1
|
Ongun MC, Tonyali NV, Kaplan O, Deger I, Celebier M, Basci Akduman NE, Sahin D, Yucel A, Babaoglu MO. Effects of genetic polymorphisms of CYP2J2, CYP2C9, CYP2C19, CYP4F2, CYP4F3 and CYP4A11 enzymes in preeclampsia and gestational hypertension. Placenta 2023; 137:88-95. [PMID: 37141740 DOI: 10.1016/j.placenta.2023.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 04/04/2023] [Accepted: 04/26/2023] [Indexed: 05/06/2023]
Abstract
INTRODUCTION The aim of this study was to investigate the effects of cytochrome P450 (CYP) 2J2, CYP2C9, CYP2C19 and CYP4F2, CYP4F3 and CYP4A11 genetic polymorphisms in preeclampsia and gestational hypertension (GHT) patients in a sample of Turkish population. MATERIALS-METHODS Patients (n = 168; 110 GHT and 58 preeclampsia) and healthy pregnant women (n = 155, controls) participated in the study. For genotyping, polymerase chain reaction (PCR) and restriction analysis (RFLP) were used. Substance levels were measured using LC-MS. RESULTS Plasma DHET levels in GHT and preeclampsia patients were significantly lower than those in the control group (62.7%, 66.3% vs.100.0%, respectively, p < 0.0001). An increase in CYP2J2*7 allele frequency was observed in the preeclampsia group, as compared to GHT group (12.1% vs. 4.5%; odds ratio, O.R. = 2.88, p < 0.01). The frequencies of CYP2C19*2 and*17 alleles were higher in GHT group as compared to the control group (17.7% vs. 11.6%, O.R. = 1.99, p < 0.01; and 28.6% vs.18.4%, O.R. = 2.03, p < 0.01, respectively). An increased frequency of CYP4F3 rs3794987 G allele was found in GHT group as compared to the control group (48.0% vs. 38.0%; O.R. = 1.53, p < 0.01). DISCUSSION DHET plasma levels were significantly reduced in hypertensive pregnant groups as compared to the control group. The allele frequency distributions for CYP2J2*7, CYP2C19 *2, *17 and CYP4F3 rs3794987 were significantly different in hypertensive pregnant patients as compared to the healthy control subjects. Our results may suggest that investigated genetic polymorphisms may be useful in diagnosis and clinical management of GHT and preeclampsia patients.
Collapse
Affiliation(s)
- Mert C Ongun
- Hacettepe University, Faculty of Medicine, Department of Medical Pharmacology, Ankara, Turkey.
| | | | - Ozan Kaplan
- Hacettepe University, Faculty of Pharmacy, Department of Analytical Chemistry, Ankara, Turkey
| | - Ilter Deger
- Hacettepe University, Faculty of Medicine, Department of Medical Pharmacology, Ankara, Turkey
| | - Mustafa Celebier
- Hacettepe University, Faculty of Pharmacy, Department of Analytical Chemistry, Ankara, Turkey
| | | | - Dilek Sahin
- University of Health Sciences, Ankara City Hospital, Ankara, Turkey
| | - Aykan Yucel
- University of Health Sciences, Ankara City Hospital, Ankara, Turkey
| | - Melih O Babaoglu
- Hacettepe University, Faculty of Medicine, Department of Medical Pharmacology, Ankara, Turkey
| |
Collapse
|
2
|
Demichev V, Tober-Lau P, Nazarenko T, Lemke O, Kaur Aulakh S, Whitwell HJ, Röhl A, Freiwald A, Mittermaier M, Szyrwiel L, Ludwig D, Correia-Melo C, Lippert LJ, Helbig ET, Stubbemann P, Olk N, Thibeault C, Grüning NM, Blyuss O, Vernardis S, White M, Messner CB, Joannidis M, Sonnweber T, Klein SJ, Pizzini A, Wohlfarter Y, Sahanic S, Hilbe R, Schaefer B, Wagner S, Machleidt F, Garcia C, Ruwwe-Glösenkamp C, Lingscheid T, Bosquillon de Jarcy L, Stegemann MS, Pfeiffer M, Jürgens L, Denker S, Zickler D, Spies C, Edel A, Müller NB, Enghard P, Zelezniak A, Bellmann-Weiler R, Weiss G, Campbell A, Hayward C, Porteous DJ, Marioni RE, Uhrig A, Zoller H, Löffler-Ragg J, Keller MA, Tancevski I, Timms JF, Zaikin A, Hippenstiel S, Ramharter M, Müller-Redetzky H, Witzenrath M, Suttorp N, Lilley K, Mülleder M, Sander LE, Kurth F, Ralser M. A proteomic survival predictor for COVID-19 patients in intensive care. PLOS DIGITAL HEALTH 2022; 1:e0000007. [PMID: 36812516 PMCID: PMC9931303 DOI: 10.1371/journal.pdig.0000007] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/18/2021] [Indexed: 02/07/2023]
Abstract
Global healthcare systems are challenged by the COVID-19 pandemic. There is a need to optimize allocation of treatment and resources in intensive care, as clinically established risk assessments such as SOFA and APACHE II scores show only limited performance for predicting the survival of severely ill COVID-19 patients. Additional tools are also needed to monitor treatment, including experimental therapies in clinical trials. Comprehensively capturing human physiology, we speculated that proteomics in combination with new data-driven analysis strategies could produce a new generation of prognostic discriminators. We studied two independent cohorts of patients with severe COVID-19 who required intensive care and invasive mechanical ventilation. SOFA score, Charlson comorbidity index, and APACHE II score showed limited performance in predicting the COVID-19 outcome. Instead, the quantification of 321 plasma protein groups at 349 timepoints in 50 critically ill patients receiving invasive mechanical ventilation revealed 14 proteins that showed trajectories different between survivors and non-survivors. A predictor trained on proteomic measurements obtained at the first time point at maximum treatment level (i.e. WHO grade 7), which was weeks before the outcome, achieved accurate classification of survivors (AUROC 0.81). We tested the established predictor on an independent validation cohort (AUROC 1.0). The majority of proteins with high relevance in the prediction model belong to the coagulation system and complement cascade. Our study demonstrates that plasma proteomics can give rise to prognostic predictors substantially outperforming current prognostic markers in intensive care.
