1
|
Navarro-Bailón A, López-Parra M, Veiga-Vaz Á, Villarón EM, Díez-Campelo M, Martín AÁ, Pérez-López E, Cabrero M, Vázquez L, López-Corral L, Sánchez-Guijo F. Treatment of post-allogeneic hematopoietic stem cell transplant cytopenias with sequential doses of multipotent mesenchymal stromal/stem cells. Cytotherapy 2024; 26:806-812. [PMID: 38727653 DOI: 10.1016/j.jcyt.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/08/2024] [Accepted: 04/15/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND AIMS Cytopenias after allogeneic stem cell transplantation (allo-SCT) are a common complication, the underlying pathogenic mechanisms of which remain incompletely understood. Multipotent mesenchymal stromal/stem cell (MSC) therapy has been successfully employed in the treatment of immune-related disorders and can aid in the restoration of the hematopoietic niche. METHODS A phase II clinical trial to assess the efficacy and safety of administering four sequential doses of ex-vivo expanded bone marrow MSCs from a third-party donor to patients with persistent severe cytopenias after allo-SCT was performed. RESULTS The overall response rate on day 90 was 75% among the 27 evaluable patients (comprising 12 complete responses, 8 partial responses, and 7 with no response). The median time to respond was 14.5 days. Responses were observed across different profiles, including single or multiple affected lineages, primary or secondary timing, and potential immune-mediated or post-infectious pathophysiology versus idiopathic origin. With a median follow-up for surviving patients of 85 months after MSC infusion, 53% of patients are alive. Notably, no adverse events related to MSC therapy were reported. CONCLUSIONS In summary, the sequential infusion of third-party MSCs emerges as a viable and safe therapeutic option, exhibiting potential benefits for patients experiencing cytopenias following allo-SCT.
Collapse
Affiliation(s)
- Almudena Navarro-Bailón
- Hematology Department, Cell Therapy Area, IBSAL-University Hospital of Salamanca, Salamanca, Spain; Faculty of Medicine, University of Salamanca, Salamanca, Spain; Network Center for Regenerative Medicine and Cellular Therapy of Castilla y León, Spain; RICORS of Advanced Therapies (TERAV), ISCIII, Spain.
| | - Miriam López-Parra
- Hematology Department, Cell Therapy Area, IBSAL-University Hospital of Salamanca, Salamanca, Spain; Network Center for Regenerative Medicine and Cellular Therapy of Castilla y León, Spain; RICORS of Advanced Therapies (TERAV), ISCIII, Spain
| | - Álvaro Veiga-Vaz
- Hematology Department, Cell Therapy Area, IBSAL-University Hospital of Salamanca, Salamanca, Spain
| | - Eva María Villarón
- Hematology Department, Cell Therapy Area, IBSAL-University Hospital of Salamanca, Salamanca, Spain; Network Center for Regenerative Medicine and Cellular Therapy of Castilla y León, Spain; RICORS of Advanced Therapies (TERAV), ISCIII, Spain
| | - María Díez-Campelo
- Hematology Department, Cell Therapy Area, IBSAL-University Hospital of Salamanca, Salamanca, Spain; Faculty of Medicine, University of Salamanca, Salamanca, Spain; Network Center for Regenerative Medicine and Cellular Therapy of Castilla y León, Spain; RICORS of Advanced Therapies (TERAV), ISCIII, Spain; Biomedical Research Networking Center for Cancer (CIBERONC), ISCIII, Spain
| | - Ana África Martín
- Hematology Department, Cell Therapy Area, IBSAL-University Hospital of Salamanca, Salamanca, Spain
| | - Estefanía Pérez-López
- Hematology Department, Cell Therapy Area, IBSAL-University Hospital of Salamanca, Salamanca, Spain
| | - Mónica Cabrero
- Hematology Department, Cell Therapy Area, IBSAL-University Hospital of Salamanca, Salamanca, Spain
| | - Lourdes Vázquez
- Hematology Department, Cell Therapy Area, IBSAL-University Hospital of Salamanca, Salamanca, Spain; Faculty of Medicine, University of Salamanca, Salamanca, Spain
| | - Lucía López-Corral
- Hematology Department, Cell Therapy Area, IBSAL-University Hospital of Salamanca, Salamanca, Spain; Faculty of Medicine, University of Salamanca, Salamanca, Spain; Network Center for Regenerative Medicine and Cellular Therapy of Castilla y León, Spain; RICORS of Advanced Therapies (TERAV), ISCIII, Spain; Biomedical Research Networking Center for Cancer (CIBERONC), ISCIII, Spain
| | - Fermín Sánchez-Guijo
- Hematology Department, Cell Therapy Area, IBSAL-University Hospital of Salamanca, Salamanca, Spain; Faculty of Medicine, University of Salamanca, Salamanca, Spain; Network Center for Regenerative Medicine and Cellular Therapy of Castilla y León, Spain; RICORS of Advanced Therapies (TERAV), ISCIII, Spain; Biomedical Research Networking Center for Cancer (CIBERONC), ISCIII, Spain
| |
Collapse
|
2
|
Özdemir C, Muratoğlu B, Özel BN, Alpdündar-Bulut E, Tonyalı G, Ünal Ş, Uçkan-Çetinkaya D. Multiparametric analysis of etoposide exposed mesenchymal stem cells and Fanconi anemia cells: implications in development of secondary myeloid malignancy. Clin Exp Med 2023; 23:4511-4524. [PMID: 37179284 DOI: 10.1007/s10238-023-01087-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
Secondary acute myeloid leukemia (sAML) may develop following a prior therapy or may evolve from an antecedent hematological disorder such as Fanconi Anemia (FA). Pathophysiology of leukemic evolution is not clear. Etoposide (Eto) is a chemotherapeutic agent implicated in development of sAML. FA is an inherited bone marrow (BM) failure disease characterized by genomic instability and xenobiotic susceptibility. Here, we hypothesized that alterations in the BM niche may play a critical/driver role in development of sAML in both conditions. Expression of selected genes involved in xenobiotic metabolism, DNA double-strand break response, endoplasmic reticulum (ER) stress, heat shock response and cell cycle regulation were determined in BM mesenchymal stem cells (MSCs) of healthy controls and FA patients at steady state and upon exposure to Eto at different concentrations and in recurrent doses. Expression of CYPA1, p53, CCNB1, Dicer1, CXCL12, FLT3L and TGF-Beta genes were significantly downregulated in FA-MSCs compared with healthy controls. Eto exposure induced significant alterations in healthy BM-MSCs with increased expression of CYP1A1, GAD34, ATF4, NUPR1, CXCL12, KLF4, CCNB1 and nuclear localization of Dicer1. Interestingly, FA-MSCs did not show significant alterations in these genes upon Eto exposure. As opposed to healthy MSCs DICER1 gene expression and intracellular localization was not altered on FA BM-MSCs after Eto treatment. These results showed that Eto is a highly potent molecule and has pleiotropic effects on BM-MSCs, FA cells show altered expression profile compared to healthy controls and Eto exposure on FA cells shows differential profile than healthy controls.
Collapse
Affiliation(s)
- Cansu Özdemir
- Center for Stem Cell Research and Development (PEDI-STEM), Hacettepe University, 06100 Gevher Nesibe Street, Sihhiye, Altındağ, Ankara, Turkey.
| | - Bihter Muratoğlu
- Center for Stem Cell Research and Development (PEDI-STEM), Hacettepe University, 06100 Gevher Nesibe Street, Sihhiye, Altındağ, Ankara, Turkey
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, 06100 Gevher Nesibe Street, Sihhiye, Altındağ, Ankara, Turkey
| | - Buse Nurten Özel
- Center for Stem Cell Research and Development (PEDI-STEM), Hacettepe University, 06100 Gevher Nesibe Street, Sihhiye, Altındağ, Ankara, Turkey
- Institute for Genomic Medicine, Columbia University, New York, NY, USA
| | - Esin Alpdündar-Bulut
- Center for Stem Cell Research and Development (PEDI-STEM), Hacettepe University, 06100 Gevher Nesibe Street, Sihhiye, Altındağ, Ankara, Turkey
- Division of Hematology-Oncology, Faculty of Medicine, Department of Pediatrics, Hacettepe University, 06100 Gevher Nesibe Street, Sihhiye, Altındağ, Ankara, Turkey
| | - Gülsena Tonyalı
- Center for Stem Cell Research and Development (PEDI-STEM), Hacettepe University, 06100 Gevher Nesibe Street, Sihhiye, Altındağ, Ankara, Turkey
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, 06100 Gevher Nesibe Street, Sihhiye, Altındağ, Ankara, Turkey
| | - Şule Ünal
- Division of Hematology-Oncology, Faculty of Medicine, Department of Pediatrics, Hacettepe University, 06100 Gevher Nesibe Street, Sihhiye, Altındağ, Ankara, Turkey
- Research Center for Fanconi Anemia and Other IBMFSs, Hacettepe University, 06100 Gevher Nesibe Street, Sihhiye, Altındağ, Ankara, Turkey
| | - Duygu Uçkan-Çetinkaya
- Center for Stem Cell Research and Development (PEDI-STEM), Hacettepe University, 06100 Gevher Nesibe Street, Sihhiye, Altındağ, Ankara, Turkey.
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, 06100 Gevher Nesibe Street, Sihhiye, Altındağ, Ankara, Turkey.
- Division of Hematology-Oncology, Faculty of Medicine, Department of Pediatrics, Hacettepe University, 06100 Gevher Nesibe Street, Sihhiye, Altındağ, Ankara, Turkey.
- Research Center for Fanconi Anemia and Other IBMFSs, Hacettepe University, 06100 Gevher Nesibe Street, Sihhiye, Altındağ, Ankara, Turkey.
| |
Collapse
|
3
|
Mesenchymal Stem Cells in Acquired Aplastic Anemia: The Spectrum from Basic to Clinical Utility. Int J Mol Sci 2023; 24:ijms24054464. [PMID: 36901900 PMCID: PMC10003043 DOI: 10.3390/ijms24054464] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 03/12/2023] Open
Abstract
Aplastic anemia (AA), a rare but potentially life-threatening disease, is a paradigm of bone marrow failure syndromes characterized by pancytopenia in the peripheral blood and hypocellularity in the bone marrow. The pathophysiology of acquired idiopathic AA is quite complex. Mesenchymal stem cells (MSCs), an important component of the bone marrow, are crucial in providing the specialized microenvironment for hematopoiesis. MSC dysfunction may result in an insufficient bone marrow and may be associated with the development of AA. In this comprehensive review, we summarized the current understanding about the involvement of MSCs in the pathogenesis of acquired idiopathic AA, along with the clinical application of MSCs for patients with the disease. The pathophysiology of AA, the major properties of MSCs, and results of MSC therapy in preclinical animal models of AA are also described. Several important issues regarding the clinical use of MSCs are discussed finally. With evolving knowledge from basic studies and clinical applications, we anticipate that more patients with the disease can benefit from the therapeutic effects of MSCs in the near future.
Collapse
|
4
|
Preciado S, Sirerol-Piquer MS, Muntión S, Osugui L, Martí-Chillón GJ, Navarro-Bailón A, Sepúlveda P, Sánchez-Guijo F. Co-administration of human MSC overexpressing HIF-1α increases human CD34 + cell engraftment in vivo. Stem Cell Res Ther 2021; 12:601. [PMID: 34876206 PMCID: PMC8650423 DOI: 10.1186/s13287-021-02669-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/20/2021] [Indexed: 12/28/2022] Open
Abstract
Background Poor graft function or graft failure after allogeneic stem cell transplantation is an unmet medical need, in which mesenchymal stromal cells (MSC) constitute an attractive potential therapeutic approach. Hypoxia-inducible factor-1α (HIF-1α) overexpression in MSC (HIF-MSC) potentiates the angiogenic and immunomodulatory properties of these cells, so we hypothesized that co-transplantation of MSC-HIF with CD34+ human cord blood cells would also enhance hematopoietic stem cell engraftment and function both in vitro and in vivo.
