1
|
Ma Y, Zhou W, Wang H, Wu M, Jiang S, Li Y, Ma C, Zhang R, He J. The double-layer emulsions loaded with bitter melon (Momordica charantia L.) seed oil protect against dextran sulfate sodium-induced ulcerative colitis in mice. Int J Biol Macromol 2024; 278:134279. [PMID: 39084441 DOI: 10.1016/j.ijbiomac.2024.134279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/24/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
In this study, a whey protein isolate (WPI)-chitooligosaccharide (COS) stabilized bitter melon (Momordica charantia L.) seed oil emulsions (WC-BSOE) were prepared using the electrostatic layer-by-layer self-assembly technique, and their modulating effects on ulcerative colitis (UC) were investigated in dextran sulfate sodium (DSS)-induced UC mice model. The stability and releasing ability of WC-BSOE under simulated gastrointestinal digestion condition and their acute toxicity were also investigated. The results showed that WC-BSOE was stable to droplet aggregation in the simulated gastric and intestinal fluids and exhibited sustained release profile during gastrointestinal transit, evidenced by the measurement of particle size, polydispersity index, zeta-potential and released free fatty acids contents. Moreover, WC-BSOE had no toxic effects on BALB/c mice within the dose range of 40,000 mg/kg body weight (BW), and treatment with WC-BSOE at a dosage of 15 mg/kg BW effectively relieved DSS-induced UC symptoms in mice. Furthermore, WC-BSOE could improve the IL-4 and IgA contents in serum, as well as up-regulate the occludin and ZO-1 expressions and down-regulate MPO, MDA and ROS levels in colon tissues of colitis mice, and it also elevated the diversity and relative abundances of Firmicutes, Bacteroides, and Lactobacillus in the intestinal microbiota. These findings indicated that WC-BSOE exerted protective effects in UC through decreasing proinflammatory cytokines, increasing tight junction proteins, suppressing oxidative stress, and regulating intestinal microbiota. Collectively, this study suggested WC-BSOE might be developed as a promising dietary supplement for UC protection.
Collapse
Affiliation(s)
- Yan Ma
- National R & D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Wangting Zhou
- National R & D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Huiling Wang
- National R & D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Muci Wu
- National R & D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Sijia Jiang
- Hubei Province enterprise technology center of Yun-Hong Group Co. Ltd, Wuxue 435400, PR China
| | - Yubao Li
- Hubei Province enterprise technology center of Yun-Hong Group Co. Ltd, Wuxue 435400, PR China
| | - Chengjie Ma
- State Key Laboratory of Dairy Biotechnology, Bright Dairy & Food Co., Ltd., Shanghai 200436, PR China
| | - Rui Zhang
- National R & D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China.
| | - Jingren He
- National R & D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China.
| |
Collapse
|
2
|
Sun P, Zhao X, Zhao W, Chen L, Liu X, Zhan Z, Wang J. Sophora flavescens-Angelica sinensis in the treatment of eczema by inhibiting TLR4/MyD88/NF-κB pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117626. [PMID: 38154523 DOI: 10.1016/j.jep.2023.117626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/05/2023] [Accepted: 12/18/2023] [Indexed: 12/30/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sophora flavescens Ait.-Angelica sinensis(Oliv.) Diels drug pairing (SA) is a transformed drug pairing from Shengui pill, a traditional Chinese medicine prescription in the ninth volume of Traditional Chinese Medicine classic "Gu Jin Yi Jian", which is famous for clearing heat, moistening dryness, and promoting blood circulation. It is commonly used in the treatment of eczema, a skin condition that causes itching and inflammation. Despite its widespread use, there is still limited research on the mechanism of how SA treats eczema. This paper aims to fill this gap by conducting animal experiments to uncover the mechanism behind SA's therapeutic effects on eczema. Our findings provide a solid foundation for the clinical use of this TCM prescription. AIM OF THE STUDY The basic purpose of this study is to clarify the therapeutic mechanism of Sophora flavescens-Angelica sinensis (SA) in the treatment and control of eczema. MATERIALS AND METHODS The chemical compositions of SA were analyzed using HPLC-Q-Orbitrap-MS. In vivo, a mouse model of eczema was created, and the serum levels of TNF-α and IL-1β were quantified using an enzyme-linked immunosorbent assay (ELISA). Hematoxylin and eosin (HE) staining was performed to assess the pathological state of the mouse skin, and immunohistochemical technique (IHC) was employed to estimate the contents of TNF-α, TLR4, and NF-κB semi-quantitatively. The expression levels of TLR4, MyD88, and NF-κB mRNA were determined through real-time quantitative polymerase chain reaction (qRT-PCR). Western Blotting was utilized to identify the protein levels of TLR4, MyD88, and NF-κB in mouse skin tissue. RESULTS SA identified 18 active chemicals, some of which were shown in vivo to inhibit the TLR4/MyD88/NF-κB signaling pathway while reducing serum levels of TNF-α and IL-1β, making them ideal agents for the treatment of eczema. CONCLUSIONS SA's anti-inflammatory properties are attributed to its ability to reduce serum levels of TNF-α and IL-1β, likewise inhibit the TLR4/MyD88/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Peng Sun
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China
| | - Xiangfeng Zhao
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China
| | - Wenjie Zhao
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Lele Chen
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China
| | - Xinyue Liu
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China
| | - Zhaoshuang Zhan
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China.
| | - Jiafeng Wang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China.
| |
Collapse
|
3
|
Du M, Gong M, Wu G, Jin J, Wang X, Jin Q. Conjugated Linolenic Acid (CLnA) vs Conjugated Linoleic Acid (CLA): A Comprehensive Review of Potential Advantages in Molecular Characteristics, Health Benefits, and Production Techniques. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5503-5525. [PMID: 38442367 DOI: 10.1021/acs.jafc.3c08771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Conjugated linoleic acid (CLA) has been extensively characterized due to its many biological activities and health benefits, but conjugated linolenic acid (CLnA) is still not well understood. However, CLnA has shown to be more effective than CLA as a potential functional food ingredient. Current research has not thoroughly investigated the differences and advantages between CLnA and CLA. This article compares CLnA and CLA based on molecular characteristics, including structural, chemical, and metabolic characteristics. Then, the in vivo research evidence of CLnA on various health benefits is comprehensively reviewed and compared with CLA in terms of effectiveness and mechanism. Furthermore, the potential of CLnA in production technology and product protection is analyzed. In general, CLnA and CLA have similar physicochemical properties of conjugated molecules and share many similarities in regulation effects and pathways of various health benefits as well as in the production methods. However, their specific properties, regulatory capabilities, and unique mechanisms are different. The superior potential of CLnA must be specified according to the practical application patterns of isomers. Future research should focus more on the advantageous characteristics of different isomers, especially the effectiveness and safety in clinical applications in order to truly exert the potential value of CLnA.
Collapse
Affiliation(s)
- Meijun Du
- State Key Laboratory of Food Science and Resources, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Mengyue Gong
- State Key Laboratory of Food Science and Resources, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Gangcheng Wu
- State Key Laboratory of Food Science and Resources, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Jun Jin
- State Key Laboratory of Food Science and Resources, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Xingguo Wang
- State Key Laboratory of Food Science and Resources, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Qingzhe Jin
- State Key Laboratory of Food Science and Resources, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|
4
|
Zhao R, Zhang C, Yu L, Zhang C, Zhao J, Narbad A, Zhai Q, Tian F. In Vitro Fermentation of Hyaluronan with Different Molecular Weights by Human Gut Microbiota: Differential Effects on Gut Microbiota Structure and Metabolic Function. Polymers (Basel) 2023; 15:2103. [PMID: 37177246 PMCID: PMC10180753 DOI: 10.3390/polym15092103] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Hyaluronan (HA) has various biological functions and is used extensively as a dietary supplement. Previous studies have shown that the probiotic effects of polysaccharides are closely associated with their molecular properties. The intestinal microbiota has been demonstrated to degrade HA; however, the regulatory effects of different molecular weights (MW) of HA on gut microbiota and metabolites are unknown. In the present study, we performed in vitro fermentation of human-derived feces for three MWs of HA (HA1, 32.3 kDa; HA2, 411 kDa; and HA3, 1510 kDa) to investigate the differences in the fermentation properties of HA with different MWs. We found that gut microbiota can utilize all HAs and, consequently, produce large amounts of short-chain fatty acids (SCFAs). In addition, we showed that all three HA MWs promoted the growth of Bacteroides, Parabacteroides, and Faecalibacterium, with HA1 being more effective at promoting the growth of Bacteroides. HAs have various regulatory effects on the structure and metabolites of the gut microbiota. Spearman's correlation analysis revealed that alterations in gut microbiota and their metabolites were significantly correlated with changes in metabolic markers. For instance, HA1 enriched α-eleostearic acid and DL-3-aminoisobutyric acid by regulating the abundance of Bacteroides, and HA3 enriched Thymidin by regulating Faecalibacterium. Collectively, the fermentation properties of HA vary across MW, and our results provide insights into the potential association between the MW of HA and its fermentation characteristics by the gut microbiota. These findings provide insights into the influence of the gut microbiota and HAs on the health of the host.
