1
|
Fongsaran C, Verhoeve VI, Jirakanwisal K, Harris EK, Macaluso KR. Identification and characterization of a Relish-type NF-κB, DvRelish, in Dermacentor variabilis in response to Rickettsia rickettsii infection. Front Cell Infect Microbiol 2024; 14:1494450. [PMID: 39735256 PMCID: PMC11682715 DOI: 10.3389/fcimb.2024.1494450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/14/2024] [Indexed: 12/31/2024] Open
Abstract
Ixodid ticks serve as hosts and transmission vectors for several obligate intracellular bacteria, including members of the spotted fever group (SFG) of Rickettsia. Although ticks generate an immune response to bacterial insults, many of the signaling molecules associated with the response and how they may contribute to vector competence for Rickettsia are undefined. In this study, we isolated a full-length dvrelish transcript from Dermacentor variabilis, which encoded a Relish-type NF-κB. The presence of a canonical Rel homology domain (RHD) consistent with NF-κB proteins suggested a role in tick immune response for DvRelish. The expression of DvRelish was confirmed in tick tissues and fluorescent microscopy of tick hemocytes indicated increased expression following infection with Rickettsia as compared to a non-tick-borne bacterial pathogen. To further determine the effect of dvRelish gene knockdown on rickettsial infection, we used RNA interference-mediated gene knockdown in D. variabilis and demonstrated that transcription of dvRelish was decreased after 24 h post-injection of siRNA. We then assessed the response of D. variabilis when exposed to Rickettsia rickettsii and determined that transcription of dvRelish was inversely associated with rickettsial loads at 48 h post-exposure. Further studies are required to broaden the understanding of differential immune responses in ticks to SFG Rickettsia infection and elucidate the role played by the arthropod immune system in vector competence.
Collapse
|
2
|
Shah S, Elgizawy KK, Wu MY, Yao H, Yan WH, Li Y, Wang XP, Wu G, Yang FL. Diallyl Trisulfide Causes Male Infertility with Oligoasthenoteratospermia in Sitotroga cerealella through the Ubiquitin-Proteasome Pathway. Cells 2023; 12:2507. [PMID: 37887351 PMCID: PMC10605923 DOI: 10.3390/cells12202507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023] Open
Abstract
Essential oils extracted from plant sources along with their biologically active components may have negative effects on insects. Diallyl trisulfide (DAT) is an active component of garlic essential oil, and it exhibits multi-targeted activity against many organisms. Previously we reported that DAT induces male infertility and leads to apyrene and eupyrene sperm dysfunction in Sitotroga cerealella. In this study, we conducted an analysis of testis-specific RNA-Seq data and identified 449 downregulated genes and 60 upregulated genes in the DAT group compared to the control group. The downregulated genes were significantly enriched in the ubiquitin-proteasome pathway. Furthermore, DAT caused a significant reduction in mRNA expression of proteasome regulatory subunit particles required for ATP-dependent degradation of ubiquitinated proteins as well as decreased the expression profile of proteasome core particles, including β1, β2, and β5. Sperm physiological analysis showed that DAT decreased the chymotrypsin-like activity of the 20S proteasome and formed aggresomes in spermatozoa. Overall, our findings suggest that DAT impairs the testis proteasome, ultimately causing male infertility characterized by oligoasthenoteratospermia due to disruption in sperm proteasome assembly in S. cerealella.
Collapse
Affiliation(s)
- Sakhawat Shah
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.S.); (M.-Y.W.); (W.-H.Y.); (Y.L.); (X.-P.W.); (G.W.)
| | - Karam Khamis Elgizawy
- Plant Protection Department, Faculty of Agriculture, Benha University, Moshtohor, Toukh 13736, Egypt;
| | - Meng-Ya Wu
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.S.); (M.-Y.W.); (W.-H.Y.); (Y.L.); (X.-P.W.); (G.W.)
| | - Hucheng Yao
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China;
| | - Wen-Han Yan
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.S.); (M.-Y.W.); (W.-H.Y.); (Y.L.); (X.-P.W.); (G.W.)
| | - Yu Li
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.S.); (M.-Y.W.); (W.-H.Y.); (Y.L.); (X.-P.W.); (G.W.)
| | - Xiao-Ping Wang
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.S.); (M.-Y.W.); (W.-H.Y.); (Y.L.); (X.-P.W.); (G.W.)
| | - Gang Wu
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.S.); (M.-Y.W.); (W.-H.Y.); (Y.L.); (X.-P.W.); (G.W.)
| | - Feng-Lian Yang
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.S.); (M.-Y.W.); (W.-H.Y.); (Y.L.); (X.-P.W.); (G.W.)
| |
Collapse
|
3
|
Benoit JB, Finch G, Ankrum AL, Niemantsverdriet J, Paul B, Kelley M, Gantz JD, Matter SF, Lee RE, Denlinger DL. Reduced male fertility of an Antarctic mite following extreme heat stress could prompt localized population declines. Cell Stress Chaperones 2023; 28:541-549. [PMID: 37392307 PMCID: PMC10468472 DOI: 10.1007/s12192-023-01359-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 07/03/2023] Open
Abstract
Climate change is leading to substantial global thermal changes, which are particularly pronounced in polar regions. Therefore, it is important to examine the impact of heat stress on the reproduction of polar terrestrial arthropods, specifically, how brief extreme events may alter survival. We observed that sublethal heat stress reduces male fecundity in an Antarctic mite, yielding females that produced fewer viable eggs. Females and males collected from microhabitats with high temperatures showed a similar reduction in fertility. This impact is temporary, as indicated by recovery of male fecundity following return to cooler, stable conditions. The diminished fecundity is likely due to a drastic reduction in the expression of male-associated factors that occur in tandem with a substantial increase in the expression of heat shock proteins. Cross-mating between mites from different sites confirmed that heat-exposed populations have impaired male fertility. However, the negative impacts are transient as the effect on fertility declines with recovery time under less stressful conditions. Modeling indicated that heat stress is likely to reduce population growth and that short bouts of non-lethal heat stress could have substantial reproductive effects on local populations of Antarctic arthropods.
Collapse
Affiliation(s)
- Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA.
| | - Geoffrey Finch
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Andrea L Ankrum
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
- Department of Environmental Health, University of Cincinnati, Cincinnati, OH, USA
| | | | - Bidisha Paul
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Melissa Kelley
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - J D Gantz
- Department of Biology, Miami University, Oxford, OH, USA
- Department of Biology and Health Science, Hendrix College, Conway, AR, USA
| | - Stephen F Matter
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Richard E Lee
- Department of Biology, Miami University, Oxford, OH, USA
| | - David L Denlinger
- Departments of Entomology and Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
4
|
Cheng J, Zhu L, Zhu F, Zhao P, Li QX, Lu ZH, Zhang SD, Li Z, Liu XX. Peroxiredoxin 1 transfer during mating protects eupyrene sperm against oxdative stress in Grapholita molesta. PEST MANAGEMENT SCIENCE 2023. [PMID: 36929567 DOI: 10.1002/ps.7458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/11/2023] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Each Grapholita molesta female only copulates once during its lifetime and thus must maintain the viability of stored eupyrene sperm for male reproductive success. The male ejaculate comprises abundant accessory gland proteins produced by the male accessory gland (AG), and many of which are major effectors for sperm storage and maintenance. RESULTS Here, we reported that an antioxidant protein, peroxiredoxin 1 (GmolPrx1), secreted by the male AG, is essential for protecting eupyrene sperm from oxidative stress and maintaining their quality during storage in the female bursa copulatrix (BC). Our data showed that GmolPrx1 is highly expressed in the AG of sexually mature males. The GmolPrx1 protein is localized to the cytoplasm of AG cells and delivered to the female BC during mating. Knockdown of GmolPrx1 strongly decreased the fertility of mated females. Additionally, we evaluated oxidative status in the spermatophore of females and found that the content of hydrogen peroxide increased significantly after mating with GmolPrx1 knockdown males. Finally, the quality assessment of eupyrene sperm demonstrated that the plasma membrane integrity, acrosome integrity, and DNA integrity were all severely impaired in the spermatophore of females after mating with GmolPrx1 knockdown males, which may contribute to the fertility decline in males. CONCLUSION Our current data demonstrated that activities of eupyrene sperm stored in females can be significantly impaired by enhanced oxidative stress through knocking down of GmolPrx1 in males. Our finding thus may further lay new foundations for the control of G. molesta through suppressing their populations by manipulating male reproductive genes. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jie Cheng
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Lin Zhu
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Fang Zhu
- Department of Entomology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Peng Zhao
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Qiong-Xi Li
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Zi-Hang Lu
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Song-Dou Zhang
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Zhen Li
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xiao-Xia Liu
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Arboviruses and symbiotic viruses cooperatively hijack insect sperm-specific proteins for paternal transmission. Nat Commun 2023; 14:1289. [PMID: 36894574 PMCID: PMC9998617 DOI: 10.1038/s41467-023-36993-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 02/23/2023] [Indexed: 03/11/2023] Open
Abstract
Arboviruses and symbiotic viruses can be paternally transmitted by male insects to their offspring for long-term viral persistence in nature, but the mechanism remains largely unknown. Here, we identify the sperm-specific serpin protein HongrES1 of leafhopper Recilia dorsalis as a mediator of paternal transmission of the reovirus Rice gall dwarf virus (RGDV) and a previously undescribed symbiotic virus of the Virgaviridae family, Recilia dorsalis filamentous virus (RdFV). We show that HongrES1 mediates the direct binding of virions to leafhopper sperm surfaces and subsequent paternal transmission via interaction with both viral capsid proteins. Direct interaction of viral capsid proteins mediates simultaneously invasion of two viruses into male reproductive organs. Moreover, arbovirus activates HongrES1 expression to suppress the conversion of prophenoloxidase to active phenoloxidase, potentially producing a mild antiviral melanization defense. Paternal virus transmission scarcely affects offspring fitness. These findings provide insights into how different viruses cooperatively hijack insect sperm-specific proteins for paternal transmission without disturbing sperm functions.
Collapse
|
6
|
Mamtha R, Kiran T, Chandramohan V, Gowrishankar BS, Manjulakumari D. Genome-wide identification and expression analysis of the mating-responsive genes in the male accessory glands of Spodoptera litura (Lepidoptera: Noctuidae). J Genet Eng Biotechnol 2023; 21:11. [PMID: 36723695 PMCID: PMC9892375 DOI: 10.1186/s43141-023-00466-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/14/2023] [Indexed: 02/02/2023]
Abstract
BACKGROUND Mating elicits significant changes in gene expression and leads to subsequent physiological and behavioural modifications in insects. The reproductive success of both sexes is contributed immensely by the male accessory gland (MAG) proteins that are transferred along with sperms to the female reproductive tract during mating where they facilitate several processes that modify the post-mating behaviour. The mating-responsive genes in the MAGs have been identified and reported in many insects but have not been well-characterized in the important agricultural pest Spodoptera litura. Here, we present RNA sequencing analysis to identify mating-responsive genes from the accessory glands of virgin males and males interrupted during mating. RESULTS Overall, 91,744 unigenes were generated after clustering the assembled transcript sequences of both samples, while the total number of transcripts annotated was 48,708 based on sequence homology against the non-redundant (NR) database. Comparative transcriptomics analysis revealed 16,969 genes that were differentially expressed between the two groups, including 9814 up-regulated and 7155 down-regulated genes. Among the top 80 genes that were selected for heat map analysis, several prominent genes including odorant binding protein, cytochrome P450, heat shock proteins, juvenile hormone binding protein, carboxypeptidases and serine protease were differentially expressed. CONCLUSIONS The identified genes are known or predicted to promote several processes that modify the female post-mating behaviour. Future studies with the individual MAG protein or in combination will be required to recognize the precise mechanisms by which these proteins alter female physiology and reproductive behaviour. Thus, our study provides essential data to address fundamental questions about reproduction within and among insects and also paves way for further exploration of the functions of these proteins in female insects.