Methods Human MSC were obtained from dental pulp. Lentiviral overexpression of HIF-1α was performed transducing cells with pWPI-green fluorescent protein (GFP) (MSC WT) or pWPI-HIF-1α-GFP (HIF-MSC) expression vectors. Human cord blood CD34+ cells were co-cultured with MSC WT or HIF-MSC (4:1) for 72 h. Then, viability (Annexin V and 7-AAD), cell cycle, ROS expression and immunophenotyping of key molecules involved in engraftment (CXCR4, CD34, ITGA4, c-KIT) were evaluated by flow cytometry in CD34+ cells. In addition, CD34+ cells clonal expansion was analyzed by clonogenic assays. Finally, in vivo engraftment was measured by flow cytometry 4-weeks after CD34+ cell transplantation with or without intrabone MSC WT or HIF-MSC in NOD/SCID mice. Results We did not observe significant differences in viability, cell cycle and ROS expression between CD34+ cells co-cultured with MSC WT or HIF-MSC. Nevertheless, a significant increase in CD34, CXCR4 and ITGA4 expression (p = 0.009; p = 0.001; p = 0.013, respectively) was observed in CD34+ cells co-cultured with HIF-MSC compared to MSC WT. In addition, CD34+ cells cultured with HIF-MSC displayed a higher CFU-GM clonogenic potential than those cultured with MSC WT (p = 0.048). We also observed a significant increase in CD34+ cells engraftment ability when they were co-transplanted with HIF-MSC compared to CD34+ co-transplanted with MSC WT (p = 0.016) or alone (p = 0.015) in both the injected and contralateral femurs (p = 0.024, p = 0.008 respectively). Conclusions Co-transplantation of human CD34+ cells with HIF-MSC enhances cell engraftment in vivo. This is probably due to the ability of HIF-MSC to increase clonogenic capacity of hematopoietic cells and to induce the expression of adhesion molecules involved in graft survival in the hematopoietic niche. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02669-z.
Collapse
Affiliation(s)
- Silvia Preciado
- Cell Therapy Unit, Hematology Department, University Hospital of Salamanca, IBSAL, University of Salamanca, Paseo de San Vicente 58-182, 37007, Salamanca, Spain.,RETIC TerCel, ISCIII, Madrid, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Salamanca, Spain
| | - Mª Salomé Sirerol-Piquer
- Departamento de Biología Celular, Biología Funcional y Antropología Física, University of Valencia, Burjassot, Spain.,Instituto de Biotecnología y Biomedicina (BioTecMed), University of Valencia, Burjassot, Spain.,RETIC TerCel, ISCIII, Madrid, Spain
| | - Sandra Muntión
- Cell Therapy Unit, Hematology Department, University Hospital of Salamanca, IBSAL, University of Salamanca, Paseo de San Vicente 58-182, 37007, Salamanca, Spain.,RETIC TerCel, ISCIII, Madrid, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Salamanca, Spain
| | - Lika Osugui
- Cell Therapy Unit, Hematology Department, University Hospital of Salamanca, IBSAL, University of Salamanca, Paseo de San Vicente 58-182, 37007, Salamanca, Spain.,RETIC TerCel, ISCIII, Madrid, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Salamanca, Spain
| | - Gerardo J Martí-Chillón
- Cell Therapy Unit, Hematology Department, University Hospital of Salamanca, IBSAL, University of Salamanca, Paseo de San Vicente 58-182, 37007, Salamanca, Spain.,RETIC TerCel, ISCIII, Madrid, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Salamanca, Spain
| | - Almudena Navarro-Bailón
- Cell Therapy Unit, Hematology Department, University Hospital of Salamanca, IBSAL, University of Salamanca, Paseo de San Vicente 58-182, 37007, Salamanca, Spain.,RETIC TerCel, ISCIII, Madrid, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Salamanca, Spain
| | - Pilar Sepúlveda
- Regenerative Medicine and Heart Transplantation Unit, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,RETIC TerCel, ISCIII, Madrid, Spain
| | - Fermín Sánchez-Guijo
- Cell Therapy Unit, Hematology Department, University Hospital of Salamanca, IBSAL, University of Salamanca, Paseo de San Vicente 58-182, 37007, Salamanca, Spain. .,RETIC TerCel, ISCIII, Madrid, Spain. .,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Salamanca, Spain.
| |
Collapse
|
5
|
Preciado S, Muntión S, Sánchez-Guijo F. Improving hematopoietic engraftment: Potential role of mesenchymal stromal cell-derived extracellular vesicles. Stem Cells 2020; 39:26-32. [PMID: 32985054 DOI: 10.1002/stem.3278] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/11/2020] [Indexed: 02/06/2023]
Abstract
The therapeutic effects of mesenchymal stromal cells (MSCs) in graft failure or poor graft function after allogenic hematopoietic stem cell transplantation (HSCT) are currently undergoing clinical evaluation. MSCs exert their functions, at least partially, through the secretion of extracellular vesicles (MSC-EVs). The available information on the biological potential of MSC-EVs to improve hematopoietic function, both in in vitro studies and in reported preclinical models, focusing on the possible mechanisms of these effects are summarized in the current review. The potential advantages of EVs over MSCs are also discussed, as well as the limitations and uncertainties in terms of isolation, characterization, mechanism of action in this setting, and industrial scalability that should be addressed for their potential clinical application.
Collapse
Affiliation(s)
- Silvia Preciado
- Área de Terapia Celular y Servicio de Hematología, IBSAL-Hospital Universitario de Salamanca, Salamanca, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Salamanca, Spain.,RETIC TerCel and CIBERONC, ISCIII, Madrid, Spain
| | - Sandra Muntión
- Área de Terapia Celular y Servicio de Hematología, IBSAL-Hospital Universitario de Salamanca, Salamanca, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Salamanca, Spain.,RETIC TerCel and CIBERONC, ISCIII, Madrid, Spain
| | - Fermín Sánchez-Guijo
- Área de Terapia Celular y Servicio de Hematología, IBSAL-Hospital Universitario de Salamanca, Salamanca, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Salamanca, Spain.,RETIC TerCel and CIBERONC, ISCIII, Madrid, Spain.,Centro de Investigación del Cáncer y Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
6
|
Jain A. Peri-transplant Stem Cell Kinetics After Daratumumab-Based Induction in Patients with Multiple Myeloma: Response to Mishra et al. Indian J Hematol Blood Transfus 2020; 36:763-765. [PMID: 33100725 PMCID: PMC7573003 DOI: 10.1007/s12288-020-01273-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 03/12/2020] [Indexed: 11/30/2022] Open
Affiliation(s)
- Ankur Jain
- Department of Hematology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, 110029 India
| |
Collapse
|
7
|
Kale VP. Transforming growth factor-β boosts the functionality of human bone marrow-derived mesenchymal stromal cells. Cell Biol Int 2020; 44:2293-2306. [PMID: 32749730 DOI: 10.1002/cbin.11437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/17/2020] [Accepted: 08/02/2020] [Indexed: 12/19/2022]
Abstract
Transforming growth factor β1 (TGFβ1) is a negative regulator of hematopoiesis, and yet, it is frequently found at the active sites of hematopoiesis. Here, we show for the first time that bone marrow-derived mononuclear cells (BM MNCs) secrete TGFβ1 in response to erythropoietin (EPO). We further show that human bone marrow-derived mesenchymal stromal cells (BMSCs) briefly exposed to the conditioned medium of EPO-primed MNCs, or purified TGFβ1, gain significantly increased hematopoiesis-supportive ability. Mechanistically, we show that this phenomenon involves TGFβ1-mediated activation of nitric oxide (NO) signalling pathway in the BMSCs. The data suggest that EPO-MNC-TGFβ1 could be one of the regulatory axes operative in the bone marrow microenvironment involved in maintaining the functionality of the resident BMSCs.
Collapse
Affiliation(s)
- Vaijayanti P Kale
- Symbiosis Centre for Stem Cell Research, Symbiosis International University, Pune, India
| |
Collapse
|
8
|
The Therapeutic Potential of Mesenchymal Stromal Cells in the Treatment of Chemotherapy-Induced Tissue Damage. Stem Cell Rev Rep 2020; 15:356-373. [PMID: 30937640 DOI: 10.1007/s12015-019-09886-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Chemotherapy constitutes one of the key treatment modalities for solid and hematological malignancies. Albeit being an effective treatment, chemotherapy application is often limited by its damage to healthy tissues, and curative treatment options for chemotherapy-related side effects are largely missing. As mesenchymal stromal cells (MSCs) are known to exhibit regenerative capacity mainly by supporting a beneficial microenvironment for tissue repair, MSC-based therapies may attenuate chemotherapy-induced tissue injuries. An increasing number of animal studies shows favorable effects of MSC-based treatments; however, clinical trials for MSC therapies in the context of chemotherapy-related side effects are rare. In this concise review, we summarize the current knowledge of the effects of MSCs on chemotherapy-induced tissue toxicities. Both preclinical and early clinical trials investigating MSC-based treatments for chemotherapy-related side reactions are presented, and mechanistic explanations about the regenerative effects of MSCs in the context of chemotherapy-induced tissue damage are discussed. Furthermore, challenges of MSC-based treatments are outlined that need closer investigations before these multipotent cells can be safely applied to cancer patients. As any pro-tumorigenicity of MSCs needs to be ruled out prior to clinical utilization of these cells for cancer patients, the pro- and anti-tumorigenic activities of MSCs are discussed in detail.
Collapse
|
9
|
Benova A, Tencerova M. Obesity-Induced Changes in Bone Marrow Homeostasis. Front Endocrinol (Lausanne) 2020; 11:294. [PMID: 32477271 PMCID: PMC7235195 DOI: 10.3389/fendo.2020.00294] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/20/2020] [Indexed: 12/24/2022] Open
Abstract
Obesity is characterized by low-grade inflammation, which is accompanied by increased accumulation of immune cells in peripheral tissues including adipose tissue (AT), skeletal muscle, liver and pancreas, thereby impairing their primary metabolic functions in the regulation of glucose homeostasis. Obesity has also shown to have a detrimental effect on bone homeostasis by altering bone marrow and hematopoietic stem cell differentiation and thus impairing bone integrity and immune cell properties. The origin of immune cells arises in the bone marrow, which has been shown to be affected with the obesogenic condition via increased cellularity and shifting differentiation and function of hematopoietic and bone marrow mesenchymal stem cells in favor of myeloid progenitors and increased bone marrow adiposity. These obesity-induced changes in the bone marrow microenvironment lead to dramatic bone marrow remodeling and compromising immune cell functions, which in turn affect systemic inflammatory conditions and regulation of whole-body metabolism. However, there is limited information on the inflammatory secretory factors creating the bone marrow microenvironment and how these factors changed during metabolic complications. This review summarizes recent findings on inflammatory and cellular changes in the bone marrow in relation to obesity and further discuss whether dietary intervention or physical activity may have beneficial effects on the bone marrow microenvironment and whole-body metabolism.
