1
|
Moise G, Jîjie AR, Moacă EA, Predescu IA, Dehelean CA, Hegheș A, Vlad DC, Popescu R, Vlad CS. Plants' Impact on the Human Brain-Exploring the Neuroprotective and Neurotoxic Potential of Plants. Pharmaceuticals (Basel) 2024; 17:1339. [PMID: 39458980 PMCID: PMC11510325 DOI: 10.3390/ph17101339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/19/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Plants have long been recognized for their potential to influence neurological health, with both neuroprotective and neurotoxic properties. This review explores the dual nature of plant-derived compounds and their impact on the human brain. DISCUSSION Numerous studies have highlighted the neuroprotective effects of various phytoconstituents, such as those found in Ginkgo biloba, Centella asiatica, Panax ginseng, Withania somnifera, and Curcuma longa. The neuroprotective compounds have demonstrated antioxidant, anti-inflammatory, and cognitive-enhancing properties, making them promising candidates for combating neurodegenerative diseases and improving brain function. Polyphenolic compounds, triterpenic acids, and specific phytocompounds like the ones from EGb 761 extract have shown interactions with key enzymes and receptors in the brain, leading to neuroprotective outcomes. However, this review also acknowledges the neurotoxic potential of certain plants, such as the Veratrum species, which contains steroidal alkaloids that can cause DNA damage and disrupt neurological function, or Atropa belladonna, which interfere with the normal functioning of the cholinergic system in the body, leading to a range of symptoms associated with anticholinergic toxicity. CONSLUSIONS This review also emphasizes the need for further research to elucidate the complex mechanisms underlying the neuroprotective and neurotoxic effects of plant-derived compounds, as well as to identify novel phytoconstituents with therapeutic potential. Understanding the complex relationship between plants and the human brain is crucial for harnessing the benefits of neuroprotective compounds while mitigating the risks associated with neurotoxic substances. This review provides a comprehensive overview of the knowledge on the neurological properties of plants and highlights the importance of continued research in this field for the development of novel therapeutic strategies targeting brain health and neurological disorders.
Collapse
Affiliation(s)
- Georgiana Moise
- Department of Clinical Pharmacology, The Doctoral School of Medicine, “Pius Brînzeu” County Emergency Clinical Hospital Timisoara, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania;
| | - Alex-Robert Jîjie
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (A.-R.J.); (E.-A.M.); (I.-A.P.); (C.A.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Elena-Alina Moacă
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (A.-R.J.); (E.-A.M.); (I.-A.P.); (C.A.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Iasmina-Alexandra Predescu
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (A.-R.J.); (E.-A.M.); (I.-A.P.); (C.A.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Cristina Adriana Dehelean
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (A.-R.J.); (E.-A.M.); (I.-A.P.); (C.A.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Alina Hegheș
- Department II—Pharmaceutical Technology, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
- Formulation and Technology of Drugs Research Center, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Daliborca Cristina Vlad
- Department IV—Department of Biochemistry and Pharmacology, Division of Pharmacology, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (D.C.V.); (C.S.V.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania;
| | - Roxana Popescu
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania;
- Department II—Department of Microscopic Morphology, Division of Cell and Molecular Biology II, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Cristian Sebastian Vlad
- Department IV—Department of Biochemistry and Pharmacology, Division of Pharmacology, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (D.C.V.); (C.S.V.)
| |
Collapse
|
2
|
López Hanotte J, Peralta F, Reggiani PC, Zappa Villar MF. Investigating the Impact of Intracerebroventricular Streptozotocin on Female Rats with and without Ovaries: Implications for Alzheimer's Disease. Neurochem Res 2024; 49:2785-2802. [PMID: 38985243 DOI: 10.1007/s11064-024-04204-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/12/2024] [Accepted: 06/25/2024] [Indexed: 07/11/2024]
Abstract
To contribute to research on female models of Alzheimer's disease (AD), our aim was to study the effect of intracerebroventricular (ICV) injection of streptozotocin (STZ) in female rats, and to evaluate a potential neuroprotective action of ovarian steroids against STZ. Female rats were either ovariectomized (OVX) or kept with ovaries (Sham) two weeks before ICV injections. Animals were injected with either vehicle (artificial cerebrospinal fluid, aCSF) or STZ (3 mg/kg) and separated into four experimental groups: Sham + aCSF, Sham + STZ, OVX + aCSF and OVX + STZ. Nineteen days post-injection, we assessed different behavioral aspects: burying, anxiety and exploration, object recognition memory, spatial memory, and depressive-like behavior. Immunohistochemistry and Immunoblot analyses were performed in the hippocampus to examine changes in AD-related proteins and neuronal and microglial populations. STZ affected burying and exploratory behavior depending on ovarian status, and impaired recognition but not spatial memory. STZ and ovariectomy increased depressive-like behavior. Interestingly, STZ did not alter the expression of β-amyloid peptide or Tau phosphorylated forms. STZ affected the neuronal population from the Dentate Gyrus, where immature neurons were more vulnerable to STZ in OVX rats. Regarding microglia, STZ increased reactive cells, and the OVX + STZ group showed an increase in the total cell number. In sum, STZ partially affected female rats, compared to what was previously reported for males. Although AD is more frequent in women, reports about the effect of ICV-STZ in female rats are scarce. Our work highlights the need to deepen into the effects of STZ in the female brain and study possible sex differences.
Collapse
Affiliation(s)
- Juliette López Hanotte
- Instituto de Investigaciones Bioquímicas de La Plata "Profesor Doctor Rodolfo R. Brenner", Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | - Facundo Peralta
- Instituto de Investigaciones Bioquímicas de La Plata "Profesor Doctor Rodolfo R. Brenner", Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | - Paula Cecilia Reggiani
- Instituto de Investigaciones Bioquímicas de La Plata "Profesor Doctor Rodolfo R. Brenner", Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP), La Plata, Argentina.
- Cátedra de Citología, Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP), La Plata, Argentina.
| | - María Florencia Zappa Villar
- Instituto de Investigaciones Bioquímicas de La Plata "Profesor Doctor Rodolfo R. Brenner", Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP), La Plata, Argentina.
| |
Collapse
|
3
|
Niu L, Xu M, Liu W, Yu H, Yu S, Li F, Wang T, Sun D, Yao T, Li W, Yang Z, Liu X, Zuo Z. The GLCCI1/STAT3 pathway: a novel pathway involved in diabetic cognitive dysfunction and the therapeutic effect of salidroside. J Mol Histol 2024; 55:851-861. [PMID: 39198367 DOI: 10.1007/s10735-024-10236-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/24/2024] [Indexed: 09/01/2024]
Abstract
Diabetic cognitive dysfunction (DCD) is a complication of diabetes that seriously affects quality of life. Glucocorticoid-induced transcript 1 (GLCCI1) has been found to be involved in inflammation, apoptosis and autophagy in various diseases. However, the distribution of GLCCI1 in the brain and its role in DCD have not yet been revealed. In addition, the potential therapeutics effects of salidroside (SAL), a phenyl propyl glycoside compound known for its neuroprotective effects in treating DCD are unknow. In the present study, we found that GLCCI1 was localized in hippocampal neurons. C57BL/6 J mice with DCD presented downregulation of GLCCI1 and Bcl-2 and upregulation of p-STAT3/STAT3, Bax, Cleaved Caspase-3/Caspase-3. Overexpression of GLCCI1 or SAL administration relieved DCD, reversed the changes in the expression of these cytokines, and alleviated morphological alterations in hippocampal neurons. Interestingly, SAL alleviated DCD and attenuated the expression of GLCCI1 and p-STAT3, showing similar effects as GLCCI1 overexpression. These findings suggest that the GLCCI1/STAT3 axis plays a crucial role in DCD and is involved in SAL-mediated attenuation of DCD.
Collapse
Affiliation(s)
- Lin Niu
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Min Xu
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou, 121001, Liaoning, China
- College of Nursing, Physiology, Liaoning Vocational University of Technology, Jinzhou, 121001, Liaoning, China
| | - Wenqiang Liu
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou, 121001, Liaoning, China
| | - Hongdan Yu
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Shengxue Yu
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Fuzhi Li
- Department of Thoraxes Surgery of the Third Affiliated Hospital, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Teng Wang
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Die Sun
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Tiefeng Yao
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Wanze Li
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Zhengzhong Yang
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Xuezheng Liu
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China.
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou, 121001, Liaoning, China.
| | - Zhongfu Zuo
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China.
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou, 121001, Liaoning, China.
| |
Collapse
|
4
|
Elsayed Abouzed DE, Ezelarab HAA, Selim HMRM, Elsayed MMA, El Hamd MA, Aboelez MO. Multimodal modulation of hepatic ischemia/reperfusion-induced injury by phytochemical agents: A mechanistic evaluation of hepatoprotective potential and safety profiles. Int Immunopharmacol 2024; 138:112445. [PMID: 38944946 DOI: 10.1016/j.intimp.2024.112445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 07/02/2024]
Abstract
BACKGROUND Hepatic ischemia-reperfusion (I/R) injury is a clinically fundamental phenomenon that occurs through liver resection surgery, trauma, shock, and transplantation. AIMS OF THE REVIEW This review article affords an expanded and comprehensive overview of various natural herbal ingredients that have demonstrated hepatoprotective effects against I/R injury through preclinical studies in animal models. MATERIALS AND METHODS For the objective of this investigation, an extensive examination was carried out utilizing diverse scientific databases involving PubMed, Google Scholar, Science Direct, Egyptian Knowledge Bank (EKB), and Research Gate. The investigation was conducted based on specific identifiable terms, such as hepatic ischemia/reperfusion injury, liver resection and transplantation, cytokines, inflammation, NF-kB, interleukins, herbs, plants, natural ingredients, phenolic extract, and aqueous extract. RESULTS Bioactive ingredients derived from ginseng, curcumin, resveratrol, epigallocatechin gallate, quercetin, lycopene, punicalagin, crocin, celastrol, andrographolide, silymarin, and others and their effects on hepatic IRI were discussed. The specific mechanisms of action, signaling pathways, and clinical relevance for attenuation of liver enzymes, cytokine production, immune cell infiltration, oxidative damage, and cell death signaling in rodent studies are analyzed in depth. Their complex molecular actions involve modulation of pathways like TLR4, NF-κB, Nrf2, Bcl-2 family proteins, and others. CONCLUSION The natural ingredients have promising values in the protection and treatment of various chronic aggressive clinical conditions, and that need to be evaluated on humans by clinical studies.
Collapse
Affiliation(s)
- Deiaa E Elsayed Abouzed
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt.
| | - Hend A A Ezelarab
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt.
| | - Heba Mohammed Refat M Selim
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, AlMaarefa University, Diriyah 13713, Riyadh, Saudi Arabia; Department of Microbiology and Immunology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 35527, Egypt.
| | - Mahmoud M A Elsayed
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt.
| | - Mohamed A El Hamd
- Department of Pharmaceutical Chemistry, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, South Valley University, Qena 83523, Egypt.
| | - Moustafa O Aboelez
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt
| |
Collapse
|
5
|
Hasanabadi AJ, Beirami E, Kamaei M, Esfahani DE. Effect of imipramine on memory, adult neurogenesis, neuroinflammation, and mitochondrial biogenesis in a rat model of alzheimer's disease. Exp Gerontol 2024; 194:112517. [PMID: 38986856 DOI: 10.1016/j.exger.2024.112517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 07/04/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by cognitive decline and memory loss. Imipramine, a tricyclic antidepressant, has potent anti-inflammatory and antioxidant properties in the central nervous system. The aim of this study was to investigate the neuroprotective effects of imipramine on streptozotocin (STZ)-induced memory impairment. Male Wistar rats received an intracerebroventricular injection of STZ (3 mg/kg, 3 μl/ventricle) using the stereotaxic apparatus. The Morris water maze and passive avoidance tests were used to evaluate cognitive functions. 24 h after the STZ injection, imipramine was administered intraperitoneally at doses of 10 or 20 mg/kg for 14 consecutive days. The mRNA and protein levels of neurotrophic factors (BDNF and GDNF) and pro-inflammatory cytokines (IL-6, IL-1β, and TNF-α) were measured in the hippocampus using real-time PCR and ELISA techniques, respectively. In addition, real-time PCR was used to evaluate the mRNA levels of markers associated with neurogenesis (Nestin, DCX, and Ki67) and mitochondrial biogenesis (PGC-1α, NRF-1, and TFAM). The results showed that imipramine, especially at a dose of 20 mg/kg, effectively improved STZ-induced memory impairment. This improvement was associated with an increase in neurogenesis and neurotrophic factors and a decrease in neuroinflammation and mitochondrial biogenesis dysfunction. Based on these results, imipramine appears to be a promising therapeutic option for improving cognitive functions in neurodegenerative diseases such as AD.