Collapse
Affiliation(s)
- R. Mamtha
- grid.37728.390000 0001 0730 3862Department of Microbiology & Biotechnology, Bangalore University, Bengaluru, Karnataka 560056 India
| | - Tannavi Kiran
- grid.37728.390000 0001 0730 3862Department of Microbiology & Biotechnology, Bangalore University, Bengaluru, Karnataka 560056 India
| | - Vivek Chandramohan
- grid.444321.40000 0004 0501 2828Department of Biotechnology, Siddaganga Institute of Technology, Tumakuru, Karnataka 572103 India
| | - B. S. Gowrishankar
- grid.444321.40000 0004 0501 2828Department of Biotechnology, Siddaganga Institute of Technology, Tumakuru, Karnataka 572103 India
| | - D. Manjulakumari
- grid.37728.390000 0001 0730 3862Department of Microbiology & Biotechnology, Bangalore University, Bengaluru, Karnataka 560056 India
| |
Collapse
|
7
|
Gomis-Rüth FX, Stöcker W. Structural and evolutionary insights into astacin metallopeptidases. Front Mol Biosci 2023; 9:1080836. [PMID: 36685277 PMCID: PMC9848320 DOI: 10.3389/fmolb.2022.1080836] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/30/2022] [Indexed: 01/05/2023] Open
Abstract
The astacins are a family of metallopeptidases (MPs) that has been extensively described from animals. They are multidomain extracellular proteins, which have a conserved core architecture encompassing a signal peptide for secretion, a prodomain or prosegment and a zinc-dependent catalytic domain (CD). This constellation is found in the archetypal name-giving digestive enzyme astacin from the European crayfish Astacus astacus. Astacin catalytic domains span ∼200 residues and consist of two subdomains that flank an extended active-site cleft. They share several structural elements including a long zinc-binding consensus sequence (HEXXHXXGXXH) immediately followed by an EXXRXDRD motif, which features a family-specific glutamate. In addition, a downstream SIMHY-motif encompasses a "Met-turn" methionine and a zinc-binding tyrosine. The overall architecture and some structural features of astacin catalytic domains match those of other more distantly related MPs, which together constitute the metzincin clan of metallopeptidases. We further analysed the structures of PRO-, MAM, TRAF, CUB and EGF-like domains, and described their essential molecular determinants. In addition, we investigated the distribution of astacins across kingdoms and their phylogenetic origin. Through extensive sequence searches we found astacin CDs in > 25,000 sequences down the tree of life from humans beyond Metazoa, including Choanoflagellata, Filasterea and Ichtyosporea. We also found < 400 sequences scattered across non-holozoan eukaryotes including some fungi and one virus, as well as in selected taxa of archaea and bacteria that are pathogens or colonizers of animal hosts, but not in plants. Overall, we propose that astacins originate in the root of Holozoa consistent with Darwinian descent and that the latter genes might be the result of horizontal gene transfer from holozoan donors.
Collapse
Affiliation(s)
- F. Xavier Gomis-Rüth
- Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona (IBMB), Higher Scientific Research Council (CSIC), Barcelona, Catalonia, Spain,*Correspondence: F. Xavier Gomis-Rüth, ; Walter Stöcker,
| | - Walter Stöcker
- Institute of Molecular Physiology (IMP), Johannes Gutenberg-University Mainz (JGU), Mainz, Germany,*Correspondence: F. Xavier Gomis-Rüth, ; Walter Stöcker,
| |
Collapse
|
8
|
Walter M, Puniamoorthy N. Discovering novel reproductive genes in a non-model fly using de novo GridION transcriptomics. Front Genet 2022; 13:1003771. [PMID: 36568389 PMCID: PMC9768217 DOI: 10.3389/fgene.2022.1003771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022] Open
Abstract
Gene discovery has important implications for investigating phenotypic trait evolution, adaptation, and speciation. Male reproductive tissues, such as accessory glands (AGs), are hotspots for recruitment of novel genes that diverge rapidly even among closely related species/populations. These genes synthesize seminal fluid proteins that often affect post-copulatory sexual selection-they can mediate male-male sperm competition, ejaculate-female interactions that modify female remating and even influence reproductive incompatibilities among diverging species/populations. Although de novo transcriptomics has facilitated gene discovery in non-model organisms, reproductive gene discovery is still challenging without a reference database as they are often novel and bear no homology to known proteins. Here, we use reference-free GridION long-read transcriptomics, from Oxford Nanopore Technologies (ONT), to discover novel AG genes and characterize their expression in the widespread dung fly, Sepsis punctum. Despite stark population differences in male reproductive traits (e.g.: Body size, testes size, and sperm length) as well as female re-mating, the male AG genes and their secretions of S. punctum are still unknown. We implement a de novo ONT transcriptome pipeline incorporating quality-filtering and rigorous error-correction procedures, and we evaluate gene sequence and gene expression results against high-quality Illumina short-read data. We discover highly-expressed reproductive genes in AG transcriptomes of S. punctum consisting of 40 high-quality and high-confidence ONT genes that cross-verify against Illumina genes, among which 26 are novel and specific to S. punctum. Novel genes account for an average of 81% of total gene expression and may be functionally relevant in seminal fluid protein production. For instance, 80% of genes encoding secretory proteins account for 74% total gene expression. In addition, median sequence similarities of ONT nucleotide and protein sequences match within-Illumina sequence similarities. Read-count based expression quantification in ONT is congruent with Illumina's Transcript per Million (TPM), both in overall pattern and within functional categories. Rapid genomic innovation followed by recruitment of de novo genes for high expression in S. punctum AG tissue, a pattern observed in other insects, could be a likely mechanism of evolution of these genes. The study also demonstrates the feasibility of adapting ONT transcriptomics for gene discovery in non-model systems.
Collapse
|
9
|
Fratini E, Salvemini M, Lombardo F, Muzzi M, Molfini M, Gisondi S, Roma E, D'Ezio V, Persichini T, Gasperi T, Mariottini P, Di Giulio A, Bologna MA, Cervelli M, Mancini E. Unraveling the role of male reproductive tract and haemolymph in cantharidin-exuding Lydus trimaculatus and Mylabris variabilis (Coleoptera: Meloidae): a comparative transcriptomics approach. BMC Genomics 2021; 22:808. [PMID: 34749651 PMCID: PMC8576976 DOI: 10.1186/s12864-021-08118-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 10/23/2021] [Indexed: 12/13/2022] Open
Abstract
Background Meloidae (blister beetles) are known to synthetize cantharidin (CA), a toxic and defensive terpene mainly stored in male accessory glands (MAG) and emitted outward through reflex-bleeding. Recent progresses in understanding CA biosynthesis and production organ(s) in Meloidae have been made, but the way in which self-protection is achieved from the hazardous accumulation and release of CA in blister beetles has been experimentally neglected. To provide hints on this pending question, a comparative de novo assembly transcriptomic approach was performed by targeting two tissues where CA is largely accumulated and regularly circulates in Meloidae: the male reproductive tract (MRT) and the haemolymph. Differential gene expression profiles in these tissues were examined in two blister beetle species, Lydus trimaculatus (Fabricius, 1775) (tribe Lyttini) and Mylabris variabilis (Pallas, 1781) (tribe Mylabrini). Upregulated transcripts were compared between the two species to identify conserved genes possibly involved in CA detoxification and transport. Results Based on our results, we hypothesize that, to avoid auto-intoxication, ABC, MFS or other solute transporters might sequester purported glycosylated CA precursors into MAG, and lipocalins could bind CA and mitigate its reactivity when released into the haemolymph during the autohaemorrhaging response. We also found an over-representation in haemolymph of protein-domains related to coagulation and integument repairing mechanisms that likely reflects the need to limit fluid loss during reflex-bleeding. Conclusions The de novo assembled transcriptomes of L. trimaculatus and M. variabilis here provided represent valuable genetic resources to further explore the mechanisms employed to cope with toxicity of CA in blister beetle tissues. These, if revealed, might help conceiving safe and effective drug-delivery approaches to enhance the use of CA in medicine. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08118-8.
Collapse
Affiliation(s)
| | - Marco Salvemini
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Fabrizio Lombardo
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
| | - Maurizio Muzzi
- Department of Sciences, University of Roma Tre, Rome, Italy
| | - Marco Molfini
- Department of Sciences, University of Roma Tre, Rome, Italy
| | - Silvia Gisondi
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University, Rome, Italy.,Natural History Museum of Denmark, Copenhagen, Denmark
| | - Elia Roma
- Department of Sciences, University of Roma Tre, Rome, Italy
| | | | | | - Tecla Gasperi
- Department of Sciences, University of Roma Tre, Rome, Italy
| | | | | | | | | | - Emiliano Mancini
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University, Rome, Italy.
| |
Collapse
|
10
|
Ayub M, Lange AB, Orchard I. Identification and characterization of the SIFamide receptor in the hemimetabolous Chagas disease vector, Rhodnius prolixus Stål, 1859, (Hemiptera, Reduviidae, Triatominae). Peptides 2021; 143:170600. [PMID: 34175354 DOI: 10.1016/j.peptides.2021.170600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 12/19/2022]
Abstract
Within arthropods, the SIFamide family of neuropeptides appears to be involved in the modulation of a range of physiological and behavioral events. In Rhodnius prolixus, we have previously shown the presence of SIFamidergic-like processes in neurohemal release sites and provided evidence for a role for Rhopr-SIFa in modulating heartbeat frequency and feeding behaviors. Here, the R. prolixus SIFamide receptor (RhoprSIFR) has been identified, cloned, and sequenced. Sequence analyses show high similarity and identity between the RhoprSIFR and other cloned SIFamide receptors. Quantitative PCR shows that the RhoprSIFR transcript is found in a variety of tissues, including those involved in feeding and reproduction. In unfed insects, high transcript expression is observed in the central nervous system and midgut, suggesting a role of Rhopr-SIFa in various processes related to feeding and digestion. Expression of the RhoprSIFR transcript changes between unfed, 24 h post-fed, and 7 d post-fed conditions. Expression of the RhoprSIFR transcript significantly increases in the anterior midgut and posterior midgut 7 d post-feeding and knockdown of the RhoprSIFR transcript significantly reduces the size of blood meal consumed. This data suggests a possible role for Rhopr-SIFa in regulating long-term post-feeding osmotic balance and digestion of the blood meal. Lastly, transcript expression of Rhopr-SIFa and RhoprSIFR also varies temporally in relation to the reproductive stage, suggesting an involvement of this signaling pathway in reproductive activities. Identification of the RhoprSIFR and its expression profile now provide tools for a more detailed understanding into the precise coordination of feeding and other physiological processes in R. prolixus.
Collapse
Affiliation(s)
- Mahnoor Ayub
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada.
| | - Angela B Lange
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada.
| | - Ian Orchard
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada.
| |
Collapse
|
11
|
Wang X, Hu Y, Han Y, Xue X, Li M, Yang X, Zhou S, Wang H, Liu J. Comprehensive dynamic analysis of proteins in the spermatheca of female Haemaphysalis longicornis after copulation. EXPERIMENTAL & APPLIED ACAROLOGY 2021; 83:583-596. [PMID: 33709252 DOI: 10.1007/s10493-021-00606-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
Ticks are obligate blood-sucking parasitic arthropods. When sucking the blood of hosts, they can also transmit a variety of pathogens to hosts that severely endanger the health of humans and animals. The spermatheca is an organ for the storage and protection of sperm and an important component of the reproductive system of female ticks. The spermatheca content changes dramatically over time after copulation. In particular, some proteins and polypeptide substances can influence the physiological functions of female ticks and promote blood feeding and egg laying by female ticks. To investigate the molecular mechanisms underlying the productive process of Haemaphysalis longicornis, data-independent acquisition (DIA) quantitative proteomics technology was used to perform in-depth research of the dynamic changes in all proteins in the spermatheca of ticks within a short time after copulation to look for key proteins in the spermatheca contents after copulation that affect the reproduction of female ticks in order to provide meaningful information for the comprehensive prevention and control of ticks.
