase-3 activity. Molecular docking was used as a tool for evaluation of the potential anti-influenza activity of Q3R. RESULTS The expressions of cytokines in both genome and protein levels were significantly affected by Q3R treatment. It was shown that Q3R was much more effective against influenza when it was applied in co-penetration treatment. Q3R in combination with H1N1 increased caspase-3 activity while decreasing RhoA activation. The molecular docking results showed strong binding ability of Q3R with M2 transmembrane, Neuraminidase of 2009 pandemic H1N1, N1 and H1 of PR/8/1934 and Human RhoA proteins, with docking energy of - 10.81, - 10.47, - 9.52, - 9.24 and - 8.78 Kcal/mol, respectively. CONCLUSIONS Quercetin-3-O-α-L-rhamnopyranoside from RM was significantly effective against influenza infection by immunomodulatory properties, affecting the apoptosis pathway and binding ability to viral receptors M2 transmembrane and Neuraminidase of 2009 pandemic H1N1 and human RhoA cellular protein. Further research will focus on detecting the detailed specific mechanism of Q3R in virus-host interactions.
Collapse
Affiliation(s)
- Parvaneh Mehrbod
- Influenza and Respiratory Viruses Department, Pasteur Institute of Iran, Tehran, Iran
- Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria, South Africa
| | - Samad Nejad Ebrahimi
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Fatemeh Fotouhi
- Influenza and Respiratory Viruses Department, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Eskandari
- Influenza and Respiratory Viruses Department, Pasteur Institute of Iran, Tehran, Iran
| | - Jacobus N. Eloff
- Phytomedicine Programme, Department of Paraclinical Sciences, University of Pretoria, Pretoria, South Africa
| | - Lyndy J. McGaw
- Phytomedicine Programme, Department of Paraclinical Sciences, University of Pretoria, Pretoria, South Africa
| | - Folorunso O. Fasina
- Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria, South Africa
- ECTAD, Food and Agriculture Organization of the United Nations (FAO), Dar es Salaam, Tanzania
| |
Collapse
|
9
|
Curthoys NM, Mlodzianoski MJ, Parent M, Butler MB, Raut P, Wallace J, Lilieholm J, Mehmood K, Maginnis MS, Waters H, Busse B, Zimmerberg J, Hess ST. Influenza Hemagglutinin Modulates Phosphatidylinositol 4,5-Bisphosphate Membrane Clustering. Biophys J 2019; 116:893-909. [PMID: 30773293 DOI: 10.1016/j.bpj.2019.01.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 01/07/2019] [Accepted: 01/15/2019] [Indexed: 12/13/2022] Open
Abstract
The lipid phosphatidylinositol 4,5-bisphosphate (PIP2) forms nanoscopic clusters in cell plasma membranes; however, the processes determining PIP2 mobility and thus its spatial patterns are not fully understood. Using super-resolution imaging of living cells, we find that PIP2 is tightly colocalized with and modulated by overexpression of the influenza viral protein hemagglutinin (HA). Within and near clusters, HA and PIP2 follow a similar spatial dependence, which can be described by an HA-dependent potential gradient; PIP2 molecules move as if they are attracted to the center of clusters by a radial force of 0.079 ± 0.002 pN in HAb2 cells. The measured clustering and dynamics of PIP2 are inconsistent with the unmodified forms of the raft, tether, and fence models. Rather, we found that the spatial PIP2 distributions and how they change in time are explained via a novel, to our knowledge, dynamic mechanism: a radial gradient of PIP2 binding sites that are themselves mobile. This model may be useful for understanding other biological membrane domains whose distributions display gradients in density while maintaining their mobility.
Collapse
Affiliation(s)
- Nikki M Curthoys
- Department of Physics and Astronomy, University of Maine, Orono, Maine
| | | | - Matthew Parent
- Department of Physics and Astronomy, University of Maine, Orono, Maine
| | - Michael B Butler
- Department of Physics and Astronomy, University of Maine, Orono, Maine
| | - Prakash Raut
- Department of Physics and Astronomy, University of Maine, Orono, Maine
| | - Jaqulin Wallace
- Department of Physics and Astronomy, University of Maine, Orono, Maine
| | | | - Kashif Mehmood
- Department of Physics and Astronomy, University of Maine, Orono, Maine; Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine
| | - Melissa S Maginnis
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine
| | - Hang Waters
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Brad Busse
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Joshua Zimmerberg
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Samuel T Hess
- Department of Physics and Astronomy, University of Maine, Orono, Maine.
| |
Collapse
|
10
|
Yip TF, Selim ASM, Lian I, Lee SMY. Advancements in Host-Based Interventions for Influenza Treatment. Front Immunol 2018; 9:1547. [PMID: 30042762 PMCID: PMC6048202 DOI: 10.3389/fimmu.2018.01547] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/22/2018] [Indexed: 12/15/2022] Open
Abstract
Influenza is a major acute respiratory infection that causes mortality and morbidity worldwide. Two classes of conventional antivirals, M2 ion channel blockers and neuraminidase inhibitors, are mainstays in managing influenza disease to lessen symptoms while minimizing hospitalization and death in patients with severe influenza. However, the development of viral resistance to both drug classes has become a major public health concern. Vaccines are prophylaxis mainstays but are limited in efficacy due to the difficulty in matching predicted dominant viral strains to circulating strains. As such, other potential interventions are being explored. Since viruses rely on host cellular functions to replicate, recent therapeutic developments focus on targeting host factors involved in virus replication. Besides controlling virus replication, potential targets for drug development include controlling virus-induced host immune responses such as the recently suggested involvement of innate lymphoid cells and NADPH oxidases in influenza virus pathogenesis and immune cell metabolism. In this review, we will discuss the advancements in novel host-based interventions for treating influenza disease.