Collapse
Affiliation(s)
| | - Elmira Beirami
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| | - Mehdi Kamaei
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Delaram Eslimi Esfahani
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| |
Collapse
|
6
|
Zheng J, Zhang J, Han J, Zhao Z, Lin K. The effect of salidroside in promoting endogenous neural regeneration after cerebral ischemia/reperfusion involves notch signaling pathway and neurotrophic factors. BMC Complement Med Ther 2024; 24:293. [PMID: 39090706 PMCID: PMC11295647 DOI: 10.1186/s12906-024-04597-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/19/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Salidroside is the major bioactive and pharmacological active substance in Rhodiola rosea L. It has been reported to have neuroprotective effects on cerebral ischemia/reperfusion (I/R). However, whether salidroside can enhance neural regeneration after cerebral I/R is still unknown. This study investigated the effects of salidroside on the endogenous neural regeneration after cerebral I/R and the related mechanism. METHODS Focal cerebral I/R was induced in rats by transient middle cerebral artery occlusion/reperfusion (MCAO/R). The rats were intraperitoneally treated salidroside once daily for 7 consecutive days. Neurobehavioral assessments were performed at 3 days and 7 days after the injury. TTC staining was performed to assess cerebral infarct volume. To evaluate the survival of neurons, immunohistochemical staining of Neuronal Nuclei (NeuN) in the ischemic hemisphere were conducted. Also, immunofluorescence double or triple staining of the biomarkers of proliferating neural progenitor cells in Subventricular Zone (SVZ) and striatum of the ischemia hemisphere were performed to investigate the neurogenesis. Furthermore, reverse transcription-polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) were used to detect the expression of neurotrophic factors (NTFs) brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF). Expression of Notch1 and its target molecular Hes1 were also analyzed by western-blotting and RT-PCR. RESULTS Salidroside treatment ameliorated I/R induced neurobehavioral impairment, and reduced infarct volume. Salidroside also restored NeuN positive cells loss after I/R injury. Cerebral I/R injury significantly increased the expression of 5-Bromo-2'-Deoxyuridine (BrdU) and doublecotin (DCX), elevated the number of BrdU/Nestin/DCX triple-labeled cells in SVZ, and BrdU/Nestin/glial fibrillary acidic protein (GFAP) triple-labeled cells in striatum. Salidroside treatment further promoted the proliferation of BrdU/DCX labeled neuroblasts and BrdU/Nestin/GFAP labeled reactive astrocytes. Furthermore, salidroside elevated the mRNA expression and protein concentration of BDNF and NGF in ischemia periphery area, as well. Mechanistically, salidroside elevated Notch1/Hes1 mRNA expression in SVZ. The protein levels of them were also increased after salidroside administration. CONCLUSIONS Salidroside enhances the endogenous neural regeneration after cerebral I/R. The mechanism of the effect may involve the regulation of BDNF/NGF and Notch signaling pathway.
Collapse
Affiliation(s)
- Jiabing Zheng
- Fujian Medical Universtity Union Hospital, Fuzhou, Fujian Province, People's Republic of China
| | - Jizhou Zhang
- Institute of Materia Medica, Fujian Academy of Chinese Medical Sciences, Fuzhou, Fujian Province, People's Republic of China
| | - Jing Han
- Institute of Materia Medica, Fujian Academy of Chinese Medical Sciences, Fuzhou, Fujian Province, People's Republic of China
| | - Zhichang Zhao
- Fujian Medical Universtity Union Hospital, Fuzhou, Fujian Province, People's Republic of China
| | - Kan Lin
- Fujian Medical Universtity Union Hospital, Fuzhou, Fujian Province, People's Republic of China.
| |
Collapse
|
7
|
Al Mamun A, Shao C, Geng P, Wang S, Xiao J. Pyroptosis in Diabetic Peripheral Neuropathy and its Therapeutic Regulation. J Inflamm Res 2024; 17:3839-3864. [PMID: 38895141 PMCID: PMC11185259 DOI: 10.2147/jir.s465203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024] Open
Abstract
Pyroptosis is a pro-inflammatory form of cell death resulting from the activation of gasdermins (GSDMs) pore-forming proteins and the release of several pro-inflammatory factors. However, inflammasomes are the intracellular protein complexes that cleave gasdermin D (GSDMD), leading to the formation of robust cell membrane pores and the initiation of pyroptosis. Inflammasome activation and gasdermin-mediated membrane pore formation are the important intrinsic processes in the classical pyroptotic signaling pathway. Overactivation of the NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome triggers pyroptosis and amplifies inflammation. Current evidence suggests that the overactivation of inflammasomes and pyroptosis may further induce the progression of cancers, nerve injury, inflammatory disorders and metabolic dysfunctions. Current evidence also indicates that pyroptosis-dependent cell death accelerates the progression of diabetes and its frequent consequences including diabetic peripheral neuropathy (DPN). Pyroptosis-mediated inflammatory reaction further exacerbates DPN-mediated CNS injury. Accumulating evidence shows that several molecular signaling mechanisms trigger pyroptosis in insulin-producing cells, further leading to the development of DPN. Numerous studies have suggested that certain natural compounds or drugs may possess promising pharmacological properties by modulating inflammasomes and pyroptosis, thereby offering potential preventive and practical therapeutic approaches for the treatment and management of DPN. This review elaborates on the underlying molecular mechanisms of pyroptosis and explores possible therapeutic strategies for regulating pyroptosis-regulated cell death in the pharmacological treatment of DPN.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, 323000, People’s Republic of China
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, People’s Republic of China
| | - Chuxiao Shao
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, 323000, People’s Republic of China
| | - Peiwu Geng
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, 323000, People’s Republic of China
| | - Shuanghu Wang
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, 323000, People’s Republic of China
| | - Jian Xiao
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, 323000, People’s Republic of China
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, People’s Republic of China
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, People’s Republic of China
| |
Collapse
|
8
|
Zhang Y, Yu S, Guo X, Wang L, Yu L, Wang P. Therapeutic potential of salidroside in preserving rat cochlea organ of corti from gentamicin-induced injury through modulation of NRF2 signaling and GSK3β/NF-κB pathway. PLoS One 2024; 19:e0298529. [PMID: 38483863 PMCID: PMC10939193 DOI: 10.1371/journal.pone.0298529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/25/2024] [Indexed: 03/17/2024] Open
Abstract
Salidroside (SAL) is a phenol glycoside compound found in plants of the Rhodiola genus which has natural antioxidant and free radical scavenging properties. SAL are able to protect against manganese-induced ototoxicity. However, the molecular mechanism by which SAL reduces levels of reactive oxygen species (ROS) is unclear. Here, we established an in vitro gentamicin (GM) ototoxicity model to observe the protective effect of SAL on GM-induced hair cells (HC) damage. Cochlear explants of postnatal day 4 rats were obtained and randomly divided into six groups: two model groups (treatment with 0.2 mM or 0.4 mM GM for 24 h); two 400 μmol/L SAL-pretreated groups pretreatment with SAL for 3 h followed by GM treatment (0.2 mM or 0.4 mM) for 24 h; 400 μmol/L SAL group (treatment with SAL for 24 h); control group (normal cultured cochlear explants). The protective effects of SAL on GM-induced HC damage, and on mRNA and protein levels of antioxidant enzymes were observed. HC loss occurred after 24 h of GM treatment. Pretreatment with SAL significantly reduced GM-induced OHC loss. In cochlear tissues, mRNA and protein levels of NRF2 and HO-1 were enhanced in the GM alone group compared with the SAL pretreatment GM treatment group. SAL may protect against GM-induced ototoxicity by regulating the antioxidant defense system of cochlear tissues; SAL can activate NRF2/HO-1 signaling, inhibit NF-κB activation, activate AKT, and increase inhibitory phosphorylation of GSK3β to decrease GSK3 activity, all of which exert antioxidant effects.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Otolaryngology-Head and Neck Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Shuyuan Yu
- Department of Otolaryngology-Head and Neck Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xinyi Guo
- Department of Otolaryngology-Head and Neck Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Luoying Wang
- Department of Regenerative Medicine, College of Pharmacy, Jilin University, Changchun, Jilin, China
| | - Ling Yu
- Department of Pharmacy, the Second Hospital of Jilin University, Changchun, Jilin, China
| | - Ping Wang
- Department of Otolaryngology-Head and Neck Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
9
|
Zhang H, Zhuang X, Li Z, Wang X. Investigating the multitarget pharmacological mechanism of Rhodiola wallichiana var. cholaensis acting on angina pectoris using combined network pharmacology and molecular docking. J Thorac Dis 2024; 16:1350-1367. [PMID: 38505080 PMCID: PMC10944760 DOI: 10.21037/jtd-23-1891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/01/2024] [Indexed: 03/21/2024]
Abstract
Background Rhodiola wallichiana var. cholaensis (RW) is one of the traditional Chinese medicinal materials, which is used to treat angina pectoris (AP). However, the possible underlying mechanisms remains unclear. The aim of this study was to explore RW in the treatment of AP and to identify the potential mechanism of the core compounds. Methods In this study, systematic and comprehensive network pharmacology and molecular docking were used for the first time to explore the potential pharmacological mechanisms of RW on AP. First, the relative compounds were obtained by mining the literature, and potential targets of these compounds using target prediction were collected. We then built the AP target database using the DigSee and GeneCards databases. Based on the data, overlapping targets and hub genes were identified with Maximal Clique Centrality (MCC) algorithm in Cytoscape, cytoHubba. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses and protein-protein interaction (PPI) analysis were performed to screen the hub targets by topology. Molecular docking was utilized to investigate the receptor-ligand interactions on Autodock Vina and visualized in PyMOL. Results A total of 218 known RW therapeutic targets were selected. Systematic analysis identified nine hub targets (VEGFA, GAPDH, TP53, AKT1, CASP3, STAT3, TNF, MAPK1 and JUN) mainly involved in the complex treatment effects associated with the protection of the vascular endothelium, as well as the regulation of glucose metabolism, cellular processes, inflammatory responses, and cellular signal transduction. Molecular docking indicated that the core compounds had good affinity with the core targets. Conclusions The results of this study preliminarily identify the potential targets and signaling pathways of RW in AP therapy and lay a promising foundation for further experimental studies and clinical trials.
Collapse
Affiliation(s)
- Haitao Zhang
- NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, Fujian Maternity and Child Health Hospital, Fuzhou, China
- Medical Research Center, Fujian Children’s Hospital (Fujian Branch of Shanghai Children’s Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Xudong Zhuang
- NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, Fujian Maternity and Child Health Hospital, Fuzhou, China
- Medical Research Center, Fujian Children’s Hospital (Fujian Branch of Shanghai Children’s Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Zhixiong Li
- NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, Fujian Maternity and Child Health Hospital, Fuzhou, China
| | - Xinrui Wang
- NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, Fujian Maternity and Child Health Hospital, Fuzhou, China
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| |
Collapse
|
10
|
Salidroside Alleviates Diabetic Cognitive Dysfunction Via B3galt2/F3/Contactin Signaling Pathway in Mice. Neuroscience 2023; 512:47-58. [PMID: 36509381 DOI: 10.1016/j.neuroscience.2022.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
Diabetes is frequently accompanied by cognitive impairment with insidious onset, and progressive cognitive and behavioral changes. β-1, 3-galactosyltransferase 2 (B3galt2) contributes to glycosylation, showing a clue for neuronal apoptosis, proliferation and differentiation. However, the role of B3galt2 in diabetic cognitive dysfunction (DCD) has not been investigated. In the present study, we aimed to explore the role of B3galt2 in DCD. Additionally, the potential therapeutic effects of salidroside on DCD was also explored. Diabetic C57BL/6J mice showed cognitive dysfunction together with down-regulated B3galt2. Overexpression of B3galt2 reversed the cognitive decline of diabetic C57BL/6J. Moreover, cognitive impairment was aggravated in B3galt2+/- diabetic mice compared with C57BL/6J diabetic mice. Immunohistochemistry fluorescence indicated that B3galt2 and F3/Contactin were co-localized in the hippocampal regions. Importantly, the expression of F3/Contactin can be regulated by the manipulation of B3galt2, overexpression of which assuaged hippocampal neuronal damage, protected the synapsin, and reduced neuronal apoptosis in diabetic mice. Interestingly, SAL alleviated DCD and reversed the expression of B3galt2 in diabetic C57BL/6J mice. These findings indicate that inhibition of B3galt2/F3/Contactin pathway contributes to DCD, and participates in SAL reversed DCD.
Collapse
|
11
|
Madhu, Sharma A, Kaur A, Tyagi S, Upadhyay SK. Glutathione Peroxidases in Plants: Innumerable Role in Abiotic Stress Tolerance and Plant Development. JOURNAL OF PLANT GROWTH REGULATION 2023; 42:598-613. [DOI: 10.1007/s00344-022-10601-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 02/02/2022] [Indexed: 10/09/2024]
|
12
|
Mumtaz I, Ayaz MO, Khan MS, Manzoor U, Ganayee MA, Bhat AQ, Dar GH, Alghamdi BS, Hashem AM, Dar MJ, Ashraf GM, Maqbool T. Clinical relevance of biomarkers, new therapeutic approaches, and role of post-translational modifications in the pathogenesis of Alzheimer's disease. Front Aging Neurosci 2022; 14:977411. [PMID: 36158539 PMCID: PMC9490081 DOI: 10.3389/fnagi.2022.977411] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/18/2022] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that causes progressive loss of cognitive functions like thinking, memory, reasoning, behavioral abilities, and social skills thus affecting the ability of a person to perform normal daily functions independently. There is no definitive cure for this disease, and treatment options available for the management of the disease are not very effective as well. Based on histopathology, AD is characterized by the accumulation of insoluble deposits of amyloid beta (Aβ) plaques and neurofibrillary tangles (NFTs). Although several molecular events contribute to the formation of these insoluble deposits, the aberrant post-translational modifications (PTMs) of AD-related proteins (like APP, Aβ, tau, and BACE1) are also known to be involved in the onset and progression of this disease. However, early diagnosis of the disease as well as the development of effective therapeutic approaches is impeded by lack of proper clinical biomarkers. In this review, we summarized the current status and clinical relevance of biomarkers from cerebrospinal fluid (CSF), blood and extracellular vesicles involved in onset and progression of AD. Moreover, we highlight the effects of several PTMs on the AD-related proteins, and provide an insight how these modifications impact the structure and function of proteins leading to AD pathology. Finally, for disease-modifying therapeutics, novel approaches, and targets are discussed for the successful treatment and management of AD.
