1
|
Jiao Y, Zheng Y, Wu S, Zhou L, Jiang H, Li Y, Lin F. Antifungal activity of paeonol against Botrytis cinerea by disrupting the cell membrane and the application on cherry tomato preservation. Front Microbiol 2024; 15:1509124. [PMID: 39687874 PMCID: PMC11646983 DOI: 10.3389/fmicb.2024.1509124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Botrytis cinerea may cause gray mold in fruits and vegetables. Paeonol, an active component of traditional Chinese medicine, could suppress various microbial growth. However, reports on its effect on B. cinerea have not yet been documented. In this paper, we demonstrated that paeonol completely inhibited B. cinerea growth at 250 mg/L, corroborated by the observation of irregular morphological alterations in B. cinerea exposed to paeonol. Notably, the investigation of the operating mechanism revealed that paeonol induced cell death by disrupting the cell membrane, potentially mediated by the interaction between paeonol and ergosterol from the membrane. Further studies indicated that paeonol decreased ergosterol content and the expression of certain genes involved in ergosterol biosynthesis was significantly downregulated. In addition, paeonol treatment reduced the gray mold of cherry tomatoes. Meanwhile, compared to the control treatment, paeonol treatment could reduce weight loss and maintain higher contents of total soluble solid (TSS) and ascorbic acid, leading to a higher quality of the stored cherry tomato. Together, the data indicate that paeonol was effective as an alternative agent targeting disrupting the cell membrane to control gray mold and prolong the shelf life of cherry tomatoes, suggesting that paeonol could be used as a natural antifungal compound during postharvest storage.
Collapse
Affiliation(s)
| | | | | | | | | | - Yuanhong Li
- School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Fuxing Lin
- School of Public Health, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
2
|
da Silva LJ, Rodrigues DS, de Farias Cabral VP, da Silva CR, Sá LGDAV, de Andrade-Neto JB, Barbosa AD, Flaresso AA, Rocha SNCD, Cavalcanti BC, Moraes MOD, Rios MEF, Pampolha Filho IS, Júnior HVN. Unveiling novel insights: geraniol's enhanced anti-candida efficacy and mechanistic innovations against multidrug-resistant candida strains. Braz J Microbiol 2024; 55:3721-3731. [PMID: 39297913 PMCID: PMC11711867 DOI: 10.1007/s42770-024-01498-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 07/15/2024] [Indexed: 09/21/2024] Open
Abstract
OBJECTIVES This study addressed the need for new treatments for severe Candida infections, especially resistant strains. It evaluated the antifungal potential of geraniol alone and with fluconazole against various Candida spp., including resistant strains, and investigated geraniol's mechanism of action using flow cytometry. METHODS The research assessed the inhibitory effects of geraniol on the growth of various Candida species at concentrations ranging from 110 to 883 µg/ml. The study also explored the potential synergistic effects when geraniol was combined with fluconazole. The mechanism of action was investigated through flow cytometry, with a particular emphasis on key enzymes associated with plasma membrane synthesis, membrane permeability changes, mitochondrial membrane depolarization, reactive oxygen species (ROS) induction, and genotoxicity. RESULTS Geraniol demonstrated significant antifungal activity against different Candida species, inhibiting growth at concentrations within the range of 110 to 883 µg/ml. The mechanism of action appeared to be multifactorial. Geraniol was associated with the inhibition of crucial enzymes involved in plasma membrane synthesis, increased membrane permeability, induction of mitochondrial membrane depolarization, elevated ROS levels, and the presence of genotoxicity. These effects collectively contributed to cell apoptosis. CONCLUSIONS Geraniol, alone and in combination with fluconazole, shows promise as a potential therapeutic option for Candida spp. INFECTIONS Its diverse mechanism of action, impacting crucial cellular processes, highlights its potential as an effective antifungal agent. Further research into geraniol's therapeutic applications may aid in developing innovative strategies to address Candida infections, especially those resistant to current therapies.
Collapse
Affiliation(s)
- Lisandra Juvêncio da Silva
- School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Center for Drug Research and Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Daniel Sampaio Rodrigues
- School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Center for Drug Research and Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
- Christus University Center (UNICHRISTUS), Fortaleza, CE, Brazil
| | - Vitória Pessoa de Farias Cabral
- School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Center for Drug Research and Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Cecília Rocha da Silva
- School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Center for Drug Research and Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Lívia Gurgel do Amaral Valente Sá
- School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Center for Drug Research and Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
- Christus University Center (UNICHRISTUS), Fortaleza, CE, Brazil
| | - João Batista de Andrade-Neto
- School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Center for Drug Research and Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
- Christus University Center (UNICHRISTUS), Fortaleza, CE, Brazil
| | - Amanda Dias Barbosa
- School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Center for Drug Research and Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
| | | | | | - Bruno Coelho Cavalcanti
- Center for Drug Research and Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Manoel Odorico de Moraes
- Center for Drug Research and Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Maria Erivanda França Rios
- Center for Drug Research and Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | - Hélio Vitoriano Nobre Júnior
- School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil.
- Center for Drug Research and Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil.
| |
Collapse
|
3
|
Liu Q, Li L, Yang Z, Xiong X, Song Q, Li B, Zou H, Zhang L, Liu T. Antifungal Effect of Oregano Essential Oil Against Penicillium expansum on Pyrus sinkiangensis. J Fungi (Basel) 2024; 10:752. [PMID: 39590672 PMCID: PMC11595797 DOI: 10.3390/jof10110752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/27/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Given the increasing demand for fruit safety assurance and environmental protection, plant essential oils have gained significant attention as natural alternatives for control of postharvest decay caused by various pathogens. In postharvest management, it is particularly important to effectively control postharvest decay without compromising the quality attributes of fruits. Although oregano essential oil (OEO) has been extensively studied for its antimicrobial properties against various postharvest pathogens, few studies have focused on its interactions with postharvest fruits. In this study, OEO was applied for management of postharvest decay of Pyrus sinkiangensis caused by Penicillium expansum, and its antifungal mechanisms and impacts on the quality attributes of pears were investigated. The OEO exhibited notable inhibitory effects, with determined MIC (0.02%) and MFC (0.04%) against P. expansum, which highlighted its potential as a viable alternative to synthetic fungicides. Our findings revealed that OEO disrupted P. expansum by compromising the integrity of the fungal plasma membrane, as evidenced by changes in plasma membrane permeability and the leakage of cellular components. The OEO treatment significantly reduced weight loss, maintained firmness, and preserved soluble-solid content in the treated pears. In addition, OEO treatment stimulated the intrinsic antioxidant mechanisms of pears, as demonstrated by elevated activities of superoxide dismutase and catalase during storage. This study provides compelling evidence for the antifungal and quality-preserving properties of OEO in the postharvest management of pears, underscoring its potential as an alternative to synthetic fungicides for controlling postharvest decay. The elucidation of the interaction between OEO and P. sinkiangensis would greatly enhance our comprehensive understanding of the biological activities of OEO and facilitate its practical application in the postharvest management of pears.
Collapse
Affiliation(s)
- Qun Liu
- Chinese Academy of Inspection and Quarantine, No. A3, Gaobeidian North Road, Chaoyang District, Beijing 100123, China; (Q.L.)
- Technology Innovation Center of Animal and Plant Product Quality, Safety and Control, State Administration for Market Regulation, Beijing 100176, China
| | - Li Li
- Chinese Academy of Inspection and Quarantine, No. A3, Gaobeidian North Road, Chaoyang District, Beijing 100123, China; (Q.L.)
- Technology Innovation Center of Animal and Plant Product Quality, Safety and Control, State Administration for Market Regulation, Beijing 100176, China
| | - Zhenyuan Yang
- Liuzhou Quality Inspection and Testing Research Center, Liuzhou 545001, China
| | - Xiaodi Xiong
- Chinese Academy of Inspection and Quarantine, No. A3, Gaobeidian North Road, Chaoyang District, Beijing 100123, China; (Q.L.)
- College of Advanced Agriculture and Ecological Environment, Hei Longjiang University, No. 74, Xuefu Road, Nangang District, Harbin 150080, China
| | - Qi Song
- Chinese Academy of Inspection and Quarantine, No. A3, Gaobeidian North Road, Chaoyang District, Beijing 100123, China; (Q.L.)
- College of Advanced Agriculture and Ecological Environment, Hei Longjiang University, No. 74, Xuefu Road, Nangang District, Harbin 150080, China
| | - Baishu Li
- Chinese Academy of Inspection and Quarantine, No. A3, Gaobeidian North Road, Chaoyang District, Beijing 100123, China; (Q.L.)
- Technology Innovation Center of Animal and Plant Product Quality, Safety and Control, State Administration for Market Regulation, Beijing 100176, China
| | - Hang Zou
- Chinese Academy of Inspection and Quarantine, No. A3, Gaobeidian North Road, Chaoyang District, Beijing 100123, China; (Q.L.)
- Technology Innovation Center of Animal and Plant Product Quality, Safety and Control, State Administration for Market Regulation, Beijing 100176, China
| | - Lixiang Zhang
- College of Advanced Agriculture and Ecological Environment, Hei Longjiang University, No. 74, Xuefu Road, Nangang District, Harbin 150080, China
| | - Tao Liu
- Chinese Academy of Inspection and Quarantine, No. A3, Gaobeidian North Road, Chaoyang District, Beijing 100123, China; (Q.L.)
- Technology Innovation Center of Animal and Plant Product Quality, Safety and Control, State Administration for Market Regulation, Beijing 100176, China
| |
Collapse
|
4
|
Zheng Y, Shi D, Song D, Chen K, Wen F, Zhang J, Xue W, Wu Z. Novel mandelic acid derivatives containing piperazinyls as potential candidate fungicides against Monilinia fructicola: Design, synthesis and mechanism study. Bioorg Chem 2024; 151:107647. [PMID: 39024805 DOI: 10.1016/j.bioorg.2024.107647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/12/2024] [Accepted: 07/14/2024] [Indexed: 07/20/2024]
Abstract
Brown rot of stone fruit, a disease caused by the ascomycete fungus Monilinia fructicola, has caused significant losses to the agricultural industry. In order to explore and discover potential fungicides against M. fructicola, thirty-one novel mandelic acid derivatives containing piperazine moieties were designed and synthesized based on the amide skeleton. Among them, target compound Z31 exhibited obvious in vitro antifungal activity with the EC50 value of 11.8 mg/L, and significant effects for the postharvest pears (79.4 % protective activity and 70.5 % curative activity) at a concentration of 200 mg/L. Antifungal activity for the target compounds was found to be significantly improved by the large steric hindrance of the R1 groups and the electronegative of the piperazines in the molecular structure, according to a three-dimensional quantitative structure-activity relationship (3D-QSAR) analysis. Further mechanism studies have demonstrated that the compound Z31 can disrupt cell membrane integrity, resulting in increased membrane permeability, release of intracellular electrolytes, and affect the normal growth of hyphae. Additional, morphological study also indicated that Z31 may disrupt the integrity of the membrane by inducing generate excess endogenous reactive oxygen species (ROS) and resulting in the peroxidation of cellular lipids, which was further verified by the detection of malondialdehyde (MDA) content. These studies have provided the basis for the creation of novel fungicides to prevent brown rot in stone fruits.
Collapse
Affiliation(s)
- Ya Zheng
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Detan Shi
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Dandan Song
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Kuai Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Fanglin Wen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jinlian Zhang
- Microbiology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007, China.
| | - Wei Xue
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| | - Zhibing Wu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| |
Collapse
|
5
|
Jia G, Kim SH, Min J, Zamora NV, Montero SS, Kim SY, Oh SK. Cestrum tomentosum L.f. Extracts against Colletotrichum scovillei by Altering Cell Membrane Permeability and Inducing ROS Accumulation. THE PLANT PATHOLOGY JOURNAL 2024; 40:475-485. [PMID: 39397302 PMCID: PMC11471931 DOI: 10.5423/ppj.oa.07.2024.0105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 10/15/2024]
Abstract
Chili pepper anthracnose, caused by Colletotrichum spp., is a significant biotic stress affecting chili fruits globally. While fungicide application is commonly used for disease management due to its efficiency and costeffectiveness, excessive use poses risks to human health and the environment. Botanical fungicides offer advantages such as rapid degradation and low toxicity to mammals, making them increasingly popular for sustainable plant disease control. This study investigated the antifungal properties of Cestrum tomentosum L.f. crude extracts (CTCE) against Colletotrichum scovillei. The results demonstrated that CTCE effectively inhibited conidia germination and germ tube elongation at 40 µg/ml concentrations. Moreover, CTCE exhibited strong antifungal activity against C. scovillei mycelial growth, with an EC50 value of 18.81 µg/ml. In vivo experiments confirmed the protective and curative effects of CTCE on chili pepper fruits infected with C. scovillei. XTT analysis showed that the CTCE could significantly inhibit the cell viability of C. scovillei. Mechanistic studies revealed that CTCE disrupted the plasma membrane integrity of C. scovillei and induced the accumulation of reactive oxygen species in hyphal cells. These findings highlight CTCE as a promising eco-friendly botanical fungicide for managing C. scovillei infections in chili peppers.