Collapse
Affiliation(s)
- Ruohan Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Chuan Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Chengcheng Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Arjan Narbad
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi 214122, China
- Gut Health and Microbiome Institute Strategic Programme, Quadram Institute Bioscience, Norwich NR4 7UA, UK
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
5
|
Du M, Jin J, Wu G, Jin Q, Wang X. Metabolic, structure-activity characteristics of conjugated linolenic acids and their mediated health benefits. Crit Rev Food Sci Nutr 2023; 64:8203-8217. [PMID: 37021469 DOI: 10.1080/10408398.2023.2198006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Conjugated linolenic acid (CLnA) is a mixture of octadecenoic acid with multiple positional and geometric isomers (including four 9, 11, 13-C18:3 isomers and three 8, 10, 12-C18:3 isomers) that is mainly present in plant seeds. In recent years, CLnA has shown many promising health benefits with the deepening of research, but the metabolic characteristics, physiological function differences and mechanisms of different isomers are relatively complex. In this article, the metabolic characteristics of CLnA were firstly reviewed, with focus on its conversion, catabolism and anabolism. Then the possible mechanisms of CLnA exerting biological effects were summarized and analyzed from its own chemical and physical characteristics, as well as biological receptor targeting characteristics. In addition, the differences and mechanisms of different isomers of CLnA in anticancer, lipid-lowering, anti-diabetic and anti-inflammatory physiological functions were compared and summarized. The current results show that the position and cis-trans conformation of conjugated structure endow CLnA with unique physical and chemical properties, which also makes different isomers have commonalities and particularities in the regulation of metabolism and physiological functions. Corresponding the metabolic characteristics of different isomers with precise nutrition strategy will help them to play a better role in disease prevention and treatment. CLnA has the potential to be developed into food functional components and dietary nutritional supplements. The advantages and mechanisms of different CLnA isomers in the clinical management of specific diseases need further study.
Collapse
Affiliation(s)
- Meijun Du
- State Key Lab of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jun Jin
- State Key Lab of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Gangcheng Wu
- State Key Lab of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qingzhe Jin
- State Key Lab of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xingguo Wang
- State Key Lab of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
6
|
Yang F, Chen Y, Xiao Y, Jiang H, Jiang Z, Yang M, Li M, Su Y, Yan Z, Lin Y, Li D. pH-sensitive molybdenum (Mo)-based polyoxometalate nanoclusters have therapeutic efficacy in inflammatory bowel disease by counteracting ferroptosis. Pharmacol Res 2023; 188:106645. [PMID: 36610695 DOI: 10.1016/j.phrs.2023.106645] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
Current therapeutic drugs for ulcerative colitis (UC) remained inadequate due to drug dependence and unacceptable adverse events. Reactive oxygen species (ROS) played a critical role in the occurrence and development of UC, which most likely benefited from treatment in scavenging ROS. In this study, we developed a pH-sensitive molybdenum-based polyoxometalate (POM) nanocluster, which might contribute to site specific colonic delivery and enhance systemic efficacy of UC treatment. Our results demonstrated that POM displayed robust ROS scavenging ability in vitro. POM could significantly alleviate the enteric symptoms and inflammatory indicators in DSS-induced UC mouse models. Flow cytometry showed an effective diminishment of macrophages, neutrophils and T cells infiltration after POM administration in UC models. Also, for the first time, we demonstrated that POM interfered with metabolic pathway associated to oxidative stress and partially improved the abnormal production of intestinal metabolites in UC to some extent. Benefiting from the ROS scavenging ability, POM attenuated ferroptosis in DSS induced UC, as evidenced by increase of GSH, down-expression of GPX4 and improvement in mitochondrial morphological changes. Meanwhile, there were no side effects on normal tissues. Thus, our powerful therapeutic effects pioneered the application of POM for safer and more effective POM-based UC therapy.
Collapse
Affiliation(s)
- Fan Yang
- Department of Nuclear Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Yuechuan Chen
- Department of Nuclear Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Yitai Xiao
- Department of Nuclear Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Hailong Jiang
- Department of Nuclear Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Center for Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Zebo Jiang
- Department of Nuclear Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Meilin Yang
- Department of Nuclear Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Mengzhu Li
- Department of Nuclear Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Yonghui Su
- Department of Gastrointestinal Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China.
| | - Zhixiang Yan
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, Guangdong Province 519000, China.
| | - Yong Lin
- Department of Psychiatry, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China.
| | - Dan Li
- Department of Nuclear Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China.
| |
Collapse
|
7
|
Pomegranate Seed Oil as a Source of Conjugated Linolenic Acid (CLnA) Has No Effect on Atherosclerosis Development but Improves Lipid Profile and Affects the Expression of Lipid Metabolism Genes in apoE/LDLR -/- Mice. Int J Mol Sci 2023; 24:ijms24021737. [PMID: 36675252 PMCID: PMC9863817 DOI: 10.3390/ijms24021737] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/05/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
The aim of this study was to evaluate the anti-atherosclerotic effect of pomegranate seed oil as a source of conjugated linolenic acid (CLnA) (cis-9,trans-11,cis-13; punicic acid) compared to linolenic acid (LnA) and conjugated linoleic acid (CLA) (cis-9,trans-11) in apoE/LDLR-/- mice. In the LONG experiment, 10-week old mice were fed for the 18 weeks. In the SHORT experiment, 18-week old mice were fed for the 10 weeks. Diets were supplied with seed oils equivalent to an amount of 0.5% of studied fatty acids. In the SHORT experiment, plasma TCh and LDL+VLDL cholesterol levels were significantly decreased in animals fed CLnA and CLA compared to the Control. The expression of PPARα in liver was four-fold increased in CLnA group in the SHORT experiment, and as a consequence the expression of its target gene ACO was three-fold increased, whereas the liver's expression of SREBP-1 and FAS were decreased in CLnA mice only in the LONG experiment. Punicic acid and CLA isomers were determined in the adipose tissue and liver in animals receiving pomegranate seed oil. In both experiments, there were no effects on the area of atherosclerotic plaque in aortic roots. However, in the SHORT experiment, the area of atherosclerosis in the entire aorta in the CLA group compared to CLnA and LnA was significantly decreased. In conclusion, CLnA improved the lipid profile and affected the lipid metabolism gene expression, but did not have the impact on the development of atherosclerotic plaque in apoE/LDLR-/- mice.
Collapse
|
8
|
Nazari-Khanamiri F, Ghasemnejad-Berenji M. Cellular and molecular mechanisms of genistein in prevention and treatment of diseases: An overview. J Food Biochem 2021; 45:e13972. [PMID: 34664285 DOI: 10.1111/jfbc.13972] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/22/2021] [Accepted: 10/01/2021] [Indexed: 01/01/2023]
Abstract
Genistein is the simplest secondary metabolite in soybeans and belongs to a group of compounds called isoflavones. It is a phytoestrogen and it makes up more than 60% of soy isoflavones. Studies have shown the anti-inflammatory, anti-apoptotic, and anti-angiogenic effects of genistein in addition to its modulatory effects on steroidal hormone receptors. In this review, we discuss the pharmacologic and therapeutic effects of genistein on various diseases. PRACTICAL APPLICATIONS: In this review, we have discussed the therapeutic effects of genistein as the main constituent of soybeans on health conditions. Its antioxidant, anti-inflammatory, anti-apoptotic and, anti-angiogenic effects need more attention. The pharmacological properties of genistein make this natural isoflavone a potential treatment for various diseases such as postmenopausal symptoms, cancer, bone, brain, and heart diseases. Special emphasis should be given to it, resulting in using it in clinical as a safe, potent, and bioactive molecule.