Collapse
Affiliation(s)
- Tsz-Fung Yip
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, Hong Kong
| | - Aisha Sami Mohammed Selim
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, Hong Kong
| | - Ida Lian
- School of Life Sciences and Chemical Technology, Ngee Ann Polytechnic, Singapore, Singapore
| | - Suki Man-Yan Lee
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
11
|
Abdoli A, Alirezaei M, Mehrbod P, Forouzanfar F. Autophagy: The multi-purpose bridge in viral infections and host cells. Rev Med Virol 2018; 28:e1973. [PMID: 29709097 PMCID: PMC7169200 DOI: 10.1002/rmv.1973] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 02/03/2018] [Accepted: 02/09/2018] [Indexed: 02/06/2023]
Abstract
Autophagy signaling pathway is involved in cellular homeostasis, developmental processes, cellular stress responses, and immune pathways. The aim of this review is to summarize the relationship between autophagy and viruses. It is not possible to be fully comprehensive, or to provide a complete "overview of all viruses". In this review, we will focus on the interaction of autophagy and viruses and survey how human viruses exploit multiple steps in the autophagy pathway to help viral propagation and escape immune response. We discuss the role that macroautophagy plays in cells infected with hepatitis C virus, hepatitis B virus, rotavirus gastroenteritis, immune cells infected with human immunodeficiency virus, and viral respiratory tract infections both influenza virus and coronavirus.
Collapse
Affiliation(s)
- Asghar Abdoli
- Department of Hepatitis and AIDSPasteur Institute of IranTehranIran
| | - Mehrdad Alirezaei
- Department of Immunology and Microbial ScienceThe Scripps Research InstituteLa JollaCaliforniaUSA
| | - Parvaneh Mehrbod
- Influenza and Other Respiratory Viruses Dept.Pasteur Institute of IranTehranIran
| | - Faezeh Forouzanfar
- University of Strasbourg, EA7292, DHPIInstitute of Parasitology and Tropical Pathology StrasbourgFrance
| |
Collapse
|
12
|
Zhang S, Wu Y, Xuan Z, Chen X, Zhang J, Ge D, Wang X. Screening differential miRNAs responsible for permeability increase in HUVECs infected with influenza A virus. PLoS One 2017; 12:e0186477. [PMID: 29059211 PMCID: PMC5653366 DOI: 10.1371/journal.pone.0186477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 10/01/2017] [Indexed: 11/24/2022] Open
Abstract
Severe influenza infections are featured by acute lung injury, a syndrome of increased pulmonary microvascular permeability. A growing number of evidences have shown that influenza A virus induces cytoskeletal rearrangement and permeability increase in endothelial cells. Although miRNA’s involvement in the regulation of influenza virus infection and endothelial cell (EC) function has been well documented, little is known about the miRNA profiles in influenza-infected endothelial cells. Using human umbilical vein endothelial cells (HUVECs) as cell models, the present study aims to explore the differential miRNAs in influenza virus-infected ECs and analyze their target genes involved in EC permeability regulation. As the results showed, permeability increased and F-actin cytoskeleton reorganized after HUVECs infected with influenza A virus (CA07 or PR8) at 30 MOI. MicroRNA microarray revealed a multitude of miRNAs differentially expressed in HUVECs after influenza virus infection. Through target gene prediction, we found that a series of miRNAs were involved in PKC, Rho/ROCK, HRas/Raf/MEK/ERK, and Ca2+/CaM pathways associated with permeability regulation, and most of these miRNAs were down-regulated after flu infection. It has been reported that PKC, Rho/ROCK, HRas/Raf/MEK/ERK, and Ca2+/CaM pathways are activated by flu infection and play important roles in permeability regulation. Therefore, the cumulative effects of these down-regulated miRNAs which synergistically enhanced activation of PKC, Rho/ROCK, Ras/Raf/MEK/ERK, and Ca2+/CaM pathways, can eventually lead to actin rearrangement and hyperpermeability in flu-infected HUVECs.
Collapse
Affiliation(s)
- Shujing Zhang
- Scientific Research Center, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Wu
- Department of Microbiology and Immunology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
- * E-mail:
| | - Zinan Xuan
- Department of Microbiology and Immunology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoming Chen
- Department of Microbiology and Immunology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Junjie Zhang
- Department of Microbiology and Immunology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Dongyu Ge
- Scientific Research Center, Beijing University of Chinese Medicine, Beijing, China
| | - Xudan Wang
- Department of Microbiology and Immunology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
13
|
Söderholm S, Fu Y, Gaelings L, Belanov S, Yetukuri L, Berlinkov M, Cheltsov AV, Anders S, Aittokallio T, Nyman TA, Matikainen S, Kainov DE. Multi-Omics Studies towards Novel Modulators of Influenza A Virus-Host Interaction. Viruses 2016; 8:v8100269. [PMID: 27690086 PMCID: PMC5086605 DOI: 10.3390/v8100269] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 09/13/2016] [Accepted: 09/22/2016] [Indexed: 12/20/2022] Open
Abstract
Human influenza A viruses (IAVs) cause global pandemics and epidemics. These viruses evolve rapidly, making current treatment options ineffective. To identify novel modulators of IAV–host interactions, we re-analyzed our recent transcriptomics, metabolomics, proteomics, phosphoproteomics, and genomics/virtual ligand screening data. We identified 713 potential modulators targeting 199 cellular and two viral proteins. Anti-influenza activity for 48 of them has been reported previously, whereas the antiviral efficacy of the 665 remains unknown. Studying anti-influenza efficacy and immuno/neuro-modulating properties of these compounds and their combinations as well as potential viral and host resistance to them may lead to the discovery of novel modulators of IAV–host interactions, which might be more effective than the currently available anti-influenza therapeutics.
Collapse
Affiliation(s)
- Sandra Söderholm
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland.
- Finnish Institute of Occupational Health, Helsinki 00250, Finland.
| | - Yu Fu
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00014, Finland.
| | - Lana Gaelings
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00014, Finland.
| | - Sergey Belanov
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00014, Finland.
| | - Laxman Yetukuri
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00014, Finland.
| | - Mikhail Berlinkov
- Institute of Mathematics and Computer Science, Ural Federal University, Yekaterinburg 620083, Russia.
| | - Anton V Cheltsov
- Q-Mol L.L.C. in Silico Pharmaceuticals, San Diego, CA 92037, USA.
| | - Simon Anders
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00014, Finland.
| | - Tero Aittokallio
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00014, Finland.