Collapse
Affiliation(s)
- Guogeng Jia
- Department of Applied Biology, Chungnam National University, Daejeon 34134, Korea
| | - Sun Ha Kim
- Department of Applied Biology, Chungnam National University, Daejeon 34134, Korea
| | - Jiyoung Min
- Department of Applied Biology, Chungnam National University, Daejeon 34134, Korea
| | | | - Silvia Soto Montero
- Instituto Nacional de Biodiversidad (INBio), Santo Domingo de Heredia, 22-3100, Costa Rica
| | - Soo-Yong Kim
- International Biological Material Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Sang-Keun Oh
- Department of Applied Biology, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
6
|
Liu Q, Xiong X, Lin H, Zhang L, Chen N, Liu X, Liu T. Antifungal effect of cinnamon essential oil against Penicillium oxalicum on rice noodles. J Food Sci 2024; 89:6638-6652. [PMID: 39289796 DOI: 10.1111/1750-3841.17363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/09/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024]
Abstract
Plant essential oils have been extensively investigated for their application in food industry due to their broad antimicrobial spectrum and safety. However, rare studies investigated their application in decontaminating rice noodles from fungal contamination. In this study, the cinnamon essential oil was screened out among 12 species of plant essential oils, and its antifungal activity against Penicillium oxalicum isolated from rice noodles was investigated. Our study revealed that cinnamon essential oil inhibited the spore germination in a concentration-dependent manner, and a dosage of 0.025% (v/v) could entirely disable the spore germination. The disruption of the fungal plasma membrane was evidenced by the change of plasma membrane permeability and the leakage of cellular components. The cinnamon essential oil in vapor phase (0.00625% [v/v]) could totally inhibit the growth of fungi inoculated on rice noodles. In addition to the potential application in inactivating fungi germination on rice noodles, this study also demonstrated the feasibility of cinnamon essential as an environmental disinfectant. This study is the first report that cinnamon essential oil has been studied for decontaminating rice noodles from fungal contamination with P. oxalicum, which not only broadens the application field of plant essential oil but also provides an alternative approach for rice noodle preservation.
Collapse
Affiliation(s)
- Qun Liu
- Chinese Academy of Inspection and Quarantine, Beijing, China
- Liuzhou River Snail Rice Noodle Quality and Safety Joint Laboratory, Liuzhou, China
- Technology Innovation Center of Animal and Plant Product Quality, Safety and Control, State Administration for Market Regulation, Beijing, China
| | - Xiaodi Xiong
- Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Hua Lin
- Liuzhou River Snail Rice Noodle Quality and Safety Joint Laboratory, Liuzhou, China
- Liuzhou Quality Inspection and Testing Research Center, Liuzhou, China
| | - Lixiang Zhang
- College of Advanced Agriculture and Ecological Environment, Hei Longjiang University, Harbin, China
| | - Naizhong Chen
- Chinese Academy of Inspection and Quarantine, Beijing, China
- Liuzhou River Snail Rice Noodle Quality and Safety Joint Laboratory, Liuzhou, China
- Technology Innovation Center of Animal and Plant Product Quality, Safety and Control, State Administration for Market Regulation, Beijing, China
| | - Xing Liu
- Liuzhou River Snail Rice Noodle Quality and Safety Joint Laboratory, Liuzhou, China
- Liuzhou Quality Inspection and Testing Research Center, Liuzhou, China
| | - Tao Liu
- Chinese Academy of Inspection and Quarantine, Beijing, China
- Liuzhou River Snail Rice Noodle Quality and Safety Joint Laboratory, Liuzhou, China
- Technology Innovation Center of Animal and Plant Product Quality, Safety and Control, State Administration for Market Regulation, Beijing, China
| |
Collapse
|
7
|
Prado GM, Prado JCS, Aguiar FLLDE, Barbosa FCB, Vale JPCDO, Martins MR, Arantes SM, Sousa NVDE, Lima DM, Marinho ES, Marinho MM, Fontenelle ROS. Antifungal, molecular docking and cytotoxic effect of the essential oil of Cymbopogon citratus (DC) Stapf. and Cymbopogon nardus (L.) Rendle against Candida albicans. AN ACAD BRAS CIENC 2024; 96:e20230309. [PMID: 39166649 DOI: 10.1590/0001-3765202420230309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/27/2023] [Indexed: 08/23/2024] Open
Abstract
Brazil is renowned for its extensive plant biodiversity, with emphasis on Cymbopogon, C. citratus and C. nardus, with broad antimicrobial potential. Candidemias caused by Candida albicans are highly prevalent in immunosuppressed individuals and are associated with infections by biofilms on medical devices. The aim of this study was to evaluate the antimicrobial potential of essential oils C. citratus and C. nardus against C. albicans in planktonic and biofilm forms. Essential oils were obtained by hydrodistillation and chemical composition evaluated by GC-FID and GC-MS. The minimum inhibitory concentration was determined by the broth microdilution method and the synergy effect of essential oils and amphotericin B were evaluated by the checkerboard test. Biofilm activity was determined by the XTT assay. Cytotoxicity assays performed with VERO cells and molecular docking were performed to predict the effect of oil interaction on the SAP-5 enzyme site. The results showed activity of essential oils against planktonic cells and biofilm of C. albicans. Furthermore, the oils had a synergistic effect, and low cytotoxicity. Molecular docking showed interaction between Cadinene, Caryophyllen oxide, Germacrene D with SAP-5. The results indicate that Cymbopogon spp. studied are anti-Candida, with potential for further application in therapy against infections caused by C. albicans.
Collapse
Affiliation(s)
- Guilherme M Prado
- Universidade Federal do Ceará, Av. Cmte. Maurocélio Rocha Pontes, 100, Jocely Dantas de Andrade Torres, 62042-250 Sobral, CE, Brazil
| | - Júlio César S Prado
- Universidade Federal do Ceará, Av. Cmte. Maurocélio Rocha Pontes, 100, Jocely Dantas de Andrade Torres, 62042-250 Sobral, CE, Brazil
| | - Francisca Lidiane L DE Aguiar
- Universidade Estadual Vale do Acaraú, Centro de Ciências Agrárias e Biológicas, Av. Padre Francisco Sadoc de Araujo, 850, Alto da Brasilia, 62010-295 Sobral, CE, Brazil
| | - Francisco Cesar B Barbosa
- Universidade Federal do Ceará, Av. Cmte. Maurocélio Rocha Pontes, 100, Jocely Dantas de Andrade Torres, 62042-250 Sobral, CE, Brazil
| | - Jean P C DO Vale
- Universidade Estadual Vale do Acaraú, Centro de Ciências Exatas e Tecnologia, Av. Padre Francisco Sadoc de Araujo, 850, Alto da Brasilia, 62010-295 Sobral, CE, Brazil
| | - Maria Rosário Martins
- Departmento de Ciências Médicas e da Saúde, Universidade de Evora, Colégio Luís António Verney, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal
- HERCULES Laboratory, Instituto de Investigação e Formação Avançada (IIFA), Universidade de Evora, Palácio do Vimioso, Largo Marquês de Marialva 8, 7000-809, Evora, Portugal
| | - Silva Macedo Arantes
- HERCULES Laboratory, Instituto de Investigação e Formação Avançada (IIFA), Universidade de Evora, Palácio do Vimioso, Largo Marquês de Marialva 8, 7000-809, Evora, Portugal
| | - Natália V DE Sousa
- Programa em Ciências Médicas, Universidade de Fortaleza, Centro de Ciências da Saúde, Av. da Universidade, 2853, Benfica, 60020-181 Fortaleza, CE, CEP, Brazil
| | - Danielle M Lima
- Programa em Ciências Médicas, Universidade de Fortaleza, Centro de Ciências da Saúde, Av. da Universidade, 2853, Benfica, 60020-181 Fortaleza, CE, CEP, Brazil
| | - Emmanuel S Marinho
- Programa de Pós-Graduação em Ciências Naturais, Universidade Estadual do Ceará/UECE, Av. Dr. Silas Munguba, 1700, 60714-903 Fortaleza, CE, Brazil
| | - Márcia M Marinho
- Programa de Pós-Graduação em Ciências Naturais, Universidade Estadual do Ceará/UECE, Av. Dr. Silas Munguba, 1700, 60714-903 Fortaleza, CE, Brazil
| | - Raquel O S Fontenelle
- Universidade Estadual Vale do Acaraú, Centro de Ciências Agrárias e Biológicas, Av. Padre Francisco Sadoc de Araujo, 850, Alto da Brasilia, 62010-295 Sobral, CE, Brazil
| |
Collapse
|
8
|
Kumar A, Raghuvanshi TS, Pratap S, Kumar H, Prakash B. Nanofabrication of citronellal with chitosan biopolymer to boost its efficacy against aflatoxin B 1 and Aspergillus flavus mediated biodeterioration of active ingredient of Piper longum. Food Chem 2024; 449:139240. [PMID: 38599109 DOI: 10.1016/j.foodchem.2024.139240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
The study reports the efficacy of nanofabricated citronellal inside the chitosan biopolymer (NeCn) against Aspergillus flavus growth, aflatoxin B1 (AFB1) production, and active ingredient biodeterioration (Piperine) in Piper longum L. The prepared NeCn was characterized by Scanning Electron Microscopy (SEM), Dynamic Light Scattering (DLS), and Fourier Transform Infrared Spectroscopy (FTIR). The results revealed that the NeCn exhibited distantly improved antifungal (1.25 μL/mL) and AFB1 inhibition (1.0 μL/mL) compared to free Cn. The perturbances in membrane function, mitochondrial membrane potential, antioxidant defense system, and regulatory genes (Ver-1 and Nor-1) of AFB1 biosynthesis were reported as probable modes of action of NeCn. The NeCn (1.25 μL/mL) effectively protects the P. longum from A. flavus (78.8%), AFB1 contamination (100%), and deterioration of Piperine (62.39%), thus demonstrating its potential as a promising novel antifungal agent for food preservation.
Collapse
Affiliation(s)
- Akshay Kumar
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India; Department of Botany, Sri-Ganesh Rai P. G. College, Dobhi-Jaunpur, Uttar Pradesh, India
| | - Tanya Singh Raghuvanshi
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Surya Pratap
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221005, India; Department of Physics, Harish Chandra Postgraduate College, Varanasi, India
| | - Horesh Kumar
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Bhanu Prakash
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
9
|
Zeng C, Sun Y, Lin H, Li Z, Zhang Q, Cai T, Xiang W, Tang J, Yasurin P. D-Limonene Inhibits Pichia kluyveri Y-11519 in Sichuan Pickles by Disrupting Metabolism. Molecules 2024; 29:3561. [PMID: 39124965 PMCID: PMC11314558 DOI: 10.3390/molecules29153561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/13/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
The Pichia kluyveri, a proliferation commonly found in Sichuan pickles (SCPs), can accelerate the growth and reproduction of spoilage bacteria, causing off-odor development and decay. Although D-limonene, a common natural preservative, effectively restricts P. kluyveri, its inhibitory mechanism remains unclear. This study aimed to elucidate this molecular mechanism by investigating the impact on basic P. kluyveri metabolism. The findings revealed that D-limonene inhibited P. kluyveri growth and disrupted the transcription of the genes responsible for encoding the enzymes involved in cell wall and membrane synthesis, oxidative phosphorylation, glycolysis, and the tricarboxylic acid (TCA) cycle pathway. The results indicated that these events disrupted crucial metabolism such as cell wall and membrane integrity, adenosine triphosphate (ATP) synthesis, and reactive oxygen species (ROS) balance. These insights provided a comprehensive understanding of the inhibitory effect of D-limonene on the growth and reproduction of P. kluyveri while highlighting its potential application in the SCP industry.
Collapse
Affiliation(s)
- Chaoyi Zeng
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China; (Y.S.); (H.L.); (Z.L.); (T.C.); (W.X.); (J.T.)
- Department of Food Biotechnology, Faculty of Biotechnology, Assumption University, Bangkok 10240, Thailand;
- Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, China
| | - Yue Sun
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China; (Y.S.); (H.L.); (Z.L.); (T.C.); (W.X.); (J.T.)
- Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, China
| | - Haoran Lin
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China; (Y.S.); (H.L.); (Z.L.); (T.C.); (W.X.); (J.T.)
- Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, China
| | - Ziyu Li
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China; (Y.S.); (H.L.); (Z.L.); (T.C.); (W.X.); (J.T.)
- Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, China
| | - Qing Zhang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China; (Y.S.); (H.L.); (Z.L.); (T.C.); (W.X.); (J.T.)
- Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, China
| | - Ting Cai
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China; (Y.S.); (H.L.); (Z.L.); (T.C.); (W.X.); (J.T.)
- Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, China
| | - Wenliang Xiang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China; (Y.S.); (H.L.); (Z.L.); (T.C.); (W.X.); (J.T.)
- Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, China
| | - Jie Tang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China; (Y.S.); (H.L.); (Z.L.); (T.C.); (W.X.); (J.T.)
- Department of Food Biotechnology, Faculty of Biotechnology, Assumption University, Bangkok 10240, Thailand;
- Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, China
| | - Patchanee Yasurin
- Department of Food Biotechnology, Faculty of Biotechnology, Assumption University, Bangkok 10240, Thailand;
| |
Collapse
|
10
|
Kumar P, Parveen, Khatoon S, Kumar M, Raj N, Harsha, Solanki R, Manzoor N, Kapur MK. In vitro antifungal activity analysis of Streptomyces sp. strain 196 against Candida albicans and Aspergillus flavus. Int Microbiol 2024:10.1007/s10123-024-00562-2. [PMID: 39068607 DOI: 10.1007/s10123-024-00562-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/12/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Numerous bioactive compounds have been reported to be produced by the members of the genus Streptomyces. During our previous studies, Streptomyces sp. strain 196 was tested for its antimicrobial activity, and bioactive compounds produced by this strain were characterized LC-MS and 1H NMR. To examine the antifungal potential of strain 196 is the goal of the current investigation. Present investigation is focused on exploring antifungal activity of extract of strain 196 (196EA) on membrane disruption potential against two fungi Candida albicans ATCC 90028 and Aspergillus flavus ITCC 5599. Results revealed that the MIC value is higher for A. flavus than for C. albicans which is 450 µg/mL and 250 µg/mL, respectively. Disc diffusion and spot assay also correspond to the values of the MIC for their respective pathogen. In growth curve analysis, lag and log phase are significantly affected by the extract of strain 196. The effects of extract from strain 196 on plasma membrane disruption of Candida albicans and Aspergillus flavus were analyzed in terms of ergosterol quantification assay, cellular leakage, proton efflux measurement (PM-ATPase), plasma membrane integrity assay (PI), and DNA damage assay (DAPI). Results shown that the extract of strain 196 has the potential to inhibit the cell membrane of the both pathogenic fungi which was further confirmed with the help of scanning electron microscopic (SEM) studies.
Collapse
Affiliation(s)
- Prateek Kumar
- Department of Zoology, University of Allahabad, Uttar Pradesh, Prayagraj, 211 002, India
| | - Parveen
- Medical Mycology Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Shabana Khatoon
- Medical Mycology Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Munendra Kumar
- Department of Zoology, Rajiv Gandhi University, Doimukh, 791112, Arunachal Pradesh, India
| | - Nafis Raj
- Medical Mycology Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Harsha
- Microbial Technology Lab, Acharya Narendra Dev College, University of Delhi, New Delhi, 110 019, India
| | - Renu Solanki
- Deen Dayal Upadhyaya College, University of Delhi, New Delhi, 110 078, India
| | - Nikhat Manzoor
- Medical Mycology Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India.
| | - Monisha Khanna Kapur
- Microbial Technology Lab, Acharya Narendra Dev College, University of Delhi, New Delhi, 110 019, India.
| |
Collapse
|
11
|
Peralta-Ruiz Y, Molina Hernandez JB, Grande-Tovar CD, Serio A, Valbonetti L, Chaves-López C. Antifungal Mechanism of Ruta graveolens Essential Oil: A Colombian Traditional Alternative against Anthracnose Caused by Colletotrichum gloeosporioides. Molecules 2024; 29:3516. [PMID: 39124920 PMCID: PMC11314608 DOI: 10.3390/molecules29153516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Here, we report for the first time on the mechanisms of action of the essential oil of Ruta graveolens (REO) against the plant pathogen Colletotrichum gloeosporioides. In particular, the presence of REO drastically affected the morphology of hyphae by inducing changes in the cytoplasmic membrane, such as depolarization and changes in the fatty acid profile where straight-chain fatty acids (SCFAs) increased by up to 92.1%. In addition, REO induced changes in fungal metabolism and triggered apoptosis-like responses to cell death, such as DNA fragmentation and the accumulation of reactive oxygen species (ROS). The production of essential enzymes involved in fungal metabolism, such as acid phosphatase, β-galactosidase, β-glucosidase, and N-acetyl-β-glucosaminidase, was significantly reduced in the presence of REO. In addition, C. gloeosporioides activated naphthol-As-BI phosphohydrolase as a mechanism of response to REO stress. The data obtained here have shown that the essential oil of Ruta graveolens has a strong antifungal effect on C. gloeosporioides. Therefore, it has the potential to be used as a surface disinfectant and as a viable replacement for fungicides commonly used to treat anthracnose in the postharvest testing phase.
Collapse
Affiliation(s)
- Yeimmy Peralta-Ruiz
- Programa de Ingeniería Agroindustrial, Facultad de Ingeniería, Universidad del Atlántico, Carrera 30 Número 8-49, Puerto Colombia 081008, Colombia
| | - Junior Bernardo Molina Hernandez
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (J.B.M.H.); (A.S.); (L.V.)
- Department of Agricultural and Food Sciences, University of Bologna, 47521 Cesena, Italy
| | - Carlos David Grande-Tovar
- Grupo de Investigación de Fotoquímica y Fotobiología, Universidad del Atlántico, Carrera 30 Número 8-49, Puerto Colombia 081008, Colombia;
| | - Annalisa Serio
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (J.B.M.H.); (A.S.); (L.V.)
| | - Luca Valbonetti
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (J.B.M.H.); (A.S.); (L.V.)
| | - Clemencia Chaves-López
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (J.B.M.H.); (A.S.); (L.V.)
| |
Collapse
|
12
|
Cenobio-Galindo ADJ, Hernández-Fuentes AD, González-Lemus U, Zaldívar-Ortega AK, González-Montiel L, Madariaga-Navarrete A, Hernández-Soto I. Biofungicides Based on Plant Extracts: On the Road to Organic Farming. Int J Mol Sci 2024; 25:6879. [PMID: 38999990 PMCID: PMC11241162 DOI: 10.3390/ijms25136879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Phytopathogenic fungi are responsible for diseases in commercially important crops and cause major supply problems in the global food chain. Plants were able to protect themselves from disease before humans played an active role in protecting plants. They are known to synthesize a variety of secondary metabolites (SMs), such as terpenes, alkaloids, and phenolic compounds, which can be extracted using conventional and unconventional techniques to formulate biofungicides; plant extracts have antifungal activity and various mechanisms of action against these organisms. In addition, they are considered non-phytotoxic and potentially effective in disease control. They are a sustainable and economically viable alternative for use in agriculture, which is why biofungicides are increasingly recognized as an attractive option to solve the problems caused by synthetic fungicides. Currently, organic farming continues to grow, highlighting the importance of developing environmentally friendly alternatives for crop production. This review provides a compilation of the literature on biosynthesis, mechanisms of action of secondary metabolites against phytopathogens, extraction techniques and formulation of biofungicides, biological activity of plant extracts on phytopathogenic fungi, regulation, advantages, disadvantages and an overview of the current use of biofungicides in agriculture.
Collapse
Affiliation(s)
- Antonio de Jesús Cenobio-Galindo
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km 1 Rancho Universitario, Tulancingo 43600, Hidalgo, Mexico; (A.d.J.C.-G.); (A.D.H.-F.); (U.G.-L.); (A.K.Z.-O.); (A.M.-N.)
| | - Alma Delia Hernández-Fuentes
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km 1 Rancho Universitario, Tulancingo 43600, Hidalgo, Mexico; (A.d.J.C.-G.); (A.D.H.-F.); (U.G.-L.); (A.K.Z.-O.); (A.M.-N.)
| | - Uriel González-Lemus
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km 1 Rancho Universitario, Tulancingo 43600, Hidalgo, Mexico; (A.d.J.C.-G.); (A.D.H.-F.); (U.G.-L.); (A.K.Z.-O.); (A.M.-N.)
| | - Ana Karen Zaldívar-Ortega
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km 1 Rancho Universitario, Tulancingo 43600, Hidalgo, Mexico; (A.d.J.C.-G.); (A.D.H.-F.); (U.G.-L.); (A.K.Z.-O.); (A.M.-N.)
| | - Lucio González-Montiel
- Instituto de Tecnología de los Alimentos, Universidad de la Cañada, Teotitlán de Flores Magón 68540, Oaxaca, Mexico;
| | - Alfredo Madariaga-Navarrete
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km 1 Rancho Universitario, Tulancingo 43600, Hidalgo, Mexico; (A.d.J.C.-G.); (A.D.H.-F.); (U.G.-L.); (A.K.Z.-O.); (A.M.-N.)
| | - Iridiam Hernández-Soto
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km 1 Rancho Universitario, Tulancingo 43600, Hidalgo, Mexico; (A.d.J.C.-G.); (A.D.H.-F.); (U.G.-L.); (A.K.Z.-O.); (A.M.-N.)
| |
Collapse
|
13
|
Singh PP, Jaiswal AK, Singh R, Kumar A, Gupta V, Raghuvanshi TS, Sharma A, Prakash B. Assessment of Trachyspermum ammi essential oil against Aspergillus flavus, aflatoxin B 1 contamination, and post-harvest quality of Sorghum bicolor. Food Chem 2024; 443:138502. [PMID: 38306909 DOI: 10.1016/j.foodchem.2024.138502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/19/2023] [Accepted: 01/16/2024] [Indexed: 02/04/2024]
Abstract
The present investigation explored the antifungal effectiveness of Trachyspermum ammi essential oil (TAEO) against Aspergillus flavus, aflatoxin B1 (AFB1) contamination, and its mechanism of action using biochemical and computational approaches. The GC-MS result revealed the chemical diversity of TAEO with the highest percentage of γ-terpinene (39 %). The TAEO exhibited minimum inhibitory concentration against A. flavus growth (0.5 µL/mL) and AFB1 (0.4 µL/mL) with radical scavenging activity (IC50 = 2.13 µL/mL). The mechanism of action of TAEO was associated with the alteration in plasma membrane functioning, antioxidative defense, and carbon source catabolism. The molecular dynamic result shows the multi-regime binding of γ-terpinene with the target proteins (Nor1, Omt1, and Vbs) of AFB1 biosynthesis. Furthermore, TAEO exhibited remarkable in-situ protection of Sorghum bicolor seed samples against A. flavus and AFB1 contamination and protected the nutritional deterioration. Hence, the study recommends TAEO as a natural antifungal agent for food protection against A. flavus mediated biodeterioration.
Collapse
Affiliation(s)
- Prem Pratap Singh
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Atul Kumar Jaiswal
- Department of Computer Science and Engineering, School of Engineering Sciences and Technology, Jamia Hamdard University, New Delhi, India
| | - Ritu Singh
- Department of Plant Sciences, University of California, Davis, USA
| | - Akshay Kumar
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Vishal Gupta
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Tanya Singh Raghuvanshi
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Angad Sharma
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Bhanu Prakash
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India.
| |
Collapse
|
14
|
Zuzarte M, Sousa C, Alves-Silva J, Salgueiro L. Plant Monoterpenes and Essential Oils as Potential Anti-Ageing Agents: Insights from Preclinical Data. Biomedicines 2024; 12:365. [PMID: 38397967 PMCID: PMC10886757 DOI: 10.3390/biomedicines12020365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Ageing is a natural process characterized by a time-dependent decline of physiological integrity that compromises functionality and inevitably leads to death. This decline is also quite relevant in major human pathologies, being a primary risk factor in neurodegenerative diseases, metabolic disorders, cardiovascular diseases and musculoskeletal disorders. Bearing this in mind, it is not surprising that research aiming at improving human health during this process has burst in the last decades. Importantly, major hallmarks of the ageing process and phenotype have been identified, this knowledge being quite relevant for future studies towards the identification of putative pharmaceutical targets, enabling the development of preventive/therapeutic strategies to improve health and longevity. In this context, aromatic plants have emerged as a source of potential bioactive volatile molecules, mainly monoterpenes, with many studies referring to their anti-ageing potential. Nevertheless, an integrated review on the current knowledge is lacking, with several research approaches studying isolated ageing hallmarks or referring to an overall anti-ageing effect, without depicting possible mechanisms of action. Herein, we aim to provide an updated systematization of the bioactive potential of volatile monoterpenes on recently proposed ageing hallmarks, and highlight the main mechanisms of action already identified, as well as possible chemical entity-activity relations. By gathering and categorizing the available scattered information, we also aim to identify important research gaps that could help pave the way for future research in the field.
Collapse
Affiliation(s)
- Mónica Zuzarte
- Univ Coimbra, Faculty of Pharmacy, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal; (J.A.-S.); (L.S.)
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3000-548 Coimbra, Portugal
| | - Cátia Sousa
- iNOVA4HEALTH, NOVA Medical School, Faculdade de Ciências Médicas (NMS/FCM), Universidade Nova de Lisboa, 1159-056 Lisboa, Portugal;
- Centro Clínico e Académico de Lisboa, 1156-056 Lisboa, Portugal
| | - Jorge Alves-Silva
- Univ Coimbra, Faculty of Pharmacy, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal; (J.A.-S.); (L.S.)