Collapse
Affiliation(s)
| | - Morteza Ghasemnejad-Berenji
- Experimental and Applied Pharmaceutical Research Center, Urmia University of Medical Sciences, Urmia, Iran
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
9
|
Shin DW, Lim BO. Nutritional Interventions Using Functional Foods and Nutraceuticals to Improve Inflammatory Bowel Disease. J Med Food 2020; 23:1136-1145. [PMID: 33047999 DOI: 10.1089/jmf.2020.4712] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The gastrointestinal tract, the second largest organ in the body, plays an important role in nutrient and mineral intake through the intestinal barrier. Dysfunction of intestinal permeability and related disorders commonly occur in patients with inflammatory bowel disease (IBD), one of the health problems in the Western societies that are considered to be mainly due to the Western diet. Although the exact etiology of IBD has not been elucidated, environmental and genetic factors may be involved in its pathogenesis. Many synthetic or biological drugs, such as 5-aminosalicylic acid corticosteroids as anti-inflammatory drugs, have been used clinically to treat IBD. However, their long-term use exhibits some adverse health consequences. Therefore, many researchers have devised alternative therapies to overcome this problem. Many studies have revealed that some functional nutrients in nature can relieve gastrointestinal inflammation by controlling proinflammatory cytokines. In this study, we review the ability of functional nutraceuticals such as phytochemicals, fatty acids, and bioactive peptides in improving IBD by regulating its underlying pathogenic mechanisms.
Collapse
Affiliation(s)
- Dong Wook Shin
- College of Biomedical and Health Science, Konkuk University, Chungju, Korea
| | - Beong Ou Lim
- College of Biomedical and Health Science, Konkuk University, Chungju, Korea.,Research Institute of Inflammatory Disease, Konkuk University, Chungju, Korea
| |
Collapse
|
10
|
Ren Q, Yang B, Zhang H, Ross RP, Stanton C, Chen H, Chen W. c9, t11, c15-CLNA and t9, t11, c15-CLNA from Lactobacillus plantarum ZS2058 Ameliorate Dextran Sodium Sulfate-Induced Colitis in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3758-3769. [PMID: 32125157 DOI: 10.1021/acs.jafc.0c00573] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
To investigate the specific functions of conjugated fatty acids (CFAs) produced by the probiotic bacterium, α-linolenic acid was isomerized by Lactobacillus plantarum ZS2058, and two different conjugated linolenic acid (CLNA) isomers were successfully isolated: c9, t11, c15-CLNA (CLNA1) and t9, t11, c15-CLNA (CLNA2). The effects and mechanism of CLNA crude extract and individual isomers on colitis were explored. CLNA significantly inhibited weight loss, the disease activity index, and colon shortening. Additionally, CLNA alleviated histological damage, protected colonic mucus layer integrity, and significantly upregulated the concentration of tight junction proteins (ZO-1, occludin, E-cadherin 1, and claudin-3). CLNA significantly attenuated the level of proinflammatory cytokines (TNF-α, IL-1β, and IL-6) while upregulating the expression of the colonic anti-inflammatory cytokine IL-10 and nuclear receptor peroxisome-activated receptor-γ. Moreover, CLNA increased the activity of oxidative stress-related enzymes (SOD, GSH, and CAT), and the myeloperoxidase activity was significantly decreased by CLNA. Meanwhile, the concentrations of CLNA in the liver and conjugated linoleic acid in the colonic content were significantly increased because of the treatment of CLNA. Furthermore, CLNA could rebalance the intestinal microbial composition of colitis mice, including increasing the α-diversity. CLNA1 and CLNA2 increased the abundance of Ruminococcus and Prevotella, respectively.
Collapse
Affiliation(s)
- Qing Ren
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China
| | - Bo Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, P. R China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, Jiangsu 214122, P. R China
| | - R Paul Ross
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi 214122, China
- APC Microbiome Ireland, University College Cork, Cork T12 YN60, Ireland
| | - Catherine Stanton
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi 214122, China
- APC Microbiome Ireland, University College Cork, Cork T12 YN60, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork P61 C996, Ireland
| | - Haiqin Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, P. R China
- Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, P.R. China
| |
Collapse
|
11
|
Venkataraman B, Ojha S, Belur PD, Bhongade B, Raj V, Collin PD, Adrian TE, Subramanya SB. Phytochemical drug candidates for the modulation of peroxisome proliferator-activated receptor γ in inflammatory bowel diseases. Phytother Res 2020; 34:1530-1549. [PMID: 32009281 DOI: 10.1002/ptr.6625] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 12/23/2019] [Accepted: 01/14/2020] [Indexed: 12/12/2022]
Abstract
Plant-based compounds or phytochemicals such as alkaloids, glycosides, flavonoids, volatile oils, tannins, resins, and polyphenols have been used extensively in traditional medicine for centuries and more recently in Western alternative medicine. Extensive evidence suggests that consumption of dietary polyphenolic compounds lowers the risk of inflammatory diseases. The anti-inflammatory properties of several phytochemicals are mediated through ligand-inducible peroxisome proliferator-activated receptors (PPARs), particularly the PPARγ transcription factor. Inflammatory bowel disease (IBD) is represented by ulcerative colitis, which occurs in the mucosa of the colon and rectum, and Crohn's disease (CD) that can involve any segment of gastrointestinal tract. Because of the lack of cost-effective pharmaceutical treatment options, many IBD patients seek and use alternative and unconventional therapies to alleviate their symptoms. PPARγ plays a role in the inhibition of inflammatory cytokine expression and activation of anti-inflammatory immune cells. The phytochemicals reported here are ligands that activate PPARγ, which in turn modulates inflammatory responses. PPARγ is highly expressed in the gut making it a potential therapeutic target for IBDs. This review summarizes the effects of the currently published phytochemicals that modulate the PPARγ pathway and reduce or eliminate colonic inflammation.
Collapse
Affiliation(s)
- Balaji Venkataraman
- Department of Physiology, Zayed Bin Sultan Center for Health Sciences, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Prasanna D Belur
- Department of Chemical Engineering, National Institute of Technology Karnataka, Mangalore, India
| | - Bhoomendra Bhongade
- Department of Pharmaceutical Chemistry, RAK College of Pharmaceutical Sciences, RAK Medical & Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Vishnu Raj
- Department of Physiology, Zayed Bin Sultan Center for Health Sciences, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | | | - Thomas E Adrian
- Department of Basic Medical Sciences, Mohamed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Sandeep B Subramanya
- Department of Physiology, Zayed Bin Sultan Center for Health Sciences, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
12
|
Finn PW. Cheminformatics in the Identification of Drug Classes for the Treatment of Type 2 Diabetes. Methods Mol Biol 2020; 2076:71-84. [PMID: 31586322 DOI: 10.1007/978-1-4939-9882-1_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Computer-Aided Drug Design has developed into a powerful suite of methods that complement experimental approaches to the identification of new pharmacologically active compounds. In particular, virtual screening has become a standard tool for lead identification. Diverse examples of the application of virtual screening applied to T2DM target proteins have been reported. While several of these indicate successful identification of new lead compounds from synthetic chemical and natural product databases, many of them have been performed on a small scale and with limited validation. Careful study design and collaboration with cheminformaticians and computational chemists will enable these approaches to fulfil their potential for T2DM.
Collapse
Affiliation(s)
- Paul W Finn
- School of Computing, University of Buckingham, Buckingham, UK.
| |
Collapse
|
13
|
Zheng JH, Lin SR, Tseng FJ, Tsai MJ, Lue SI, Chia YC, Woon M, Fu YS, Weng CF. Clerodane Diterpene Ameliorates Inflammatory Bowel Disease and Potentiates Cell Apoptosis of Colorectal Cancer. Biomolecules 2019; 9:biom9120762. [PMID: 31766534 PMCID: PMC6995628 DOI: 10.3390/biom9120762] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/20/2019] [Accepted: 11/20/2019] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel disease (IBD) is general term for ulcerative colitis and Crohn's disease, which is chronic intestinal and colorectal inflammation caused by microbial infiltration or immunocyte attack. IBD is not curable, and is highly susceptible to develop into colorectal cancer. Finding agents to alleviate these symptoms, as well as any progression of IBD, is a critical effort. This study evaluates the anti-inflammation and anti-tumor activity of 16-hydroxycleroda-3,13-dien-15,16-olide (HCD) in in vivo and in vitro assays. The result of an IBD mouse model induced using intraperitoneal chemical azoxymethane (AOM)/dextran sodium sulfate (DSS) injection showed that intraperitoneal HCD adminstration could ameliorate the inflammatory symptoms of IBD mice. In the in vitro assay, cytotoxic characteristics and retained signaling pathways of HCD treatment were analyzed by MTT assay, cell cycle analysis, and Western blotting. From cell viability determination, the IC50 of HCD in Caco-2 was significantly lower in 2.30 μM at 48 h when compared to 5-fluorouracil (5-FU) (66.79 μM). By cell cycle and Western blotting analysis, the cell death characteristics of HCD treatment in Caco-2 exhibited the involvement of extrinsic and intrinsic pathways in cell death, for which intrinsic apoptosis was predominantly activated via the reduction in growth factor signaling. These potential treatments against colon cancer demonstrate that HCD could provide a promising adjuvant as an alternative medicine in combating colorectal cancer and IBD.