Collapse
|
10
|
Mesenchymal stem cells preserve their stem cell traits after exposure to antimetabolite chemotherapy. Stem Cell Res 2019; 40:101536. [DOI: 10.1016/j.scr.2019.101536] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/29/2019] [Accepted: 08/12/2019] [Indexed: 12/14/2022] Open
|
11
|
Hass R, von der Ohe J, Ungefroren H. Potential Role of MSC/Cancer Cell Fusion and EMT for Breast Cancer Stem Cell Formation. Cancers (Basel) 2019; 11:cancers11101432. [PMID: 31557960 PMCID: PMC6826868 DOI: 10.3390/cancers11101432] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/20/2019] [Accepted: 09/24/2019] [Indexed: 02/06/2023] Open
Abstract
Solid tumors comprise of maturated cancer cells and self-renewing cancer stem-like cells (CSCs), which are associated with various other nontumorigenic cell populations in the tumor microenvironment. In addition to immune cells, endothelial cells, fibroblasts, and further cell types, mesenchymal stroma/stem-like cells (MSC) represent an important cell population recruited to tumor sites and predominantly interacting with the different cancer cells. Breast cancer models were among the first to reveal distinct properties of CSCs, however, the cellular process(es) through which these cells are generated, maintained, and expanded within neoplastic tissues remains incompletely understood. Here, we discuss several possible scenarios that are not mutually exclusive but may even act synergistically: fusion of cancer cells with MSC to yield hybrid cells and/or the induction of epithelial-mesenchymal transition (EMT) in breast cancer cells by MSC, which can relay signals for retrodifferentiation and eventually, the generation of breast CSCs (BCSCs). In either case, the consequences may be promotion of self-renewal capacity, tumor cell plasticity and heterogeneity, an increase in the cancer cells’ invasive and metastatic potential, and the acquisition of resistance mechanisms towards chemo- or radiotherapy. While specific signaling mechanisms involved in each of these properties remain to be elucidated, the present review article focusses on a potential involvement of cancer cell fusion and EMT in the development of breast cancer stem cells.
Collapse
Affiliation(s)
- Ralf Hass
- Biochemistry and Tumor Biology Lab, Department of Obstetrics and Gynecology, Hannover Medical School, 30625 Hannover, Germany.
| | - Juliane von der Ohe
- Biochemistry and Tumor Biology Lab, Department of Obstetrics and Gynecology, Hannover Medical School, 30625 Hannover, Germany.
| | - Hendrik Ungefroren
- First Department of Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, 23538 Lübeck, Germany.
- Department of General Surgery, Visceral, Thoracic, Transplantation and Pediatric Surgery, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany.
| |
Collapse
|
12
|
Preciado S, Muntión S, Corchete LA, Ramos TL, de la Torre AG, Osugui L, Rico A, Espinosa-Lara N, Gastaca I, Díez-Campelo M, Del Cañizo C, Sánchez-Guijo F. The Incorporation of Extracellular Vesicles from Mesenchymal Stromal Cells Into CD34 + Cells Increases Their Clonogenic Capacity and Bone Marrow Lodging Ability. Stem Cells 2019; 37:1357-1368. [PMID: 31184411 PMCID: PMC6852558 DOI: 10.1002/stem.3032] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 04/11/2019] [Accepted: 04/20/2019] [Indexed: 12/22/2022]
Abstract
Mesenchymal stromal cells (MSC) may exert their functions by the release of extracellular vesicles (EV). Our aim was to analyze changes induced in CD34+ cells after the incorporation of MSC‐EV. MSC‐EV were characterized by flow cytometry (FC), Western blot, electron microscopy, and nanoparticle tracking analysis. EV incorporation into CD34+ cells was confirmed by FC and confocal microscopy, and then reverse transcription polymerase chain reaction and arrays were performed in modified CD34+ cells. Apoptosis and cell cycle were also evaluated by FC, phosphorylation of signal activator of transcription 5 (STAT5) by WES Simple, and clonal growth by clonogenic assays. Human engraftment was analyzed 4 weeks after CD34+ cell transplantation in nonobese diabetic/severe combined immunodeficient mice. Our results showed that MSC‐EV incorporation induced a downregulation of proapoptotic genes, an overexpression of genes involved in colony formation, and an activation of the Janus kinase (JAK)‐STAT pathway in CD34+ cells. A significant decrease in apoptosis and an increased CD44 expression were confirmed by FC, and increased levels of phospho‐STAT5 were confirmed by WES Simple in CD34+ cells with MSC‐EV. In addition, these cells displayed a higher colony‐forming unit granulocyte/macrophage clonogenic potential. Finally, the in vivo bone marrow lodging ability of human CD34+ cells with MSC‐EV was significantly increased in the injected femurs. In summary, the incorporation of MSC‐EV induces genomic and functional changes in CD34+ cells, increasing their clonogenic capacity and their bone marrow lodging ability. stem cells2019;37:1357–1368
Collapse
Affiliation(s)
- Silvia Preciado
- Servicio de Hematología, IBSAL-Hospital Universitario de Salamanca, Salamanca, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Salamanca, Spain.,Department of Medicine, Universidad de Salamanca, Salamanca, Spain.,RETIC TerCel, ISCIII, Salamanca, Spain
| | - Sandra Muntión
- Servicio de Hematología, IBSAL-Hospital Universitario de Salamanca, Salamanca, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Salamanca, Spain.,RETIC TerCel, ISCIII, Salamanca, Spain
| | - Luis A Corchete
- Servicio de Hematología, IBSAL-Hospital Universitario de Salamanca, Salamanca, Spain
| | - Teresa L Ramos
- RETIC TerCel, ISCIII, Salamanca, Spain.,Laboratorio de Terapia Celular, Instituto de Biomedicina de Sevilla (IBIS), UGC-Hematología, Hospital Universitario Virgen del Rocío/CSIC/CIBERONC, Sevilla, Spain
| | - Ana G de la Torre
- Servicio de Hematología, IBSAL-Hospital Universitario de Salamanca, Salamanca, Spain.,Centro de Investigación del Cáncer, Universidad de Salamanca, Salamanca, Spain
| | - Lika Osugui
- Servicio de Hematología, IBSAL-Hospital Universitario de Salamanca, Salamanca, Spain
| | - Ana Rico
- Servicio de Hematología, IBSAL-Hospital Universitario de Salamanca, Salamanca, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Salamanca, Spain
| | - Natalia Espinosa-Lara
- Servicio de Hematología, IBSAL-Hospital Universitario de Salamanca, Salamanca, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Salamanca, Spain
| | - Irene Gastaca
- Servicio de Ginecología, Hospital Universitario de Salamanca, Salamanca, Spain
| | - María Díez-Campelo
- Servicio de Hematología, IBSAL-Hospital Universitario de Salamanca, Salamanca, Spain.,Department of Medicine, Universidad de Salamanca, Salamanca, Spain.,RETIC TerCel, ISCIII, Salamanca, Spain
| | - Consuelo Del Cañizo
- Servicio de Hematología, IBSAL-Hospital Universitario de Salamanca, Salamanca, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Salamanca, Spain.,Department of Medicine, Universidad de Salamanca, Salamanca, Spain.,RETIC TerCel, ISCIII, Salamanca, Spain.,Centro de Investigación del Cáncer, Universidad de Salamanca, Salamanca, Spain
| | - Fermín Sánchez-Guijo
- Servicio de Hematología, IBSAL-Hospital Universitario de Salamanca, Salamanca, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Salamanca, Spain.,Department of Medicine, Universidad de Salamanca, Salamanca, Spain.,RETIC TerCel, ISCIII, Salamanca, Spain.,Centro de Investigación del Cáncer, Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
13
|
Comparative Proteome-Wide Analysis of Bone Marrow Microenvironment of β-Thalassemia/Hemoglobin E. Proteomes 2019; 7:proteomes7010008. [PMID: 30813444 PMCID: PMC6473223 DOI: 10.3390/proteomes7010008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/16/2019] [Accepted: 02/19/2019] [Indexed: 12/17/2022] Open
Abstract
β-thalassemia/Hb E is a global health issue, which is characterized by a range of clinical symptoms from a mild and asymptomatic anemia to severe disorders that require transfusions from infancy. Pathological mechanisms of the disease involve the excess of unmatched alpha globin and iron overload, leading to ineffective erythropoiesis and ultimately to the premature death of erythroid precursors in bone marrow (BM) and peripheral organs. However, it is unclear as to how BM microenvironment factors contribute to the defective erythropoiesis in β-thalassemia/Hb E patients. Here, we employed mass spectrometry-based comparative proteomics to analyze BM plasma that was collected from six β-thalassemia/Hb E patients and four healthy donors. We identified that the differentially expressed proteins are enriched in secretory or exosome-associated proteins, many of which have putative functions in the oxidative stress response. Using Western blot assay, we confirmed that atypical lipoprotein, Apolipoprotein D (APOD), belonging to the Lipocalin transporter superfamily, was significantly decreased in BM plasma of the tested pediatric β-thalassemia/Hb E patients. Our results highlight that the disease condition of ineffective erythropoiesis and oxidative stress found in BM microenvironment of β-thalassemia/Hb E patients is associated with the impaired expression of APOD protein.
Collapse
|
14
|
Chao YH, Lin CW, Pan HH, Yang SF, Weng TF, Peng CT, Wu KH. Increased apoptosis and peripheral blood mononuclear cell suppression of bone marrow mesenchymal stem cells in severe aplastic anemia. Pediatr Blood Cancer 2018; 65:e27247. [PMID: 29870142 DOI: 10.1002/pbc.27247] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/03/2018] [Accepted: 04/25/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Although immune-mediated pathogenesis is considered an important aspect of severe aplastic anemia (SAA), its underlying mechanisms remain unclear. Mesenchymal stem cells (MSCs) are essential to the formation of specialized microenvironments in the bone marrow (BM), and MSC insufficiency can trigger the development of SAA. METHODS To find MSC alterations in the SAA BM, we compared BM MSCs from five children with SAA and five controls. Peripheral blood mononuclear cells (PBMCs) were cocultured with MSCs to evaluate the supportive effects of MSCs on hematopoiesis. Cytometric bead array immunoassay was used to determine cytokine excretion by MSCs. The immune functions of MSCs and their conditioned medium (CM) were evaluated by PBMC proliferation assays. RESULTS SAA MSCs were characterized by a high percentage of cells in the abnormal sub-G1 phase of the cell cycle, which suggests an increased rate of apoptosis in SAA MSCs. In comparison with control MSCs, PBMCs cocultured with SAA MSCs displayed significantly reduced PBMC proliferation (P = 0.009). Aberrant cytokine profiles were secreted by SAA MSCs, with increased concentrations of interleukin-6, interferon-γ, tumor necrosis factor-α, and interleukin-1β in the CM. PBMC proliferation assays demonstrated additional immunosuppressive effects of SAA MSCs (P = 0.016) and their CM (P = 0.013). CONCLUSIONS Our data revealed increased apoptosis and PBMC suppression of SAA MSCs. The alterations of MSCs may contribute to the formation of functionally abnormal microenvironments in SAA BM.
Collapse
Affiliation(s)
- Yu-Hua Chao
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Hui-Hsien Pan
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Te-Fu Weng
- Division of Pediatric Hematology/Oncology, Children's Hospital, China Medical University, Taichung, Taiwan
| | - Ching-Tien Peng
- Division of Pediatric Hematology/Oncology, Children's Hospital, China Medical University, Taichung, Taiwan.,Department of Biotechnology and Bioinformatics, Asia University, Taichung, Taiwan
| | - Kang-Hsi Wu
- Division of Pediatric Hematology/Oncology, Children's Hospital, China Medical University, Taichung, Taiwan.,School of Post-baccalaureate Chinese Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
15
|
Rühle A, Huber PE, Saffrich R, Lopez Perez R, Nicolay NH. The current understanding of mesenchymal stem cells as potential attenuators of chemotherapy-induced toxicity. Int J Cancer 2018; 143:2628-2639. [PMID: 29931767 DOI: 10.1002/ijc.31619] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/18/2018] [Accepted: 05/22/2018] [Indexed: 12/18/2022]
Abstract
Chemotherapeutic agents are part of the standard treatment algorithms for many malignancies; however, their application and dosage are limited by their toxic effects to normal tissues. Chemotherapy-induced toxicities can be long-lasting and may be incompletely reversible; therefore, causative therapies for chemotherapy-dependent side effects are needed, especially considering the increasing survival rates of treated cancer patients. Mesenchymal stem cells (MSCs) have been shown to exhibit regenerative abilities for various forms of tissue damage. Preclinical data suggest that MSCs may also help to alleviate tissue lesions caused by chemotherapeutic agents, mainly by establishing a protective microenvironment for functional cells. Due to the systemic administration of most anticancer agents, the effects of these drugs on the MSCs themselves are of crucial importance to use stem cell-based approaches for the treatment of chemotherapy-induced tissue toxicities. Here, we present a concise review of the published data regarding the influence of various classes of chemotherapeutic agents on the survival, stem cell characteristics and physiological functions of MSCs. Molecular mechanisms underlying the effects are outlined, and resulting challenges of MSC-based treatments for chemotherapy-induced tissue injuries are discussed.