Collapse
Affiliation(s)
- Xiaoshuang Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Yuhong Hu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
- Instrumental Analysis Center, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Yanan Han
- Instrumental Analysis Center, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Xiaomin Xue
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Mengxue Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Xiaohong Yang
- Department of Pathogenic Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, China
| | - Siyang Zhou
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Hui Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China.
| | - Jingze Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, 20 Nanerhuan East Road, Shijiazhuang, 050024, Hebei, China.
| |
Collapse
|
12
|
Veenstra JA. The neuropeptide SMYamide, a SIFamide paralog, is expressed by salivary gland innervating neurons in the American cockroach and likely functions as a hormone. Peptides 2021; 136:170466. [PMID: 33253775 DOI: 10.1016/j.peptides.2020.170466] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/05/2020] [Accepted: 11/23/2020] [Indexed: 01/09/2023]
Abstract
The SMYamide genes are paralogs of the SIFamide genes and code for neuropeptides that are structurally similar to SIFamide. In the American cockroach, Periplanea americana, the SMYamide gene is specifically expressed in the SN2 neurons that innervate the salivary glands and are known to produce action potentials during feeding. The SN2 axon terminals surround rather than directly innervate the salivary gland acini. Therefore one may expect that on activation of these neurons significant amounts of SMYamide will be released into the hemolymph, thus suggesting that SMYamide may also have a hormonal function. In the Periplaneta genome there are two putative SIFamide receptors and these are both expressed not only in the central nervous system and the salivary gland, but also in the gonads and other peripheral tissues. This reinforces the hypothesis that SMYamide also has an endocrine function in this species.
Collapse
Affiliation(s)
- Jan A Veenstra
- INCIA, UMR 5287, CNRS, Université de Bordeaux, Allée Geoffroy St Hillaire, CS 50023, 33 615, Pessac Cedex, France.
| |
Collapse
|
13
|
De Novo RNA-seq and Functional Annotation of Haemaphysalis longicornis. Acta Parasitol 2019; 64:807-820. [PMID: 31418165 DOI: 10.2478/s11686-019-00103-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 08/01/2019] [Indexed: 11/20/2022]
Abstract
PURPOSE Haemaphysalis longicornis (Neumann) is a hematophagous tick widely distributed in northern China. It not only causes enormous economic loss to animal husbandry, but also as a vector and reservoir of various zoonotic pathogens, it spreads natural focal diseases, such as severe fever with thrombocytopenia syndrome, seriously threatening human health. Lack of transcriptomic and genomic data from H. longicornis limits the study of this important medical vector. METHODS The engorged female H. longicornis from Gansu, China, was used for RNA extraction, de novo RNA-seq, functional annotation, and ORF prediction. RESULTS As a result, 53.09 million clean reads (98.88%) with a GC content of 54.29% were obtained. A total of 65,916 Unigenes were assembled, of which 34.59% (23,330) were successfully annotated. Of these Unigenes, 22,587 (34.27%) were annotated to species by NCBI non-redundant protein (nr). Ixodes scapularis, Limulus polyphemus, Parasteatoda tepidariorum, Stegodyphus mimosarum, and Metaseiulus occidentalis were the top BLAST hit species, accounting for 47.23%, 9.58%, 4.11%, 3.50%, and 2.69%, respectively. A total of 29,182 ORFs were predicted, and 35 complete ORFs for functional genes were identified, including ORFs involved in digestion (14), stress responses (8), anticoagulation (3), reproduction (3), antimicrobial (2), drug resistance (2), movement (2), autophagy (1), and immunity (1), respectively. The Unigene ORFs encoding cathepsin and heat shock proteins were further analyzed phylogenetically. CONCLUSION De novo RNA-seq and functional annotation of H. longicornis were successfully completed for the first time, providing a molecular data resource for further research on blood-sucking, pathogen transmission mechanisms, and effective prevention and control strategies.
Collapse
|
14
|
The recognition of development-related genes in the testis and MAGs of time-series Harmonia axyridis adults using a time-series analysis by RNA-seq. Gene 2019; 693:52-60. [PMID: 30699331 DOI: 10.1016/j.gene.2019.01.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 01/13/2019] [Accepted: 01/22/2019] [Indexed: 11/20/2022]
|
15
|
Tarimo BB, Law HCH, Tao D, Pastrana-Mena R, Kanzok SM, Buza JJ, Dinglasan RR. Paraquat-Mediated Oxidative Stress in Anopheles gambiae Mosquitoes Is Regulated by An Endoplasmic Reticulum (ER) Stress Response. Proteomes 2018; 6:47. [PMID: 30424486 PMCID: PMC6313908 DOI: 10.3390/proteomes6040047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/07/2018] [Accepted: 11/09/2018] [Indexed: 11/20/2022] Open
Abstract
Paraquat is a potent superoxide (O₂-)-inducing agent that is capable of inducing an oxidative imbalance in the mosquito midgut. This oxidative imbalance can super-stress the malaria parasite, leading to arrested development in the mosquito midgut and reduced transmission. While several studies have explored the effect of paraquat on malaria parasites, a fundamental understanding of the mosquito response to this compound remains unknown. Here, we quantified the mosquito midgut proteomic response to a paraquat-laced sugar meal, and found that An. gambiae midguts were enriched in proteins that are indicative of cells under endoplasmic reticulum (ER) stress. We also carried out qRT-PCR analyses for nine prominent thioredoxin (Trx) and glutathione (GSH)-dependent genes in mosquito midguts post P. falciparum blood meal ingestion to evaluate the concordance between transcripts and proteins under different oxidative stress conditions. Our data revealed an absence of significant upregulation in the Trx and GSH-dependent genes following infected blood meal ingestion. These data suggest that the intrinsic tolerance of the mosquito midgut to paraquat-mediated oxidative stress is through an ER stress response. These data indicate that mosquitoes have at least two divergent pathways of managing the oxidative stress that is induced by exogenous compounds, and outline the potential application of paraquat-like drugs to act selectively against malaria parasite development in mosquito midguts, thereby blocking mosquito-to-human transmission.
Collapse
Affiliation(s)
- Brian B Tarimo
- School of Life Science and Bioengineering, Nelson Mandela-African Institution of Science and Technology, Tengeru, Arusha 23302, Tanzania.
- W. Harry Feinstone Department of Molecular Microbiology & Immunology & the Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
- Department of Health and Biomedical Sciences, Nelson Mandela-African Institution of Science and Technology, Tengeru, Arusha 23302, Tanzania.
| | - Henry Chun Hin Law
- Emerging Pathogens Institute, Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA.
| | - Dingyin Tao
- W. Harry Feinstone Department of Molecular Microbiology & Immunology & the Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| | - Rebecca Pastrana-Mena
- W. Harry Feinstone Department of Molecular Microbiology & Immunology & the Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| | - Stefan M Kanzok
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, USA.
| | - Joram J Buza
- Department of Health and Biomedical Sciences, Nelson Mandela-African Institution of Science and Technology, Tengeru, Arusha 23302, Tanzania.
| | - Rhoel R Dinglasan
- School of Life Science and Bioengineering, Nelson Mandela-African Institution of Science and Technology, Tengeru, Arusha 23302, Tanzania.
- W. Harry Feinstone Department of Molecular Microbiology & Immunology & the Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
- Emerging Pathogens Institute, Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
16
|
Meibers HE, Finch G, Gregg RT, Glenn S, Assani KD, Jennings EC, Davies B, Rosendale AJ, Holmes CJ, Gantz JD, Spacht DE, Lee RE, Denlinger DL, Weirauch MT, Benoit JB. Sex- and developmental-specific transcriptomic analyses of the Antarctic mite, Alaskozetes antarcticus, reveal transcriptional shifts underlying oribatid mite reproduction. Polar Biol 2018. [DOI: 10.1007/s00300-018-2427-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Stephens K, Cardullo RA, Thaler CD. Culex pipiens sperm motility is initiated by a trypsin-like protease from male accessory glands. Mol Reprod Dev 2018; 85:440-448. [PMID: 29575187 DOI: 10.1002/mrd.22980] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/14/2018] [Indexed: 11/07/2022]
Abstract
In most animals, sperm are stored in a quiescent state in the male reproductive tract and only initiate motility when released into either the female reproductive tract, or, in the case of broadcast spawners, the external environment. Male accessory gland secretions transferred into the female reproductive tract may provide factors that modulate sperm viability and storage, or aid in sperm competition, as well as activate sperm motility. In several insects, serine proteases have been implicated in activating sperm motility. Our previous studies have shown that, in Culex quinquefasciatus, either a male accessory gland extract or purified trypsin is sufficient to initiate sperm motility in vitro. The objective of this study was to identify and characterize trypsin-like enzymes produced in the Culex male accessory glands. Mass spectrometry was used to analyze accessory gland proteins and this preliminary proteomic analysis identified 4 trypsin-like proteases (trypsin, trypsin4, and two trypsin7 isoforms). When measured with the chromogenic trypsin substrate Na -benzoyl-L-arginine-ethyl-ester-hydrochloride (BAEE), trypsin-like protease activity in the accessory glands was robust, with a pH optimum of 8. The pH range for the Culex trypsin activity was substantially narrower than a mammalian homologue (porcine pancreatic trypsin). A soybean trypsin inhibitor (SBTI) -agarose affinity column was used to independently identify trypsin-like accessory gland proteins. Several proteins were enriched in the eluate, as detected by silver staining of SDS-PAGE gels. Taken together, these data demonstrate the presence of trypsin-like activity and several trypsin-like proteins in the Culex male accessory glands.
Collapse
Affiliation(s)
- Kimberly Stephens
- Department of Entomology, University of California, Riverside, California
| | - Richard A Cardullo
- Department of Entomology, University of California, Riverside, California.,Department of Biology, University of California, Riverside, California
| | | |
Collapse
|
18
|
Sex and tissue specific gene expression patterns identified following de novo transcriptomic analysis of the Norway lobster, Nephrops norvegicus. BMC Genomics 2017; 18:622. [PMID: 28814267 PMCID: PMC5559819 DOI: 10.1186/s12864-017-3981-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 08/01/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The Norway lobster, Nephrops norvegicus, is economically important in European fisheries and is a key organism in local marine ecosystems. Despite multi-faceted scientific interest in this species, our current knowledge of genetic resources in this species remains very limited. Here, we generated a reference de novo transcriptome for N. norvegicus from multiple tissues in both sexes. Bioinformatic analyses were conducted to detect transcripts that were expressed exclusively in either males or females. Patterns were validated via RT-PCR. RESULTS Sixteen N. norvegicus libraries were sequenced from immature and mature ovary, testis and vas deferens (including the masculinizing androgenic gland). In addition, eyestalk, brain, thoracic ganglia and hepatopancreas tissues were screened in males and both immature and mature females. RNA-Sequencing resulted in >600 million reads. De novo assembly that combined the current dataset with two previously published libraries from eyestalk tissue, yielded a reference transcriptome of 333,225 transcripts with an average size of 708 base pairs (bp), with an N50 of 1272 bp. Sex-specific transcripts were detected primarily in gonads followed by hepatopancreas, brain, thoracic ganglia, and eyestalk, respectively. Candidate transcripts that were expressed exclusively either in males or females were highlighted and the 10 most abundant ones were validated via RT-PCR. Among the most highly expressed genes were Serine threonine protein kinase in testis and Vitellogenin in female hepatopancreas. These results align closely with gene annotation results. Moreover, a differential expression heatmap showed that the majority of differentially expressed transcripts were identified in gonad and eyestalk tissues. Results indicate that sex-specific gene expression patterns in Norway lobster are controlled by differences in gene regulation pattern between males and females in somatic tissues. CONCLUSIONS The current study presents the first multi-tissue reference transcriptome for the Norway lobster that can be applied to future biological, wild restocking and fisheries studies. Sex-specific markers were mainly expressed in males implying that males may experience stronger selection than females. It is apparent that differential expression is due to sex-specific gene regulatory pathways that are present in somatic tissues and not from effects of genes located on heterogametic sex chromosomes. The N. norvegicus data provide a foundation for future gene-based reproductive studies.