Collapse
Affiliation(s)
- Jia-Huei Zheng
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 97401, Taiwan; (J.-H.Z.); (S.-R.L.); (F.-J.T.); (S.-I.L.)
| | - Shian-Ren Lin
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 97401, Taiwan; (J.-H.Z.); (S.-R.L.); (F.-J.T.); (S.-I.L.)
| | - Feng-Jen Tseng
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 97401, Taiwan; (J.-H.Z.); (S.-R.L.); (F.-J.T.); (S.-I.L.)
- Department of Orthopedics, Hualien Armed Force General Hospital, Hualien 97144, Taiwan
| | - May-Jywan Tsai
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei City 11217, Taiwan;
| | - Sheng-I Lue
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 97401, Taiwan; (J.-H.Z.); (S.-R.L.); (F.-J.T.); (S.-I.L.)
- Department of Physiology & Master’s Program, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yi-Chen Chia
- Department of Food Science & Technology, Tajen University, Pingtung 90741, Taiwan;
| | - Mindar Woon
- Department of Radiation Oncology, Yeezen Hospital, Taoyuan 32645, Taiwan;
| | - Yaw-Syan Fu
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Institute of Respiratory Disease, Department of Basic Medical Science, Xiamen Medical College, Xiamen 361023, China
| | - Ching-Feng Weng
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Institute of Respiratory Disease, Department of Basic Medical Science, Xiamen Medical College, Xiamen 361023, China
- Correspondence: or ; Tel.: +886-3-8903609
| |
Collapse
|
14
|
Hyder A. PGlyRP3 concerts with PPARγ to attenuate DSS-induced colitis in mice. Int Immunopharmacol 2018; 67:46-53. [PMID: 30530168 DOI: 10.1016/j.intimp.2018.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/01/2018] [Accepted: 12/03/2018] [Indexed: 02/06/2023]
Abstract
Nutrients may modulate immunity through their transcription factors that act on both metabolic and immunity genes. It has been shown that the transcription factor of lipid ligands PPARγ physically binds the gene promoter of the peptidoglycan recognition protein (PGlyRP3), which showed anti-inflammatory action in vitro. It is hypothesized in the present work that olive oil feeding protects against toxicity of DSS-induced colitis via activation of the lipid transcription factor PPARγ that stimulates the anti-inflammatory PGlyRP3. Results: PGlyRP3 is expressed in mouse colon and up-regulated by olive oil feeding. Olive oil reduced mortality and severity scores of DSS-induced colitis and down-regulated the proinflammatory IL-1b, IL-6 and TNFα genes. This protective effect was accompanied by up-regulation of both PPARγ and PGlyRP3. Inhibition of PPARγ by its antagonist BADGE down-regulated PGlyRP3 and abolished the anti-inflammatory effect of olive oil feeding in this DSS-induced colitis model, reflecting the pivotal role of PPARγ binding nutrition and inflammation. Activation of PGlyRP3 by its ligand peptidoglycan was not responsible for the inflammation caused by peptidoglycan, since neutralization of TLR2 attenuated this inflammatory response without affecting the peptidoglycan-induced PGlyRP3 level. Olive oil activated the IκBα and inhibited NF-κB and cox-2 gene expressions, and p65 nuclear translocation in DSS-colitis mice, reflecting the involvement of the inhibition of NF-κB signaling pathway in the anti-inflammatory olive oil - PPARγ - PGlyRP3 access. This pathway was reactivated by the PPARγ antagonist BADGE. Conclusions: Olive oil regulates by the same transcription factor (PPARγ) both lipid metabolic and immune gene (PGlyRP3) expressions, exerting the anti-inflammatory effect, and protecting against DSS-induced colitis in mice.
Collapse
Affiliation(s)
- Ayman Hyder
- Faculty of Science, Damietta University, New Damietta 34517, Egypt.
| |
Collapse
|
15
|
Li K, Sinclair AJ, Zhao F, Li D. Uncommon Fatty Acids and Cardiometabolic Health. Nutrients 2018; 10:nu10101559. [PMID: 30347833 PMCID: PMC6213525 DOI: 10.3390/nu10101559] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/15/2018] [Accepted: 10/18/2018] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular disease (CVD) is a major cause of mortality. The effects of several unsaturated fatty acids on cardiometabolic health, such as eicosapentaenoic acid (EPA) docosahexaenoic acid (DHA), α linolenic acid (ALA), linoleic acid (LA), and oleic acid (OA) have received much attention in past years. In addition, results from recent studies revealed that several other uncommon fatty acids (fatty acids present at a low content or else not contained in usual foods), such as furan fatty acids, n-3 docosapentaenoic acid (DPA), and conjugated fatty acids, also have favorable effects on cardiometabolic health. In the present report, we searched the literature in PubMed, Embase, and the Cochrane Library to review the research progress on anti-CVD effect of these uncommon fatty acids. DPA has a favorable effect on cardiometabolic health in a different way to other long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFAs), such as EPA and DHA. Furan fatty acids and conjugated linolenic acid (CLNA) may be potential bioactive fatty acids beneficial for cardiometabolic health, but evidence from intervention studies in humans is still limited, and well-designed clinical trials are required. The favorable effects of conjugated linoleic acid (CLA) on cardiometabolic health observed in animal or in vitro cannot be replicated in humans. However, most intervention studies in humans concerning CLA have only evaluated its effect on cardiometabolic risk factors but not its direct effect on risk of CVD, and randomized controlled trials (RCTs) will be required to clarify this point. However, several difficulties and limitations exist for conducting RCTs to evaluate the effect of these fatty acids on cardiometabolic health, especially the high costs for purifying the fatty acids from natural sources. This review provides a basis for better nutritional prevention and therapy of CVD.
Collapse
Affiliation(s)
- Kelei Li
- Institute of Nutrition and Health, Qingdao University, Qingdao 266021, China.
| | - Andrew J Sinclair
- Faculty of Health, Deakin University, Locked Bag 20000, Geelong, VIC 3220, Australia.
- Department of Nutrition, Dietetics and Food, Monash University, Notting Hill, VIC 3168, Australia.
| | - Feng Zhao
- Institute of Nutrition and Health, Qingdao University, Qingdao 266021, China.
| | - Duo Li
- Institute of Nutrition and Health, Qingdao University, Qingdao 266021, China.
- Department of Nutrition, Dietetics and Food, Monash University, Notting Hill, VIC 3168, Australia.
| |
Collapse
|
16
|
Balasubramanian K, Patil VM. Quantum molecular modeling of hepatitis C virus inhibition through non-structural protein 5B polymerase receptor binding of C 5-arylidene rhodanines. Comput Biol Chem 2018; 73:147-158. [PMID: 29486389 DOI: 10.1016/j.compbiolchem.2018.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 01/09/2018] [Accepted: 01/23/2018] [Indexed: 11/25/2022]
Abstract
We have carried out high-level quantum chemical computations followed by molecular docking studies on a set of 17C5-arylidene rhodanine isomers to provide insights into the binding modes with different reported binding pockets of the nonstructural protein 5B (NS5B) polymerase that contribute to the hepatitis C virus (HCV) inhibition. We optimized the multi-target profile of the selected rhodanine analogs to investigate potential non-nucleotide inhibitors (NNIs) by quantum chemical optimization of the 18 isomers followed by docking with quantum chemically optimized structures of each isomer with NS5B polymerase at multiple binding pockets. The binding affinities of the PP-I, PP-II and TP-II pockets of NS5B polymerase were analyzed for all the 17 isomers of 2-[(5Z)-5-(2,4-dichlorobenzylidene)-4-oxo-2-thioxo-1,3-thiazolidin-3-yl]-3-phenylpropanoic acid. On the basis of binding propensity at the different pockets and inhibitor constants, we ranked these isomers as potential candidates for the HCV inhibition. We have identified four isomers as promising NNIs of NS5B polymerase with comparable binding and inhibition to the standard (1,3) dichloro substituted isomer that exhibits in vitro activity and several other isomers as candidates in a "multi-targeted drug" approach.