- Department of Mathematics and Statistics, University of Turku, Turku 20014, Finland.
| | | | - Sampsa Matikainen
- Finnish Institute of Occupational Health, Helsinki 00250, Finland.
- Department of Rheumatology, Helsinki University Hospital, University of Helsinki, Helsinki 00015, Finland.
| | - Denis E Kainov
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00014, Finland.
| |
Collapse
|
14
|
Xuan Z, Wu Y, Zhang C, Zhang S, Chen X, Li S, Hao Y, Wang Q, Wang X, Zhang S. Xijiao Dihuang Decoction combined with Yinqiao Powder reverses influenza virus-induced F-actin reorganization in PMVECs by inhibiting ERM phosphorylation. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2016. [PMCID: PMC7147192 DOI: 10.1016/j.jtcms.2016.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Objective It has been documented that ezrin/radixin/moesin (ERM) phosphorylation by the p38 mitogen-activated protein kinase (MAPK), Rho/ROCK, and protein kinase C (PKC) pathways leads to filamentous actin (F-actin) reorganization and microvascular endothelial cell hyperpermeability. In this study, we investigated the effects of Xijiao Dihuang Decoction combined with Yinqiao Powder (XDY) on influenza virus (IV)-induced F-actin restructuring and ERM phosphorylation regulated by the Rho/Rho kinase 1 (ROCK), p38 MAPK, and PKC signaling pathways in pulmonary microvascular endothelial cells (PMVECs). Methods Serum containing XDY (XDY-CS; 13.8 g/kg) was acquired using standard protocols for serum pharmacology. Primary PMVECs were obtained from male Wistar rats and cultured. After adsorption of IV A (multiplicity of infection, 0.01) for 1 h, medium with 20% XDY-CS was added to the PMVECs. The distributions of F-actin and phosphorylated ERM were determined by confocal microscopy, and F-actin expression was measured by flow cytometry. The expression levels of ROCK1, phosphorylated myosin phosphatase target-subunit (p-MYPT), phosphorylated MAPK kinase, phosphorylated p38 (p-p38), phosphorylated PKC (p-PKC), and phosphorylated ERM (p-ERM) were determined by western blotting. Results F-actin reorganization in IV-infected PMVECs was reversed by XDY-CS treatment, which was accompanied by reduced p-ERM production. The p-ERM protein accumulated at plasma membrane of PMVECs infected with IV, which was also inhibited by XDY-CS treatment. In addition, XDY-CS treatment drastically reduced the levels of p-p38, ROCK1, p-MYPT, and p-PKC induced by IV infection in PMVECs. Conclusion These results show that XDY-CS inhibited influenza-induced F-actin reorganization in PMVECs by down-regulating p-ERM expression via inhibition of the Rho/ROCK, p38 MAPK, and PKC pathways. In conclusion, XDY could reduce the damage to endothelial cytoskeleton induced by IV infection, thus protecting the barriers of PMVECs.
Collapse
|
15
|
Actin-myosin network is required for proper assembly of influenza virus particles. Virology 2015; 476:141-150. [DOI: 10.1016/j.virol.2014.12.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 12/02/2014] [Accepted: 12/08/2014] [Indexed: 01/06/2023]
|
16
|
Mechanisms of action and efficacy of statins against influenza. BIOMED RESEARCH INTERNATIONAL 2014; 2014:872370. [PMID: 25478576 PMCID: PMC4244940 DOI: 10.1155/2014/872370] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 09/08/2014] [Accepted: 09/10/2014] [Indexed: 12/31/2022]
Abstract
The influenza virus (IV) is known to be a resistant virus with frequent mutations, causing severe respiratory diseases in the upper respiratory system. Public health concerns about clinical efficacy of all conventional drugs are ambiguous; therefore, finding additional therapeutic agents is critical to prevent and control influenza outbreaks. Influenza is associated with the induction of proinflammatory cytokines. Scientists have reported that anti-inflammatory drugs, with pleiotropic effects, reduce the burden of severe influenza diseases. Therefore, statins, which are cardioprotective drugs with anti-inflammatory and immunomodulatory effects, may help patients suffering from influenza virus (IV). This review delineates the potential use of statins as an alternative therapy in treating influenza related illness.
Collapse
|
17
|
Jolly L, Stavrou A, Vanderstoken G, Meliopoulos VA, Habgood A, Tatler AL, Porte J, Knox A, Weinreb P, Violette S, Hussell T, Kolb M, Stampfli MR, Schultz-Cherry S, Jenkins G. Influenza promotes collagen deposition via αvβ6 integrin-mediated transforming growth factor β activation. J Biol Chem 2014; 289:35246-63. [PMID: 25339175 DOI: 10.1074/jbc.m114.582262] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Influenza infection exacerbates chronic pulmonary diseases, including idiopathic pulmonary fibrosis. A central pathway in the pathogenesis of idiopathic pulmonary fibrosis is epithelial injury leading to activation of transforming growth factor β (TGFβ). The mechanism and functional consequences of influenza-induced activation of epithelial TGFβ are unclear. Influenza stimulates toll-like receptor 3 (TLR3), which can increase RhoA activity, a key event prior to activation of TGFβ by the αvβ6 integrin. We hypothesized that influenza would stimulate TLR3 leading to activation of latent TGFβ via αvβ6 integrin in epithelial cells. Using H1152 (IC50 6.1 μm) to inhibit Rho kinase and 6.3G9 to inhibit αvβ6 integrins, we demonstrate their involvement in influenza (A/PR/8/34 H1N1) and poly(I:C)-induced TGFβ activation. We confirm the involvement of TLR3 in this process using chloroquine (IC50 11.9 μm) and a dominant negative TLR3 construct (pZERO-hTLR3). Examination of lungs from influenza-infected mice revealed augmented levels of collagen deposition, phosphorylated Smad2/3, αvβ6 integrin, and apoptotic cells. Finally, we demonstrate that αvβ6 integrin-mediated TGFβ activity following influenza infection promotes epithelial cell death in vitro and enhanced collagen deposition in vivo and that this response is diminished in Smad3 knock-out mice. These data show that H1N1 and poly(I:C) can induce αvβ6 integrin-dependent TGFβ activity in epithelial cells via stimulation of TLR3 and suggest a novel mechanism by which influenza infection may promote collagen deposition in fibrotic lung disease.