Collapse
Affiliation(s)
- Vadim Demichev
- Charité–Universitätsmedizin Berlin, Department of Biochemistry, Berlin, Germany
- The Francis Crick Institute, Molecular Biology of Metabolism Laboratory, London, United Kingdom
- The University of Cambridge, Department of Biochemistry and Cambridge Centre for Proteomics, Cambridge, United Kingdom
| | - Pinkus Tober-Lau
- Charité–Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory Medicine, Berlin, Germany
| | - Tatiana Nazarenko
- University College London, Department of Mathematics, London, United Kingdom
- University College London, Department of Women’s Cancer, EGA Institute for Women’s Health, London, United Kingdom
| | - Oliver Lemke
- Charité–Universitätsmedizin Berlin, Department of Biochemistry, Berlin, Germany
| | - Simran Kaur Aulakh
- The Francis Crick Institute, Molecular Biology of Metabolism Laboratory, London, United Kingdom
| | - Harry J. Whitwell
- National Phenome Centre and Imperial Clinical Phenotyping Centre, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
- Lobachevsky University, Laboratory of Systems Medicine of Healthy Ageing, Nizhny Novgorod, Russia
- Imperial College London, Section of Bioanalytical Chemistry, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, London, United Kingdom
| | - Annika Röhl
- Charité–Universitätsmedizin Berlin, Department of Biochemistry, Berlin, Germany
| | - Anja Freiwald
- Charité–Universitätsmedizin Berlin, Department of Biochemistry, Berlin, Germany
| | - Mirja Mittermaier
- Charité–Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory Medicine, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Lukasz Szyrwiel
- The Francis Crick Institute, Molecular Biology of Metabolism Laboratory, London, United Kingdom
| | - Daniela Ludwig
- Charité–Universitätsmedizin Berlin, Department of Biochemistry, Berlin, Germany
| | - Clara Correia-Melo
- The Francis Crick Institute, Molecular Biology of Metabolism Laboratory, London, United Kingdom
| | - Lena J. Lippert
- Charité–Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory Medicine, Berlin, Germany
| | - Elisa T. Helbig
- Charité–Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory Medicine, Berlin, Germany
| | - Paula Stubbemann
- Charité–Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory Medicine, Berlin, Germany
| | - Nadine Olk
- Charité–Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory Medicine, Berlin, Germany
| | - Charlotte Thibeault
- Charité–Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory Medicine, Berlin, Germany
| | - Nana-Maria Grüning
- Charité–Universitätsmedizin Berlin, Department of Biochemistry, Berlin, Germany
| | - Oleg Blyuss
- Lobachevsky University, Department of Applied Mathematics, Nizhny Novgorod, Russia
- University of Hertfordshire, School of Physics, Astronomy and Mathematics, Hatfield, United Kingdom
- Sechenov First Moscow State Medical University, Department of Paediatrics and Paediatric Infectious Diseases, Moscow, Russia
| | - Spyros Vernardis
- The Francis Crick Institute, Molecular Biology of Metabolism Laboratory, London, United Kingdom
| | - Matthew White
- The Francis Crick Institute, Molecular Biology of Metabolism Laboratory, London, United Kingdom
| | - Christoph B. Messner
- Charité–Universitätsmedizin Berlin, Department of Biochemistry, Berlin, Germany
- The Francis Crick Institute, Molecular Biology of Metabolism Laboratory, London, United Kingdom
| | - Michael Joannidis
- Medical University Innsbruck, Division of Intensive Care and Emergency Medicine, Department of Internal Medicine, Innsbruck, Austria
| | - Thomas Sonnweber
- Medical University of Innsbruck, Department of Internal Medicine II, Innsbruck, Austria
| | - Sebastian J. Klein
- Medical University Innsbruck, Division of Intensive Care and Emergency Medicine, Department of Internal Medicine, Innsbruck, Austria
| | - Alex Pizzini
- Medical University of Innsbruck, Department of Internal Medicine II, Innsbruck, Austria
| | - Yvonne Wohlfarter
- Medical University of Innsbruck, Institute of Human Genetics, Innsbruck, Austria
| | - Sabina Sahanic
- Medical University of Innsbruck, Department of Internal Medicine II, Innsbruck, Austria
| | - Richard Hilbe
- Medical University of Innsbruck, Department of Internal Medicine II, Innsbruck, Austria
| | - Benedikt Schaefer
- Medical University of Innsbruck, Christian Doppler Laboratory for Iron and Phosphate Biology, Department of Internal Medicine I, Innsbruck, Austria
| | - Sonja Wagner
- Medical University of Innsbruck, Christian Doppler Laboratory for Iron and Phosphate Biology, Department of Internal Medicine I, Innsbruck, Austria
| | - Felix Machleidt
- Charité–Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory Medicine, Berlin, Germany
| | - Carmen Garcia
- Charité–Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory Medicine, Berlin, Germany
| | - Christoph Ruwwe-Glösenkamp
- Charité–Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory Medicine, Berlin, Germany
| | - Tilman Lingscheid
- Charité–Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory Medicine, Berlin, Germany
| | - Laure Bosquillon de Jarcy
- Charité–Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory Medicine, Berlin, Germany
| | - Miriam S. Stegemann
- Charité–Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory Medicine, Berlin, Germany
| | - Moritz Pfeiffer
- Charité–Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory Medicine, Berlin, Germany
| | - Linda Jürgens
- Charité–Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory Medicine, Berlin, Germany
| | - Sophy Denker
- Charité–Universitätsmedizin Berlin, Medical Department of Hematology, Oncology & Tumor Immunology, Virchow Campus & Molekulares Krebsforschungszentrum, Berlin, Germany
| | - Daniel Zickler
- Charité–Universitätsmedizin Berlin, Department of Nephrology and Internal Intensive Care Medicine, Berlin, Germany
| | - Claudia Spies
- Charité–Universitätsmedizin Berlin, Department of Anesthesiology and Intensive Care, Berlin, Germany
| | - Andreas Edel
- Charité–Universitätsmedizin Berlin, Department of Anesthesiology and Intensive Care, Berlin, Germany
| | - Nils B. Müller
- Charité–Universitätsmedizin Berlin, Department of Nephrology and Internal Intensive Care Medicine, Berlin, Germany
| | - Philipp Enghard
- Charité–Universitätsmedizin Berlin, Department of Nephrology and Internal Intensive Care Medicine, Berlin, Germany
| | - Aleksej Zelezniak
- The Francis Crick Institute, Molecular Biology of Metabolism Laboratory, London, United Kingdom
- Chalmers University of Technology, Department of Biology and Biological Engineering, Gothenburg, Sweden
| | - Rosa Bellmann-Weiler
- Medical University of Innsbruck, Department of Internal Medicine II, Innsbruck, Austria
| | - Günter Weiss
- Medical University of Innsbruck, Department of Internal Medicine II, Innsbruck, Austria
| | - Archie Campbell
- University of Edinburgh, Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, United Kingdom
- University of Edinburgh, Usher Institute, Edinburgh, United Kingdom
| | - Caroline Hayward
- University of Edinburgh, MRC Human Genetics Unit, Institute of Genetics and Cancer, Edinburgh, United Kingdom
| | - David J. Porteous
- University of Edinburgh, Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, United Kingdom
- University of Edinburgh, Usher Institute, Edinburgh, United Kingdom
| | - Riccardo E. Marioni
- University of Edinburgh, Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, United Kingdom
| | - Alexander Uhrig
- Charité–Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory Medicine, Berlin, Germany
| | - Heinz Zoller
- Medical University of Innsbruck, Christian Doppler Laboratory for Iron and Phosphate Biology, Department of Internal Medicine I, Innsbruck, Austria
| | - Judith Löffler-Ragg
- Medical University of Innsbruck, Department of Internal Medicine II, Innsbruck, Austria
| | - Markus A. Keller
- Medical University of Innsbruck, Institute of Human Genetics, Innsbruck, Austria
| | - Ivan Tancevski
- Medical University of Innsbruck, Department of Internal Medicine II, Innsbruck, Austria
| | - John F. Timms
- University College London, Department of Women’s Cancer, EGA Institute for Women’s Health, London, United Kingdom
| | - Alexey Zaikin
- University College London, Department of Mathematics, London, United Kingdom
- University College London, Department of Women’s Cancer, EGA Institute for Women’s Health, London, United Kingdom
- Lobachevsky University, Laboratory of Systems Medicine of Healthy Ageing, Nizhny Novgorod, Russia
- Centre for Analysis of Complex Systems, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Stefan Hippenstiel
- Charité–Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory Medicine, Berlin, Germany
- German Centre for Lung Research, Germany
| | - Michael Ramharter
- Bernhard Nocht Institute for Tropical Medicine, Department of Tropical Medicine, and University Medical Center Hamburg-Eppendorf, Department of Medicine, Hamburg, Germany
| | - Holger Müller-Redetzky
- Charité–Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory Medicine, Berlin, Germany
| | - Martin Witzenrath
- Charité–Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory Medicine, Berlin, Germany
- German Centre for Lung Research, Germany
| | - Norbert Suttorp
- Charité–Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory Medicine, Berlin, Germany
- German Centre for Lung Research, Germany
| | - Kathryn Lilley
- The University of Cambridge, Department of Biochemistry and Cambridge Centre for Proteomics, Cambridge, United Kingdom
| | - Michael Mülleder
- Charité–Universitätsmedizin Berlin, Core Facility—High-Throughput Mass Spectrometry, Berlin, Germany
| | - Leif Erik Sander
- Charité–Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory Medicine, Berlin, Germany
- German Centre for Lung Research, Germany
| | | | - Florian Kurth
- Charité–Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory Medicine, Berlin, Germany
- Bernhard Nocht Institute for Tropical Medicine, Department of Tropical Medicine, and University Medical Center Hamburg-Eppendorf, Department of Medicine, Hamburg, Germany
| | - Markus Ralser
- Charité–Universitätsmedizin Berlin, Department of Biochemistry, Berlin, Germany
- The Francis Crick Institute, Molecular Biology of Metabolism Laboratory, London, United Kingdom
| |
Collapse
|
3
|
Identification of Aggravation-Predicting Gene Polymorphisms in Coronavirus Disease 2019 Patients Using a Candidate Gene Approach Associated With Multiple Phase Pathogenesis: A Study in a Japanese City of 1 Million People. Crit Care Explor 2021; 3:e0576. [PMID: 34765983 PMCID: PMC8575431 DOI: 10.1097/cce.0000000000000576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The pathology caused by the coronavirus disease 2019 is mediated by host-mediated lung inflammation, driving severity, and mortality. Polymorphisms in genes encoding host inflammation and immune-related molecules may be associated with the development of serious pathologies, and identifying such gene polymorphisms may lead to the identification of therapeutic targets. OBJECTIVES We attempted to identify aggravation-predicting gene polymorphisms. DESIGN We use a candidate gene approach associated with multiple phase pathogenesis in coronavirus disease 2019 patients among a cohort in Hiroshima, a city with a population of 1 million, in Japan. DNA samples from the study populations were genotyped for 34 functional polymorphisms from 14 distinct candidate genes, which encode proteins related to viral cell entry, regulation of viral replication, innate immune modulators, regulatory cytokines, and effector cytokines. SETTING AND PARTICIPANTS Three core hospitals providing different services for patients with coronavirus disease 2019 under administrative control. A total of 230 patients with coronavirus disease 2019 were recruited from March 1, 2020, to March 31, 2021. MAIN RESULTS AND MEASUREMENTS Among the 14 genes, we found rs1131454 in OAS1 and rs1143627 in IL1B genes as independent genetic factors associated with disease severity (adjusted odds ratio = 7.1 and 4.6 in the dominant model, respectively). Furthermore, we investigated the effect of multiple phase pathogenesis of coronavirus disease 2019 with unbiased multifactor dimensionality reduction analysis and identified a four-gene model with rs1131454 (OAS1), rs1143627 (IL1B), rs2074192 (ACE2), and rs11003125 (MBL). By combining these polygenetic factors with polyclinical factors, including age, sex, higher body mass index, and the presence of diabetes and hypertension, we proposed a composite risk model with a high area under the curve, sensitivity, and probability (0.917, 96.4%, and 74.3%, respectively) in the receiver operating characteristic curve analysis. CONCLUSIONS AND RELEVANCE We successfully identified significant genetic factors in OAS1 and IL1B genes using a candidate gene approach study as valuable information for further mechanistic investigation and predictive model building.