Collapse
Affiliation(s)
| | - Vaishali M Patil
- Department of Pharmaceutical Chemistry, KIET School of Pharmacy, KIET Group of Institutions, Ghaziabad, Uttar Pradesh, India.
| |
Collapse
|
17
|
Adinortey MB, Ansah C, Adinortey CA, McGiboney J, Nyarko A. In vitro H +/K +-ATPase Inhibition, Antiradical Effects of a Flavonoid-rich Fraction of Dissotis rotundifolia, and In silico PASS Prediction of its Isolated Compounds. J Nat Sci Biol Med 2018; 9:47-53. [PMID: 29456393 PMCID: PMC5812074 DOI: 10.4103/jnsbm.jnsbm_104_17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Dissotis rotundifolia, commonly referred to as pink lady, has several medicinal uses including peptic ulcer. This study investigated the inhibitory effects of D. rotundifolia extract on H+/K+-ATPase and also assessed its antiradical activity. In silico study of some isolated compounds of this plant was also carried out to affirm the suspected binding properties of extract to H+/K+-ATPase enzyme. Materials and Methods: D. rotundifolia whole plant extract was obtained after extraction process and then assessed for its ability to scavenge free radicals in four in vitro test models. Its ability to inhibit the activity of H+/K+-ATPase enzyme was also evaluated. Molecular docking was carried out on phytoconstituents, namely, vitexin, isovitexin, orientin, and isoorientin reported to be present in the whole plant extract. Results: Data obtained indicated that D. rotundifolia extract (DRE) exhibits strong antioxidant activity. DRE also showed inhibitory effects on H+/K+-ATPase enzyme activity. Docking studies affirmed the in vitro binding effect of the extract to H+/K+-ATPase. Conclusion: These findings suggest that the plant extract possess antioxidant and antipeptic ulcer activity.
Collapse
Affiliation(s)
- Michael Buenor Adinortey
- Department of Biochemistry, School of Biological Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Charles Ansah
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Cynthia Ayefoumi Adinortey
- Department of Molecular Biology and Biotechnology, School of Biological Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Justine McGiboney
- Department of Biochemistry, School of Biological Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana.,Department of Biochemistry, Virginia Polytechnic Institute and State University, Virginia, USA
| | - Alexander Nyarko
- Department of Pharmacology, Faculty of Pharmacy, University of Ghana, Legon, Accra, Ghana
| |
Collapse
|
18
|
Fontes AL, Pimentel LL, Simões CD, Gomes AMP, Rodríguez-Alcalá LM. Evidences and perspectives in the utilization of CLNA isomers as bioactive compounds in foods. Crit Rev Food Sci Nutr 2017; 57:2611-2622. [DOI: 10.1080/10408398.2015.1063478] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Ana L. Fontes
- CBQF – Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Porto, Portugal
| | - Lígia L. Pimentel
- CBQF – Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Porto, Portugal
| | - Catarina D. Simões
- CBQF – Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Porto, Portugal
| | - Ana M. P. Gomes
- CBQF – Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Porto, Portugal
| | - Luís M. Rodríguez-Alcalá
- CBQF – Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Porto, Portugal
- Centro de Investigación en Recursos Naturales y Sustentabilidad (CIRENYS), Universidad Bernardo O'Higgins, Santiago de Chile, Chile
| |
Collapse
|
19
|
Nakanishi T, Anraku M, Suzuki R, Kono T, Erickson L, Kawahara S. Novel immunomodulatory effects of phytanic acid and its related substances in mice. J Funct Foods 2016. [DOI: 10.1016/j.jff.2015.12.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
20
|
Lu P, Hontecillas R, Abedi V, Kale S, Leber A, Heltzel C, Langowski M, Godfrey V, Philipson C, Tubau-Juni N, Carbo A, Girardin S, Uren A, Bassaganya-Riera J. Modeling-Enabled Characterization of Novel NLRX1 Ligands. PLoS One 2015; 10:e0145420. [PMID: 26714018 PMCID: PMC4694766 DOI: 10.1371/journal.pone.0145420] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 12/03/2015] [Indexed: 12/11/2022] Open
Abstract
Nucleotide-binding domain and leucine-rich repeat containing (NLR) family are intracellular sentinels of cytosolic homeostasis that orchestrate immune and inflammatory responses in infectious and immune-mediated diseases. NLRX1 is a mitochondrial-associated NOD-like receptor involved in the modulation of immune and metabolic responses. This study utilizes molecular docking approaches to investigate the structure of NLRX1 and experimentally assesses binding to naturally occurring compounds from several natural product and lipid databases. Screening of compound libraries predicts targeting of NLRX1 by conjugated trienes, polyketides, prenol lipids, sterol lipids, and coenzyme A-containing fatty acids for activating the NLRX1 pathway. The ligands of NLRX1 were identified by docking punicic acid (PUA), eleostearic acid (ESA), and docosahexaenoic acid (DHA) to the C-terminal fragment of the human NLRX1 (cNLRX1). Their binding and that of positive control RNA to cNLRX1 were experimentally determined by surface plasmon resonance (SPR) spectroscopy. In addition, the ligand binding sites of cNLRX1 were predicted in silico and validated experimentally. Target mutagenesis studies demonstrate that mutation of 4 critical residues ASP677, PHE680, PHE681, and GLU684 to alanine resulted in diminished affinity of PUA, ESA, and DHA to NLRX1. Consistent with the regulatory actions of NLRX1 on the NF-κB pathway, treatment of bone marrow derived macrophages (BMDM)s with PUA and DHA suppressed NF-κB activity in a NLRX1 dependent mechanism. In addition, a series of pre-clinical efficacy studies were performed using a mouse model of dextran sodium sulfate (DSS)-induced colitis. Our findings showed that the regulatory function of PUA on colitis is NLRX1 dependent. Thus, we identified novel small molecules that bind to NLRX1 and exert anti-inflammatory actions.
Collapse
Affiliation(s)
- Pinyi Lu
- The Center for Modeling Immunity to Enteric Pathogens, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, 24061, United States of America
- Nutritional Immunology and Molecular Medicine Laboratory (www.nimml.org), Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, 24061, United States of America
| | - Raquel Hontecillas
- The Center for Modeling Immunity to Enteric Pathogens, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, 24061, United States of America
- Nutritional Immunology and Molecular Medicine Laboratory (www.nimml.org), Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, 24061, United States of America
| | - Vida Abedi
- The Center for Modeling Immunity to Enteric Pathogens, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, 24061, United States of America
- Nutritional Immunology and Molecular Medicine Laboratory (www.nimml.org), Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, 24061, United States of America
| | - Shiv Kale
- The Center for Modeling Immunity to Enteric Pathogens, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, 24061, United States of America
- Nutritional Immunology and Molecular Medicine Laboratory (www.nimml.org), Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, 24061, United States of America
| | - Andrew Leber
- The Center for Modeling Immunity to Enteric Pathogens, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, 24061, United States of America
- Nutritional Immunology and Molecular Medicine Laboratory (www.nimml.org), Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, 24061, United States of America
| | - Chase Heltzel
- The Center for Modeling Immunity to Enteric Pathogens, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, 24061, United States of America
- Nutritional Immunology and Molecular Medicine Laboratory (www.nimml.org), Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, 24061, United States of America
| | - Mark Langowski
- The Center for Modeling Immunity to Enteric Pathogens, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, 24061, United States of America
- Nutritional Immunology and Molecular Medicine Laboratory (www.nimml.org), Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, 24061, United States of America
| | - Victoria Godfrey
- The Center for Modeling Immunity to Enteric Pathogens, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, 24061, United States of America
- Nutritional Immunology and Molecular Medicine Laboratory (www.nimml.org), Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, 24061, United States of America
| | - Casandra Philipson
- BioTherapeutics, 1800 Kraft Drive, Suite 200, Blacksburg, Virginia, 24060, United States of America
| | - Nuria Tubau-Juni
- The Center for Modeling Immunity to Enteric Pathogens, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, 24061, United States of America
- Nutritional Immunology and Molecular Medicine Laboratory (www.nimml.org), Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, 24061, United States of America
| | - Adria Carbo
- BioTherapeutics, 1800 Kraft Drive, Suite 200, Blacksburg, Virginia, 24060, United States of America
| | - Stephen Girardin
- Laboratory of Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Aykut Uren
- Georgetown University Medical Center, Washington, District of Columbia, 20057, United States of America
| | - Josep Bassaganya-Riera
- The Center for Modeling Immunity to Enteric Pathogens, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, 24061, United States of America
- Nutritional Immunology and Molecular Medicine Laboratory (www.nimml.org), Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, 24061, United States of America
- * E-mail:
| |
Collapse
|
21
|
Aruna P, Venkataramanamma D, Singh AK, Singh RP. Health Benefits of Punicic Acid: A Review. Compr Rev Food Sci Food Saf 2015; 15:16-27. [PMID: 33371578 DOI: 10.1111/1541-4337.12171] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 08/21/2015] [Accepted: 08/22/2015] [Indexed: 12/13/2022]
Abstract
Punicic acid (PA) is a polyunsaturated fatty acid (18:3 n-5), which is classified as a conjugated linolenic acid. PA is also referred as a "super CLnA" whose effect is even more potent than that of an ordinary CLnA. It is found mainly in the seeds of pomegranate fruit (Punica granatum) and Trichoxanthes kirilowii and some other minor sources. It possesses a wide array of biological properties including antidiabetic, antiobesity, antiproliferative, and anticarcinogenic activity against various forms of cancer. In spite of this, PA has not been explored as a nutraceutical or as an ingredient of food products which can be aimed at specific consumer target groups. This review details the various health-beneficial properties of PA and explores the possibilities of its utilization as an active ingredient in various food products.