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3000-548 Coimbra, Portugal
| | - Lígia Salgueiro
- Univ Coimbra, Faculty of Pharmacy, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal; (J.A.-S.); (L.S.)
- Univ Coimbra, Chemical Engineering and Renewable Resources for Sustainability (CERES), Department of Chemical Engineering, 3030-790 Coimbra, Portugal
| |
Collapse
|
15
|
Duan WY, Zhu XM, Zhang SB, Lv YY, Zhai HC, Wei S, Ma PA, Hu YS. Antifungal effects of carvacrol, the main volatile compound in Origanum vulgare L. essential oil, against Aspergillus flavus in postharvest wheat. Int J Food Microbiol 2024; 410:110514. [PMID: 38070224 DOI: 10.1016/j.ijfoodmicro.2023.110514] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/28/2023] [Accepted: 12/03/2023] [Indexed: 12/29/2023]
Abstract
Plant volatile organic compounds (VOCs) with antimicrobial activity could potentially be extremely useful fumigants to prevent and control the fungal decay of agricultural products postharvest. In this study, antifungal effects of volatile compounds in essential oils extracted from Origanum vulgare L. against Aspergillus flavus growth were investigated using transcriptomic and biochemical analyses. Carvacrol was identified as the major volatile constituent of the Origanum vulgare L. essential oil, accounting for 66.01 % of the total content. The minimum inhibitory concentrations of carvacrol were 0.071 and 0.18 μL/mL in gas-phase fumigation and liquid contact, respectively. Fumigation with 0.60 μL/mL of carvacrol could completely inhibit A. flavus proliferation in wheat grains with 20 % moisture, showing its potential as a biofumigant. Scanning electron microscopy revealed that carvacrol treatment caused morphological deformation of A. flavus mycelia, and the resulting increased electrolyte leakage indicates damage to the plasma membrane. Confocal laser scanning microscopy confirmed that the carvacrol treatment caused a decrease in mitochondrial membrane potential, reactive oxygen species accumulation, and DNA damage. Transcriptome analysis revealed that differentially expressed genes were mainly associated with fatty acid degradation, autophagy, peroxisomes, the tricarboxylic acid cycle, oxidative phosphorylation, and DNA replication in A. flavus mycelia exposed to carvacrol. Biochemical analyses of hydrogen peroxide and superoxide anion content, and catalase, superoxide dismutase, and glutathione S-transferase activities showed that carvacrol induced oxidative stress in A. flavus, which agreed with the transcriptome results. In summary, this study provides an experimental basis for the use of carvacrol as a promising biofumigant for the prevention of A. flavus contamination during postharvest grain storage.
Collapse
Affiliation(s)
- Wen-Yan Duan
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Xi-Man Zhu
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Shuai-Bing Zhang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China.
| | - Yang-Yong Lv
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Huan-Chen Zhai
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Shan Wei
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Ping-An Ma
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Yuan-Sen Hu
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| |
Collapse
|
16
|
Almeida NA, Freire L, Carnielli-Queiroz L, Bragotto APA, Silva NCC, Rocha LO. Essential oils: An eco-friendly alternative for controlling toxigenic fungi in cereal grains. Compr Rev Food Sci Food Saf 2024; 23:e13251. [PMID: 38284600 DOI: 10.1111/1541-4337.13251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/01/2023] [Accepted: 09/15/2023] [Indexed: 01/30/2024]
Abstract
Fungi are widely disseminated in the environment and are major food contaminants, colonizing plant tissues throughout the production chain, from preharvest to postharvest, causing diseases. As a result, grain development and seed germination are affected, reducing grain quality and nutritional value. Some fungal species can also produce mycotoxins, toxic secondary metabolites for vertebrate animals. Natural compounds, such as essential oils, have been used to control fungal diseases in cereal grains due to their antimicrobial activity that may inhibit fungal growth. These compounds have been associated with reduced mycotoxin contamination, primarily related to reducing toxin production by toxigenic fungi. However, little is known about the mechanisms of action of these compounds against mycotoxigenic fungi. In this review, we address important information on the mechanisms of action of essential oils and their antifungal and antimycotoxigenic properties, recent technological strategies for food industry applications, and the potential toxicity of essential oils.
Collapse
Affiliation(s)
- Naara A Almeida
- Department of Food Science, School of Food Engineering, University of Campinas, Campinas, Brazil
| | - Luísa Freire
- Department of Food Science, School of Food Engineering, University of Campinas, Campinas, Brazil
- Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul. Cidade Universitária, Campo Grande, Mato Grosso do Sul, Brazil
| | - Lorena Carnielli-Queiroz
- Department of Pharmaceutical Sciences, Health Sciences Center, Federal University of Espírito Santo, Vitória-Espírito Santo, Brazil
| | - Adriana P A Bragotto
- Department of Food Science, School of Food Engineering, University of Campinas, Campinas, Brazil
| | - Nathália C C Silva
- Department of Food Science, School of Food Engineering, University of Campinas, Campinas, Brazil
| | - Liliana O Rocha
- Department of Food Science, School of Food Engineering, University of Campinas, Campinas, Brazil
| |
Collapse
|
17
|
Lei JD, Li Q, Zhang SB, Lv YY, Zhai HC, Wei S, Ma PA, Hu YS. Transcriptomic and biochemical analyses revealed antifungal mechanism of trans-anethole on Aspergillus flavus growth. Appl Microbiol Biotechnol 2023; 107:7213-7230. [PMID: 37733053 DOI: 10.1007/s00253-023-12791-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/04/2023] [Accepted: 09/12/2023] [Indexed: 09/22/2023]
Abstract
Plant volatile compounds have great potential for preventing and controlling fungal spoilage in post-harvest grains. Recently, we have reported the antifungal effects of trans-anethole, the main volatile constituent of the Illicium verum fruit, on Aspergillus flavus. In this study, the inhibitory mechanisms of trans-anethole against the growth of A. flavus mycelia were investigated using transcriptomic and biochemical analyses. Biochemical and transcriptomic changes in A. flavus mycelia were evaluated after exposure to 0.2 μL/mL trans-anethole. Scanning electron microscopy showed that trans-anethole treatment resulted in the surface wrinkling of A. flavus mycelia, and calcofluor white staining confirmed that trans-anethole treatment disrupted the mycelial cell wall structure. Annexin V-fluorescein isothiocyanate/propidium iodide double staining suggested that trans-anethole induced apoptosis in A. flavus mycelia. Reduced mitochondrial membrane potential and DNA damage were observed in trans-anethole-treated A. flavus mycelia using 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethyl-imidacarbocyanine and 4',6-diamidino-2-phenylindole staining, respectively. 2',7'- Dichloro-dihydro-fluorescein diacetate staining and biochemical assays demonstrated that trans-anethole treatment cause the accumulation of reactive oxygen species in the A. flavus mycelia. Transcriptome results showed that 1673 genes were differentially expressed in A. flavus mycelia exposed to trans-anethole, which were mainly associated with multidrug transport, oxidative phosphorylation, citric acid cycle, ribosomes, and cyclic adenosine monophosphate signaling. We propose that trans-anethole can inhibit the growth of A. flavus mycelia by disrupting the cell wall structure, blocking the multidrug transport process, disturbing the citric acid cycle, and inducing apoptosis. This study provides new insights into the inhibitory mechanism of trans-anethole on A. flavus mycelia and will be helpful for the development of natural fungicides. KEY POINTS: • Biochemical analyses of A. flavus mycelia exposed to trans-anethole were performed • Transcriptomic changes in trans-anethole-treated A. flavus mycelia were analyzed • An inhibitory mechanism of trans-anethole on the growth of A. flavus mycelia was proposed.
Collapse
Affiliation(s)
- Jun-Dong Lei
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, 450001, People's Republic of China
| | - Qiong Li
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, 450001, People's Republic of China
| | - Shuai-Bing Zhang
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, 450001, People's Republic of China.
| | - Yang-Yong Lv
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, 450001, People's Republic of China
| | - Huan-Chen Zhai
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, 450001, People's Republic of China
| | - Shan Wei
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, 450001, People's Republic of China
| | - Ping-An Ma
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, 450001, People's Republic of China
| | - Yuan-Sen Hu
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, 450001, People's Republic of China
| |
Collapse
|
18
|
Singh PP, Jaiswal AK, Raghuvanshi TS, Prakash B. Insights into the antimicrobial efficacy of Coleus aromaticus essential oil against food-borne microbes: Biochemical and molecular simulation approaches. Food Chem Toxicol 2023; 182:114111. [PMID: 37890759 DOI: 10.1016/j.fct.2023.114111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/19/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023]
Abstract
The study reported the antimicrobial efficacy of chemically characterized Coleus aromaticus essential oil (CEO) against food-borne bacteria, molds (Aspergillus flavus), aflatoxin B1 (AFB1) and explored its mechanism of action using biochemical and molecular simulation approaches. The chemical profile of CEO was explored by Gas chromatography-mass spectrometry (GC-MS) analysis, which revealed thymol (46.0%) as the major compound. The minimum inhibitory concentration values of CEO for bacterial species Escherichia coli, Salmonella enterica, Bacillus cereus, and Shigella flexneri was found to be 0.9 μl/ml, 0.7 μl/ml, 0.16 μl/ml, and 0.12 μl/ml respectively. The MIC value for A. flavus and AFB1 contamination was 0.6 μl/ml. The DPPH radical scavenging activity of CEO was recorded with IC50 0.32 μl/ml. Biochemical and computational approaches (docking and dynamics simulation) have been performed to explore the multi-faceted antimicrobial inhibitory effects of CEO at the molecular level, which shows the impairment in membrane functioning, leakage of cellular contents, release of 260-nm absorbing materials, antioxidative defense, carbon catabolism and vital genes (7AP3, Nor1, Omt1, and Vbs). The findings indicated that CEO could be used as natural antimicrobial agents against food-spoilage bacteria, A. flavus and AFB1 contamination to extend the shelf-life of food product and prevention of food-borne diseases.
Collapse
Affiliation(s)
- Prem Pratap Singh
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Atul Kumar Jaiswal
- Department of Computer Science and Engineering, Jamia Hamdard University, New Delhi, India
| | - Tanya Singh Raghuvanshi
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Bhanu Prakash
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India.
| |
Collapse
|
19
|
Jiang W, Liang X, Li H, Mo L, Chen W, Wang T, Wang H, Xing Y, Liao J. Inhibitory effect of tannic acid on the growth of Apiospora arundinis and 3-Nitropropionic acid production. J Appl Microbiol 2023; 134:lxad264. [PMID: 37960923 DOI: 10.1093/jambio/lxad264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/24/2023] [Accepted: 11/10/2023] [Indexed: 11/15/2023]
Abstract
AIMS This study aimed to investigate the inhibitory effect of tannic acid (TA) on the growth of Apiospora arundinis and 3-Nitropropionic acid (3-NPA) production. METHODS AND RESULTS To investigate the antifungal mechanism, the effects of TA on the hypha growth, electrical conductivity, hypha morphology, defense-related enzymes, and 3-NPA production of A. arundinis were studied. TA concentrations of 640 and 1280 μg ml-1 exhibited strong antifungal activity against A. arundinis. The results of scanning electron microscopy and transmission electron microscopy showed that the hypha of the A. arundinis was severely deformed after TA treatment, and the cell membrane was blurred and thin, vacuoles were obviously shrunken and smaller, and most of the organelles were decomposed into irregular fragments. The increased electrical conductivity and malondialdehyde content indicated that TA caused peroxidation of unsaturated fatty acids and damaged the structure of the cell membrane. The decrease of intracellular ATPase and succinate dehydrogenase content indicated that TA damaged the function of mitochondria, and participated in the inhibition of respiratory metabolism. In addition, TA significantly reduced 3-NPA production and completely inhibited 3-NPA production at 640 and 1280 μg ml-1. CONCLUSION TA effectively inhibited both growth of A. arundinis in vitro and 3-NPA production.