Collapse
Affiliation(s)
- Ibtisam Mumtaz
- Laboratory of Nanotherapeutics and Regenerative Medicine, Department of Nanotechnology, University of Kashmir, Srinagar, India
| | - Mir Owais Ayaz
- Laboratory of Cell and Molecular Biology, Department of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Centre for Scientific and Innovative Research, Ghaziabad, Utter Pradesh, India
| | - Mohamad Sultan Khan
- Neurobiology and Molecular Chronobiology Laboratory, Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Umar Manzoor
- Laboratory of Immune and Inflammatory Disease, Jeju Research Institute of Pharmaceutical Sciences, Jeju National University, Jeju, South Korea
| | - Mohd Azhardin Ganayee
- Laboratory of Nanotherapeutics and Regenerative Medicine, Department of Nanotechnology, University of Kashmir, Srinagar, India
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, India
| | - Aadil Qadir Bhat
- Laboratory of Cell and Molecular Biology, Department of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Centre for Scientific and Innovative Research, Ghaziabad, Utter Pradesh, India
| | - Ghulam Hassan Dar
- Sri Pratap College, Cluster University Srinagar, Jammu and Kashmir, India
| | - Badrah S. Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Pre-clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Anwar M. Hashem
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohd Jamal Dar
- Laboratory of Cell and Molecular Biology, Department of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Centre for Scientific and Innovative Research, Ghaziabad, Utter Pradesh, India
| | - Gulam Md. Ashraf
- Pre-clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Tariq Maqbool
- Laboratory of Nanotherapeutics and Regenerative Medicine, Department of Nanotechnology, University of Kashmir, Srinagar, India
| |
Collapse
|
13
|
Jangra A, Verma M, Kumar D, Chandrika C, Rachamalla M, Dey A, Dua K, Jha SK, Ojha S, Alexiou A, Kumar D, Jha NK. Targeting Endoplasmic Reticulum Stress using Natural Products in Neurological Disorders. Neurosci Biobehav Rev 2022; 141:104818. [DOI: 10.1016/j.neubiorev.2022.104818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/23/2022] [Accepted: 08/03/2022] [Indexed: 10/16/2022]
|
14
|
Bayat AH, Azimi H, Hassani Moghaddam M, Ebrahimi V, Fathi M, Vakili K, Mahmoudiasl GR, Forouzesh M, Boroujeni ME, Nariman Z, Abbaszadeh HA, Aryan A, Aliaghaei A, Abdollahifar MA. COVID-19 causes neuronal degeneration and reduces neurogenesis in human hippocampus. Apoptosis 2022; 27:852-868. [PMID: 35876935 PMCID: PMC9310365 DOI: 10.1007/s10495-022-01754-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2022] [Indexed: 11/30/2022]
Abstract
Recent investigations of COVID-19 have largely focused on the effects of this novel virus on the vital organs in order to efficiently assist individuals who have recovered from the disease. In the present study we used hippocampal tissue samples extracted from people who died after COVID-19. Utilizing histological techniques to analyze glial and neuronal cells we illuminated a massive degeneration of neuronal cells and changes in glial cells morphology in hippocampal samples. The results showed that in hippocampus of the studied brains there were morphological changes in pyramidal cells, an increase in apoptosis, a drop in neurogenesis, and change in spatial distribution of neurons in the pyramidal and granular layer. It was also demonstrated that COVID-19 alter the morphological characteristics and distribution of astrocyte and microglia cells. While the exact mechanism(s) by which the virus causes neuronal loss and morphology in the central nervous system (CNS) remains to be determined, it is necessary to monitor the effect of SARS-CoV-2 infection on CNS compartments like the hippocampus in future investigations. As a result of what happened in the hippocampus secondary to COVID-19, memory impairment may be a long-term neurological complication which can be a predisposing factor for neurodegenerative disorders through neuroinflammation and oxidative stress mechanisms.
Collapse
Affiliation(s)
- Amir-Hossein Bayat
- Department of Basic Sciences, Saveh University of Medical Sciences, Saveh, Iran
| | - Helia Azimi
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Meysam Hassani Moghaddam
- Department of Anatomical Sciences, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Vahid Ebrahimi
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mobina Fathi
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kimia Vakili
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mahdi Forouzesh
- Legal Medicine Research Center, Iranian Legal Medicine Organization, Tehran, Iran
| | - Mahdi Eskandarian Boroujeni
- Laboratory of Human Molecular Genetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Zahra Nariman
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hojjat-Allah Abbaszadeh
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arefeh Aryan
- Anatomy Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Aliaghaei
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,Department of Cell Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad-Amin Abdollahifar
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,Department of Cell Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Xu B, Chen B, Qi X, Liu S, Zhao Y, Tang C, Meng X. Genome-wide Identification and Expression Analysis of RcMYB Genes in Rhodiola crenulata. Front Genet 2022; 13:831611. [PMID: 35432456 PMCID: PMC9008588 DOI: 10.3389/fgene.2022.831611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/21/2022] [Indexed: 11/15/2022] Open
Abstract
Modern research has proved that the main medicinal component of Rhodiola crenulata, which has a wide range of medicinal value, is its secondary metabolite salidroside. The MYB transcription factor family is widely involved in biosynthesis of second metabolism and other roles in the stress response in plants, so a genome-wide identification and analysis for this family in R. crenulata is worth conducting. In this research, genome-wide analysis identified 139 MYB genes based on conserved domains in the R. crenulata genome, and 137 genes were used to construct a phylogenetic tree and modified with expression files to reveal evolutionary characteristics. Physical and chemical characteristics, gene structure, and conserved motif analysis were also used to further analyze RcMYBs. Additionally, cis-acting elements related to transcription, hormone, and MYB binding were found in the promoter region of the selected RcMYBs. Four RcMYBs were cloned, sequenced, and their gene expression pattern was analyzed for further analysis of their functions. The research results lay the foundation for further research on the function of RcMYB and R. crenulata.
Collapse
Affiliation(s)
- Binjie Xu
- Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- China Resources Sanjiu (Ya’an) Pharmaceutical Co., Ltd., Ya’an, China
- *Correspondence: Binjie Xu, ; Xianli Meng,
| | - Bang Chen
- School of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoli Qi
- School of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shunli Liu
- School of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yibing Zhao
- School of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ce Tang
- Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xianli Meng
- Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Binjie Xu, ; Xianli Meng,
| |
Collapse
|
16
|
Mehan S, Bhalla S, Siddiqui EM, Sharma N, Shandilya A, Khan A. Potential Roles of Glucagon-Like Peptide-1 and Its Analogues in Dementia Targeting Impaired Insulin Secretion and Neurodegeneration. Degener Neurol Neuromuscul Dis 2022; 12:31-59. [PMID: 35300067 PMCID: PMC8921673 DOI: 10.2147/dnnd.s247153] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/16/2022] [Indexed: 12/20/2022] Open
Abstract
Dementia is a chronic, irreversible condition marked by memory loss, cognitive decline, and mental instability. It is clinically related to various progressive neurological diseases, including Parkinson’s disease, Alzheimer’s disease, and Huntington’s. The primary cause of neurological disorders is insulin desensitization, demyelination, oxidative stress, and neuroinflammation accompanied by various aberrant proteins such as amyloid-β deposits, Lewy bodies accumulation, tau formation leading to neurofibrillary tangles. Impaired insulin signaling is directly associated with amyloid-β and α-synuclein deposition, as well as specific signaling cascades involved in neurodegenerative diseases. Insulin dysfunction may initiate various intracellular signaling cascades, including phosphoinositide 3-kinase (PI3K), c-Jun N-terminal kinases (JNK), and mitogen-activated protein kinase (MAPK). Neuronal death, inflammation, neuronal excitation, mitochondrial malfunction, and protein deposition are all influenced by insulin. Recent research has focused on GLP-1 receptor agonists as a potential therapeutic target. They increase glucose-dependent insulin secretion and are beneficial in neurodegenerative diseases by reducing oxidative stress and cytokine production. They reduce the deposition of abnormal proteins by crossing the blood-brain barrier. The purpose of this article is to discuss the role of insulin dysfunction in the pathogenesis of neurological diseases, specifically dementia. Additionally, we reviewed the therapeutic target (GLP-1) and its receptor activators as a possible treatment of dementia.
Collapse
Affiliation(s)
- Sidharth Mehan
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
- Correspondence: Sidharth Mehan, Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India, Tel +91 8059889909; +91 9461322911, Email ;
| | - Sonalika Bhalla
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Ehraz Mehmood Siddiqui
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Nidhi Sharma
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Ambika Shandilya
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Andleeb Khan
- Department of Pharmacology & Toxicology, College of Pharmacy, Jazan University, Jazan, Kingdom of Saudi Arabia
| |
Collapse
|
17
|
Shan H, Li X, Ouyang C, Ke H, Yu X, Tan J, Chen J, Wang C, Zhang L, Tang Y, Yu L, Li W. Salidroside prevents PM2.5-induced BEAS-2B cell apoptosis via SIRT1-dependent regulation of ROS and mitochondrial function. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 231:113170. [PMID: 35026589 DOI: 10.1016/j.ecoenv.2022.113170] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/28/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
PM2.5 is a harmful air pollutant currently threatening public health. It has been closely linked to increased morbidity of bronchial asthma and lung cancer worldwide. Salidroside (Sal), an active component extracted from Rhodiola rosea, has been reported to ameliorate the progression of asthma. However, there are few studies on the protective effect of salidroside on PM2.5-induced bronchial epithelial cell injury, and the related molecular mechanism is not clear. Here, we aimed to explore the protective effect and related mechanism of Sal on PM2.5 bronchial injury. We chose 50 μg/mL PM2.5 for 24 h as a PM2.5-induced cell damage model. After that BEAS-2B cells were pretreated with 40, 80, 160 µM Sal for 24 h and then exposed to 50 μg/mL PM2.5 for 24 h. We found that Sal pretreatment significantly inhibited the decrease of cell viability induced by PM2.5. Sal was effective in preventing PM2.5-induced apoptotic features, including Ca2+ overload, the cleavages of caspase 3, and the increases in levels of caspase 9 and Bcl-2-associated X protein (Bax), ultimately, Sal significantly inhibited PM2.5-induced apoptosis. Sal improved mitochondrial membrane potential, inhibited the release of cytochrome c from the mitochondria to cytoplasm. Sal alleviated ROS production, decreased the level of MDA, prevented the reduction of CAT, SOD and GSH-Px and increased the expression of NF-E2-related factor 2 (Nrf2), HO-1 and superoxide dismutase 1 (SOD1) in cells exposed to PM2.5. Furthermore, Sal improved the decrease of SIRT1 and PGC-1 α expression levels caused by PM2.5. In addition, inhibition of SIRT1 by EX527 (SIRT1 inhibitor) reversed the protective effects of Sal, including the decrease of ROS level, the increase of membrane potential level and the decrease of apoptosis level. Thus, Sal may be regarded as a potential drug to prevent PM2.5-induced apoptosis of bronchial epithelial cells and other diseases with similar pathological mechanisms.
Collapse
Affiliation(s)
- Hui Shan
- Department of Environmental Hygiene, School of Public Health, Weifang Medical College, Weifang, China
| | - Xiaohong Li
- Public Health Demonstration Center, School of Public Health, Weifang Medical College, Weifang, China; Department of Nutrition and Food Hygiene, School of Public Health, Weifang Medical College, Weifang, China
| | - Chuan Ouyang
- Department of Environmental Hygiene, School of Public Health, Weifang Medical College, Weifang, China
| | - Hongyang Ke
- Department of Environmental Hygiene, School of Public Health, Weifang Medical College, Weifang, China
| | - Xiaoli Yu
- Key Laboratory of health inspection and quarantine, Weifang, China; Public Health Demonstration Center, School of Public Health, Weifang Medical College, Weifang, China
| | - Jinfeng Tan
- Weifang environmental monitoring station, Weifang, China
| | - Junhao Chen
- Key Laboratory of health inspection and quarantine, Weifang, China; Public Health Demonstration Center, School of Public Health, Weifang Medical College, Weifang, China
| | - Chunping Wang
- Department of Environmental Hygiene, School of Public Health, Weifang Medical College, Weifang, China; Public Health Demonstration Center, School of Public Health, Weifang Medical College, Weifang, China
| | - Liping Zhang
- Department of Environmental Hygiene, School of Public Health, Weifang Medical College, Weifang, China; Public Health Demonstration Center, School of Public Health, Weifang Medical College, Weifang, China
| | - Yunfeng Tang
- Department of Environmental Hygiene, School of Public Health, Weifang Medical College, Weifang, China; Public Health Demonstration Center, School of Public Health, Weifang Medical College, Weifang, China
| | - Li Yu
- School of basic medicine, Weifang Medical University, Weifang, China
| | - Wanwei Li
- Department of Environmental Hygiene, School of Public Health, Weifang Medical College, Weifang, China; Public Health Demonstration Center, School of Public Health, Weifang Medical College, Weifang, China.
| |
Collapse
|
18
|
Zappa Villar MF, López Hanotte J, Crespo R, Pardo J, Reggiani PC. Insulin-like growth factor 1 gene transfer for sporadic Alzheimer's disease: New evidence for trophic factor mediated hippocampal neuronal and synaptic recovery-based behavior improvement. Hippocampus 2021; 31:1137-1153. [PMID: 34324234 DOI: 10.1002/hipo.23379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/04/2021] [Accepted: 07/19/2021] [Indexed: 12/23/2022]
Abstract
Sporadic Alzheimer's disease (sAD) is the most prevalent neurodegenerative disorder with no cure. Patients typically suffer from cognitive impairment imprinted by irreversible neocortex and hippocampal degeneration with overt synaptic and neuron dysfunction. Insulin-like growth factor 1 (IGF1) has proven to be a potent neuroprotective molecule in animal models of age-related neurodegeneration. In this regard, adenoviral gene transfer aiming at IGF1 brain overexpression has been hitherto an underexplored approach for the sAD treatment. We postulated enhanced IGF1 signaling in the brain as a restorative means in the diseased brain to revert cognitive deficit and restore hippocampal function. We implemented recombinant adenovirus mediated intracerebroventricular IGF1 gene transfer on the streptozotocin (STZ) induced sAD rat model, using 3-month-old male Sprague Dawley rats. This approach enhanced IGF1 signaling in the hippocampus and dampened sAD phosphorylated Tau. We found a remarkable short-term improvement in species-typical behavior, recognition memory, spatial memory, and depressive-like behavior. Histological analysis revealed a significant recovery of immature hippocampal neurons. We additionally recorded an increase in hippocampal microglial cells, which we suggest to exert anti-inflammatory effects. Finally, we found decreased levels of pre- and postsynaptic proteins in the hippocampus of STZ animals. Interestingly, IGF1 gene transfer increased the levels of PSD95 and GAD65/67 synaptic markers, indicating that the treatment enhanced the synaptic plasticity. We conclude that exogenous activation of IGF1 signaling pathway, 1 week after intracerebroventricular STZ administration, protects hippocampal immature neurons, dampens phosphorylated Tau levels, improves synaptic function and therefore performs therapeutically on the sAD STZ model. Hence, this study provides strong evidence for the use of this trophic factor to treat AD and age-related neurodegeneration.