Collapse
|
19
|
de Castro MH, de Klerk D, Pienaar R, Rees DJG, Mans BJ. Sialotranscriptomics of Rhipicephalus zambeziensis reveals intricate expression profiles of secretory proteins and suggests tight temporal transcriptional regulation during blood-feeding. Parasit Vectors 2017; 10:384. [PMID: 28797301 PMCID: PMC5553602 DOI: 10.1186/s13071-017-2312-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 07/27/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Ticks secrete a diverse mixture of secretory proteins into the host to evade its immune response and facilitate blood-feeding, making secretory proteins attractive targets for the production of recombinant anti-tick vaccines. The largely neglected tick species, Rhipicephalus zambeziensis, is an efficient vector of Theileria parva in southern Africa but its available sequence information is limited. Next generation sequencing has advanced sequence availability for ticks in recent years and has assisted the characterisation of secretory proteins. This study focused on the de novo assembly and annotation of the salivary gland transcriptome of R. zambeziensis and the temporal expression of secretory protein transcripts in female and male ticks, before the onset of feeding and during early and late feeding. RESULTS The sialotranscriptome of R. zambeziensis yielded 23,631 transcripts from which 13,584 non-redundant proteins were predicted. Eighty-six percent of these contained a predicted start and stop codon and were estimated to be putatively full-length proteins. A fifth (2569) of the predicted proteins were annotated as putative secretory proteins and explained 52% of the expression in the transcriptome. Expression analyses revealed that 2832 transcripts were differentially expressed among feeding time points and 1209 between the tick sexes. The expression analyses further indicated that 57% of the annotated secretory protein transcripts were differentially expressed. Dynamic expression profiles of secretory protein transcripts were observed during feeding of female ticks. Whereby a number of transcripts were upregulated during early feeding, presumably for feeding site establishment and then during late feeding, 52% of these were downregulated, indicating that transcripts were required at specific feeding stages. This suggested that secretory proteins are under stringent transcriptional regulation that fine-tunes their expression in salivary glands during feeding. No open reading frames were predicted for 7947 transcripts. This class represented 17% of the differentially expressed transcripts, suggesting a potential transcriptional regulatory function of long non-coding RNA in tick blood-feeding. CONCLUSIONS The assembled sialotranscriptome greatly expands the sequence availability of R. zambeziensis, assists in our understanding of the transcription of secretory proteins during blood-feeding and will be a valuable resource for future vaccine candidate selection.
Collapse
Affiliation(s)
- Minique Hilda de Castro
- Epidemiology, Parasites and Vectors, Onderstepoort Veterinary Research, Agricultural Research Council, Onderstepoort, South Africa.,Biotechnology Platform, Agricultural Research Council, Onderstepoort, South Africa.,College of Agriculture and Environmental Sciences, University of South Africa, Johannesburg, South Africa
| | - Daniel de Klerk
- Epidemiology, Parasites and Vectors, Onderstepoort Veterinary Research, Agricultural Research Council, Onderstepoort, South Africa
| | - Ronel Pienaar
- Epidemiology, Parasites and Vectors, Onderstepoort Veterinary Research, Agricultural Research Council, Onderstepoort, South Africa.,Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - D Jasper G Rees
- Biotechnology Platform, Agricultural Research Council, Onderstepoort, South Africa.,College of Agriculture and Environmental Sciences, University of South Africa, Johannesburg, South Africa
| | - Ben J Mans
- Epidemiology, Parasites and Vectors, Onderstepoort Veterinary Research, Agricultural Research Council, Onderstepoort, South Africa. .,College of Agriculture and Environmental Sciences, University of South Africa, Johannesburg, South Africa. .,Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
20
|
Villar M, Marina A, de la Fuente J. Applying proteomics to tick vaccine development: where are we? Expert Rev Proteomics 2017; 14:211-221. [PMID: 28099817 DOI: 10.1080/14789450.2017.1284590] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Ticks are second to mosquitoes as a vector of human diseases and are the first vector of animal diseases with a great impact on livestock farming. Tick vaccines represent a sustainable and effective alternative to chemical acaricides for the control of tick infestations and transmitted pathogens. The application of proteomics to tick vaccine development is a fairly recent area, which has resulted in the characterization of some tick-host-pathogen interactions and the identification of candidate protective antigens. Areas covered: In this article, we review the application and possibilities of various proteomic approaches for the discovery of tick and pathogen derived protective antigens, and the design of effective vaccines for the control of tick infestations and pathogen infection and transmission. Expert commentary: In the near future, the application of reverse proteomics, immunoproteomics, structural proteomics, and interactomics among other proteomics approaches will likely contribute to improve vaccine design to control multiple tick species with the ultimate goal of controlling tick-borne diseases.
Collapse
Affiliation(s)
- Margarita Villar
- a Sabio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM , Ciudad Real , Spain
| | - Anabel Marina
- b Centro de Biología Molecular Severo Ochoa CBM-SO (CSIC-UAM) , Cantoblanco , Spain
| | - José de la Fuente
- a Sabio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM , Ciudad Real , Spain.,c Department of Veterinary Pathobiology , Center for Veterinary Health Sciences, Oklahoma State University , Stillwater , OK , USA
| |
Collapse
|
21
|
Al-Wathiqui N, Fallon TR, South A, Weng JK, Lewis SM. Molecular characterization of firefly nuptial gifts: a multi-omics approach sheds light on postcopulatory sexual selection. Sci Rep 2016; 6:38556. [PMID: 28004739 PMCID: PMC5177949 DOI: 10.1038/srep38556] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/09/2016] [Indexed: 11/23/2022] Open
Abstract
Postcopulatory sexual selection is recognized as a key driver of reproductive trait evolution, including the machinery required to produce endogenous nuptial gifts. Despite the importance of such gifts, the molecular composition of the non-gametic components of male ejaculates and their interactions with female reproductive tracts remain poorly understood. During mating, male Photinus fireflies transfer to females a spermatophore gift manufactured by multiple reproductive glands. Here we combined transcriptomics of both male and female reproductive glands with proteomics and metabolomics to better understand the synthesis, composition and fate of the spermatophore in the common Eastern firefly, Photinus pyralis. Our transcriptome of male glands revealed up-regulation of proteases that may enhance male fertilization success and activate female immune response. Using bottom-up proteomics we identified 208 functionally annotated proteins that males transfer to the female in their spermatophore. Targeted metabolomic analysis also provided the first evidence that Photinus nuptial gifts contain lucibufagin, a firefly defensive toxin. The reproductive tracts of female fireflies showed increased gene expression for several proteases that may be involved in egg production. This study offers new insights into the molecular composition of male spermatophores, and extends our understanding of how nuptial gifts may mediate postcopulatory interactions between the sexes.
Collapse
Affiliation(s)
| | - Timothy R Fallon
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA, 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Adam South
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Jing-Ke Weng
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA, 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Sara M Lewis
- Department of Biology, Tufts University, Medford, MA, 02155, USA
| |
Collapse
|
22
|
Poley JD, Sutherland BJG, Jones SRM, Koop BF, Fast MD. Sex-biased gene expression and sequence conservation in Atlantic and Pacific salmon lice (Lepeophtheirus salmonis). BMC Genomics 2016; 17:483. [PMID: 27377915 PMCID: PMC4932673 DOI: 10.1186/s12864-016-2835-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/13/2016] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Salmon lice, Lepeophtheirus salmonis (Copepoda: Caligidae), are highly important ectoparasites of farmed and wild salmonids, and cause multi-million dollar losses to the salmon aquaculture industry annually. Salmon lice display extensive sexual dimorphism in ontogeny, morphology, physiology, behavior, and more. Therefore, the identification of transcripts with differential expression between males and females (sex-biased transcripts) may help elucidate the relationship between sexual selection and sexually dimorphic characteristics. RESULTS Sex-biased transcripts were identified from transcriptome analyses of three L. salmonis populations, including both Atlantic and Pacific subspecies. A total of 35-43 % of all quality-filtered transcripts were sex-biased in L. salmonis, with male-biased transcripts exhibiting higher fold change than female-biased transcripts. For Gene Ontology and functional analyses, a consensus-based approach was used to identify concordantly differentially expressed sex-biased transcripts across the three populations. A total of 127 male-specific transcripts (i.e. those without detectable expression in any female) were identified, and were enriched with reproductive functions (e.g. seminal fluid and male accessory gland proteins). Other sex-biased transcripts involved in morphogenesis, feeding, energy generation, and sensory and immune system development and function were also identified. Interestingly, as observed in model systems, male-biased L. salmonis transcripts were more frequently without annotation compared to female-biased or unbiased transcripts, suggesting higher rates of sequence divergence in male-biased transcripts. CONCLUSIONS Transcriptome differences between male and female L. salmonis described here provide key insights into the molecular mechanisms controlling sexual dimorphism in L. salmonis. This analysis offers targets for parasite control and provides a foundation for further analyses exploring critical topics such as the interaction between sex and drug resistance, sex-specific factors in host-parasite relationships, and reproductive roles within L. salmonis.
Collapse
Affiliation(s)
- Jordan D Poley
- Department of Pathology & Microbiology, Atlantic Veterinary College, University of Prince Edward Island, 550 University Ave, Charlottetown, PE, C1A 4P3, Canada
| | - Ben J G Sutherland
- Department of Biology, Centre for Biomedical Research, University of Victoria, 3800 Finnerty Rd, Victoria, BC, V8W 3 N5, Canada.,Present address: Département de biologie, Institut de Biologie Intégrative et des Systèms (IBIS), Université Laval, 1030 Avenue de la Medecine, Québec, QC, Canada
| | - Simon R M Jones
- Pacific Biological Station, 3190 Hammond Bay Road, Nanaimo, BC, V9T 6 N7, Canada
| | - Ben F Koop
- Department of Biology, Centre for Biomedical Research, University of Victoria, 3800 Finnerty Rd, Victoria, BC, V8W 3 N5, Canada
| | - Mark D Fast
- Department of Pathology & Microbiology, Atlantic Veterinary College, University of Prince Edward Island, 550 University Ave, Charlottetown, PE, C1A 4P3, Canada.
| |
Collapse
|
23
|
Wu C, Crowhurst RN, Dennis AB, Twort VG, Liu S, Newcomb RD, Ross HA, Buckley TR. De Novo Transcriptome Analysis of the Common New Zealand Stick Insect Clitarchus hookeri (Phasmatodea) Reveals Genes Involved in Olfaction, Digestion and Sexual Reproduction. PLoS One 2016; 11:e0157783. [PMID: 27336743 PMCID: PMC4919086 DOI: 10.1371/journal.pone.0157783] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/03/2016] [Indexed: 11/21/2022] Open
Abstract
Phasmatodea, more commonly known as stick insects, have been poorly studied at the molecular level for several key traits, such as components of the sensory system and regulators of reproduction and development, impeding a deeper understanding of their functional biology. Here, we employ de novo transcriptome analysis to identify genes with primary functions related to female odour reception, digestion, and male sexual traits in the New Zealand common stick insect Clitarchus hookeri (White). The female olfactory gene repertoire revealed ten odorant binding proteins with three recently duplicated, 12 chemosensory proteins, 16 odorant receptors, and 17 ionotropic receptors. The majority of these olfactory genes were over-expressed in female antennae and have the inferred function of odorant reception. Others that were predominantly expressed in male terminalia (n = 3) and female midgut (n = 1) suggest they have a role in sexual reproduction and digestion, respectively. Over-represented transcripts in the midgut were enriched with digestive enzyme gene families. Clitarchus hookeri is likely to harbour nine members of an endogenous cellulase family (glycoside hydrolase family 9), two of which appear to be specific to the C. hookeri lineage. All of these cellulase sequences fall into four main phasmid clades and show gene duplication events occurred early in the diversification of Phasmatodea. In addition, C. hookeri genome is likely to express γ-proteobacteria pectinase transcripts that have recently been shown to be the result of horizontal transfer. We also predicted 711 male terminalia-enriched transcripts that are candidate accessory gland proteins, 28 of which were annotated to have molecular functions of peptidase activity and peptidase inhibitor activity, two groups being widely reported to regulate female reproduction through proteolytic cascades. Our study has yielded new insights into the genetic basis of odour detection, nutrient digestion, and male sexual traits in stick insects. The C. hookeri reference transcriptome, together with identified gene families, provides a comprehensive resource for studying the evolution of sensory perception, digestive systems, and reproductive success in phasmids.