Collapse
Affiliation(s)
- Wenyan Jiang
- Agro-Products Quality Safety and Testing Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Xuelian Liang
- Agro-Products Quality Safety and Testing Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Huiling Li
- Agro-Products Quality Safety and Testing Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Leixing Mo
- Agro-Products Quality Safety and Testing Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Wei Chen
- Agro-Products Quality Safety and Testing Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Tianshun Wang
- Agro-Products Quality Safety and Testing Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Haijun Wang
- Agro-Products Quality Safety and Testing Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Yihao Xing
- Genebank of Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Jie Liao
- Agro-Products Quality Safety and Testing Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| |
Collapse
|
20
|
Poovathumkadavil Thambi N, Rani P, Sharma M, Katoch M. A combinatorial approach of Monarda citriodora essential oil (MEO) and linalool vapors to control fruit rot of Citrus limon caused by a new pathogen, Aspergillus foetidus, and its underlying mode of action. J Appl Microbiol 2023; 134:lxad292. [PMID: 38040653 DOI: 10.1093/jambio/lxad292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/08/2023] [Accepted: 12/01/2023] [Indexed: 12/03/2023]
Abstract
AIMS Citrus limon (lemon) is a widely cultivated citrus fruit. Significant postharvest losses due to fungi plague its production. Environmental and human health hazards have made the application of synthetic fungicides unsuitable. Despite the previous reports of antifungal activities of essential oil (EO) vapors, their synergistic combinations are understudied. Synergistic vapor combinations are advantageous due to less concentration of active components. This study aimed to isolate and identify postharvest fungal pathogens lemon and to evaluate the antifungal effects of synergistic Monarda citriodora EO (MEO)-constituent vapor combinations in vivo and in vitro. METHODS AND RESULTS Postharvest fungal pathogens of lemon (C. limon) were isolated from various infected samples. The most pathogenic isolate was identified through morphology and its ITS-based rRNA gene sequencing as Aspergillus foetidus (O4). This is the first report of A. foetidus as a postharvest pathogen of lemon. The minimum fungicidal concentrations (MFCs) of MEO vapors treatment against O4 were 1346.15 µL/L air. For carvacrol, hexanal, and linalool, MFC was same (96.16 µL/L air). Checkerboard assays demonstrated that 1/4 MFC of MEO (336.54 µL/L air) and 1/4 MFC of linalool (24.04 µL/L air) (M + L) were synergistic against O4. M + L vapors reduced the O4 growth on lemons during storage by 64% ± 1.50% and preserved their quality (low weight loss %, unchanged pH, increased ascorbic acid content). Propidium iodide staining, ergosterol content analysis, calcofluor white staining and chitin content analysis revealed the integrity loss of the O4 plasma membrane and cell wall. 2',7'-Dichlorofluorescin diacetate staining revealed accumulation of intracellular reactive oxygen species (ROS), and scanning electron microscopy (SEM) analysis exposed the M + L treated mycelia with malformations. CONCLUSIONS M + L vapors offer protection for lemons from A. foetidus and preserve their quality during storage.
Collapse
Affiliation(s)
| | - Pragya Rani
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Mohini Sharma
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Meenu Katoch
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
- Academy of Scientific and Innovative Research, CSIR-Indian Institute of Integrative Medicine-CSIR, Jammu 180001, India
| |
Collapse
|
21
|
Rodrigues DS, Cabral VP, Barbosa AD, Valente Sá LG, Silva CR, Moreira LE, Neto JB, Silva J, Santos HS, Marinho ES, Cavalcanti BC, Moraes MO, Nobre Júnior HV. Sertraline has fungicidal activity against Candida spp. and acts by inhibiting membrane and cell wall biosynthesis. Future Microbiol 2023; 18:1025-1039. [PMID: 37540066 DOI: 10.2217/fmb-2022-0254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023] Open
Abstract
Aim: Our study evaluated the activity of sertraline (SER) alone and associated with antifungal drugs in planktonic Candida spp. strains, and investigated its mechanism of action. Materials & methods: Broth microdilution method and minimum fungicidal concentration/MIC ratio were used to assess SER anticandidal activity, and the interaction with antifungals was determined by fractional inhibitory concentration index. The mechanism of action was investigated by flow cytometry and in silico tests. Results: SER inhibited Candida spp. strains at low concentrations by the fungicidal effect and showed no loss of effectiveness when combined. Its action seemed to be related to the membrane and cell wall biosynthesis inhibition. Conclusion: SER has activity against Candida spp. isolated and associated with antifungals, and acts by causing cell wall and membrane damage.
Collapse
Affiliation(s)
- Daniel S Rodrigues
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, 430-372, Brazil
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, CE, 430-275, Brazil
| | - Vitória Pf Cabral
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, 430-372, Brazil
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, CE, 430-275, Brazil
| | - Amanda D Barbosa
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, 430-372, Brazil
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, CE, 430-275, Brazil
| | - Lívia Ga Valente Sá
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, 430-372, Brazil
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, CE, 430-275, Brazil
- Christus University Center (UNICHRISTUS), Fortaleza, CE, Brazil
| | - Cecília R Silva
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, 430-372, Brazil
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, CE, 430-275, Brazil
| | - Lara Ea Moreira
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, 430-372, Brazil
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, CE, 430-275, Brazil
| | - Joao Ba Neto
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, 430-372, Brazil
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, CE, 430-275, Brazil
- Christus University Center (UNICHRISTUS), Fortaleza, CE, Brazil
| | - Jacilene Silva
- Department of Chemistry, Group of Theoretical Chemistry and Electrochemistry (GQTE), State University of Ceará, Limoeiro do Norte, Ceará, 930-000, Brazil
| | - Hélcio S Santos
- Science and Technology Center, Chemistry Course, Vale do Acaraú State University, CE, 040-370, Sobral
| | - Emmanuel S Marinho
- Department of Chemistry, Group of Theoretical Chemistry and Electrochemistry (GQTE), State University of Ceará, Limoeiro do Norte, Ceará, 930-000, Brazil
| | - Bruno C Cavalcanti
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, CE, 430-275, Brazil
| | - Manoel O Moraes
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, CE, 430-275, Brazil
| | - Hélio V Nobre Júnior
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, 430-372, Brazil
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, CE, 430-275, Brazil
| |
Collapse
|
22
|
Feng J, Yanshao B, Wang H, Zhang X, Wang F. Recent advancements on use of essential oils as preservatives against fungi and mycotoxins spoiling food grains. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2023; 40:1242-1263. [PMID: 37549249 DOI: 10.1080/19440049.2023.2240894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 08/09/2023]
Abstract
Spoilage of grains by mycotoxigenic fungi poses a great threat to food security and human health. Conventionally used chemical agents to prevent grain fungi contamination cause increasingly significant problems such as microbial resistance, residual toxicity and environmental unfriendliness. In recent years, plant essential oils (EOs) have become a hot spot in the research of control of grain fungi and mycotoxins, due to their extensive sources, non-toxicity, environmental friendliness and good antifungal efficiency. The current review aims to provide an overview of the prevention of fungi and mycotoxins in grain through EOs. The antifungal and toxin inhibition efficiency of different EOs and their effective components are investigated. The inhibition mechanism of EOs on fungi and mycotoxins in grains is introduced. The influence of EOs treatment on the change of grain quality is also discussed. In addition, the formulations and techniques used to overcome the disadvantages of EOs application are introduced. The results of recent studies have confirmed that EOs provide great potential for controlling common fungi and mycotoxins in grains, and enhancing quantity and quality safety of grains.
Collapse
Affiliation(s)
- Jiachang Feng
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Bowen Yanshao
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - He Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Xiaowei Zhang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Fenghe Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| |
Collapse
|
23
|
de Sousa DP, Damasceno ROS, Amorati R, Elshabrawy HA, de Castro RD, Bezerra DP, Nunes VRV, Gomes RC, Lima TC. Essential Oils: Chemistry and Pharmacological Activities. Biomolecules 2023; 13:1144. [PMID: 37509180 PMCID: PMC10377445 DOI: 10.3390/biom13071144] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/03/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
In this review, we provide an overview of the current understanding of the main mechanisms of pharmacological action of essential oils and their components in various biological systems. A brief introduction on essential oil chemistry is presented to better understand the relationship of chemical aspects with the bioactivity of these products. Next, the antioxidant, anti-inflammatory, antitumor, and antimicrobial activities are discussed. The mechanisms of action against various types of viruses are also addressed. The data show that the multiplicity of pharmacological properties of essential oils occurs due to the chemical diversity in their composition and their ability to interfere with biological processes at cellular and multicellular levels via interaction with various biological targets. Therefore, these natural products can be a promising source for the development of new drugs.
Collapse
Affiliation(s)
- Damião P de Sousa
- Department of Pharmaceutical Sciences, Federal University of Paraiba, João Pessoa 58051-900, Brazil
| | - Renan Oliveira S Damasceno
- Department of Physiology and Pharmacology, Center of Biosciences, Federal University of Pernambuco, Recife 50670-901, Brazil
| | - Riccardo Amorati
- Department of Chemistry "G. Ciamician", University of Bologna, Via Gobetti 83, 40129 Bologna, Italy
| | - Hatem A Elshabrawy
- Department of Molecular and Cellular Biology, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX 77304, USA
| | - Ricardo D de Castro
- Department of Clinical and Social Dentistry, Federal University of Paraíba, João Pessoa 58051-970, Brazil
| | - Daniel P Bezerra
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (IGM-FIOCRUZ/BA), Salvador 40296-710, Brazil
| | - Vitória Regina V Nunes
- Department of Pharmaceutical Sciences, Federal University of Paraiba, João Pessoa 58051-900, Brazil
| | - Rebeca C Gomes
- Department of Pharmaceutical Sciences, Federal University of Paraiba, João Pessoa 58051-900, Brazil
| | - Tamires C Lima
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão 49100-000, Brazil
| |
Collapse
|
24
|
Sindhu M, Rajkumar V, Annapoorani CA, Gunasekaran C, Kannan M. Nanoencapsulation of garlic essential oil using chitosan nanopolymer and its antifungal and anti-aflatoxin B1 efficacy in vitro and in situ. Int J Biol Macromol 2023:125160. [PMID: 37271266 DOI: 10.1016/j.ijbiomac.2023.125160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/19/2023] [Accepted: 05/28/2023] [Indexed: 06/06/2023]
Abstract
The present study investigated the comparative efficacy of garlic essential oil (GEO) and its nanoencapsulated within chitosan nanomatrix (GEO-CSNPs) as a novel preservative for the protection of stored food commodities from fungal infestations, aflatoxin B1 (AFB1) contamination and lipid peroxidation against a toxigenic strain of Aspergillus flavus. GC-MS examination of GEO showed the presence of allyl methyl tri-sulfide (23.10 %) and diallyl sulfide (19.47 %) as the major components. GEO-CSNPs were characterized through TEM micrograph, DLS, XRD, and FTIR instrumentation. During the in-vitro investigation, GEO-CSNPs at 1.0 μL/mL dose completely inhibited the growth of A. flavus while preventing the synthesis of AFB1 at 0.75 μL/mL compared to the pure GEO. The biochemical analysis reveals that A. flavus exposed to GEO-CSNPs significantly changed its ergosterol level, ions leakage, mitochondrial membrane potential (MMP), and antioxidant system. Additionally, GEO-CSNPs exhibited enhanced antioxidant activity against DPPH compared with GEO. Likewise, during in-situ experiments on A. hypogea GEO-CSNPs MIC and 2 MIC concentration prohibited fungal development, AFB1 synthesis, and lipid peroxidation or inflicting any negative impacts on germinating seeds. Overall, investigations concluded that GEO-CSNPs could be used as a novel preservative agent to improve the shelf life of stored food commodities.
Collapse
Affiliation(s)
- Murugesan Sindhu
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, India
| | - Vallavan Rajkumar
- Conservation Biology Laboratory, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Coimbatore Alagubrahmam Annapoorani
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, India.
| | - Chinnappan Gunasekaran
- Conservation Biology Laboratory, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Malaichamy Kannan
- Centre for Agricultural Nanotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
25
|
Chen J, Wang H, Chen Y, Zhu Q, Wan J. Inhibitive effect and mechanism of cinnamaldehyde on growth and OTA production of Aspergillus niger in vitro and in dried red chilies. Food Res Int 2023; 168:112794. [PMID: 37120239 DOI: 10.1016/j.foodres.2023.112794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/23/2023] [Accepted: 04/03/2023] [Indexed: 05/01/2023]
Abstract
Mould and mycotoxin contamination is an ongoing issue in agriculture and food industry. Production by Aspergillus niger DTZ-12 in Guizhou dried red chilies was found, leading to significant economic losses. In this study, the inhibitive efficacy (Effective Concentration, EC) of cinnamaldehyde (CIN), eugenol (EUG), carvacrol (CAR), and linalool (LIN) against A. niger DTZ-12 were evaluated. CIN with the best antifungal capacity was then investigated for the comprehensive inhibitory activity against A. niger DTZ-12 including mycelia, spores, and physiological activities. Results showed that CIN can effectively retard mycelial growth, spore germination, and OTA production of A. niger DTZ-12 in vitro and in dried red chilies during storage. At physiological level, CIN can increase cell membrane permeability by reducing the ergosterol, decrease ATP content and ATPase activity, and promote the accumulation of reactive oxygen species (ROS) and malondialdehyde (MDA) in cell. These results suggested that CIN displayed a great potential to be employed as a natural and effective alternative preservative during dried red chili storage.