Collapse
Affiliation(s)
- María Florencia Zappa Villar
- Institute for Biochemical Research (INIBIOLP)-National Scientific and Technical Research Council (CONICET)-School of Medical Sciences, National University of La Plata (UNLP), La Plata, Argentina
| | - Juliette López Hanotte
- Institute for Biochemical Research (INIBIOLP)-National Scientific and Technical Research Council (CONICET)-School of Medical Sciences, National University of La Plata (UNLP), La Plata, Argentina
| | - Rosana Crespo
- Institute of Experimental Pharmacology of Córdoba (IFEC-CONICET), Department of Pharmacology, School of Chemical Sciences, National University of Córdoba, Córdoba, Argentina
| | - Joaquín Pardo
- Institute for Biochemical Research (INIBIOLP)-National Scientific and Technical Research Council (CONICET)-School of Medical Sciences, National University of La Plata (UNLP), La Plata, Argentina.,Molecular Neuromodulation, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Paula Cecilia Reggiani
- Institute for Biochemical Research (INIBIOLP)-National Scientific and Technical Research Council (CONICET)-School of Medical Sciences, National University of La Plata (UNLP), La Plata, Argentina.,Department of Cytology, Histology and Embryology B, School of Medical Sciences, UNLP, La Plata, Argentina
| |
Collapse
|
19
|
Plotnikov MB, Plotnikova TM. Tyrosol as a Neuroprotector: Strong Effects of a "Weak" Antioxidant. Curr Neuropharmacol 2021; 19:434-448. [PMID: 32379590 PMCID: PMC8206466 DOI: 10.2174/1570159x18666200507082311] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/15/2020] [Accepted: 05/03/2020] [Indexed: 02/07/2023] Open
Abstract
The use of neuroprotective agents for stroke is pathogenetically justified, but the translation of the results of preclinical studies of neuroprotectors into clinical practice has been a noticeable failure. One of the leading reasons for these failures is the one-target mechanism of their activity. p-Tyrosol (Tyr), a biophenol, is present in a variety of natural sources, mainly in foods, such as olive oil and wine. Tyr has a wide spectrum of biological activity: antioxidant, stress-protective, anti-inflammatory, anticancer, cardioprotective, neuroprotective and many others. This review analyzes data on the neuroprotective, antioxidant, anti-inflammatory, anti-apoptotic and other kinds of Tyr activity as well as data on the pharmacokinetics of the substance. The data presented in the review substantiate the acceptability of tyr as the basis for the development of a new neuroprotective drug with multitarget activity for the treatment of ischemic stroke. Tyr is a promising molecule for the development of an effective neuroprotective agent for use in ischemic stroke.
Collapse
Affiliation(s)
- Mark B Plotnikov
- Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, 3 Lenin Av., Tomsk 634028, Russian Federation
| | | |
Collapse
|
20
|
Sun W, Liu C, Wang Y, Zhou X, Sui W, Zhang Y, Zhang Q, Han J, Li X, Han F. Rhodiola crenulata protects against Alzheimer's disease in rats: A brain lipidomics study by Fourier-transform ion cyclotron resonance mass spectrometry coupled with high-performance reversed-phase liquid chromatography and hydrophilic interaction liquid chromatography. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e8969. [PMID: 33047398 DOI: 10.1002/rcm.8969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/28/2020] [Accepted: 10/04/2020] [Indexed: 06/11/2023]
Abstract
RATIONALE Alzheimer's disease (AD) is a chronic, severe, progressive neurodegenerative disorder associated with cognitive and memory impairment that ultimately causes death. Most approved drugs can only alleviate some of the symptoms of AD, but no interventions have been found that reverse the underlying disease mechanisms. Rhodiola crenulata extract (RCE) has been reported to alleviate AD symptoms in rats. However, its underlying mechanism of action is still unclear. METHODS A brain lipidomics study was conducted to investigate the protective effects of RCE against AD in rats to identify potential biomarkers of AD using Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS) coupled with high-performance reversed-phase liquid chromatography (RPLC) and hydrophilic interaction liquid chromatography (HILIC). Differences in lipid metabolism profiles were evaluated using multivariate statistical analysis. Finally, the possible mechanism of action of RCE on AD was investigated by analysing metabolic pathways. RESULTS The RPLCHILIC/FT-ICR MS results showed 20 lipid components with significant differences between the control and model groups. After administration of RCE, the levels of 10 lipids in AD rats tended to shift toward reference levels. The pathway analysis revealed that the protective effect of RCE against AD might be related to regulation of glycerophospholipid metabolism. CONCLUSIONS This study provides a novel perspective on the potential intervention mechanism of RCE in the treatment of AD.
Collapse
Affiliation(s)
- Wei Sun
- Department of Biomedical Engineering School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Chun Liu
- Hainan Institute for Drug Control, Haikou, 570311, China
| | - Yanan Wang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Xing Zhou
- Hainan Institute of Materia Medica, Haikou, 570311, China
| | - Wenwen Sui
- Shenyang Harmony Health Medical Laboratory, 15 Buildings, 19 Wenhui Street, JinPenglong Hightech Industry Park, Shenyang, 110016, China
| | - Yu Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Qingyu Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Jing Han
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Xintong Li
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Fei Han
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| |
Collapse
|
21
|
Govindarajulu M, Ramesh S, Neel L, Fabbrini M, Buabeid M, Fujihashi A, Dwyer D, Lynd T, Shah K, Mohanakumar KP, Smith F, Moore T, Dhanasekaran M. Nutraceutical based SIRT3 activators as therapeutic targets in Alzheimer's disease. Neurochem Int 2021; 144:104958. [PMID: 33444675 DOI: 10.1016/j.neuint.2021.104958] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 12/21/2020] [Accepted: 01/06/2021] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease, and its incidence is increasing worldwide with increased lifespan. Currently, there is no effective treatment to cure or prevent the progression of AD, which indicates the need to develop novel therapeutic targets and agents. Sirtuins, especially SIRT3, a mitochondrial deacetylase, are NAD-dependent histone deacetylases involved in aging and longevity. Accumulating evidence indicates that SIRT3 dysfunction is strongly associated with pathologies of AD, hence, therapeutic modulation of SIRT3 activity may be a novel application to ameliorate the pathologies of AD. Natural products commonly used in traditional medicine have wide utility and appear to have therapeutic benefits for the treatment of neurodegenerative diseases such as AD. The present review summarizes the currently available natural SIRT3 activators and their potentially neuroprotective molecular mechanisms of action that make them a promising agent in the treatment and management of neurodegenerative diseases such as AD.
Collapse
Affiliation(s)
- Manoj Govindarajulu
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, AL 36849, USA
| | - Sindhu Ramesh
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, AL 36849, USA
| | - Logan Neel
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, AL 36849, USA
| | - Mary Fabbrini
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, AL 36849, USA
| | - Manal Buabeid
- Clinical Pharmacy Department, College of Pharmacy and Health Sciences, Ajman University, United Arab Emirates
| | - Ayaka Fujihashi
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, AL 36849, USA
| | - Darby Dwyer
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, AL 36849, USA
| | - Tyler Lynd
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, AL 36849, USA
| | - Karishma Shah
- Department of Ophthalmology, D.Y. Patil Medical College and Research Hospital, Mumbai, India
| | | | - Forrest Smith
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, AL 36849, USA
| | - Timothy Moore
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, AL 36849, USA
| | - Muralikrishnan Dhanasekaran
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, AL 36849, USA.
| |
Collapse
|
22
|
Wang Z, He C, Shi JS. Natural Products for the Treatment of Neurodegenerative Diseases. Curr Med Chem 2020; 27:5790-5828. [PMID: 31131744 DOI: 10.2174/0929867326666190527120614] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/06/2019] [Accepted: 05/09/2019] [Indexed: 12/13/2022]
Abstract
Neurodegenerative diseases are a heterogeneous group of disorders characterized by the progressive degeneration of the structure and function of the central nervous system or peripheral nervous system. Alzheimer's Disease (AD), Parkinson's Disease (PD) and Spinal Cord Injury (SCI) are the common neurodegenerative diseases, which typically occur in people over the age of 60. With the rapid development of an aged society, over 60 million people worldwide are suffering from these uncurable diseases. Therefore, the search for new drugs and therapeutic methods has become an increasingly important research topic. Natural products especially those from the Traditional Chinese Medicines (TCMs), are the most important sources of drugs, and have received extensive interest among pharmacist. In this review, in order to facilitate further chemical modification of those useful natural products by pharmacists, we will bring together recent studies in single natural compound from TCMs with neuroprotective effect.
Collapse
Affiliation(s)
- Ze Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi Guizhou 563003, China.,Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, 563003, P.R. China
| | - Chunyang He
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi Guizhou 563003, China.,Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, 563003, P.R. China
| | - Jing-Shan Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi Guizhou 563003, China
| |
Collapse
|
23
|
Serum lipidomics study reveals protective effects of Rhodiola crenulata extract on Alzheimer's disease rats. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1158:122346. [PMID: 32882532 DOI: 10.1016/j.jchromb.2020.122346] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/17/2020] [Accepted: 08/23/2020] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is a chronic and progressive neurodegenerative disorder. Rhodiola crenulata extract (RCE) has shown its protective effects on AD, however, the underlying mechanism is still unclear. In this work, serum lipidomics was conducted to reveal the action mechanism of RCE on AD by HPLC coupled with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). The animal model of AD was reproduced by intrahippocampal injection of Aβ1-42 in rats. The novel object recognition test and passive avoidance test were performed to evaluate the protective effects of RCE on AD rats. The differences of lipid metabolism profiles in rats were evaluated by multivariate statistical analysis. Then, the potential lipid biomarkers were identified and the possible mechanism of RCE on AD was elucidated by metabolic pathways analysis. As a result, twenty-eight lipids with significant differences between the control group and the model group were screened out. With the treatment of RCE, 19 lipids in AD rats showed a trend of callback to the normal levels. The results of pathway analysis indicated that the protective effects of RCE on AD might be closely related to the regulation of linoleic acid metabolism, α-linoleic acid metabolism, sphingolipid metabolism and ether lipid metabolism. In conclusion, this study provides a new perspective on the potential intervention mechanism of RCE for AD treatment.
Collapse
|
24
|
Li X, Wang Y, Su M, Chu X, Li S, Yue Y, Zhang X, Wang J, Han F. Brain metabolomics study for the protective effects of Rhodiola crenulata extract on Alzheimer's disease by HPLC coupled with Fourier transform-ion cyclotron resonance mass spectrometry. J Sep Sci 2020; 43:3216-3223. [PMID: 32506776 DOI: 10.1002/jssc.201901314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 05/26/2020] [Accepted: 06/02/2020] [Indexed: 01/17/2023]
Abstract
In order to investigate the protective effects of Rhodiola crenulata extract on Alzheimer's disease, a brain metabolomics study in rats was conducted by high performance liquid chromatography coupled with Fourier transform ion cyclotron resonance mass spectrometry. Rat model was constructed by bilateral hippocampal injection of amyloid-β peptide and immunohistochemistry was performed to evaluate the pharmacological effect of Rhodiola crenulata extract. Multivariate statistical analysis was used to discover potential biomarkers in rat brain and related metabolic pathways analysis was conducted to elucidate the action mechanism of Rhodiola crenulata extract. As a result, a total of 19 metabolites contributing to Alzheimer's disease progress were identified and nine of them were restored to the normal levels after drug administration. Pathway analysis revealed that the protective effects of Rhodiola crenulata extract are related to the regulation of glutathione metabolism and arachidonic acid metabolism in rat brain. In conclusion, this work demonstrates that the developed metabolomics method is useful to investigate the protective effects of Rhodiola crenulata extract against Alzheimer's disease. These outcomes may further provide reliable evidence to illuminate the intervention mechanism of other traditional Chinese medicines on Alzheimer's disease.
Collapse
Affiliation(s)
- Xintong Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Yanan Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Mingming Su
- Dalian Customs District, Dalian, P. R. China
| | - Xiaowen Chu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Siqi Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Yiqiang Yue
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Xiaoxue Zhang
- Shenyang Xingqi Pharmaceutical Co. Ltd., Shenyang, P. R. China
| | - Jiahong Wang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Fei Han
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P. R. China
| |
Collapse
|
25
|
Lu Y, Yang J, Wang X, Ma Z, Li S, Liu Z, Fan X. Research progress in use of traditional Chinese medicine for treatment of spinal cord injury. Biomed Pharmacother 2020; 127:110136. [PMID: 32335299 DOI: 10.1016/j.biopha.2020.110136] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/17/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Spinal cord injury (SCI) is a serious central nervous system disorder caused by trauma that has gradually become a major challenge in clinical medical research. As an important branch of worldwide medical research, traditional Chinese medicine (TCM) is rapidly moving towards a path of reform and innovation. Therefore, this paper systematically reviews research related to existing TCM treatments for SCI, with the aims of identifying deficits and shortcomings within the field, and proposing feasible alternative prospects. METHODS All data and conclusions in this paper were obtained from articles published by peers in relevant fields. PubMed, SciFinder, Google Scholar, Web of Science, and CNKI databases were searched for relevant articles. Results regarding TCM for SCI were identified and retrieved, then manually classified and selected for inclusion in this review. RESULTS The literature search identified a total of 652 articles regarding TCM for SCI. Twenty-eight treatments (16 active ingredients, nine herbs, and three compound prescriptions) were selected from these articles; the treatments have been used for the prevention and treatment of SCI. In general, these treatments involved antioxidative, anti-inflammatory, neuroprotective, and/or antiapoptotic effects of TCM compounds. CONCLUSIONS This paper showed that TCM treatments can serve as promising auxiliary therapies for functional recovery of patients with SCI. These findings will contribute to the development of diversified treatments for SCI.