Collapse
Affiliation(s)
- Chen Wu
- Landcare Research, Auckland, New Zealand
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- * E-mail:
| | - Ross N. Crowhurst
- New Zealand Institute for Plant & Food Research Ltd, Auckland, New Zealand
| | - Alice B. Dennis
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
- EAWAG, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Victoria G. Twort
- Landcare Research, Auckland, New Zealand
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Shanlin Liu
- China National GeneBank, BGI-Shenzhen, Shen Zhen, China
| | - Richard D. Newcomb
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- New Zealand Institute for Plant & Food Research Ltd, Auckland, New Zealand
| | - Howard A. Ross
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Thomas R. Buckley
- Landcare Research, Auckland, New Zealand
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
24
|
de Castro MH, de Klerk D, Pienaar R, Latif AA, Rees DJG, Mans BJ. De novo assembly and annotation of the salivary gland transcriptome of Rhipicephalus appendiculatus male and female ticks during blood feeding. Ticks Tick Borne Dis 2016; 7:536-48. [DOI: 10.1016/j.ttbdis.2016.01.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/23/2015] [Accepted: 01/20/2016] [Indexed: 01/19/2023]
|
25
|
Wei D, Tian CB, Liu SH, Wang T, Smagghe G, Jia FX, Dou W, Wang JJ. Transcriptome analysis to identify genes for peptides and proteins involved in immunity and reproduction from male accessory glands and ejaculatory duct of Bactrocera dorsalis. Peptides 2016; 80:48-60. [PMID: 26297881 DOI: 10.1016/j.peptides.2015.08.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 08/10/2015] [Accepted: 08/10/2015] [Indexed: 12/31/2022]
Abstract
In the male reproductive system of insects, the male accessory glands and ejaculatory duct (MAG/ED) are important organs and their primary function is to enhance the fertility of spermatozoa. Proteins secreted by the MAG/ED are also known to induce post-mating changes and immunity responses in the female insect. To understand the gene expression profile in the MAG/ED of the oriental fruit fly Bactrocera dorsalis (Hendel), that is an important pest in fruits, we performed an Illumina-based deep sequencing of mRNA. This yielded 54,577,630 clean reads corresponding to 4.91Gb total nucleotides that were assembled and clustered to 30,669 unigenes (average 645bp). Among them, 20,419 unigenes were functionally annotated to known proteins/peptides in Gene Orthology, Clusters of Orthologous Groups, Kyoto Encyclopedia of Genes and Genomes pathway databases. Typically, many genes were involved in immunity and these included microbial recognition proteins and antimicrobial peptides. Subsequently, the inducible expression of these immunity-related genes was confirmed by qRT-PCR analysis when insects were challenged with immunity-inducible factors, suggesting their function in guaranteeing fertilization success. Besides, we identified some important reproductive genes such as juvenile hormone- and ecdysteroid-related genes in this de novo assembly. In conclusion, this transcriptomic sequencing of B. dorsalis MAG/ED provides insights to facilitate further functional research of reproduction, immunity and molecular evolution of reproductive proteins in this important agricultural pest.
Collapse
Affiliation(s)
- Dong Wei
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Chuan-Bei Tian
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Shi-Huo Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Tao Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Guy Smagghe
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China; Department of Crop Protection, Ghent University, B-9000 Ghent, Belgium
| | - Fu-Xian Jia
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China.
| |
Collapse
|
26
|
Abstract
Almost 20 % of all infectious human diseases are vector borne and, together, are responsible for over one million deaths per annum. Over the past decade, the decreasing costs of massively parallel sequencing technologies have facilitated the agnostic interrogation of insect vector genomes, giving medical entomologists access to an ever-expanding volume of high-quality genomic and transcriptomic data. In this review, we highlight how genomics resources have provided new insights into the physiology, behavior, and evolution of human disease vectors within the context of the global health landscape.
Collapse
Affiliation(s)
- David C Rinker
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - R Jason Pitts
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Laurence J Zwiebel
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA. .,Department of Pharmacology, Vanderbilt Brain Institute, Program in Developmental Biology, and Institutes of Chemical Biology and Global Health, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
| |
Collapse
|
27
|
Zhu J, Khalil SM, Mitchell RD, Bissinger BW, Egekwu N, Sonenshine DE, Roe RM. Mevalonate-Farnesal Biosynthesis in Ticks: Comparative Synganglion Transcriptomics and a New Perspective. PLoS One 2016; 11:e0141084. [PMID: 26959814 PMCID: PMC4785029 DOI: 10.1371/journal.pone.0141084] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 10/03/2015] [Indexed: 11/19/2022] Open
Abstract
Juvenile hormone (JH) controls the growth, development, metamorphosis, and reproduction of insects. For many years, the general assumption has been that JH regulates tick and other acarine development and reproduction the same as in insects. Although researchers have not been able to find the common insect JHs in hard and soft tick species and JH applications appear to have no effect on tick development, it is difficult to prove the negative or to determine whether precursors to JH are made in ticks. The tick synganglion contains regions which are homologous to the corpora allata, the biosynthetic source for JH in insects. Next-gen sequencing of the tick synganglion transcriptome was conducted separately in adults of the American dog tick, Dermacentor variabilis, the deer tick, Ixodes scapularis, and the relapsing fever tick, Ornithodoros turicata as a new approach to determine whether ticks can make JH or a JH precursor. All of the enzymes that make up the mevalonate pathway from acetyl-CoA to farnesyl diphosphate (acetoacetyl-CoA thiolase, HMG-S, HMG-R, mevalonate kinase, phosphomevalonate kinase, diphosphomevalonate decarboxylase, and farnesyl diphosphate synthase) were found in at least one of the ticks studied but most were found in all three species. Sequence analysis of the last enzyme in the mevalonate pathway, farnesyl diphosphate synthase, demonstrated conservation of the seven prenyltransferase regions and the aspartate rich motifs within those regions typical of this enzyme. In the JH branch from farnesyl diphosphate to JH III, we found a putative farnesol oxidase used for the conversion of farnesol to farnesal in the synganglion transcriptome of I. scapularis and D. variabilis. Methyltransferases (MTs) that add a methyl group to farnesoic acid to make methyl farnesoate were present in all of the ticks studied with similarities as high as 36% at the amino acid level to insect JH acid methyltransferase (JHAMT). However, when the tick MTs were compared to the known insect JHAMTs from several insect species at the amino acid level, the former lacked the farnesoic acid binding motif typical in insects. The P450s shown in insects to add the C10,11 epoxide to methyl farnesoate, are in the CYP15 family; this family was absent in our tick transcriptomes and in the I. scapularis genome, the only tick genome available. These data suggest that ticks do not synthesize JH III but have the mevalonate pathway and may produce a JH III precursor.
Collapse
Affiliation(s)
- Jiwei Zhu
- Department of Entomology, North Carolina State University, Raleigh, North Carolina, 27695, United States of America
| | - Sayed M. Khalil
- Department of Entomology, North Carolina State University, Raleigh, North Carolina, 27695, United States of America
| | - Robert D. Mitchell
- Department of Entomology, North Carolina State University, Raleigh, North Carolina, 27695, United States of America
| | - Brooke W. Bissinger
- Department of Entomology, North Carolina State University, Raleigh, North Carolina, 27695, United States of America
| | - Noble Egekwu
- Department of Biological Sciences, Old Dominion University, Norfolk, Virginia, 23529, United States of America
| | - Daniel E. Sonenshine
- Department of Biological Sciences, Old Dominion University, Norfolk, Virginia, 23529, United States of America
| | - R. Michael Roe
- Department of Entomology, North Carolina State University, Raleigh, North Carolina, 27695, United States of America
- * E-mail:
| |
Collapse
|
28
|
Bonilla ML, Todd C, Erlandson M, Andres J. Combining RNA-seq and proteomic profiling to identify seminal fluid proteins in the migratory grasshopper Melanoplus sanguinipes (F). BMC Genomics 2015; 16:1096. [PMID: 26694822 PMCID: PMC4689059 DOI: 10.1186/s12864-015-2327-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 12/15/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Seminal fluid proteins control many aspects of fertilization and in turn, they play a key role in post-mating sexual selection and possibly reproductive isolation. Because effective proteome profiling relies on the availability of high-quality DNA reference databases, our knowledge of these proteins is still largely limited to model organisms with ample genetic resources. New advances in sequencing technology allow for the rapid characterization of transcriptomes at low cost. By combining high throughput RNA-seq and shotgun proteomic profiling, we have characterized the seminal fluid proteins secreted by the primary male accessory gland of the migratory grasshopper (Melanoplus sanguinipes), one of the main agricultural pests in central North America. RESULTS Using RNA sequencing, we characterized the transcripts of ~ 8,100 genes expressed in the long hyaline tubules (LHT) of the accessory glands. Proteomic profiling identified 353 proteins expressed in the long hyaline tubules (LHT). Of special interest are seminal fluid proteins (SFPs), such as EJAC-SP, ACE and prostaglandin synthetases, which are known to regulate female oviposition in insects. CONCLUSIONS Our study provides new insights into the proteomic components of male ejaculate in Orthopterans, and highlights several important patterns. First, the presence of proteins that lack predicted classical secretory tags in accessory gland proteomes is common in male accessory glands. Second, the products of a few highly expressed genes dominate the accessory gland secretions. Third, accessory gland transcriptomes are enriched for novel transcripts. Fourth, there is conservation of SFPs' functional classes across distantly related taxonomic groups with very different life histories, mating systems and sperm transferring mechanisms. The identified SFPs may serve as targets of future efforts to develop species- specific genetic control strategies.
Collapse
Affiliation(s)
- Martha L Bonilla
- Facultad de Ciencias Agropecuarias, Universidad Nacional de Colombia, A.237. Palmira, Valle del Cauca, Colombia.