Collapse
Affiliation(s)
- Jiang Chen
- College of Life Sciences, Guizhou University, Huaxi District, Guiyang 550025, Guizhou Province, China
| | - Hua Wang
- Department of Liquor and Food Engineering, Guizhou University, Huaxi District, Guiyang 550025, Guizhou Province, China
| | - Yuanshan Chen
- Department of Liquor and Food Engineering, Guizhou University, Huaxi District, Guiyang 550025, Guizhou Province, China
| | - Qiujin Zhu
- Department of Liquor and Food Engineering, Guizhou University, Huaxi District, Guiyang 550025, Guizhou Province, China
| | - Jing Wan
- College of Life Sciences, Guizhou University, Huaxi District, Guiyang 550025, Guizhou Province, China; Department of Liquor and Food Engineering, Guizhou University, Huaxi District, Guiyang 550025, Guizhou Province, China; Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Huaxi District, Guiyang 550025, Guizhou Province, China.
| |
Collapse
|
26
|
Chitosan nanoparticles efficiently enhance the dispersibility, stability and selective antibacterial activity of insoluble isoflavonoids. Int J Biol Macromol 2023; 232:123420. [PMID: 36708890 DOI: 10.1016/j.ijbiomac.2023.123420] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023]
Abstract
Natural isoflavonoids have attracted much attention in the treatment of oral bacterial infections and other diseases due to their excellent antibacterial activity and safety. However, their poor water solubility, instability and low bioavailability seriously limited the practical application. In this study, licoricidin-loaded chitosan nanoparticles (LC-CSNPs) were synthesized by self-assembly for improving the dispersion of licoricidin (LC) and strengthening antibacterial and anti-biofilm performance. Compared to free LC, the minimum inhibitory concentration of LC-CSNPs against Streptococcus mutans decreased >2-fold to 26 μg/mL, and LC-CSNPs could ablate 70 % biofilms at this concentration. The enhanced antibacterial activity was mainly attributed to the spontaneous surface adsorption of LC-CSNPs on cell membranes through electrostatic interactions. More valuably, LC-CSNPs had no inhibitory effect on the growth of probiotic. Mechanism study indicated that LC-CSNPs altered the transmembrane potential to cause bacterial cells in a hyperpolarized state, generating ROS to cause cells damage and eventually apoptosis. This work demonstrated that the chitosan-based nanoparticles have great potential in enhancing the dispersibility and antibacterial activity of insoluble isoflavonoids, offering a promising therapeutic strategy for oral infections.
Collapse
|
27
|
Bourhia M, Alyousef AA, Doumane G, Saghrouchni H, Giesy JP, Ouahmane L, Gueddari FE, Al-Sheikh YA, Aboul-Soud MAM. Volatile Constituents in Essential Oil from Leaves of Withania adpressa Coss. Ex Exhibit Potent Antioxidant and Antimicrobial Properties against Clinically-Relevant Pathogens. Molecules 2023; 28:molecules28062839. [PMID: 36985810 PMCID: PMC10056193 DOI: 10.3390/molecules28062839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Withania adpressa Coss. ex is a plant used in traditional medications. Antioxidant, antibacterial, and antifungal properties of the essential oil from leaves of Withania adpressa Coss ex. (EOW) were investigated. EOW was extracted using a Clevenger apparatus, and its volatile compounds were characterized by GC-MS. Antioxidant potency was determined using DPPH, FRAP, and TAC assays. Antibacterial effects were determined vs. Escherichia coli, Klebsiella pneumonia, Staphylococcus aureus, and Streptococcus pneumonia; while its antifungal efficacy was determined vs. Candida albicans, Aspergillus flavus, Aspergillus niger, and Fusarium oxysporum using the disc diffusion and minimum inhibitory concentration bioassays. A chromatographic analysis showed that EOW contained eight phytochemical compounds constituting 99.14% of the total mass of oil. Caryophyllene (24.74%), Longifolene (21.37%), δ-Cadinene (19.08%), and Carene (14.86%) were predominant compounds in EOW. The concentrations required to inhibit 50% of free radical (IC50) values of antioxidant activities of EOW were 0.031 ± 0.006 mg/mL (DPPH), 0.011 ± 0.003 mg/mL (FRAP), and 846.25 ± 1.07 mg AAE/g (TAC). Inhibition zone diameters of EOW vs. bacteria were 18.11 ± 0.5 mm (E. coli), 17.10 ± 0.42 mm (S. aureus), 12.13 ± 0.31 mm (K. pneumoniae), and 11.09 ± 0.47 mm (S. pneumoniae), while MIC values were 51 ± 3, 47 ± 5, 46 ± 3 and 31 ± 1 µg/mL, respectively. Inhibition zone diameters of EOW vs. fungi were 31.32 ± 1.32, 29.00 ± 1.5, 27.63 ± 2.10, and 24.51 ± s1.07 mm for A. flavus, C. albicans, F. oxysporum, and A. niger, respectively. MIC values were 8.41 ± 0.40, 28.04 ± 0.26, 9.05 ± 0.76, and 22.26 ± 0.55 µg/mL, respectively. Importantly, the highest dose of EOW (1 mg/mL) showed negligible (~5%) cytotoxicity against MCF-12, a normal human epithelial cell line derived from the mammary gland, thus underscoring its wide safety and selectivity against tested microbes. To sum it up, EOW has exhibited promising antioxidant and antimicrobial properties, which suggests potential to abrogate antibiotic resistance.
Collapse
Affiliation(s)
- Mohammed Bourhia
- Department of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, Laayoune 70000, Morocco
| | - Abdullah A Alyousef
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia
| | - Ghizlane Doumane
- Laboratory of Advanced Materials and Process Engineering, Faculty of Sciences, Ibn Tofail University, BP 242, Kenitra 14000, Morocco
| | - Hamza Saghrouchni
- Department of Biotechnology, Institute of Natural and Applied Sciences, Çukurova University, 1380 Adana, Turkey
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
- Department of Integrative Biology, Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX 76798-7266, USA
| | - Lahcen Ouahmane
- Laboratory of Microbial Biotechnology, Agro-Sciences and Environment (BioMAgE), Cadi Ayyad University, Marrakesh 40000, Morocco
| | - Fatiha El Gueddari
- Laboratory of Chemistry, Biochemistry, Nutrition, and Environment, Faculty of Medicine and Pharmacy, University Hassan II, Casablanca 20000, Morocco
| | - Yazeed A Al-Sheikh
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia
| | - Mourad A M Aboul-Soud
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia
| |
Collapse
|
28
|
Silva-Beltrán NP, Boon SA, Ijaz MK, McKinney J, Gerba CP. Antifungal activity and mechanism of action of natural product derivates as potential environmental disinfectants. J Ind Microbiol Biotechnol 2023; 50:kuad036. [PMID: 37951298 PMCID: PMC10710307 DOI: 10.1093/jimb/kuad036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/08/2023] [Indexed: 11/13/2023]
Abstract
There have been a considerable number of antifungal studies that evaluated natural products (NPs), such as medicinal plants and their secondary metabolites, (phenolic compounds, alkaloids), essential oils, and propolis extracts. These studies have investigated natural antifungal substances for use as food preservatives, medicinal agents, or in agriculture as green pesticides because they represent an option of safe, low-impact, and environmentally friendly antifungal compounds; however, few have studied these NPs as an alternative to disinfection/sanitation for indoor air or environmental surfaces. This review summarizes recent studies on NPs as potential fungal disinfectants in different environments and provides information on the mechanisms of inactivation of these products by fungi. The explored mechanisms show that these NPs can interfere with ATP synthesis and Ca++ and K+ ion flow, mainly damaging the cell membrane and cell wall of fungi, respectively. Another mechanism is the reactive oxygen species effect that damages mitochondria and membranes. Inhibition of the overexpression of the efflux pump is another mechanism that involves damage to fungal proteins. Many NPs appear to have potential as indoor environmental disinfectants. ONE-SENTENCE SUMMARY This review shows the latest advances in natural antifungals applied to different indoor environments. Fungi have generated increased tolerance to the mechanisms of traditional antifungals, so this review also explores the various mechanisms of action of various natural products to facilitate the implementation of technology.
Collapse
Affiliation(s)
- Norma Patricia Silva-Beltrán
- Department of Environmental Science, Water Energy Sustainable Technology (WEST) Center, University of Arizona, Tucson, AZ, CP 85745, USA
- Departmento de Ciencias de la Salud, Universidad de Sonora, Ciudad Obregón, CP 85010, México
| | - Stephanie A Boon
- Department of Environmental Science, Water Energy Sustainable Technology (WEST) Center, University of Arizona, Tucson, AZ, CP 85745, USA
| | - M Khalid Ijaz
- Global Research & Development for Lysol and Dettol, Reckitt Benckiser LLC, Montvale, NJ, CP 07645, USA
| | - Julie McKinney
- Global Research & Development for Lysol and Dettol, Reckitt Benckiser LLC, Montvale, NJ, CP 07645, USA
| | - Charles P Gerba
- Department of Environmental Science, Water Energy Sustainable Technology (WEST) Center, University of Arizona, Tucson, AZ, CP 85745, USA
| |
Collapse
|
29
|
Ling L, Luo H, Zhao Y, Yang C, Cheng W, Pang M. Fungal pathogens causing postharvest fruit rot of wolfberry and inhibitory effect of 2,3-butanedione. Front Microbiol 2023; 13:1068144. [PMID: 36704548 PMCID: PMC9871540 DOI: 10.3389/fmicb.2022.1068144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023] Open
Abstract
Fungal pathogen contamination is one of the most important factors affecting the postharvest quality and shelf life of wolfberry fruits. Therefore, the prevention and control of fungal pathogens that cause fruit rot has become particularly important. Volatile antifungal agents of biological origin have broad application prospects. They may be safer and more efficient than traditional physical and chemical methods. Four pathogenic fungi were isolated and purified from rotting wolfberry. These pathogenic fungi were determined to be Mucor circinelloides LB1, Fusarium arcuatisporum LB5, Alternaria iridiaustralis LB7, and Colletotrichum fioriniae LB8. In vitro fumigation experiments showed that 2,3-butanedione can effectively inhibit the mycelial growth, spore germination, and sporulation ability of pathogenic fungi. The scanning electron microscope (SEM) showed morphological changes in hyphae. Propidium iodide (PI) Staining and leakage of 260 and 280 nm-absorbing increased, suggesting damage to cell membranes. Furthermore, 2,3-butanedione was found to significantly improve fruit firmness, soluble solid, total phenol, flavonoid, and soluble sugar content, as well as higher SOD enzyme activity and lower PPO and POD enzyme activity in the treated fruit, indicating that 2,3-butanedione can effectively reduce the adverse effects of pathogenic fungi in wolfberry. Based on these results, we conclude that 2,3-butanedione is effective against infection by pathogenic fungi in post-harvest wolfberry. 2,3-butanedione should be considered a viable substitute for conventional fungicides that are currently used to control rot in wolfberry.
Collapse
Affiliation(s)
- Lijun Ling
- College of Life Science, Northwest Normal University, Lanzhou, China.,Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Northwest Normal University, Lanzhou, China.,New Rural Development Research Institute, Northwest Normal University, Lanzhou, China
| | - Hong Luo
- College of Life Science, Northwest Normal University, Lanzhou, China.,Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Northwest Normal University, Lanzhou, China
| | - Yunhua Zhao
- College of Life Science, Northwest Normal University, Lanzhou, China.,Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Northwest Normal University, Lanzhou, China
| | - Caiyun Yang
- College of Life Science, Northwest Normal University, Lanzhou, China.,Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Northwest Normal University, Lanzhou, China
| | - Wenting Cheng
- College of Life Science, Northwest Normal University, Lanzhou, China.,Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Northwest Normal University, Lanzhou, China
| | - Mingmei Pang
- College of Life Science, Northwest Normal University, Lanzhou, China.,Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Northwest Normal University, Lanzhou, China
| |
Collapse
|
30
|
Anthracnose Controlled by Essential Oils: Are Nanoemulsion-Based Films and Coatings a Viable and Efficient Technology for Tropical Fruit Preservation? Foods 2023; 12:foods12020279. [PMID: 36673370 PMCID: PMC9857729 DOI: 10.3390/foods12020279] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/27/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Post-harvest diseases can be a huge problem for the tropical fruit sector. These fruits are generally consumed in natura; thus, their integrity and appearance directly affect commercialization and consumer desire. Anthracnose is caused by fungi of the genus Colletotrichum and affects tropical fruits, resulting in lesions that impair their appearance and consumption. Antifungals generally used to treat anthracnose can be harmful to human health, as well as to the environment. Therefore, essential oils (EO) have been investigated as natural biofungicides, successfully controlling anthracnose symptoms. The hydrophobicity, high volatility, and oxidative instability of essential oils limit their direct application; hence, these oils must be stabilized before food application. Distinct delivery systems have already been proposed to protect/stabilize EOs, and nanotechnology has recently reshaped the food application limits of EOs. This review presents robust data regarding nanotechnology application and EO antifungal properties, providing new perspectives to further improve the results already achieved in the treatment of anthracnose. Additionally, it evaluates the current scenario involving the application of EO directly or incorporated in films and coatings for anthracnose treatment in tropical fruits, which is of great importance, especially for those fruits intended for exportation that may have a prolonged shelf life.