Collapse
|
4
|
Dos Santos ACM, Dos Santos BRC, Dos Santos BB, de Moura EL, Ferreira JM, Dos Santos LKC, Oliveira SP, Dias RBF, Pereira E Silva AC, de Farias KF, de Souza Figueiredo EVM. Genetic polymorphisms as multi-biomarkers in severe acute respiratory syndrome (SARS) by coronavirus infection: A systematic review of candidate gene association studies. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2021; 93:104846. [PMID: 33933633 PMCID: PMC8084602 DOI: 10.1016/j.meegid.2021.104846] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/27/2021] [Accepted: 04/01/2021] [Indexed: 12/30/2022]
Abstract
The Severe acute respiratory syndrome may be caused by coronavirus disease which has resulted in a global pandemic. Polymorphisms in the population play a role in susceptibility to severity. We aimed to perform a systematic review related to the effect of single nucleotide polymorphisms in the development of severe acute respiratory syndrome (SARS). Twenty-eight eligible articles published were identified in PubMed, ScienceDirect, Web of Science, PMC Central and Portal BVS and additional records, with 20 studies performed in China. Information on study characteristics, genetic polymorphisms, and comorbidities was extracted. Study quality was assessed by the STrengthening the REporting of Genetic Association (STREGA) guideline. Few studies investigated the presence of polymorphisms in HLA, ACE1, OAS-1, MxA, PKR, MBL, E-CR1, FcγRIIA, MBL2, L-SIGN (CLEC4M), IFNG, CD14, ICAM3, RANTES, IL-12 RB1, TNFA, CXCL10/IP-10, CD209 (DC-SIGN), AHSG, CYP4F3 and CCL2 with the susceptibility or protection to SARS-Cov. This review provides comprehensive evidence of the association between genetic polymorphisms and susceptibility or protection to severity SARS-CoV. The literature about coronavirus infection, susceptibility to severe acute respiratory syndrome (SARS) and genetic variations is scarce. Further studies are necessary to provide more concrete evidence, mainly related to Covid-19.
Collapse
Affiliation(s)
- Ana Caroline Melo Dos Santos
- Laboratório de Biologia Molecular e Expressão Gênica, Postgraduate Program in Health Sciences, Federal University of Alagoas, Maceió, Alagoas, Brazil; Instituto de Ciências Biológicas e da Saúde (ICBS), Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Bárbara Rayssa Correia Dos Santos
- Laboratório de Biologia Molecular e Expressão Gênica, Postgraduate Program in Health Sciences, Federal University of Alagoas, Maceió, Alagoas, Brazil; Instituto de Ciências Biológicas e da Saúde (ICBS), Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Bruna Brandão Dos Santos
- Laboratório de Biologia Molecular e Expressão Gênica, Postgraduate Program in Health Sciences, Federal University of Alagoas, Maceió, Alagoas, Brazil; Instituto de Ciências Biológicas e da Saúde (ICBS), Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Edilson Leite de Moura
- Laboratório de Biologia Molecular e Expressão Gênica, Postgraduate Program in Health Sciences, Federal University of Alagoas, Maceió, Alagoas, Brazil; Instituto de Ciências Biológicas e da Saúde (ICBS), Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Jean Moisés Ferreira
- Laboratório de Biologia Molecular e Expressão Gênica, Postgraduate Program in Health Sciences, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Luana Karen Correia Dos Santos
- Laboratório de Biologia Molecular e Expressão Gênica, Postgraduate Program in Health Sciences, Federal University of Alagoas, Maceió, Alagoas, Brazil; Instituto de Ciências Biológicas e da Saúde (ICBS), Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Susana Paiva Oliveira
- Laboratório de Biologia Molecular e Expressão Gênica, Postgraduate Program in Health Sciences, Federal University of Alagoas, Maceió, Alagoas, Brazil; Instituto de Ciências Biológicas e da Saúde (ICBS), Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Renise Bastos Farias Dias
- Laboratório de Biologia Molecular e Expressão Gênica, Postgraduate Program in Health Sciences, Federal University of Alagoas, Maceió, Alagoas, Brazil; Instituto de Ciências Biológicas e da Saúde (ICBS), Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Aline Cristine Pereira E Silva
- Laboratório de Biologia Molecular e Expressão Gênica, Postgraduate Program in Health Sciences, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Karol Fireman de Farias
- Laboratório de Biologia Molecular e Expressão Gênica, Postgraduate Program in Health Sciences, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Elaine Virgínia Martins de Souza Figueiredo
- Laboratório de Biologia Molecular e Expressão Gênica, Postgraduate Program in Health Sciences, Federal University of Alagoas, Maceió, Alagoas, Brazil; Instituto de Ciências Biológicas e da Saúde (ICBS), Federal University of Alagoas, Maceió, Alagoas, Brazil..
| |
Collapse
|
5
|
Glotov OS, Chernov AN, Scherbak SG, Baranov VS. Genetic Risk Factors for the Development of COVID-19 Coronavirus Infection. RUSS J GENET+ 2021; 57:878-892. [PMID: 34483599 PMCID: PMC8404752 DOI: 10.1134/s1022795421080056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/28/2020] [Accepted: 01/18/2021] [Indexed: 01/08/2023]
Abstract
The COVID-19 coronavirus pandemic has spread to 215 countries around the world and caused tens of millions of infections and more than a million deaths worldwide. In the midst of COVID-19 infection, it is extremely important to identify new protein and gene targets that may be highly sensitive diagnostic and prognostic markers of the severity and outcome of the disease for combating this pandemic. Identification of individual genetic predisposition allows personalizing programs of medical rehabilitation and therapy. It has now been shown that the transmissibility and severity of COVID-19 infection can be affected by gene variants in both the human body (ACE2, HLA-B*4601, FcγRIIA, MBL, TMPRSS2, TNFA, IL6, blood group A antigen, etc.) and the virus itself (ORF8 in RNA polymerase, ORF6 in RNA primase, S, N, E proteins). The presence of mutations in the proteins of the virus can change the affinity and specificity for the binding of targeted drugs to them, being the molecular basis of individual differences in the response of the human body to antiviral drugs and/or vaccines. The review summarizes the data on the variants of the genomes of the coronavirus and humans associated with an individual predisposition to an increased or decreased risk of transmission, severity, and outcome of COVID-19 infection. Targeted drugs and vaccines being developed for the therapy of COVID-19 infection are briefly reviewed.