Collapse
Affiliation(s)
- P Aruna
- Academy of Scientific and Innovative Research (AcSIR), Taramani, Chennai, Tamil Nadu, India.,the Dept. of Biochemistry and Nutrition, CSIR-Central Food Technological Research Inst, Mysore 570020, Karnataka, India
| | - D Venkataramanamma
- Academy of Scientific and Innovative Research (AcSIR), Taramani, Chennai, Tamil Nadu, India.,the Dept. of Biochemistry and Nutrition, CSIR-Central Food Technological Research Inst, Mysore 570020, Karnataka, India
| | - Alok Kumar Singh
- the Dept. of Biochemistry and Nutrition, CSIR-Central Food Technological Research Inst, Mysore 570020, Karnataka, India
| | - R P Singh
- Academy of Scientific and Innovative Research (AcSIR), Taramani, Chennai, Tamil Nadu, India.,the Dept. of Biochemistry and Nutrition, CSIR-Central Food Technological Research Inst, Mysore 570020, Karnataka, India
| |
Collapse
|
22
|
Lewis SN, Garcia Z, Hontecillas R, Bassaganya-Riera J, Bevan DR. Pharmacophore modeling improves virtual screening for novel peroxisome proliferator-activated receptor-gamma ligands. J Comput Aided Mol Des 2015; 29:421-39. [PMID: 25616366 PMCID: PMC4395532 DOI: 10.1007/s10822-015-9831-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 01/09/2015] [Indexed: 01/28/2023]
Abstract
Peroxisome proliferator-activated receptor-gamma (PPARγ) is a nuclear hormone receptor involved in regulating various metabolic and immune processes. The PPAR family of receptors possesses a large binding cavity that imparts promiscuity of ligand binding not common to other nuclear receptors. This feature increases the challenge of using computational methods to identify PPAR ligands that will dock favorably into a structural model. Utilizing both ligand- and structure-based pharmacophore methods, we sought to improve agonist prediction by grouping ligands according to pharmacophore features, and pairing models derived from these features with receptor structures for docking. For 22 of the 33 receptor structures evaluated we observed an increase in true positive rate (TPR) when screening was restricted to compounds sharing molecular features found in rosiglitazone. A combination of structure models used for docking resulted in a higher TPR (40 %) when compared to docking with a single structure model (<20 %). Prediction was also improved when specific protein-ligand interactions between the docked ligands and structure models were given greater weight than the calculated free energy of binding. A large-scale screen of compounds using a marketed drug database verified the predictive ability of the selected structure models. This study highlights the steps necessary to improve screening for PPARγ ligands using multiple structure models, ligand-based pharmacophore data, evaluation of protein-ligand interactions, and comparison of docking datasets. The unique combination of methods presented here holds potential for more efficient screening of compounds with unknown affinity for PPARγ that could serve as candidates for therapeutic development.
Collapse
Affiliation(s)
- Stephanie N Lewis
- Genetics, Bioinformatics, and Computational Biology Program, Virginia Tech, Blacksburg, VA, USA,
| | | | | | | | | |
Collapse
|
23
|
Yuan G, Chen X, Li D. Modulation of peroxisome proliferator-activated receptor gamma (PPAR γ) by conjugated fatty acid in obesity and inflammatory bowel disease. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:1883-1895. [PMID: 25634802 DOI: 10.1021/jf505050c] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Conjugated fatty acids including conjugated linoleic acid (CLA) and conjugated linolenic acid (CLNA) have drawn significant attention for their variety of biologically beneficial effects. Evidence suggested that CLA and CLNA could play physiological roles by regulating the expression and activity of PPAR γ. This review summarizes the current understanding of evidence of the role of CLA (cis-9,trans-11 CLA and trans-10,cis-12 CLA) and CLNA (punicic acid and α-eleostearic acid) in modulating the expression or activity of PPAR γ that could in turn be employed as complementary treatment for obesity and inflammatory bowel disease.
Collapse
Affiliation(s)
- Gaofeng Yuan
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Zhejiang Ocean University , Zhoushan 316022, China
| | | | | |
Collapse
|
24
|
Yuan GF, Chen XE, Li D. Conjugated linolenic acids and their bioactivities: a review. Food Funct 2015; 5:1360-8. [PMID: 24760201 DOI: 10.1039/c4fo00037d] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Conjugated linolenic acid (CLNA) is a mixture of positional and geometric isomers of octadecatrienoic acid (α-linolenic acid, cis9,cis12,cis15-18:3 n-3) found in plant seeds. Three 8,10,12-18:3 isomers and four 9,11,13-18:3 isomers have been reported to occur naturally. CLNA isomers such as punicic acid, α-eleostearic acid and jacaric acid have been attributed to exhibit several health benefits that are largely based on animal and in vitro studies. This review has summarized and updated the evidence regarding the metabolism and bioactivities of CLNA isomers, and comprehensively discussed the recent studies on the effects of anti-carcinogenic, lipid metabolism regulation, anti-inflammatory, anti-obese and antioxidant activities of CLNA isomers. The available results may provide a potential application for CLNA isomers from natural sources, especially edible plant seeds, as effective functional food ingredients and dietary supplements for the above mentioned disease management. Further research, especially human randomized clinical trials, is warranted to investigate the detailed physiological effects, bioactivity and molecular mechanism of CLNA.
Collapse
Affiliation(s)
- Gao-Feng Yuan
- College of Food and Medicine, Zhejiang Ocean University, Zhoushan 316022, China
| | | | | |
Collapse
|
25
|
Wang XJ, Zhang J, Wang SQ, Xu WR, Cheng XC, Wang RL. Identification of novel multitargeted PPARα/γ/δ pan agonists by core hopping of rosiglitazone. DRUG DESIGN DEVELOPMENT AND THERAPY 2014; 8:2255-62. [PMID: 25422585 PMCID: PMC4232041 DOI: 10.2147/dddt.s70383] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The thiazolidinedione class peroxisome proliferator-activated receptor gamma (PPARγ) agonists are restricted in clinical use as antidiabetic agents because of side effects such as edema, weight gain, and heart failure. The single and selective agonism of PPARγ is the main cause of these side effects. Multitargeted PPARα/γ/δ pan agonist development is the hot topic in the antidiabetic drug research field. In order to identify PPARα/γ/δ pan agonists, a compound database was established by core hopping of rosiglitazone, which was then docked into a PPARα/γ/δ active site to screen out a number of candidate compounds with a higher docking score and better interaction with the active site. Further, absorption, distribution, metabolism, excretion, and toxicity prediction was done to give eight compounds. Molecular dynamics simulation of the representative Cpd#1 showed more favorable binding conformation for PPARs receptor than the original ligand. Cpd#1 could act as a PPARα/γ/δ pan agonist for novel antidiabetic drug research.