Collapse
|
31
|
Transcriptomic analysis shows the antifungal mechanism of honokiol against Aspergillus flavus. Int J Food Microbiol 2023; 384:109972. [DOI: 10.1016/j.ijfoodmicro.2022.109972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/28/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
|
32
|
New insights into the persistent effect of transient cinnamaldehyde vapor treatment on the growth and aflatoxin synthesis of Aspergillus flavus. Food Res Int 2023; 163:112300. [PMID: 36596201 DOI: 10.1016/j.foodres.2022.112300] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/26/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022]
Abstract
The antimicrobial effects of continuous treatment with essential oils (EOs) in both liquid and gaseous phases have been intensively studied. Due to their rapid volatility, the effects of EOs on microorganisms after transient treatment are also worth exploring. In this work, the persistent effects of cinnamaldehyde (CA) vapor on Aspergillus flavus were detected by a series of biochemical analyses. Transcriptome analysis was also conducted to study the gene expression changes between recovered and normal A. flavus. When CA vapor was removed, biochemical analyses showed that the oxidative stress induced by the antimicrobial atmosphere was alleviated, and almost all the damaged functions were restored apart from mitochondrial function. Remarkably, the suppressed aflatoxin production intensified, which was confirmed by the up-regulation of most genes in the aflatoxin synthetic gene cluster, the velvet-related gene FluG and the aflatoxin precursor acetyl-CoA. Transcriptomic analysis also demonstrated significant changes in secondary metabolism, energy metabolism, oxidative stress, and amino acid metabolism in the recovery group. Taken together, these findings provide new insights into the mechanisms underlying the response of A. flavus to CA vapor treatment and will guide the rational application of EOs.
Collapse
|
33
|
Wang D, Wang G, Wang J, Zhai H, Xue X. Inhibitory effect and underlying mechanism of cinnamon and clove essential oils on Botryosphaeria dothidea and Colletotrichum gloeosporioides causing rots in postharvest bagging-free apple fruits. Front Microbiol 2023; 14:1109028. [PMID: 36922972 PMCID: PMC10008952 DOI: 10.3389/fmicb.2023.1109028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 02/06/2023] [Indexed: 03/02/2023] Open
Abstract
Bagging-free apple is more vulnerable to postharvest disease, which severely limits the cultivation pattern transformation of the apple industry in China. This study aimed to ascertain the dominant pathogens in postharvest bagging-free apples, to evaluate the efficacy of essential oil (EO) on inhibition of fungal growth, and to further clarify the molecular mechanism of this action. By morphological characteristics and rDNA sequence analyses, Botryosphaeria dothidea (B. dothidea) and Colletotrichum gloeosporioides (C. gloeosporioides) were identified as the main pathogens isolated from decayed bagging-free apples. Cinnamon and clove EO exhibited high inhibitory activities against mycelial growth both in vapor and contact phases under in vitro conditions. EO vapor at a concentration of 60 μL L-1 significantly reduced the incidence and lesion diameter of inoculated decay in vivo. Observations using a scanning electron microscope (SEM) and transmission electron microscope (TEM) revealed that EO changed the mycelial morphology and cellular ultrastructure and destroyed the integrity and structure of cell membranes and major organelles. Using RNA sequencing and bioinformatics, it was demonstrated that clove EO treatment impaired the cell membrane integrity and biological function via downregulating the genes involved in the membrane component and transmembrane transport. Simultaneously, a stronger binding affinity of trans-cinnamaldehyde and eugenol with CYP51 was assessed by in silico analysis, attenuating the activity of this ergosterol synthesis enzyme. Moreover, pronounced alternations in the oxidation/reduction reaction and critical materials metabolism of clove EO-treated C. gloeosporioides were also observed from transcriptomic data. Altogether, these findings contributed novel antimicrobial cellular and molecular mechanisms of EO, suggesting its potential use as a natural and useful preservative for controlling postharvest spoilage in bagging-free apples.
Collapse
Affiliation(s)
- Dan Wang
- Shandong Institute of Pomology, Shandong Academy of Agricultural Sciences, Tai'an, China
| | - Guiping Wang
- Shandong Institute of Pomology, Shandong Academy of Agricultural Sciences, Tai'an, China
| | - Jinzheng Wang
- Shandong Institute of Pomology, Shandong Academy of Agricultural Sciences, Tai'an, China
| | - Hao Zhai
- Shandong Institute of Pomology, Shandong Academy of Agricultural Sciences, Tai'an, China
| | - Xiaomin Xue
- Shandong Institute of Pomology, Shandong Academy of Agricultural Sciences, Tai'an, China
| |
Collapse
|
34
|
Meng F, Liu X, Li C, Peng X, Wang Q, Xu Q, Sui J, Zhao G, Lin J. Hinokitiol inhibits Aspergillus fumigatus by interfering with the cell membrane and cell wall. Front Microbiol 2023; 14:1132042. [PMID: 37113218 PMCID: PMC10128913 DOI: 10.3389/fmicb.2023.1132042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
Hinokitiol (β-thujaplicin) is an important component of the essential oil extracted from Chamaecyparis obtuse, which prevents the decay and decomposition of temple and shrine buildings in Japan. Hinokiol has been shown to have a detrimental effect on various fungi such as Candida albicans and saprophytic fungi. However how hinokitiol works against Aspergillus fumigatus (A. fumigatus) has not been claimed. This study aims to investigate the adverse effects of hinokitiol on the disruption of the cell wall and cell membrane of A. fumigatus and to explore possible potential mechanisms or pathways. According to our results, hinokitiol negatively altered mycelium morphology, growth density, and cell plasma composition content. When incubated with human corneal epithelial cells (HCECs), hinokitiol saw a safe effect with concentrations below 12 μg/ml. Hinokitiol was shown to increase the cell membrane's permeability by decreasing the cell membrane's ergosterol content. The integrity of the cell wall was disrupted, as well as a significant increase in chitin degradation and chitinase activity. As determined by RNA-seq results, subsequent analysis, and qRT-PCR, altered transcript levels of cell walls and cell membranes-related genes (such as eglC) illustrated how hinokitiol affected the genetic profile of A. fumigatus. With this study, we recommend hinokitiol as an effective anti-A. fumigatus agent by reducing the amounts of key components in the cell wall and membrane by preventing production and accelerating breakdown.
Collapse
|
35
|
Tian F, Woo SY, Lee SY, Park SB, Zheng Y, Chun HS. Antifungal Activity of Essential Oil and Plant-Derived Natural Compounds against Aspergillus flavus. Antibiotics (Basel) 2022; 11:antibiotics11121727. [PMID: 36551384 PMCID: PMC9774910 DOI: 10.3390/antibiotics11121727] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022] Open
Abstract
Aspergillus flavus is a facultative parasite that contaminates several important food crops at both the pre- and post-harvest stages. Moreover, it is an opportunistic animal and human pathogen that causes aspergillosis diseases. A. flavus also produces the polyketide-derived carcinogenic and mutagenic secondary metabolite aflatoxin, which negatively impacts global food security and threatens human and livestock health. Recently, plant-derived natural compounds and essential oils (EOs) have shown great potential in combatting A. flavus spoilage and aflatoxin contamination. In this review, the in situ antifungal and antiaflatoxigenic properties of EOs are discussed. The mechanisms through which EOs affect A. flavus growth and aflatoxin biosynthesis are then reviewed. Indeed, several involve physical, chemical, or biochemical changes to the cell wall, cell membrane, mitochondria, and related metabolic enzymes and genes. Finally, the future perspectives towards the application of plant-derived natural compounds and EOs in food protection and novel antifungal agent development are discussed. The present review highlights the great potential of plant-derived natural compounds and EOs to protect agricultural commodities and food items from A. flavus spoilage and aflatoxin contamination, along with reducing the threat of aspergillosis diseases.
Collapse
|
36
|
Ding J, Wang M, Wu J, Li Q, Zhao Y, Li J, Sun T. Preservation properties of eugenol and its compound on seasoned Lateolabrax japonicus fillets. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01668-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
37
|
Ma Y, Zhou R, Luo X, Li A, Wang R, Zhang B, Zhou H, Wu T, Wang Y, An J, Zhang Z, Zhao W, Yang C, Ding YY, Liu Y. Inhibition of
Fusarium Graminearum
Growth and Deoxynivalenol Biosynthesis by Phenolic Compounds. ChemistrySelect 2022. [DOI: 10.1002/slct.202201546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Yue Ma
- School of Pharmacy Lanzhou University Lanzhou 730000 People's Republic of China
| | - Rui Zhou
- School of Pharmacy Lanzhou University Lanzhou 730000 People's Republic of China
| | - Xiong‐Fei Luo
- School of Pharmacy Lanzhou University Lanzhou 730000 People's Republic of China
| | - An‐Ping Li
- Gansu Institute for Drug Control State Key Laboratory of Grassland Agro-ecosystems Lanzhou 730000 P. R. China
| | - Rui Wang
- Key Laboratory of Biochemistry and Molecular Biology in Universities of Shandong Province State Key Laboratory of Grassland Agro-ecosystems Weifang University Weifang 261061 China
| | - Bao‐Qi Zhang
- School of Pharmacy Lanzhou University Lanzhou 730000 People's Republic of China
| | - Han Zhou
- School of Pharmacy Lanzhou University Lanzhou 730000 People's Republic of China
| | - Tian‐Lin Wu
- School of Pharmacy Lanzhou University Lanzhou 730000 People's Republic of China
| | - Yi‐Rong Wang
- School of Pharmacy Lanzhou University Lanzhou 730000 People's Republic of China
| | - Jun‐Xia An
- School of Pharmacy Lanzhou University Lanzhou 730000 People's Republic of China
| | - Zhi‐Jun Zhang
- School of Pharmacy Lanzhou University Lanzhou 730000 People's Republic of China
| | - Wen‐Bin Zhao
- School of Pharmacy Lanzhou University Lanzhou 730000 People's Republic of China
| | - Cheng‐Jie Yang
- School of Pharmacy Lanzhou University Lanzhou 730000 People's Republic of China
| | - Yan Yan Ding
- School of Pharmacy Lanzhou University Lanzhou 730000 People's Republic of China
| | - Ying‐Qian Liu
- School of Pharmacy Lanzhou University Lanzhou 730000 People's Republic of China
- School of Pharmacy Lanzhou University State Key Laboratory of Grassland Agro-ecosystems Lanzhou University Lanzhou 730000 China
| |
Collapse
|
38
|
Whole-cell biocatalyzed organic solvent-free conversion of dill oil to cis-(-)-dihydrocarvone rich aromatic hydrosol: Chemical and aroma profiling. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Inhibitory Effect and Mechanism of Dill Seed Essential Oil on Neofusicoccum parvum in Chinese Chestnut. SEPARATIONS 2022. [DOI: 10.3390/separations9100296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
The chestnut postharvest pathogen Neofusicoccum parvum (N. parvum) is an important postharvest pathogen that causes chestnut rot. Chestnut rot in postharvest reduces food quality and causes huge economic losses. This study aimed to evaluate the inhibitory effect of dill seed essential oil (DSEO) on N. parvum and its mechanism of action. The chemical characterization of DSEO by gas chromatography/mass spectrometry (GC/MS) showed that the main components of DSEO were apiole, carvone, dihydrocarvone, and limonene. DSEO inhibited the growth of mycelium in a dose-dependent manner. The antifungal effects are associated with destroying the fungal cell wall (cytoskeleton) and cell membrane. In addition, DSEO can induce oxidative damage and intracellular redox imbalance to damage cell function. Transcriptomics analysis showed DSEO treatment induced differently expressed genes most related to replication, transcription, translation, and lipid, DNA metabolic process. Furthermore, in vivo experiments showed that DSEO and DSEO emulsion can inhibit the growth of fungi and prolong the storage period of chestnuts. These results suggest that DSEO can be used as a potential antifungal preservative in food storage.
Collapse
|
40
|
Molina-Hernandez JB, Capelli F, Laurita R, Tappi S, Laika J, Gioia L, Valbonetti L, Chaves-López C. A comparative study on the antifungal efficacy of cold atmospheric plasma at low and high surface density on Aspergillus chevalieri and mechanisms of action. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
41
|
Preparation and optimization of medicated cold cream using Caralluma adscendens var. attenuata for the treatment of Candida skin infection. BIOTECHNOLOGIA 2022; 103:249-260. [PMID: 36605824 PMCID: PMC9642957 DOI: 10.5114/bta.2022.118668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/01/2022] [Accepted: 05/04/2022] [Indexed: 11/05/2022] Open
Abstract
Fungal skin infection is a major skin health issue worldwide. For the treatment of fungal infections, systematic antifungal therapies are frequently prescribed. The aim of this study is to prepare an antifungal cold cream from Caralluma adscendens var. attenuata to treat deep dermal fungal infection in the skin layer. To achieve this, different concentrations of plant extract-based cold cream were prepared, and their in vitro characteristic features such as color, texture, pH, viscosity, spreadability, stability, permeation, were analyzed together with ex vivo evaluation to identify their applicability in the treatment of acute rat skin irritation. After 72 h of induction of Candida albicans infection in rats (7 days, two times/day), C. adscendens var. attenuata cold cream was applied topically. In rats with C. albicans induction without any treatment, adverse skin damages were visible in the form of red rashes, whereas in those with the formulated cold cream application, significantly less skin damage and inflammation were observed on a dose-dependent basis. Moreover, the reduced microbial colonization and histopathology of the rat skin without any treatment indicated the successful invasion of C. albicans and showed the morphological changes caused by candidal infection. However, treatment with the C. adscendens var. attenuata cream significantly inhibited candida colonization and reversed the morphological changes. In addition, the formulated C. adscendens var. attenuata cold cream showed good spreadability, permeation, and viscosity. Hence, it can act as a potent antifungal topical agent for the treatment of C. albicans skin infection without any irritation, thus safeguarding the skin tissue.