Collapse
Affiliation(s)
- O. S. Glotov
- City Hospital no. 40, Sestroretsk, 197706 St. Petersburg, Russia
- Ott Research Institute of Obstetrics, Gynecology, and Reproductology, 199034 St. Petersburg, Russia
| | - A. N. Chernov
- City Hospital no. 40, Sestroretsk, 197706 St. Petersburg, Russia
| | - S. G. Scherbak
- City Hospital no. 40, Sestroretsk, 197706 St. Petersburg, Russia
- St. Petersburg State University, 199034 St. Petersburg, Russia
| | - V. S. Baranov
- Ott Research Institute of Obstetrics, Gynecology, and Reproductology, 199034 St. Petersburg, Russia
| |
Collapse
|
6
|
Hashemi SMA, Thijssen M, Hosseini SY, Tabarraei A, Pourkarim MR, Sarvari J. Human gene polymorphisms and their possible impact on the clinical outcome of SARS-CoV-2 infection. Arch Virol 2021; 166:2089-2108. [PMID: 33934196 PMCID: PMC8088757 DOI: 10.1007/s00705-021-05070-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 02/23/2021] [Indexed: 12/13/2022]
Abstract
The SARS-CoV-2 pandemic has become one of the most serious health concerns globally. Although multiple vaccines have recently been approved for the prevention of coronavirus disease 2019 (COVID-19), an effective treatment is still lacking. Our knowledge of the pathogenicity of this virus is still incomplete. Studies have revealed that viral factors such as the viral load, duration of exposure to the virus, and viral mutations are important variables in COVID-19 outcome. Furthermore, host factors, including age, health condition, co-morbidities, and genetic background, might also be involved in clinical manifestations and infection outcome. This review focuses on the importance of variations in the host genetic background and pathogenesis of SARS-CoV-2. We will discuss the significance of polymorphisms in the ACE-2, TMPRSS2, vitamin D receptor, vitamin D binding protein, CD147, glucose-regulated protein 78 kDa, dipeptidyl peptidase-4 (DPP4), neuropilin-1, heme oxygenase, apolipoprotein L1, vitamin K epoxide reductase complex 1 (VKORC1), and immune system genes for the clinical outcome of COVID-19.
Collapse
Affiliation(s)
- Seyed Mohammad Ali Hashemi
- Department of Bacteriology and Virology, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Microbiology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Marijn Thijssen
- Laboratory for Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, 3000 Leuven, Belgium
| | - Seyed Younes Hosseini
- Department of Bacteriology and Virology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alijan Tabarraei
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mahmoud Reza Pourkarim
- Laboratory for Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, 3000 Leuven, Belgium
- Health Policy Research Centre, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jamal Sarvari
- Department of Bacteriology and Virology, Shiraz University of Medical Sciences, Shiraz, Iran
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
7
|
Ayola-Serrano NC, Roy N, Fathah Z, Anwar MM, Singh B, Ammar N, Sah R, Elba A, Utt RS, Pecho-Silva S, Rodriguez-Morales AJ, Dhama K, Quraishi S. The role of 5-lipoxygenase in the pathophysiology of COVID-19 and its therapeutic implications. Inflamm Res 2021; 70:877-889. [PMID: 34086061 PMCID: PMC8176665 DOI: 10.1007/s00011-021-01473-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/21/2021] [Accepted: 05/15/2021] [Indexed: 12/14/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, known as coronavirus disease 2019 (COVID-19) causes cytokine release syndrome (CRS), leading to acute respiratory distress syndrome (ARDS), acute kidney and cardiac injury, liver dysfunction, and multiorgan failure. Although several studies have discussed the role of 5-lipoxygenase (5-LOX) in viral infections, such as influenzae and SARS, it remains unexplored in the pathophysiology of COVID-19. 5-LOX acts on free arachidonic acid (AA) to form proinflammatory leukotrienes (LTs). Of note, numerous cells involved with COVID-19 (e.g., inflammatory and smooth muscle cells, platelets, and vascular endothelium) widely express leukotriene receptors. Moreover, 5-LOX metabolites induce the release of cytokines (e.g., tumour necrosis factor-α [TNF-α], interleukin-1α [IL-1α], and interleukin-1β [IL-1β]) and express tissue factor on cell membranes and activate plasmin. Since macrophages, monocytes, neutrophils, and eosinophils can express lipoxygenases, activation of 5-LOX and the subsequent release of LTs may contribute to the severity of COVID-19. This review sheds light on the potential implications of 5-LOX in SARS-CoV-2-mediated infection and the anticipated therapeutic role of 5-LOX inhibitors.
Collapse
Affiliation(s)
| | - Namrata Roy
- SRM University, SRM Nagar, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India.
| | | | - Mohammed Moustapha Anwar
- Department of Biotechnology, Institute of Graduate Studies and Research (IGSR), Alexandria University, Alexandria, Egypt
| | | | - Nour Ammar
- Department of Pediatric Dentistry and Dental Public Health, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Ranjit Sah
- Department of Microbiology, Institute of Medicine, Tribhuvan University Teaching Hospital, Kathmandu, Nepal
| | - Areej Elba
- Department of Pediatric Dentistry and Dental Public Health, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Rawan Sobhi Utt
- Faculty of Medicine, Al Quds University, Jerusalem, Palestine
| | - Samuel Pecho-Silva
- Master in Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru
- Pneumology Service, Hospital Nacional Edgardo Rebagliati Martins, Lima, Peru
- Latin American Network of COVID-19 Research, Pereira, Colombia
| | - Alfonso J Rodriguez-Morales
- Master in Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru.
- Latin American Network of COVID-19 Research, Pereira, Colombia.
- Grupo de Investigacion Biomedicina, Faculty of Medicine, Fundacion Universitaria Autonoma de Las Americas, Pereira, Risaralda, Colombia.
- School of Medicine, Universidad Privada Franz Tamayo (UNIFRANZ), Cochabamba, Bolivia.
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Sadeq Quraishi
- Department of Anesthesiology & Perioperative Medicine - Tufts Medical Center, Tufts University School of Medicine, 800 Washington St, Ziskind 6038, Boston, MA, 02111, USA
| |
Collapse
|
8
|
Cotroneo CE, Mangano N, Dragani TA, Colombo F. Lung expression of genes putatively involved in SARS-CoV-2 infection is modulated in cis by germline variants. Eur J Hum Genet 2021; 29:1019-1026. [PMID: 33649539 PMCID: PMC7917374 DOI: 10.1038/s41431-021-00831-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 12/09/2020] [Accepted: 02/09/2021] [Indexed: 01/10/2023] Open
Abstract
Germline variants in genes involved in SARS-CoV-2 cell entry and in host innate immune responses to viruses may influence the susceptibility to infection. This study used whole-genome analyses of lung tissue to identify polymorphisms acting as expression quantitative trait loci (eQTLs) for 60 genes of relevance to SARS-CoV-2 infection susceptibility. The expression of genes with confirmed or possible roles in viral entry-replication and in host antiviral responses was studied in the non-diseased lung tissue of 408 lung adenocarcinoma patients. No gene was differently expressed by sex, but APOBEC3H levels were higher and PARP12 levels lower in older individuals. A total of 125 cis-eQTLs (false discovery rate < 0.05) was found to modulate mRNA expression of 15 genes (ABO, ANPEP, AP2A2, APOBEC3D, APOBEC3G, BSG, CLEC4G, DDX58, DPP4, FURIN, FYCO1, RAB14, SERINC3, TRIM5, ZCRB1). eQTLs regulating ABO and FYCO1 were found in COVID-19 susceptibility loci. No trans-eQTLs were identified. Genetic control of the expression of these 15 genes, which encode putative virus receptors, proteins required for vesicle trafficking, enzymes that interfere with viral replication, and other restriction factors, may underlie interindividual differences in risk or severity of infection with SARS-CoV-2 or other viruses.