Collapse
Affiliation(s)
- Alexander Rühle
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Department of Molecular and Radiation Oncology, German Cancer Research Center (dkfz), Heidelberg, Germany
| | - Peter E Huber
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Department of Molecular and Radiation Oncology, German Cancer Research Center (dkfz), Heidelberg, Germany
| | - Rainer Saffrich
- Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, German Red Cross Blood Service Baden-Württemberg-Hessen, Mannheim, Germany
| | - Ramon Lopez Perez
- Department of Molecular and Radiation Oncology, German Cancer Research Center (dkfz), Heidelberg, Germany
| | - Nils H Nicolay
- Department of Molecular and Radiation Oncology, German Cancer Research Center (dkfz), Heidelberg, Germany.,Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
16
|
Pashoutan Sarvar D, Karimi MH, Movassaghpour A, Akbarzadehlaleh P, Aqmasheh S, Timari H, Shamsasenjan K. The Effect of Mesenchymal Stem Cell-Derived Microvesicles on Erythroid Differentiation of Umbilical Cord Blood-Derived CD34 + Cells. Adv Pharm Bull 2018; 8:291-296. [PMID: 30023331 PMCID: PMC6046427 DOI: 10.15171/apb.2018.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 05/14/2018] [Accepted: 05/20/2018] [Indexed: 12/11/2022] Open
Abstract
Purpose: Mesenchymal stem cells (MSCs) play an important role in the proliferation and differentiation of hematopoietic stem cells (HSCs) in the bone marrow via cell-to-cell contact, as well as secretion of cytokines and microvesicles (MVs). In this study, we investigated the effect of mesenchymal stem cell-derived microvesicles (MSC-MVs) on erythroid differentiation of umbilical cord blood-derived CD34+ cells. Methods: In this descriptive study, CD34+ cells were cultured with mixture of SCF (10 ng/ml) and rhEPO (5 U/ml) cytokines in complete IMDM medium as positive control group. Then, in MV1- and MV2-groups, microvesicles at 10 and 20 µg/ml concentration were added. After 72 hours, erythroid specific markers (CD71 and CD235a) and genes (HBG1, GATA1, FOG1 and NFE2) were assessed by flow cytometry and qRT-PCR, respectively. Results: The expression of specific markers of the erythroid lineages (CD71 and GPA) in the presence of different concentration of microvesicles were lower than that of the control group (P<0.001). Also, the expression of specific genes of the erythroid lineages (NFE2, FOG1, GATA1, and HBG1) was investigated in comparison to the internal control (GAPDH). Among all of them, HBG1 and FOG1 genes were significantly decreased to the control group (P<0.0001) but GATA1 and NFE2 gene expressions was not significant. Conclusion: The results of this study showed that MSC-MVs decrease the erythroid differentiation of umbilical cord blood-derived CD34+ cells. Therefore, MSC-MVs play a key role in the regulation of normal erythropoiesis.
Collapse
Affiliation(s)
| | | | - Aliakbar Movassaghpour
- Hematology & Blood Banking, Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Akbarzadehlaleh
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Aqmasheh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamze Timari
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Karim Shamsasenjan
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
17
|
Patel VS, Ete Chan M, Rubin J, Rubin CT. Marrow Adiposity and Hematopoiesis in Aging and Obesity: Exercise as an Intervention. Curr Osteoporos Rep 2018; 16:105-115. [PMID: 29476393 PMCID: PMC5866776 DOI: 10.1007/s11914-018-0424-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Changes in the bone marrow microenvironment, which accompany aging and obesity, including increased marrow adiposity, can compromise hematopoiesis. Here, we review deleterious shifts in molecular, cellular, and tissue activity and consider the potential of exercise to slow degenerative changes associated with aging and obesity. RECENT FINDINGS While bone marrow hematopoietic stem cells (HSC) are increased in frequency and myeloid-biased with age, the effect of obesity on HSC proliferation and differentiation remains controversial. HSC from both aged and obese environment have reduced hematopoietic reconstitution capacity following bone marrow transplant. Increased marrow adiposity affects HSC function, causing upregulation of myelopoiesis and downregulation of lymphopoiesis. Exercise, in contrast, can reduce marrow adiposity and restore hematopoiesis. The impact of marrow adiposity on hematopoiesis is determined mainly through correlations. Mechanistic studies are needed to determine a causative relationship between marrow adiposity and declines in hematopoiesis, which could aid in developing treatments for conditions that arise from disruptions in the marrow microenvironment.
Collapse
Affiliation(s)
- Vihitaben S Patel
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794-2580, USA
| | - M Ete Chan
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794-2580, USA
| | - Janet Rubin
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Clinton T Rubin
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794-2580, USA.
| |
Collapse
|
18
|
Ramos TL, Sánchez-Abarca LI, Redondo A, Hernández-Hernández Á, Almeida AM, Puig N, Rodríguez C, Ortega R, Preciado S, Rico A, Muntión S, Porras JRG, Del Cañizo C, Sánchez-Guijo F. HDAC8 overexpression in mesenchymal stromal cells from JAK2+ myeloproliferative neoplasms: a new therapeutic target? Oncotarget 2018; 8:28187-28202. [PMID: 28390197 PMCID: PMC5438642 DOI: 10.18632/oncotarget.15969] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/18/2017] [Indexed: 12/26/2022] Open
Abstract
Histone deacetylases (HDACs) are involved in epigenetic modulation and their aberrant expression has been demonstrated in myeloproliferative neoplasms (MPN). HDAC8 inhibition has been shown to inhibit JAK2/STAT5 signaling in hematopoietic cells from MPN. Nevertheless, the role of HDAC8 expression in bone marrow-mesenchymal stromal cells (BM-MSC) has not been assessed. In the current work we describe that HDAC8 is significantly over-expressed in MSC from in JAK-2 positive MPN compared to those from healthy-donors (HD-MSC). Using a selective HDAC8 inhibitor (PCI34051), we verified that the subsequent decrease in the protein and mRNA expression of HDAC8 is linked with an increased apoptosis of malignant MSC whereas it has no effects on normal MSC. In addition, HDAC8 inhibition in MPN-MSC also decreased their capacity to maintain neoplastic hematopoiesis, by increasing the apoptosis, cell-cycle arrest and colony formation of JAK2+-hematopoietic cells. Mechanistic studies using different MPN cell lines revealed that PCI34051 induced their apoptosis, which is enhanced when were co-cultured with JAK2V617F-MSC, decreased their colony formation and the phosphorylation of STAT3 and STAT5. In summary, we show for the first time that the inhibition of HDAC8 in MSC from JAK2+ MPN patients selectively decreases their hematopoietic-supporting ability, suggesting that HDAC8 may be a potential therapeutic target in this setting by acting not only on hematopoietic cells but also on the malignant microenvironment.
Collapse
Affiliation(s)
- Teresa L Ramos
- Universidad de Salamanca-IBSAL-Hospital Universitario, Servicio de Hematología, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Spain
| | - Luis Ignacio Sánchez-Abarca
- Universidad de Salamanca-IBSAL-Hospital Universitario, Servicio de Hematología, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Spain.,Centro de Investigación del Cáncer, Universidad de Salamanca, Spain
| | - Alba Redondo
- Universidad de Salamanca-IBSAL-Hospital Universitario, Servicio de Hematología, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Spain
| | - Ángel Hernández-Hernández
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Spain.,Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Spain
| | - Antonio M Almeida
- Unidade de Investigação em Patobiologia Molecular, Instituto Português de Oncologia de Lisboa, Portugal
| | - Noemí Puig
- Universidad de Salamanca-IBSAL-Hospital Universitario, Servicio de Hematología, Spain
| | - Concepción Rodríguez
- Universidad de Salamanca-IBSAL-Hospital Universitario, Servicio de Hematología, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Spain.,Centro de Investigación del Cáncer, Universidad de Salamanca, Spain
| | - Rebeca Ortega
- Universidad de Salamanca-IBSAL-Hospital Universitario, Servicio de Hematología, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Spain
| | - Silvia Preciado
- Universidad de Salamanca-IBSAL-Hospital Universitario, Servicio de Hematología, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Spain
| | - Ana Rico
- Universidad de Salamanca-IBSAL-Hospital Universitario, Servicio de Hematología, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Spain
| | - Sandra Muntión
- Universidad de Salamanca-IBSAL-Hospital Universitario, Servicio de Hematología, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Spain
| | - José Ramón González Porras
- Universidad de Salamanca-IBSAL-Hospital Universitario, Servicio de Hematología, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Spain
| | - Consuelo Del Cañizo
- Universidad de Salamanca-IBSAL-Hospital Universitario, Servicio de Hematología, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Spain
| | - Fermín Sánchez-Guijo
- Universidad de Salamanca-IBSAL-Hospital Universitario, Servicio de Hematología, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Spain.,Centro de Investigación del Cáncer, Universidad de Salamanca, Spain
| |
Collapse
|
19
|
Mesenchymal Stromal Cell Irradiation Interferes with the Adipogenic/Osteogenic Differentiation Balance and Improves Their Hematopoietic-Supporting Ability. Biol Blood Marrow Transplant 2018; 24:443-451. [DOI: 10.1016/j.bbmt.2017.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/02/2017] [Indexed: 12/19/2022]
|
20
|
Liu FD, Pishesha N, Poon Z, Kaushik T, Van Vliet KJ. Material Viscoelastic Properties Modulate the Mesenchymal Stem Cell Secretome for Applications in Hematopoietic Recovery. ACS Biomater Sci Eng 2017; 3:3292-3306. [DOI: 10.1021/acsbiomaterials.7b00644] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Frances D. Liu
- Department
of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- BioSystems
and Micromechanics (BioSyM) Interdisciplinary Research Group, Singapore−MIT Alliance for Research and Technology, CREATE, Singapore 138602
| | - Novalia Pishesha
- Department
of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - Zhiyong Poon
- BioSystems
and Micromechanics (BioSyM) Interdisciplinary Research Group, Singapore−MIT Alliance for Research and Technology, CREATE, Singapore 138602
| | - Tanwi Kaushik
- BioSystems
and Micromechanics (BioSyM) Interdisciplinary Research Group, Singapore−MIT Alliance for Research and Technology, CREATE, Singapore 138602
| | - Krystyn J. Van Vliet
- Department
of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- BioSystems
and Micromechanics (BioSyM) Interdisciplinary Research Group, Singapore−MIT Alliance for Research and Technology, CREATE, Singapore 138602
- Department
of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
21
|
Mesenchymal stromal cells (MSC) from JAK2+ myeloproliferative neoplasms differ from normal MSC and contribute to the maintenance of neoplastic hematopoiesis. PLoS One 2017; 12:e0182470. [PMID: 28796790 PMCID: PMC5552029 DOI: 10.1371/journal.pone.0182470] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/19/2017] [Indexed: 12/16/2022] Open
Abstract
There is evidence of continuous bidirectional cross-talk between malignant cells and bone marrow-derived mesenchymal stromal cells (BM-MSC), which favors the emergence and progression of myeloproliferative neoplastic (MPN) diseases. In the current work we have compared the function and gene expression profile of BM-MSC from healthy donors (HD-MSC) and patients with MPN (JAK2V617F), showing no differences in the morphology, proliferation and differentiation capacity between both groups. However, BM-MSC from MPN expressed higher mean fluorescence intensity (MIF) of CD73, CD44 and CD90, whereas CD105 was lower when compared to controls. Gene expression profile of BM-MSC showed a total of 169 genes that were differentially expressed in BM-MSC from MPN patients compared to HD-MSC. In addition, we studied the ability of BM-MSC to support the growth and survival of hematopoietic stem/progenitor cells (HSPC), showing a significant increase in the number of CFU-GM colonies when MPN-HSPC were co-cultured with MPN-MSC. Furthermore, MPN-MSC showed alteration in the expression of genes associated to the maintenance of hematopoiesis, with an overexpression of SPP1 and NF-kB, and a downregulation of ANGPT1 and THPO. Our results suggest that BM-MSC from JAK2+ patients differ from their normal counterparts and favor the maintenance of malignant clonal hematopoietic cells.