- Department of Biology, University of Saskatchewan, 112 Science Pl., Saskatoon, SK, S7N-5E2, Canada.
| | - Christopher Todd
- Department of Biology, University of Saskatchewan, 112 Science Pl., Saskatoon, SK, S7N-5E2, Canada.
| | - Martin Erlandson
- Saskatoon Research Centre, Agriculture and Agri-Food Canada, 107 Science Pl., Saskatoon, SK, S7N-0X2, Canada.
| | - Jose Andres
- Department of Biology, University of Saskatchewan, 112 Science Pl., Saskatoon, SK, S7N-5E2, Canada.
| |
Collapse
|
29
|
Weisheit S, Villar M, Tykalová H, Popara M, Loecherbach J, Watson M, Růžek D, Grubhoffer L, de la Fuente J, Fazakerley JK, Bell-Sakyi L. Ixodes scapularis and Ixodes ricinus tick cell lines respond to infection with tick-borne encephalitis virus: transcriptomic and proteomic analysis. Parasit Vectors 2015; 8:599. [PMID: 26582129 PMCID: PMC4652421 DOI: 10.1186/s13071-015-1210-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 11/11/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Ixodid ticks are important vectors of a wide variety of viral, bacterial and protozoan pathogens of medical and veterinary importance. Although several studies have elucidated tick responses to bacteria, little is known about the tick response to viruses. To gain insight into the response of tick cells to flavivirus infection, the transcriptomes and proteomes of two Ixodes spp cell lines infected with the flavivirus tick-borne encephalitis virus (TBEV) were analysed. METHODS RNA and proteins were isolated from the Ixodes scapularis-derived cell line IDE8 and the Ixodes ricinus-derived cell line IRE/CTVM19, mock-infected or infected with TBEV, on day 2 post-infection (p.i.) when virus production was increasing, and on day 6 p.i. when virus production was decreasing. RNA-Seq and mass spectrometric technologies were used to identify changes in abundance of, respectively, transcripts and proteins. Functional analyses were conducted on selected transcripts using RNA interference (RNAi) for gene knockdown in tick cells infected with the closely-related but less pathogenic flavivirus Langat virus (LGTV). RESULTS Differential expression analysis using DESeq resulted in totals of 43 and 83 statistically significantly differentially-expressed transcripts in IDE8 and IRE/CTVM19 cells, respectively. Mass spectrometry detected 76 and 129 statistically significantly differentially-represented proteins in IDE8 and IRE/CTVM19 cells, respectively. Differentially-expressed transcripts and differentially-represented proteins included some that may be involved in innate immune and cell stress responses. Knockdown of the heat-shock proteins HSP90, HSP70 and gp96, the complement-associated protein Factor H and the protease trypsin resulted in increased LGTV replication and production in at least one tick cell line, indicating a possible antiviral role for these proteins. Knockdown of RNAi-associated proteins Argonaute and Dicer, which were included as positive controls, also resulted in increased LGTV replication and production in both cell lines, confirming their role in the antiviral RNAi pathway. CONCLUSIONS This systems biology approach identified several molecules that may be involved in the tick cell innate immune response against flaviviruses and highlighted that ticks, in common with other invertebrate species, have other antiviral responses in addition to RNAi.
Collapse
Affiliation(s)
- Sabine Weisheit
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Scotland, EH25 9RG, UK.
- The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF, UK.
- Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, 0377, Norway.
| | - Margarita Villar
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, Ciudad Real, 13005, Spain.
| | - Hana Tykalová
- Faculty of Science, University of South Bohemia and Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branisovska 31, České Budějovice (Budweis), 37005, Czech Republic.
| | - Marina Popara
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, Ciudad Real, 13005, Spain.
| | - Julia Loecherbach
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Scotland, EH25 9RG, UK.
| | - Mick Watson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Scotland, EH25 9RG, UK.
| | - Daniel Růžek
- Faculty of Science, University of South Bohemia and Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branisovska 31, České Budějovice (Budweis), 37005, Czech Republic.
- Veterinary Research Institute, Hudcova 70, Brno, 62100, Czech Republic.
| | - Libor Grubhoffer
- Faculty of Science, University of South Bohemia and Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branisovska 31, České Budějovice (Budweis), 37005, Czech Republic.
| | - José de la Fuente
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, Ciudad Real, 13005, Spain.
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, 74078, USA.
| | - John K Fazakerley
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Scotland, EH25 9RG, UK.
- The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF, UK.
| | | |
Collapse
|
30
|
Chmelař J, Kotál J, Karim S, Kopacek P, Francischetti IMB, Pedra JHF, Kotsyfakis M. Sialomes and Mialomes: A Systems-Biology View of Tick Tissues and Tick-Host Interactions. Trends Parasitol 2015; 32:242-254. [PMID: 26520005 DOI: 10.1016/j.pt.2015.10.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 09/24/2015] [Accepted: 10/02/2015] [Indexed: 12/22/2022]
Abstract
Tick saliva facilitates tick feeding and infection of the host. Gene expression analysis of tick salivary glands and other tissues involved in host-pathogen interactions has revealed a wide range of bioactive tick proteins. Transcriptomic analysis has been a milestone in the field and has recently been enhanced by next-generation sequencing (NGS). Furthermore, the application of quantitative proteomics to ticks with unknown genomes has provided deeper insights into the molecular mechanisms underlying tick hematophagy, pathogen transmission, and tick-host-pathogen interactions. We review current knowledge on the transcriptomics and proteomics of tick tissues from a systems-biology perspective and discuss future challenges in the field.
Collapse
Affiliation(s)
- Jindřich Chmelař
- Faculty of Science, University of South Bohemia in České Budějovice, Budweis, Czech Republic; Department of Clinical Pathobiochemistry, Technische Universität Dresden, Dresden, Germany
| | - Jan Kotál
- Faculty of Science, University of South Bohemia in České Budějovice, Budweis, Czech Republic; Institute of Parasitology, Biology Center, Czech Academy of Sciences, Budweis, Czech Republic
| | - Shahid Karim
- Department of Biological Sciences, The University of Southern Mississippi, Hattiesburg, MS, USA
| | - Petr Kopacek
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, Budweis, Czech Republic
| | - Ivo M B Francischetti
- Section of Vector Biology, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Joao H F Pedra
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Michail Kotsyfakis
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, Budweis, Czech Republic.
| |
Collapse
|
31
|
de la Fuente J, Contreras M. Tick vaccines: current status and future directions. Expert Rev Vaccines 2015; 14:1367-76. [DOI: 10.1586/14760584.2015.1076339] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
32
|
Rodríguez-García MJ, Machado V, Galián J. Identification and characterisation of putative seminal fluid proteins from male reproductive tissue EST libraries in tiger beetles. BMC Genomics 2015; 16:391. [PMID: 25981911 PMCID: PMC4434525 DOI: 10.1186/s12864-015-1619-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 05/05/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The study of proteins transferred through semen can provide important information for biological questions such as adaptive evolution, the origin of new species and species richness. The objective of this study was to identify seminal fluid proteins (SFPs) that may contribute to the study of the reproductive system of tiger beetles (cicindelids), a group of more than 2,500 species distributed worldwide that occupy a great diversity of habitats. RESULTS Two cDNA libraries were constructed from the male gonads of Calomera littoralis and Cephalota litorea. Expressed sequence tags (ESTs) were analysed by bioinformatics approaches and 14 unigenes were selected as candidate SFPs, which were submitted to Reverse Transcription Polymerase Chain Reaction (RT-PCR) to identify patterns of tissue-specific expression. We have identified four novel putative SFPs of cicindelids, of which similarity searches did not show homologues with known function. However, two of the protein classes (immune response and hormone) predicted by Protfun are similar to SFPs reported in other insects. Searches for homology in other cicindelids showed one lineage specific SFPs (rapidly evolving proteins), only present in the closely related species C. littoralis and Lophyra flexuosa and two conserved SFP present in other tiger beetles species tested. CONCLUSIONS This work represents the first characterisation of putative SFPs in Adephagan species of the order Coleoptera. The results will serve as a foundation for further studies aimed to understand gene (and protein) functions and their evolutionary implications in this group of ecologically relevant beetles.
Collapse
Affiliation(s)
- María Juliana Rodríguez-García
- Department of Zoology and Physical Anthropology, Faculty of Veterinary, University of Murcia, Campus Mare Nostrum, E-30100, Murcia, Spain.
| | - Vilmar Machado
- Department of Zoology and Physical Anthropology, Faculty of Veterinary, University of Murcia, Campus Mare Nostrum, E-30100, Murcia, Spain.
| | - José Galián
- Department of Zoology and Physical Anthropology, Faculty of Veterinary, University of Murcia, Campus Mare Nostrum, E-30100, Murcia, Spain.
| |
Collapse
|
33
|
Wei D, Li HM, Yang WJ, Wei DD, Dou W, Huang Y, Wang JJ. Transcriptome profiling of the testis reveals genes involved in spermatogenesis and marker discovery in the oriental fruit fly, Bactrocera dorsalis. INSECT MOLECULAR BIOLOGY 2015; 24:41-57. [PMID: 25255964 DOI: 10.1111/imb.12134] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The testis is a highly specialized tissue that plays a vital role in ensuring fertility by producing spermatozoa, which are transferred to the female during mating. Spermatogenesis is a complex process, resulting in the production of mature sperm, and involves significant structural and biochemical changes in the seminiferous epithelium of the adult testis. The identification of genes involved in spermatogenesis of Bactrocera dorsalis (Hendel) is critical for a better understanding of its reproductive development. In this study, we constructed a cDNA library of testes from male B. dorsalis adults at different ages, and performed de novo transcriptome sequencing to produce a comprehensive transcript data set, using Illumina sequencing technology. The analysis yielded 52 016 732 clean reads, including a total of 4.65 Gb of nucleotides. These reads were assembled into 47 677 contigs (average 443 bp) and then clustered into 30 516 unigenes (average 756 bp). Based on BLAST hits with known proteins in different databases, 20 921 unigenes were annotated with a cut-off E-value of 10(-5). The transcriptome sequences were further annotated using the Clusters of Orthologous Groups, Gene Orthology and the Kyoto Encyclopedia of Genes and Genomes databases. Functional genes involved in spermatogenesis were analysed, including cell cycle proteins, metalloproteins, actin, and ubiquitin and antihyperthermia proteins. Several testis-specific genes were also identified. The transcripts database will help us to understand the molecular mechanisms underlying spermatogenesis in B. dorsalis. Furthermore, 2913 simple sequence repeats and 151 431 single nucleotide polymorphisms were identified, which will be useful for investigating the genetic diversity of B. dorsalis in the future.
Collapse
Affiliation(s)
- D Wei
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | | | | | | | | | | | | |
Collapse
|
34
|
Rodriguez-Valle M, Xu T, Kurscheid S, Lew-Tabor AE. Rhipicephalus microplus serine protease inhibitor family: annotation, expression and functional characterisation assessment. Parasit Vectors 2015; 8:7. [PMID: 25564202 PMCID: PMC4322644 DOI: 10.1186/s13071-014-0605-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 12/14/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Rhipicephalus (Boophilus) microplus evades the host's haemostatic system through a complex protein array secreted into tick saliva. Serine protease inhibitors (serpins) conform an important component of saliva which are represented by a large protease inhibitor family in Ixodidae. These secreted and non-secreted inhibitors modulate diverse and essential proteases involved in different physiological processes. METHODS The identification of R. microplus serpin sequences was performed through a web-based bioinformatics environment called Yabi. The database search was conducted on BmiGi V1, BmiGi V2.1, five SSH libraries, Australian tick transcriptome libraries and RmiTR V1 using bioinformatics methods. Semi quantitative PCR was carried out using different adult tissues and tick development stages. The cDNA of four identified R. microplus serpins were cloned and expressed in Pichia pastoris in order to determine biological targets of these serpins utilising protease inhibition assays. RESULTS A total of four out of twenty-two serpins identified in our analysis are new R. microplus serpins which were named as RmS-19 to RmS-22. The analyses of DNA and predicted amino acid sequences showed high conservation of the R. microplus serpin sequences. The expression data suggested ubiquitous expression of RmS except for RmS-6 and RmS-14 that were expressed only in nymphs and adult female ovaries, respectively. RmS-19, and -20 were expressed in all tissues samples analysed showing their important role in both parasitic and non-parasitic stages of R. microplus development. RmS-21 was not detected in ovaries and RmS-22 was not identified in ovary and nymph samples but were expressed in the rest of the samples analysed. A total of four expressed recombinant serpins showed protease specific inhibition for Chymotrypsin (RmS-1 and RmS-6), Chymotrypsin / Elastase (RmS-3) and Thrombin (RmS-15). CONCLUSION This study constitutes an important contribution and improvement to the knowledge about the physiologic role of R. microplus serpins during the host-tick interaction.