Collapse
|
42
|
Song G, Du S, Sun H, Liang Q, Wang H, Yan M, Zhang J. Antifungal mechanism of ( E)-2-hexenal against Botrytis cinerea growth revealed by transcriptome analysis. Front Microbiol 2022; 13:951751. [PMID: 36071976 PMCID: PMC9444101 DOI: 10.3389/fmicb.2022.951751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022] Open
Abstract
Gray mold caused by Botrytis cinerea, a necrotrophic plant pathogen, is one of the most damaging diseases of tomato, resulting in both pre- and post-harvest losses. (E)-2-Hexenal dose-dependently inhibited the mycelial growth of B. cinerea, and caused distortion of mycelia and loss of the cytoplasm content, thus altering the morphology of B. cinerea hyphae. To understand molecular processes in response to (E)-2-hexenal, transcriptome sequencing was carried out using RNA-Seq technology. RNA-Seq results revealed that a total of 3,893 genes were differentially expressed in B. cinerea samples treated with (E)-2-hexenal fumigation. Among these genes, 1,949 were upregulated and 1,944 were downregulated. Moreover, further analysis results showed 2,113 unigenes were mapped onto 259 pathways in Kyoto Encyclopedia of Genes and Genomes (KEGG). Moreover, (E)-2-hexenal stress affected the expression of genes involved in the pathways of cell wall, cell membrane, and energy metabolism. KEGG pathway analysis showed that the terpenoid backbone biosynthesis and steroid biosynthesis were the most enriched in ergosterol biosynthetic process transcriptome data. Particularly, (E)-2-hexenal fumigation had influenced ergosterol biosynthetic gene expression levels (e.g., ERG1, ERG3, ERG4, ERG7, ERG12, ERG13, ERG24, ERG25, ERG26, and ERG27), which were in good agreement with the experimental measurement results, and the ergosterol content decreased. Collectively, the results of this study increase our current understanding of (E)-2-hexenal inhibition mechanisms in B. cinerea and provide relevant information on postharvest shelf life extension and preservation of fruits and vegetables.
Collapse
Affiliation(s)
- Ge Song
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan, China
| | - Shenglong Du
- Department of Chemical Engineering, Xiangtan University, Xiangtan, China
| | - Helong Sun
- Department of Chemical Engineering, Xiangtan University, Xiangtan, China
| | - Quanwu Liang
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan, China
| | - Haihua Wang
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan, China
| | - Mingli Yan
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan, China
| | - Jihong Zhang
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan, China
| |
Collapse
|
43
|
Chen YX, Li W, Zeng H, Zhou G, Cai Q. Transcriptome Analysis Reveals the Mechanism of dill Seed Essential oil Against Sclerotinia sclerotiorum. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221119910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Sclerotinia sclerotiorum is a notorious fungal pathogen with a broad host range, including many important crops. A previous study showed dill seed essential oil (DSEO) could inhibit S sclerotiorum pathogenicity and protect canola production. However, the molecular basis of DSEO anti-fungal activity is still not well studied. To investigate the mechanism of DSEO anti-fungal activity, RNA-sequencing was employed to identify differentially expressed genes (DEGs) of S sclerotiorum in response to DSEO treatment. A total of 2470, 3218, and 3793 DEGs were identified in S sclerotiorum after being treated by DSEO for 0.5, 1, and 2 h, respectively. These genes that express changes in the early stage are more likely affected directly by DSEO. Gene Ontology (GO) analysis revealed that these genes were mainly related to transmembrane transport, cell membrane, ribosome biogenesis, and proteasome complex. DSEO treatment primarily affected the membrane part of the fungal cell, particularly the endoplasmic reticulum (ER) membrane at 0.5 and 1-hour treatment. In addition, a bunch of DEGs associated with the proteasome pathway was markedly enriched at 2 h of treatment. It is speculated that DSEO achieves antifungal effects by influencing these targets or pathways. The information obtained in this study expanded the understanding of the antifungal mechanism of DSEO and enriched the resources available for interpreting its mechanism at molecular level.
Collapse
Affiliation(s)
- Yu-Xin Chen
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Tarim University, Alar, Xinjiang, China
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Food and Biological Engineering, Hubei University of Technology, Wuhan, PR China
| | - Wei Li
- State Key Laboratory of Hybrid Rice, College of Life Science, Wuhan University, Wuhan, China
| | - Hong Zeng
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Tarim University, Alar, Xinjiang, China
| | - Gao Zhou
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Food and Biological Engineering, Hubei University of Technology, Wuhan, PR China
| | - Qiang Cai
- State Key Laboratory of Hybrid Rice, College of Life Science, Wuhan University, Wuhan, China
| |
Collapse
|
44
|
Relationship between the Antifungal Activity of Chitosan-Capsaicin Nanoparticles and the Oxidative Stress Response on Aspergillus parasiticus. Polymers (Basel) 2022; 14:polym14142774. [PMID: 35890550 PMCID: PMC9322876 DOI: 10.3390/polym14142774] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/02/2022] [Accepted: 07/03/2022] [Indexed: 02/05/2023] Open
Abstract
The fungus Aspergillus parasiticus is a contaminant in agricultural crops and its eradication involves the indiscriminate use of harmful synthetic pesticides. In the search for antifungal agents of natural origin, chitosan (Q) and capsaicin (C) are coupled in the form of nanoparticles (Np), which can possess a direct application under specific conditions. Due to their small size, Np can cross through the cell wall, taking the cells into a pro-oxidant environment known as “oxidative stress”, which presents when the reactive oxygen species (ROS) surpass the number of antioxidants in the cell. In the present investigation, nanoparticles of chitosan (Np Q) and nanoparticles of chitosan-capsaicin (Np QC) with an average diameter of 44.8 ± 20.6 nm and 111.1 ± 14.1 nm, respectively, were synthesized, and there was a zeta potential of + 25.6 ± 0.7 mV and + 26.8 ± 6.1 mV, respectively. The effect of the concentration of Np Q (A, B, C, and D), of Np QC (A, B, C, and D), and capsaicin in a solution (control) was evaluated on the viability of the spores, the accumulation of intracellular ROS, and the morphometric changes of A. parasiticus. Acute toxicity of the Np was determined utilizing bioassays with Artemia salina, and acute phytotoxicity was evaluated in lettuce seeds (Lactuca sativa). According to ROS results, capsaicin (control) did not induce oxidative stress in the cell; otherwise, it was observed to have an elevated (p < 0.05) accumulation of ROS when the concentration of Np Q increased. For both, Np Q and Np QC, an inverse physiological pattern relating spore viability and ROS accumulation in the fungus was found; the viability of spores decreased as the ROS accumulation increased. The spore viability of A. parasiticus diminished upon increasing the concentration of chitosan (0.3−0.4 mg/mL) in the Np, while the intracellular accumulation of ROS increased proportionally to the concentration of the nanomaterials in the treatments of Np Q and Np QC. On the other hand, Np QC presented a lower (p < 0.05) toxicological effect in comparison with Np Q, which indicates that the incorporation of bioactive compounds, such as capsaicin, into nanoparticles of chitosan is a strategy that permits the reduction of the toxicity associated with nanostructured materials.
Collapse
|
45
|
The antifungal mechanisms of plant volatile compound 1-octanol against Aspergillus flavus growth. Appl Microbiol Biotechnol 2022; 106:5179-5196. [PMID: 35779097 DOI: 10.1007/s00253-022-12049-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/15/2022] [Accepted: 06/19/2022] [Indexed: 12/16/2022]
Abstract
The exploitation of active ingredients from plant volatile organic compounds as natural gaseous fungicides shows remarkable potential for controlling fungal decay in postharvest agroproducts. Although 1-octanol is a common component of cereal volatiles, its antifungal potency against spoilage fungi in postharvest grains remains unclear. In this study, we studied the effectiveness of 1-octanol against Aspergillus flavus growth in postharvest grains and its mechanisms of action. 1-Octanol vapor and liquid contact dose-dependently inhibited A. flavus spore germination and mycelial growth at a low concentration. The simulated storage experiment demonstrated that 300 μL/L of 1-octanol vapor completely controlled A. flavus growth in wheat, corn, and paddy grains with 20% moisture content. 1-Octanol treatment irreversibly damaged the conidial and mycelial morphology of A. flavus and caused electrolyte leakage due to reduced plasma membrane integrity. It induced apoptosis along with morphological abnormalities, phosphatidylserine externalization, mitochondrial membrane potential depolarization, intracellular reactive oxygen species accumulation, and DNA fragmentation in A. flavus cells. Metabolomic analysis revealed that 1-octanol treatment disrupted the biosynthesis of unsaturated fatty acids, ATP-binding cassette transporters, amino acid metabolism, and glycerophospholipid metabolism. This study demonstrated the promising application potential of 1-octanol as a biofumigant for preventing fungal spoilage of postharvest cereal grains. KEY POINTS: • (1) 1-Octanol inhibits Aspergillus flavus growth in the vapor phase and liquid contact; • (2) 1-Octanol damages membrane integrity and induces apoptosis of A. flavus; • (3) Metabolomic changes in A. flavus mycelia were analyzed after 1-octanol treatment.
Collapse
|
46
|
Li X, Xu L, Lv Z, Li F, Xue J, Peng Y, Wei X, Li L. Antifungal Mechanism of MTE-1, a Novel Oligosaccharide Ester, against Ustilaginoidea virens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7441-7446. [PMID: 35671376 DOI: 10.1021/acs.jafc.2c02380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ustilaginoidea virens is a pathogenic fungus that causes false smut disease in rice during the flowering stage through stamen filaments. Currently, there is a need to develop safe and effective antifungal agents for the control of this disease. In our preliminary experiments, we found that MTE-1, a new trisaccharide ester, exhibits significant inhibitory activity against U. virens. Hence, the effects and inhibitory mechanism of MTE-1 in U. virens were investigated. Results showed that the MTE-1 inhibited the hyphae growth of U. virens with an IC50 of 5.67 μg/mL. Similarly, MTE-1 disrupted the endomembrane system in U. virens, especially the plasma membrane, mitochondria, and lipidosome. Moreover, transcriptome and proteome analysis indicated that MTE-1 inhibited the growth of U. virens by inhibiting the synthesis of lipids, altering the primary metabolic pathways including carbohydrates and amino acid metabolism, and affecting the intracellular redox dyshomeostasis, thus leading to the disorder of active oxygen metabolism. These findings lay the foundation for the future application of MTE-1-derived agents in the management of antifungal diseases.
Collapse
Affiliation(s)
- Xiaojie Li
- School of Life Sciences, Huizhou University, Huizhou 510607, China
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, South China Normal University, Guangzhou 510631, China
| | - Liangxiong Xu
- School of Life Sciences, Huizhou University, Huizhou 510607, China
| | - Zhencheng Lv
- School of Life Sciences, Huizhou University, Huizhou 510607, China
| | - Fengming Li
- School of Life Sciences, Huizhou University, Huizhou 510607, China
| | - Jinghua Xue
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yonghong Peng
- School of Life Sciences, Huizhou University, Huizhou 510607, China
| | - Xiaoyi Wei
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Ling Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
47
|
Wang X, Huang M, Peng Y, Yang W, Shi J. Antifungal activity of 1-octen-3-ol against Monilinia fructicola and its ability in enhancing disease resistance of peach fruit. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108804] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
48
|
Antibacterial characteristics of oregano essential oil and its mechanisms against Escherichia coli O157:H7. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01393-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
49
|
Niu A, Wu H, Ma F, Tan S, Wang G, Qiu W. The antifungal activity of cinnamaldehyde in vapor phase against Aspergillus niger isolated from spoiled paddy. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
50
|
Nanoencapsulated plant-based antifungal formulation against the Aspergillus flavus and aflatoxin B1 contamination: Unraveling the biochemical and molecular mechanism of action. Int J Food Microbiol 2022; 372:109681. [DOI: 10.1016/j.ijfoodmicro.2022.109681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 03/23/2022] [Accepted: 04/15/2022] [Indexed: 11/22/2022]
|