Collapse
|
22
|
Perucca S, Di Palma A, Piccaluga PP, Gemelli C, Zoratti E, Bassi G, Giacopuzzi E, Lojacono A, Borsani G, Tagliafico E, Scupoli MT, Bernardi S, Zanaglio C, Cattina F, Cancelli V, Malagola M, Krampera M, Marini M, Almici C, Ferrari S, Russo D. Mesenchymal stromal cells (MSCs) induce ex vivo proliferation and erythroid commitment of cord blood haematopoietic stem cells (CB-CD34+ cells). PLoS One 2017; 12:e0172430. [PMID: 28231331 PMCID: PMC5322933 DOI: 10.1371/journal.pone.0172430] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 02/03/2017] [Indexed: 12/30/2022] Open
Abstract
A human bone marrow-derived mesenchymal stromal cell (MSCs) and cord blood-derived CD34+ stem cell co-culture system was set up in order to evaluate the proliferative and differentiative effects induced by MSCs on CD34+ stem cells, and the reciprocal influences on gene expression profiles. After 10 days of co-culture, non-adherent (SN-fraction) and adherent (AD-fraction) CD34+ stem cells were collected and analysed separately. In the presence of MSCs, a significant increase in CD34+ cell number was observed (fold increase = 14.68), mostly in the SN-fraction (fold increase = 13.20). This was combined with a significant increase in CD34+ cell differentiation towards the BFU-E colonies and with a decrease in the CFU-GM. These observations were confirmed by microarray analysis. Through gene set enrichment analysis (GSEA), we noted a significant enrichment in genes involved in heme metabolism (e.g. LAMP2, CLCN3, BMP2K), mitotic spindle formation and proliferation (e.g. PALLD, SOS1, CCNA1) and TGF-beta signalling (e.g. ID1) and a down-modulation of genes participating in myeloid and lymphoid differentiation (e.g. PCGF2) in the co-cultured CD34+ stem cells. On the other hand, a significant enrichment in genes involved in oxygen-level response (e.g. TNFAIP3, SLC2A3, KLF6) and angiogenesis (e.g. VEGFA, IGF1, ID1) was found in the co-cultured MSCs. Taken together, our results suggest that MSCs can exert a priming effect on CD34+ stem cells, regulating their proliferation and erythroid differentiation. In turn, CD34+ stem cells seem to be able to polarise the BM-niche towards the vascular compartment by modulating molecular pathways related to hypoxia and angiogenesis.
Collapse
Affiliation(s)
- Simone Perucca
- Unit of Blood Diseases and Stem Cells Transplantation, Department of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili di Brescia, Brescia, Italy
- Laboratorio CREA (Centro di Ricerca Emato-oncologica AIL), ASST Spedali Civili of Brescia, Brescia, Italy
| | - Andrea Di Palma
- Unit of Blood Diseases and Stem Cells Transplantation, Department of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili di Brescia, Brescia, Italy
- Laboratorio CREA (Centro di Ricerca Emato-oncologica AIL), ASST Spedali Civili of Brescia, Brescia, Italy
| | - Pier Paolo Piccaluga
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), S. Orsola-Malpighi Hospital, Bologna University School of Medicine, Bologna, Italy
- Section of Genomics and Personalized Medicine, Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | - Claudia Gemelli
- Parco Scientifico e Tecnologico Materiali Innovativi e Ricerca Applicata del Mirandolese, Modena, Italy
| | - Elisa Zoratti
- Applied Research on Cancer-Network (ARC-NET), University of Verona, Verona, Italy
| | - Giulio Bassi
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Edoardo Giacopuzzi
- Unit of Biology and Genetics, Department of Molecular and Translational Medicine (DMTM), University of Brescia, Brescia, Italy
| | - Andrea Lojacono
- U.O. of Obstetrics and Gynecology I, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Giuseppe Borsani
- Unit of Biology and Genetics, Department of Molecular and Translational Medicine (DMTM), University of Brescia, Brescia, Italy
| | - Enrico Tagliafico
- Centro di Ricerche Genomiche, Dipartimento di Scienze della Vita, Università degli Studi di Modena e Reggio Emilia, Modena, Italy
| | - Maria Teresa Scupoli
- Interdepartmental Laboratory of Medical Research (LURM), University of Verona, Verona, Italy
| | - Simona Bernardi
- Unit of Blood Diseases and Stem Cells Transplantation, Department of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili di Brescia, Brescia, Italy
- Laboratorio CREA (Centro di Ricerca Emato-oncologica AIL), ASST Spedali Civili of Brescia, Brescia, Italy
| | - Camilla Zanaglio
- Unit of Blood Diseases and Stem Cells Transplantation, Department of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili di Brescia, Brescia, Italy
- Laboratorio CREA (Centro di Ricerca Emato-oncologica AIL), ASST Spedali Civili of Brescia, Brescia, Italy
| | - Federica Cattina
- Unit of Blood Diseases and Stem Cells Transplantation, Department of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Valeria Cancelli
- Unit of Blood Diseases and Stem Cells Transplantation, Department of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Michele Malagola
- Unit of Blood Diseases and Stem Cells Transplantation, Department of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Mauro Krampera
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Mirella Marini
- Department of Transfusion Medicine, Laboratory for Stem Cells Manipulation and Cryopreservation, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Camillo Almici
- Department of Transfusion Medicine, Laboratory for Stem Cells Manipulation and Cryopreservation, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Sergio Ferrari
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Domenico Russo
- Unit of Blood Diseases and Stem Cells Transplantation, Department of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili di Brescia, Brescia, Italy
- * E-mail:
| |
Collapse
|
23
|
Roson-Burgo B, Sanchez-Guijo F, Del Cañizo C, De Las Rivas J. Insights into the human mesenchymal stromal/stem cell identity through integrative transcriptomic profiling. BMC Genomics 2016; 17:944. [PMID: 27871224 PMCID: PMC5117530 DOI: 10.1186/s12864-016-3230-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 11/01/2016] [Indexed: 01/10/2023] Open
Abstract
Background Mesenchymal Stromal/Stem Cells (MSCs), isolated under the criteria established by the ISCT, still have a poorly characterized phenotype that is difficult to distinguish from similar cell populations. Although the field of transcriptomics and functional genomics has quickly grown in the last decade, a deep comparative analysis of human MSCs expression profiles in a meaningful cellular context has not been yet performed. There is also a need to find a well-defined MSCs gene-signature because many recent biomedical studies show that key cellular interaction processes (i.e. inmuno-modulation, cellular cross-talk, cellular maintenance, differentiation, epithelial-mesenchymal transition) are dependent on the mesenchymal stem cells within the stromal niche. Results In this work we define a core mesenchymal lineage signature of 489 genes based on a deep comparative analysis of multiple transcriptomic expression data series that comprise: (i) MSCs of different tissue origins; (ii) MSCs in different states of commitment; (iii) other related non-mesenchymal human cell types. The work integrates several public datasets, as well as de-novo produced microarray and RNA-Seq datasets. The results present tissue-specific signatures for adipose tissue, chorionic placenta, and bone marrow MSCs, as well as for dermal fibroblasts; providing a better definition of the relationship between fibroblasts and MSCs. Finally, novel CD marker patterns and cytokine-receptor profiles are unravelled, especially for BM-MSCs; with MCAM (CD146) revealed as a prevalent marker in this subtype of MSCs. Conclusions The improved biomolecular characterization and the released genome-wide expression signatures of human MSCs provide a comprehensive new resource that can drive further functional studies and redesigned cell therapy applications. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3230-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Beatriz Roson-Burgo
- Bioinformatics and Functional Genomics Group, Cancer Research Center (IBMCC, CSIC/USAL) and IBSAL, Consejo Superior de Investigaciones Cientificas (CSIC), Salamanca, Spain.,Hematology Department, IBSAL-Hospital Universitario de Salamanca, Salamanca, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Salamanca, Spain
| | - Fermin Sanchez-Guijo
- Hematology Department, IBSAL-Hospital Universitario de Salamanca, Salamanca, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Salamanca, Spain
| | - Consuelo Del Cañizo
- Hematology Department, IBSAL-Hospital Universitario de Salamanca, Salamanca, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Salamanca, Spain
| | - Javier De Las Rivas
- Bioinformatics and Functional Genomics Group, Cancer Research Center (IBMCC, CSIC/USAL) and IBSAL, Consejo Superior de Investigaciones Cientificas (CSIC), Salamanca, Spain.
| |
Collapse
|
24
|
Metheny L, Eid S, Lingas K, Reese J, Meyerson H, Tong A, de Lima M, Huang AY. Intra-osseous Co-transplantation of CD34-selected Umbilical Cord Blood and Mesenchymal Stromal Cells. ACTA ACUST UNITED AC 2016; 1:25-29. [PMID: 27882356 PMCID: PMC5117423 DOI: 10.15761/hmo.1000105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Human mesenchymal stromal cells (MSC) have been shown to support the growth and differentiation of hematopoietic stem cells (HSC). We hypothesized that intra-osseous (IO) co-transplantation of MSC and umbilical cord blood (UCB) may be effective in improving early HSC engraftment, as IO transplantation has been demonstrated to enhance UCB engraftment in NOD SCID-gamma (NSG) mice. Following non-lethal irradiation (300rads), 6 groups of NSG mice were studied: 1) intravenous (IV) UCB CD34+ cells, 2) IV UCB CD34+ cells and MSC, 3) IO UCB CD34+ cells, 4) IO UCB CD34+ cells and IO MSC, 5) IO UCB CD34+ cells and IV MSC, and 6) IV UCB CD34+ and IO MSC. Analysis of human-derived CD45+, CD3+, and CD19+ cells 6 weeks following transplant revealed the highest level of engraftment in the IO UCB plus IO MSC cohort. Bone marrow analysis of human CD13 and CD14 markers revealed no significant difference between cohorts. We observed that IO MSC and UCB co-transplantation led to superior engraftment of CD45+, CD3+ and CD19+ lineage cells in the bone marrow at 6 weeks as compared with the IV UCB cohort controls. Our data suggests that IO co-transplantation of MSC and UCB facilitates human HSC engraftment in NSG mice.