Collapse
Affiliation(s)
- Yubao Lu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jingjing Yang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xuexi Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Zhanjun Ma
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Sheng Li
- Lanzhou First People's Hospital, Lanzhou, Gansu 730000, China
| | - Zhaoyang Liu
- Department of Medical Imaging, Shanxi Medical University, Jinzhong, Shanxi 030600, China
| | - Xuegong Fan
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| |
Collapse
|
26
|
Zou XH, Sun LH, Yang W, Li BJ, Cui RJ. Potential role of insulin on the pathogenesis of depression. Cell Prolif 2020; 53:e12806. [PMID: 32281722 PMCID: PMC7260070 DOI: 10.1111/cpr.12806] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/22/2020] [Accepted: 03/18/2020] [Indexed: 12/11/2022] Open
Abstract
The regulation of insulin on depression and depression-like behaviour has been widely reported. Insulin and activation of its receptor can promote learning and memory, affect the hypothalamic-pituitary-adrenal axis (HPA) balance, regulate the secretion of neurotrophic factors and neurotransmitters, interact with gastrointestinal microbiome, exert neuroprotective effects and have an impact on depression. However, the role of insulin on depression remains largely unclear. Therefore, in this review, we summarized the potential role of insulin on depression. It may provide new insight for clarifying role of insulin on the pathogenesis of depression.
Collapse
Affiliation(s)
- Xiao Han Zou
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Li Hua Sun
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Bing Jin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Ran Ji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
27
|
Gao L, Wu C, Liao Y, Wang J. Antidepressants effects of Rhodiola capsule combined with sertraline for major depressive disorder: A randomized double-blind placebo-controlled clinical trial. J Affect Disord 2020; 265:99-103. [PMID: 32090788 DOI: 10.1016/j.jad.2020.01.065] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/04/2020] [Accepted: 01/14/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND We performed a proof of concept trial to evaluate relative safety and efficacy of Rhodiola Capsule for mild to moderate major depressive disorder(MDD). METHODS It is a randomized double-blind placebo-controlled clinical trial which 100 patients were randomized to 12 weeks into three groups. One of which (group A: 33 patients) received one sertraline and two placebos(0.6 g/day) tablets daily, a second (group B: 33 patients) received one sertraline and two Rhodiola capsules (0.6 g/day) daily, and a third (group C: 34 patients) received one sertraline,one placebo tablet and one tablet of Rhodiola capsule (0.3 g/day)daily. Changes over time in Hamilton Depression Rating (HAM-D), Beck Depression Inventory (BDI), and Clinical Global Impression Change (CGI/C) scores were examined. Significant post-treatment improvements were observed for both groups (Rhodiola Capsule) in HAMD, BDI, and CGI scores. The decline in HAMD, BDI, and CGI scores was greater for group B versus group A and C.While the CGI (versus group A) were greater for group B and C. RESULTS Statistically significant reductions were observed for HAM-D, BDI, and CGI scores for all treatment conditions with significant difference between groups. The decline in HAM-D, BDI, and CGI scores was greater for group B versus group C and A. CONCLUSIONS It is concluded that the Rhodiola capsule shows anti-depressive potency in patients with depression disorder when administered in dosages of either 0.3 or 0.6 g/day over a 12-week period.Rhodiola capsule can improve the quality of life and clinical symptoms.The high doses of Rhodiola capsule are better than the lower doses.
Collapse
Affiliation(s)
- Lili Gao
- Department of Neurology and psychiatry, The second Affiliated Hospital of Fujian Traditional Chinese Medical University, Fuzhou, Fujian, China.
| | - Chenghan Wu
- Department of Neurology and psychiatry, The second Affiliated Hospital of Fujian Traditional Chinese Medical University, Fuzhou, Fujian, China
| | - Yuansheng Liao
- Department of Neurology and psychiatry, The second Affiliated Hospital of Fujian Traditional Chinese Medical University, Fuzhou, Fujian, China
| | - Jinmin Wang
- Department of Neurology and psychiatry, The second Affiliated Hospital of Fujian Traditional Chinese Medical University, Fuzhou, Fujian, China
| |
Collapse
|
28
|
Alamgeer, Asif H, Sandhu MZA, Aziz M, Irfan HM, Moreno KGT, Junior AG. Ameliorative Effects and Cellular Aspects of Phytoconstituents in Atherosclerosis. Curr Pharm Des 2020; 26:2574-2582. [PMID: 32056518 DOI: 10.2174/1381612826666200214161139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 01/17/2020] [Indexed: 11/22/2022]
Abstract
Atherosclerosis is a cardiovascular disease that involves vessels through the development of fatty streaks and plaques. Plant-based compounds can help treat or prevent atherosclerosis by affecting various factors that are involved in the disease. The present review discusses our current knowledge of the major cellular and molecular mechanisms of phytotherapeutics for the treatment of atherosclerosis. Numerous studies have evaluated the antiatherosclerotic activity of phytoconstituents to provide preliminary evidence of efficacy, but only a few studies have delineated the underlying molecular mechanisms. Plant-derived phytotherapeutics primarily targets abnormal levels of lipoproteins, endothelial dysfunction, smooth muscle cell migration, foam cell development, and atheromatous plaque formation. Nonetheless, the principal mechanisms that are responsible for their therapeutic actions remain unclear. Further pharmacological studies are needed to elucidate the underlying molecular mechanisms of the antiatherosclerotic response to these phytoconstituents.
Collapse
Affiliation(s)
- Alamgeer
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Hira Asif
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan,Department of Pharmacy, University of Lahore, Gujrat Campus, Gujrat, Pakistan
| | - Muhammad Z A Sandhu
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Madiha Aziz
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Hafiz M Irfan
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Karyne G T Moreno
- Laboratory of Cardiovascular Research and Integrative Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, Pakistan
| | - Arquimedes Gasparotto Junior
- Laboratory of Electrophysiology and Cardiovascular Pharmacology, Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil
| |
Collapse
|
29
|
Guardia de Souza e Silva T, do Val de Paulo MEF, da Silva JRM, da Silva Alves A, Britto LRG, Xavier GF, Lopes Sandoval MR. Oral treatment with royal jelly improves memory and presents neuroprotective effects on icv-STZ rat model of sporadic Alzheimer's disease. Heliyon 2020; 6:e03281. [PMID: 32055729 PMCID: PMC7005440 DOI: 10.1016/j.heliyon.2020.e03281] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 02/12/2019] [Accepted: 01/08/2020] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive decline in cognitive function. Intracerebroventricular injection of streptozotocin (icv-STZ) has been used as an experimental model of Sporadic AD (SAD) in rodents and represents a promising tool for etiopathogenic analysis and evaluation of new therapeutic proposals for AD. The icv-STZ model shows many aspects of SAD abnormalities, resulting in decreased brain glucose and energy metabolism, cognitive impairment, oxidative stress, neuronal loss, and amyloid angiopathy. Royal jelly (RJ), a substance produced by worker honeybees of the Apis mellifera species, has been popularly used for more than 30 years in areas related to health eating and natural medicine. Researches indicate that RJ has a several pharmacological activities, including neuroprotective and improvement of cognitive function. The objective of this study was to investigate the effects of oral treatment with royal jelly during 2 weeks in Wistar rats submitted to icv-STZ on a working memory and neuroprotection, as evaluated by neurogenesis, neurodegeneration and oxidative stress. In this study, icv-STZ injection induced deleterious effects in the hippocampus, associated with cognitive impairments, and developed marked neurodegeneration, besides the reduction of neurogenesis and increased oxidative stress. On the other hand, RJ long-term oral administration induced beneficial effects in animals injured by icv-STZ injection, increasing retention time for working spatial memory, reducing neurodegeneration and oxidative stress level and increasing the proliferation of new neurons in the hippocampus. Thus, RJ promotes beneficial effects on cognitive functions and exhibits a neuroprotective action in the STZ experimental model of SAD.
Collapse
Affiliation(s)
| | | | | | - Adilson da Silva Alves
- Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 2415, São Paulo, Brazil
| | - Luiz Roberto G. Britto
- Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 2415, São Paulo, Brazil
| | - Gilberto Fernando Xavier
- Institute of Biosciences, University of São Paulo, Rua do Matão, Travessa 14, 101, São Paulo, Brazil
| | - Maria Regina Lopes Sandoval
- Laboratory of Pharmacology, Butantan Institute, Avenida Vital Brasil, 1500, cep 05503-900, São Paulo, Brazil
| |
Collapse
|
30
|
Xie H, Shen CY, Jiang JG. The sources of salidroside and its targeting for multiple chronic diseases. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103648] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
31
|
Yang L, Yu Y, Zhang Q, Li X, Zhang C, Mao T, Liu S, Tian Z. Anti-gastric cancer effect of Salidroside through elevating miR-99a expression. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2019; 47:3500-3510. [PMID: 31432697 DOI: 10.1080/21691401.2019.1652626] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/22/2019] [Accepted: 08/01/2019] [Indexed: 12/14/2022]
Abstract
Salidroside is an active ingredient extracted from Rhodiola rosea that has anti-tumor activities. The current paper attempted to assess the impact of Salidroside on gastric cancer (GC) and explore the potential mechanism. GC cell lines (SNU-216 and MGC803) and gastric epithelial cell line GES-1 were treated with Salidroside. CCK-8 assay, colony formation assay, flow cytometry and Transwell assay were respectively performed to evaluate GC cells phenotype. qRT-PCR and western blot were conducted to reveal the downstream genes and signaling of Salidroside. We found that 800 μM Salidroside was capable of reducing GC cells viability, while has no such impacts on GES-1 cells. Salidroside inhibited GC cells proliferation, migration, invasion and promoted apoptosis, which coupled with the down-regulation of p21, Bcl-2, MMP2, RhoA, p-ROCK1, Vimentin and the up-regulations of CyclinD1, Bax, cleaved caspases. miR-99a was found to be highly expressed in response to Salidroside treatment. Besides, the inhibition of MAPK/ERK and PI3K/AKT signaling induced by Salidroside was attenuated by miR-99a silence and in this process, IGF1R worked as a target of miR-99a. The anti-GC effect of Salidroside was also confirmed in a mouse model of GC. The promoting effect of Salidroside on miR-99a expression was also verified in vivo. Furthermore, Salidroside promoted the cisplatin-sensitivity of SGC7901/DDP cells. In conclusion, this study demonstrated that Salidroside possessed anti-GC effects through regulating miR-99a/IGF1R axis and inhibiting MAPK/ERK and PI3K/AKT pathways.
Collapse
Affiliation(s)
- Lin Yang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University , Qingdao , China
| | - Yanan Yu
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University , Qingdao , China
| | - Qi Zhang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University , Qingdao , China
| | - Xiaoyu Li
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University , Qingdao , China
| | - Cuiping Zhang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University , Qingdao , China
| | - Tao Mao
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University , Qingdao , China
| | - Siliang Liu
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University , Qingdao , China
| | - Zibin Tian
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University , Qingdao , China
| |
Collapse
|
32
|
Fan Y, Guo L, Wei J, Chen J, Sun H, Guo T. Effects of Salidroside on Trabecular Meshwork Cell Extracellular Matrix Expression and Mouse Intraocular Pressure. Invest Ophthalmol Vis Sci 2019; 60:2072-2082. [PMID: 31091314 DOI: 10.1167/iovs.19-26585] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Excessive accumulation of extracellular matrix (ECM) in the trabecular meshwork (TM) reduces aqueous humor outflow, which likely contributes to elevation of IOP in primary open-angle glaucoma (POAG). Salidroside, a phenolic glycoside isolated from Rhodiola rosea is reported to prevent profibrotic responses by inhibiting Smad signaling pathway activated by TGF-β in liver, lung, and kidney tissues. We tested if salidroside can (1) inhibit TGF-β2-induced ECM expression in cultured human TM cells, and (2) lower TGF-β2-induced ocular hypertension in the mouse. Methods Cultured human TM cells stimulated with 5 ng/mL TGF-β2 for 48 hours were treated with salidroside for 24 hours. The expressions of fibronectin (FN), collagen type IV (COL-IV), and laminin (LN) were evaluated by quantitative PCR, Western blot, and immunocytochemistry. BALB/cJ mice were injected intravitreally with an adenoviral vector encoding a bioactive mutant of TGF-β2 (Ad.hTGF-β2226/228) in one eye to induce ocular hypertension, with the uninjected contralateral or Ad.Empty-injected eyes serving as controls. Mice were treated with a daily intraperitoneal injection of 40 mg/kg salidroside. Conscious mouse IOP values were measured using a TonoLab rebound tonometer. Results In cultured human TM cells, treatment with TGF-β2 increased expressions of FN, COL-IV, and LN, as assessed by quantitative PCR, Western blotting, and immunocytochemistry, all of which were significantly and completely ameliorated by 30 μM salidroside. Daily intraperitoneal injections of salidroside (40 mg/kg), starting either at day 0 (same day as Ad.hTGF-β2226/228 injection) or at day 14, significantly lowered TGF-β2-induced ocular hypertension in the mouse. In contrast, salidroside did not affect IOP of control eyes. Conclusions These results demonstrated that salidroside is capable of minimizing TGF-β2-induced ECM expression in cultured human TM cells. It also reduced TGF-β2-induced ocular hypertension in the mouse. These findings indicate that this phenolic glycoside may be useful as a novel treatment for POAG.