Collapse
Affiliation(s)
- Chiara E Cotroneo
- Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Nunzia Mangano
- Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Tommaso A Dragani
- Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| | - Francesca Colombo
- Institute of Biomedical Technologies, National Research Council (ITB-CNR), Segrate, MI, Italy
| |
Collapse
|
9
|
Monticelli M, Mele BH, Andreotti G, Cubellis MV, Riccio G. Why does SARS-CoV-2 hit in different ways? Host genetic factors can influence the acquisition or the course of COVID-19. Eur J Med Genet 2021; 64:104227. [PMID: 33872774 PMCID: PMC8051015 DOI: 10.1016/j.ejmg.2021.104227] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/14/2021] [Accepted: 04/12/2021] [Indexed: 02/08/2023]
Abstract
The identification of high-risk factors for the infection by SARS-CoV-2 and the negative outcome of COVID-19 is crucial. The genetic background of the host might account for individual responses to SARS-CoV-2 infection besides age and comorbidities. A list of candidate polymorphisms is needed to drive targeted screens, given the existence of frequent polymorphisms in the general population. We carried out text mining in the scientific literature to draw up a list of genes referable to the term "SARS-CoV*". We looked for frequent mutations that are likely to affect protein function in these genes. Ten genes, mostly involved in innate immunity, and thirteen common variants were identified, for some of these the involvement in COVID-19 is supported by publicly available epidemiological data. We looked for available data on the population distribution of these variants and we demonstrated that the prevalence of five of them, Arg52Cys (rs5030737), Gly54Asp (rs1800450) and Gly57Glu (rs1800451) in MBL2, Ala59Thr (rs25680) in CD27, and Val197Met (rs12329760) in TMPRSS2, correlates with the number of cases and/or deaths of COVID-19 observed in different countries. The association of the TMPRSS2 variant provides epidemiological evidence of the usefulness of transmembrane protease serine 2 inhibitors for the cure of COVID-19. The identified genetic variants represent a basis for the design of a cost-effective assay for population screening of genetic risk factors in the COVID-19 pandemic.
Collapse
Affiliation(s)
- Maria Monticelli
- Department of Biology, Università Federico II, 80126, Napoli, Italy.
| | - Bruno Hay Mele
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy.
| | | | - Maria Vittoria Cubellis
- Department of Biology, Università Federico II, 80126, Napoli, Italy; Istituto di Chimica Biomolecolare -CNR, 80078, Pozzuoli, Italy.
| | - Guglielmo Riccio
- Scuola di Specializzazione in Pediatria, Università degli Studi di Trieste, 34127, Trieste, Italy.
| |
Collapse
|
10
|
Exploring Host Genetic Polymorphisms Involved in SARS-CoV Infection Outcomes: Implications for Personalized Medicine in COVID-19. Int J Genomics 2020; 2020:6901217. [PMID: 33110916 PMCID: PMC7582067 DOI: 10.1155/2020/6901217] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/19/2020] [Accepted: 10/13/2020] [Indexed: 12/14/2022] Open
Abstract
Objective To systematically explore genetic polymorphisms associated with the clinical outcomes in SARS-CoV infection in humans. Methods This comprehensive literature search comprised available English papers published in PubMed/Medline and SCOPUS databases following the PRISMA-P guidelines and PICO/AXIS criteria. Results Twenty-nine polymorphisms located in 21 genes were identified as associated with SARS-CoV susceptibility/resistance, disease severity, and clinical outcomes predominantly in Asian populations. Thus, genes implicated in key pathophysiological processes such as the mechanisms related to the entry of the virus into the cell and the antiviral immune/inflammatory responses were identified. Conclusions Although caution must be taken, the results of this systematic review suggest that multiple genetic polymorphisms are associated with SARS-CoV infection features by affecting virus pathogenesis and host immune response, which could have important applications for the study and understanding of genetics in SARS-CoV-2/COVID-19 and for personalized translational clinical practice depending on the population studied and associated environments.
Collapse
|
11
|
Smatti MK, Al-Sarraj YA, Albagha O, Yassine HM. Host Genetic Variants Potentially Associated With SARS-CoV-2: A Multi-Population Analysis. Front Genet 2020; 11:578523. [PMID: 33133166 PMCID: PMC7567011 DOI: 10.3389/fgene.2020.578523] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/17/2020] [Indexed: 12/27/2022] Open
Abstract
Background Clinical outcomes of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) showed enormous inter-individual and inter-population differences, possibly due to host genetics differences. Earlier studies identified single nucleotide polymorphisms (SNPs) associated with SARS-CoV-1 in Eastern Asian (EAS) populations. In this report, we aimed at exploring the frequency of a set of genetic polymorphisms that could affect SARS-CoV-2 susceptibility or severity, including those that were previously associated with SARS-CoV-1. Methods We extracted the list of SNPs that could potentially modulate SARS-CoV-2 from the genome wide association studies (GWAS) on SARS-CoV-1 and other viruses. We also collected the expression data of these SNPs from the expression quantitative trait loci (eQTLs) databases. Sequences from Qatar Genome Programme (QGP, n = 6,054) and 1000Genome project were used to calculate and compare allelic frequencies (AF). Results A total of 74 SNPs, located in 10 genes: ICAM3, IFN-γ, CCL2, CCL5, AHSG, MBL, Furin, TMPRSS2, IL4, and CD209 promoter, were identified. Analysis of Qatari genomes revealed significantly lower AF of risk variants linked to SARS-CoV-1 severity (CCL2, MBL, CCL5, AHSG, and IL4) compared to that of 1000Genome and/or the EAS population (up to 25-fold change). Conversely, SNPs in TMPRSS2, IFN-γ, ICAM3, and Furin were more common among Qataris (average 2-fold change). Inter-population analysis showed that the distribution of risk alleles among Europeans differs substantially from Africans and EASs. Remarkably, Africans seem to carry extremely lower frequencies of SARS-CoV-1 susceptibility alleles, reaching to 32-fold decrease compared to other populations. Conclusion Multiple genetic variants, which could potentially modulate SARS-CoV-2 infection, are significantly variable between populations, with the lowest frequency observed among Africans. Our results highlight the importance of exploring population genetics to understand and predict COVID-19 outcomes. Indeed, further studies are needed to validate these findings as well as to identify new genetic determinants linked to SARS-CoV-2.