Collapse
Affiliation(s)
- Xue-Jiao Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, People's Republic of China
| | - Jun Zhang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, People's Republic of China
| | - Shu-Qing Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, People's Republic of China
| | - Wei-Ren Xu
- Tianjin Key Laboratory of Molecular Design and Drug Discovery, Tianjin Institute of Pharmaceutical Research, Tianjin, People's Republic of China
| | - Xian-Chao Cheng
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, People's Republic of China
| | - Run-Ling Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, People's Republic of China
| |
Collapse
|
26
|
Wang L, Waltenberger B, Pferschy-Wenzig EM, Blunder M, Liu X, Malainer C, Blazevic T, Schwaiger S, Rollinger JM, Heiss EH, Schuster D, Kopp B, Bauer R, Stuppner H, Dirsch VM, Atanasov AG. Natural product agonists of peroxisome proliferator-activated receptor gamma (PPARγ): a review. Biochem Pharmacol 2014; 92:73-89. [PMID: 25083916 PMCID: PMC4212005 DOI: 10.1016/j.bcp.2014.07.018] [Citation(s) in RCA: 432] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 07/18/2014] [Accepted: 07/21/2014] [Indexed: 12/13/2022]
Abstract
Agonists of the nuclear receptor PPARγ are therapeutically used to combat hyperglycaemia associated with the metabolic syndrome and type 2 diabetes. In spite of being effective in normalization of blood glucose levels, the currently used PPARγ agonists from the thiazolidinedione type have serious side effects, making the discovery of novel ligands highly relevant. Natural products have proven historically to be a promising pool of structures for drug discovery, and a significant research effort has recently been undertaken to explore the PPARγ-activating potential of a wide range of natural products originating from traditionally used medicinal plants or dietary sources. The majority of identified compounds are selective PPARγ modulators (SPPARMs), transactivating the expression of PPARγ-dependent reporter genes as partial agonists. Those natural PPARγ ligands have different binding modes to the receptor in comparison to the full thiazolidinedione agonists, and on some occasions activate in addition PPARα (e.g. genistein, biochanin A, sargaquinoic acid, sargahydroquinoic acid, resveratrol, amorphastilbol) or the PPARγ-dimer partner retinoid X receptor (RXR; e.g. the neolignans magnolol and honokiol). A number of in vivo studies suggest that some of the natural product activators of PPARγ (e.g. honokiol, amorfrutin 1, amorfrutin B, amorphastilbol) improve metabolic parameters in diabetic animal models, partly with reduced side effects in comparison to full thiazolidinedione agonists. The bioactivity pattern as well as the dietary use of several of the identified active compounds and plant extracts warrants future research regarding their therapeutic potential and the possibility to modulate PPARγ activation by dietary interventions or food supplements.
Collapse
Affiliation(s)
- Limei Wang
- Department of Pharmacognosy, University of Vienna, Austria
| | - Birgit Waltenberger
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Austria
| | | | - Martina Blunder
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy, University of Graz, Austria
| | - Xin Liu
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy, University of Graz, Austria
| | | | - Tina Blazevic
- Department of Pharmacognosy, University of Vienna, Austria
| | - Stefan Schwaiger
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Austria
| | - Judith M Rollinger
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Austria
| | - Elke H Heiss
- Department of Pharmacognosy, University of Vienna, Austria
| | - Daniela Schuster
- Institute of Pharmacy/Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Austria
| | - Brigitte Kopp
- Department of Pharmacognosy, University of Vienna, Austria
| | - Rudolf Bauer
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy, University of Graz, Austria
| | - Hermann Stuppner
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Austria
| | | | | |
Collapse
|
27
|
Anusree SS, Priyanka A, Nisha VM, Das AA, Raghu KG. An in vitro study reveals the nutraceutical potential of punicic acid relevant to diabetes via enhanced GLUT4 expression and adiponectin secretion. Food Funct 2014; 5:2590-601. [PMID: 25143251 DOI: 10.1039/c4fo00302k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The prevalence of diabetes and heart diseases is increasing in the world. Nutraceuticals of natural origin are gaining importance as an alternative to modern drugs for the management of metabolic syndrome. In the present study, punicic acid (PA), a major bioactive found in pomegranate seed, was subjected for biological characterization with respect to peroxisome proliferator-activated receptor gamma (PPARγ) agonist property in an in vitro system (3T3-L1 adipocytes). We evaluated the adipogenic potential of various concentrations (5, 10 and 30 μM) of PA by studying triglyceride accumulation and glycerol-3-phosphate dehydrogenase (GPDH) activity in adipocytes, which were found to be increased moderately compared with the positive control, i.e. rosiglitazone (RG). Glucose uptake activity (↑225.93% ± 2.55% for 30 μM of PA), and the prevention of reactive oxygen species (ROS) generation (↓57 ± 1.83% for 30 μM of PA) in adipocytes with PA were also evaluated. We also found that PA increased adiponectin secretion and upregulated GLUT4 expression and translocation in adipocytes. Molecular modelling studies revealed a high binding affinity of PA to the PPARγ ligand binding domain. An in vitro ligand binding assay based on time-resolved fluorescence resonance energy transfer (TR-FRET) also proved PA as a PPARγ agonist. Finally, we conclude that PA is a potential nutraceutical and should be encouraged for use both as a prophylactic and therapeutic agent.
Collapse
Affiliation(s)
- S S Anusree
- Agroprocessing and Natural Products Division, Council of Scientific and Industrial Research-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala 695019, India.
| | | | | | | | | |
Collapse
|
28
|
Kiss M, Czimmerer Z, Nagy L. The role of lipid-activated nuclear receptors in shaping macrophage and dendritic cell function: From physiology to pathology. J Allergy Clin Immunol 2013; 132:264-86. [PMID: 23905916 DOI: 10.1016/j.jaci.2013.05.044] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 05/16/2013] [Accepted: 05/30/2013] [Indexed: 02/06/2023]
Abstract
Nuclear receptors are ligand-activated transcription factors linking lipid signaling to the expression of the genome. There is increasing appreciation of the involvement of this receptor network in the metabolic programming of macrophages and dendritic cells (DCs), essential members of the innate immune system. In this review we focus on the role of retinoid X receptor, retinoic acid receptor, peroxisome proliferator-associated receptor γ, liver X receptor, and vitamin D receptor in shaping the immune and metabolic functions of macrophages and DCs. We also provide an overview of the contribution of macrophage- and DC-expressed nuclear receptors to various immunopathologic conditions, such as rheumatoid arthritis, inflammatory bowel disease, systemic lupus erythematosus, asthma, and some others. We suggest that systematic analyses of the roles of these receptors and their activating lipid ligands in immunopathologies combined with complementary and focused translational and clinical research will be crucial for the development of new therapies using the many molecules available to target nuclear receptors.
Collapse
Affiliation(s)
- Mate Kiss
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, University of Debrecen, Medical and Health Science Center, Debrecen, Hungary
| | | | | |
Collapse
|
29
|
Miranda J, Aguirre L, Fernández-Quintela A, Macarulla MT, Martínez-Castaño MG, Ayo J, Bilbao E, Portillo MP. Effects of pomegranate seed oil on glucose and lipid metabolism-related organs in rats fed an obesogenic diet. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:5089-5096. [PMID: 23682933 DOI: 10.1021/jf305076v] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Studies conducted in mice have revealed positive effects of punicic acid (PUA). The aim of this study was to analyze the effects of PUA on fat accumulation and glycemic control in rats fed an obesogenic diet. Rats were randomly divided into two groups: control group and PUA group (diet supplemented with 0.5% PUA). No changes were observed in adipose tissue weights. The glucose tolerance test showed that the glycemic value in the PUA group had decreased significantly at the final time (120 min) (-19.3%), as had fructosamine levels (-11.1%). However, homeostasis model assessment (HOMA-IR) showed that insulin resistance did not improve. No changes were observed in the liver, skeletal muscle composition, or peroxisome proliferator-activated receptors (PPARs) activation. Low levels (mg/g tissue) of PUA (0.04 ± 0.01 in both tissues) and higher levels of cis-9,trans-11 conjugated linoleic acid (0.31 ± 0.08 in liver, 0.52 ± 0.11 in muscle) were found. PUA supplementation induced hypoplasia (-16.1%) due to the antiproliferative effect on hepatocytes. In conclusion, dietary supplementation of 0.5% PUA did not lead to decreased fat accumulation in adipose tissue, liver, or skeletal muscle, or to improved glycemic control. The hypoplasia induced in liver is a negative effect that should be considered before proposing PUA as a functional ingredient.