Collapse
Affiliation(s)
- Yuchen Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.,Bengbu Medicine College, Bengbu, Anhui, China
| | - Li Guo
- Department of Ophthalmology, Luan Affiliated Hospital of Anhui Medicine University, Luan, Anhui, China
| | - Jiahong Wei
- Bengbu Medicine College, Bengbu, Anhui, China
| | - Junzhao Chen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Hao Sun
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Tao Guo
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| |
Collapse
|
33
|
Sasaki-Hamada S, Ikeda M, Oka JI. Glucagon-like peptide-2 rescues memory impairments and neuropathological changes in a mouse model of dementia induced by the intracerebroventricular administration of streptozotocin. Sci Rep 2019; 9:13723. [PMID: 31548563 PMCID: PMC6757030 DOI: 10.1038/s41598-019-50167-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 09/06/2019] [Indexed: 12/13/2022] Open
Abstract
Glucagon-like peptide 2 (GLP-2) is derived from the proglucagon gene expressed in the intestines, pancreas and brain. Our previous study showed that GLP-2 improved lipopolysaccharide-induced memory impairments. The current study was designed to further investigated the potential of GLP-2 in memory impairment induced by intracerebroventricular administration of streptozotocin (ICV-STZ) in mice, which have been used as an animal model of sporadic Alzheimer’s disease (AD). STZ was administered on alternate days (Day-1 and Day-3) in order to induce dementia in male ddY mice. ICV-STZ-treated mice were administered GLP-2 (0.6 μg/mouse, ICV) for 5 days from 14 days after the first ICV administration of STZ. In these mice, we examined spatial working memory, the biochemical parameters of oxidative stress, or neurogenesis. The GLP-2 treatment restored spatial working memory in ICV-STZ-treated mice. ICV-STZ-treated mice showed markedly increased thiobarbituric acid reactive species (TBARS) and decreased glutathione (GSH) levels, and GLP-2 significantly restored these ICV-STZ-induced changes. GLP-2 also significantly restored neurogenesis in the subgranular zone of the dentate gyrus in ICV-STZ-treated mice. We herein demonstrated that GLP-2 significantly restored ICV-STZ-induced memory impairments as well as biochemical and histopathological alterations, and accordingly, propose that the memory restorative ability of GLP-2 is due to its potential to reduce oxidative stress.
Collapse
Affiliation(s)
- Sachie Sasaki-Hamada
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.,Department of Physiology, School of Allied Health Sciences, Kitasato University, Sagamihara, 252-0373, Japan
| | - Masaatsu Ikeda
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Jun-Ichiro Oka
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.
| |
Collapse
|
34
|
Ge C, Zhang J, Feng F. Salidroside enhances the anti-cancerous effect of imatinib on human acute monocytic leukemia via the induction of autophagy-related apoptosis through AMPK activation. RSC Adv 2019; 9:25022-25033. [PMID: 35528698 PMCID: PMC9070041 DOI: 10.1039/c9ra01683j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 06/03/2019] [Indexed: 11/22/2022] Open
Abstract
As the typical tyrosine kinase inhibitor, imatinib has been the first-line antineoplastic agent for both chronic myeloid leukemia and acute lymphoblastic leukemia. However, a large number of patients are still resistant to the benefits of imatinib, and they have a dissatisfactory prognosis. Salidroside, a compound that is extracted from natural plants, has been reported to have an excellent anticancer effect and few side effects. In the present study, we have developed a new combination therapy strategy of salidroside and imatinib for combating the growth of acute lymphoblastic leukemia. As demonstrated by the anti-proliferation assay, salidroside exhibited excellent cytotoxicity against myeloid leukemia cells. Moreover, cells treated by the combination therapy of salidroside and imatinib displayed a clear lower growth rate than cells only treated by imatinib, indicating that salidroside has a positive effect on enhancing the cytotoxicity of imatinib against leukemia cells. Subsequently, the underlying mechanisms were investigated. The results revealed that autophagy marker proteins in leukemia cells, including LC3, p62, and Beclin1, displayed a significant expression change after treating them with salidroside plus imatinib, with the levels of LC3 and Beclin1 dramatically increasing while the expression of p62 was significantly decreased. Moreover, an obvious down-regulation of p-PI3K, p-AKT and p-mTOR expression levels in leukemia cells after treatment with salidroside plus imatinib suggested that the PI3K/mTOR pathway plays an important role in the process of cell apoptosis induced by salidroside or imatinib. Further studies showed that pre-incubating the cells with an autophagy inhibitor dramatically inhibited the ability of imatinib to induce autophagy, but did not inhibit the ability of salidroside. The underlying causes were subsequently explored and the results showed that silencing AMPKα1, the most important regulator of autophagy, dramatically attenuates the ability of salidroside to induce cell apoptosis. These results together indicated that salidroside enhances the cytotoxicity of imatinib on acute monocytic leukemia via the induction of autophagy-related apoptosis through AMPK activation. The unique advantages of combination therapy were further confirmed by in vivo experiments, with the tumor-bearing cells treated with salidroside plus imatinib achieving the best anti-tumor effect.
Collapse
Affiliation(s)
- Chiyu Ge
- School of Pharmacy, Jiangsu Food and Pharmaceutical Science College Meicheng Road No. 4 Huaian City Jiangsu Province 223003 P. R. China
| | - Junli Zhang
- School of Pharmacy, Jiangsu Food and Pharmaceutical Science College Meicheng Road No. 4 Huaian City Jiangsu Province 223003 P. R. China
| | - Feng Feng
- School of Pharmacy, Jiangsu Food and Pharmaceutical Science College Meicheng Road No. 4 Huaian City Jiangsu Province 223003 P. R. China
| |
Collapse
|
35
|
Yang H, Xue Y, Yang C, Shen W, Fan Y, Chen X. Modular Engineering of Tyrosol Production in Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:3900-3908. [PMID: 30873833 DOI: 10.1021/acs.jafc.9b00227] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this study, we investigated the effects of the different critical genes in the three modules on tyrosol production in Escherichia coli. Coexpression of the yahK and ARO10 genes increased the yield of tyrosol by 10% compared to that of the control. Tyrosol production by E. coli BFPT1 and E. coli BFPA1 was higher by 15.0% and 17.8% than that by the control, respectively, via coordinated expression of key genes from modules 2 and 3. The tyrosol yield of E. coli BFPE2 was 58.3% higher than that of the control (reaching 5.72 mM) when the expression levels of the key genes aroA and tyrA* from module 2 were balanced. The tyrosol yield of E. coli BFPG1 was increased by 52.6% (reaching 5.8 mM) compared to the control via coexpression of modules 1, 2, and 3. This work suggested that microbial production of tyrosol in E. coli has potential for industrial applications.
Collapse
Affiliation(s)
- Haiquan Yang
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education , Jiangnan University , Wuxi 214122 , P. R. China
- School of Biotechnology , Jiangnan University , Wuxi 214122 , P. R. China
| | - Yuxiang Xue
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education , Jiangnan University , Wuxi 214122 , P. R. China
- School of Biotechnology , Jiangnan University , Wuxi 214122 , P. R. China
| | - Cui Yang
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education , Jiangnan University , Wuxi 214122 , P. R. China
- School of Biotechnology , Jiangnan University , Wuxi 214122 , P. R. China
| | - Wei Shen
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education , Jiangnan University , Wuxi 214122 , P. R. China
| | - You Fan
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education , Jiangnan University , Wuxi 214122 , P. R. China
- School of Biotechnology , Jiangnan University , Wuxi 214122 , P. R. China
| | - Xianzhong Chen
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education , Jiangnan University , Wuxi 214122 , P. R. China
- School of Biotechnology , Jiangnan University , Wuxi 214122 , P. R. China
| |
Collapse
|
36
|
Zhang X, Wang X, Hu X, Chu X, Li X, Han F. Neuroprotective effects of a Rhodiola crenulata extract on amyloid-β peptides (Aβ 1-42) -induced cognitive deficits in rat models of Alzheimer's disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 57:331-338. [PMID: 30807987 DOI: 10.1016/j.phymed.2018.12.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/23/2018] [Accepted: 12/29/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Rhodiola crenulata has been wildly used as a healthy food, antidepressant and antifatigue for many years in China. Recent studies suggested that Rhodiola crenulata extract (RCE) has cognitive protective effects in the treatment of Alzheimer's disease (AD). PURPOSE To assess the protective effects of RCE on cognitive deficits and clarify its therapeutic mechanisms in Aβ1-42 -induced rat models of AD. STUDY DESIGN RCE was prepared by freeze-drying technology. Their protective effects on Aβ1-42-induced rat models of AD and the preliminary therapeutic mechanisms were studied. METHODS The Y maze test and Morris water maze (MWM) test were conducted to evaluate the learning and memory abilities of the rats. Subsequently, biochemical assays, hematoxylin-eosin staining, immunohistochemistry and Western blotting were performed to elucidate the mechanisms. RESULTS RCE significantly increased the spontaneous alternation (F (6, 111) = 8.165, p < 0.001), prolonged the swimming time (F (6, 111) = 20.143, p < 0.001) and decreased the escape latency in rat models of AD. In addition, RCE significantly increased the acetylcholine (Ach) level and the choline acetyl transferase (ChAT) activity (F (6, 34) = 6.033, p < 0.001; F (6, 34) = 6.958, p < 0.001, respectively), repaired the damage of hippocampus neurons and prevented Aβ formation in the hippocampus in Aβ1-42 injected rats. Moreover, RCE increased the superoxide dismutase (SOD) activity and decreased the malondialdehyde (MDA) level in cortex of Aβ1-42 injected rats (F (6, 34) = 5.097, p < 0.01; F (6, 34) = 2.907, p < 0.05, respectively), significantly reduced the expressions of p-tau (ser396) and induced the expressions of p-GSK3β (ser9) in hippocampus (F (6, 34) = 15.297, p < 0.001; F (6, 34) = 9.652, p < 0.001, respectively). CONCLUSION Our findings demonstrated that RCE significantly alleviated the learning and memory deficits in the Aβ1-42-induced rat models of AD. The mechanisms involved its protection effects against cholinergic system deficiency, oxidative stress damage and GSK3β activation. RCE may be a potential therapeutic medicine with multi-targets to prevent the progression of cognitive deterioration in AD.
Collapse
Affiliation(s)
- Xiaoxue Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Xue Wang
- School of Pharmacy, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Xinhua Hu
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, No.103 Wenhua road, Shenyang 110016, China
| | - Xiaowen Chu
- School of Pharmacy, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Xintong Li
- School of Pharmacy, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Fei Han
- School of Pharmacy, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenhe District, Shenyang 110016, China; Key Laboratory of Ministry Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, No. 79 Chongshan Eastern Road, Huanggu District, Shenyang 110016, China.
| |
Collapse
|
37
|
Song W, Jiang W, Wang C, Xie J, Liang X, Sun Y, Gong L, Liu W, Qu L. Jinmaitong, a Traditional Chinese Compound Prescription, Ameliorates the Streptozocin-Induced Diabetic Peripheral Neuropathy Rats by Increasing Sciatic Nerve IGF-1 and IGF-1R Expression. Front Pharmacol 2019; 10:255. [PMID: 30983995 PMCID: PMC6450141 DOI: 10.3389/fphar.2019.00255] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/28/2019] [Indexed: 12/16/2022] Open
Abstract
Jinmaitong (JMT) is a Traditional Chinese Compound Prescription for the treatment of diabetic peripheral neuropathy (DPN). This study aims to investigate the effect of JMT on the insulin-like growth factor 1 (IGF-1) and the insulin like growth factor 1 receptor (IGF-1R) expression in sciatic nerves of diabetic rats. Firstly, the chemical profile of JMT was characterized by UPLC/Q-TOF-MS analysis. A total of 72 compounds were putatively identified. Secondly, streptozotocin (STZ)-induced diabetic rats were treated with neurotropin (NTP, 2.67 NU/kg/day) or JMT at low-dosage (0.4375 g/kg/day), medium-dosage (0.875 g/kg/day), and high-dosage (1.75 g/kg/day) for continuous 16 weeks. Blood glucose and body weight were detected every 4 weeks during the experiment. The mechanical pain and morphological change on sciatic nerves were detected by pain measurement instrument and microscopy. The IGF-1 level in serum and tissues were measured though ELISA and immunohistochemistry. The mRNA and protein expressions of IGF-1, IGF-1R, peripheral myelin protein zero (P0), and peripheral myelin protein 22 (PMP22) in the tissues were measured by qRT-PCR and western blot. As a result, JMT had no significant effect on body weight, but reduced the fasting blood glucose levels of diabetic rats. Besides, the pathological morphology, mechanical pain thresholds, serum level and tissue expression of IGF-1, mRNA, and protein levels of IGF-1R, P0, and PMP22 were significantly improved in JMT group at middle dosage. In conclusion, JMT could ameliorate the behavioristics and morphology changes in DPN rats by promoting IGF-1 and IGF-1R gene and protein expressions in sciatic nerves, as well as regulating the peripheral nerve remyelination genes P0 and PMP22 expressions, which provides scientific evidence for the clinical application of JMT in DPN patients.