Collapse
Affiliation(s)
- Maria K Smatti
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.,Biomedical Research Center, Qatar University, Doha, Qatar
| | - Yasser A Al-Sarraj
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Omar Albagha
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.,Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Hadi M Yassine
- Biomedical Research Center, Qatar University, Doha, Qatar
| |
Collapse
|
12
|
Klaassen K, Stankovic B, Zukic B, Kotur N, Gasic V, Pavlovic S, Stojiljkovic M. Functional prediction and comparative population analysis of variants in genes for proteases and innate immunity related to SARS-CoV-2 infection. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2020; 84:104498. [PMID: 32771700 PMCID: PMC7410821 DOI: 10.1016/j.meegid.2020.104498] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/27/2020] [Accepted: 08/05/2020] [Indexed: 01/12/2023]
Abstract
New coronavirus SARS-CoV-2 is capable to infect humans and cause a novel disease COVID-19. Aiming to understand a host genetic component of COVID-19, we focused on variants in genes encoding proteases and genes involved in innate immunity that could be important for susceptibility and resistance to SARS-CoV-2 infection. Analysis of sequence data of coding regions of FURIN, PLG, PRSS1, TMPRSS11a, MBL2 and OAS1 genes in 143 unrelated individuals from Serbian population identified 22 variants with potential functional effect. In silico analyses (PolyPhen-2, SIFT, MutPred2 and Swiss-Pdb Viewer) predicted that 10 variants could impact the structure and/or function of proteins. These protein-altering variants (p.Gly146Ser in FURIN; p.Arg261His and p.Ala494Val in PLG; p.Asn54Lys in PRSS1; p.Arg52Cys, p.Gly54Asp and p.Gly57Glu in MBL2; p.Arg47Gln, p.Ile99Val and p.Arg130His in OAS1) may have predictive value for inter-individual differences in the response to the SARS-CoV-2 infection. Next, we performed comparative population analysis for the same variants using extracted data from the 1000 Genomes project. Population genetic variability was assessed using delta MAF and Fst statistics. Our study pointed to 7 variants in PLG, TMPRSS11a, MBL2 and OAS1 genes with noticeable divergence in allelic frequencies between populations worldwide. Three of them, all in MBL2 gene, were predicted to be damaging, making them the most promising population-specific markers related to SARS-CoV-2 infection. Comparing allelic frequencies between Serbian and other populations, we found that the highest level of genetic divergence related to selected loci was observed with African, followed by East Asian, Central and South American and South Asian populations. When compared with European populations, the highest divergence was observed with Italian population. In conclusion, we identified 4 variants in genes encoding proteases (FURIN, PLG and PRSS1) and 6 in genes involved in the innate immunity (MBL2 and OAS1) that might be relevant for the host response to SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Kristel Klaassen
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Biljana Stankovic
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Branka Zukic
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Nikola Kotur
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Vladimir Gasic
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Sonja Pavlovic
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Maja Stojiljkovic
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
13
|
Sironi M, Hasnain SE, Rosenthal B, Phan T, Luciani F, Shaw MA, Sallum MA, Mirhashemi ME, Morand S, González-Candelas F. SARS-CoV-2 and COVID-19: A genetic, epidemiological, and evolutionary perspective. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2020; 84:104384. [PMID: 32473976 PMCID: PMC7256558 DOI: 10.1016/j.meegid.2020.104384] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 12/15/2022]
Abstract
In less than five months, COVID-19 has spread from a small focus in Wuhan, China, to more than 5 million people in almost every country in the world, dominating the concern of most governments and public health systems. The social and political distresses caused by this epidemic will certainly impact our world for a long time to come. Here, we synthesize lessons from a range of scientific perspectives rooted in epidemiology, virology, genetics, ecology and evolutionary biology so as to provide perspective on how this pandemic started, how it is developing, and how best we can stop it.
Collapse
Affiliation(s)
- Manuela Sironi
- Bioinformatics Unit, Scientific Institute IRCCS E. MEDEA, Bosisio Parini (LC), Italy.
| | - Seyed E Hasnain
- JH Institute of Molecular Medicine, Jamia Hamdard, Tughlakabad, New Delhi, India.
| | - Benjamin Rosenthal
- Animal Parasitic Disease Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, USA.
| | - Tung Phan
- Division of Clinical Microbiology, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| | - Fabio Luciani
- University of New South Wales, Sydney, 2052, New South Wales, Australia.
| | - Marie-Anne Shaw
- Leeds Institute of Medical Research at St James's, School of Medicine, University of Leeds, Leeds, United Kingdom.
| | - M Anice Sallum
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, Brazil.
| | | | - Serge Morand
- Institute of Evolution Science of Montpellier, Case Courier 064, F-34095 Montpellier, France.
| | - Fernando González-Candelas
- Joint Research Unit Infection and Public Health FISABIO-University of Valencia, Institute for Integrative Systems Biology (I2SysBio) and CIBER in Epidemiology and Public Health, Valencia, Spain.
| |
Collapse
|
14
|
Torre‐Fuentes L, Matías‐Guiu J, Hernández‐Lorenzo L, Montero‐Escribano P, Pytel V, Porta‐Etessam J, Gómez‐Pinedo U, Matías‐Guiu JA. ACE2, TMPRSS2, and Furin variants and SARS-CoV-2 infection in Madrid, Spain. J Med Virol 2020; 93:863-869. [PMID: 32691890 PMCID: PMC7404937 DOI: 10.1002/jmv.26319] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/03/2020] [Accepted: 07/15/2020] [Indexed: 12/13/2022]
Abstract
It has been suggested that some individuals may present genetic susceptibility to SARS-CoV-2 infection, with particular research interest in variants of the ACE2 and TMPRSS2 genes, involved in viral penetration into cells, in different populations and geographic regions, although insufficient information is currently available. This study addresses the apparently reasonable hypothesis that variants of these genes may modulate viral infectivity, making some individuals more vulnerable than others. Through whole-exome sequencing, the frequency of exonic variants of the ACE2, TMPRSS2, and Furin genes was analyzed in relation to presence or absence of SARS-CoV-2 infection in a familial multiple sclerosis cohort including 120 individuals from Madrid. The ACE2 gene showed a low level of polymorphism, and none variant was significantly associated with SARS-CoV-2 infection. These variants have previously been detected in Italy. While TMPRSS2 is highly polymorphic, the variants found do not coincide with those described in other studies, with the exception of rs75603675, which may be associated with SARS-CoV-2 infection. The synonymous variants rs61735792 and rs61735794 showed a significant association with infection. Despite the limited number of patients with SARS-CoV-2 infection, some variants, especially in TMPRSS2, may be associated with COVID-19.
Collapse
Affiliation(s)
- Laura Torre‐Fuentes
- Department of Neurology, Instituto de Neurociencias IdISSCHospital Clínico San CarlosMadridSpain
| | - Jorge Matías‐Guiu
- Department of Neurology, Instituto de Neurociencias IdISSCHospital Clínico San CarlosMadridSpain
| | - Laura Hernández‐Lorenzo
- Department of Neurology, Instituto de Neurociencias IdISSCHospital Clínico San CarlosMadridSpain
| | - Paloma Montero‐Escribano
- Department of Neurology, Instituto de Neurociencias IdISSCHospital Clínico San CarlosMadridSpain
| | - Vanesa Pytel
- Department of Neurology, Instituto de Neurociencias IdISSCHospital Clínico San CarlosMadridSpain
| | - Jesús Porta‐Etessam
- Department of Neurology, Instituto de Neurociencias IdISSCHospital Clínico San CarlosMadridSpain
| | - Ulises Gómez‐Pinedo
- Department of Neurology, Instituto de Neurociencias IdISSCHospital Clínico San CarlosMadridSpain
| | - Jordi A. Matías‐Guiu
- Department of Neurology, Instituto de Neurociencias IdISSCHospital Clínico San CarlosMadridSpain
| |
Collapse
|
15
|
LoPresti M, Beck DB, Duggal P, Cummings DAT, Solomon BD. The Role of Host Genetic Factors in Coronavirus Susceptibility: Review of Animal and Systematic Review of Human Literature. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.05.30.20117788. [PMID: 32511629 PMCID: PMC7276057 DOI: 10.1101/2020.05.30.20117788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
BACKGROUND The recent SARS-CoV-2 pandemic raises many scientific and clinical questions. One set of questions involves host genetic factors that may affect disease susceptibility and pathogenesis. New work is emerging related to SARS-CoV-2; previous work has been conducted on other coronaviruses that affect different species. OBJECTIVES We aimed to review the literature on host genetic factors related to coronaviruses, with a systematic focus on human studies. METHODS We conducted a PubMed-based search and analysis for articles relevant to host genetic factors in coronavirus. We categorized articles, summarized themes related to animal studies, and extracted data from human studies for analyses. RESULTS We identified 1,187 articles of potential relevance. Forty-five studies were related to human host genetic factors related to coronavirus, of which 35 involved analysis of specific genes or loci; aside from one meta-analysis on respiratory infections, all were candidate-driven studies, typically investigating small number of research subjects and loci. Multiple significant loci were identified, including 16 related to susceptibility to coronavirus (of which 7 identified protective alleles), and 16 related to outcomes or clinical variables (of which 3 identified protective alleles). The types of cases and controls used varied considerably; four studies used traditional replication/validation cohorts. Of the other studies, 28 involved both human and non-human host genetic factors related to coronavirus, 174 involved study of non-human (animal) host genetic factors related to coronavirus, 584 involved study of non-genetic host factors related to coronavirus, including involving immunopathogenesis, 16 involved study of other pathogens (not coronavirus), 321 involved other studies of coronavirus, and 18 studies were assigned to the other categories and removed. KEY FINDINGS We have outlined key genes and loci from animal and human host genetic studies that may bear investigation in the nascent host genetic factor studies of COVID-19. Previous human studies to date have been limited by issues that may be less impactful on current endeavors, including relatively low numbers of eligible participants and limited availability of advanced genomic methods.