Collapse
Affiliation(s)
- Lisa Jolly
- From the Nottingham Respiratory Research Unit, University of Nottingham, Nottingham University Hospitals, Clinical Sciences Building, City Hospital Campus, Nottingham NG5 1PB, United Kingdom
| | - Anastasios Stavrou
- From the Nottingham Respiratory Research Unit, University of Nottingham, Nottingham University Hospitals, Clinical Sciences Building, City Hospital Campus, Nottingham NG5 1PB, United Kingdom
| | - Gilles Vanderstoken
- the McMaster Immunology Research Centre and Firestone Institute at St. Joseph's Health Care, McMaster University, Hamilton, Ontario L8S4L8, Canada, and
| | - Victoria A Meliopoulos
- the Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Anthony Habgood
- From the Nottingham Respiratory Research Unit, University of Nottingham, Nottingham University Hospitals, Clinical Sciences Building, City Hospital Campus, Nottingham NG5 1PB, United Kingdom
| | - Amanda L Tatler
- From the Nottingham Respiratory Research Unit, University of Nottingham, Nottingham University Hospitals, Clinical Sciences Building, City Hospital Campus, Nottingham NG5 1PB, United Kingdom
| | - Joanne Porte
- From the Nottingham Respiratory Research Unit, University of Nottingham, Nottingham University Hospitals, Clinical Sciences Building, City Hospital Campus, Nottingham NG5 1PB, United Kingdom
| | - Alan Knox
- From the Nottingham Respiratory Research Unit, University of Nottingham, Nottingham University Hospitals, Clinical Sciences Building, City Hospital Campus, Nottingham NG5 1PB, United Kingdom
| | - Paul Weinreb
- Biogen Idec Inc., Cambridge, Massachusetts 02142
| | | | - Tracy Hussell
- the Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester M13 9NT, United Kingdom
| | - Martin Kolb
- the McMaster Immunology Research Centre and Firestone Institute at St. Joseph's Health Care, McMaster University, Hamilton, Ontario L8S4L8, Canada, and
| | - Martin R Stampfli
- the McMaster Immunology Research Centre and Firestone Institute at St. Joseph's Health Care, McMaster University, Hamilton, Ontario L8S4L8, Canada, and
| | - Stacey Schultz-Cherry
- the Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Gisli Jenkins
- From the Nottingham Respiratory Research Unit, University of Nottingham, Nottingham University Hospitals, Clinical Sciences Building, City Hospital Campus, Nottingham NG5 1PB, United Kingdom,
| |
Collapse
|
18
|
Cofilin-1 is involved in regulation of actin reorganization during influenza A virus assembly and budding. Biochem Biophys Res Commun 2014; 453:821-5. [DOI: 10.1016/j.bbrc.2014.10.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 10/08/2014] [Indexed: 11/18/2022]
|
19
|
Zhang C, Wu Y, Xuan Z, Zhang S, Wang X, Hao Y, Wu J, Zhang S. p38MAPK, Rho/ROCK and PKC pathways are involved in influenza-induced cytoskeletal rearrangement and hyperpermeability in PMVEC via phosphorylating ERM. Virus Res 2014; 192:6-15. [PMID: 25150189 DOI: 10.1016/j.virusres.2014.07.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 07/04/2014] [Accepted: 07/28/2014] [Indexed: 12/27/2022]
Abstract
Severe influenza infections are featured by acute lung injury, a syndrome of pulmonary microvascular leak. A growing number of evidences have shown that the pulmonary microvascular endothelial cells (PMVEC) are critical target of influenza virus, promoting microvascular leak. It is reported that there are multiple mechanisms by which influenza virus could elicit increased pulmonary endothelial permeability, in both direct and indirect manners. Ezrin/radixin/moesin family proteins, the linkers between plasma membrane and actin cytoskeleton, have been reported to be involved in cell adhesion, motility and may modulate endothelial permeability. Studies have also shown that ERM is phosphorylated in response to various stimuli via p38MAPK, Rho/ROCK or PKC pathways. However, it is unclear that whether influenza infection could induce ERM phosphorylation and its relocalization. In the present study, we have found that there are cytoskeletal reorganization and permeability increases in the course of influenza virus infection, accompanied by upregulated levels of p-ERM. p-ERM's aggregation along the periphery of PMVEC upon influenza virus infection was detected via confocal microscopy. Furthermore, we sought to determine the role of p38MAPK, Rho/ROCK and PKC pathways in ERM phosphorylation as well as their involvement in influenza virus-induced endothelial malfunction. The activation of p38MAPK, Rho/ROCK and PKC pathways upon influenza virus stimulation were observed, as evidenced by the evaluation of phosphorylated p38 (p-p38), phosphorylated MKK (p-MKK) in p38MAPK pathway, ROCK1 in Rho/ROCK pathway and phosphorylated PKC (p-PKC) in PKC pathway. We also showed that virus-induced ERM phosphorylation was reduced by using p38MAPK inhibitor, SB203580 (20 μM), Rho/ROCK inhibitor, Y27632 (20 μM), PKC inhibitor, LY317615 (10 μM). Additionally, influenza virus-induced F-actin reorganization and hyperpermeability were attenuated by pretreatment with SB203580, Y27632 and LY317615. Taken together, we provide the first evidence that p38MAPK, Rho/ROCK and PKC are involved in influenza-induced cytoskeletal changes and permeability increases in PMVEC via phosphorylating ERM.