Collapse
Affiliation(s)
- Wei Song
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China.,Center for Translational Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - Wen Jiang
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - Chao Wang
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - Jun Xie
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - Xiaochun Liang
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - Ying Sun
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - Liyun Gong
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - Wei Liu
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - Ling Qu
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| |
Collapse
|
38
|
Tao H, Wu X, Cao J, Peng Y, Wang A, Pei J, Xiao J, Wang S, Wang Y. Rhodiola
species: A comprehensive review of traditional use, phytochemistry, pharmacology, toxicity, and clinical study. Med Res Rev 2019; 39:1779-1850. [PMID: 30652331 DOI: 10.1002/med.21564] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/23/2018] [Accepted: 12/31/2018] [Indexed: 02/05/2023]
Affiliation(s)
- Hongxun Tao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao; China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University; Luzhou Sichuan China
| | - Jiliang Cao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao; China
| | - Yu Peng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao; China
| | - Anqi Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao; China
| | - Jin Pei
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Development and Utilization of Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine; Chengdu Sichuan China
| | - Jianbo Xiao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao; China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao; China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao; China
| |
Collapse
|
39
|
Zhang L, Wu M, Yu D, Teng Y, Wei T, Chen C, Song W. Identification of Glutathione Peroxidase (GPX) Gene Family in Rhodiola crenulata and Gene Expression Analysis under Stress Conditions. Int J Mol Sci 2018; 19:E3329. [PMID: 30366446 PMCID: PMC6274781 DOI: 10.3390/ijms19113329] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 10/23/2018] [Accepted: 10/23/2018] [Indexed: 01/14/2023] Open
Abstract
Glutathione peroxidases (GPXs) are important enzymes in the glutathione-ascorbate cycle for catalyzing the reduction of H₂O₂ or organic hydroperoxides to water. GPXs play an essential role in plant growth and development by participating in photosynthesis, respiration, and stress tolerance. Rhodiola crenulata is a popular traditional Chinese medicinal plant which displays an extreme energy of tolerance to harsh alpine climate. The GPXs gene family might provide R. crenulata for extensively tolerance to environment stimulus. In this study, five GPX genes were isolated from R. crenulata. The protein amino acid sequences were analyzed by bioinformation softwares with the results that RcGPXs gene sequences contained three conserve cysteine residues, and the subcellular location predication were in the chloroplast, endoplasmic reticulum, or cytoplasm. Five RcGPXs members presented spatial and temporal specific expression with higher levels in young and green organs. And the expression patterns of RcGPXs in response to stresses or plant hormones were investigated by quantitative real-time PCR. In addition, the putative interaction proteins of RcGPXs were obtained by yeast two-hybrid with the results that RcGPXs could physically interact with specific proteins of multiple pathways like transcription factor, calmodulin, thioredoxin, and abscisic acid signal pathway. These results showed the regulation mechanism of RcGPXs were complicated and they were necessary for R. crenulata to adapt to the treacherous weather in highland.
Collapse
Affiliation(s)
- Lipeng Zhang
- College of Life Science, Nankai University, Tianjin, 300071 China.
| | - Mei Wu
- College of Life Science, Nankai University, Tianjin, 300071 China.
| | - Deshui Yu
- College of Life Science, Nankai University, Tianjin, 300071 China.
| | - Yanjiao Teng
- College of Life Science, Nankai University, Tianjin, 300071 China.
| | - Tao Wei
- College of Life Science, Nankai University, Tianjin, 300071 China.
| | - Chengbin Chen
- College of Life Science, Nankai University, Tianjin, 300071 China.
| | - Wenqin Song
- College of Life Science, Nankai University, Tianjin, 300071 China.
| |
Collapse
|
40
|
Zhong Z, Han J, Zhang J, Xiao Q, Hu J, Chen L. Pharmacological activities, mechanisms of action, and safety of salidroside in the central nervous system. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:1479-1489. [PMID: 29872270 PMCID: PMC5973445 DOI: 10.2147/dddt.s160776] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The primary objective of this review article was to summarize comprehensive information related to the neuropharmacological activity, mechanisms of action, toxicity, and safety of salidroside in medicine. A number of studies have revealed that salidroside exhibits neuroprotective activities, including anti-Alzheimer's disease, anti-Parkinson's disease, anti-Huntington's disease, anti-stroke, anti-depressive effects, and anti-traumatic brain injury; it is also useful for improving cognitive function, treating addiction, and preventing epilepsy. The mechanisms underlying the potential protective effects of salidroside involvement are the regulation of oxidative stress response, inflammation, apoptosis, hypothalamus-pituitary-adrenal axis, neurotransmission, neural regeneration, and the cholinergic system. Being free of side effects makes salidroside potentially attractive as a candidate drug for the treatment of neurological disorders. It is evident from the available published literature that salidroside has potential use as a beneficial therapeutic medicine with high efficacy and low toxicity to the central nervous system. However, the definite target protein molecules remain unclear, and clinical trials regarding this are currently insufficient; thus, guidance for further research on the molecular mechanisms and clinical applications of salidroside is urgent.
Collapse
Affiliation(s)
- Zhifeng Zhong
- Institute of Materia Medica, Fujian Academy of Traditional Chinese Medicine, Fuzhou, Fujian, People's Republic of China
| | - Jing Han
- Institute of Materia Medica, Fujian Academy of Traditional Chinese Medicine, Fuzhou, Fujian, People's Republic of China
| | - Jizhou Zhang
- Institute of Materia Medica, Fujian Academy of Traditional Chinese Medicine, Fuzhou, Fujian, People's Republic of China
| | - Qing Xiao
- Institute of Materia Medica, Fujian Academy of Traditional Chinese Medicine, Fuzhou, Fujian, People's Republic of China
| | - Juan Hu
- Institute of Materia Medica, Fujian Academy of Traditional Chinese Medicine, Fuzhou, Fujian, People's Republic of China.,School of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People's Republic of China
| | - Lidian Chen
- Institute of Materia Medica, Fujian Academy of Traditional Chinese Medicine, Fuzhou, Fujian, People's Republic of China.,School of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People's Republic of China
| |
Collapse
|
41
|
Sun P, Ortega G, Tan Y, Hua Q, Riederer PF, Deckert J, Schmitt-Böhrer AG. Streptozotocin Impairs Proliferation and Differentiation of Adult Hippocampal Neural Stem Cells in Vitro-Correlation With Alterations in the Expression of Proteins Associated With the Insulin System. Front Aging Neurosci 2018; 10:145. [PMID: 29867451 PMCID: PMC5968103 DOI: 10.3389/fnagi.2018.00145] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 04/30/2018] [Indexed: 12/21/2022] Open
Abstract
Rats intracerebroventricularily (icv) treated with streptozotocin (STZ), shown to generate an insulin resistant brain state, were used as an animal model for the sporadic form of Alzheimer’s disease (sAD). Previously, we showed in an in vivo study that 3 months after STZ icv treatment hippocampal adult neurogenesis (AN) is impaired. In the present study, we examined the effects of STZ on isolated adult hippocampal neural stem cells (NSCs) using an in vitro approach. We revealed that 2.5 mM STZ inhibits the proliferation of NSCs as indicated by reduced number and size of neurospheres as well as by less BrdU-immunoreactive NSCs. Double immunofluorescence stainings of NSCs already being triggered to start with their differentiation showed that STZ primarily impairs the generation of new neurons, but not of astrocytes. For revealing mechanisms possibly involved in mediating STZ effects we analyzed expression levels of insulin/glucose system-related molecules such as the glucose transporter (GLUT) 1 and 3, the insulin receptor (IR) and the insulin-like growth factor (IGF) 1 receptor. Applying quantitative Real time-PCR (qRT-PCR) and immunofluorescence stainings we showed that STZ exerts its strongest effects on GLUT3 expression, as GLUT3 mRNA levels were found to be reduced in NSCs, and less GLUT3-immunoreactive NSCs as well as differentiating cells were detected after STZ treatment. These findings suggest that cultured NSCs are a good model for developing new strategies to treat nerve cell loss in AD and other degenerative disorders.
Collapse
Affiliation(s)
- Ping Sun
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Science & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Center of Mental Health, Department of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital of Würzburg, Würzburg, Germany
| | - Gabriela Ortega
- Center of Mental Health, Department of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital of Würzburg, Würzburg, Germany
| | - Yan Tan
- School of Preclinical Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qian Hua
- School of Preclinical Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Peter F Riederer
- Center of Mental Health, Department of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital of Würzburg, Würzburg, Germany
| | - Jürgen Deckert
- Center of Mental Health, Department of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital of Würzburg, Würzburg, Germany
| | - Angelika G Schmitt-Böhrer
- Center of Mental Health, Department of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital of Würzburg, Würzburg, Germany
| |
Collapse
|
42
|
Law BYK, Wu AG, Wang MJ, Zhu YZ. Chinese Medicine: A Hope for Neurodegenerative Diseases? J Alzheimers Dis 2018; 60:S151-S160. [PMID: 28671133 DOI: 10.3233/jad-170374] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
With the increase in the proportion of aged population due to the rapid increase of life expectancy, the worldwide prevalence rate of multiple neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, and Huntington's disease has been increased dramatically. The demographic trend toward an older population has drawn the attention to new drug discovery and treatment on age-related diseases. Although a panel of drugs and/or therapies are currently available for treating the neurodegenerative diseases, side effects or insufficient drug efficacy have been reported. With the long history in prescription of Chinese medicine or natural compounds for modulating aged-related diseases, emerging evidence was reported to support the pharmacological role of Chinese medicine in ameliorating the symptoms, or interfering with the pathogenesis of several neurodegenerative diseases. This review brings evidence about today's trends and development of a list of potential neuroprotective herbal compounds from both the traditional and modern pharmacological point of view. With future projections, the potential hope and implication of using Chinese medicine as an alternative source for novel drug discovery for neurodegenerative diseases is proposed.
Collapse
Affiliation(s)
- Betty Yuen Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.,School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - An Guo Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Min Jun Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.,School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Yi Zhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.,School of Pharmacy, Macau University of Science and Technology, Macau, China
| |
Collapse
|
43
|
Zuo W, Yan F, Zhang B, Hu X, Mei D. Salidroside improves brain ischemic injury by activating PI3K/Akt pathway and reduces complications induced by delayed tPA treatment. Eur J Pharmacol 2018; 830:128-138. [PMID: 29626425 DOI: 10.1016/j.ejphar.2018.04.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/29/2018] [Accepted: 04/03/2018] [Indexed: 10/17/2022]
Abstract
Cerebral ischemia causes blood-brain barrier (BBB) injury and thus increases the risk of complications secondary to thrombolysis, which limited its clinical application. This study aims to clarify the role and mechanism of salidroside (SALD) in alleviating brain ischemic injury and whether pretreatment of it could improve prognosis of delayed treatment of tissue plasminogen activator (t-PA). Rats were subjected to 3 h of middle cerebral artery occlusion (MCAO) and were intraperitoneally administered with 10, 20 or 40 mg/kg SALD before ischemia. 1.5% 5-triphenyl-2H-tetrazolium chloride (TTC) staining and neurological studies were performed to observe the effectiveness of SALD. The expressions and the distribution of phosphoinositide-3-kinase/protein kinase B (PI3K/Akt) signaling were analyzed. Experiments were further conducted in isolated microvessels and human brain microvascular endothelial cells (HBMECs) to explore the protective mechanism of SALD. Finally, rats were subjected to 6 h of MCAO and 24 h of reperfusion. tPA was given with or without the pretreatment of SALD. Various approaches including gelatin zymography, western blot and immunofluorescence were used to evaluate the effect of this combination therapy. SALD could reduce cerebral ischemic injury and enhance HBMECs viability subjected to OGD. In vivo and in vitro studies showed the mechanism might be related to the activation of PI3K/Akt signaling by phosphorylating Akt on Ser473. Pretreatment of SALD could alleviate BBB injury and improve the outcome of delayed treatment of tPA. These results provide evidence that SALD might be an effective adjuvant to reduce the complications induced by delayed tPA treatment for brain ischemia.
Collapse
Affiliation(s)
- Wei Zuo
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Feng Yan
- Center for Brain Disorders Research, Capital Mexical University, PR China; Beijing Institute for Brain Disorders, PR China; Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, PR China
| | - Bo Zhang
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Xiaomin Hu
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Dan Mei
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China.
| |
Collapse
|
44
|
Zhang P, Li W, Wang L, Liu H, Gong J, Wang F, Chen X. Salidroside Inhibits Myogenesis by Modulating p-Smad3-Induced Myf5 Transcription. Front Pharmacol 2018; 9:209. [PMID: 29593538 PMCID: PMC5858519 DOI: 10.3389/fphar.2018.00209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/23/2018] [Indexed: 01/11/2023] Open
Abstract
Aim: Salidroside is an active compound extracted from Rhodiola rosea which is used to alleviate fatigue and enhance endurance in high altitude regions. Some studies have demonstrated that salidroside can affect precursor cell differentiation in hematopoietic stem cells, erythrocytes, and osteoblasts. The aim of this study was to investigate the effect of salidroside on myoblast differentiation and to explore the underlying molecular mechanisms of this effect. Methods: C2C12 myoblast cells were treated with different concentrations of salidroside in differentiation media. Real-time PCR, Western blotting, and immunofluorescence assay were employed to evaluate the effects of salidroside on C2C12 differentiation. RNA interference was used to reveal the important role of Myf5 in myogenesis inhibited by salidroside. Chromatin Immunoprecipitation and dual-luciferase reporter assay were utilized to explore the underlying mechanisms of salidroside-induced upregulation of Myf5. Results: We found that salidroside inhibits myogenesis by downregulating MyoD and myogenin, preserves undifferentiated reserve cell pools by upregulating Myf5. Knocking down Myf5 expression significantly rescued the myogenesis inhibited by salidroside. The effect of salidroside on myogenesis was associated with increased phosphorylated Smad3 (p-Smad3). Both SIS3 (Specific inhibitor of p-Smad3) and dominant negative Smad3 plasmid (DN-Smad3) attenuated the inhibitory effect of salidroside on C2C12 differentiation. Moreover, the induction of Myf5 transcription by salidroside was dependent on a Smad-binding site in the promoter region of Myf5 gene. Conclusion and Implications: Our findings identify a novel role and mechanism for salidroside in regulating myogenesis through p-Smad3-induced Myf5 transcription, which may have implications for its further application in combating degenerative muscular diseases caused by depletion of muscle stem cells, such as Duchenne muscular dystrophy or sarcopenia.