Collapse
Affiliation(s)
- Jonatan Miranda
- Nutrition and Obesity Group, Department of Nutrition and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad , 7. 01006 Vitoria, Spain
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Viladomiu M, Hontecillas R, Lu P, Bassaganya-Riera J. Preventive and prophylactic mechanisms of action of pomegranate bioactive constituents. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2013; 2013:789764. [PMID: 23737845 PMCID: PMC3657449 DOI: 10.1155/2013/789764] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 03/20/2013] [Indexed: 11/17/2022]
Abstract
Pomegranate fruit presents strong anti-inflammatory, antioxidant, antiobesity, and antitumoral properties, thus leading to an increased popularity as a functional food and nutraceutical source since ancient times. It can be divided into three parts: seeds, peel, and juice, all of which seem to have medicinal benefits. Several studies investigate its bioactive components as a means to associate them with a specific beneficial effect and develop future products and therapeutic applications. Many beneficial effects are related to the presence of ellagic acid, ellagitannins (including punicalagins), punicic acid and other fatty acids, flavonoids, anthocyanidins, anthocyanins, estrogenic flavonols, and flavones, which seem to be its most therapeutically beneficial components. However, the synergistic action of the pomegranate constituents appears to be superior when compared to individual constituents. Promising results have been obtained for the treatment of certain diseases including obesity, insulin resistance, intestinal inflammation, and cancer. Although moderate consumption of pomegranate does not result in adverse effects, future studies are needed to assess safety and potential interactions with drugs that may alter the bioavailability of bioactive constituents of pomegranate as well as drugs. The aim of this review is to summarize the health effects and mechanisms of action of pomegranate extracts in chronic inflammatory diseases.
Collapse
Affiliation(s)
- Monica Viladomiu
- Nutritional Immunology and Molecular Medicine Laboratory, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA 24060, USA
- Center for Modeling Immunity to Enteric Pathogens, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA 24060, USA
| | - Raquel Hontecillas
- Nutritional Immunology and Molecular Medicine Laboratory, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA 24060, USA
- Center for Modeling Immunity to Enteric Pathogens, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA 24060, USA
| | - Pinyi Lu
- Nutritional Immunology and Molecular Medicine Laboratory, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA 24060, USA
- Center for Modeling Immunity to Enteric Pathogens, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA 24060, USA
| | - Josep Bassaganya-Riera
- Nutritional Immunology and Molecular Medicine Laboratory, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA 24060, USA
- Center for Modeling Immunity to Enteric Pathogens, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA 24060, USA
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
31
|
Nutritional protective mechanisms against gut inflammation. J Nutr Biochem 2013; 24:929-39. [PMID: 23541470 DOI: 10.1016/j.jnutbio.2013.01.006] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 01/15/2013] [Indexed: 02/07/2023]
Abstract
Inflammatory bowel disease (IBD) is a debilitating and widespread immune-mediated illness characterized by excessive inflammatory and effector mucosal responses leading to tissue destruction at the gastrointestinal tract. Interactions among the immune system, the commensal microbiota and the host genotype are thought to underlie the pathogenesis of IBD. However, the precise etiology of IBD remains unknown. Diet-induced changes in the composition of the gut microbiome can modulate the induction of regulatory versus effector immune responses at the gut mucosa and improve health outcomes. Therefore, manipulation of gut microbiota composition and the local production of microbial-derived metabolites by using prebiotics, probiotics and dietary fibers is being explored as a promising avenue of prophylactic and therapeutic intervention against gut inflammation. Prebiotics and fiber carbohydrates are fermented by resident microflora into short chain fatty acids (SCFAs) in the colon. SCFAs then activate peroxisome proliferator-activated receptor (PPAR)γ, a nuclear transcription factor with widely demonstrated anti-inflammatory efficacy in experimental IBD. The activation of PPARγ by naturally ocurring compounds such as conjugated linoleic acid, pomegranate seed oil-derived punicic acid, eleostearic acid and abscisic acid has been explored as nutritional interventions that suppress colitis by directly modulating the host immune response. The aim of this review is to summarize the status of innovative nutritional interventions against gastrointestinal inflammation, their proposed mechanisms of action, preclinical and clinical efficacy as well as bioinformatics and computational modeling approaches that accelerate discovery in nutritional and mucosal immunology research.
Collapse
|
32
|
Sánchez-Fidalgo S, Cárdeno A, Sánchez-Hidalgo M, Aparicio-Soto M, de la Lastra CA. Dietary extra virgin olive oil polyphenols supplementation modulates DSS-induced chronic colitis in mice. J Nutr Biochem 2013; 24:1401-13. [PMID: 23337347 DOI: 10.1016/j.jnutbio.2012.11.008] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Revised: 11/25/2012] [Accepted: 11/27/2012] [Indexed: 12/13/2022]
Abstract
We evaluated the protective effect of dietary extra virgin olive oil (EVOO) polyphenol extract (PE) supplementation in the inflammatory response associated to chronic colitis model. Six-week-old mice were randomized in four dietary groups: standard diet (SD), EVOO diet and both enriched with PE (850 ppm) (SD+PE and EVOO+PE). After 30 days, animals that were exposed to dextran sodium sulfate (DSS) (3%) followed by 3 weeks of drinking water developed chronic colitis, which was evaluated by disease activity index (DAI) and histology. Cell proliferation was analyzed by immunohistochemical and changes in monocyte chemotactic protein (MCP)-1 and tumor necrosis factor (TNF)-α mRNA expression by quantitative real-time polymerase chain reaction. Colonic expression of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2, mitogen-activated protein kinases (MAPKs), IκBα inhibitory and peroxisome proliferator-activated receptor gamma (PPARγ) were determined by western blotting. SD-DSS group showed a significant increase of DAI, histological damage and cell proliferation, as well as an up-regulation of TNF-α, MCP-1, COX-2 and iNOS proteins. p38 and JNK MAPKs phosphorylation, IκBα degradation and PPARγ deactivation were also observed. However, in DSS-treated and EVOO+PE-fed mice, DAI and cell proliferation were significantly reduced, as well as MCP-1, TNF-α, COX-2 and iNOS expression levels. In addition, this dietary group, notably down-regulated JNK phosphorylation, prevented IκBα degradation and PPARγ deactivation. These results demonstrated, for the first time, that EVOO-PE supplementation possessed marked protective effects on experimental colitis through PPARγ up-regulation and nuclear transcription factor-kappa B and MAPK signaling pathway inhibition, decreasing the inflammatory cascade. We concluded that PE-enriched EVOO diet could be a beneficial functional food on ulcerative colitis.
Collapse
Affiliation(s)
- Susana Sánchez-Fidalgo
- Department of Pharmacology, School of Pharmacy, University of Seville, 41012 Seville, Spain
| | | | | | | | | |
Collapse
|
33
|
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) is member of a family of nuclear receptors that interacts with nuclear proteins acting as coactivators and corepressors. The colon is a major tissue which expresses PPARγ in epithelial cells and, to a lesser degree, in macrophages and lymphocytes and plays a role in the regulation of intestinal inflammation. Indeed, both natural and synthetic PPARγ ligands have beneficial effects in different models of experimental colitis, with possible implication in the therapy of inflammatory bowel disease (IBD). This paper will specifically focus on potential role of PPARγ in the predisposition and physiopathology of IBD and will analyze its possible role in medical therapy.
Collapse
|
34
|
Esposito G, Filippis DD, Cirillo C, Iuvone T, Capoccia E, Scuderi C, Steardo A, Cuomo R, Steardo L. Cannabidiol in inflammatory bowel diseases: a brief overview. Phytother Res 2012; 27:633-6. [PMID: 22815234 DOI: 10.1002/ptr.4781] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Revised: 06/07/2012] [Accepted: 06/20/2012] [Indexed: 01/08/2023]
Abstract
This minireview highlights the importance of cannabidiol (CBD) as a promising drug for the therapy of inflammatory bowel diseases (IBD). Actual pharmacological treatments for IBD should be enlarged toward the search for low-toxicityand low-cost drugs that may be given alone or in combination with the conventional anti-IBD drugs to increase their efficacy in the therapy of relapsing forms of colitis. In the past, Cannabis preparations have been considered new promising pharmacological tools in view of their anti-inflammatory role in IBD as well as other gut disturbances. However, their use in the clinical therapy has been strongly limited by their psychotropic effects. CBD is a very promising compound since it shares the typical cannabinoid beneficial effects on gut lacking any psychotropic effects. For years, its activity has been enigmatic for gastroenterologists and pharmacologists, but now it is evident that this compound may interact at extra-cannabinoid system receptor sites, such as peroxisome proliferator-activated receptor-gamma. This strategic interaction makes CBD as a potential candidate for the development of a new class of anti-IBD drugs.
Collapse
Affiliation(s)
- Giuseppe Esposito
- Department of Physiology and Pharmacology Vittorio Erspamer, Faculty of Pharmacy and Medicine, Sapienza University of Rome, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
|