Collapse
Affiliation(s)
- Chenyue Zhang
- Department of Microbiology and Immunology, Beijing University of Chinese Medicine, Beijing, PR China
| | - Ying Wu
- Department of Microbiology and Immunology, Beijing University of Chinese Medicine, Beijing, PR China.
| | - Zinan Xuan
- Department of Microbiology and Immunology, Beijing University of Chinese Medicine, Beijing, PR China
| | - Shujing Zhang
- Department of Microbiology and Immunology, Beijing University of Chinese Medicine, Beijing, PR China
| | - Xudan Wang
- Department of Microbiology and Immunology, Beijing University of Chinese Medicine, Beijing, PR China
| | - Yu Hao
- Department of Microbiology and Immunology, Beijing University of Chinese Medicine, Beijing, PR China
| | - Jun Wu
- Department of Microbiology and Immunology, Beijing University of Chinese Medicine, Beijing, PR China
| | - Shu Zhang
- Department of Microbiology and Immunology, Beijing University of Chinese Medicine, Beijing, PR China
| |
Collapse
|
20
|
Haidari M, Zhang W, Willerson JT, Dixon RA. Disruption of endothelial adherens junctions by high glucose is mediated by protein kinase C-β-dependent vascular endothelial cadherin tyrosine phosphorylation. Cardiovasc Diabetol 2014; 13:105. [PMID: 25927959 PMCID: PMC4223716 DOI: 10.1186/1475-2840-13-105] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 04/29/2014] [Indexed: 12/17/2022] Open
Abstract
Background Hyperglycemia has been recognized as a primary factor in endothelial barrier dysfunction and in the development of micro- and macrovascular diseases associated with diabetes, but the underlying biochemical mechanisms remain elusive. Tyrosine phosphorylation of vascular endothelial cadherin (VE-cad) leads to the disruption of endothelial adherens junctions and increases the transendothelial migration (TEM) of leukocytes. Methods VE-cad tyrosine phosphorylation, adherens junction integrity and TEM of monocytes in human umbilical vein endothelial cells (HUVECs) treated with high-concentration glucose were evaluated. The role of protein kinase C (PKC) in induction of endothelial cells adherence junction disruption by exposure of HUVECs to high concentration of glucose was explored. Results The treatment of HUVEC with high-concentration glucose increased VE-cad tyrosine phosphorylation, whereas mannitol or 3-O-methyl-D-glucose had no effect. In addition, high-concentration glucose increased the dissociation of the VE-cad–β-catenin complex, activation of the Wnt/β-catenin pathway, and the TEM of monocytes. These alterations were accompanied by the activation of endothelial PKC and increased phosphorylation of ERK and myosin light chain (MLC). High-concentration glucose-induced tyrosine phosphorylation of VE-cad was attenuated by: 1- the inhibition of PKC-β by overexpression of dominant-negative PKC-β 2- inhibition of MLC phosphorylation by overexpression of a nonphosphorylatable dominant-negative form of MLC, 3- the inhibition of actin polymerization by cytochalasin D and 4- the treatment of HUVECs with forskolin (an activator of adenylate cyclase). Conclusions Our findings show that the high-concentration glucose-induced disruption of endothelial adherens junctions is mediated by tyrosine phosphorylation of VE-cad through PKC-β and MLC phosphorylation.
Collapse
Affiliation(s)
- Mehran Haidari
- Department of Internal Medicine, Division of Cardiology, The University of Texas Medical School at Houston, 77030, Houston, TX, USA. .,Texas Heart Institute at St. Luke's Episcopal Hospital, PO Box 20345 C1000, 77030, Houston, TX, USA.
| | - Wei Zhang
- Texas Heart Institute at St. Luke's Episcopal Hospital, PO Box 20345 C1000, 77030, Houston, TX, USA.
| | - James T Willerson
- Department of Internal Medicine, Division of Cardiology, The University of Texas Medical School at Houston, 77030, Houston, TX, USA. .,Texas Heart Institute at St. Luke's Episcopal Hospital, PO Box 20345 C1000, 77030, Houston, TX, USA.
| | - Richard Af Dixon
- Texas Heart Institute at St. Luke's Episcopal Hospital, PO Box 20345 C1000, 77030, Houston, TX, USA.
| |
Collapse
|
21
|
Mehrbod P, Hair-Bejo M, Tengku Ibrahim TA, Omar AR, El Zowalaty M, Ajdari Z, Ideris A. Simvastatin modulates cellular components in influenza A virus-infected cells. Int J Mol Med 2014; 34:61-73. [PMID: 24788303 PMCID: PMC4072341 DOI: 10.3892/ijmm.2014.1761] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 03/24/2014] [Indexed: 12/22/2022] Open
Abstract
Influenza A virus is one of the most important health risks that lead to significant respiratory infections. Continuous antigenic changes and lack of promising vaccines are the reasons for the unsuccessful treatment of influenza. Statins are pleiotropic drugs that have recently served as anti-influenza agents due to their anti-inflammatory activity. In this study, the effect of simvastatin on influenza A-infected cells was investigated. Based on the MTT cytotoxicity test, hemagglutination (HA) assay and qPCR it was found that simvastatin maintained cell viability and decreased the viral load significantly as compared to virus-inoculated cells. The expression of important pro-inflammatory cytokines (tumor necrosis factor-α, interleukin-6 and interferon-γ), which was quantified using ELISA showed that simvastatin decreased the expression of pro-inflammatory cytokines to an average of 2-fold. Furthermore, the modulation of actin filament polymerization was determined using rhodamine staining. Endocytosis and autophagy processes were examined by detecting Rab and RhoA GTPase protein prenylation and LC3 lipidation using western blotting. The results showed that inhibiting GTPase and LC3 membrane localization using simvastatin inhibits influenza replication. Findings of this study provide evidence that modulation of RhoA, Rabs and LC3 may be the underlying mechanisms for the inhibitory effects of simvastatin as an anti-influenza compound.