Collapse
Affiliation(s)
- Peng Zhang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Wenjiong Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Lu Wang
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing, China
| | - Hongju Liu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Jing Gong
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing, China
| | - Fei Wang
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing, China
| | - Xiaoping Chen
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China.,National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing, China
| |
Collapse
|
45
|
The impact of Rhodiola rosea on the gut microbial community of Drosophila melanogaster. Gut Pathog 2018; 10:12. [PMID: 29581730 PMCID: PMC5861609 DOI: 10.1186/s13099-018-0239-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/12/2018] [Indexed: 02/01/2023] Open
Abstract
Background The root extract of Rhodiola rosea has historically been used in Europe and Asia as an adaptogen, and similar to ginseng and Shisandra, shown to display numerous health benefits in humans, such as decreasing fatigue and anxiety while improving mood, memory, and stamina. A similar extract in the Rhodiola family, Rhodiola crenulata, has previously been shown to confer positive effects on the gut homeostasis of the fruit fly, Drosophila melanogaster. Although, R. rosea has been shown to extend lifespan of many organisms such as fruit flies, worms and yeast, its anti-aging mechanism remains uncertain. Using D. melanogaster as our model system, the purpose of this work was to examine whether the anti-aging properties of R. rosea are due to its impact on the microbial composition of the fly gut. Results Rhodiola rosea treatment significantly increased the abundance of Acetobacter, while subsequently decreasing the abundance of Lactobacillales of the fly gut at 10 and 40 days of age. Additionally, supplementation of the extract decreased the total culturable bacterial load of the fly gut, while increasing the overall quantifiable bacterial load. The extract did not display any antimicrobial activity when disk diffusion tests were performed on bacteria belonging to Microbacterium, Bacillus, and Lactococcus. Conclusions Under standard and conventional rearing conditions, supplementation of R. rosea significantly alters the microbial community of the fly gut, but without any general antibacterial activity. Further studies should investigate whether R. rosea impacts the gut immunity across multiple animal models and ages.
Collapse
|
46
|
Li Q, Wang J, Li Y, Xu X. Neuroprotective effects of salidroside administration in a mouse model of Alzheimer's disease. Mol Med Rep 2018; 17:7287-7292. [PMID: 29568861 DOI: 10.3892/mmr.2018.8757] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 09/06/2017] [Indexed: 11/06/2022] Open
Abstract
Salidroside administration improves memory in different models of learning. However, its influence on models of Alzheimer's disease (AD) has not been widely studied. In the present study, the therapeutic effect of salidroside was investigated in an animal model of AD. APPswe/PS1ΔE9 mouse (n=20) were randomly divided into either the AD model group or the salidroside + AD model group (n=10 in each group), and C57BL/6J mouse (n=20) of identical age and genetic background were randomly divided into either the normal control (NC) group or the salidroside + NC group (n=10 in each group). The Morris water maze behavioral test was applied to all mice in order to investigate the effects of salidroside administration on learning and memory functions. The concentrations of malondialdehyde (MDA), glutathione (GSH) and nitrate in the hippocampus of the mice were determined, and hippocampal superoxide dismutase (SOD) activity was also determined. In addition, terminal deoxynucleotidyl‑transferase‑mediated dUTP nick end labeling was used to investigate the rate of neuronal apoptosis in the hippocampus. Furthermore, the concentrations of interleukin‑6 (IL‑6) and tumor necrosis factor‑α (TNF‑α) were tested for in the brain tissues of AD mice. Learning and memory functions in AD mice were revealed to improve following administration of salidroside. Furthermore, salidroside administration was revealed to decrease the concentrations of MDA and nitrate in the hippocampus, decrease the apoptotic rate of hippocampal neurons, and increase the activity of SOD and the concentration of GSH in hippocampal tissue. In addition, it was demonstrated that salidroside administration suppressed the expression levels of IL‑6 and TNF‑α. In conclusion, this study revealed that the administration of salidroside could attenuate the effects of AD‑associated memory and learning impairment in mice. Furthermore, it was demonstrated that the effects of salidroside administration on AD mice were, at least partially, via inhibition of brain oxidative/nitrosative damage, suppression of both IL‑6 and TNF‑α expression levels, and suppression of the hippocampal neuronal apoptotic rate.
Collapse
Affiliation(s)
- Qingyun Li
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin 300350, P.R. China
| | - Jinhua Wang
- Department of Neurology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang 318000, P.R. China
| | - Yuwang Li
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin 300350, P.R. China
| | - Xiaolin Xu
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin 300350, P.R. China
| |
Collapse
|
47
|
Zhang L, Wu M, Teng Y, Jia S, Yu D, Wei T, Chen C, Song W. Overexpression of the Glutathione Peroxidase 5 ( RcGPX5) Gene From Rhodiola crenulata Increases Drought Tolerance in Salvia miltiorrhiza. FRONTIERS IN PLANT SCIENCE 2018; 9:1950. [PMID: 30687353 PMCID: PMC6333746 DOI: 10.3389/fpls.2018.01950] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 12/14/2018] [Indexed: 05/18/2023]
Abstract
Excessive cellular accumulation of reactive oxygen species (ROS) due to environmental stresses can critically disrupt plant development and negatively affect productivity. Plant glutathione peroxidases (GPXs) play an important role in ROS scavenging by catalyzing the reduction of H2O2 and other organic hydroperoxides to protect plant cells from oxidative stress damage. RcGPX5, a member of the GPX gene family, was isolated from a traditional medicinal plant Rhodiola crenulata and constitutively expressed in Salvia miltiorrhiza under control of the CaMV 35S promoter. Transgenic plants showed increased tolerance to oxidative stress caused by application of H2O2 and drought, and had reduced production of malondialdehyde (MDA) compared with the wild type. Under drought stress, seedlings of the transgenic lines wilted later than the wild type and recovered growth 1 day after re-watering. In addition, the reduced glutathione (GSH) and total glutathione (T-GSH) contents were higher in the transgenic lines, with increased enzyme activities including glutathione reductase (GR), ascorbate peroxidase (APX), and GPX. These changes prevent H2O2 and O2 - accumulation in cells of the transgenic lines compared with wild type. Overexpression of RcGPX5 alters the relative expression levels of multiple endogenous genes in S. miltiorrhiza, including transcription factor genes and genes in the ROS and ABA pathways. In particular, RcGPX5 expression increases the mass of S. miltiorrhiza roots while reducing the concentration of the active ingredients. These results show that heterologous expression of RcGPX5 in S. miltiorrhiza can affect the regulation of multiple biochemical pathways to confer tolerance to drought stress, and RcGPX5 might act as a competitor with secondary metabolites in the S. miltiorrhiza response to environmental stimuli.
Collapse
|
48
|
Wang C, Wang Q, Lou Y, Xu J, Feng Z, Chen Y, Tang Q, Zheng G, Zhang Z, Wu Y, Tian N, Zhou Y, Xu H, Zhang X. Salidroside attenuates neuroinflammation and improves functional recovery after spinal cord injury through microglia polarization regulation. J Cell Mol Med 2017; 22:1148-1166. [PMID: 29148269 PMCID: PMC5783886 DOI: 10.1111/jcmm.13368] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 08/03/2017] [Indexed: 12/11/2022] Open
Abstract
Spinal cord injury (SCI) is a severe neurological disease; however, few drugs have been proved to treat SCI effectively. Neuroinflammation is the major pathogenesis of SCI secondary injury and considered to be the therapeutic target of SCI. Salidroside (Sal) has been reported to exert anti‐inflammatory effects in airway, adipose and myocardial tissue; however, the role of Sal in SCI therapeutics has not been clarified. In this study, we showed that Sal could improve the functional recovery of spinal cord in rats as revealed by increased BBB locomotor rating scale, angle of incline, and decreased cavity of spinal cord injury and apoptosis of neurons in vivo. Immunofluorescence double staining of microglia marker and M1/M2 marker demonstrated that Sal could suppress M1 microglia polarization and activate M2 microglia polarization in vivo. To verify how Sal exerts its effects on microglia polarization and neuron protection, we performed the mechanism study in vitro in microglia cell line BV‐2 and neuron cell line PC12. The results showed that Sal prevents apoptosis of PC12 cells in coculture with LPS‐induced M1 BV‐2 microglia, also the inflammatory secretion phenotype of M1 BV‐2 microglia was suppressed by Sal, and further studies demonstrated that autophagic flux regulation through AMPK/mTOR pathway was involved in Sal regulated microglia polarization after SCI. Overall, our study illustrated that Sal could promote spinal cord injury functional recovery in rats, and the mechanism may relate to its microglia polarization modulation through AMPK‐/mTOR‐mediated autophagic flux stimulation.
Collapse
Affiliation(s)
- Chenggui Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| | - Qingqing Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| | - Yiting Lou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| | - Jianxiang Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| | - Zhenhua Feng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| | - Yu Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| | - Qian Tang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| | - Gang Zheng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| | - Zengjie Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| | - Yaosen Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| | - Naifeng Tian
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| | - Yifei Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| | - Huazi Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| | - Xiaolei Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,Chinese Orthopaedic Regenerative Medicine Society, Hangzhou, China
| |
Collapse
|
49
|
Ju L, Wen X, Wang C, Wei Y, Peng Y, Ding Y, Feng L, Shu L. Salidroside, A Natural Antioxidant, Improves β-Cell Survival and Function via Activating AMPK Pathway. Front Pharmacol 2017; 8:749. [PMID: 29093682 PMCID: PMC5651268 DOI: 10.3389/fphar.2017.00749] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/03/2017] [Indexed: 12/21/2022] Open
Abstract
Aim: The enhanced oxidative stress contributes to progression of type 2 diabetes mellitus (T2DM) and induces β-cell failure. Salidroside is a natural antioxidant extracted from medicinal food plant Rhodiola rosea. This study was aimed to evaluate protective effects of salidroside on β-cells against diabetes associated oxidative stress. Methods and Results: In diabetic db/db and high-fat diet-induced mice, we found salidroside ameliorated hyperglycemia and relieved oxidative stress. More importantly, salidroside increased β-cell mass and β-cell replication of diabetic mice. Mechanism study in Min6 cells revealed that, under diabetic stimuli, salidroside suppressed reactive oxygen species production and restore mitochondrial membrane potential (ΔΨm) via reducing NOX2 expression and inhibiting JNK-caspase 3 apoptotic cascade subsequently to protect β-cell survival. Simultaneously, diabetes associated oxidative stress also activated FOXO1 and triggered nuclear exclusion of PDX1 which resulted in β-cell dysfunction. This deleterious result was reversed by salidroside by activating AMPK-AKT to inhibit FOXO1 and recover PDX1 nuclear localization. The efficacy of salidroside in improving β-cell survival and function was further confirmed in isolated cultured mouse islets. Moreover, the protective effects of salidroside on β-cells against diabetic stimuli can be abolished by an AMPK inhibitor compound C, which indicated functions of salidroside on β-cells were AMPK activation dependent. Conclusion: These results confirmed beneficial metabolic effects of salidroside and identified a novel role for salidroside in preventing β-cell failure via AMPK activation. Our finding highlights the potential value of Rhodiola rosea as a dietary supplement for diabetes control.
Collapse
Affiliation(s)
- Linjie Ju
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, China
| | - Xiaohua Wen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, China
| | - Chunjun Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, China
| | - Yingjie Wei
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, China
| | - Yunru Peng
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yongfang Ding
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Liang Feng
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, China
| | - Luan Shu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, China
| |
Collapse
|
50
|
Wang C, Lou Y, Xu J, Feng Z, Chen Y, Tang Q, Wang Q, Jin H, Wu Y, Tian N, Zhou Y, Xu H, Zhang X. Endoplasmic Reticulum Stress and NF-κB Pathway in Salidroside Mediated Neuroprotection: Potential of Salidroside in Neurodegenerative Diseases. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2017; 45:1459-1475. [PMID: 28946765 DOI: 10.1142/s0192415x17500793] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Microglial activation leads to increased production of proinflammatory enzymes and cytokines, which is considered to play crucial role in neurodegenerative diseases, however there are only a few drugs that target microglia activation. Recent studies have indicated that the Traditional Chinese Medicine, salidroside (Sal), exerted anti-inflammatory effects. According to this evidence, our present study aims to explore the effect of the Sal (a phenylpropanoid glycoside compound which is isolated from rhodiola), on microglia activation in lipopolysaccharide (LPS)-stimulated BV-2 cells. Our results showed that Sal could significantly inhibit the excessive production of Nitric Oxide (NO) and Prostaglandin E2 (PGE2) in LPS-stimulated BV2 cells. Moreover, Sal treatment could suppress the mRNA and protein expressions of inflammatory enzymes, including Inducible Nitric Oxide Synthase (iNOS) and Cyclooxygenase-2 (COX-2). The mechanisms may be related to the inhibition of the activation of Nuclear Factor-kappaB (NF-[Formula: see text]B) and endoplasmic reticulum stress. Our study demonstrated that salidroside could inhibit lipopolysaccharide-induced microglia activation via the inhibition of the NF-[Formula: see text]B pathway and endoplasmic reticulum stress, which makes it a promising therapeutic agent for human neurodegenerative diseases.
Collapse
Affiliation(s)
- Chenggui Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, P. R. China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, P. R. China
| | - Yiting Lou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, P. R. China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, P. R. China
| | - Jianxiang Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, P. R. China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, P. R. China
| | - Zhenhua Feng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, P. R. China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, P. R. China
| | - Yu Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, P. R. China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, P. R. China
| | - Qian Tang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, P. R. China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, P. R. China
| | - Qingqing Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, P. R. China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, P. R. China
| | - Haiming Jin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, P. R. China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, P. R. China
| | - Yaosen Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, P. R. China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, P. R. China
| | - Naifeng Tian
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, P. R. China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, P. R. China
| | - Yifei Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, P. R. China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, P. R. China
| | - Huazi Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, P. R. China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, P. R. China
| | - Xiaolei Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, P. R. China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, P. R. China
- Chinese Orthopaedic Regenerative Medicine Society, Hangzhou, P. R. China
| |
Collapse
|