Collapse
|
16
|
Li G, Fan Y, Lai Y, Han T, Li Z, Zhou P, Pan P, Wang W, Hu D, Liu X, Zhang Q, Wu J. Coronavirus infections and immune responses. J Med Virol 2020. [PMID: 31981224 DOI: 10.1002/jmv.2568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Coronaviruses (CoVs) are by far the largest group of known positive-sense RNA viruses having an extensive range of natural hosts. In the past few decades, newly evolved Coronaviruses have posed a global threat to public health. The immune response is essential to control and eliminate CoV infections, however, maladjusted immune responses may result in immunopathology and impaired pulmonary gas exchange. Gaining a deeper understanding of the interaction between Coronaviruses and the innate immune systems of the hosts may shed light on the development and persistence of inflammation in the lungs and hopefully can reduce the risk of lung inflammation caused by CoVs. In this review, we provide an update on CoV infections and relevant diseases, particularly the host defense against CoV-induced inflammation of lung tissue, as well as the role of the innate immune system in the pathogenesis and clinical treatment.
Collapse
Affiliation(s)
- Geng Li
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yaohua Fan
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanni Lai
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tiantian Han
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zonghui Li
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peiwen Zhou
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Pan Pan
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenbiao Wang
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Dingwen Hu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiaohong Liu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiwei Zhang
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- School of Pubic Health, Southern Medical University, Guangzhou, China
| | - Jianguo Wu
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
17
|
Li G, Fan Y, Lai Y, Han T, Li Z, Zhou P, Pan P, Wang W, Hu D, Liu X, Zhang Q, Wu J. Coronavirus infections and immune responses. J Med Virol 2020. [PMID: 31981224 DOI: 10.1002/jmv.v92.410.1002/jmv.25685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
Coronaviruses (CoVs) are by far the largest group of known positive-sense RNA viruses having an extensive range of natural hosts. In the past few decades, newly evolved Coronaviruses have posed a global threat to public health. The immune response is essential to control and eliminate CoV infections, however, maladjusted immune responses may result in immunopathology and impaired pulmonary gas exchange. Gaining a deeper understanding of the interaction between Coronaviruses and the innate immune systems of the hosts may shed light on the development and persistence of inflammation in the lungs and hopefully can reduce the risk of lung inflammation caused by CoVs. In this review, we provide an update on CoV infections and relevant diseases, particularly the host defense against CoV-induced inflammation of lung tissue, as well as the role of the innate immune system in the pathogenesis and clinical treatment.
Collapse
Affiliation(s)
- Geng Li
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yaohua Fan
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanni Lai
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tiantian Han
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zonghui Li
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peiwen Zhou
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Pan Pan
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenbiao Wang
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Dingwen Hu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiaohong Liu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiwei Zhang
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- School of Pubic Health, Southern Medical University, Guangzhou, China
| | - Jianguo Wu
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
18
|
Li G, Fan Y, Lai Y, Han T, Li Z, Zhou P, Pan P, Wang W, Hu D, Liu X, Zhang Q, Wu J. Coronavirus infections and immune responses. J Med Virol 2020; 92:424-432. [PMID: 31981224 PMCID: PMC7166547 DOI: 10.1002/jmv.25685] [Citation(s) in RCA: 1125] [Impact Index Per Article: 225.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 12/13/2022]
Abstract
Coronaviruses (CoVs) are by far the largest group of known positive-sense RNA viruses having an extensive range of natural hosts. In the past few decades, newly evolved Coronaviruses have posed a global threat to public health. The immune response is essential to control and eliminate CoV infections, however, maladjusted immune responses may result in immunopathology and impaired pulmonary gas exchange. Gaining a deeper understanding of the interaction between Coronaviruses and the innate immune systems of the hosts may shed light on the development and persistence of inflammation in the lungs and hopefully can reduce the risk of lung inflammation caused by CoVs. In this review, we provide an update on CoV infections and relevant diseases, particularly the host defense against CoV-induced inflammation of lung tissue, as well as the role of the innate immune system in the pathogenesis and clinical treatment.
Collapse
Affiliation(s)
- Geng Li
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China.,Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yaohua Fan
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanni Lai
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tiantian Han
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zonghui Li
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peiwen Zhou
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Pan Pan
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenbiao Wang
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Dingwen Hu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiaohong Liu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiwei Zhang
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China.,School of Pubic Health, Southern Medical University, Guangzhou, China
| | - Jianguo Wu
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China.,State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
19
|
Merdler-Rabinowicz R, Grinberg A, Jacobson JM, Somekh I, Klein C, Lev A, Ihsan S, Habib A, Somech R, Simon AJ. Fetuin-A deficiency is associated with infantile cortical hyperostosis (Caffey disease). Pediatr Res 2019; 86:603-607. [PMID: 31288248 PMCID: PMC7086575 DOI: 10.1038/s41390-019-0499-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/11/2019] [Accepted: 06/29/2019] [Indexed: 12/02/2022]
Abstract
BACKGROUND Infantile cortical hyperostosis (ICH)/Caffey disease is an inflammatory collagenopathy of infancy, manifested by subperiosteal bone hyperplasia. Genetically, ICH was linked with heterozygosity for an R836C mutation in the COL1A1 gene. Although an autosomal-recessive trait is also suspected, it has not been proven thus far. METHODS A case of an infant male born to consanguineous parents is reported, presenting with classical findings, course, and clinical outcome of ICH. Whole-exome sequencing (WES) was performed in order to identify a possible underlying genetic defect. RESULTS WES analysis revealed a novel homozygous nonsense mutation in lysine 2 of fetuin-A, encoded by the ALPHA-2-HS-GLYCOPROTEIN (AHSG) gene (c.A4T; p.K2X). Fetuin-A is an important regulator of bone remodeling and an inhibitor of ectopic mineralization. By enzyme-linked immunosorbent assay (ELISA), we show a complete deficiency of this protein in the patient's serum, compared to controls. CONCLUSION A novel homozygous nonsense mutation in AHSG gene has been found in ICH patient with a typical phenotype, resulting in fetuin-A deficiency. This finding postulates an autosomal-recessive mode of inheritance in ICH, which, unlike the autosomal-dominant inheritance associated with COL1A1, is associated with AHSG and fetuin-A deficiency.