Collapse
Affiliation(s)
- Parvaneh Mehrbod
- Institute of Bioscience, University Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Mohd Hair-Bejo
- Institute of Bioscience, University Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | | | - Abdul Rahman Omar
- Institute of Bioscience, University Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Mohamed El Zowalaty
- Institute of Bioscience, University Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Zahra Ajdari
- School of Chemical Sciences and Food Technology, Faculty of Science and Technology, University Kebangsaan Malaysia, Bangi, Selangor 43600, Malaysia
| | - Aini Ideris
- Institute of Bioscience, University Putra Malaysia, Serdang, Selangor 43400, Malaysia
| |
Collapse
|
22
|
Van den Broeke C, Jacob T, Favoreel HW. Rho'ing in and out of cells: viral interactions with Rho GTPase signaling. Small GTPases 2014; 5:e28318. [PMID: 24691164 DOI: 10.4161/sgtp.28318] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Rho GTPases are key regulators of actin and microtubule dynamics and organization. Increasing evidence shows that many viruses have evolved diverse interactions with Rho GTPase signaling and manipulate them for their own benefit. In this review, we discuss how Rho GTPase signaling interferes with many steps in the viral replication cycle, especially entry, replication, and spread. Seen the diversity between viruses, it is not surprising that there is considerable variability in viral interactions with Rho GTPase signaling. However, several largely common effects on Rho GTPases and actin architecture and microtubule dynamics have been reported. For some of these processes, the molecular signaling and biological consequences are well documented while for others we just begin to understand them. A better knowledge and identification of common threads in the different viral interactions with Rho GTPase signaling and their ultimate consequences for virus and host may pave the way toward the development of new antiviral drugs that may target different viruses.
Collapse
Affiliation(s)
- Céline Van den Broeke
- Department of Virology, Parasitology, and Immunology; Faculty of Veterinary Medicine; Ghent University; Ghent, Belgium
| | - Thary Jacob
- Department of Virology, Parasitology, and Immunology; Faculty of Veterinary Medicine; Ghent University; Ghent, Belgium
| | - Herman W Favoreel
- Department of Virology, Parasitology, and Immunology; Faculty of Veterinary Medicine; Ghent University; Ghent, Belgium
| |
Collapse
|
23
|
Xiang D, Zheng Y, Duan W, Li X, Yin J, Shigdar S, O'Connor ML, Marappan M, Zhao X, Miao Y, Xiang B, Zheng C. Inhibition of A/Human/Hubei/3/2005 (H3N2) influenza virus infection by silver nanoparticles in vitro and in vivo. Int J Nanomedicine 2013; 8:4103-13. [PMID: 24204140 PMCID: PMC3817021 DOI: 10.2147/ijn.s53622] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Silver nanoparticles (AgNPs) have attracted much attention as antimicrobial agents and have demonstrated efficient inhibitory activity against various viruses, including human immunodeficiency virus, hepatitis B virus, and Tacaribe virus. In this study, we investigated if AgNPs could have antiviral and preventive effects in A/Human/Hubei/3/2005 (H3N2) influenza virus infection. Madin-Darby canine kidney cells infected with AgNP-treated H3N2 influenza virus showed better viability (P<0.05 versus influenza virus control) and no obvious cytopathic effects compared with an influenza virus control group and a group treated with the solvent used for preparation of the AgNPs. Hemagglutination assay indicated that AgNPs could significantly inhibit growth of the influenza virus in Madin-Darby canine kidney cells (P<0.01 versus the influenza virus control). AgNPs significantly reduced cell apoptosis induced by H3N2 influenza virus at three different treatment pathways (P<0.05 versus influenza virus control). H3N2 influenza viruses treated with AgNPs were analyzed by transmission electron microscopy and found to interact with each other, resulting in destruction of morphologic viral structures in a time-dependent manner in a time range of 30 minutes to 2 hours. In addition, intranasal AgNP administration in mice significantly enhanced survival after infection with the H3N2 influenza virus. Mice treated with AgNPs showed lower lung viral titer levels and minor pathologic lesions in lung tissue, and had a marked survival benefit during secondary intranasal passage in vivo. These results provide evidence that AgNPs have beneficial effects in preventing H3N2 influenza virus infection both in vitro and in vivo, and demonstrate that AgNPs can be used as potential therapeutics for inhibiting outbreaks of influenza.
Collapse
Affiliation(s)
- Dongxi Xiang
- School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Antoine TE, Shukla D. Inhibition of myosin light chain kinase can be targeted for the development of new therapies against herpes simplex virus type-1 infection. Antivir Ther 2013; 19:15-29. [PMID: 23813409 DOI: 10.3851/imp2661] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Herpes simplex virus type-1 (HSV-1) is the leading cause of infectious blindness worldwide. Through a multistep process, HSV-1 enters into naturally susceptible human corneal epithelial (HCE) cells where it establishes an optimal environment for viral replication and spread. HSV-1 employment of cytoskeletal proteins, kinases, and cell signalling pathways is crucial for the entry process. METHODS Here we demonstrate that non-muscle myosin IIA (NM-IIA) and/or a myosin activating kinase, myosin light chain kinase (MLCK), can be targeted for the development of new and effective therapies against HSV-1. HCE cells were incubated with MLCK inhibitors ML-7 and ML-9 and NM-IIA inhibitor blebbistatin. Following the application of inhibitors, HSV-1 entry and spread to neighbouring HCE cells was evaluated. RESULTS Upon application of MLCK inhibitors ML-7 and ML-9 and NM-IIA inhibitor blebbistatin, HSV-1 entry into HCE cells was significantly decreased. Furthermore, dramatic impairment of glycoprotein-mediated membrane fusion was seen in cells treated with MLCK inhibitors, thus establishing a role for MLCK activation in cell-to-cell fusion and multinucleated syncytial cell formation. These results also indicate that the activation of motor protein NM-IIA by MLCK is crucial for cytoskeletal changes required for HSV-1 infection of corneal cells. CONCLUSIONS We provide new evidence that NM-IIA and MLCK can be used as effective antiviral targets against ocular herpes.