Collapse
Affiliation(s)
- Leland Metheny
- Stem Cell Transplant Program, University Hospitals Case Medical Center and Case Western Reserve University, Cleveland, OH 44106, USA; Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Saada Eid
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Case Western Reserve University School of Medicine; Angie Fowler AYA Cancer Institute, University Hospitals Rainbow Babies & Children's Hospital, Cleveland, OH 44106, USA
| | - Karen Lingas
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Jane Reese
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Howard Meyerson
- Department of Pathology, Case Western Reserve University School of Medicine; University Hospitals Case Medical Center, Cleveland, OH 44106, USA
| | - Alexander Tong
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Marcos de Lima
- Stem Cell Transplant Program, University Hospitals Case Medical Center and Case Western Reserve University, Cleveland, OH 44106, USA; Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Alex Y Huang
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Case Western Reserve University School of Medicine; Angie Fowler AYA Cancer Institute, University Hospitals Rainbow Babies & Children's Hospital, Cleveland, OH 44106, USA; Department of Pathology, Case Western Reserve University School of Medicine; University Hospitals Case Medical Center, Cleveland, OH 44106, USA
| |
Collapse
|
25
|
Valencia J, Blanco B, Yáñez R, Vázquez M, Herrero Sánchez C, Fernández-García M, Rodríguez Serrano C, Pescador D, Blanco JF, Hernando-Rodríguez M, Sánchez-Guijo F, Lamana ML, Segovia JC, Vicente Á, Del Cañizo C, Zapata AG. Comparative analysis of the immunomodulatory capacities of human bone marrow– and adipose tissue–derived mesenchymal stromal cells from the same donor. Cytotherapy 2016; 18:1297-311. [DOI: 10.1016/j.jcyt.2016.07.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 07/01/2016] [Accepted: 07/28/2016] [Indexed: 02/09/2023]
|
26
|
Salari A, Thomay K, Himmler K, Vajen B, Schienke A, Hagedorn M, Ebersold J, Kreipe HH, Krüger A, Schambach A, Schlegelberger B, Göhring G. Establishing a murine xenograft-model for long-term analysis of factors inducing chromosomal instability in myelodysplastic syndrome: Pitfalls and successes. Cancer Genet 2016; 209:258-66. [PMID: 27184732 DOI: 10.1016/j.cancergen.2016.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/04/2016] [Accepted: 04/12/2016] [Indexed: 11/25/2022]
Abstract
Myelodysplastic syndromes (MDS) are difficult to culture long-term showing the need of a model to study the fate of cells with MDS-abnormalities associated with chromosomal instability (CIN). This approach to establish a xenograft model transplanting human hematopoietic stem cells (HSC) with different independent lentivirally-mediated MDS-related modifications into immunodeficient mice is a long-lasting and tedious experiment with many parameters and every positive as well as non-functioning intermediate step will help the research community. As the establishment of appropriate xenograft models is increasing worldwide we aim to share our experiences to contribute toward minimizing loss of mice and following the "right" approach. Here, modified HSCs were intrafemorally transplanted into NSG and/or NSGS mice: (1) RPS14-haploinsufficiency, (2) TP53-deficiency, (3) TP53 hotspot mutations (R248W, R175H, R273H, R249S). Engraftment was achieved and cytogenetic analyses showed human cells with normal karyotypes. However, in all experiments with NSG mice, mainly control cells or GFP-negative cells were engrafted, not allowing observation of modified HSCs. In NSGS mice, engraftment rate was higher, but mice developed graft-versus-host disease. In summary, engraftment of HSCs is promising and could be used to analyze the induction of CIN. However, the analysis of modified HSCs is limited and further experiments are required to improve this model.
Collapse
Affiliation(s)
- Azam Salari
- Institute of Human Genetics, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Kathrin Thomay
- Institute of Human Genetics, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Kirsten Himmler
- Institute of Human Genetics, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Beate Vajen
- Institute of Human Genetics, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Andrea Schienke
- Institute of Human Genetics, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Maike Hagedorn
- Institute of Human Genetics, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Juliane Ebersold
- Institute of Human Genetics, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Hans-Heinrich Kreipe
- Institute of Pathology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Andreas Krüger
- Institute of Molecular Medicine. Goethe University Frankfurt am Main, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Brigitte Schlegelberger
- Institute of Human Genetics, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Gudrun Göhring
- Institute of Human Genetics, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| |
Collapse
|
27
|
Nicolay NH, Rühle A, Perez RL, Trinh T, Sisombath S, Weber KJ, Schmezer P, Ho AD, Debus J, Saffrich R, Huber PE. Mesenchymal stem cells exhibit resistance to topoisomerase inhibition. Cancer Lett 2016; 374:75-84. [PMID: 26876302 DOI: 10.1016/j.canlet.2016.02.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/29/2016] [Accepted: 02/02/2016] [Indexed: 01/02/2023]
Abstract
BACKGROUND Inhibition of cellular topoisomerases has been established as an effective way of treating certain cancers, albeit with often high levels of toxicity to the bone marrow. While the involvement of mesenchymal stem cells (MSCs) in bone marrow homeostasis and regeneration has been well established, the effects of topoisomerase-inhibiting anticancer agents remain largely unknown. MATERIALS AND METHODS Human bone marrow MSCs were treated with topoisomerase I inhibitor irinotecan or topoisomerase II inhibitor etoposide, and survival and apoptosis levels were measured. The influence of topoisomerase inhibition on cellular morphology, adhesion and migration potential and the ability to differentiate was assessed. Additionally, the role of individual DNA double-strand break repair pathways in MSCs was investigated as a potential cellular mechanism of resistance to topoisomerase inhibitors. RESULTS Human bone marrow MSCs were found relatively resistant to topoisomerase I and II inhibitors and show survival levels comparable to these of differentiated fibroblasts. Treatment with irinotecan or etoposide did not significantly influence cellular adhesion, migratory ability, surface marker expression or induction of apoptosis in human MSCs. The ability to differentiate was found preserved in MSCs after exposure to high doses of irinotecan or etoposide. MSCs were able to efficiently repair DNA double-strand breaks induced by topoisomerase inhibitors both by non-homologous end joining and homologous recombination pathways. CONCLUSION Our data demonstrate a topoisomerase-resistant phenotype of human MSCs that may at least in part be due to the stem cells' ability to efficiently remove DNA damage caused by these anticancer agents. The observed resistance of MSCs warrants further investigation of these cells as a potential therapeutic option for treating topoisomerase inhibitor-induced bone marrow damage.
Collapse
Affiliation(s)
- Nils H Nicolay
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Department of Molecular and Radiation Oncology, German Cancer Research Center (dkfz), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Alexander Rühle
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Department of Molecular and Radiation Oncology, German Cancer Research Center (dkfz), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Ramon Lopez Perez
- Department of Molecular and Radiation Oncology, German Cancer Research Center (dkfz), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Thuy Trinh
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Sonevisay Sisombath
- Department of Molecular and Radiation Oncology, German Cancer Research Center (dkfz), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Klaus-Josef Weber
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Peter Schmezer
- Department of Epigenomics and Cancer Risk Factors, German Cancer Research Center (dkfz), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Anthony D Ho
- Department of Hematology and Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Rainer Saffrich
- Department of Hematology and Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Peter E Huber
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Department of Molecular and Radiation Oncology, German Cancer Research Center (dkfz), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|
28
|
L Ramos T, Sánchez-Abarca LI, Muntión S, Preciado S, Puig N, López-Ruano G, Hernández-Hernández Á, Redondo A, Ortega R, Rodríguez C, Sánchez-Guijo F, del Cañizo C. MSC surface markers (CD44, CD73, and CD90) can identify human MSC-derived extracellular vesicles by conventional flow cytometry. Cell Commun Signal 2016; 14:2. [PMID: 26754424 PMCID: PMC4709865 DOI: 10.1186/s12964-015-0124-8] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 12/21/2015] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Human mesenchymal stromal cells (hMSC) are multipotent cells with both regenerative and immunomodulatory activities making them an attractive tool for cellular therapy. In the last few years it has been shown that the beneficial effects of hMSC may be due to paracrine effects and, at least in part, mediated by extracellular vesicles (EV). EV have emerged as important mediators of cell-to-cell communication. Flow cytometry (FCM) is a routine technology used in most clinical laboratories and could be used as a methodology for hMSC-EV characterization. Although several reports have characterized EV by FCM, a specific panel and protocol for hMSC-derived EV is lacking. The main objective of our study was the characterization of hMSC-EV using a standard flow cytometer. METHODS Human MSC from bone marrow of healthy donors, mesenchymal cell lines (HS-5 and hTERT) and a leukemic cell line (K562 cells) were used to obtain EV for FCM characterization. EV released from the different cell lines were isolated by ultracentrifugation and were characterized, using a multi-parametric analysis, in a conventional flow cytometer. EV characterization by transmission electron microscopy (TEM), western blot (WB) and Nano-particle tracking analysis (NTA) was also performed. RESULTS EV membranes are constituted by the combination of specific cell surface molecules depending on their cell of origin, together with specific proteins like tetraspanins (e.g. CD63). We have characterized by FCM the EV released from BM-hMSC, that were defined as particles less than 0.9 μm, positive for the hMSC markers (CD90, CD44 and CD73) and negative for CD34 and CD45 (hematopoietic markers). In addition, hMSC-derived EV were also positive for CD63 and CD81, the two characteristic markers of EV. To validate our characterization strategy, EV from mesenchymal cell lines (hTERT/HS-5) were also studied, using the leukemia cell line (K562) as a negative control. EV released from mesenchymal cell lines displayed the same immunophenotypic profile as the EV from primary BM-hMSC, while the EV derived from K562 cells did not show hMSC markers. We further validated the panel using EV from hMSC transduced with GFP. Finally, EV derived from the different sources (hMSC, hTERT/HS-5 and K562) were also characterized by WB, TEM and NTA, demonstrating the expression by WB of the exosomal markers CD63 and CD81, as well as CD73 in those from MSC origin. EV morphology and size/concentration was confirmed by TEM and NTA, respectively. CONCLUSION We described a strategy that allows the identification and characterization by flow cytometry of hMSC-derived EV that can be routinely used in most laboratories with a standard flow cytometry facility.
Collapse
Affiliation(s)
- Teresa L Ramos
- Servicio de Hematología, IBSAL-Hospital Universitario de Salamanca, Paseo de San Vicente 58-182, 37007, Salamanca, Spain. .,Centro de Investigación del Cáncer, Universidad de Salamanca, Salamanca, Spain. .,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, León, Spain. .,Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain.
| | - Luis Ignacio Sánchez-Abarca
- Servicio de Hematología, IBSAL-Hospital Universitario de Salamanca, Paseo de San Vicente 58-182, 37007, Salamanca, Spain. .,Centro de Investigación del Cáncer, Universidad de Salamanca, Salamanca, Spain. .,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, León, Spain. .,Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain.
| | - Sandra Muntión
- Servicio de Hematología, IBSAL-Hospital Universitario de Salamanca, Paseo de San Vicente 58-182, 37007, Salamanca, Spain. .,Centro de Investigación del Cáncer, Universidad de Salamanca, Salamanca, Spain. .,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, León, Spain. .,Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain.
| | - Silvia Preciado
- Servicio de Hematología, IBSAL-Hospital Universitario de Salamanca, Paseo de San Vicente 58-182, 37007, Salamanca, Spain. .,Centro de Investigación del Cáncer, Universidad de Salamanca, Salamanca, Spain. .,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, León, Spain. .,Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain.
| | - Noemí Puig
- Servicio de Hematología, IBSAL-Hospital Universitario de Salamanca, Paseo de San Vicente 58-182, 37007, Salamanca, Spain. .,Centro de Investigación del Cáncer, Universidad de Salamanca, Salamanca, Spain. .,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, León, Spain. .,Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain.
| | - Guillermo López-Ruano
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain. .,Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Salamanca, Spain.
| | - Ángel Hernández-Hernández
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain. .,Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Salamanca, Spain.
| | - Alba Redondo
- Servicio de Hematología, IBSAL-Hospital Universitario de Salamanca, Paseo de San Vicente 58-182, 37007, Salamanca, Spain. .,Centro de Investigación del Cáncer, Universidad de Salamanca, Salamanca, Spain. .,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, León, Spain. .,Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain.
| | - Rebeca Ortega
- Servicio de Hematología, IBSAL-Hospital Universitario de Salamanca, Paseo de San Vicente 58-182, 37007, Salamanca, Spain.