Collapse
Affiliation(s)
- Rona Merdler-Rabinowicz
- 0000 0004 1937 0546grid.12136.37Pediatric Department A and the Immunology Services, “Edmond and Lily Safra” Children’s Hospital, Jeffrey Modell Foundation Center, Sheba Medical Center, Tel Hashomer, affiliated to Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Anna Grinberg
- 0000 0004 1937 0546grid.12136.37Pediatric Department A and the Immunology Services, “Edmond and Lily Safra” Children’s Hospital, Jeffrey Modell Foundation Center, Sheba Medical Center, Tel Hashomer, affiliated to Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jeffrey M. Jacobson
- grid.460042.4Pediatric Radiology Department, “Edmond and Lily Safra” Children’s Hospital, Tel Hashomer, Israel
| | - Ido Somekh
- 0000 0004 1936 973Xgrid.5252.0Dr. von Hauner Children’s Hospital, University Hospital, Ludwig Maximilian University, Munich, Germany
| | - Christoph Klein
- 0000 0004 1936 973Xgrid.5252.0Dr. von Hauner Children’s Hospital, University Hospital, Ludwig Maximilian University, Munich, Germany
| | - Atar Lev
- 0000 0004 1937 0546grid.12136.37Pediatric Department A and the Immunology Services, “Edmond and Lily Safra” Children’s Hospital, Jeffrey Modell Foundation Center, Sheba Medical Center, Tel Hashomer, affiliated to Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Adib Habib
- 0000 0004 1937 0503grid.22098.31Saint Vincent De Paul French Hospital, Nazareth, affiliated to the Azrieli Faculty of Medicine, Bar-Ilan University, Ramat Gan, Israel
| | - Raz Somech
- 0000 0004 1937 0546grid.12136.37Pediatric Department A and the Immunology Services, “Edmond and Lily Safra” Children’s Hospital, Jeffrey Modell Foundation Center, Sheba Medical Center, Tel Hashomer, affiliated to Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Amos J. Simon
- 0000 0004 1937 0546grid.12136.37Pediatric Department A and the Immunology Services, “Edmond and Lily Safra” Children’s Hospital, Jeffrey Modell Foundation Center, Sheba Medical Center, Tel Hashomer, affiliated to Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel ,0000 0001 2107 2845grid.413795.dSheba Cancer Research Center and Institute of Hematology, Sheba Medical Center, Tel Hashomer, Israel
| |
Collapse
|
20
|
Cockrell AS, Leist SR, Douglas MG, Baric RS. Modeling pathogenesis of emergent and pre-emergent human coronaviruses in mice. Mamm Genome 2018; 29:367-383. [PMID: 30043100 PMCID: PMC6132729 DOI: 10.1007/s00335-018-9760-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 07/17/2018] [Indexed: 12/21/2022]
Abstract
The emergence of highly pathogenic human coronaviruses (hCoVs) in the last two decades has illuminated their potential to cause high morbidity and mortality in human populations and disrupt global economies. Global pandemic concerns stem from their high mortality rates, capacity for human-to-human spread by respiratory transmission, and complete lack of approved therapeutic countermeasures. Limiting disease may require the development of virus-directed and host-directed therapeutic strategies due to the acute etiology of hCoV infections. Therefore, understanding how hCoV–host interactions cause pathogenic outcomes relies upon mammalian models that closely recapitulate the pathogenesis of hCoVs in humans. Pragmatism has largely been the driving force underpinning mice as highly effective mammalian models for elucidating hCoV–host interactions that govern pathogenesis. Notably, tractable mouse genetics combined with hCoV reverse genetic systems has afforded the concomitant manipulation of virus and host genetics to evaluate virus–host interaction networks in disease. In addition to assessing etiologies of known hCoVs, mouse models have clinically predictive value as tools to appraise potential disease phenotypes associated with pre-emergent CoVs. Knowledge of CoV pathogenic potential before it crosses the species barrier into the human population provides a highly desirable preclinical platform for addressing global pathogen preparedness, an overarching directive of the World Health Organization. Although we recognize that results obtained in robust mouse models require evaluation in non-human primates, we focus this review on the current state of hCoV mouse models, their use as tractable complex genetic organisms for untangling complex hCoV–host interactions, and as pathogenesis models for preclinical evaluation of novel therapeutic interventions.
Collapse
Affiliation(s)
- Adam S Cockrell
- Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Sarah R Leist
- Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Madeline G Douglas
- Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27599, USA. .,Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
21
|
Common variations in TERT-CLPTM1L locus are reproducibly associated with the risk of nasopharyngeal carcinoma in Chinese populations. Oncotarget 2016; 7:759-70. [PMID: 26621837 PMCID: PMC4808031 DOI: 10.18632/oncotarget.6397] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 11/14/2015] [Indexed: 12/27/2022] Open
Abstract
Associations between single nucleotide polymorphisms (SNPs) at 5p15 (TERT-CLPTM1L) and multiple cancer types have been reported. We examined whether polymorphisms in the TERT-CLPTM1L locus were related to the risk of developing nasopharyngeal carcinoma (NPC) among Chinese populations. In the first stage, 26 tag SNPs were genotyped in a Guangxi population (855 patients and 1036 controls). In the second stage, the SNPs, which showed significant association, were further genotyped in a Guangdong population (997 patients and 972 controls). Functional analyses were conducted to verify the biological relevance of the associated polymorphism. In the 1st stage, four SNPs (rs2736098, rs2735845, rs402710, and rs401681) were significantly associated with the risk of developing NPC. After the 2nd stage validation, rs2735845 and rs401681 were independently associated with the risk of developing NPC in the additive model (rs2735845, OR = 1.19, 95% CI = 1.04–1.37, P = 0.011; rs401681, OR = 0.85, 95% CI = 0.74–0.99, P = 0.034). Furthermore, we observed higher CLPTM1L messenger RNA levels in fetal mesenchymal stem cells from the rs2735845 G allele carriers compared with that from non-carriers. In addition, using an immunohistochemistry assay, we observed higher TERT and CLPTM1L levels in NPC tissues compared with that in non-cancerous nasopharyngeal tissues. Our findings suggest that polymorphisms in the TERT-CLPTM1L locus may play a role in mediating the susceptibility to NPC in Chinese populations.
Collapse
|
22
|
Tu X, Chong WP, Zhai Y, Zhang H, Zhang F, Wang S, Liu W, Wei M, Siu NHO, Yang H, Yang W, Cao W, Lau YL, He F, Zhou G. Functional polymorphisms of the CCL2 and MBL genes cumulatively increase susceptibility to severe acute respiratory syndrome coronavirus infection. J Infect 2015; 71:101-9. [PMID: 25818534 PMCID: PMC7112636 DOI: 10.1016/j.jinf.2015.03.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/02/2015] [Accepted: 03/22/2015] [Indexed: 01/05/2023]
Abstract
OBJECTIVES To assess associations between the functional polymorphisms G-2518A at the chemokine (C-C motif) ligand 2 gene (CCL2) and mannose binding lectin (MBL) codon 54 variant (A/B) and susceptibility to SARS. METHODS We genotyped the CCL2 G-2518A and MBL codon 54 variant (A/B) in 4 case-control populations of Chinese descent, totally consisting of 932 patients with SARS and 982 control subjects. RESULTS Both the high-CCL2-producing GG genotype and the low-MBL-producing B allele were consistently associated with increased risks of SARS-CoV infection in all 4 case-control populations (joint P = 1.6 × 10(-4) and 4.9 × 10(-8), for CCL2 and MBL respectively), with no interaction between polymorphisms could be detected. Furthermore, all the 4 case-control studies demonstrated a cumulative effect on risk of SARS-CoV infection for the combination of polymorphisms (joint P = 1.3 × 10(-10)). However, tests using the area under the curve (AUC) indicated that at this stage, the polymorphisms were unlikely to be appropriate for risk prediction testing because of low AUC values (all <66%). Additionally, no association was observed between the polymorphisms and severity of SARS. CONCLUSIONS The CCL2 G-2518A and MBL codon 54 variant have a significantly cumulative effect on increased risk of SARS-CoV infection.
Collapse
Affiliation(s)
- Xinyi Tu
- School of Life Sciences, Tsinghua University, Beijing, China; The State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China; National Engineering Research Center for Protein Drugs, Beijing, China; National Center for Protein Science at Beijing, Beijing, China
| | - Wai Po Chong
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Yun Zhai
- The State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China; National Engineering Research Center for Protein Drugs, Beijing, China; National Center for Protein Science at Beijing, Beijing, China
| | - Hongxing Zhang
- The State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China; National Engineering Research Center for Protein Drugs, Beijing, China; National Center for Protein Science at Beijing, Beijing, China
| | - Fang Zhang
- The State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Shixin Wang
- Wujing Medical College at Tianjin, Tianjin, China
| | - Wei Liu
- The State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Maoti Wei
- Wujing Medical College at Tianjin, Tianjin, China
| | - Nora Ho On Siu
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Hao Yang
- The State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China; National Engineering Research Center for Protein Drugs, Beijing, China; National Center for Protein Science at Beijing, Beijing, China
| | - Wanling Yang
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Wuchun Cao
- The State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yu Lung Lau
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | - Fuchu He
- School of Life Sciences, Tsinghua University, Beijing, China; The State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China; National Engineering Research Center for Protein Drugs, Beijing, China; National Center for Protein Science at Beijing, Beijing, China.
| | - Gangqiao Zhou
- The State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China; National Engineering Research Center for Protein Drugs, Beijing, China; National Center for Protein Science at Beijing, Beijing, China.
| |
Collapse
|
23
|
Low fetuin-A level in migraine: a case–control study. Neurol Sci 2013; 35:271-5. [DOI: 10.1007/s10072-013-1504-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 07/08/2013] [Indexed: 12/17/2022]
|