Collapse
Affiliation(s)
- Manuel Rodriguez-Valle
- The University of Queensland, Queensland Alliance for Agriculture & Food Innovation, Queensland Biosciences Precinct, 306 Carmody Rd, St. Lucia Qld, 4072, Australia.
| | - Tao Xu
- The University of Queensland, Queensland Alliance for Agriculture & Food Innovation, Queensland Biosciences Precinct, 306 Carmody Rd, St. Lucia Qld, 4072, Australia.
| | | | - Ala E Lew-Tabor
- The University of Queensland, Queensland Alliance for Agriculture & Food Innovation, Queensland Biosciences Precinct, 306 Carmody Rd, St. Lucia Qld, 4072, Australia. .,Murdoch University, Centre for Comparative Genomics, Perth, Western Australia, 6150, Australia.
| |
Collapse
|
35
|
Egekwu N, Sonenshine DE, Bissinger BW, Roe RM. Transcriptome of the female synganglion of the black-legged tick Ixodes scapularis (Acari: Ixodidae) with comparison between Illumina and 454 systems. PLoS One 2014; 9:e102667. [PMID: 25075967 PMCID: PMC4116169 DOI: 10.1371/journal.pone.0102667] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 06/23/2014] [Indexed: 11/26/2022] Open
Abstract
Illumina and 454 pyrosequencing were used to characterize genes from the synganglion of female Ixodes scapularis. GO term searching success for biological processes was similar for samples sequenced by both methods. However, for molecular processes, it was more successful for the Illumina samples than for 454 samples. Functional assignments of transcripts predicting neuropeptides, neuropeptide receptors, neurotransmitter receptors and other genes of interest was done, supported by strong e-values (<-6), and high consensus sequence alignments. Transcripts predicting 15 putative neuropeptide prepropeptides ((allatostatin, allatotropin, bursicon α, corticotropin releasing factor (CRF), CRF-binding protein, eclosion hormone, FMRFamide, glycoprotein A, insulin-like peptide, ion transport peptide, myoinhibitory peptide, inotocin ( = neurophysin-oxytocin), Neuropeptide F, sulfakinin and SIFamide)) and transcripts predicting receptors for 14 neuropeptides (allatostatin, calcitonin, cardioacceleratory peptide, corazonin, CRF, eclosion hormone, gonadotropin-releasing hormone/AKH-like, insulin-like peptide, neuropeptide F, proctolin, pyrokinin, SIFamide, sulfakinin and tachykinin) are reported. Similar to Dermacentor variabilis, we found transcripts matching pro-protein convertase, essential for converting neuropeptide hormones to their mature form. Additionally, transcripts predicting 6 neurotransmitter/neuromodulator receptors (acetylcholine, GABA, dopamine, glutamate, octopamine and serotonin) and 3 neurotransmitter transporters (GABA transporter, noradrenalin-norepinephrine transporter and Na+-neurotransmitter/symporter) are described. Further, we found transcripts predicting genes for pheromone odorant receptor, gustatory receptor, novel GPCR messages, ecdysone nuclear receptor, JH esterase binding protein, steroidogenic activating protein, chitin synthase, chitinase, and other genes of interest. Also found were transcripts predicting genes for spermatogenesis-associated protein, major sperm protein, spermidine oxidase and spermidine synthase, genes not normally expressed in the female CNS of other invertebrates. The diversity of messages predicting important genes identified in this study offers a valuable resource useful for understanding how the tick synganglion regulates important physiological functions.
Collapse
Affiliation(s)
- Noble Egekwu
- Department of Biological Sciences, Old Dominion University, Norfolk, Virginia, United States of America
| | - Daniel E. Sonenshine
- Department of Biological Sciences, Old Dominion University, Norfolk, Virginia, United States of America
| | | | - R. Michael Roe
- Department of Entomology, North Carolina State University, Raleigh, North Carolina, United States of America
| |
Collapse
|
36
|
Boes KE, Ribeiro JMC, Wong A, Harrington LC, Wolfner MF, Sirot LK. Identification and characterization of seminal fluid proteins in the Asian tiger mosquito, Aedes albopictus. PLoS Negl Trop Dis 2014; 8:e2946. [PMID: 24945155 PMCID: PMC4063707 DOI: 10.1371/journal.pntd.0002946] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 05/02/2014] [Indexed: 12/20/2022] Open
Abstract
The Asian tiger mosquito (Aedes albopictus) is an important vector for pathogens that affect human health, including the viruses that cause dengue and Chikungunya fevers. It is also one of the world's fastest-spreading invasive species. For these reasons, it is crucial to identify strategies for controlling the reproduction and spread of this mosquito. During mating, seminal fluid proteins (Sfps) are transferred from male mosquitoes to females, and these Sfps modulate female behavior and physiology in ways that influence reproduction. Despite the importance of Sfps on female reproductive behavior in mosquitoes and other insects, the identity of Sfps in Ae. albopictus has not previously been reported. We used transcriptomics and proteomics to identify 198 Sfps in Ae. albopictus. We discuss possible functions of these Sfps in relation to Ae. albopictus reproduction-related biology. We additionally compare the sequences of these Sfps with proteins (including reported Sfps) in several other species, including Ae. aegypti. While only 72 (36.4%) of Ae. albopictus Sfps have putative orthologs in Ae. aegypti, suggesting low conservation of the complement of Sfps in these species, we find no evidence for an elevated rate of evolution or positive selection in the Sfps that are shared between the two Aedes species, suggesting high sequence conservation of those shared Sfps. Our results provide a foundation for future studies to investigate the roles of individual Sfps on feeding and reproduction in this mosquito. Functional analysis of these Sfps could inform strategies for managing the rate of pathogen transmission by Ae. albopictus.
Collapse
Affiliation(s)
- Kathryn E. Boes
- Department of Biology, College of Wooster, Wooster, Ohio, United States of America
| | - José M. C. Ribeiro
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, Maryland, United States of America
| | - Alex Wong
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Laura C. Harrington
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
| | - Mariana F. Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Laura K. Sirot
- Department of Biology, College of Wooster, Wooster, Ohio, United States of America
| |
Collapse
|
37
|
Hull JJ, Brent CS. Identification and characterization of a sex peptide receptor-like transcript from the western tarnished plant bug Lygus hesperus. INSECT MOLECULAR BIOLOGY 2014; 23:301-319. [PMID: 24467643 DOI: 10.1111/imb.12082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Lygus hesperus females exhibit a post-mating behavioural switch that triggers increased egg laying and decreased sexual interest. In Drosophila melanogaster, these changes are controlled by sex peptide (SP) and the sex peptide receptor (DmSPR). In Helicoverpa armigera, SPR (HaSPR) also regulates some post-mating behaviour; however, myoinhibiting peptides (MIPs) have been identified as the SPR ancestral ligand, indicating that SPR is a pleiotropic receptor. In the present study, we identified a transcript, designated L. hesperus SPR (LhSPR), that is homologous to known SPRs and which is expressed throughout development and in most adult tissues. LhSPR was most abundant in female seminal depositories and heads as well as the hindgut/midgut of both sexes. In vitro analyses revealed that fluorescent chimeras of LhSPR, DmSPR and HaSPR localized to the cell surface of cultured insect cells, but only DmSPR and HaSPR bound carboxytetramethylrhodamine-labelled analogues of DmSP21-36 and DmMIP4. Injected DmSP21-36 also failed to have an effect on L. hesperus mating receptivity. Potential divergence in the LhSPR binding pocket may be linked to receptor-ligand co-evolution as 9 of 13 MIPs encoded by a putative L. hesperus MIP precursor exhibit an atypical W-X7 -Wamide motif vs the W-X6 -Wamide and W-X8 -Wamide motifs of Drosophila MIPs and SP.
Collapse
Affiliation(s)
- J J Hull
- USDA-ARS Arid Land Agricultural Center, Maricopa, AZ, USA
| | | |
Collapse
|
38
|
Ibelli AMG, Kim TK, Hill CC, Lewis LA, Bakshi M, Miller S, Porter L, Mulenga A. A blood meal-induced Ixodes scapularis tick saliva serpin inhibits trypsin and thrombin, and interferes with platelet aggregation and blood clotting. Int J Parasitol 2014; 44:369-79. [PMID: 24583183 DOI: 10.1016/j.ijpara.2014.01.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 12/29/2013] [Accepted: 01/06/2014] [Indexed: 01/22/2023]
Abstract
Ixodes scapularis is a medically important tick species that transmits causative agents of important human tick-borne diseases including borreliosis, anaplasmosis and babesiosis. An understanding of how this tick feeds is needed prior to the development of novel methods to protect the human population against tick-borne disease infections. This study characterizes a blood meal-induced I. scapularis (Ixsc) tick saliva serine protease inhibitor (serpin (S)), in-house referred to as IxscS-1E1. The hypothesis that ticks use serpins to evade the host's defense response to tick feeding is based on the assumption that tick serpins inhibit functions of protease mediators of the host's anti-tick defense response. Thus, it is significant that consistent with hallmark characteristics of inhibitory serpins, Pichia pastoris-expressed recombinant IxscS-1E1 (rIxscS-1E1) can trap thrombin and trypsin in SDS- and heat-stable complexes, and reduce the activity of the two proteases in a dose-responsive manner. Additionally, rIxscS-1E1 also inhibited, but did not apparently form detectable complexes with, cathepsin G and factor Xa. Our data also show that rIxscS-1E1 may not inhibit chymotrypsin, kallikrein, chymase, plasmin, elastase and papain even at a much higher rIxscS-1E1 concentration. Native IxscS-1E1 potentially plays a role(s) in facilitating I. scapularis tick evasion of the host's hemostatic defense as revealed by the ability of rIxscS-1E1 to inhibit adenosine diphosphate- and thrombin-activated platelet aggregation, and delay activated partial prothrombin time and thrombin time plasma clotting in a dose-responsive manner. We conclude that native IxscS-1E1 is part of the tick saliva protein complex that mediates its anti-hemostatic, and potentially inflammatory, functions by inhibiting the actions of thrombin, trypsin and other yet unknown trypsin-like proteases at the tick-host interface.
Collapse
Affiliation(s)
- Adriana M G Ibelli
- Texas A & M University AgriLife Research, Department of Entomology, 2475 TAMU, College Station, TX 77843, USA; Federal University of São Carlos, Graduate Program in Genetics and Evolution, Brazil
| | - Tae K Kim
- Texas A & M University AgriLife Research, Department of Entomology, 2475 TAMU, College Station, TX 77843, USA
| | - Creston C Hill
- Texas A & M University AgriLife Research, Department of Entomology, 2475 TAMU, College Station, TX 77843, USA
| | - Lauren A Lewis
- Texas A & M University AgriLife Research, Department of Entomology, 2475 TAMU, College Station, TX 77843, USA
| | - Mariam Bakshi
- Texas A & M University AgriLife Research, Department of Entomology, 2475 TAMU, College Station, TX 77843, USA
| | - Stephanie Miller
- Texas A & M University AgriLife Research, Department of Entomology, 2475 TAMU, College Station, TX 77843, USA; College Station High School, Science Department-Biology, 4002 Victoria Ave, College Station, TX 77845, USA
| | - Lindsay Porter
- Texas A & M University AgriLife Research, Department of Entomology, 2475 TAMU, College Station, TX 77843, USA
| | - Albert Mulenga
- Texas A & M University AgriLife Research, Department of Entomology, 2475 TAMU, College Station, TX 77843, USA.
| |
Collapse
|
39
|
Villar M, Popara M, Ayllón N, Fernández de Mera IG, Mateos-Hernández L, Galindo RC, Manrique M, Tobes R, de la Fuente J. A systems biology approach to the characterization of stress response in Dermacentor reticulatus tick unfed larvae. PLoS One 2014; 9:e89564. [PMID: 24586875 PMCID: PMC3931811 DOI: 10.1371/journal.pone.0089564] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 01/21/2014] [Indexed: 11/19/2022] Open
Abstract
Background Dermacentor reticulatus (Fabricius, 1794) is distributed in Europe and Asia where it infests and transmits disease-causing pathogens to humans, pets and other domestic and wild animals. However, despite its role as a vector of emerging or re-emerging diseases, very little information is available on the genome, transcriptome and proteome of D. reticulatus. Tick larvae are the first developmental stage to infest hosts, acquire infection and transmit pathogens that are transovarially transmitted and are exposed to extremely stressing conditions. In this study, we used a systems biology approach to get an insight into the mechanisms active in D. reticulatus unfed larvae, with special emphasis on stress response. Principal Findings The results support the use of paired end RNA sequencing and proteomics informed by transcriptomics (PIT) for the analysis of transcriptomics and proteomics data, particularly for organisms such as D. reticulatus with little sequence information available. The results showed that metabolic and cellular processes involved in protein synthesis were the most active in D. reticulatus unfed larvae, suggesting that ticks are very active during this life stage. The stress response was activated in D. reticulatus unfed larvae and a Rickettsia sp. similar to R. raoultii was identified in these ticks. Significance The activation of stress responses in D. reticulatus unfed larvae likely counteracts the negative effect of temperature and other stress conditions such as Rickettsia infection and favors tick adaptation to environmental conditions to increase tick survival. These results show mechanisms that have evolved in D. reticulatus ticks to survive under stress conditions and suggest that these mechanisms are conserved across hard tick species. Targeting some of these proteins by vaccination may increase tick susceptibility to natural stress conditions, which in turn reduce tick survival and reproduction, thus reducing tick populations and vector capacity for tick-borne pathogens.