| | - Concepción Rodríguez
- Servicio de Hematología, IBSAL-Hospital Universitario de Salamanca, Paseo de San Vicente 58-182, 37007, Salamanca, Spain. .,Centro de Investigación del Cáncer, Universidad de Salamanca, Salamanca, Spain. .,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, León, Spain. .,Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain.
| | - Fermín Sánchez-Guijo
- Servicio de Hematología, IBSAL-Hospital Universitario de Salamanca, Paseo de San Vicente 58-182, 37007, Salamanca, Spain. .,Centro de Investigación del Cáncer, Universidad de Salamanca, Salamanca, Spain. .,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, León, Spain. .,Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain.
| | - Consuelo del Cañizo
- Servicio de Hematología, IBSAL-Hospital Universitario de Salamanca, Paseo de San Vicente 58-182, 37007, Salamanca, Spain. .,Centro de Investigación del Cáncer, Universidad de Salamanca, Salamanca, Spain. .,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, León, Spain. .,Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain.
| |
Collapse
|
29
|
Sánchez-Abarca LI, Hernández-Galilea E, Lorenzo R, Herrero C, Velasco A, Carrancio S, Caballero-Velázquez T, Rodríguez-Barbosa JI, Parrilla M, Del Cañizo C, Miguel JS, Aijón J, Pérez-Simón JA. Human Bone Marrow Stromal Cells Differentiate into Corneal Tissue and Prevent Ocular Graft-Versus-Host Disease in Mice. Cell Transplant 2015; 24:2423-33. [DOI: 10.3727/096368915x687480] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Clinical trials have assessed the use of human bone marrow stromal cells (hBMSCs) for the treatment of immune-related disorders such as graft-versus-host disease (GVHD). In the current study, we show that GFP+-transduced hBMSCs generated from bone marrow migrate and differentiate into corneal tissue after subconjunctival injection in mice. Interestingly, these hBMSCs display morphological features of epithelial, stromal, and endothelial cells and appear at different layers and with different morphologies depending on their position within the epithelium. Furthermore, these cells display ultrastructural properties, such as bundles of intermediate filaments, interdigitations, and desmosomes with GFP- cells, which confirms their differentiation into corneal tissues. GFP+-transduced hBMSCs were injected at different time points into the right eye of lethally irradiated mice undergoing bone marrow transplantation, which developed ocular GVHD (oGVHD). Remarkably, hBMSCs massively migrate to corneal tissues after subconjunctival injection. Both macroscopic and histopathological examination showed minimal or no evidence of GVHD in the right eye, while the left eye, where no hBMSCs were injected, displayed features of GVHD. Thus, in the current study, we confirm that hBMSCs may induce their therapeutic effect at least in part by differentiation and regeneration of damaged tissues in the host. Our results provide experimental evidence that hBMSCs represent a potential cellular therapy to attenuate oGVHD.
Collapse
Affiliation(s)
- Luis Ignacio Sánchez-Abarca
- Department of Hematology, University Hospital Virgen del Rocío/IBIS/CSIC/University of Seville, Seville, Spain
- Department of Hematology, University Hospital of Salamanca, Salamanca, Spain
- Institute of Biomedicine Investigation of Salamanca (IBSAL), Salamanca, Spain
| | - Emiliano Hernández-Galilea
- Department of Surgery, Ophthalmology Service, University Hospital of Salamanca, University of Salamanca, Salamanca, Spain
- Institute of Biomedicine Investigation of Salamanca (IBSAL), Salamanca, Spain
| | - Rebeca Lorenzo
- Department of Surgery, Ophthalmology Service, University Hospital of Salamanca, University of Salamanca, Salamanca, Spain
- Institute of Biomedicine Investigation of Salamanca (IBSAL), Salamanca, Spain
| | - Carmen Herrero
- Department of Hematology, University Hospital of Salamanca, Salamanca, Spain
- Institute of Biomedicine Investigation of Salamanca (IBSAL), Salamanca, Spain
| | - Almudena Velasco
- Department Cell Biology and Pathology, INCyL, University of Salamanca, Salamanca, Spain
- Institute of Biomedicine Investigation of Salamanca (IBSAL), Salamanca, Spain
| | - Soraya Carrancio
- Department of Hematology, University Hospital of Salamanca, Salamanca, Spain
| | - Teresa Caballero-Velázquez
- Department of Hematology, University Hospital Virgen del Rocío/IBIS/CSIC/University of Seville, Seville, Spain
- Department of Hematology, University Hospital of Salamanca, Salamanca, Spain
| | | | - Marta Parrilla
- Department Cell Biology and Pathology, INCyL, University of Salamanca, Salamanca, Spain
| | - Consuelo Del Cañizo
- Department of Hematology, University Hospital of Salamanca, Salamanca, Spain
- Institute of Biomedicine Investigation of Salamanca (IBSAL), Salamanca, Spain
| | - Jesús San Miguel
- Clinica Universidad de Navarra, Centro de Investigación Médica Aplicada (CIMA), Pamplona, Spain
| | - José Aijón
- Department Cell Biology and Pathology, INCyL, University of Salamanca, Salamanca, Spain
- Institute of Biomedicine Investigation of Salamanca (IBSAL), Salamanca, Spain
| | - José Antonio Pérez-Simón
- Department of Hematology, University Hospital Virgen del Rocío/IBIS/CSIC/University of Seville, Seville, Spain
- Department of Hematology, University Hospital of Salamanca, Salamanca, Spain
| |
Collapse
|
30
|
López-Ruano G, Prieto-Bermejo R, Ramos TL, San-Segundo L, Sánchez-Abarca LI, Sánchez-Guijo F, Pérez-Simón JA, Sánchez-Yagüe J, Llanillo M, Hernández-Hernández Á. PTPN13 and β-Catenin Regulate the Quiescence of Hematopoietic Stem Cells and Their Interaction with the Bone Marrow Niche. Stem Cell Reports 2015; 5:516-31. [PMID: 26344907 PMCID: PMC4624939 DOI: 10.1016/j.stemcr.2015.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 08/04/2015] [Accepted: 08/05/2015] [Indexed: 12/29/2022] Open
Abstract
The regulation of hematopoietic stem cells (HSCs) depends on the integration of the multiple signals received from the bone marrow niche. We show the relevance of the protein tyrosine phosphatase PTPN13 and β-catenin as intracellular signaling molecules to control HSCs adhesiveness, cell cycling, and quiescence. Lethally irradiated mice transplanted with Lin– bone marrow cells in which PTPN13 or β-catenin had been silenced showed a significant increase of long-term (LT) and short-term (ST) HSCs. A decrease in cycling cells was also found, together with an increase in quiescence. The decreased expression of PTPN13 or β-catenin was linked to the upregulation of several genes coding for integrins and several cadherins, explaining the higher cell adhesiveness. Our data are consistent with the notion that the levels of PTPN13 and β-catenin must be strictly regulated by extracellular signaling to regulate HSC attachment to the niche and the balance between proliferation and quiescence. PTPN13 or β-catenin silencing increases LT-HSCs and ST-HSCs frequency in vivo The cell cycling of HSPCs was decreased by PTPN13 or β-catenin downregulation LT-HSCs and ST-HSCs quiescence was increased by PTPN13 or β-catenin downregulation PTPN13 and β-catenin levels modulate the interaction of HSPCs with the BM niche
Collapse
Affiliation(s)
- Guillermo López-Ruano
- Department of Biochemistry and Molecular Biology, University of Salamanca, Salamanca 37007, Spain; IBSAL (Instituto de Investigación Biomédica de Salamanca), Salamanca 37007, Spain
| | - Rodrigo Prieto-Bermejo
- Department of Biochemistry and Molecular Biology, University of Salamanca, Salamanca 37007, Spain; IBSAL (Instituto de Investigación Biomédica de Salamanca), Salamanca 37007, Spain
| | - Teresa L Ramos
- IBSAL (Instituto de Investigación Biomédica de Salamanca), Salamanca 37007, Spain
| | - Laura San-Segundo
- IBSAL (Instituto de Investigación Biomédica de Salamanca), Salamanca 37007, Spain
| | - Luis Ignacio Sánchez-Abarca
- Department of Hematology, Hospital Universitario Virgen del Rocío/IBIS/CSIC/University of Seville, Seville 41013, Spain
| | - Fermín Sánchez-Guijo
- IBSAL (Instituto de Investigación Biomédica de Salamanca), Salamanca 37007, Spain
| | - José Antonio Pérez-Simón
- Department of Hematology, Hospital Universitario Virgen del Rocío/IBIS/CSIC/University of Seville, Seville 41013, Spain
| | - Jesús Sánchez-Yagüe
- Department of Biochemistry and Molecular Biology, University of Salamanca, Salamanca 37007, Spain; IBSAL (Instituto de Investigación Biomédica de Salamanca), Salamanca 37007, Spain
| | - Marcial Llanillo
- Department of Biochemistry and Molecular Biology, University of Salamanca, Salamanca 37007, Spain; IBSAL (Instituto de Investigación Biomédica de Salamanca), Salamanca 37007, Spain
| | - Ángel Hernández-Hernández
- Department of Biochemistry and Molecular Biology, University of Salamanca, Salamanca 37007, Spain; IBSAL (Instituto de Investigación Biomédica de Salamanca), Salamanca 37007, Spain.
| |
Collapse
|
31
|
Hendijani F. Human mesenchymal stromal cell therapy for prevention and recovery of chemo/radiotherapy adverse reactions. Cytotherapy 2015; 17:509-25. [DOI: 10.1016/j.jcyt.2014.10.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/07/2014] [Accepted: 10/27/2014] [Indexed: 12/21/2022]
|
32
|
Lin HD, Fong CY, Biswas A, Choolani M, Bongso A. Human Wharton's jelly stem cells, its conditioned medium and cell-free lysate inhibit the growth of human lymphoma cells. Stem Cell Rev Rep 2015; 10:573-86. [PMID: 24789672 DOI: 10.1007/s12015-014-9514-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Several groups have reported that primitive mesenchymal stem cells from the gelatinous matrix of the Wharton's jelly of the human umbilical cord (hWJSCs) possess tumoricidal properties and inhibit the growth of solid tumours such as human mammary carcinoma, ovarian carcinoma and osteosarcoma. This unique characteristic led to the hypothesis that hWJSCs serve as a natural defence against migrating cancer cells from mother to fetus thus explaining why tumorigenesis in the fetus is rare. However, it is not known whether non-solid malignant hematopoietic cells are also inhibited by hWJSCs and what the exact tumoricidal mechanisms are. We therefore evaluated the influence of hWJSCs and its extracts on Burkitt's lymphoma cells. Cell proliferation (BrdU and Ki67+), viability (MTT) and cell death (Annexin V-Propidium iodide and live/dead) assays showed significant inhibition of lymphoma cell growth after 48 h exposure to hWJSCs or its extracts compared to controls. Increased cell death was observed at sub-G1 and S and decreased proliferation at G2/M phases of the mitotic cycle. Superoxide dismutase and hydrogen peroxide activity were significantly increased and glutathione peroxidase significantly decreased in treated lymphoma cells. Time lapse imaging and confocal z-stack images showed yellow fluorescent in situ hybridization (FISH) signals of lymphoma cell Y chromosomes within the cytoplasm of female red labelled hWJSCs. We hypothesize that the growth of lymphoma cells is inhibited by the molecules secreted by hWJSCs that use oxidative stress pathways to induce cell death followed by engulfment of the apoptotic remains of the lymphoma cells by the hWJSCs.