Collapse
Affiliation(s)
- Thessicar E Antoine
- Department of Ophthalmology & Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | | |
Collapse
|
25
|
Taengchaiyaphum S, Havanapan PO, Roytrakul S, Lo CF, Sritunyalucksana K, Krittanai C. Phosphorylation is required for myosin regulatory light chain (PmMRLC) to control yellow head virus infection in shrimp hemocytes. FISH & SHELLFISH IMMUNOLOGY 2013; 34:1042-1049. [PMID: 23337109 DOI: 10.1016/j.fsi.2012.12.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 12/17/2012] [Accepted: 12/23/2012] [Indexed: 06/01/2023]
Abstract
The cellular signal-transduction process is largely controlled by protein phosphorylation. Shrimp infected with yellow head virus show dramatic changes in their hemocyte phosphoproteomic patterns, and aberrant activation of phosphorylation-based signaling networks has been implicated in a number of diseases. In this study, we focused on phosphorylation of Penaeus monodon myosin regulatory light chain (PmMRLC) that is induced at an early hour post YHV infection and is concomitant with cellular actin remodeling. In shrimp cell cultures, this phosphorylation was inhibited by the myosin light chain kinase (MLCK) inhibitors ML-7 and ML-9, suggesting that PmMLC phosphorylation is MLCK pathway-dependent. Blocking PmMRLC phosphorylation resulted in increased replication of YHV and reduction of phagocytic activities of shrimp hemocytes called semigranular cells (SGC) and granular cells (GC). Injection of MLCK inhibitors prior to YHV challenge resulted in dose-dependent elevation in quantity of YHV-positive GC and cytoplasmic YHV protein, coincident with high shrimp mortality. Altogether, we demonstrated that PmMRLC phosphorylation increases after YHV infection in shrimp and that inhibition of the phosphorylation leads to increased YHV replication, reduced hemocyte phagocytic activity (probably through actin remodeling) and subsequent shrimp death. Thus, further studies on the MLCK activation pathway may lead to new strategies in development and implementation of therapy for YHV infections in shrimp.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Blotting, Western
- Chromatography, Liquid
- Cloning, Molecular
- DNA, Complementary/genetics
- DNA, Complementary/metabolism
- Electrophoresis, Gel, Two-Dimensional
- Fluorescent Antibody Technique
- Hemocytes/chemistry
- Hemocytes/metabolism
- Hemocytes/virology
- Molecular Sequence Data
- Myosin Light Chains/chemistry
- Myosin Light Chains/genetics
- Myosin Light Chains/metabolism
- Penaeidae/chemistry
- Penaeidae/genetics
- Penaeidae/metabolism
- Penaeidae/virology
- Phosphoproteins/chemistry
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- Phosphorylation
- Phylogeny
- Proteome/chemistry
- Proteome/genetics
- Proteome/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Roniviridae/immunology
- Sequence Alignment
- Sequence Analysis, DNA
- Tandem Mass Spectrometry
Collapse
Affiliation(s)
- Suparat Taengchaiyaphum
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Salaya, Nakhonpathom 73170, Thailand
| | | | | | | | | | | |
Collapse
|
26
|
Structure-based discovery of the novel antiviral properties of naproxen against the nucleoprotein of influenza A virus. Antimicrob Agents Chemother 2013; 57:2231-42. [PMID: 23459490 DOI: 10.1128/aac.02335-12] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The nucleoprotein (NP) binds the viral RNA genome and associates with the polymerase in a ribonucleoprotein complex (RNP) required for transcription and replication of influenza A virus. NP has no cellular counterpart, and the NP sequence is highly conserved, which led to considering NP a hot target in the search for antivirals. We report here that monomeric nucleoprotein can be inhibited by a small molecule binding in its RNA binding groove, resulting in a novel antiviral against influenza A virus. We identified naproxen, an anti-inflammatory drug that targeted the nucleoprotein to inhibit NP-RNA association required for NP function, by virtual screening. Further docking and molecular dynamics (MD) simulations identified in the RNA groove two NP-naproxen complexes of similar levels of interaction energy. The predicted naproxen binding sites were tested using the Y148A, R152A, R355A, and R361A proteins carrying single-point mutations. Surface plasmon resonance, fluorescence, and other in vitro experiments supported the notion that naproxen binds at a site identified by MD simulations and showed that naproxen competed with RNA binding to wild-type (WT) NP and protected active monomers of the nucleoprotein against proteolytic cleavage. Naproxen protected Madin-Darby canine kidney (MDCK) cells against viral challenges with the H1N1 and H3N2 viral strains and was much more effective than other cyclooxygenase inhibitors in decreasing viral titers of MDCK cells. In a mouse model of intranasal infection, naproxen treatment decreased the viral titers in mice lungs. In conclusion, naproxen is a promising lead compound for novel antivirals against influenza A virus that targets the nucleoprotein in its RNA binding groove.