Collapse
Affiliation(s)
- Margarita Villar
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain
| | - Marina Popara
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain
| | - Nieves Ayllón
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain
| | | | - Lourdes Mateos-Hernández
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain
| | - Ruth C. Galindo
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Marina Manrique
- Oh no sequences! Research group, Era7 Bioinformatics, Granada, Spain
| | - Raquel Tobes
- Oh no sequences! Research group, Era7 Bioinformatics, Granada, Spain
| | - José de la Fuente
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
40
|
Yang Y, Bajracharya P, Castillo P, Nachman RJ, Pietrantonio PV. Molecular and functional characterization of the first tick CAP2b (periviscerokinin) receptor from Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). Gen Comp Endocrinol 2013; 194:142-51. [PMID: 24055303 DOI: 10.1016/j.ygcen.2013.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 08/24/2013] [Accepted: 09/06/2013] [Indexed: 10/26/2022]
Abstract
The cDNA of the receptor for CAP(2b)/periviscerokinin (PVK) neuropeptides, designated Rhimi-CAP(2b)-R, was cloned from synganglia of tick Rhipicephalus (Boophilus) microplus. This receptor is the ortholog of the insect CAP(2b)/PVK receptor, as concluded from analyses of the predicted protein sequence, phylogenetics and functional expression. Expression analyses of synganglion, salivary gland, Malpighian tubule, and ovary revealed Rhimi-CAP(2b)-R transcripts. The expression in mammalian cells of the open reading frame of Rhimi-CAP(2b)-R cDNA fused with a hemagglutinin tag at the receptor N-terminus was confirmed by immunocytochemistry. In a calcium bioluminescence assay the recombinant receptor was activated by the tick Ixodes scapularis CAP(2b)/PVK and a PVK analog with EC₅₀s of 64 nM and 249 nM, respectively. Tick pyrokinins were not active. This is the first report on the functional characterization of the CAP(2b)/PVK receptor from any tick species which will now permit the discovery of the physiological roles of these neuropeptides in ticks, as neurohormones, neuromodulators and/or neurotransmitters.
Collapse
Affiliation(s)
- Yunlong Yang
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | |
Collapse
|
41
|
Lees K, Jones AK, Matsuda K, Akamatsu M, Sattelle DB, Woods DJ, Bowman AS. Functional characterisation of a nicotinic acetylcholine receptor α subunit from the brown dog tick, Rhipicephalus sanguineus. Int J Parasitol 2013; 44:75-81. [PMID: 24291321 PMCID: PMC4029082 DOI: 10.1016/j.ijpara.2013.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 11/01/2013] [Accepted: 11/04/2013] [Indexed: 12/16/2022]
Abstract
Ticks and tick-borne diseases have a major impact on human and animal health worldwide. Current control strategies rely heavily on the use of chemical acaricides, most of which target the CNS and with increasing resistance, new drugs are urgently needed. Nicotinic acetylcholine receptors (nAChRs) are targets of highly successful insecticides. We isolated a full-length nAChR α subunit from a normalised cDNA library from the synganglion (brain) of the brown dog tick, Rhipicephalus sanguineus. Phylogenetic analysis has shown this R. sanguineus nAChR to be most similar to the insect α1 nAChR group and has been named Rsanα1. Rsanα1 is distributed in multiple tick tissues and is present across all life-stages. When expressed in Xenopus laevis oocytes Rsanα1 failed to function as a homomer, with and without the addition of either Caenorhabditis elegans resistance-to-cholinesterase (RIC)-3 or X. laevis RIC-3. When co-expressed with chicken β2 nAChR, Rsanα1 evoked concentration-dependent, inward currents in response to acetylcholine (ACh) and showed sensitivity to nicotine (100 μM) and choline (100 μM). Rsanα1/β2 was insensitive to both imidacloprid (100 μM) and spinosad (100 μM). The unreliable expression of Rsanα1 in vitro suggests that additional subunits or chaperone proteins may be required for more robust expression. This study enhances our understanding of nAChRs in arachnids and may provide a basis for further studies on the interaction of compounds with the tick nAChR as part of a discovery process for novel acaricides.
Collapse
Affiliation(s)
- Kristin Lees
- Institute of Biological and Environmental Sciences, University of Aberdeen, Tillydrone Ave, Aberdeen AB24 2TZ, UK; Faculty of Life Sciences, University of Manchester, Oxford Rd, Manchester M13 9PT, UK
| | - Andrew K Jones
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Kazuhiko Matsuda
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kinki University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Miki Akamatsu
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kinki University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - David B Sattelle
- Wolfson Institute for Biomedical Research, Cruciform Building, University College London, Gower Street, London WC1E 6BT
| | - Debra J Woods
- Pfizer Animal Health, Pfizer Ltd, Sandwich, Kent CT13 9NJ, UK
| | - Alan S Bowman
- Institute of Biological and Environmental Sciences, University of Aberdeen, Tillydrone Ave, Aberdeen AB24 2TZ, UK.
| |
Collapse
|
42
|
|
43
|
Mulenga A, Kim T, Ibelli AMG. Amblyomma americanum tick saliva serine protease inhibitor 6 is a cross-class inhibitor of serine proteases and papain-like cysteine proteases that delays plasma clotting and inhibits platelet aggregation. INSECT MOLECULAR BIOLOGY 2013; 22:306-19. [PMID: 23521000 PMCID: PMC4058330 DOI: 10.1111/imb.12024] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We previously demonstrated that Amblyomma americanum tick serine protease inhibitor 6 (AamS6) was secreted into the host during tick feeding and that both its mRNA and protein were ubiquitously and highly expressed during the first 3 days of tick feeding. This study demonstrates that AamS6 is a cross-class inhibitor of both serine- and papain-like cysteine proteases that has apparent antihaemostatic functions. Consistent with the typical inhibitory serpin characteristics, enzyme kinetics analyses revealed that Pichia pastoris-expressed recombinant (r) AamS6 reduced initial velocities of substrate hydrolysis (V₀) and/or maximum enzyme velocity (V(max)) of trypsin, chymotrypsin, elastase, chymase, and papain in a dose-response manner. We speculate that rAamS6 inhibited plasmin in a temporary fashion in that while rAamS6 reduced V₀ of plasmin by up to ∼53%, it had no effect on V(max). Our data also suggest that rAmS6 has minimal or no apparent effect on V₀ or V(max) of thrombin, factor Xa, and kallikrein. We speculate that AamS6 is apparently involved in facilitating blood meal feeding in that various amounts of rAamS6 reduced platelet aggregation by up to ∼47% and delayed plasma clotting time in the recalcification time assay by up to ∼210 s. AamS6 is most likely not involved with the tick's evasion of the host's complement defense mechanism, in that rAamS6 did not interfere with the complement activation pathway. Findings in this study are discussed in the context of expanding our understanding of tick proteins that control bloodmeal feeding and hence tick-borne disease transmission by ticks.
Collapse
Affiliation(s)
- A Mulenga
- Department of Entomology, Texas A & M University AgriLife Research, College Station, TX, USA.
| | | | | |
Collapse
|
44
|
Ibelli AMG, Hermance MM, Kim TK, Gonzalez CL, Mulenga A. Bioinformatics and expression analyses of the Ixodes scapularis tick cystatin family. EXPERIMENTAL & APPLIED ACAROLOGY 2013; 60:41-53. [PMID: 23053911 PMCID: PMC4058331 DOI: 10.1007/s10493-012-9613-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 09/13/2012] [Indexed: 06/01/2023]
Abstract
The cystatins are inhibitors of papain- and legumain-like cysteine proteinases, classified in MEROPS subfamilies I25A-I25C. This study shows that 84 % (42/50) of tick cystatins are putatively extracellular in subfamily I25B and the rest are putatively intracellular in subfamily I25A. On the neighbor joining phylogeny guide tree, subfamily I25A members cluster together, while subfamily I25B cystatins segregate among prostriata or metastriata ticks. Two Ixodes scapularis cystatins, AAY66864 and ISCW011771 that show 50-71 % amino acid identity to metastriata tick cystatins may be linked to pathways that are common to all ticks, while ISCW000447 100 % conserved in I. ricinus is important among prostriata ticks. Likewise metastriata tick cystatins, Dermacentor variabilis-ACF35512, Rhipicephalus microplus-ACX53850, A. americanum-AEO36092, R. sanguineus-ACX53922, D. variabilis-ACF35514, R. sanguineus-ACX54033 and A. maculatum-AEO35155 that show 73-86 % amino acid identity may be essential to metastriata tick physiology. RT-PCR expression analyses revealed that I. scapularis cystatins were constitutively expressed in the salivary glands, midguts and other tissues of unfed ticks and ticks that were fed for 24-120 h, except for ISCW017861 that are restricted to the 24 h feeding time point. On the basis of mRNA expression patterns, I. scapularis cystatins, ISCW017861, ISCW011771, ISCW002215 and ISCW0024528 that are highly expressed at 24 h are likely involved in regulating early stage tick feeding events such as tick attachment onto host skin and creation of the feeding lesion. Similarly, ISCW018602, ISCW018603 and ISCW000447 that show 2-3 fold transcript increase by 120 h of feeding are likely associated with blood meal up take, while those that maintain steady state expression levels (ISCW018600, ISCW018601 and ISCW018604) during feeding may not be associated with tick feeding regulation. We discuss our findings in the context of advancing our knowledge of tick molecular biology.
Collapse
Affiliation(s)
- Adriana Mércia Guaratini Ibelli
- Department of Entomology, Texas A & M University AgriLife Research, 2475 TAMU, College Station, TX 77843, USA; Graduate Program in Genetics and Evolution, Federal University of São Carlos, São Carlos, Brazil
| | - Meghan M. Hermance
- Department of Entomology, Texas A & M University AgriLife Research, 2475 TAMU, College Station, TX 77843, USA
| | - Tae Kwon Kim
- Department of Entomology, Texas A & M University AgriLife Research, 2475 TAMU, College Station, TX 77843, USA
| | - Cassandra Lee Gonzalez
- Department of Entomology, Texas A & M University AgriLife Research, 2475 TAMU, College Station, TX 77843, USA
| | - Albert Mulenga
- Department of Entomology, Texas A & M University AgriLife Research, 2475 TAMU, College Station, TX 77843, USA
| |
Collapse
|
45
|
|