Collapse
Affiliation(s)
- Hao Daniel Lin
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge, Singapore, Singapore, 119228
| | | | | | | | | |
Collapse
|
33
|
Roson-Burgo B, Sanchez-Guijo F, Del Cañizo C, De Las Rivas J. Transcriptomic portrait of human Mesenchymal Stromal/Stem Cells isolated from bone marrow and placenta. BMC Genomics 2014; 15:910. [PMID: 25326687 PMCID: PMC4287589 DOI: 10.1186/1471-2164-15-910] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 09/24/2014] [Indexed: 02/08/2023] Open
Abstract
Background Human Mesenchymal Stromal/Stem Cells (MSCs) are adult multipotent cells that behave in a highly plastic manner, inhabiting the stroma of several tissues. The potential utility of MSCs is nowadays strongly investigated in the field of regenerative medicine and cell therapy, although many questions about their molecular identity remain uncertain. Results MSC primary cultures from human bone marrow (BM) and placenta (PL) were derived and verified by their immunophenotype standard pattern and trilineage differentiation potential. Then, a broad characterization of the transcriptome of these MSCs was performed using RNA deep sequencing (RNA-Seq). Quantitative analysis of these data rendered an extensive expression footprint that includes 5,271 protein-coding genes. Flow cytometry assays of canonical MSC CD-markers were congruent with their expression levels detected by the RNA-Seq. Expression of other recently proposed MSC markers (CD146, Nestin and CD271) was tested in the placenta samples, finding only CD146 and Nestin. Functional analysis revealed enrichment in stem cell related genes and mesenchymal regulatory transcription factors (TFs). Analysis of TF binding sites (TFBSs) identified 11 meta-regulators, including factors KLF4 and MYC among them. Epigenetically, hypomethylated promoter patterns supported the active expression of the MSC TFs found. An interaction network of these TFs was built to show up their links and relations. Assessment of dissimilarities between cell origins (BM versus PL) disclosed two hundred differentially expressed genes enrolled in microenvironment processes related to the cellular niche, as regulation of bone formation and blood vessel morphogenesis for the case of BM-MSCs. By contrast genes overexpressed in PL-MSCs showed functional enrichment on mitosis, negative regulation of cell-death and embryonic morphogenesis that supported the higher growth rates observed in the cultures of these fetal cells and their closer links with development processes. Conclusions The results present a transcriptomic portrait of the human MSCs isolated from bone marrow and placenta. The data are released as a cell-specific resource, providing a comprehensive expression footprint of the MSCs useful to better understand their cellular and molecular biology and for further investigations on the isolation and biomedical use of these multipotent cells. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-910) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | - Javier De Las Rivas
- Bioinformatics and Functional Genomics Group, Cancer Research Center (IBMCC, CSIC/USAL/IBSAL), Consejo Superior de Investigaciones Cientificas (CSIC), Salamanca, Spain.
| |
Collapse
|
34
|
Pavlaki K, Pontikoglou CG, Demetriadou A, Batsali AK, Damianaki A, Simantirakis E, Kontakis M, Galanopoulos A, Kotsianidis I, Kastrinaki MC, Papadaki HA. Impaired proliferative potential of bone marrow mesenchymal stromal cells in patients with myelodysplastic syndromes is associated with abnormal WNT signaling pathway. Stem Cells Dev 2014; 23:1568-81. [PMID: 24617415 DOI: 10.1089/scd.2013.0283] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
It has been shown that bone marrow mesenchymal stromal cells (MSCs) from patients with myelodysplastic syndromes (MDSs) display defective proliferative potential. We have probed the impaired replicative capacity of culture-expanded MSCs in MDS patients (n=30) compared with healthy subjects (n=32) by studying senescence characteristics and gene expression associated with WNT/transforming growth factor-β1 (TGFB1) signaling pathways. We have also explored the consequences of the impaired patient MSC proliferative potential by investigating their differentiation potential and the capacity to support normal CD34(+) cell growth under coculture conditions. Patient MSCs displayed decreased gene expression of the senescence-associated cyclin-dependent kinase inhibitors CDKN1A, CDKN2A, and CDKN2B, along with PARG1, whereas the mean telomere length was upregulated in patient MSCs. MDS-derived MSCs exhibited impaired capacity to support normal CD34(+) myeloid and erythroid colony formation. No significant changes were observed between patients and controls in gene expression related to TGFB1 pathway. Patient MSCs displayed upregulated non-canonical WNT expression, combined with downregulated canonical WNT expression and upregulated canonical WNT inhibitors. MDS-derived MSCs displayed defective osteogenic and adipogenic lineage priming under non-differentiating culture conditions. Pharmacological activation of canonical WNT signaling in patient MDSs led to an increase in cell proliferation and upregulation in the expression of early osteogenesis-related genes. This study indicates abnormal WNT signaling in MSCs of MDS patients and supports the concept of a primary MSC defect that might have a contributory effect in MDS natural history.
Collapse
Affiliation(s)
- Konstantia Pavlaki
- 1 Department of Haematology, University of Crete School of Medicine , Heraklion, Greece
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Kim DS, Lee MW, Noh YH, Jang MC, Lee SH, Son MH, Jung HL, Yoo KH, Sung KW, Koo HH. Engraftment efficacy of human hematopoietic stem cells transplanted into NOD/SCID mice using two methods: intra-bone marrow transplantation of hematopoietic stem cells and intravenous co-transplantation with mesenchymal stem cells. Acta Haematol 2013; 131:179-82. [PMID: 24247560 DOI: 10.1159/000351273] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 04/09/2013] [Indexed: 12/13/2022]
Affiliation(s)
- Dae Seong Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Cunha MCR, Lima FDS, Vinolo MAR, Hastreiter A, Curi R, Borelli P, Fock RA. Protein malnutrition induces bone marrow mesenchymal stem cells commitment to adipogenic differentiation leading to hematopoietic failure. PLoS One 2013; 8:e58872. [PMID: 23516566 PMCID: PMC3597562 DOI: 10.1371/journal.pone.0058872] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 02/07/2013] [Indexed: 01/20/2023] Open
Abstract
Protein malnutrition (PM) results in pathological changes that are associated with peripheral leukopenia, bone marrow (BM) hypoplasia and alterations in the BM microenvironment leading to hematopoietic failure; however, the mechanisms involved are poorly understood. In this context, the BM mesenchymal stem cells (MSCs) are cells intimately related to the formation of the BM microenvironment, and their differentiation into adipocytes is important because adipocytes are cells that have the capability to negatively modulate hematopoiesis. Two-month-old male Balb/c mice were subjected to protein-energy malnutrition with a low-protein diet containing 2% protein, whereas control animals were fed a diet containing 12% protein. The hematopoietic parameters and the expression of CD45 and CD117 positive cells in the BM were evaluated. MSCs were isolated from BM, and their capability to produce SCF, IL-3, G-CSF and GM-CSF were analyzed. The expression of PPAR-γ and C/EBP-α as well as the expression of PPAR-γ and SREBP mRNAs were evaluated in MSCs together with their capability to differentiate into adipocytes in vitro. The malnourished animals had anemia and leukopenia as well as spleen and bone marrow hypoplasia and a reduction in the expression of CD45 and CD117 positive cells from BM. The MSCs of the malnourished mice presented an increased capability to produce SCF and reduced production of G-CSF and GM-CSF. The MSCs from the malnourished animals showed increased expression of PPAR-γ protein and PPAR-γ mRNA associated with an increased capability to differentiate into adipocytes. The alterations found in the malnourished animals allowed us to conclude that malnutrition committed MSC differentiation leading to adipocyte decision and compromised their capacity for cytokine production, contributing to an impaired hematopoietic microenvironment and inducing the bone marrow failure commonly observed in protein malnutrition states.
Collapse
Affiliation(s)
- Mayara Caldas Ramos Cunha
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Fabiana da Silva Lima
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marco Aurélio Ramirez Vinolo
- Department of Genetics, Evolution and Bioagents. Institute of Biology, University of Campinas-Unicamp, Campinas, Brazil
| | - Araceli Hastreiter
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rui Curi
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Primavera Borelli
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ricardo Ambrósio Fock
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
37
|
Carrancio S, Blanco B, Romo C, Muntion S, Lopez-Holgado N, Blanco JF, Briñon JG, San Miguel JF, Sanchez-Guijo FM, del Cañizo MC. Bone marrow mesenchymal stem cells for improving hematopoietic function: an in vitro and in vivo model. Part 2: Effect on bone marrow microenvironment. PLoS One 2011; 6:e26241. [PMID: 22028841 PMCID: PMC3197625 DOI: 10.1371/journal.pone.0026241] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 09/22/2011] [Indexed: 12/13/2022] Open
Abstract
The aim of the present study was to determine how mesenchymal stem cells (MSC) could improve bone marrow (BM) stroma function after damage, both in vitro and in vivo. Human MSC from 20 healthy donors were isolated and expanded. Mobilized selected CD34+ progenitor cells were obtained from 20 HSCT donors. For in vitro study, long-term bone marrow cultures (LTBMC) were performed using a etoposide damaged stromal model to test MSC effect in stromal confluence, capability of MSC to lodge in stromal layer as well as some molecules (SDF1, osteopontin,) involved in hematopoietic niche maintenance were analyzed. For the in vivo model, 64 NOD/SCID recipients were transplanted with CD34+ cells administered either by intravenous (IV) or intrabone (IB) route, with or without BM derived MSC. MSC lodgement within the BM niche was assessed by FISH analysis and the expression of SDF1 and osteopontin by immunohistochemistry. In vivo study showed that when the stromal damage was severe, TP-MSC could lodge in the etoposide-treated BM stroma, as shown by FISH analysis. Osteopontin and SDF1 were differently expressed in damaged stroma and their expression restored after TP-MSC addition. Human in vivo MSC lodgement was observed within BM niche by FISH, but MSC only were detected and not in the contralateral femurs. Human MSC were located around blood vessels in the subendoestal region of femurs and expressed SDF1 and osteopontin. In summary, our data show that MSC can restore BM stromal function and also engraft when a higher stromal damage was done. Interestingly, MSC were detected locally where they were administered but not in the contralateral femur.
Collapse
Affiliation(s)
- Soraya Carrancio
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León and Red Nacional de Terapia Celular (Tercel, ISCIII), Castilla y León, Spain
- Centro de Investigación del Cáncer-IBMCC (Universidad de Salamanca-CSIC), Salamanca, Spain
| | - Belen Blanco
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León and Red Nacional de Terapia Celular (Tercel, ISCIII), Castilla y León, Spain
- Centro de Investigación del Cáncer-IBMCC (Universidad de Salamanca-CSIC), Salamanca, Spain
| | - Carlos Romo
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León and Red Nacional de Terapia Celular (Tercel, ISCIII), Castilla y León, Spain
- Centro de Investigación del Cáncer-IBMCC (Universidad de Salamanca-CSIC), Salamanca, Spain
| | - Sandra Muntion
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León and Red Nacional de Terapia Celular (Tercel, ISCIII), Castilla y León, Spain
| | - Natalia Lopez-Holgado
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León and Red Nacional de Terapia Celular (Tercel, ISCIII), Castilla y León, Spain
| | - Juan F. Blanco
- Servicio de Traumatología, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Jesus G. Briñon
- Departamento de Biologia Celular y Patologia, Universidad de Salamanca, Spain
| | - Jesus F. San Miguel
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León and Red Nacional de Terapia Celular (Tercel, ISCIII), Castilla y León, Spain
- Centro de Investigación del Cáncer-IBMCC (Universidad de Salamanca-CSIC), Salamanca, Spain
| | - Fermin M. Sanchez-Guijo
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León and Red Nacional de Terapia Celular (Tercel, ISCIII), Castilla y León, Spain
| | - M. Consuelo del Cañizo
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León and Red Nacional de Terapia Celular (Tercel, ISCIII), Castilla y León, Spain
- Centro de Investigación del Cáncer-IBMCC (Universidad de Salamanca-CSIC), Salamanca, Spain
- * E-mail:
| |
Collapse
|