Collapse
|
27
|
Hutchinson EC, Denham EM, Thomas B, Trudgian DC, Hester SS, Ridlova G, York A, Turrell L, Fodor E. Mapping the phosphoproteome of influenza A and B viruses by mass spectrometry. PLoS Pathog 2012; 8:e1002993. [PMID: 23144613 PMCID: PMC3493474 DOI: 10.1371/journal.ppat.1002993] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 08/29/2012] [Indexed: 01/06/2023] Open
Abstract
Protein phosphorylation is a common post-translational modification in eukaryotic cells and has a wide range of functional effects. Here, we used mass spectrometry to search for phosphorylated residues in all the proteins of influenza A and B viruses--to the best of our knowledge, the first time such a comprehensive approach has been applied to a virus. We identified 36 novel phosphorylation sites, as well as confirming 3 previously-identified sites. N-terminal processing and ubiquitination of viral proteins was also detected. Phosphorylation was detected in the polymerase proteins (PB2, PB1 and PA), glycoproteins (HA and NA), nucleoprotein (NP), matrix protein (M1), ion channel (M2), non-structural protein (NS1) and nuclear export protein (NEP). Many of the phosphorylation sites detected were conserved between influenza virus genera, indicating the fundamental importance of phosphorylation for all influenza viruses. Their structural context indicates roles for phosphorylation in regulating viral entry and exit (HA and NA); nuclear localisation (PB2, M1, NP, NS1 and, through NP and NEP, of the viral RNA genome); and protein multimerisation (NS1 dimers, M2 tetramers and NP oligomers). Using reverse genetics we show that for NP of influenza A viruses phosphorylation sites in the N-terminal NLS are important for viral growth, whereas mutating sites in the C-terminus has little or no effect. Mutating phosphorylation sites in the oligomerisation domains of NP inhibits viral growth and in some cases transcription and replication of the viral RNA genome. However, constitutive phosphorylation of these sites is not optimal. Taken together, the conservation, structural context and functional significance of phosphorylation sites implies a key role for phosphorylation in influenza biology. By identifying phosphorylation sites throughout the proteomes of influenza A and B viruses we provide a framework for further study of phosphorylation events in the viral life cycle and suggest a range of potential antiviral targets.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ervin Fodor
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
28
|
Haidari M, Zhang W, Caivano A, Chen Z, Ganjehei L, Mortazavi A, Stroud C, Woodside DG, Willerson JT, Dixon RAF. Integrin α2β1 mediates tyrosine phosphorylation of vascular endothelial cadherin induced by invasive breast cancer cells. J Biol Chem 2012; 287:32981-92. [PMID: 22833667 DOI: 10.1074/jbc.m112.395905] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The molecular mechanisms that regulate the endothelial response during transendothelial migration (TEM) of invasive cancer cells remain elusive. Tyrosine phosphorylation of vascular endothelial cadherin (VE-cad) has been implicated in the disruption of endothelial cell adherens junctions and in the diapedesis of metastatic cancer cells. We sought to determine the signaling mechanisms underlying the disruption of endothelial adherens junctions after the attachment of invasive breast cancer cells. Attachment of invasive breast cancer cells (MDA-MB-231) to human umbilical vein endothelial cells induced tyrosine phosphorylation of VE-cad, dissociation of β-catenin from VE-cad, and retraction of endothelial cells. Breast cancer cell-induced tyrosine phosphorylation of VE-cad was mediated by activation of the H-Ras/Raf/MEK/ERK signaling cascade and depended on the phosphorylation of endothelial myosin light chain (MLC). The inhibition of H-Ras or MLC in endothelial cells inhibited TEM of MDA-MB-231 cells. VE-cad tyrosine phosphorylation in endothelial cells induced by the attachment of MDA-MB-231 cells was mediated by MDA-MB-231 α(2)β(1) integrin. Compared with highly invasive MDA-MB-231 breast cancer cells, weakly invasive MCF-7 breast cancer cells expressed lower levels of α(2)β(1) integrin. TEM of MCF-7 as well as induction of VE-cad tyrosine phosphorylation and dissociation of β-catenin from the VE-cad complex by MCF-7 cells were lower than in MDA-MB-231 cells. These processes were restored when MCF-7 cells were treated with β(1)-activating antibody. Moreover, the response of endothelial cells to the attachment of prostatic (PC-3) and ovarian (SKOV3) invasive cancer cells resembled the response to MDA-MB-231 cells. Our study showed that the MDA-MB-231 cell-induced disruption of endothelial adherens junction integrity is triggered by MDA-MB-231 cell α(2)β(1) integrin and is mediated by H-Ras/MLC-induced tyrosine phosphorylation of VE-cad.
Collapse
Affiliation(s)
- Mehran Haidari
- Department of Internal Medicine, Division of Cardiology, University of Texas Medical School at Houston, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Defensins are small, multifunctional cationic peptides. They typically contain six conserved cysteines whose three intramolecular disulfides stabilize a largely β-sheet structure. This review of human α-defensins begins by describing their evolution, including their likely relationship to the Big Defensins of invertebrates, and their kinship to the β-defensin peptides of many if not all vertebrates, and the θ-defensins found in certain non-human primates. We provide a short history of the search for leukocyte-derived microbicidal molecules, emphasizing the roles played by luck (good), preconceived notions (mostly bad), and proper timing (essential). The antimicrobial, antiviral, antitoxic, and binding properties of human α-defensins are summarized. The structural features of α-defensins are described extensively and their functional contributions are assessed. The properties of HD6, an enigmatic Paneth cell α-defensin, are contrasted with those of the four myeloid α-defensins (HNP1-4) and of HD5, the other α-defensin of human Paneth cells. The review ends with a decalogue that may assist researchers or students interested in α-defensins and related aspects of neutrophil function.
Collapse
Affiliation(s)
- Robert I Lehrer
- Department of Medicine and Molecular Biology Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1688, USA.
| | | |
Collapse
|
30
|
Sobo K, Stuart AD, Rubbia-Brandt L, Brown TDK, McKee TA. Echovirus 11 infection induces dramatic changes in the actin cytoskeleton of polarized Caco-2 cells. J Gen Virol 2011; 93:475-487. [PMID: 22090210 DOI: 10.1099/vir.0.037697-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Binding of echovirus 11 strain 207 (EV11-207) to Caco-2 monolayers results in rapid transfer of the virus to tight junctions prior to uptake. Using a confocal microscopy based-method, this study quantified the spatiotemporal distribution of actin during the time course of infection by EV11-207 in Caco-2 polarized cells. It was found that binding of EV11-207 to the apical surface resulted in rapid rearrangement of the actin cytoskeleton, concomitant with transport of the virus particles to tight junctions. By interfering with the actin network dynamics, the virus remained trapped at the cell surface, leading to abortion of infection. In addition, it was observed that at 4 h post-infection, concomitant with the detection of virus replication, actin filament was depolymerized and degraded. Finally, it was shown that the mechanisms leading to loss of actin were independent of viral genome synthesis, indicating a potential role for the viral protein synthesis seen in late infection. These data confirmed a previous study on the requirement for an intact actin cytoskeleton for EV11-207 to infect cells and reinforce the notion of actin cytoskeleton subversion by picornaviruses during infection in polarized epithelial cells.
Collapse
Affiliation(s)
- Komla Sobo
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.,Cell Biology Unit, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK.,Department of Clinical Pathology, University of Geneva, 1 Rue Michel Servet, 1211 Geneva 4, Switzerland
| | - Amanda D Stuart
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Laura Rubbia-Brandt
- Department of Clinical Pathology, University of Geneva, 1 Rue Michel Servet, 1211 Geneva 4, Switzerland
| | - T David K Brown
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Thomas A McKee
- Department of Clinical Pathology, University of Geneva, 1 Rue Michel Servet, 1211 Geneva 4, Switzerland
| |
Collapse
|